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Chapter 1

Field Theory

1.1 Definitions

Definition 1.1. A field F is algebraically closed if for any f € F[z], f has a root in F, or
equivalently, every polynomial in F[z] splits over F.

Definition 1.2. We say an extension K/F is separable if K is algebraic over F and there exists
[K : F] distinct embeddings (field homomorphism and F-linear) K — F.

Remark. If o : K — F is an embedding and o € F is a root of f € F[z], then o(a) is a root of f
since o is a field homomorphism and F-linear.

Example 1.3. Q(v/2)/Q is separable since we have 2 distinct embeddings Q(v/2) — Q given by
o1:vV2 V2 and o3 : V2 — —/2. Note that Gal(Q(v/2)/Q) = {o1,02}.

Example 1.4. The extension Q(v/2)/Q is separable since we have 3 distinct embeddings Q(v/2) <
Q given by o1 : ¥/2 = /2, 09 : V2 — V/2& and o3 1 V2 — /22, Since V/2¢3, V/2€2 ¢ Q(V/2), we
have Aut(Q(+v/2)/Q) = {1} and then it is not a Galois extension.

Fact 1.5. (a) F(a)/F is separable if and only if m,, has no repeated roots over F.
(b) Any extension /F with F perfect is separable.

(¢) f FC K C L, then L/F is separable if and only if £/K and KC/F are separable.
(d) [Fla) : F] = deg(ma).

Example 1.6. In F,, f(z) = 2P — a has repeated roots since f'(z) = pzP~! = 0 for any z € F,,.
Hence F,(¢/a&,)/F), is not separable.

Lemma 1.7 (Primitive element theorem). If K/F is finite and separable, then K = F(6).

Proof. We assume that F and K are infinite. The finite case is left to the reader. It is enough to
show F (o, B) can be written as F(6) for some 6 € K. Let m, and mg be the minimal polynomial of
a and 3 over F. Let aq,...,a, be the roots of m, and f31,. .., Bs be the roots of mg over F. Since
F is infinite, we can choose ¢ € F such that g;—:g # —cfori=1,...,7rand j = 2,...,s. Hence
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2 CHAPTER 1. FIELD THEORY

a+c(f—p;) #a;fori=1,...,rand j =2,...,s. Let 0 = a+cf and f(z) = mqy(0—cx) € F(0)[z].
Observe f(B) = ma(0 — cB) = ma(a) = 0, e, B is a root of f. Since a + ¢(8 — 5;) # «; for
i=1,...,rand j =2,...,s, we have f(8;) = ma(0—cfB;) = mo(a+c(B—B;)) #0forj=2,...,s.
This implies f and mg only have one root 3 in common by our choice of c. Let h be the minimal
polynomial of 3 over F(#), then we must have h | mg and h | f. Since K/F is separable, we have
F(B)/F is separable. Hence mg has no repeated roots and then h(z) = u(x — ) € F(0)[z] for some
u € F(0)*. Hence g € F(0) and thus F(5) C F(#). Since a = 0 — ¢ € F(0), F(a,B) C F(6).
Also, since § = a+ ¢f € F(o, ), F(0) C F(a, B). O

Example 1.8. Q(v/2,v3) = Q(v2 + v/3).

Proof. The point is

va= (2D (B ﬁ—gﬁ+2(ﬁ1+\/§) QW2+ Vi)

Definition 1.9. An (algebraical) number field is a finite field extension of Q.
Example 1.10. The fields C and R are not number fields.

Fact 1.11. Since all number fields K/Q are separable, there are [IC : Q] distinct embbedings
o: K — Q Let K := Q(a) and f € Q[z] the minimal polynomial of o of degree n. Then
K =Q(a) 2 Q]/{(f) = Q(x+ (f)). Let v : Q[z] — Q[z]/{f) be the natural projection. Then
P+ () = FO) = 1(f() = F+ (f) = (F) = 0 in K = Qfa]/(f). Since char(Q) = 0 and f
is irreducible with degree n > 2, we have f has n distinct roots ai,...,a, in Q. Then we get n
distinct embeddings o; : K = Q[z]/(f) — Q given by z + (f) — a; (Q(ay) = --- = Q(a,)). There
can’t be more since o(x + (f)) has to be a root of f for any embedding o.

Definition 1.12. Let o be an embedding o : K — Q. We say o is a real embedding if o(K) C R.
If o(K) C C, we say o is a complex embedding. If o is a complex embedding, so is &, and hence
complex embeddings come in pair. For example, o : ¥/2 — /2¢3 and @ : /2 — \3@&)2)

1.2 Trace, Norm and Determinant

Let £/K be a finite field extension of degree n, o71,...,0, the distinct embeddings of £ < K and
a1,...,a, a basis of L/K.

Definition 1.13. Let x € £L 2 K”. For any x € K, we have a K-linear transform f, : £L — L given
by y = xy. The trace of x from L to K is the trace of this map and we denote this by Trz k().
The norm of z from L to K is the determinant of this map and we denote this by N /().

Example 1.14. Let £ =Q(v/3) and K = Q. Let x = 6 + 7v/3 and f, : Q(v/3) — Q(+/3). Let B =

6 21
{1,/3}. Then [f.]s = {7 6 } Hence Trq/3),0(6 + 7v/3) = 12 and No(v3)/0(6 + 7V3) = —111.

Definition 1.15. Let ¢, (t) be the characteristic polynomial of f, : £ — £. Write
cr(t) = det(tl, — Ap) =t" —ait" " -+ (=1)"a, € K[t].
Then Trz/x(x) = a1 and Nz /k(x) = a, and so

Cx(t) = det(tln — Afx‘) = tn — TI‘ﬁ/;(:(I)tnil 4+ 4 (_1)77, NLZ/)C(:C) S K:[t]
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Remark. Note that fi, 42, = fo, + fo, a0d fo 2, = foo frs-

Theorem 1.16. Let o : £L — K vary over the n distinct K-embeddings of L into K. Fiz x € L,
then c,(t) = [[,(t —o(x)), Treyc(x) =3, o(x) and Ngyx(x) =[], o(z).

Proof. It is enough to show c;(t) = [[,(t — o(x)). Note K C K(z) C L. Write m,(t) =
t™ + ait™t + oo+ ap, withm = [K(z) : K. We claim that c,(t) = (m.(t))¢ withd =

£ : K(z)] = % = 2. We have B = {l,z,...,2™ '} is a basis for K(z)/K. Since
0=my(z) =2™+ax™ 1+ +ay,, wehave - 2™ = 2™ = —a,, — apm_17 — -+ —ayz™ L.
00 -+ 0 —ap
1 0 -+ 0 —am-1
Hence [f:]g = 01 - 0 —am , which is the companion matrix Ay of m,. Hence
00 - 1 —a
the characteristic function of fi|xn) @ K(z) — K(z) is mg. Let {a1,...,aq} be a basis of
L/K(x). Then C = {ai,qz,...,c12™ 1 ... ag,aqr,...,aqe™ 1} is a basis for £/K. Hence
A, 0 - 0
0 Ap - 0
[fele = | . ) . Hence the characteristic polynomial of f, : £ — L is ¢, = mZ.
0 0 - Ajp
Since L/K is separable and x € L, K(z)/K is separable and then m, has m distinct roots
T1,...,Tym € K. Fori = 1,...,m define an emebedding o; : K(z) — K given by = +— x;, we

then lift o; to o] : L — K with ¢'|i(,) = ¢ and the number of liftings is [£ : K(z)] = d. Then
m(t) = [['-,(t — oi(x)) and o;’s are all the n embeddings £ — K. For 0,7 € Homg (£, K) 1-1,
define an equivalent relation o ~ 7 if and only if o(x) = 7(x). Then

ca(t) = mo(t)! = H(f —0;(2))! = H IT ¢ = o(@) =t o(x)). D

Corollary 1.17. Trz/x : L — K and Nz : L* — K* are K-linear transforms.
Corollary 1.18. Let x € £ then z | N /().

Proof. Note that the identity map belongs to the K-embeddings of L. O

Corollary 1.19. Let £/K be Galois. If z € £, then Tr(z) € K.

Proof. Let 7 € Gal(£/K), then since {0 | o is an embedding £ — K} is a finite group,

F(Tre e (a)) = 7 (Z a(o:)) =Y r(o@) = 3 ole) = Tregn(a).

o o (o2

Since the fixed field of Gal(£/K) is K, we have Tr. /xc(z) € K. O

Corollary 1.20. If K(a)/K is separable and = € K(a) \ K, then ¢, = m,.
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Example 1.21. Consider £ = Q(\/{j) and K = Q, where d is square free. For z = a + bv/d with
a,beZ,

’I&r[;/,c(a—&—b\/g) =g1(a+bVd) +oa(a+bVd) =a+bVd+a—bVd=2a
and
N[;/,C(a+b\/g) = 01(a+ bVd)oa(a + bVd) = (a + bVd)(a — bVd) = a® — db*.

Corollary 1.22. Let 7 C K C £ be a tower of finite field extension. Then Tri, 7 o Trz/x = Trz /7
and NIC/]-'ONL/IC = Nﬁ/]:.

Definition 1.23. The determinant of {1, ...,a,} is defined as

(o, ... o) = (det(os(ey)))? .

Example 1.24. Let K = Q(v/3), F = Q and 0,,05 distinct embeddings with o7 = 1 . Let
B = {1,V3}, then 01(1) = 1, 01(v3) = V3, 02(1) = 1, 02(V3) = —V3, m z(z) = 2* — 3,
L V3 ]2 =12

disc(m, 5) = 12, and d(1, V3) = det L 3

Fact 1.25.

n

Trejxc(aiog) = Y on(oiag) = > ox(ai)or(ay).

k=1 k=1

Theorem 1.26. The matriz (Trz xc(cia;)) is the product of the matriz * (ox(w)) and (o ().
This gives d(az, ..., o) = det ((Trzx(as0))).

Proof. Tt follows from Trzic(aer;) = Y7 orl(evioy) = > ok(as)ok(ay). O

Remark. More generally, let B 2 A be rings, and assume B = A", ie., B is a free A-module of
dimension n. Let (51, ..., B, be elements of B. We define their discriminant to be

d(ﬁl, - ,ﬁm) = det((TI‘B/A(ﬁzﬁ])))

Example 1.27. Let £ = Q(&3) and K = Q. Then

d(1,&) = det [12@ %Eﬁ%i]:[ggigg Trﬁs—ﬁ%&s)}:[—zl —2—_%—”}:_3'

Definition 1.28. Define ¢ : £L x L — K by (x,y) — Trz/c(vy), which is a (non-degenerate)
symmetric bilinear form on L regarded as a vector space over K, and the discriminant of this form
is called the discriminant of L/K.

Remark. Let M € Mat,(K) be nonsingular and (y1,...,7) = (a1,...,a,)M. Then we have
(Tr,c/,c(%"yj)) =tM (T\I‘L/K:(aiaj)) M. Hence d(v1,...,v) = (det(M))%d(aq, ..., ay).

Theorem 1.29. If we have a basis of the form {1,0,...,0"" '} of L/K, then d(1,0,...,0""1) =
[Li<;(8; — 6;)%, where 0, = 53(8). Then d(1,0,...,6" ") = (1)) [, (6: - 6)).
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16, 63 - o7t
1 6, 63 - 0371

Proof. You may use the Vandermant matrix | k6 . L . . O
1 6, 02 or—1

Example 1.30. Let £ = Q(v/3) and K = Q. Then

d(1,V3) = [[(0i(0) — 0;(0))* = (01(V3) — 02(V3))* = (V3 — (—V3))* = 12,

i<j

Lemma 1.31. Let {51,...,6,} and {a1,...,a,} be two bases for L/K. Then d(f1,...,08,) =
u?d(aq, ..., ap) for some u € KX, i.e., the discriminant d(3; --- , 8,) of a basis B1,..., 8, of L/K
is well-defined up to multiplication by a square of a unit (nonzero square) in K.

Proof. Since 0 # det(M) € K given that M is the change of basis matrix, we have det(M) € £*. O
Theorem 1.32. d(a; -+ «ay,) # 0.

Proof. Let 6 be a primitive element for £/K. We have {1,0,...,6" 1} is a basis of £/K. The
correspoding bilinear form on {ay, ..., a,} has the matrix M = (Trz/xc(6°726771))
Since det(M) = d(1,6,...,0" ") =], ,
Let {a,...,a,} be any basis with correspoding matrix M’ = (Trﬁ/](:(aiaj)). Since det(M’) is a
unit square multiple of det(M), we have 0 # det(M') = d(aq, . .., ap)- O

i=1,...,n; j=1,...n"

(0; —0;) # 0, where 0; = 0;(0), we have M is nonsingular.

Remark. The above conclusions for the discriminant can be generalized to free modules.

Example 1.33. Let £ = Q(v/d) and K = Q, where d is square free.

(a) Let By = {1,V/d}. Then d(B:) = d(1,v/d) = det H{%) Tég)] et [(2) QOd] "

(b) Let By = {1, Lt/d } Similarly, d(Bs) = d (1, 1+2\/5) = det E id} = d.
2

Note that the disciminants differ by 4 and 4 is a square in Q*.

1.3 Rings of integers
All rings in this section are nonzero commutative ring with identity. Let A C B be subrings.

Definition 1.34. We say b € B is integral over A if there is a monic polynomial f € A[z] such
that f(b) =0. We say B is integral over A if each b € B is integral over A.

Example 1.35. Let B = Z[i] and A = Z. Let 3 = a-+bi € Z[i] and f(z) = 22 —2ax+a®+b* € Z|z].
Then f(a+ bi) = 0. This gives j is integral over Z and so Z[i] is integral over Z.

Fact 1.36. Let A € Mat,(R) and A* be the adjugate matrix. Then AA* = A*A = det(A)I,.
Hence if Av =0 for some v = (v1,...,v,) € R", then (det(A)I,)v = 0.
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Theorem 1.37. Let A C B C C be ring extensions. If C is integral over B and B is integral over
A, then C' is integral over A.

Proof. Let ¢ € C, then there exist b1,...,b, € B such that ¢® + bi¢® ' +.-- +b, = 0. Hence
¢ is integral over A[by,...,b,] and then A[by,...,b,,c] = A[by,...,by][c] is a finitely generated
Alby,...,by] module. Since B is integral over A and by,...,b, € B, Alb,...,b,] is a finitely
generated A-module. Hence A[by,...,by,c] is a finitely generated A-module and thus c is integral
over A. O

Definition 1.38. Let A C B be ring extension.
A =1{be B|bis integral over A}

is a subring of B. This is the integral closure of A in B. If A = A, we say A is integrally closed in
B.

Definition 1.39. If A is an integral domain and A is integrally closed in its field of fractions Q(A),
we say A is integrally closed.

Theorem 1.40. UFDs are integrally closed.

Proof. Method 1. Let R be a UFD. Let /8 € Q(R) with 8 # 0 and ged(«, 8) = 1 be integral over
R. Then there exists n € N and 71,...,r, € Q(R) such that (a/8)" +r1(a/B)"* L+ + 1, =0,
ie., a® +raf" 4+ . +7r,8" = 0. Hence ™ = 0 (mod ). Also, since ged(a, 3) = 1, 8 € R*.
Hence a/B € R.

Method 2. Let R be a UFD and b € Q(R) integral over R. Then there exists monic f € R[z] such
that f(b) = 0. Since R is a UFD, R[z] is a UFD. Factor f into irreducible and monic polynomials
fi--  fm in R[z]. Then fi(b)--- fm(b) = f(b) = 0. Since R is an integral domain, f;(b) = 0 for
some i € {1,...,n}. Hence x —b | fi(x). Also, since f; is irreducible, f;(z) =z —b. Since f; € Rx],
beR. O

Theorem 1.41. Let A be integrally closed with K := Q(A). Let L/K be a finite separable extension.
Let B be the integral closure of A inside L, i.e., B = {a € L | a is integral over A}. Then B is
integrally closed in L.

Proof. Note AC K C L. Let EZ {b € L] b is integral over B} D B. Since B is integral on B and
B is integral over A, we have B is integral on A. Hence by definition of B and B, B C B. O

Definition 1.42. Let K be a number field. The ring of integer of KC, denoted o, is the integral
closure of Z in K, i.e.,
ox = {a € K | a is integral over Z}.

Remark. Let K be a number field. Since Z is integrally closed with Q(Z) = Q, we have ok is
integrally closed in K = Q(ox). Hence ok is integrally closed.

Fact 1.43. Let K be a number field. Then ok is a Z-module, K is a (finitely generated) ox-module
and Z C ox C K is a chain of Z-submodules.

Lemma 1.44. Let A be integrally closed with Q(A) = K. Let £/K be separable of degree n. Then
an element 5 € £ is integral over A if and only if mg x(z) has coefficients in A.
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Proof. <= follows from definition.

= Assume (3 € L is integral over A. Then there exists (monic) p(z) € A[z] C K[x] such that
p(B) = 0. Hence S is algebraic over K. Then mg x(z) | p(x) in K[z] and so every root of mg(z) is a
root of p(z) in K. Let {o1,...,0,} be all the distinct K-embeddings £ — K. Since £/K is separable,
o1(B),-..,04(8) € K are the n distinct roots of mg x and then mg x(z) = [\, (x—04(8)). Since 3

is integral over A, o;(f) is integral over A for ¢ = 1,...,n. Hence the coefficients of mg are integral
over A. Thus, since A is integrally closed and the coefficients are in K = Q(A), the coefficients
must lie in A. O

Example 1.45. Let A = Z, K = Q and £ = Q(§,) with p prime. Then me¢, (z) | 2P — 1, and
actually me (z) = 2?1+ .- +1 € Z[z].

Example 1.46. Let £ = Q(i) with 8 =4, then mg(z) = 2> + 1 € Z[z].

Lemma 1.47. Let £/K be an extension of number fields. If 3 € o, then Trz/x(8), Nz (8) € ok.
In particular, if 3 € ok, then Trx,q(8), Nx/o(B) € Z.

Proof. By definition, 8 is integral over Z C ox. Hence mgx(x) has coefficients in ox. Since
cg(z) = TrL%JC(;v)7 where d = [L : K()], we have cg has coefficients in ox. Also, since Trz/x(8)
and N2k (8) are both coefficients in cg, Trz/x(8), Nz /k(8) € ok. O

Theorem 1.48. Let K be a number field and oo € ox. Then oo € of if and only if N jo(a) = £1.

Proof. “=7. Assume a € 0. Then 1/a € 0k and so 1 = Ny g(1) = Ni/g(a) N /g(1/). Since
Ni/a(@), Nx/q(1/a) € Z, Nijg(a) = £1.

“<". Assume Ny g(a) = +1. Then since a € ok, there exist a,_1,...,a1 € Z such that
Mma(r) = 2" + ap_12" 1 + .-+ @z &£ 1. Hence 1/a is a root of the monic polynomial g(x) =
1+an_ 17+ +az" ' +£2" and hence 1/a € ox. Thus, a € Og. O]

Example 1.49. Let K = Q(v/2). We have v2 € ox and Z[v2] C ox. Since {1,4/2} is a basis
of Q(v2), we can let z + yv2 € ok with z,y € Q. Hence 2z = Trg/g(z + yv2) € Z. Hence
x = a/2 for some a € Z. We also have x? — 2y? = Nz + yV2) € Z. If x € Z, then 2y® € Z.
This gives y € Z, and so = + yv/2 € Z[v/2]. Assume = ¢ Z. Then a is odd. Since (a/2)? — 2y? € Z,
a®? — 8y? € 4Z and so 8y? € Z. If y = b/2 for some b € Z, then a® — 8(b/2)? = a® — 2b° € 4Z,
contradicted by that a is odd and a? — 2b? is even. Hence z + yv/2 € Z[v/2] and thus ox = Z[v/2].

Theorem 1.50. Let K be a number field. Then every finitely generated ox-submodule of K is a
free Z-module of rank [K : Q]. In particular, ox = ZFU as Z-module.

Proof. Let {a1,...,aq} be a Q-basis of . We claim that we can choose the «;’s to lie in ox. Let
i€ {1,...,d}, let mg,(z) = zk + ai’kfla?k_l + -4 a;0 with a;; € Q. Let D; € Z be the least
common denominator of the coefficients of mg, (z). Then

0 = Dfma,(a;) = Dfaf +Dfa;j—1a; ' +- -+ Dfaio = (Day)* + Dia 1 (Dic;)* ' 4+ -+ Dfay .

Hence D;q; is a root of a monic 2% + D;a; j—12%~1 + -+ + DFa; o € Z[z]. Hence D;a; € ox. Let
D =lem(Dy,...,Dy), then {Day,...,Dag} C ok is a Q-basis of K.

Let ox D My = Zay +- - -+ Zag =2 Z4. Since {a, ..., a4} are Q-linearly independent when K is
a Q-vector space, they are Z-linearly independent when ok is a Z-module. Also, since {a1,...,a,}
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is a Z-generating set for My, My is a free Z-module of rank d. Hence ox contains a free Z-module
of rank d. Set A = d(ay, -+ ,aq). Let a € ox. Then a = bjag + -+ + -+ + bgag € 0k for
some by,...,bg € Q. Then Aa € Aok and a;a = (;a1)by + -+ + ()b for ¢ = 1,...,d.
Since Trx/q is Q-linear, for i = 1,...,d, Tri g(asa) = Tri g(aia)by + - - - + Tricjg(asaa)ba, ie.,
TI‘;C/Q(OQCL) b1
: = (Tr,C/Q(aiaj)) ©|. Since aya, ;05 € o fori =1,...,dand j = 1,...,d,
Tr,C/Q(ozda) bd
we have Tri q(oia), Tric/g(asa;) € Z by Lemma 1.47 for i = 1,...,d and j = 1,...,d. Also, by
Cramer’s rule, Ab; = det((Trx/g(cia;)))b; is the determinant of the matrix (Tri,q(aic;)) with
i*h column replaced by (by,...,bq)T fori=1,...,d. Hence Ab; € Z fori=1,...,d. Then

Aa = (Abl)al + -4 (Abd)ad € Loy + -+ + Lag = M.

Hence Aox C My and then Aox is a Z-submodule of My since Aoy is a Z-module. Since Z is
a principal ideal domain, Aok is a free Z-module of rank at most d. Since 0 # A € K, we have
a Z-module isomorphism Aox = ok given by Ax — z. Hence ox is a free Z-module of rank at
most d. Also, since My C ok is a Z-submodule, o is a free Z-module of rank d. Then we have a
Z-module isomorphism ox @z Q = Z¢ @, Q =2 Q<.

Let wq,...,w, € K such that M := oxw; + --- + oxw,. Then for i = 1,...,r, there ex-
ist Yily---sYid € OK and Cily.--,Cid € Q and such that W; = C17Yi1 + 0+ CidYVid- Let D' =
lem(ci1, ..y Cldy -5 Crly e vy Cra). Then D'eyq,...,D'c1q,...,D'¢r1, ..., D'crqg € Z. Hence we have

D'wy,...,D'w, € ox and then D'M C ox and hence AD'M C Aoy C M,y. Also, since AD'M is
a Z-module, we have AD’M is a Z-submodule of My. Since AD’ # 0, we have M is a free Z-module
of rank at most d similarly. Also, Z¢ = ox = oxw; € M as a Z-submodule. Hence M is a free
Z-module of rank d. O

Definition 1.51. Let K be a number field, a basis {1, ..., a,} for ox as a Z-module is called an
integral basis (Z-basis) for KC or for ok.

Remark. An ingtegral basis always exists. By Theorem 1.50, it is can be chose from a Q-basis of

K.

Definition 1.52. Let K be a number field. Define the discriminant of IC to be the discriminant of
ox down to Z, i.e., given any integral basis {aq,...,aq},

Aox) = AK) = Ax = dise(K) = disc(ox) = d(av, - . ., ag) = (det(oi(a;))) .

Remark. We check the well-definedness of discriminant of K. If {ay,...,a,} and {f,..., 5.} are
two integral bases for K, then d(ay,...,a,) = (det(M))?d(B, ..., B:), where M € GL,(Z) is the
change of basis. Then M is invertible. Hence det(M) € Z* = {£1} and then A is a well-defined
integer. In this case, the inverse is given by M ~! = det(M)~tM2di,

Theorem 1.53. Let K be a field such that char(K) = 0 and L = K(B). Let o1,...,0m be the
distinct embeddings of L — K. Let f be the minimal polynomial of 5 over K of degree m. Then

m(m—1)

d(1, 52, fm ) = (1) = Nee(f'(8)).
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Proof. Write f =[], (z — B;), where 3; = 0;(8). Then

d(1,8,....8m ") = [[(8: - ) = (-1 [ (6: - 5;)

i<j i#]
i _H (8;) = (=1)™ 5 N e (£/(8)). 0

Example 1.54. Let K = Q(&3). Then mg, (z) = 22 +a+1 = (&) (v —&3) = (v — &) (v —&3) and
we have 2 K-embeddings o1 : &3 — &3 and o3 @ & — &3. Note d(1,£3) = det [Tr(l) Tr(gg)} =

d Tr(€3) Tr(&s)
det [ L+l & +£3} = det { ’ _1] = —3. Since f'(z) =2z +1, (_1)3(3

&+& &3+6 -1 -1 (263 +1) =
-2 +1)(25+1)=—-(4-2+1)=-3.

Exercise 1.55. Check both for quadratic extension of Q.

Example 1.56. Let f = 2" + axz + b with a,b € K be irreducible with a root 5. Then A(K(8)) =
(_1)%(717%”_1 + (_1)n—1(n _ 1)n—1an)_

Theorem 1.57. Let M C M’ be two finitely generated O -submodule of K. Then [M’ : M| is finite
and satisfies A(M) = [M' : M?A(M’).

Proof. See Abstract Algebra by Dummit and Foot or Modules over PID. O

Exercise 1.58. Let M’ = Z* and M = (2Z)3. Work out result for this case and the general case
is essentially the same.

Theorem 1.59 (Stickleberger’s theorem). Let K be a number field, then Ax = 0,1 (mod 4).

Proof. Let {ai,...,a,} be an integral basis for K and oy,...,0, the distinct embeddings K —
Q. Then Ag = (det((0:(a))))* = (Spen, [Ty 0i(0n() = Srga, [Timy 0ilan())” Let P =
Yorea, 1lizi 0i(ar@)) and N = DA, [T, i(ars))- Then A = (P — N)2. Since {o1,...,00}
is a finite group, o;{o1,...,0n} = {01,...,0,} fori =1,...,n. For i = 1,...,n, since 0;(P) =
P,o;(N) = N or 0;(P) = N,0;(N) = P, we have 0;(P+ N) = P+ N and ¢;(PN) = PN.
Hence P+ N, PN € Q. Since o € ox and o;(a;) € o fori=1,...,dand j =1,...,d, we have
P+N, PN € ox. Then P+N, PN € QMo = Zand so Ax = (P—N)? = (P+N)?—4PN € Z. [

Example 1.60. Let K = Q(v/d) with d square free.

(a) Let d = 2,3 (mod 4). Let B = {1,7/d} be a basis of Z[v/d]. Then 4d = A(Z[Vd]) = [ok :
Z[Vd]]?A(ok). Since d is square free, we have [0k : Z[Vd]] = 2 and A(ox) = d or [ox : Z[Vd]] =
1 and A(ox) = 4d. If A(ox) =d, then d = 0,1 (mod 4), a contradiction. Thus, A(ox) = 4d and
ox = Z[Vd).

é

¢ Z[\d], but is a root of the polynomial f = 22 — x +
+vd C ox. A Z-basis for Z [%} C ok is {1, 1+2\/E}.

(b) Let d = 1 (mod 4). Note 1
1

124 € Z[z]. Hence Z[Vd] C Z[l

Hence d = d(LH—Z\/a) = A(Z [1

—

P
+2\/3D — [@K -7 {H—z\/g”ZA(O,C). Since d is square-free,
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[O;C Y/ {#” = 1. Thus, ox = Z [1+2\/E] and A(ox) = d. Since 4d = A(Z[Vd]) = [ox :
Z[Vd|])?A(ok), we have [ox : Z[Vd]] = 2.

In summary,




Chapter 2

Dedekind domain

2" +y" = 2" with n € N>2 has no solutions in Z3. Note 2" = (z +y)(x + &) - -+ (v + £ Ly),
where &, is the n'® primitive root of unity and

(a) terms on right have no common factor;
(b) then each term must be an n'" power;

c) all terms on right are not an n'" power.
() g p

Definition 2.1. A ring R is said to be Noetherian if given any chain of ideals Iy C Iy C - -, there
exists n € N such that I = I, for any k > n.

Theorem 2.2. A ring R is Noetherian if and only if all ideals in R are finitely generated.

Proof. = Assume R is Noetherian. Suppose I C R is not finitely generated. Let 0 # z; € I.
Then (z1) C I. Let zo € I~ (x1), then (x1) C (x1,22) € I. Continue to get a chain of ideals that
does not stabilize, a contradiction.

<= Assume all ideals in R are finitely generated. Consider a chain of ideals I; C I C ---. We
have I :=(J;2, I; is an ideal, so it is finitely generated and say I = (z1,--- ,x,). Pick m such that
L1,y @y € Ly SO I C 1y, C Ly C--- C 1. Thus, for any k > m, I, =1 = Ij. O]

Fact 2.3. A ring R is Noetherian if and only if every non-empty set X of ideals of R contains a
maximal element with respect to “C”.

Definition 2.4. A Dedekind domain is a Noetherian ring and integrally closed, whose nonzero
prime ideals are maximal ideals.

Example 2.5. Z is a Dedekind domain.

Lemma 2.6. Let £L/K be a field extension, if B C o, is a prime ideal, then p : =P Nox C ok is
also a prime ideal.

Proof. Let a,b € ox and ab € p. Then ab € B. Since P C o, is prime, a € P or b € *P. Since
a,b € o, we have a € PNox=porbePNox =p. Thus, p is prime. O

Fact 2.7. Let M be an R-module and I C R an ideal. Then M has a well-defined R/I-module
structure defined by the formula 7m := rm if and only if IM = 0.

11
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Lemma 2.8. Let K be a number field. Let p C ok be prime and (p) = pNZ. Then ox/p is a
F,-module given by (r + (p))(v +p) = rv + p.

Proof. Note that ox/p is a Z-module given by r(v + p) = rv + p. Since (p) = p N Z, we have
(p)-ox/p=p/p=0. So ox/p is a Fp-module given by (r + (p))(v+p)=r(v+p)=rv+p. O

Theorem 2.9. Let K be a number field. The ring ox is a Dedekind domain.

Proof. Since ok is integrally closed in K, ok is integrally closed.

Since Z is Noetherian and oy is a finitely generated Z-module, ok is Noetherian.

Let 0 # p C ok be a prime ideal. Then pNZ C Z is also a prime ideal. Let 0 # a € p C ok.
Then there exist rg, ..., n—1 € Z such that a” + r,_1a" "' 4+ --- +ria + ro = 0 holds at minimum
degree. Then 0 # rg € Z and 79 = —a(a™ ' +r,_1a" 2+ 1r1) € p. So 0 # ro € pNZ and hence
pNZ # 0. Also, since Z is PID, pNZ = (p) for some prime p € Z. Define ¢ : Z — ox/p by z — z+p.
Then Ker(p) =pNZ = (p) and so F, = Z/(p) = Im(p) C 0x/p as a ideal. Since p is prime, ox/p
is an integral domain. Let 6 + p € ox/p with 6 € ox. Then there exist by, ..., b,—1 € Z such that
0™ + byy—10™ " 4 -+ 010 + by = 0. So

(0 +p)™ + (b1 + (P))(O+ )™ 4 4 (b1 + (p)) (0 + ) + (bo + (p)) (1 +p)
= (0" 4 p) + (b + PO ) -+ (010 +p) + (bo +p)
= (0™ 4 p) + (bp—10""" +p) + -+ (016 +p) + (bo + p)
= 0" + b 10" - 10+ bo +p =P,

which is 0 in ox/p. So ok /p is integral over F,,. Hence ox/p is a field and thus p is maximal. [

Definition 2.10. Let R be a commutative ring and 0 # a,b < R. We say b divides a and write
b | a, if be = a for some 0 # ¢ < R.

Fact 2.11. If b | a, then b D a.
Lemma 2.12. Let R be a commutative ring and a,b € R. Then a | b if and only if {(a) | (b).

Proof. = If a | b, then ac = b for some ¢ € R. So {(a){c) = (b), i.e., (a) | (b).
<= Since (a) | (b), ac = (a)c = (b) for some ideal ¢ C R. So ac =b for some c € ¢, i.e.,a|b. O

Theorem 2.13. Let R be a commutative ring and p C R an ideal. Then p C R is prime if and
only if for any ideals a,b C R, p O ab impliesp D a orp 2O b.

Proof. = Let p C R be prime and p O ab. Suppose p 2 a and p 2 b. Then there exist z € a~\ p
and y € b \ p such that zy € ab C p, a contradiction.

<= Let z,y € R and zy € p, then (x)(y) = (zy) C p. So {(x) C p or (y) C (p) and hence
x €poryep. Thus, pis prime. O

Assumption 2.14. Assume that o is a Dedekind domain.
Lemma 2.15. Let 0 # a,b C o be ideals. Then b D a if and only if b | a.
Proof. We will show it later. O

Corollary 2.16. Let p C 0 be an ideal. Then p C R is prime if and only if for any ideals a,b C R,
p | ab implies p | a or p | b.
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Lemma 2.17. Let a,b C o be ideals, then ged(a,b) = a + b, and lem(a,b) = anb.

Proof. (a) Sincea4+b2Jaanda+b2Ob,a+b|aanda+Db|b. Let ¢ C o be an ideal and ¢ | a
and ¢ | b,i.e., c Daand ¢ Db. Then ¢ Da-+b,ie., c|a+band thus ged(a,b) =a+ b.

(b) Since a Danband b Danb, wehave a|anband b|anb. Let ¢ C 0 be an ideal and a | ¢
and b |c,ie,aDcand b Dc. ThenanNb D¢, ie, anb|cand thus lem(a,b) =anb. O

Corollary 2.18. Let 0 # p,p1,...,p, C 0 be all prime ideals, If p | p1 - - - p,, then p = p; for some
ie{l,...,r}

Proof. Since p | p1---p,, we have p | p; for some ¢ € {1,...,r}. Then p D p; # 0. Since 0 is a
Dedekind domain, p; is maximal and so p = p;. O

Remark. We can not get a unique factorization of elements in 0. For example, let L = Q(v/-5),
then ox = Z(+/—5), which is not a UFD. But we can uniquely factor any ideal in © into a product
of prime ideals.

Lemma 2.19. Let 0 # a C o be an ideal, then there exist 0 # p1,...,p, C o all primes such that
a2 py---p, where p; are not necessarily distinct.

Proof. Let ) # S be the set of ideals for which the claim is false. Since o is Noetherian, () # S has a
maximal element M with respect to “C”. Then M is not prime. So there exist by, ba € 0 such that
biba € M, but by € M and by € M. Then M C N7 := (b)) + M Coand M C Ny :=(b)+ M C 0o

as ideals. Since M is maximal, N7, N3 € S. So there exist primes p1,...,p, C o and qy,...,q, C O
such that p1---p, C N7 and q1 -+ - g5 € Na. Then we have py -+ - prq1 -+ - qs S N1No = (b1by) + M =
M, a contradiction. Thus S = 0. O

Assumption 2.20. Let K = Frac(0) be the field of fraction.

Definition 2.21. Let 0 # a C 0 be an ideal. Define the inverse of a by
al={zcK|zaCo}= (0 a).

Fact 2.22. a~!is a o-submodule of K.

Theorem 2.23. Let 0 # p C o be prime. Then o C p~L.

Proof. By definition, © C p~!. Since p # 0, there exists a € p ~ {0}. Then there exist 0 #
P1,...,pr C 0 all prime such that p;---p, C (a) C p, where r is chosen as small as possible. So
p = p; for some ¢ € {1,...,r}. Without loss of generality, assume p = p;. By the choice of r, we
have ps - - - p, € (a). Then there exists b € po---p, \ (a) and so pb = p1b C p1p2---p- C (a) = ao.
So a~'pb C 0 and then a='b € p~1. Since b & (a) = a0, a~'b & 0. O

Lemma 2.24. Let 0 # p C o be prime. Then a C ap~! for any ideal 0 # a C 0.

Proof. Since © C p~!, we have a C ap~!. Let 0 # a C 0 be an ideal. Then a = (ay,...,a,)0 for
some ay,...,q, € a. Supposea=ap~'. Let 2 € p~!. Then oz € ap~! = a and there exists a;; €0
such that ro; = oz = Z?Zl a;jaj for i = 1,...,n. Since a # 0, we have 0 # (a1,...,0p) € O"
and hence det(zI, — (ai;)) = 0, i.e., z is a root of a monic polynomial in o[z]. So z is integral over
0. Since o is integrally closed, we have z € © and then p~! C o, which is contradicted by that
oCp L O
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Lemma 2.25. Let 0 # p C o be prime, then pp~! = o.
Proof. By definition, p C pp~! C 0. Since p is maximal, pp~! = o. O

Theorem 2.26. Every ideal 0 # a C 0 admits a unique factorization a = p5* -+ per, with 0 # p; C
o prime and e; € N.

Proof. Uniqueness. Suppose a = p1---p, = (1 ---(s, Where primes are not necessarily distinct.
Then p1 2O p1-+Pr = q1--qs, 1.6, P1 | g1+ qs. So p1 = q; for some i € {1,...,s}, without
loss of generality, assume py = qr. Then pa---pr = pr (p1---pr) = pr (@1 ds) = o+ ds. By
induction, we have r = s and p;, = q; fori =1,... 7.

Existence. Let () # S be the set of nonzero prime ideals without a prime factorization. Since o
is Noetherian, () # S has a maximal element M with respect to “C”. Then M is not prime. So M
is not a maximal ideal in © and then there exists a maximal ideal p C o such that M C p. Then
M C Mp~! Cpp~! = 0. Note that Mp~! # 0, otherwise, M = Mpp~! = Mp~lp = op = p,
which is a contradiction. So M C Mp~! C 0. Since M is maximal, Mp~! ¢ S and so Mp~! must
have a prime factorization, say Mp~! =p;---p,. So M =p;---p.p, a contradiction. O

Lemma 2.27. Let 0 # a C © be an ideal, then aa~! = o.

Proof. If a = o, it is trivial. Assume a C 0. Let 0 # o € a. Then za™! C 0. Since 0 #a C 0

is an ideal, we have a unique prime factorization a = py---,p,. Let b := p- 1. ~pf1. Then
ab = ba= (p; ---p; ) (p1---pr) = 0. So by definition, b C a~'. Let z € a~!, then za C o and so
(r) = xab C b. So x € b and hence a=! C b. Thus, a~! = b. Since ab = 0, aa~! = 0. O

Remark. Suppose that there exists an ideal b C o such that ab = 0. Then

bC(o:xa)=(0:xa)o=(0:ca)ab CobCh.

Hence b= (0 i a) =a™ L.
Lemma 2.28. Let 0 #£ a,b C o be ideals. Then b D a if and only if there exists an ideal 0 # ¢ C o
such that bc = a.

Proof. <= is trivial.

= If b = 0, we take ¢ = a. Assume now b C 0. Since b~! is an ©-submodule of K and a C 0
is an ideal, we have ¢ := b~'a = ab™! is also an o-submodule of K. Also, since b=1a C b~1b = o,
we have b~'a C 0 is an ideal. Moreover, bc = b(b~ta) = a. O

Lemma 2.29. If 0 is a UFD, if p C o is prime, then p is principal.

Proof. Since 0 is Dedekind, p is maximal. Let 0 # « € p. If p = (a), we are done. Assume
p # (a). Then p D (a). Then there exists an ideal 0 # b C o such that pb = («). So b has a prime
factorization: b = py---p, with primes p1,...,p, C 0. So (o) = pb = ppy---p,. Also, since 0
is a UFD, the element o € © has a unique factorization o = wws - - - w,, with irreducible elements
Wi, ..., Wy € 0 and u € 0*. So (a) = (w1) - (Wp,). Also, since 0 is a UFD, (w;) C o is prime
for i =1,...,7. Since the prime factorization of () is unique, we have m = r+1 and p = (w,) for
some j € {1,...,m}.

Theorem 2.30. o is a PID if and only if © is a UFD.
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Proof. = PID implies UFD in general.

<= Suppose 0 is a UFD and let 0 # a C o be an ideal. Then a can be factored into a product
of prime ideals a = p7* - - - pS» with e1,...,e, > 1. Since each prime p; C o is principal, so is a with
the generator for a being the product of the these generators. O

Theorem 2.31 (CRT). Let R be a ring and ai,...,a, ideals in R such that a; + a; = R for any
i#j. Seta=(_4a;. Then R/a =@} | R/a;.

2.1 Fractional ideal

Assumption 2.32. Let 0 be a Dedekind domain and K = Frac(o) the field of fraction.

Definition 2.33. A fractional ideal I # 0 of K is an o-submodule of K, such that for some
d € o~ {0},dI C o is an ideal. Such a d is called a common denominator for I.

Theorem 2.34. If 0 # I is a finitely generated o0-submodule of IC, then I is a fractional ideal.

Proof. Let I = (x1,...,x,)0 for some z1,...,2z, € K. Since K = Frac(0), there is a d; € o ~ {0}
such that d;x; € o fori=1,...,r. Let d:=dy---d, € 0~ {0}, then dz; € o fori =1,...,r and
so dl C o. O

Theorem 2.35. 0 # [ is a fractional ideal of K if and only if I = a for some d € K* (or o~ {0}
or Z~ {0} if K is a number field) and some ideal 0 # a C 0.

Proof. = By definition, there exists d € o \ 0 such that a := dI C o is an ideal and a # 0. So
I = Lawith d € K*. Similarly, if K is a number field, then d | Nic g(d) € Z~ {0}, so N q(d)I C 0
is an ideal.

<= Since 0 is a Dedekind domain and a C 0 is an ideal, we have I = %a is a finitely generated
o-module of K. O

Corollary 2.36. [ is a fractional ideal of K if and only if I = da for some d € K* and some ideal
0#aCo.

Definition 2.37. Nonzero ideals in o are called integral ideals.
Definition 2.38. We denote the collection of fraction ideals in IC by Jx.
Fact 2.39. When o is a PID, all fractional ideals in /C are principal and conversely.

Theorem 2.40. The set Ji forms an abelian group under multipliciton with identity © and the
1

inverse of a € Jx is given by a”".
Proof. Clearly, Jx is abelian and that o is the identity. Let a, b € J. Then there are aq,...,a, € K
not all 0 and fB1,...,8s € K not all 0 such that a = {(a1,...,a,)0 and b = (81,...,8s)0. Then
ab = (a1f1,...,0,0s) # 0 and so ab € Je. Let a € Je. Then there exists ¢ € 0 \ {0} such that
ca C 0. Claim. (ca)™! =c ta™!l. “C”. Let « € (ca)™?, then (zc)a = z(ca) C 0 and so zc € a~! and
hence z = ¢ Y(zc) € ¢ ta~l. “D”. Let x € ¢ ta~!, then there exists y € a~! such that z = ¢!y
and so z(ca) = ¢ !y(ca) = ya € 0. So z € (ca)~!. Hence aa~! = cac ta™! = (ca)(ca)™! = 0.
Assume a = % for some d € o \ {0} and some ideal a* C 0. Let 0 # z := § € a with a € a*.
Then dz = a € a*. So a™! = (d~'a*)~! = d(a*)~!. Hence za™! = (dz)(a*)"! C 0. So a~! € Jk.
At last, the associative law follows from the associativity of K. O
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Corollary 2.41. Let a € Ji. If there exists b € J such that ab = o, then b = a~!.
Corollary 2.42. Let a,b € Jx be ideals. Then (ab)~! =b~ta"!.
Proof. We have ab € Jx and a=1,b71 € Jx. Hence b=ta~! € Ji. Since (ab)(b=ta"!) = 0, we have
(ab)~t =b"ta L. O
Corollary 2.43. Let a,b C o be ideals. Then (ab)~ = b~ la=1L.
Lemma 2.44. Let a € Jc. Then a can be written as a = bc™! with b, ¢ C 0 ideals.

b

Proof. Since a € Ji, there exists d € og and an ideal b C o such that a = 4. Sobe Jc. Let
¢ :=do € Ji, then ac = da = b. Since Jx is a group, a = b~ 1. O

Corollary 2.45. Every a € Jx admits a unique representation as a product a = Hp p¥?, where
p C ois prime and v, € Z~{0}. In other words, Ji is isomorpic to the free abelian group generated
by the nonzero prime ideals in o.

Proof. Note that a can be written as a = be~! with b,¢ C o ideals. Since b and ¢ has a unique

prime factorization, a has a unique prime decomposition of the type stated in the corollary. O

Corollary 2.46. a € Ji is an integral ideal if and only if every exponent of its prime factors is
positive in its prime factorization.

Example 2.47. Since Z is a PID, the fractional ideals in Q are Z-submodules (subgroups) of Q
having the form rZ for r € Q*. Examples include %Z and gZ = %.

Definition 2.48. A fractional ideal of the form zo = (z) for some x € K* is called principal
fractional ideal. The principal fractional ideals form a subgroup Pk of Jk.

Definition 2.49. The ideal class group of K is the abelian group CI(K) = Clx = Cl(0) = Jx/Px
measures whether o is a unique factorization domain or principal ideal domain.

Remark. If CI(K) = {0}, then every fractional ideal is principal. The larger C1(K) is the further
you are from having all ideals are principal.

Fact 2.50. The class number

hi = |CI(IC)| = [J}C : P)C] < 0.
Example 2.51. Q[z] is a PID, so it is a Dedekind domain. So Q[z] is integrally closed with field
of fraction Q(x) = {% | f.9 € Qlz] and g # 0}.

Proof. Tt is similar to the proof for Z. O

Remark. Let 0 = Z+/—5, which is not a UFD. Since (1 + +/—5)(1 — v/=5) = 2-3 € (3) but
1+ /=5 ¢ (3), we have but (3) is not prime. Check that 3 € o is irreducible.

Definition 2.52. Let a C o be an ideal, the absolute norm 91 of a is
N(a) =[o0:a] = |o/al.

Lemma 2.53. Let 0 # o € 0, then N((e)) = [Ny /g(a)|.
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Proof. Exercise. O

Corollary 2.54. Let 0 # a C o be an ideal. Then 91(a) < oco.

Proof. Let 0 # « € a. Since a C 0 and ao C o are ideals, we have a surjective map o/ao — o/a.
Then N(a) = [0 : a] = |0/a| < |o/ao| = N((e)) = |Ng/g(a)| < 0. O

Theorem 2.55. Let 0 # a C 0 be an ideal, write a = p{* ---p¥ for prime factorization. Then
N(a) = N(p1)"* - - - N(p,)", i.e., M is multiplicative.

Proof. By CRT, o/a = o/p{* @ --- @ o/p¥ . We are thus reduced to considering the case where
a is a prime power p”. In the chain p O p? D --- D p¥, one has p’ # p’*! because of the unique
prime factorization. Since pp?/p*! = 0, the quotient p’/p**?! is an ©/p-vector space fori =1,...,7.
Let a € p* ~ p*! and b := (a) + p'T!, then p’ D b D pitl. So p? = b, otherwise, since (a) C p?,
b :=bp~i = (a)p~i+p = (a)(p*) "' +p C 0, would be a proper divisor of p since (p?)~! 2 o, which
is contradicted by p is prime. Hence a + p**! is a basis of the o/p-vector space p?/p‘*! = (a)/p*+1L.
Thus, p'/p™™' = o/p and so N(p”) = [0 :p*] = [0 p][p : p?] -~ [PV~ p¥] = N(p)”. O

2.2 Revisit quadratic field
Definition 2.56. A number field £/Q is a quadratic field if deg(K/Q) = 2.

Lemma 2.57. A field K/Q is quadratic if and only if there exists d € Z ~\ {0} square-free such
that K = Q(v/d).

Proof. <= Use definition.

= Let « € K~ Q. Then [Q(c) : Q] > 2. Also, since 2 = [K : Q] = [K : Q(a)][Q(cv) :
Q] =2 2-[K : Q(a)], we have [K : Q(a)] = 1. Since o« € K \ Q, there exists V', ¢ E Q such that
a? + bV a+ ¢ = 0. Then we can choose suitable a,b, c € Z with a # 0 such that aa® + ba + ¢ = 0.
So o = £ Vzli dac — _b 4 Vb —dac 53¢ or /b2 — dac = +(2aa + b) and so Qo) = Q(Vb% — 4ac).
Let d’ = b% — dac € Z Slnce a ¢ Q, d' is not a perfect square. Also, since d’ # 0, d’ can
be written uniquely in the form d’ = de, where d is a square-free and e is a perfect square. So

Q(a) = Q(Vd') = Q(Vde) = Q(Vd). O
Lemma 2.58. Let K be a quadratic field and o € K. a € ok if and only if Tri /g(a), N g(a) € Z.

Proof. = 1If a € Q, it is obvious. Now let o € K \ Q. Then there exist a,b € Z such that
ma(a) = a? +aa+b=0. Let {o1,02} be the distinct embeddings K — Q. Then

0= (a—o01(a))(a—o02(a)) = a® — a(o1(a) + 02()) — o1 (a)oz(a) = a® — Tric/g(a)a + N jgla),
which is irreducible, otherwise a € Q. Since the minimal polynomial is unique, Trx/q(a) = a € Z
and N g(a) = b € Z.

— mu(z) =z — a € Zlz] or my(x) = 2* — Trijg(a)z + N o) € Zlz]. O

Example 2.59. Let £ = Q(¢). Then ok is a PID.
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Proof. Let 0 # a C ox be an ideal. Since Im(|NJ,. ) € N, we can choose 0 # a € a with INi/o(a)|
minimal. Let b € a. Then b/a € Q(i). Choose ¢ € ox = Z[i] that is the closest to b/a, then
lc —b/a| < V/2/2. Let r := b — ac € ok, since a # 0,

1 1
Nija(r)] = b= ac® = al|c = b/al” < |al’(vV2/2)? = Slal” = 5 Nicjq(a) < Ni/q(a).

Also, since |Nx/g(a)| is minimal, we have r = 0 and then b € (a) and so a C (a). Hence, a = (a)
and thus ok is a PID. O

Remark. Now we want to consider given a prime p € Z C Z[i], what does pZ[i] look like? Note
pZ[i] < Z[i]. The ideal pZ[i] has a prime factorization: pZ[i] = p7* ---p&r. Then what are the p;’s,
ej’s and r?

Example 2.60. Let = Q(¢). The ideal pZ[i] has a prime factorization: pZ[i] = pi*---pS~. By
CRT,

P zlil/pj = Zli /pZli) = Z[i]/{p) = Zla]/(p,2® + 1) = Fyla]/(a® + 1).

Jj=1

To see 2 + 1 factors in Fp[z], we need to see whether —1 is a square module p or not. Since for

p#2, (%) = (—1)% = lif and only if p = 1 (mod 4), we have with o € Z and a? = —1 (mod p),
(x 4+ 1)? (mod p) ifp=2,
2 +1=2>—(-1)=< 2241 (mod p) if p=3 (mod 4),

(x —a)(x 4+ @) (mod p) if p=1 (mod 4).

Since (2,1 +4)Z[i] = (1 +1)Z[i] = (1 + ),

(i+1)2 if p=2,
pZ[i] = { pZ]i] if p=3 (mod 4),
i+ a)(p,i—a) ifp=1(mod4).
Thus,
r=1,e=2,
r=1,e=1,

r=2,e =ey=1.

Lemma 2.61. Let K be a quadratic field and p € N an odd prime. Then pox has a prime
factorization:

p? if p | A,
POk =4 Pipa(p1 # p2) if (%) =1,
POK otherwise.

Proof. We have there exists d € Z ~. {0} square-free such that K = Q(v/d). We have

Z|Vd if d=2,3 (mod 4)
Ox = 7 {1-&-\/3} if d=1 (mod 4) ’

2
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and
Ap — 4d if d =2,3 (mod 4)
K71 d ifd=1 (mod 4)
Assume the ideal pZ[i] has a prime factorization: pox = p7* - - psr.

(a) Let d = 2,3 (mod 4). By CRT,
D ox/pj’ = o /pox = ox/(p) = Z[z]/(p,x* — d) = Fy[a]/(2* - d).
j=1

To see x? — d factors in F,[x], we need to see whether d is a square module p or not. Since for

p # 2, (%) = (%)2 (%) = (%) = <%> and (22 —d) — (z —d)? = —d(d + 1) = 0 (mod 2), we

have with o € Z and o? = d (mod p),

(x — d)? (mod p) ifp=2

, ] @*(modp) if pis odd and p | Ax

vod= (x —a)(z+ ) (mod p) if pis odd and (%) =1
22 — d (mod p) otherwise
So
(2,Vd — d)? ifp=2
(v/d)? if pisodd and p | Ax
pox = (p,Vd— a){p,Vd+a) pisoddand (A}T’C) =1

pPOK otherwise

O The inert case: 2 — d is irreducible modulo p. Then
oK /PoK gIFp/<5”2 —dy={a+bx|abe ]Fp,x2 =d}

is a field. It is an extension of F, of degree 2 which one might denote Fp(\/(:i) and hence a
finite field with p? elements.

O The split case: 22 — d is a product of two different linear factors modulo p. By CRT, we have
an isomorphism

ox/pox = Fplal/((x — a)(z + @) = Fpla]/(z — @) x Fpla]/{x + a) = Fp x Fy.

O The ramified case: x? — d is a square modulo p. This happes if p = 2 or p | Ax = 4d. In both
cases, Ok /pOx is non-reduced and then has nilpotent elements.

(b) Let d =1 (mod 4). Let f(z) = 2> — 2+ 3¢ € Z[z]. Since A = /1 —415¢ = \/d and d is not
a perfect square, f is irreducible. Then ox = Z {H—Q\/ﬂ =~ Z[z]/{f(x)). By CRT,

P ox/py = ox/pox = ox/(p) = L2/ (p, f(2)) = Fyla]/(f ().
j=1

To see f(z) = 22 — z + 152 factors in F,[z], we need to see whether d is a square module p or not.
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(1) Let p # 2. Then (%) = 2 4 = ﬁ = %). Since d = Ak, we have
xz_;H:( 1+V >( _1-VAk VAK)
2
x—1/2 (mod p) if p| Ax
(r — o a:—a)(modp) if (%):1
2> — 2+ 122 (mod p)  otherwise
So

(.51 if p| Ax

pox =19 (p, 1 Q\f—a><p,1+2—‘/3—a> if (%):1
POK otherwise

(2) Let p=2. Note

5 1—-d { z(r—1) (mod 2)  ifd=1 (mod 8)

TIEY TS 22—+ 1 (mod 2) ifd=5 (mod 8)

Alos, since (2, 1+2‘/3)Z {HQ\/E} = 1+fZ d} we have

+V/dy(1=Vdy if ¢ =1 (mod 8)

20 = ( 2 O
r { 20x if d =5 (mod 8)

Definition 2.62. Let K be a quadratic field. If pox = p?, we say p ramifies in ox; if pox = p1po
with p; # po, we say p splits in ox; if pox C ok is prime, we say p is inert in Ox.

2.3 Extensions of Dedekind domain

Assumption 2.63. Let 0 be a Dedekind domain and K = Frac(0). Let £ be finite and separable
extension of K. Let O be integral closure of o in L.

Remark (Questions). What do prime look like in O? Note p : =P N o C o is also prime for every
prime 0 # P C O. Also, P D pO, ie., P | pO. So the question of how primes pO’s with prime
p C o factor when extended to O answers it.

Remark. We often write (p) = pO.
Theorem 2.64. O is a Dedekind domain.

Proof. Since O is the integral closure of © in L, it is integrally closed.

Similar to the proof of Theorem 2.9, we have O/B is an extension of the field o/p and every
prime ideal in O is maximal.

Let {a1,...,a,} C O be a K-basis of the separable extension £/K. Then A := A(ay,...,a,) #
0. We have AO C oay + - - - 0y, =: My similar to the proof of Theorem 1.50. So O C o% + -+
oR = %. Also, since 0 is a Noetherian ring and % is a finitely generated o-module, % is a
Noetherian o-module. So O is Noetherian. O
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Recall 2.65. Let M be a left R-module, define the annihilator of m in R by
Anng(m) = {r € R | rm = 0},
which is an ideal of R. The set of torsion element of M is defined by
Tor(M) ={m € M | Anng(m) # {0}} = {m € M | rm = 0 for some r € R \ 0}.

An left R-module M is said to be torsion free if Tor(M) = {0}. If R is an integral domain, Tor(M)
is a submodule of M.

Fact 2.66. Frac(O) = £ and O is a torsion-free o-module.
Theorem 2.67. Let 0 # p C o be prime, then pO # O.

Proof. There exists @ € p \ p? such that p O wo, i.e, p | wo. Claim. there exists an ideal a C ©
such that pa = wo and p { a. Suppose not. Since p | wo, there exists an ideal b C o such that
pb = wo, then p | b by assumption, i.e., p 2 b. Then w € pb C p?, a contradiction. Since p 1 a,
p Cp+aC o. Since p is maximal, p + a = 0. So there exist » € p and s € a such that r +s = 1.
Since p C 0, s & p. Suppose pO = O. Then sO = spO = psO C pa0 = woO = wO. So s = wz
for some z € O. Since sp = ps C pa = wo, letting 0 # y € p, there exists z € © such that sy = wz,
ie, s = wé, i.e., s = wa’ for some 2’ € Frac(o) = K. Also, since s # 0 # w, we have s = wx
for some x € ONK = 0, i.e., s € p, a contradcition. Thus, pO C O. This means, given a prime
0 # p C 0, we have a unique prime factorization pO = PBJ* - - - Per. O

Example 2.68. We saw this for Z[i] by inspection: since Z[i] > 1 # p(a + bi), for any a,b € Z,
pZ.- Z[i] = pIli] # 2.
Lemma 2.69. Let 0 #£ B C O be prime and 0 # p C 0 be prime. Then P | p if and only if
p="PnNno.
Proof. = Note that p C BN o C o and p is maximal, so p =P N o.

<= Note that p C B, so P D pO D p. O

Definition 2.70. Let 0 # p C o be prime and pO = PB7* ... P, Define the ramification index

° T

e(Pi/p) =: e;. Define the residue class degree f(B;/p) by f(B:/p) = [O/B; : o/p] =: fi.

Definition 2.71. Let 0 # p C 0 be prime and pO = P7* ... P p is said to ramify in L if e; > 1
for some ¢ € {1,...,r}; otherwise it is unramified.

Fact 2.72. (a) o, is a discrete valuation ring and so a principal ideal domain and hence Dedekind
for p C o prime.

(b) Let p C 0 be prime and U := 0 \ p. Then U~'O is the integral closure of 0, in L.

Theorem 2.73 (Fundamental identity). Let 0 # p C o be prime and pO = P ---Pe. Then
[L : ]C] = Z;:l ejfj,

Proof. By CRT, O/pO = @;:1 (9/‘]3?. Set ¢ = o/p. For j = 1,...,r, since p- O/P% =
pO/Pe = 0, we have (9/‘13;?" is a t-vector space. So O/pO is a t-vector space. Then it suf-
fices to show dim¢(O/pO) = [L : K] and dimg(O/‘B;j) =e;fjfor j=1,...,r. Since O is a finitely
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generated o-module, O/pO is also a finitely generated o-module and then dimg(O/pO) < oo.
Let {w1,...,wm} € O be the representatives of a basis {wy,..., W} of O/pO over £ Claim.
{wi,...,wy} is a K-basis of L/K. Suppose {wi,...,w,} are linearly dependent over K. Then
there exists ai,...,a, € K such that a¢yw; + -+ + g¢pw,, = 0. Let A be the LCM denomina-

tors of @j,...,am. Set a; = Ag; € o for j = 1,...,m. Then aywi + -+ + apw,m = 0. Set
a:= {ay,...,a,) C 0. Since a~'p # a7!, pick a € a7 < a~tp. Then aay,...,aa,, € 0. Since
a & a'p, p 2 aa = {aay,...,aa,) and then at least one of aai,...,aa,, is not in p. Since

aaiwi + - -+ + aaw, =0 and O/p0O is a 0/p-vector space, we have
(aar + p)(w1 + pO) + -+ + (aam + p)(wn + pO) = 0 (mod p0O),

ie., (aay +p)W1 + - - + (@@ + P)Wy, = 0 in O/pO, which gives us a linear dependence among the
Wy, ..., Wy, over ¢ a contradiction. So wy, ..., w,, are linearly independent over K.

Consider the o-module M := ow; + -+ + ow,,, € O. Let N := O/M and z € O. If z € pO,
then € M + pO. If z & pO, then 0 # = + pO € O/pO and so there exist by +p,...,by, +p €
such that  + pO = (by + p) (w1 + pO) + -+ + (b + p) (Wi + pO) = bywy + - -+ + bpywy, + PO, e,
T =bjwi+- - +bnuw,+pO C M+4pO. So O C M+pO. Alsosince M C O and pO C O, we have O =
M + pO. Then N = % = MLPO = p% = pN. Since O is a finitely generated o-module, N is also
a finitely generated o-module and then there exists {@,...,@s} C N such that N = o(ay, ..., as).
Since {@y,...,as} C N =pN = p(ay,...,qs), we can write a; = Z;Zl a;;0; with a;; € p for i =
1,...,s. Set A= (a;;)—I; and B = A*Y. Then 0 = A(@y,...,&;)" and BA = dI, with d = det(A).
So 0 = B0 = BA(ay,...,a,)! = (da, ...,da,)! and then 9€ = d< = dN = (day, ... das)o = 0.
Hence dO C M = owy + - -+ + owy,. Since a;; € p, d = det(A) = det ((ai;) — I) = (—1)° (mod p).
So d # 0. Claim. we can assume o is a principal ideal domain while calculating [O/pO : o/p].
Let g € 0 be prime and U := 0\ q. 04/q0q = (0~ q)ro/(0 ~ q)7'q = (0/q)q = 0/q since
0/q is a field, and U710 /qU10 = U~1(0/q0) = O/q0O since O/qO contains the field 0/q. So
[U10/qUL0 : 04/q04] = [0/q0 : ©/q]. Hence similar to the proof of Theorem 1.50,

L=dL2d(0ORcK)=dO0 R, K C (0w + -+ 0owy) ®o K =2 Kwy + -+ - + Kwy,.

So L = Kwy + -+ + Kwy,. Thus, wy,...,wy, is a K-basis of L/K. Then dim¢(O/pO) = [L : K].
In order to prove the second identity, let us consider the descending chain of €-vector spaces:
O/ DP;/PB7 2+ 2 mjf_l/mjj 2 {0} Let 0<v<e;—1land a € PY ‘BZH. Define

@O — PP

av— aa+ ‘]3;-’“.
Then ¢ is a homomorphism with Ker(¢) = ;. Since BB, = &B;’H C P7 =PYO and B; C O
is maximal, there is no proper ideal between ‘}3;“ and P¥. Also, B7 | O and P | ‘BJ’{H, we
have P = gcd(a@,%}’“) = a0 + ‘B;‘H and then &]3;’/‘)3;7“ = oz(’)/‘lij’”'l = Im(p). Hence ¢ is
surjective and so ‘B?/‘B;H = O/PB,. Thus, dimg(‘BJ”-/‘BJ'{H) = dim¢(O/B,) = [O/B, : & = f;.
Therefore, each quotient in the chain O 2 B; O &B? -2 ‘13;7 has dimension f; over £. So each
successive quotient in the filtration O /‘BjJ >R,/ ‘ij 2 ‘B? / ‘Bjj D -+ D0 has dimension f; over &.
So

Ejfl 6]'71

dime(O/B57) = > dime(PY /P = Y fi =e;f5 O
v=0 v=0
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Example 2.74. Let o =7 and K = Q and £ = Q(¢). Then O = Z[i] and [£ : K] = 2. Recall

(1+14)2 if p=2
pZli] = < pZ]i) if p=3 (mod 4) ,
pipa = (p,i+a){p,i—a) ifp=1(mod 4)
with
,e=2
=1le=1

r=2e =e =1
(a) Let p = 2. Since e((1 +4)/2) = 2, we have [Z[i]/(1 + 1) : Z/2Z] = f({1 +1)/2) = 1. So
Z[i)/{1 +1i) = Z/2Z = Fy. Or we can check this directly. Since (2) = (1 +4)? and the prime
factorization is unique, we have (1 +4) < Z[i] is prime. Or since Nx (1 + ) = 2 is prime in Z, by
the multiplicativity of Ny q, 1 + 4 is prime in Z[i] and so (1 +¢) < Z[4] is prime. Define
)
)

©:Z—Zi]/{1+1
me—m+ (l+i
Since p(1) =1+ (1 +4) and o(—1) = =1+ (1 + i) =i + (1 + i), we have ¢ is surjective. Since in

Z[i], 1 +i | 2 and then 2Z C Ker(p). Let m € Ker(p) € Z. Then 1 +i | m. So 2 = N /o(1 +1) |
Ni,q(m) = m?. Hence 2 | m and so m € 2Z and thus Ker(¢) C 2Z. Or we can check it using

Z[) /(L +4d) 2 Z[6) /(2,1 +4) 2 Z[2] /(2,2 + 1,22 + 1) = Fola] /(z + 1, (z + 1)%) = Fofz]/(z + 1) = Fa.

(b) Let p = 3. Since 3Z[i] C Z[i] is prime, we have r = 1 and e(3Z[i]/3) = 1, So f(3Z][i]/3) = 2. Or
we can check it directly: Z[i]/3Z[i] = Z[z]/(3, 2* + 1) = Fs[z]/(2® 4+ 1). Since () = -1, 2% +1is
irreducible in F3[x] and then Fs[z]/(z? + 1) is a degree 2 extension of F3, in fact, Fz[z]/(2? + 1) =

{a+b0|a,beTFs,0%=—-1}2TFy£7Z/9Z. So f(3Z[i]/3) = [Fg : F3] = 2.

(c) Let p=>5. Then 5Z[i] = p1po with py = (5,7 +2) = (i +2) and py = (5,7 —2) = (i — 2). Since
e(p1/5) = 1 = e(p2/5) and 2 = e(p1/5)f(p1/5) + e(p2/5) f(p2/5), we have f(p1/5) =1 = f(p2/5).

Or we can check it direcly. Define
@ L — Z[i]/;
m—m+ P

Since ¢(1) = 14 p1 and o(—2) = =2+ p; =i + Py, we have ¢ is onto. Similarly, Ker(y) = 5Z. So
Z/5Z = Z[i]/p1 and thus f(p;/(5)) = 1.

2.4 Relative Extensions

Assumption 2.75. Let o be a Dedekind domain and K = Frac(0). Let £ be finite and separable
extension of K. Let O be integral closure of 0 in L.

Definition 2.76. L£/K is called a relative extension.

Definition 2.77. We can generalize the application norm as follows: 9 : J; — J by P +— pf (B/#),
which is a group homomorphism. This defines a relative norm for ideals, which is itself an ideal!
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Definition 2.78. (a) We define the relative discriminant A(O/o) of O/o be the ideal of 0 gen-
erated by elements of the form d(aq,...,a,), where {aq,...,a,} C o is a K-basis of L.

(b) Let A C B be a subring such that B = A™. We define the relative discriminant A(B/A) of
B/A be the ideal of A generated by all A-basis of B.

Remark. The two definitions agree when they both apply.

Proposition 2.79. Assume O = 0" and A(O/0) # 0. Then {81,...,5,} forms an o-basis for O
if and only if A(O/0) =d(p1,-..,0n)0.

Proof. <= We are done.
= It follows since discriminants of bases differ by a change of basis matrix whose determinant
is in 0*. O

Example 2.80. Let K be a number field, then A(ox/Z) = AxZ.

Lemma 2.81. Assume O = o™. Let {e1,...,e,} be an o-basis of O and 0 # a C 0 an ideal.
Then {&1,...,é,} = {e1 (mod a0), ..., e, (mod aO)} is a basis of o/a-module O/aO. Moreover,
d(e1,...,8,) =d(ei,...,e,) (mod a). So A(O/0) (mod a) = A((O/a0)/(0/a)).

Proof. Since {ey,...,e,} is a 0-basis for O, we have an o-module isomorphism 0™ — O given by
(at,...,an) — Y1 a;e;. Since O/a0 = O ®, 0/a = 0" ®y 0/a = (0/a)™, we have another
isomorphism (0/a)" — O/aO given by (a1 +a,...,a, +a) — > a;e;. Thus, {€1,...,€,} is a
basis for O/aO as an 0/a-module. For the second part, just use the result on bases and definition
of discriminant d. O

Lemma 2.82. Let A C Bj for j = 1,...,m and with B; an A-module of finite rank. Then
A5 Bj)/A) =TTy A(B;/A).
{3

Proof. For j = 1,...,m, choose an A-basis ¢; = {eij},...,enj}} for Bj. Then we compute
A((TT7~, Bj)/A) using the basis |J;~, €;. O

Definition 2.83. An algebra over a field (often simply called an algebra) is a vector space equipped
with a bilinear product.

Lemma 2.84. Let ¢ be a perfect field and A a finite t-algebra. Then A is reduced (no nilpotent
elts) if and only if A(A/¢) # (0).

Theorem 2.85. Let 0 # p C o be prime. We have p ramifies in O if and only if p | A(O/0).

Proof. Write pO = 7' ---Pe with distinct prime Pi,...,%B, and e,...,e, > 1. CRT gives
O/p0O = @;:1 (’)/‘B;j. Claim. p ramifies if and only if O/pO is not reduced. <= We are done.
= If there exists e; > 1, for example, e; = 2, then there exists p; € P; ~ PZ. So in O/PZ,
0 # pi +%7 € Bi/P7 C O/F7. Since p} € P7, we have in O/F7, (p; +Fi)* = p; +P; = 0.
So (0,...,p; + P, ...,0) is a nilpotent of @5:1 O/‘Bjj and then O/pO has a nilpotent element
and hence is not reduced. Since o/p is perfect and [O/pO : o/p] = [L : K|, we have O/pO is not
reduced if and only if A((O/pO)/(0/p)) = 0 if and only if A(O/0) (mod p) = 0 if and only if
p| A(O/0). O

Corollary 2.86. There are finitely many primes of o that ramify in O.
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Proof. Since A(O/0) is an ideal of 0 and 0 is a Dedekind domain, A(O/0) has a unique prime
factorization A(Q/0) = pSt--.per. If p | A(O/0), then p = pi* - pf- with 0 < f; < e; for
i=1,...,7. So there are just finitely many primes of © that ramify in O. O

Corollary 2.87. A prime 0 # p € Z ramifies in K if and only if p | Ak.
Example 2.88. In Z]i], the only prime which ramifies is 2 and (2) = (1 + )%

Example 2.89. In Z[v/19], the only primes which ramify are 2 and 19, and (2) = (2,19 — 19)2
and (19) = (v/19)2.

Remark. We saw in quadratic fields p ramifies in Q(v/d) = K if and only if (AT’C) =0.

Lemma 2.90. If O = o[a] and f is the minimal polynomial of « over . Then o[z]/(f) = O.

Proof. Since aw € O, f € o[z]. We have a o-linear ring homomorphism ¢ : o[z] — o[a] = O
given by @ — «. Then Ker(p) D (f). Let g € Ker(y) and write ¢ = ¢f + r with ¢,r € o]z]
and deg(r) < deg(f). Then 0 = ¢(9) = @(q)(f) + ¢(r). Since p(f) = 0, ¢(r) = 0. Let
r = a0+ az+ -+ apz” with n < deg(f), a1,...,a, € 0 and a,, # 0. Since 0 = ¢(r) =
ap + ara + -+ + apa”, we have @™ + -+ + “a + 22 = 0. Since f is the minimal polynomial of
a, a, = 0, we have r = 0. So g = qf € (f) and then Ker(p) C (f). Thus, Ker(p) = (f) and so
ofz]/{f) = ola] = O. O
Theorem 2.91 (Dedekind factorization criterion). Suppose O = o[a] and let f be the minimal
polynomial of o over K. Let p C 0 be prime. Write f =[], g;j (mod p). Then the prime factor-
ization is pO = [, (p, g; (@))% . Moreover, for any j, the residue field O/{p, g;()) = (0/p)[z]/(7;)
and so the residue class degree f; is equal to the degree of g;.

Proof. Since olz]/(f) = o[a] = O, we have a ring homomorphism

olel/(f) _ olz]/{f) .
polal/(f) {p)

O/(p) =0/pO = 0@ 0/p = 0[a]®o 0/p = 0lz]/(f) ®o 0/p =

Or O (p) = SLL = Bl = ¢(a] /(7).

Our goal is to find all prime ideals (maximal ideals) in O containing pO, which corresponding
to the maximal ideal of O/(p) or €[z]/(f). The ideal of €[x]/(f) corresponds the ideal of £[z]
containing f, since €[z] is a PID, these ideals are actually the ideals (g,), where g; | f. Note

[1,5; = 0 in €z]/(f), but no product with smaller exponents is zero and note

(@) + () = (gj(a)) +pO in O/p0O,
(@j) = (p,gj(a)) =B, in O.

So {PB1,..., P} is the complete set of prime ideals containing pO and hence is the complete set
of prime divisors of p. This corresponds to e; being the power of PB; = (p,g;(a)), and e; is
characterized by the fact that pO contains ] ‘13? , but it does not contain the product when any e;

is replaced with a smaller value. Thus, e; is the exponent of g; occuring in the factorization of f.
Since
O o _ ola]/pla] ~ ta] _
T =7 = , = — = = ta]/(g;),
(p,gj(@)  (p.gi(a))  polal/pla] + gj(a)olal/pla]  g;t[a]

we have fj = f(B;/p) = [O/B; : o/p] = [o[a]/(p, g;(@)) = 0/p] = [t[a]/(7;) : ¥] = deg(g;)- O
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Bemark. The idea behind Dedekind’s criterion is to relate the monic irreducible factorization of
fin (o/p)[z] to the prime ideal factorization of pO.

Example 2.92. Let f = 2>+102+1 € Z[z] and a be aroot of f and K = Q(«). Note A(1, o, a?) =
—4027, and since 4027 is prime, the discriminant is square-free. Also, since A(1, a, o) = A(Z[a]) =
ok @ Zla]]?A(ok), we have ox = Z[a]. A couple of prime factorization is 23 + 10x + 1 =
(r 4+ 1)(z2 + 2+ 1) (mod 2). Then 20k = (2, + 1)(2,0® + o+ 1) = p1pa. Sor =2, e(p1/2) =
1 =e(pz/2) and f(p1/2) =1, f(p2/2) =2. Since 3 =1-1+1-2, we verified [K: Q] = >7;_, e; f;.
Another couple of prime factorization is 2° + 10z + 1 = (z + 2215)2(z + 3624) (mod 4027). Then
40270x = (4027, o+ 2215)2 (4027, o+ 3624) = p2po. So r = 2, e(p1/4027) = 2, e(p2/4027) = 1 and
f(p1/4027) =1 = f(p2/4027). Finally, factorization in ox from this relys on writting o = Z[a]. If
not trivial, let £ = Q(«), then Z C Z[a] C ox. Can we always use the theorem to find factorization
in Z[«a]?

Theorem 2.93. Let « € ok such that K = Q(«). Let f be the minimal polynomial of o over
Q. For any p t [0k : Z|a]], write f = H;Zl g;j (mod p). Then the prime factorization is pox =

[T (P, g(@)) -+ (p, gj(@)) with f; = deg(g;).
/

Proof. Note ok /pox = Z[g”(]p;f) = é[,‘% >~ F,[z]/(f). Let m = [0k : Z[a]] and assume p { m. Then
the additive group ox/Z[a] has order m. So for any = € o, m(z + Z[a]) = Za], i.e., mz € Z[a].
Since x € o is arbitrary, mox C Z[a] C ox. Given any prime ! € Z, we have a natural ring
homomorphism Z[a]/lZ]a] — ok /pok. (conrad) If we take [ = p, we claim this is a surjective.
Since p 1 m, ged(p,m) = 1. Then there exists m’ € Z such that mm/’ = 1 (mod p). Let z € ok, we
have © = m/maz (mod pog). Since maz € mox C Z[a], m'mzx € Z[a]. Hence m'max + pZ|a] maps
to m'ma + pox = x + pox and so Z[a]/pZ[a] — ox/pox is surjective. Since Z[a] and ok are both
free Z-module of rank [K : Q], Z[a]/pZ[a] and ok /pox both have p™@ elements. Thus, we have
the module isomorphism Z[a]/pZ[a] = ok /pox. Now apply the previous theorem. O




Chapter 3

Ramification Theory

3.1 Galois Theory

Definition 3.1. Let K and £ be number fields. The compositive field of K and L, denoted KL, is
defined to be KL = {zﬁ“ite abi s a; € K, b; € z:}.

Remark. Note

’C/Kﬁ\ﬁ
~ 7

KNncL

Q
Remark (Facts). (a) deg(KL/K) < deg(£L/K N L) and deg(KL/L) < deg(K/KNL).

(b) deg(KL/Q) < deg(K/Q) deg(L/Q), where the equality is attained when £ and K are Galois
with LN K =Q.

(C) Since ox C 0xr and 0y C Oxz, 0xOr C Ok

Theorem 3.2. Let K, L be number fields and KN L = Q and K/Q and L/Q are Galois. Let
d = ged(Ax,Az). Then

(a) ok C %O)COﬁ.
(b) If d=1, then oxrs = 00, and Axp = A?g(ﬂ/@) . A(}:Cg(lc/@).

Proof. (a) Let{ai,...,an,} beaZ-basis of ox and {1, ..., B} be a Z-basis of 0. Since LNK = Q
and £/Q and K/Q are Galois, L : Q] = [K : Q][£ : Q]. So {a;5;} gives a basis for LL/Q. Given
v € Okc, write v = >, Gfif; with a;; € Z and M € Z and ged(ain, - -+, Gmn, M) = 1. NTS:

27
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M | d=ged(Ax,Ar). Fix 7: L — Q, and let 01,...,0n, be the distinct Q-embeddings K — Q.

Each o) extends to an embedding 6y : KL — Q such that 6|z = 7. Then for k = 1,...,m,

or(aify) = a1(i)ar(B;) = ox(ai)T(By) and then Gx(y) = D270, D20, Ffow(ai)T(B;). Set for

i=1,...,m, x; = Z;;l C;(/[]T(ﬂj) € 7(L). Then 6x(y) = ZZ’;I op(ai)z;. Sow = (T1,...,2Tm)t is
a1(7)

a solution of (ox())x = : . Since the ok (a;) and & (y)’s are integral over Z, Cramer’s
am(7)

rule gives det(ox(a;))z; is also integral over Z. Also, since det(ox(a;)) is integral over Z, we have

(det(ox(cv;)))?x; is integral over Z. So Axz; is integral over Z. Also, since Axz; € 7(L£), we have

Axz; € T(0) and then Agx; = 22‘;1 A’X;“T(ﬁj) € 7(or). Hence M | Ax and similarly, M | A,.

Thus, M | ged(Ax, Ar) and thus ox, C é(ﬁ)c@g.

(b) Since d = 1, ox0, C 0z C 00O, i.€., Oxr = OxOr. Since {oz,ﬂj} is a Z-basis of ok, by
the definition of Ay z? Ay = ALEE/D . Ades(/Q)
O]

Example 3.3. Let K = Q(i) and £ = Q(v/-3), we have KL = Q(i,/—3).

’C/ICE\E
N,

Since any degree 2 extension are Galois, K£/Q and £/Q are both Galois. Since ged(Ax,Ar) =
ged(—4,—-3) = 1, we have ok = oo, = Z[i]Z [%] =7 [1,1’, %,ZHT\/:)’ . Also, since

KNL=Q, Axp = (—4)des£/Q(—3)des(/Q) = 32. 42 Or use SAGE, we find KL = Q[z]/(z* —
42% +16) and Axp = 2% - 32

Example 3.4. Let £ = Q(i) and £ = Q(¥/2), we have £/Q is not Galois. Note oy = Z[/2]. We
can factor primes in £, based on how 23 — 2 factors modulo these primes.

Q(i, V2)

V2)

2
/ K
Q(4) Q(
ST

It is a degree 6 extension of Q. Only Q(i)/Q and Q(i, v/2)/Q(3/2) are Galois extension.
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By SAGE, the minimal polynomial of K£/Q is f = 2% + 32% — 423 + 322 + 122 + 5. Then
KL= Q[z]/{f) = Q(c), where ¢ is a root of f. By SAGE,
Oxr 2 Z[15/22¢° + 4/11c* +17/22¢3 + 7/22¢% +2/11c + 1/22,
1/2¢% +1/2¢,1/2¢° +1/2¢* +1/2¢® +1/2¢%, ¢, ¢4, ).
Note [0k @ Z[c]] = 23 - 11.
(a) Factor in £. Since Ay = —22. 33, the only primes that ramify are 2 and 3.
e Let p=2. Then 2% — 2 = 2% (mod 2) and so 20, = (2, V/2)2 =: p>. Sor =1, e(p/2) = 3 and
f(p/2) =1. Since r =1 and e = [L : Q), 2 is totally ramified.
e Let p = 3. Then 2° — 2 = (z + 1)% (mod 3) and so 30, = (3,2 +1) = p>. Sor = 1,
e(p/3) =3 and f(p/3) = 1. Since r =1 and e = [£L : Q], 3 is totally ramified.
e Let p=>5. Then 23 — 2 = (z + 2)(2? + 32 + 4) (mod 5) and so 50, = (5, V2 + 2)(5, V2 +

3V/2 +4) =: p1p2. Hence e(p1/5) =1 = e(p2/5), f(p1/5) = 1, f(p2/5) = 2 and r = 2. Thus, 5
is not ramified.

(b) Factor in KL. Since Ay, = —28- 3%, the only prime that ramify are 2 and 3.

e Let p=2. Then f = (z+ 1)% (mod 2) and so 20z = (2,c¢+ 1) =:p® Sor =1, e(p/2) =6
and f(p/2) =1. Since r =1 and e = [KL : Q], 2 is totally ramified.

o Let p=5. Then f = x(x +4)(2? + 22 + 4)(2? + 42 + 2) (mod 5) and so 50xs = (5,¢)(5,c +
4)(5,c* + 2¢ + 4)(5,c% + 4c + 2) =: p1papsps. Hence r = 4,e1(p1/5) = e2(p2/5) = e3(p3/5) =
es(pa) =1 and f(p1/5) = 1= f(p2/5), f(p3/5) =2 = f(ps/5). Since r =4 > 1, 5 splits.

e Let p=3. Then f = (22 + 2z + 2)? (mod 3) and so 30k, = (3,c® +2c+2)3 =:p3. Sor =1,
e(p/3) =3 and f(p/3) =2. Since r =1 and e < [£: Q], 3 is ramified.

OoKc
T
ox = ZJi] or =Z[V2]
\ ) /

3.2 Ramification Theory

Let o be dedekind domain and K be Frac(o). Let O be the integral closure of 0 in L. P < O be
a prime dividing p C 0. Let pO = P7*--- P and Py, := {P1,..., B, }. Let L/K be finite Galois
extension with degree n, G = G, x = Gal(£L/K) and o € G.

Remark. If one takes a prime p < 0, what happens when p is lifted to O, that is pO?
Theorem 3.5. We have oo : O = O given by a — o(a).

Proof. Let a € O. Then o(a) € O and so | is well-defined. Since o : £ — L is an isomorphism,
olo is a homomorphism and 1-1. Let a € O. Since G is a group, there exists c=! € G and
o~ (a) € O. By the associativity of group action, o(c7!(a)) = (c 0 071)(a) = o, o is onto. O
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Lemma 3.6. We have o() < O is a prime dividing p, i.e., o(B) € P,.

Proof. Let zy € o(P). Then there exists z € P such that o(z) = ;vy Then P> z=0"1(c (z))
o (zy) = o7 ()0 (y). Since P < O is prime, o~ (z) € P or o~ (y )6‘43 So z = o(c(z))
a(P) or y = o(c71(y)) € o(P). Hence o(P) < O is prime. Since p < © C K and p = PN
p=o(p)=0c(PnNo)CoP), ie., o(P) | p. Thus, p =o(P) N o.

Corollary 3.7. We have a well-defined group action ¢ : G x P, — P,.

OSmi

Definition 3.8. The prime ideal o(*B) is called the Galois conjugate of 3.

Theorem 3.9. The Galois group G acts transitively on the primes B of O dividing p, i.e., for any
PBi, B, € Py, there exists 0 € G such that o(P;) = B, i.e., ¢ is onto, i.e., there is only one orbit
Py.

Proof. Let Py, P2 < O be distinct primes dividing p. Suppose Py # o(P1), for any o € G. Apply
CRT to find € O such that 2 = 0 (mod PB2) and z = 1 (mod o(P1)) for any ¢ € G. Then
Nejk(@) = 1lpec o(@) = 2 [Liqsoeq o(@) € P2 N o = p. Since z # 0 (mod o(P1)) for any o € G,
we have z & o(P1) for any o € G. Suppose there exists o € 7 such that o(z) € PB;1. Then there
exists y € P; such that 071 (y) = x and so z € o7 (P1), a contrdiction. So o(z) & P; for any
o € G. Since p is a prime ideal, Nz (z) = [[,c¢ o(z) & B1 N o = p, a contradiction. O

Corollary 3.10. For any B;,B; € Py, Bi = B;.

Proof. Let o € G such that o(;) =P,. Then o is onto. Since o : L — L is an isomorphism, |y,
is a homomorphism and 1-1. O

Definition 3.11. The decomposition group of P over K is Gy =Dy ={c € G:o(P) =P} <G
where G is the stabilizer of B in G. The decomposition field Zyp is the fixed field of Gy, i.e.,
Zp=L%={z€L:0(x)=1V0o€ Gy}

Remark. [Zp : K] =[G : Gyp] =r. Gp = Gal(L/Zy). If Gp <G, then Z¢/K is also Galois.

Remark. The decomposition group encodes in group-theoretic language the number of different
prime ideals into which a prime ideal p of © decomposes in O. By orbit-stabilizer theorem, % =

[G : G| = #Py = r. In particular,
Gy ={ld}(<= Zp =L) <= n=r <= pO =P, ---P,, <= p is totally split,
Gp =G(<= Zp =K) <= r =1 = pO = P{' <= p ramifies.

Proposition 3.12. The decomposition groups are conjugates of each other. If £/K is an abelian
extension, then G,(y) = Gy, and often this will make people write G, for Gep.

Proof. By the associativity of group action, we have 7 € G, (s if and only if 7(c(B)) = o (B) if and
only if 7 !70(P) = P if and only if 67 '70 € Gy if and only if 7 € 0Gypo~t. So Goep) = oGypo™!
Moreover, If £L/K is an abelian extension, G’ and Gy are abelian and then G, ) = G- O

Corollary 3.13. Let £/K be an abelian extension and p < © be prime. Then o (pO) = pO for any
o€ Gp-
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Proof. Since pO admits a unique prime factorization pO = P{* --- P& and o (P;) = P; for i =
1,...,r, o(pO) = pO. O

Remark. The decomposition group regulates the prime decomposition also in the case of a non-
Galois extension. For subgroups U and V of a group G, consider the equivalence relation in G
defined by 0 ~ ¢/ <= o' =uov foruec UveV.

The correspoding equivalence classes UoV = {uov : u € U,v € V'} are called the double cosets
of G modulo U, V. The set of these double cosets, which form a partition of G, is denoted U\G/V.

Definition 3.14. Let £5%! be the Galois closure of £ in some fixed K. (£ is the smallest Galois
extension of I that contains L.)

Remark. Since char(L) = oo, Galois closure of £ exsits.
Theorem 3.15. Let H = Gal(£8/L). If B is a prime ideal of L& over p, then the rule
H\G/Gyp — Gy
HoGyp — o(P)N L
gives a well-defined bijection.
Example 3.16. Let & be the 3™ root of unity, then & = 1. In Q(+/2), we have 23 — 2 =

(z — V2)(z — &V2)(x — & V2).
Q(V2,8&)

Remark. In the Galois case, set ‘B = ‘B;. Then by previous theorem, for any ‘B; € Py, there exists
0; € G i such that B; = 0;(*B). Then the isomorphism o; : O — O induces a field homomorphism
0 : O/P — O/o;(P) given by a (mod P) — o;(a) (mod o;(P)). Since o; : O — O is onto, ¢ is
onto. Since |Og| = lo/pl’ = M) < o0, pis1-1. Sofor j=1,...,r, fi=fB;/p) =[0/B; :

o/p] =[O/ : o/p]. Then f; =--- = f, =: f. Furthermore, since ¢; : £ — L is an isomorphism
and o;(pO) = pO for j =1,...,7, P | pO <= 0,;(P™) | 0;(pO) <= (0;(P))™ | pO, i.e., for
j=1,...,r, P | pO <= (0;(B))™ | pO. So €1 = --- = e, =: e. Thus, pO = P*--- P =

(Moo U(‘B))E. Also, we have efr = n, where r = [G : Gy] and n = |G.

Theorem 3.17. Let Pz =P N Zy be the prime ideal of Zy below B. Then Pz, | p and
(a) Bz is non-split in L, i.e., B is the only prime over Pz.

(b) e(B/Pz) =e:=e(B/p) and f(B/Bz) = f:= f(B/p).

(c) e(Bz/p) =1=f(Bz/p).
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Proof. (a) The prime ideals above Bz are of the form o(P) for o € Gal(L/Zy) = Gyp. Since
o(P) =P for any o € G, P is the only prime over Pz.

L B

[ o

Zyp Bz |oec
‘ 0€G /Gy

K p

(b) Since n = efr = ef% = ef% = eflélw, we have |Gy| = ”ef. Let ¢ = e(P/P=),
e =e(PBz/p), [ = f(B/Pz) and [’ = e(Pz/p). Then poz, = PZ --- and by (1) we have
PzO =P, So pO = P ... Also, since pO = P°---, we have e = ¢’¢”. Note f = [O/P :
o/p] = [O/FB : 0z, /PBzlloz,/P=z : o/p] = f'f’. Since P is the only prime over Pz, the
fundamental identity for the decomposition of Pz < 0z, prime in £ then reads [£ : Zyp] =

e(B/Bz)f(B/PBz)r(PB/Pz) = e(B/Bz)f(B/Pz) = e'f. Also, since [L : Zg] = |Gy| = ef, we
have ef =¢€'f’, ie, (e'e”)(f'f")=€f' ie,e’f"=1ie,e’=1=f" Thus,e=¢, f=f. O

Corollary 3.18. Let M/L/K be a tower of finite extension, and let P,B,p be prime ideals of
M, L and K, respectively. Then e(P/p) = e(P/B)e(B/p) and f(P/p) = f(P/B)f(B/p).

Remark. Let ¢ € Gy. Similarly, since o(p) = B, 0 : O =, O induces an automorphism
g:0/B — O/P given by a (mod P) — o(a) (mod P) of the residue class field O /.

Remark (Notation). ¢() = O/ and €(p) = o/p.

Theorem 3.19. The extension £(B)/€(p) is normal and the map myp : G — Gal(¢(B)/t(p)) with
mp(0)(b+B) = o(b) + P is a welll-defined surjective homomorphism.

Proof. Since f(Pz/p) = [0z, /Bz : 0/p] = 1, Zy has the same residue class field £(p) as IC with
respect to p. So assume K = Zyp. Then Gy = G. Let @ = a + P € £(P), where o € O is a
representative of @. Let f € o[z] be the minimal polynomial of  over K and f be its image in
(o/p)[z]. Assume f = >  a;z’, where ai,...,a, € 0. Then f(a) = Y7 ja;a’ = 0 and modulo
P, we have 31 (a;+p)(a+3B)" = 0 (mod PB). So @ = a+P is aroot of f and then mg g(p) | f. Since
L/K is Galois and f is irreducible, f splits over O and then f splits over O/P = £(B). So mz ()
splits over £() and thus £(P)/€(p) is normal. Let 0 € Gy and b,c € O with b+ P = ¢ +*B. Since
o(PB) =B, we have o(b—c¢) € P and then o(b) +P = o(c) +*B. So 7y (0)(b+P) = 7p(0)(c+P).
We have my (o) € Aut(€(P)) by such computations as

(o) (b +PB) (¢ +B)) = mp(0) (be +F) = o (be) + P = o(be +F) = o (b + P)(c +F))
= (0(b) +P)(a(c) +F) = mp(0) (b + P)mp(0)(c + ).

Also, since 0 € G, o fixes 0 and then o fixes £(p). So myp(o) € Gal(¢(P)/t(p)). Hence my is
well-defined. That my is a homomorphism is similarly easily checked. Let 0 =60+ € O/F be the
primitive element for the maximal separable subextension of O/ with @ a representative of 6. Let
g € Aut(€(P)/t(p)). Let g € o[z] be the minimal polynomial of § and g be its image in (0/p)[z].
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Similarly, §(0) = 0 and so mg 4, | §. Since (0) is also a root of mg 4, §(o(f)) = 0. So there

is an element 0 that is a root of g such that 6’ + B = (). Since both # and 6’ are roots of f,
there exists 0 € G = Gy such that §' = o(6). So mp(0)(0) =0c(0) +P =6 + P = 5(0) and then
myp (o) = @ by choice of . Thus we have a surjective map Gy — Gal(€()/E(p)). O

Definition 3.20. The kernel Iz C Gy of the surjective homomorphism Gy — Gal(€(9)/€(p)) is
called the inertia group of B over K. Then Iy = {0 € Gy : 0(a) = a (mod P),Va € O}. The
fixed field of Iy, denoted Tgz, is called the inertia field of P over K.

Remark. For any o € G, I;p) = olypo~!. The inertia groups are conjugates of each other. Often
this will make people write I, for Iyp.

Remark. The inertia field is the “largest field where 8 is unramified”.
L
K
Gy | Ty

‘Gm /1

Zyp
|

K

Remark. We have the exact sequence
15 Iy S Gy 5 Gal(e(P)/8(p)) — 1.

Theorem 3.21. The extension Ty /Zyp is normal (Galois), and one has Gal(L/Ty) = Iy and
Gy /Iy = Gal(Ty/Zy) = Gal(8(B)/t(p)). If the residue field extension £(P)/E(p) is separable?
then one has |Ig| = [L : Typ] = e and [Gyp : Ip] = [Ty : Zp) = f. In this case, letting Py = PN Ty,
we have

(a) e(B/Pr) =e¢ and f(B/Pr) = 1.

(b) e(PBr/Pz) =1 and f(Pr/Pz) = [.
Proof. The first two statements follow from the identity |G| = ef and the latter statements. Since

€()/€(p) is separable and normal, |Gal(t(%B)/E(p))| = [E(F) : £(p)] = [0/FB : o/p] = f(B/p) = f.
Since G /Iy 2= Gal(e(P) /1)), |In| = remamregy = & = ¢ Then

£>I
3

e
Gy | Tp
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Since both Zy and Ty are fixed field of some subgroup of the Galois group (Or since Iy C Gi),

Simﬂaﬂy, p — 5:;32 .. — mT — 5;;36 cee, SO e({p/{pT) = e(m/p) = e.
As the inertia group Iz of P over K is also the inertia group of 8 over 7y, it follows from an

application of theorem 3.19 to the extension £/Ty that Gal(¢(P)/¢(B71)) = 1. So ¢(P) = ¢(P7)
and thus f(B[P7) =1 and f(P7|Pz) =

‘Bl fpr
el1l ell
q317_ (‘BTT
1|f 1| f
mIZ ’1372

Remark. Iy = {1} <= Ty = L <= e = 1 <= p is unramified in L.

Example 3.22. Let £ = Q(i). Then Gal(K/Q) = {1,7} = (1) 2 Z/2Z.

(a) Since 1+ | 2, 20 = (1 +4)% = P2. Since 7(P) = 7({1 + 1)) = (1 — i) = (1 + i) = P, we have
7 € Gop and so Gop = {1,7} = Z/2Z. Since |Ip| = e = 2 and Iy C G, we have Iy = Gyp.

Alternatively, since ¢((1 + i)) = Z[i]/{1 + i) = Fq and &(2) = Z/2Z = Fy, we have Gal(t((1 +
1))/€(2)) = 1 and so Iy = Ker(Gy — 1) = Ker(Z/2Z — 1) = Z/2Z. Note we have a exact sequence
1—-72/22 - Z)2Z — 1 — 1.

(b) We already know P = 3Z[i] is prime. Then e = 1 and so Iy = 1. Since £(3) = Z/3Z = F3
and €(3Z[i]) = Z[i]/37Z][i] = Fy, we have Gal(¢(3Z[i])/€(3)) = Z/27Z. Since 7(3Z[i]) = 3Z][i], we have
Gy = (7). Note we have a exact sequence 1 — 1 — Z/27 — 7/27 — 1.

(¢) Recall we saw that 5Z[i] = P1 P2 = (2 — i)(2 + ¢) and Z[i]/(2 — i)Z[i] = F5. Since 7(P;1) =
PBa, 7(PV2) = P1, Gy, = 1 = Gy, and hence Iy, = 1 = Iy,. Note we have a exact sequence

1-1—-1—1-—1.

Example 3.23. Let £ = Q(V/2,£3) be the splitting field of 3 —2 = (z — ¥/2)(x — & V/2) (x — £3+/2).

Q(V2,&3)

/\§
S

Q(v2 ~Qlr)/z? +z+1
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Since ged(2,3) = 1, £/Q is Galois extension of degree 6. (Or follow from char(Q) = oo.) Since
Gal(£/Q) acts as permutations of the 3 roots of 2% — 2, G < S3. Also, |G| = 6, Gal(£/Q) = S5. In
particular, Gal(£/Q) £ (o, 7), where

o I LCaN

G & T e G=-1-6

Since o?(/2) = 0(£s92) = 0(€)o(Y2) = E92, we have o%(V2) = o(EY3) = o(ED)o(V2) =
€26392 = V2. Also, 72(&) = 7(€2) = 7(&)? = €4 = &. Then || = 3. Similarly, |7| =
2. So {1,0,0%} < Gal(£/Q) and {1,7} < Gal(£L/Q). Also, o7 = 702. Hence Gal(L/Q) =
{1,0,02,7,70,70%}. We have

0'21{ 6/5’_) 632)\3/5 ) TUZ{ \3/5'_) 55\3/5 7'0'2'{ \3/5'_) 53\3/5 .

E&— & Ea— & 7 - &
From SAGE, we can calculate £ = Q[z]/(f), where f = 2% 4 32° + 62* + 323 + 92 + 9 and
Ay = —2*.37. So 2 and 3 are the only primes that ramify in £. If a is a root if f, then by

SAGE, [0 : Z[a]] = 3%, and so we will avoid 3. We would use SAGE to do all the calculations,
but we choose to do these by hand instead. Define K := Q(&3). Then ox = Z[&3]. It is easy to
see K = Q(&) = £{9). So L£/K is Galois. There is 1-1 correspondence between the diagram of
subgroups of (o, 7) and subfields for Q(V/2, £3).

1
\
(1) (To) (r0®)

\\

Q(V2) Q& V2) Q(&V2)

The subfields in the second diagram are precisely the fixed fields of the subgroups in the first
diagram. Since only the subgroup (o) < (o, 7), the subfield Q(&3) is the only subfield that is Galois
over Q. We can verify O, = Z[¢3, v/2] = Z[&3][V2] = ox[V/2).
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(a) Consider ox/20x = Z[&3)/(2) = Z]x] /(2 + x + 1,2) = Fy[z]/(z? + x + 1), where mg, o(x) =
2?2 + x + 1 is irreducible modulo 2. So p = 20x < Ok is prime with r = 1, e(p/2) = 1 and
f(p/2) = 2. Then |I,| = e(p/2) = 1 and since r = 1, G, = Gal(K/Q) = (1) = Z/2Z. Since
Gal(t(p)/€(2)) = Gal(F,/F2) = Z/2Z, we have an exact sequence

1-1—={(r)—>(r)—1.

Since [£ : K] = 3, myz x(z) = 23 — 2 and then £ = K[z]/(2® — 2) = K(v/2). Since V2 € o,

oK x Ooi)c[r] T .
we have O /(p) = ox[z]/(x® — 2,p) = (;3—[2]> =y & <;F§[_;>. Since 23 — 2 = 23 (mod 20x),

we have 20, = 20xO0, = pO, = (p,V2)> = P2 Sor =1, e(P/p) = 3 and f(P/p) = 1. Since

= 1, Gyyyp = Gal(£/K) = (o). Si =3, Iy = (0). Since Q¢ = oxl¥2 » VA o
r=1, Gy, = Gal(L/K) = (o). Since e(B/p) = 3, I/, = (o). Since Y T 9 S o
(0 /p)iee®) = ox /p, Gal(£(B)/€(p)) = 1. Note we have an exact sequence

1—{0)— (o) = 1—1

Since P < O, V2 € P and & € ox C Of, 3V/2, f%{‘/? € P and then o(P) = B. Similarly,
since €2 € B, 7(P) = P and then (0,7) < Gy < Gal(L/Q) = (o, 7). Hence Gy = (0,7) = 5.
Since e(P/2) = e(P/p)e(p/2) = 3, |Ip| = 3. Also, since the only subgroup of Gy of order 3 is (o),
Iy = (o) = Z/3Z. Similarly, f(*/2) = 2. Note we have an exact sequence

1— (o) = (o,7) = (1) — 1.

Thus, we have

(b) Consider ox/p = 0x /30K = <3’I2Z£fi+1> = (xfjﬂn, where 22 + 2 + 1 = (x — 1)? (mod 3). So

30k = (3,& —1)2=:p2 Sor =1, e(p/3) =2 and f(p/3) = 1. Then |I,| = e(p/3) = 2 and since
P
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r=1,Gy =K/Q= (7). Since I, < Gy and |Iy| = |G|, I, = (7). Since 2 = b = Zal&]
3, we have Gal(t(p)/£(3)) = 1. Note we have an exact sequence

1%

1—={(r)—=(r)—>1—1.

Since 2® — 2 = 2% + 1 = (z + 1) (mod 30x), we have 30, = (3, V2 +1)3 = PB3. Sor =1,

e(PB/p) = 3 and f(P/p) = 1. Since r = 1, Gp = Gal(L/K) = (o). Since e(P/p) = 3, |Ip| = 3.
= <;)’%,/[§fi> = E’C/Q»[f; >~ o /p, Gal(¢(P)/€(p)) = 1. Note we have an exact sequence

; O¢
Since oY

1—={o) = (o) = 1—1.

Since e(P/2) = e(P/p)e(p/2) = 6 and f(P/2) = f(B/p)f(p/2) = 1, we have an exact sequence
0— (o,7) = (o,7) > 1— 1.

Thus, we have

(c) Consider ox/Tox = Z[&s]/(7) = Z[z]/(x? + x + 1,2) = Fr[z]/(a® + z + 1), where mg, o(z) =
> 4+2+1=(z—-2)(x+3) (mod 7). So 7Tox = (7,& — 2)(7,& + 3) =: p1p2. Then r = 2,
e(p1/7) =1 = e(p2/7), as is expected since 71 A, and f(p1/7) =1 = f(p2/7). Note 7(§3+3) =
—1—-E&+3=2—¢&;. If 7(p2) = pa, then 2 — &3 € po, which means (2 — &) + (3+&3) =5 € po.
Then 5,7 € pa. Since Z[€s] is a ED, 1 = ged(5,7) € pa, a contradiction. So 7(p2) = p;. Similarly,
7(p1) = p2. Hence Gy, =1 =Gy, and so I,, =1 =1I,,. Note we have an exact sequence

1-1—-1—1-—1.

Now we consider p; O, and psO,. We can easily check that 23 — 2 is irreducible modulo 7. Let
j € {1,2}. To factor p; in £, we want to factor x> — 2 (mod p;). Since f(p;/7) =1, ox/p; = Fr.
Since z® — 2 is irreducible modulo 7, 2® — 2 is irreducible modulo p; as well. So B, := p; O is
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prime and then r = 1, e(P;/p;) = 1 and f(P,/p;) =

J(B;/p;) = 3, Gal(¢(B;)/t(p;)) = (o). So G, /p, = (o). Note we have an exact sequence
l—=1—(0) = (o) =

Since e(PB;/2) = e(B;/pj)e(p;/2) = 1 and f(B;/2) = f(B;/p;)f(p;/2) = 3, we have an exact

sequence

3. Since e(B;/p;) = 1, Iy, /p, = 1. Since

0—1—{o)— (o) —1.

Thus, we have

P Ba
1‘1 1‘1
piT por
1‘3 1‘3
Pz P2z
1‘1 1‘1
P1 P2
1‘1 1‘1
T Tor
1‘1 1‘1
712 722

WA

(d) Consider ox/5ox = Z[&3]/(5) = Z[z]/(x® + x + 1,2) = Falz]/(z? + z + 1), where mg, o(x) =
2?2 + x + 1 is irreducible modulo 5. So p = 5ox < ok is prime with r = 1, e(p/2) = 1 and
f(p/2) = 2. So |I,| = e(p/2) = 1 and since r = 1, G, = Gal(K/Q) = (r) = Z/2Z. Since
Gal(t(p)/¢(2)) = Gal(F4/F2) = Z/27Z, we have an exact sequence

1=1-={(r)—={(r)— 1.
Since [£ : K] = 3, myg () = 2® — 2 and then £ = K[z]/(2® — 2) = K(V/2). Since V2 € o,

we have O /(p) = ox[x ]/( —2p) & T_[z]) = % Since 2 is a multiple root and L/K
is Galois, 2° — 2 = (z + 2)(z + a(&))(z + B(&)) (mod 50x) for some a(f3), B(£3) € BZ[Es).
Then 50, = (2, V2 + 2)(2, V/2 + a(&3)) (V2 + B(&)) = P1P2P3. So r = 3, e(Pi/p) = 1 and
J(Bi/p) = 1for j =1,2,3. Let j € {1,2,3}. Since e(B;/p) = 1, Iz, /p = 1. Since f(P;/p) =1,
Gal(t(B1)/t(p)) = 1. Note we have an exact sequence

1—-1—-1—1—1.

Since e(B;/2) = e(B;/p)e(p/2) =1 and f(P,/2) = f(B;/p)f(p/2) = 2, we have an exact sequence

1-1—={(r)—(r)— 1.
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Thus, we have
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Chapter 4

Cyclotomic Extension

4.1 Roos of Units

Definition 4.1. Let K be a field. An n'" root of unity in K is a root of the polynomial 2™ — 1.
Since ™ — 1 has at most n roots in any field, there are at most n different n*® roots of unity. We
say an n™ root of unity &, is primitive if £ =1 and €7 # 1 for 1 < m < n, i.e., &, is an element
of order n in K*.

Remark. Any two primitive n'" roots of unity in a field K are powers of each other.

Example 4.2. (a) The n'® roots of unity in R are {#1}.

2wim

(b) The n'M roots of unity in C are the numbers {eT, 0<m<n-— 1}.
(c) The p** roots of unity in F, are {1} since 0 = 2? — 1 = (z — 1)? in F,. So the map F, — F,
given by x — 2P is 1-1.

Theorem 4.3. Let K be field. Then any finite subgroup of K> = KL\ {0} is cyclic. In particular,
the group of n'* roots of unity in K is cyclic.

Proof. Let K be a field and G be a finite subgroup of the abelian group K*. Let m € G have
maximal order N. Suppose there exists g € G with |g| 1 N. Since |gm| = lem(|g]|, |m|) > |m| = N,
a contradiction. So for any g € G, we have |g]| | N. Hence for any g € G, g is a root of 2V — 1.
Then #G < N. Also, since N | |G|, we have #G = N. Thus, G = (m). O

Example 4.4. (a) The group of n'" roots of unity in C is cyclic with generator e27*/,

b) Any subgroup of (Z/pZ)* is cyclic.
(

(c) Since Z/p"Z for r > 1 is not a field, (Z/p"Z)* is not necessarily cyclic. For example, (Z/8Z)*
is not cyclic.

d) Z/nZ is an additive cyclic group for any n € N and there are ¢(n) primitive nt® roots of unity.
y group y 2 p y

41
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(e) (Z/nZ)* is cyclic if and only if n = 1,2,4, p* or 2p*, where p is an odd prime and k > 1. If
(Z/nZ)* is cyclic, there are p(p(n)) primitive ¢(n)*™ roots of unity mod n, i.e., there are p(¢(n))
elements of order ¢(n) in (Z/nZ)*. In particular, there are ¢(p — 1) primitive (p — 1)** roots of
unity in (Z/pZ)*. For example, 3 is a primitive 6'" root of unity but 2 is not.

Corollary 4.5. Let &, = e’ be the n'h root of unity. Then £ = M s a primitive n'" root

of unity if and only if ged(m,n) = 1.
Proof. Follow from K£* is a group. O

4.2 Properties

Definition 4.6. We say an extension £/K is cyclotomic if £ = K(&,) for some n*®

&, €K,

root of unity

Remark. The term cyclotomic means “circle-dividing” which comes from the fact that the n't
roots of unity in C divide a cicle into n arcs of equal length

Remark. The important algebraic fact we will explore is that cyclotomic extensions of every field
have an abelian Galois group. Other constructions of abelian extensions are Kummer extensions,
Artin-Schreier-Witt extension and Carlitz extensions, but these all require special conditions on the
base field.

Remark. Consider a cyclotomic extension KC(&,)/K with &, a primitive n'" root of unity. Then
™ — 1 has every power of £, as a root, so it has n different roots. Hence ™ — 1 is separable over
K. Conversely, if ™ — 1 is separable over /C, then it has n different roots, so they form a cyclic
group under multiplication. Then there is a (primitive) root of unity of order n among the n** roots
of unity. Therefore, when we construct cyclotomic extensions K(&,)/K, little is lost by assuming
™ — 1 is separable over K if and only if 2" — 1 and n2z"~! have no common roots if and only if
n # 0 in K: char(K) =0, or char(K) = p and (p,n) = 1.

Remark. In a field K, if there are n different n'" roots of unity, we denote the group of them by
. For instance, in C we have py = {1, —1} and puq = {1, 1,4, —i}. In Fr, we have uz = {1,2,4}.
A generator of ju, is denoted &, which is a primitive n'" root of unity. Let a € Z. Since |¢,| = n,
we have [€2] = Ty S0 & is a generator if and only if (n,a) = 1. So when a field contains n
different n*® roots of unity.

Remark. When z™ — 1 is separable over K, K(&,,)/K is Galois since K(&,,) is the splitting field of
™ — 1 over K.

Lemma 4.7. For o € Gal(K(§,)/K), there is a, € Z with (n,a,) = 1 such that (&) = £2°.

Proof. Since £ =1 and &) # 1 for 1 < j < n, we have ¢(&,)" =1 and 0(&,,) # 1 for 1 < j < n. So
o(£,) is a primitive n*® root of unity. Then o(&,,) = &2« for some a, € Z with (n,a,) = 1. O

Example 4.8. In Q, the primitive 7" roots of unity are the 7" roots of unity besides 1 and they
are all roots of f(r) = 2%+ ...+ x + 1. This polynomial is irreducible over Q becasue it becomes
Eisenstein at 7 when we replace x with x +1: f(x) = 27 + 72 +212% + 352 + 3522 + 212 + 7. This
implies, for instance, that &; and &2 have the same minimal polynomial over Q. Since Q(&7) = Q(&2),
there is an automorphism o € Gal(Q(&7)/Q) that sends &7 to £2.
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Theorem 4.9. The mapping
W Gal(K(&,)/K) — (2/n)*

0 Gy
is an injective group homomorphism, where o(&,) = £%°.

Proof. Let 0,7 € Gal(K(&,)/K). Then (o0 o7)(&,) = 0(€27) = o(&,) = (§27)% = £2o% . Also,
since (o o 7)(&,) = &% °7, we have £lo°m = 2% SO Ggor = Gpar (mod n). Hence ¥(oo71) =
U(o)¥(7) (mod n). Thus, ¥ is an homomorphism. Since Ker(¥) = {o € Gal(K(£,)/K) : ap =
1 (mod n)} = {0 € Gal(K(&,)/K) : 0(&n) = &n} = 1, we have U is 1-1. O

Remark. Since (Z/nZ)*, the embedded subgroup Gal(K(,)/K) is abelian. So cyclotomic exten-
sions are always abelian.

Example 4.10. Complex conjugation is an automorphism of Q(&,)/Q(&,) with order 2. Under the
embedding of Gal(Q(&,)/Q) into (Z/nZ)*, complex conjugation corresponds to —1 mod n since
E(gn) = gn = 57:1

Remark. The embedding of Gal(K(&,)/K) into (Z/nZ) may not be surjective; that depends on K.
For instance, if K =R and n > 3, then K(&,)/K = C/R is a quadratic extension. The nontrivial
R-automorphism of C is complex conjugation, whose effect on roots of unity in C is to invert them:
£ = ¢, Therefore the embedding Gal(C/R) — (Z/nZ)* for n > 3 has image {£mod n}, which is
smaller than (Z/nZ)* unless n = 2,3,4 or 6.

Proposition 4.11. If f € Z[z] is monic and ¢ | f where g € Q[z] is monic, then g € Z[x].

Proof. Let f = gh. Then h € Q[z] is also monic. So there exists «, 5 € Q such that ag, Sh € Z|x]
are primitive. By Gauss’s lemma, afgh = (ag)(Bh) € Z[z] is also primitive. Then o = £1. So
a ==+1= 4. Hence g € Z[z]. O

Corollary 4.12. Let K be a number field and o € ok. If 8 is a root of m(z), then mg € Z[z].
Theorem 4.13. The embedding Gal(Q(&,)/Q) — (Z/nZ)* is an isomorphism.

Proof. To prove Gal(Q(&,)/Q) — (Z/nZ)* is a surjection, it is enough to show for all a € Z such
that (a,n) = 1 that &, and £ are Q-conjugate: their minimal polynomial over Q agree. Wlog.,
take @ > 0 and in fact a > 1. Write @ = py - - p,-, where p;’s are not necessarily distinct. Then
piftnfori=1,...,r. Toshow &, and & have the same minimal polynomial over Q, it suffices
to show, for each prime p not dividing n, that any primitive n'" root of unity and its p* power
have the same minimal polynomial over Q, since then the successive pairs of primitive n'® roots
of unity &, &R, EPP2 . D1 Pr = £2 have the same minimal polynomial over Q since each is a
prime power of the previous one. Suppose &, and £F were not Q-conjugate for prime p f n. Let
f(x) =me, o(x) and g(x) = mer g(z). Then f # g. Since f, g are monic, 2™ —1 € Z[z], f | 2" —1
and g | 2" — 1, by previous proposition, f,g € Z[z]. Write 2™ — 1 = fgh for h € Q[z]. Then h is
monic and similarly, we have h € Z[z]. Reducing the above equation modulo p, x" —1 = fgh. Since
ptn, 2" — 1 is separable in Fy[z]. Then f and g are relatively prime in F[z]. Since f and g are
monic, deg(f) = deg(f) and deg(g) = deg(g). So f and g are nonconstant. Since g(¢2) = 0, g(zP)
has &, as aroot and then f(z) | g(zP) in Z[x]. Write g(zP) = f(z)k(z) for some k € Z[x]. Reducing
the above equation modulo p and use the formula g(z?) = g(z)? in F,[x] to get g(x)? = fk. Thus,
any irreducible factor of the nonconstant f is a factor of g, which contradicts relative primality of
f and g. O
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Theorem 4.14. The p™* power map ¢, : Fpn — Fpn defined by ¢(t) = tP generates Gal(Fpn /F,).

Proof. Since F,» is the splitting field over F,, of 2" — z, which is separable, F,./F, is Galois.
By Fermat little theorem, a? = a for any a € F,. So ¢, fixes I, pointwisely. Also, Since ¢,
is a field homomorphism and ¢,(1) = 1, it is 1-1 and then onto. So ¢, € Gal(F,»/F,). Since
# Gal(Fpn /Fp,) = [Fpn : F,] = n, it is enough to show |p,| = n. For r € Z* and t € Fpn,
@;(t) = tP". Let cp; be the identity map. Then t?" =t for all t € Fpyn, ie., tP" —t = 0 for any
t€Fyn. Sop” = p", ie., r = n. Hence |p,| = n. Since # Gal(Fp» /F),) =n and ¢, € Gal(F,n/F,),
lop| = n. 0

Theorem 4.15. When p { n, the image of U : Gal(F,(&,)/Fp) — (Z/nZ)* is (p). In particular,
[Fp(&n) : Fp) is the order of p in (Z/nZ)*.

Proof. Since p t n, ™ — 1 is separable in Fp[z]. So [F,(&,) : Fp] = d for some d < n. By previous
theorem, Gal(FF(¢,)/F,) is generated by the p*® power map ¢,. So ¢,(&,) = €2. Also, by definition,
U(pp) = ay,, where @, (&) = £n?". Hence &,77 = €2, ie., a,, = p (mod n). Thus, ¥(p,) = p mod
n. Also, since Gal(F,(&,)/Fp) = (vp), we have d = [Fp(&,) : Fp] = # Gal(F,(&,)/F,) is the order
of pin (Z/nZ)*. O

Remark. The field extension Q(&,)/Q is Galois of degree ¢(n). Then for any o € Gal(Q(&,)/Q),
it permutes the set of primitive n'® roots of unity in £*, i.e., Gal(Q(&,/Q)) = (Z/nZ)*.

Remark. If 2 { n and n = pi*---pp*, (Z/nZ)* is isomorphic to a product of cyclic group, i.e.,
(Z/nZ)* = (Z/p12)* x - x T/ 2)* = LS =) /2 x - x B (0} = i)

Theorem 4.16. Let m,n € Z7', then Q(£,,)Q(&,) = Q(&iem(m,n))-

Proof. Since fg“i(’" ") is a primitive m™ root of unity, Q(&,,) C Q(&iem(m,ny)- Similarly, Q(&,) C

lcm (m,n)
Q(&iem(m,n))- S0 Qém)Q(6n) € Q(&iem(m,n))- Since &yn&, is a primitive lem(m, n)t™ root of unity,

Theorem 4.17. Let m,n € Z7!, then Q(£,) NQ(&,) = Q(&ged(m,n))- In particular, if ged(m,n) =
1, then Q(&n) N Q&) = Q.

Proof. Recall from elementary number theory, ¢(n) = n[[,,(1 —1/p) for any n € Z*. Then if
m,n € ZT with (m,n) = 1, then o(mn) = p(m)e(n). If d | n, since &; = &7, Q(&4) € Q(&,). So
Q(Em) NQ(En) 2 QEged(m.m))- Recall if £1/K and Lo/K are Galois, then [£1Ls : K] = %

By previous theorem, [Q(&icm(m,n)) : Q] = W Then

p(m)p(n) _ mIlpm@ —1/p) 0]l (1 —1/p)
p(lem(m,n)) lem(m, n) T, jiem(m,ny (1 = 1/P)
_ mn Hp|m<1 —1/p)- len(l —1/p)

B lem(m,n) Hp|lcm(m,n)(1 —1/p)
—ged(mn) [ (1—1/p) = plged(m,n).

plged(m,n)

Hence [Q(&m)m(@(gn) : Q] = @(ggcd(m,n)) = [Q(ggcd(m,n)) : Q} and so Q(ﬁm)m(@(gn) = Q(fgcd(m,n))[-]

[Q(fm) N Q(gn) : Q] =
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Corollary 4.18. For m,n € Z*, p(m)p(n) = ged(m, n) lem(m, n).

Corollary 4.19. Let n = p{* ---p;* be the decomposition of n into distinct prime powers. Then
Gal(Q(&n)/Q) = Gal(Q(&,e1)/Q) x - - - x Gal(Q(&,er ) /Q), Lee., (Z/nZ)* = (Z/pY' Z)* - - (Zp}*Z)*,
which is the CRT. Note (Z/2*Z) is not cyclic unless k = 0,1,2, but for k > 2, (Z/2kZ)* =
7.)27 x 7,/2F2Z.

Proof. By previous theorem, we have Q(&,01) - - - Q(&,20 ) = Q(&n) and Q(&pe1) M-+ N Qg ) = Q.
Note that since [Q(fp:n) 1 Q] = p(pf?) for i =1,...,k and p(n) = @(pi*) - pPeF), [Qg, : Q] =
Q) Q- [QEm) : Q. o

4.3 Mobius Function
Definition 4.20. For n € N, define the Mdbius function p, : N — N by

0 if n has a squared prime factor
w(n) =<¢ —1 if n has odd number of prime factors
1 if n has even number of prime factors

Remark (Facts). (a) The Mobius function is multiplicative, i.e., u(mn) = p(m)u(n) whenever
(m,n) = 1.
(b)
1 ifn=1
D uld) = { 0 ifn>1
d|n
This equality leads to the important Mobius inversion formula: if g and f are arithmetic functions

satisfying g(n) = >, f(d) for each n € N, then f(n) = >, u(d)g(n/d) for each n € N. Well,

we also have a multiplicative version of the above: f(n) =], g(n/d)*D. The two sequences are
said to be M&bius transforms of each other.

4.4 Cyclotomic Polynomial

Definition 4.21. The n*® cyclotomic polynomial ®,, is defined to be ®,,(z) = (v —w1) -+ - (v —,),
where @, ...,w, are all the primitive n*® root of unity. By previous theorem, we can write
Pn(2) = Tlichengedon=1(@ — ¢F). Then ®(n) is monic of degree ¢(n) and ®(z) = = — 1,
Oy(z) =2+ 1, P3(2) =22 + 2+ 1 and Py(x) = 22 + 1.

Theorem 4.22. z" —1 =[], , ®a(z).

Proof. Let & be an n'" root of unity with |¢| = d, then d | n and so ¢ is a primitive d*! root of
unity. Hence ¢ is root of the RHS. Let d | n and &4 be the primitive d'" root of unity, then &; is a

n*" root of unity. Since the polynomials on LHS and RHS are monic, they are equal. O
Corollary 4.23. ®,,(x) = m = dln p(n/d)(z? —1) = Hd‘n(xd — 1)r/d),

Corollary 4.24. ®,(z) = % Pl .
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Theorem 4.25. @, (z) € Q[z].

Proof. Let &, be a primitive n'" root of unity. Let o € Gal(Q(&,,)). Since Gal(Q(&,)/Q) = (Z/nZ)*,
o send distinct primitive n*® roots of unity to distinct primitive n*" roots of unity. So o just shuffles
the linear factor of ®,(z), i.e., o(®,(x)) = ®,(x). Hence by Galois theory, the coefficient of ¥,
must lie in Q, i.e., ®,(z) € Q[x]. O

Theorem 4.26 (Gauss). ®,, € Q[x] is irreducible.

Proof. (Sketch). Assume ®,(z) = fg, where f,g € Q[z] is irreducible. Since o € Gal(Q(&,))
permutes among roots of irreducible polynomials, ¢, (z) is irreducible. O

th roots of unity.

Corollary 4.27. ®,, is the minimal polynomial of the primitive n
Corollary 4.28. ®,, is the minimal polynomial of the non-identity n*® roots of unity.

Theorem 4.29. If m | n, then ®,(z) = ®,,(z™/™).

Proof. Note
B, (z) = H(xd _ 1)u(n/d) - H(xn/d _ 1)u(d) - H((xn/m)m/d _ 1)u(d)
dln dln dlm
_ H((xn/m)d . 1);L(m/d) _ (I)m(xn/m). 0
d|m

Lemma 4.30. We have
(a) ®,(z) =2*Md, (1/x), n > 2.
(b) ®gp(x) =P, (—x), n=1 (mod 2) and n > 3.

(€) @pr(x) = (I)p(xppl) and @1 por = q>p1~~pw(37;0(11171“'[)?'71

(d) If ged(p,m) = 1, Bprpy () = 2l

o2 (xpril) ’
Proof. These identities can be checked by showing the RHS has the correct degree and one correct
root to be the cyclotomic polynomial on LHS. Then use that two monic irreducible polynomials
with a common root are equal.
(a) Since
P (z) = 11 (& — &) = 2% 11 (1-& /),
1<k<n,ged(k,n)=1 1<k<n,ged(k,n)=1
and z#M®,, (1/z) = 2™ i <crengedteny=1(1/z — €F) are irreducible and have the same degree
and one same root, we have the equality.

(b) Note

v P P b |
= z __* _ a?’ril _ (x _ _ o),
Hdlp”,d#pT (pd(flf) Hdlpr_l @d(ﬂj) xP _ 1 TP _ 1

Or follow from previous theorem.

Py ()
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(¢c) If d | m, since m is odd, d is also odd. Note ®o(—2) = —z + 1 = —P;(x) and by induction,

1.2771 -1 x2m -1
@Qm(x) = =
Hd\Qm,d odd q’d(ﬂ?) ’ Hd\Qm,d7é2m7d even q’d(ﬂ?) Hd|m (Dd(l') ’ Hd|m,d<m ‘I)Qd(x)
B 22m _q _ ™+ 1 _ (xm + 1)<I>m(—x) _ % (—.Z‘)
7(xm - 1) Hd\m,d<m Q)d(—m) Hd|m,d<m (I)d(ix) 7(7x>m +1 " .
(d) Since ged(p,m) =1, p(pm/d) = —p(m/d) and then
Dy (1) = H (x4 —1)rrm/d) = H (x4 — 1)rpm/d) H (x4 — 1)rem/d)
dlpm dlpm,pld dlpm.ptd
— H(mpd _ 1)u(m/d) H(xd _ 1);/,(pm/d) — & (xp) H(xd _ 1)-#(771/61) _ (I)m(.%‘p) |
" P (2)
dlm d| dlm
Example 4.31. ®y,(z) = 2P~ —aP 2+ ... —z + 1.
Theorem 4.32. For anyn € Z*, ®,(z) € Z|z].
Proof. Since ®,,(z) | 2™ — 1 and ®,,(z) and 2™ — 1 are both monic, we have ®,,(x) € Z[z]. O

Remark. How does p factor in og,.)? Since ged(p,1) = 1 and 2’ —1=(z — 1) (mod p) and

2 —1=(z—1)? " (mod p), we have

(x—1)”

r_or—1 v +1:Q] -
m =(z-1)P"7" =(z— 1)%(17 ) — (z — 1)[@[Ep Q4 F,[2].

Py (z) =

Hence once we see that og,.) = Z[§pr], since Og(e,.)/POg(e,r) = <p@f] y = FZ[$]>, we have

PZ§pr] = (p,1 _fpr>¢(pT)~ Since 1 =&, | p and pZ[§,-] = (1 _gprw(pr)v we have 7((1 _pgpr>/p) =1,
e((1 =&r)/p) = o) and f((1 —&r)/p) = 1.

4.5 Ramification

Lemma 4.33. Let n = p” and d = (p”) and &, be the n'" root of unity. Then POQ(e,) = (1 —&n).
Furthermore, the basis {1,&,,...,£271} of Q(&,)/Q has the discriminant d(1,&,,. .., &%) = 4+p°,

where s = p"~1(rp —r — 1).
Proof. Since ®,-(z) = @Tgijf,i) = l}”ff,f_ll = Z?;é 2?9, we have ®,,(1) = p. Then p = ®,,(1) =

sk . .
Tlichengeatrmy—1 (1 — €5). Let e = 1=g= = 3171 &l € 0ge,) with ged(k,n) = 1. Then there
exists k' € Z such that kk’ = 1 (mod n), so 1:?2 = 1_1(_52,2k =14+EE 4+ (1 e 0Q(en)
and hence € € 06@"). So € = [Tichen ged(sn)=1 € € Oé(ﬁn)' Also, sipce 11— =e(1-&),p=
ngkgn,gcd(k,n)zl(l _55) = 6(1 _gn)gp(n) Then p(’)@(gn) = <1 _§n><P(P ) = <1 —€n>d. Let Mye--s7d

be the primitive n'" roots of unity, i.e., the Galois conjugate of &,. Then ®,,(z) = H;l:l(a: —15)
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and so @), (z) = S0, I} oy (@ — mi). Hence ®,(n;) = [Ti; ey (07 — mi)- Since @/, € Q[x] and
Gal(Q(¢,)/Q) = (Z/nZ)*,

d
+d(L&n, &) = [J6 - &) = [[20&) Ho = No(e,) /@ (P (6n)).
i j=1
Let v = p"~!. Since 1 # £ is primitive p™ root of unity, mg; (z) = ®p(z) = 2?71 + - + 1.

So mey_1(x) = mey(x+1) = (x+ 1P + .- +1 = zf(2) + p, where f € Q[z]. Consider the

tower of field extension Q(&,)/Q(&))/Q, so cey_y = m[f%(_ﬁ;):@(&l)]. Also, since [Q(&,) : Q(&))] =

. T r_r—1 _ r—1
el — ) — pop = ol = ) we have cgy(2) = (zf(x) + )" = zg(z) + P

th

and then Nge,y/0(§) — 1) = +pP" . Since &, is the primitive n'™® root of unity, ce, = me, =

() = Y5 Zg a9, So Noe,)/q(n) = 1 and then Noge,)/0(67 ") = 1/ Noge, ) /0(€n) = +1. Since
— r—1

C1-¢, (z) = mi—g, (r) = mfn(l —r)=o,(1-2) = Z?:é(l —xz)P I, NQ(&L)/Q(I —&n) = £p. Also,

since p = €(1 — fn)¢(7‘),

No(en/0(P") = Nige,)/oP) = Noe.)/0(€) N, /a1 — €))7 = +pme™),

Since (a7 —1)®,(z) = a?" —1, differentiating it, p" 2P’ ~1®,(z)+ (2P —1)®/ (x) = p"a? L.
So pr I T T L&) + (T — DOL(&) = p ff’“l ie., <§£H 1)@, (&,) = p"&; L. Taking
Ng(e,)/0 on both sides, we have +pr Nae,) /(@ (£)) = pre®)-(£1). Thus, d(1,&,,...,£371) =

£ Nge,)/0(®)(6n)) = Ep @) =70 = gpp" 0p=r=) = gps, O

Theorem 4.34. Og(c,) = Z[&,).

Proof. We first prove this for n = p". Let 0 := 0g(,). Then p°o C Z[§,] C 0. Let P := (1 — &,).
We saw before e(/p) = ¢(n) and f(P/p) = 1. Since [Q[¢,] : Q]) = ¢(n), this is true in o as well
and then 1 — ¢, is prime in 0. Let A :=1—¢,. Then o/ o = 0o/P = Z/pZ. Let a € o, then there
exists z € Z such that a + Ao = z + Mo, i.e., a = 2z + XAo. So 0 =Z + Ao = Z[¢,] + Ao and then
Ao = \Z[E,] + A20. Hence 0 = Z[€,] + A?0 and by inductive argument, o0 = Z[£,] + Ao for any
t € ZF. Pick t = sp(p"), since po = AP )o, we have 0 = Z[¢,] + \*¢P o = Z[¢,] + p°o = Z[E,)].
Hence, if n = p”, we have the result. Note {1,&,,.. e Y forms an integral basis of Q(ﬁn)/(@

when n = p”. More generally, write n = py"*---p*. Then for i = 1,...,7, set n; = n;l/p

Note that for ¢ = 1,...,r, 1; is a primitive p;"‘-th root of unity. Since lem(pi",...,p/"") = n,
Q&) = Q(m)---Q(ny). Since ged(p I”',p?‘-ﬂ =1lforany 1 <i#j<r Qm)Nn---NQn) =
Q. For:=1,...,r, {1,77i,...717f(p 1} forms an integral basis of Q(n;)/Q. Since for i =
Lo.,r d(l,n,. .., nff‘_l) = p;* with s; = p;"*(m;p; — m; — 1), they are pairwisely prime. Then
{77]1 0 Y=o, o(p")—1¥iz1,..., forms an integral basis of Q(£,)/Q. By the definition of n;’s,
each one of these elements in the basis is a power of £,,, so every a € © may be written as a = f(&,)
with f € Z[z]. Since degg(&n) = ¢(n) — 1, the degree of any f(&,) with f € Z[ ] may be reduced to

¢(n) — 1. In this way for a € 0, one obtains a representation a = ag + a1&, + - - - + Gy (n)— eem=1

Thus, {1,&,, ... ,ff(n)fl} is indeed an integral basis of Q(&,)/Q. O

Lemma 4.35. Let p be prime with p t n. The monic irreducible factors of ®,,(z) modulo p are
distinct and all of them have degree equal to the order of p modulo n.
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Proof. Since p ¥ n, 2™ — 1 has distinct roots modulo p. Let a be a root of ®,(z) modulo p.
Since ®,,(x) | 2™ — 1 in Fp[z], a is an n* root of unity in F,. Suppose a™ = 1 in F, for some
1 <m < n. Then ais a root of 2™ — 1 =[]}, jozm ®(2) in Fp. So there exists a proper
divisor d of n such that ®4(e) = 0 in F),. But then « is a root of ®,(x) and ®4(z) in F,. So
2" =1 =[]y, Pn(@) = Pu(2)Pa(@) [11)n 424, Pa(z) in Fp, ie., a is a multiple root of 2" — 1 in
), a contradiction since ™ — 1 is separable over F,. Hence « is a primitive n*™ root of unity in
F,. Let g be an irreducible factor of ®,,(x) in F,[z] such that g(a) = 0. Since Fp[z]|/(g) = Fp(e),
deg(g) = [Fp(a) : F,] is the order of p modulo n, i.e., the order of p in (Z/nZ)*. O

Theorem 4.36. Let n =[] g% be the prime factorization. For each prime p, let f, be the smallest
positive integer such that p/» = 1 (mod n/p?). Then one has the prime factorization pZ[¢,] =
(p1---pr)¢P™") where py,...,p, are distinct and all have degree f,.

Proof. Since 0ge, ) = Z[{n], every pZ[E,] decomposes into prime ideals in exactly the same way as
the minimal polynomial ®,,(z) of &, factors into irreducible polynomial modulo p. Write n = ¢¥2m
with ¢ t m. Let d; run over the primitive roots of unity of order m and n; run over the primitive
roots of unity of order ¢¥7. Let 1 < s < n = lem(g¥?,m), wlog., assume s is not a multiple of ¢"7.
Then sm is not a multiple of g“s. So (6;17;)*™ = 6;™n;™ = n;™ # 1. Hence (d;n;)® # 1. So din;
runs over the primitive n'® roots of unity, i.e., over Z[&,]: @, (z) = [, j(@—3d;m;). Let p | (p). Since
27 —1=(x—1)7" (mod p), we have 0 = nqu —1=(n; —1)?" (mod p) for j = 1,...,¢(g"). So
for j=1,...,0(¢""), n; =1 (mod p). Hence

O (x) = [[(x = 6im;) = [[(z = 6:) (mod p) = [[(z — 6:)?") (mod p)

i i ;
®(q"?)
= <Hl‘ - 6i> (mod p) = B,y ()? 7" (mod p) = B, (2)¥ 7" (mod p).

Since f, is the smallest positive integer such that p/» = 1 (mod m), p has order f, in (Z/mZ)*.
Observe this congruence reduces us to the case where p 1 m, apply previous theorem to decompose
®,,(x), then we have the irreducible decomposition for &, (z) modulo p. O

Example 4.37. Let n € N and 2 { n, then f(2) is the order of 2 mod n. Since o[z]/(2) =
ZiEa)/2) = Z{e)/(én(2),2) = Fafa]/{gn(x)) = g1 (mod 2)---g, (mod 2), we have 20 =
(2,01(60) -+ (2.9,(€)). Then Ga = {(2,1(€n) (mod 2)),-+- ,(2,g,() (mod )} Let 0 €
Gal(Q(¢&,)/Q) such that o9(&,) = £2. Since 2 { n, ged(2,n) = 1 and then there exists z € Z such
that 22 = 1 (mod n). So 22k = k (mod n) for any k € Z*. Then (£2F)* = ¢F and so Q(&F) = Q(£2F)
for any k € Z*. So for any g(z) € Qlz], Q(g9(&,)) = Q(g(€2)), i.e., (9(&)) = (g(£2)), i.e.,

(9(€n) (mod 2)) = (g(£2) (mod 2)). Thus, 02(2, g;(&,) (mod 2)) = (2,02(gi (&) = (2,02(9:(6n))) =
(2,0:(€2)) = (2,:(0)°) = (2,05(&)) fori = 1,...,7.

4.6 Quadratic Fields

Remark (Recall).

a 1 22 =a (mod p) has a solution,
<) =<{ —1 22 =a (mod p) has no solution,
p 0 p | a.
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If p is odd prime, then (%) =o' (mod p), (%) =1 and <_—1> = (—1)132;1. prj(b, L 1, then

(%’) = (%) (%) and if a = 7 (mod p), then (%) ( ) If [ and p are odd prime and [ # p, then

(5) (1) = (0=

Theorem 4.38. Let | and p be odd prime. Set I* = (—1)%1 and let & be a primitive I root
of unity. Then p splits completely in Q(\/T*) if and only if p splits into an even number of prime
ideals in Q(&).

Proof. Define the Gauss sum 7 := 3~ 7 17)x (%) &". Let a,b,c vary over (Z/IZ)*. Since [ is prime,

0=>". (%) ( ) + ZC# (—) =1+ Zcﬂ ( ) ie., Zcﬂ (%) = —1. When ¢ # —1 (mod [), since
ged(c+ 1,1) = 1, we have &' is primitive I'" root of unity. Thus,

P=E (e ()e-2(7)ar =L (e L (e

a a,b b,c

s

=Y (DTe S (T) = X (Henra-n(F)

e# 1 b c#—1
—o- (F)enra-n(F) =1 (F) = cwRi=r

So VI* = £7 € Z[§] € Q(&). Thus, Q(VI*) € Q(&).

— Assume p splits completely in Q(v/1*), say POy /7y = P1p2 with p1 # pa. Then there exists
o € Gal(Q(&)/Q) such that o(p1) = p2 and transforms the set of all prime ideals lying above p;
bijectively into the set of prime ideals above ps. So the number of prime ideals of Q(¢;) above p is
even.

<= Assume pZ[{;| has an even number of prime factors. Then [Z, : (@] = r is even. Since
Gal(Q(&)/Q) is cyclic of order I — 1 and it has a unique subgroup of order 52, i.e., Gal(Q(&)/Q)
has a unique subgroup of index 2, which corresponds to Q(&;)¢?), where c is the complex conjugate.

Also, since Q(vI) C Q(&) and Q(WIF) : Q] = 2, we have Q(&)" = QVIF) € Z, C Q(&). We
have before that for p | p, e(p N Z,/p) = 1. So e(p NQ(VI*)/p) = 1. O

Corollary 4.39. Let n = p{* ---pi* be a distinct prime decomposition. Then Q(¢,,) contains the

quadractic subfield Q(,/p7 - - pj})-

PT‘OOf, Since Q(\/7) - (gpl) - Q(&n) for i = 1,...,k, Q(\/lf{"'pZ) = Q(\/E\/ﬁ) -
Q(v/P1,- -, v/Ph) S Q&) 0

Lemma 4.40. Let a be square-free and p be odd. Then (%) = 1 if and only if p splits completely

in Q(v/a).
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Z[\/a]  ifa=2,3 (mod a)
Proof. Recall 0g(,z) = 7 [1+2\/E] ifa=1(moda) and note

(Z)l@p{aandxza(z+\/a)(x\/&) (mod p) <= ptaand Va € F,
<= ptaand —ﬁ#ﬁeﬁ"p@p)[aand1_2\/67514_2\/&61&
<:>pfaandx2—x+1;az <x—1_2\/a> (x—1+2\/a> (mod p).

Since [0g(a) : Zl[a]] is 1 or 2, p { [0g(a) : Z[a]] and we can factor pog(,/z) via the minimal
polynomials modulo p. O

Theorem 4.41 (QR). Let p,l be distinct odd primes. Then (%) ) =(-1)="=.

) — (-1 (é), it is

if and only if p decomposes

Proof. Let I* = (*1)%l. Since (%) — ((1)1'f21l> _ (_?1)“71(

1
P
enough to show (%) = (Ili) By previous theorem and lemma, (%) =1

into an even number of primes in Q(¢;). In the prime decomposition of I, the prime power of p is 0,
by previous theorem, e(p) = p(p°) = 1. So r(p) = Sgl}(g = %. Hence r(p) is even if and only if
f(p) divides Z_Tl Recall f(p) is the smallest positive integer such that p/®) = 1 (mod 1). So f(p)

divides l_71 if and only if pFTl =1 (mod !) if and only if (}) = 1. Thus, (%) =(5). O

Remark. We want to study Q(¢,)/Q, in particular, we want to know about the class group of
Q(&p)- Iwasawa theory: Instead of focusing on Q(&,), stick this field in a tower of fields and study
the tower instead: Q C Q(&,) C Q(§,2) € --- € Q(&r) € ---. Set Q(&p~) = Un>0 Q(&n). We
have Gal(Q(&,n)/Q) = (Z/p"Z)* = (Z/pZ)* x (Z/p"'Z)*. Set K, = Q(&pm) /P2 Then
Gal(K,/Q) =2 Z/p" 'Z and Q = K; C K C K3 C --- C K,, C ---. Define the cyclotomic
Zy-extension over Q by Q. = Un>1 K,, where Z, is the p-adic integer. Then Gal(Q../Q) =
Gal(Up>1K,/Q) = lim. Gal(K,,/Q) 2 lim. Z/p"~'Z = Z,. We can form a large group X that
has quotients which is the p-parts of the class groups of Q(§,). It helps since X is pro-p, so Z,, acts
on X. We also have p acts on X. We have X is a Z,[I'] & Z,[[I']]-module. This gives lots of new
tools. Use these tools to get information about the class group of Q(&,n).

4.7 Applications

Example 4.42. Let p = 3 (mod 8) and p’ = 5 (mod 8). Let K = Q(£y), where N = plp’ll with
[, ¢ N. Since K 2 (Z/NZ)* and 2t N, f:= f(2) is the order of 2 mod N. Let ¢,t' be the orders
of 2 mod p' and 2 mod p'"', respectively. Since p’ = 5 (mod 8), 22 || t'. Also, since f = lem(t,t')
and 2% { ¢, we have 22 || f. Since p(N) = @(p)p(p") = p'~H(p = Dp" "L (p' = 1), 2° || (), we

@ is even and s := g = “"élfv) is odd. Let Z5 be the decomposition field of 2 in K.

Then [Z; : Q] = r = 2s. By previous corollary, £ := Q(v/—pp’) C K. Then [Z; : &] = [[Z;&] =s.

have r =
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. _ v/ —pp’ ~ VAES ~ Folx
Since —pp’ = 1 (mod 4), og = Z {H'fpp] Note og/(2) = (2,z271[+]1+f”’> = <x27:ci[1]+fp/)'
Since 2% — + 1+fp = 2% — z (mod 2), 2 splits in €. Let B € 0 \ 0z, and 3% € 0z,. Then

mg.z,(x) = 22 — B2 and so [Z2(B) : Za] = 2.

K

Fi=2,(8) =
/ \
\ ] /

/)
E

Q

Q(v=p.VP)

Since p = 3 (mod 8), /=p = Vp* =3 cpx (%) £ So

v (2 (0)s)-Z (B2 ()e-v

i€Zy i€Zy i€Zy

Similarly, o2(v/p') = V/7'. So o2 fixes £ pointwisely and thus £ C F. Since p = 3 (mod 8) and
p’ =5 (mod 8), (%) =-1= (5) So

(V) = o (VP (VP) = o (VI (Vi) = 0? (Z (%) s;;) 2 (2)e

p
i€Zy jeZZ,

21 2 ] ; j ;
-3 (2)e z () = (He X () - v = v
v i€y P JEL, P
So & C D. Since £ C L and 0?(/=p) = —/=p, € C L. Also, since [€ : Q] =2, [£: Q] < 4 and

[€:Q] | [£:Q], we have [£ : Q] = 4 and then [£ : £] = 2. Since ged(2,s) =1, [Z2 : £] = 2 and
[Z2L : L] = 5. Also, since [F : Z5] = 2, we have F = Z5L.



Chapter 5

Class Group and Unit

5.1 Lattices

Remark. Recall Z[i] C Q(i) C C. Goal: generalize this to other ring of integers.

Definition 5.1. Let V be an n-dimensional R-vector space. A lattice in V is a additive subgroup I
of V the form I' = Zvy + - - - Zv,,,, where m < n and vy, ..., v, € V are linearly independent over R.
The set {v1,...,vn} is called a basis of the lattice. The set ® = {x1v1 + -+ + Ty : 0 < 2y < 1}
is called the fundamental mesh of . If m = n, we say ' is a complete lattice or a Z-structure on
V.

Remark. The completeness of the lattice I' is equivalent to the fact that the set of all translate
® + 7,7 € I’ covers the entire space V, i.e., V = (@ + 7).

Example 5.2. For any R-basis of V', the subgroup of all linear combinations with integer coefficients
of the basis vector forms a lattice.

Example 5.3. Let V = R(i) 2 R? and I = Z[i]. Then I is complete. The fundamental mesh ® of
Iis {1 + @20 : 0 < 21,22 < 1} 2[0,1) x [0,1).

A

2

7 7777774
0 77777777777777777 %

0 1 2

\
(4

Example 5.4. I' =Z = 7Z x 0 C R? is a lattice but not a complete lattice. Note ® = [0, 1).

53



o4 CHAPTER 5. CLASS GROUP AND UNIT

Definition 5.5. Let V be a group and W C V. If each w € W is an isolated point in the sense
that there exists a neighbourhood which contains no other points of W, then W is a discrete group
of V.

Remark. If I is complete, the collection of all translates ® + v,y € I' covers all of V.
Theorem 5.6. A subgroup I' CV =X R"™ is a lattice if and only if it is discrete.

Proof. “=". Assume I' C V is a lattice. Then there exists 1 < m < n and vy,...,v,, € V
independent such that I' = Zvy + --- + Zv,,. Let v € T'. Then there exists a1,...,a,, € Z
such that v = aqv1 + -+ + amvm. Extend {vi,...,v,} to a basis {v1,...,v,} of V. Let U, =
{11+ 4zpv, 2 € R |a; —x;] < 1,4 =1,...,m} be a neighborhood of ~. Since U, NI" = {7},
I" is a discrete group of V.

“<". Assume I' is discrete subgroup of V. Let U be any open neighborhood of 0. Then there
exists a neighborhood U’ C U of 0 such that the difference of any two elements in U’ is in U.
Suppose there exists z € T \ T, then there exists a sequence {x,} C I such that x,, — z. So any
open neighborhood of = contains infinitely many points of I'. In particular, this open neighborhood
x + U’ contains infinitely many points of I'. So there exist two distinet v1,v2 € (x +U’)NT. Since
v —x,72 —x € U’, by definition of U, 0 £y — 2 = (71 — ) — (y2 — x) € U. Since I is a group,
1 —v2 €T. So UNT # {0}, a contradiction since T" is discrete. Hence T is closed. Let V; be R-
spanned by the set I'. Then V) is a subspace of V. Let m = dimg Vj and we can pick uy,...,u, € T
such that {uy,...,un} is a R-basis of Vy. Let T'g := Zuy + - - - Zu,, < . Then by definition, T'g
is a complete lattice of V. Let 4/ € I vary over a system of representatives of the cosets in I'/T'g.
Let &y be the fundamental mesh of I'g. Since I'g is complete in Vj, V) = U’YOEFO((DO + 7). Since
v €T C Vy, we can write v = p + o for some p € &g and v9 € Tg CT. Then p =" —~ € T.
Sope ®NT =®, NT. Since @ is bounded, @ is bounded and closed. Since V = R” is a
finite dimensional, ®, is compact. Also, since I is discrete, @y N T is finite. Hence the number of
distinct cosets I'/T'y is finite. So ¢ := [ : T'g] is finite. Then the additive group I'/Ty has order
g. So for any v+ Ty € I'/To, q(y 4+ To) = To, ie., gy € T'y. Since v € T was arbitrary, ¢gI" C T.
SoI' C %1"0 = Z“?l 4o Z“f. By the FTFGAG, there exists an Z-basis {v1,...,v,} C T' with
r<msuch that I' = Zvy +--- + Zv,. Since ' 2 Z" and 'y Z2Z", R" 2T ®Q; R DTy ®z R =2 R™
and then » > m. Thus, r = m and then vq,...,v, spans the m-dimensional R vector space V. So
v1,...,0, are also R-linearly independent. O

Lemma 5.7. A lattice I' in V is complete if and only if there exists a bounded subset M C V' such
that the collection of all translates M + ~,~ € I' cover the whole space V.

Proof. “=". Set M = ®.

“<". Let M C V be a bounded set whose translates M + ~,~v € T" cover V. Let V) be the R-
spanned subspace of V by I'. Then it is enough to show V = Vj. Let v € V. Since V = UWGF(M—i—'y)7
and nv € V for any n € N, we may write for each n € N, nv = a, + v, an € M,y, € T' C

Vo. Since M is bounded, 4= — 0 asn — oo. Then lim, . 2 = lim, . %= + lim, o 1= =
lim,, 00 % = lim, oo v = v. Since Vj is closed and 2= € V; for any n € N, v € V. Thus,
V =". O

We now assume that our V' is a Euclidean vector space, i.e., an R-vector space of finite dimension
n equipped with a symmetric, positive definite bilinear form (,) : V' x V' — R. Then we have on
V' a notion of volume - more precisely a Haar measure. The cube spanned by an orthonormal
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basis ey, ..., e, has volume 1 and more generally, the parallelepiped ® = {zjv] + -+ Tpvp : x; €
R,0 < x; < 1} spanned by n linearly independent vectors vy, ..., v,, has volume vol(®) = |det(A4)],
where A = (a;;) is the change of basis matrix from es, ..., e, to vy, ..., vy, Le., v; = Zj aije;. Since

((vi,03)) = (S amagilens @) ) = (S amaze) = AL, we have vol(®) = |det(4)| = |det(AA")|* =

|det({v;, U]-})\%. Let I' be the lattice spanned by n linearly independent vectors v, . . ., v,, then ® is
a fundamental mesh of T' and write for short vol(T') = vol(®). This does not depend on the choice
of a basis {v1,...,v,} of the lattice since if we change a basis, we hit vy,...,v, by an element of
GL,,(Z), but elements of GL,(Z) have determinant +1 and so they don’t impact the volume.

Definition 5.8. A subset X C V is called centrally symmetric if given any « € X we have —x € X.
X is called conver if given any z,y € X, the whole line segment {ty + (1 —t)z: 0 <t < 1} C X.

Theorem 5.9 (Minkowski’s Lattice Point Theorem). Let I be a complete lattice in the Euclidean
vector space Vwith dimenson n and X a centrally symmetric, convex subset of V. If vol(X) >
2" vol(T"), then X contains at least one nonzero lattice point v € T.

Proof. 1t is enough to show that there exist two distinct 71,72 € I' € V such that (%X +71)N
(%X +72) # 0. In fact, choosing a point in this intersection: %ml +v = %xg + 7o with z1, 29 € X,
we obtain 0 #£ v 1=y — v = %l‘g — %.731. Since 1,72 € I', v = 7172 € I'. Since X is a centrally

symmetric and convex, vy = %1'2 — %9:1 € X. Sovy e XNTI. Now, suppose the sets {%X +7,7€Tl}

were pairwise disjoint. Then vol(®) > > . vol (®N(3X +17)). Also, since ® —~,7 € T cover V,
vol(T) = > ol (@ N (lX +9) ) =vol(®) =) vol ( (& —7)N Ix) —vor(ix) = ivol(X)
B ~ET 2 ) B ~ET e - 2 I 7

i.e., vol(X) < 2" vol(T"), a contradiction. O

5.2 Minkowski Theory and Geometry number

Let £/Q be a number field of dimension n.

Definition 5.10. Let K¢ = [[ C, where 7 runs over the embeddings I — C. We have a natural
embedding j : K — K¢ given by a — (7(a)).

Remark. We have an isomorphism K¢ = K ®qg C given by j(a)z < a ® z.

Definition 5.11. Let V be an F-vector space. A sesquilinear form ¢ :V x V — F is a map that
is linear in the first variable and conjugate linear in the second variable.

Definition 5.12. A sesquilinear form ¢ on V is said to be Hermitian if p(v,w) = @(w,v) for any
v,we V.

Remark. The C-vector space K¢ is equipped with the Hermitian scalar product () : K¢ x K¢ — C
given by ((z-), (yr)) — >_, ©+Jr. Actually, it is an inner product.

Remark. Given an embedding 7 : K — C, we have a conjugate embedding 7 defined by 7(a) = 7(a)
for any a € K. If 7(K) C R, then 7 =7. If 7(K) € R, then 7 # 7.
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Definition 5.13. Define an involution (72 = id for any 7) ¢ : K¢ — K¢ given by 2z = (2,) —
c(2) = (c(2)r) = (Z7)-

Example 5.14. If K¢ =C, define ¢: C — C by z — Z.

Example 5.15. If K¢ = C x C, define ¢: C x C — C x C by (21, 22) — (22, 21).

Proposition 5.16. The scalar product (,) is equivariant under ¢, that is {¢(x), c(y)) = c({z,y)).

Proof. Note {c(x),c(y)) = ((T7), (Ur)) = X, Tryr = 20, Tryr = 2, cl2r¥r) = (X, 27Ur) =
c({z,y))- =

Definition 5.17. We have Tr : K¢ — C given by (2;) — > _ 2.

Remark. The composite K 2 K¢ 5 C gives the usual trace of K/Q, Tr g(a) = Tr(j(a)).
Example 5.18. Let K = Q(¢) and define ¢ : K — K by a+bi — a —bi. Then we have ¢ =ZCxC

and j : K — [[.C given by a + bi — (a + bi,a — bi). Let x = (z;) = (a + bi,c + di) and
y = (yr) = (e + fi,g + hi). Then (z,y) = zia¥ia + zcJe = (a + bi)(e — fi) + (¢ + di)(g — hi). So
K—L xe—I ¢
a+bi— (a+bi,a—0bi)— (a+bi)+ (a—bi)=2a,

or

K Tr(K/Q) QccC

a+ bi ——— 2a.

Definition 5.19. Label the embeddding with integers in R as p1,..., p, and refer to them as real
embeddings. The embedding that does not map K into R are called complex embeddings and they
come in pairs 01,01,...,0,05. Note that n = r + 2s.

Definition 5.20. Define the c-invariant points of K¢ by
Kr={(z:) €Kc:2, e RVpe{p1,....pr}, 26 =Z5,Vo € {01,...,05}}.
Corollary 5.21. Kg = {(2,) € K¢ : (27) = (Z+)}.
Proof. ¢(z) = z if and only if (z7) = (2;) <= (27) = (Z,). O
Remark. We have

Ke — K®gC

J J

ICR iK@QR

The inclusion Kr C K¢ corresponds to the canonical mapping K ®g R — K ®g C, which is induced
by the inclusion R — C. ¢ corresponds to ¢(a ® z) = a ® Z.
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Remark. Let a € K. Since 7(a) = 7(a), c(j(a)) = c(r(a)) = (@f) - (T(a)T) = ((a)) = j(a).
So j(a) € Kr. Then this yields a mapping j : K — Kg. The restriction of the hermitian scalar
product {,) from K¢ to Kgr gives a scalar product (,) : Kg x Kg — R on the R-vector space Kg.
Indeed, for z,y € Kg, since c((z,y)) = {c(x), c(y)) = (z,y), we have (z,y) € R. So (z,y) = (z,y) =
(y,x). Thus, this is a symmetric positive definite bilinear form on Kg.

Definition 5.22. We call the Euclidean vector space Kr the Minkowski space, its scalar product
(,) the canonical metric, and the associated Haar measure the canonical measure.

Example 5.23. Set £ = Q(v/2), then n = 3,7 = 1,s = 1. Note that p = id : V/2 — /2,
o2 &Y2and 7 : V2 — E33/2 = 53%\3/5 So 5(\3/5) = o(\3/§). Note K¢ = C? and Ky =
{(z;) € C¥: 2z, € Ryzz = z,} = {(21,22,23) € C® : 21 € R,z3 = Z2} = {(21,22,%2) € C3, 21 €
R} = R x C. Let z € K¢ with 2z = (2,,25,25). Then ¢(2) = (Z5,%5,23) = (%), %5,25). So if
z = (21,29,23) € K¢, then ¢(z) = (2z1,23,22). Thus, if 2 = (21, 29,23) € Kg, then z; € R and
z3 = Z9 and so ¢(z) = (21, 23, Z2) = (21, 22, 23) = 2.

Remark (Exercise). Write down what ¢ looks like in K¢. Show Kr = lCé:C>.

Theorem 5.24. There is an isomorphism f : Kr — [[, R = R""2% given by (2.) — (x.), where
T, = 2p, To = Re(25), ¥z = Im(2,). This isomorphism transforms the canonical metric (,) into

1 ifTE{P17~-~7pr}

the scalar product (a,b) =Y _ara;b;, where a, = { 9 otherwise

Proof. The map is clearly an isomorphism. Let z = (z;) = (z, +1iy,), 2/ = (2)) = (2} +1y.) € Kg.
Then z,z], = x,],. Since v7 = Im(z,) = y, and 25 =y, Re(2,2,) = Re((v, + iz5) (v, —iz})) =
Toxl + x5x%. Since z, 2 € K, 202, + 2525 = 202y + Zozy = 2Re(2,Z)) = 2(z,a), + x52%). So

(2,2) = Zp acpx;, + >, (202, + 2525) = Zp a:px’p +> . 2wox, + x525) =Y 0rx A O

Remark. The scalar product (z,y) = ) _a,z,y, transfers the canonical measure from Kr to
R"*2s. Tt obviously dif and only ifers from the standard Lebesgue measure by volean(X) =
2% VOlLCb(f(X)).

Theorem 5.25. Let 0 # a < ox. Then I' = j(a) is a complete lattice in Kgr. Its fundamental
mesh has volume vol(T') = /|Ax|[ok : a].

Proof. Let {a,...,a,} be a Z-basis of a. Then I' = Zj(a1) + -+ + Zj(an). Let {r1,...,7,} be
the embeddings of K < C and set A = (7;(a;)). Recall (det(A))? = d(a,...,an) = Aa) =
[0k : a]2A(0k). Note ((j(as), j(ar))) = (1, mi(as)Ti(ax)) = AAL Since {j(a1),...,j(an)} is a
Z-basis of ja, vol(T') = |det({j(c), j(ar)))|? = |det(A)| = v/|Ax|[ok : a]. O
Theorem 5.26. Let 0 # a < ox. Let ¢ > 0 so that ¢; = ¢z for each embedding K — C and

IL e > (%)S Vl]dk|[ox : a]. Then there exists 0 # a € a such that for each embedding 7 : K — C,
|7(a)] < cr.

Proof. Let X = {(2;) € Kr : |2¢| < ¢;}. Then X is centrally symmetric and convex. Its volume
vol(X) can be computed via the map f : Kg = [[, R given by (z;) +— (z,). With f(X) =
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{(z:) €T, R: |zy| < cp, 22 + 22 < ¢}, it comes out

vol(X) = 2° volpe, (f(X)) = 2° H(2CP) H(wc?,) =2 tsys H cr

p o
2 S
> 2"t s <7r> vV I|Ak|[ok : a] = 2" vol(T).

This shows X satisfies the hypothesis of Minkowski’s lattice point theorem. Also since I' = j(a) is
a complete lattice in Kg, there exists a lattice point j(a) € X with 0 # a € q, i.e., |7(a)| < ¢, for
any embedding 7 : K — C. O

Example 5.27. Work out for K = Q(z).

5.3 The Class Number

Let K be a number field and 0 = ok.

Remark. If CI(K) = Ji/Px is finite, set hx = |C1(K)[, which is the class number, then hxe =1 if
and only if ok is a UFD.

Lemma 5.28. Let K = Q(v/d). For d < 0, hx = 1 if and only if
d=—-1,-2,-3,—7,—11,—19, —43, —67, —163.

Example 5.29. Let a € Jc. If m is the smallest positive integer such that a” is principal, then
m is the smallest positive integer such that (a + Px)™ = Px, and so m | hy.

Remark (Conjecture, Gauss). (a) limg— o hq(ya) = 00, which is solved by Heilbronn, 1934.

(b) There are infinitely many d > 0 such that hQ( Vi) = 1, where about 75.446% of the real quadratic
fields has class number 1.

Remark. In general, there are not nice patterns in the sizes of class groups except in cyclomatic

fields Q(&pn).
Proof. p-sylow subgroup of Cly,, . O
Remark. For our case (or if Gal(F/Q) is abelian), it is known that p = 0.

Remark. Let a,b C o be ideals, then 9t(ab) = 91(a)91(b). It may therefore be extended to a
homomorphism

N: Je— RS0

a=]]p — [[22p)".
p p

Lemma 5.30. Let 0 # a < o, then there exists 0 # a € a such that |N,C/Q(a)} < (%)S VAN (a),
i.e., |N,C/@(a)]‘ﬁ(a*1) = |N,</Q(a)|‘ﬂ(a)*1 g (%)S \/A]C-
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Proof. Given € > 0, we choose ¢ € Ry with the embedding 7 : K — C such that ¢, = ¢z and
[[, e = (%)s VIAk|N(a)+e. Then there exists 0 # a € a such that |7(a)| < ¢, for each embedding

7:K = C. So |[Ngsg(a)| =TI, I7(a)| <II, ¢r = (2)8\/|A;c‘ﬁ ) + €, which is true for a115>0.
Also, since ’N;C/Q(a)| € N, there exists 0 # a € a such that ’N;C/Q | (2 ) VIAk[N(a O

Theorem 5.31. hi < co.

Proof. Let 0 # p < © be prime. Then there exists prime 0 # p € Z such that p N Z = pZ. Let
f=f/p) =lo/p:Z/pZ] > 1. Since o/p = F}, N(p) = [0 : p] = |o/p| = p/. Note there are at
most [K : Q] primes p < o such that p | (p). Fix N € N, since there are only finitely many rational
primes less than N, there are only finitely many primes p < o with 9(p) < N, which are at most
K:Q-#{p|p < N} such p. Since every 0 # a < 0 admits a representation a = p7* ---pXr,
where v; > 0, >0, v; < nand MN(a) = N(py)”* - - N(p,)"r, there are together only a finite number
of ideals a of 0 with M(a) < N. It therefore suffices to show that each class @ = aPx € ClI(K)
contains a; < 0, which is one of the representatives, such that 9M(a;) < N := (2)° {/[Ax]. Choose
a representative a of @. Since a=! € Ji, there exists v € 0 \ {0} such that b := va~! C 0. Then
by previous lemma, there exists 0 # a € b < 0 such that

N(ab™!) = M({a)b™!) = N((a))N(b) = [Ny /() |7(6 <) _ N

The ideal a; = ab™! = ay la = a(ay™10) € P = a therefore has the required property. Thus,
the class group is given by Clx = {a ca<o,MN(a) < (%) VA }

K

Remark. By previous proof, we have each ideal class contains an ideal a < o with D(a) <
2)*/Ax. Since a < o has a prime decomposition a = p}* ---p¥ with v; € N and N(a) =
(M(p1))7r -+ - (M(pXr)), to actually calculate the class group, we just need to look at the group
generated by p with p < 0 and N(p) < (2) v/ |Ax| or just need to look at the rational primes that

is less than (%)S VA, "

Example 5.32. Let K = Q(+/—7). Then |Ax| = 7 and s = 1. Since (2)1 VT &~ 1.684, N(p) <

T

1.684. Also, since N(p) € Z=o, N(p) = 1. So Clg = {id} and then hx = 1.

Example 5.33. Let K = Q(v/5). Then |[Ax| =5 and s = 0. So N(p) < (%)0 V5 & 2.236. Since
m. g(x) = x* — x — 1, which is irreducible modulo 2, we have (2) is irreducible. So Clg = {id}.

Example 5.34. Let K = Q(v/=5). Then |[Ax| = —20 and s = 1. So N(p) < (%)1 V20 = 2.847.
Since m g (x) = #* +5 = (z +1)* (mod 2), (2) = (2,v/=5+ 1)>. Note 0 = Z[/=5]. Suppose
p = (2,v/-5+1) = (z + yv/=b) for some z,y € Z. Since 2 € p, then =z + y/—5 | 2. So
Ni/0(z+yv=5) | Nic/g(2), i.e., Nxg(z+y+/=5) | 4. Similarly, since V=5+1 € p, Nic)q(z+yv/=5) |
6. Also, since x + y/=5 & 0%, N /g(z 4+ yv/—=b) = 2, i.e., 2 4+ 5y® = 2, a contraction (or because

22 +5y? # 21 = 2). Hence p ¢ P, i.e., p # id. Since p? = (2) = id and then Cl = {id, p} = Z/2Z.

Example 5.35. Let = Q(v/82). Then Ax =4-82 and s = 0. Since (%)0 V482 ~ 18.11, we
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need to consider primes over the rational primes 2,3,5,7,11,13,17.

p | T*—82 (mod p) | (p)

2 T2 3

3| (T-1D)(T+1) | paps
5 irreducible prime
7 irreducible prime

1] (T+49(T+7) | pupy
13| (T+2)(T—2) | pispis
17 irreducible prime

Since (5),(7), (17) € Px are irreducible, we don’t need to consider primes over 5,7,17. So Clg
is generated by po, P3, s, P11 and pi3. Since pspy = (3) € Py, psps = (3) = id, ie., py = p3 "
Similarly, p2 = p2 = id. Since Nic/o(7 + V82) = —1-3-11, (7 ++/82) = p3py;. Similarly,
P11 = p;'. Since Ny (11 + v/82) = 313, (11 + v/82) = p3pi3. Similarly, p13 = p;'. Since
Ni/o(10+v/82) =18 =2-3% (10+ V/82) can only be divisible by po, p3 and p4. Since 31 10 + /82
and psps = (3), p3 and p4 can’t both divide (10 + +/82). We say p4 is the one that divides
10 + /82, so (10 + v/82) = pop¥?. Hence, pp = p??’l = 137:’3*2 = p2. Thus, Clg = (p3). Since
id = p3 = ]?%2 = p3, p3 has order dividing 4. Suppose py = id, since 0 = Z[\/8>2], there exists
a,b € Z such that py = (a +bv/82). Then (2) = p3 = ((a + b/82)2). Since o is an integral domain,
there exists u € 0* such that 2 = (a + bv/82)%u. Taking norms, we have N(u) > 0. Also, since
N(u) = {£1}, N(u) = 1. Since 0* = +(9 + /82)% and Ny ,g(9 + v/82) = —1, the positive units of
norm 1 are the integral powers of (9 + 1/82)2, which are all squares. So i as a unit square can be
absorbed into the (a + bv/82)? term with a,b € Z. Then we have to solve 2 = (a + bv/82)%. But
then /2 € Z[v/82], a contradiction. Hence py # id and then ps has order 4. Thus, Clx 22 Z/47Z.

Example 5.36. Let K = Q(v/—30). Then s =1 and Ax = —120. Since (%)g v/|—120] =~ 6.97, the
class group is generated by primes dividing 2,3 and 5.

p | T? + 30 (mod p) | (p)
2 T2 3
3 I’ p3
5 7 P3

So pa2,p3 and ps each have order dividing 2 in Clg. Also, f(p2/2) = f(ps/3) = f(ps/5) = 1.
For a,b € Z, M((a + by/=30)) = Ng/g(a + bv/=30) = a® 4 30b* which is never 2*, 3' or 5'. So
P2, P3,ps & P and then po, p3 and ps each have order 2 in Clx. Moreover, since Nk /q(v/—30) =
30 =2-3-5, (+/—30) = papsps, i.e., P2p3ps = id. So po and p3 generate the class group. Also, since
Pabs = 5 ' = Ps # id, we have py # p3'. Thus, Clg & Cy x Cy = Z/27 x 7./2Z, where C5 is the
cyclic group of order 2.

Remark (Exer). Show that if d > 0 and |disc(Q(v/d))| < d, then Q(v/d) has class number 1.

5.4 Dirichlet’s Unit Theorem

The group of units oF contains the finite group p(K) of the roots of unity that lie in K, but
in general is not itself finite. Its size is in fact determined by the number 7 of real embeddings
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p: K — R and the number s of pairs 0,5 : L — C of complex conjugate embeddings. To describe
the group, we use the following commutative diagrams from Minkowski’s theorem,

Q> RX log|| R

In the upper part of the diagram we consider the subgroups. The group of units: o = {¢ € ok :
Ni/g(e) = £1}. The “norm-one surface”: S = {y € Ky : N(y) = £1}. The “trace 0" hyperplane:

H= {x e [II. R]" : Tr(z) = O}. We obtain the homomorphisms

A

og s L3H
and the composite A :=1loj: 0 — H. Set I' = AN(0g) < H, which is what we want to work with.

Theorem 5.37. We have the exact sequence:
IHM(K)HO,XCLFHO.

Lemma 5.38. Up to multiplication by units, there are only finitely many elements o € o of given
norm N g(a) = a.

Theorem 5.39. The group T is a complete lattices in the (r + s — 1)-dimensional vector space H
and is therefore isomorphism to Z" 571,

Corollary 5.40. o = p(K)x Z"*~1. In other words, there exists units &1, ..., &,4s_1, called fun-
damental units, such that any other unit ¢ can be written uniquely as a product e = &e7* -+ e/},

with a root of unity &.

Example 5.41. Let K = Q(i). Then r = 0 and s = 1 and so 0¢ = p(Q(i)) x Z*071 = 1(Q(3)).
Since deg(Q(i)/Q) = 2, any &, € o must have the minimal polynomial of degree at most 2. Note
that {1, 44} C og. Check explicitly that & & Z[i]. So o = Z[i]* = {£1, +i}.

Example 5.42. Let K = Q(v2). Then r = 2 and s = 0 and so of = pu(Q(v2)) x Z2+0-1 =~
{#1} x Z. Note ¢ € o if and only if Nx/g(e) = £1. Let € = 2 4+ yv/2 € 0f. Then there exists
¢ € 0 such that ee’ = +1. Solve the equation +1 = Ny g(¢) = #* — 2y®. By inspection, we have
z =y =1and soe =1+ +/2. This is the “simplest” solution, up to sign, so it is fundamental
and hence of = +(1 + v2)%. Suppose we didn’t see the solution via inspection. Consider the
equation 22 — 2y% = 1. Use continued fractions to find a fundamental solution z = 3,y = 2. Then
u = 3+2v2 € of. Suppose there is an € = a + bv/2 € 0 with Nic/g(e) = —1 and €2 = 3 + 2V/2.
Then we get € = 1 4+ v/2 and so o 2 £(1+v2)% = {+(1+V2)" : n € Z}.
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5.5 Kummer’s theorem
We will mostly prove the following theorem.

Theorem 5.43. Let p > 3 with p { hg,).- Then P + y? = 2P has no nontrivial solution with
ptayz.

Definition 5.44. The prime p with p{ hg(§,) are called regular prime.

Remark (Conjecture). There are infinitely many regular prime. In fact, most primes should be
regular.

Theorem 5.45. There are infinitely many irrgular primes.

We will study Q(&,).

b_
Definition 5.46. The cyclotomic units of Z[¢,] are elements of the form 25;71 ab.
P
b_ ac_
Remark. Since p 1 ab, there exists ¢ € Z such that b = ac (mod p). Then gﬁ_i = 65;7_11 =
p P

1+E 4+ 6 ezle,)

1
b a
Remark. For p { ab, <£ 1) Z,, : € (Z[&)])*. So the cyclotomic units form a subgroup of
Z[Ep)-

Lemma 5.47. For ptk, (1-¢&,) =(1— f;f)

€ (Z[&)) ™ O
Lemma 5.48. The prime decomposition of (p) is (1 — &,)?~!, and hence (1 — &,) is prime in oO.

Proof. Since 1+ + -+ + 2P~ = & (z) = Hf;ll(x = &), p=,(1) =[[}Z a —¢&). So (p) =
Hp 1(1 —§j>. For j =1,...,p—1, since p { j, by previous lemma, (1 —&,) = (1 — EIJ;). Hence

() =11;= 1(1 — &) = (1 —&,)P~L. Furthermore, since [K : Q] = p — 1, (p) can have at most p — 1
prime factors thus in fact it is a prime decomposition, so we also get (1 — &,) < ok is prime. [

Lemma 5.49. Suppose o = ap+a1&p+-- ~—|—ap_1£1’7’_1 with a; € Z. If a; = 0forsome: =1,...,p—1,
then if there exists n € Z such that n | a, thenn | a; forall j=1,...,p— 1.

Proof. 1f a; =0 for some i = 1,...,p— 1, then let {1,&,,...,€,...,E27'} be a basis of Z[¢,]. So a
is written in terms of a basis and thus if n | «, n divides all the coefficients. O

Lemma 5.50. Let o € Z[,]. Then o is congruent to an element of Z modulo p.

Proof. Let o € Z[¢,] and write o = ag + a1, + -+ ap*2§5_2 with a; € Z. Then of = ag + 476} +
+al (p 2p af +af + -+ +al_, (mod p). .
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Remark. Given any prime p, K = Q(¢,) C C, but K is not contained in R. For any o € Gal(K/Q),
o never sends Q(¢,) into R. Furthermore, one of the automorphisms in Gal(K/Q) is the complex
conjugation ¢ : K — K with ¢ fixing Q, so ¢ € Gal(K/Q) and Kt := K{¢). Since the automorphisms
have a group structure, we can pair each automorphism o € Gal(K/Q) with its conjugate. Note
that this is equivalent in pairing elements of (Z/pZ)* with their additive inverse. However, there
is a large subfield £ € Q(€,) which sits insider of R, properties of K and K gives us information
on the number of independents of each field and relates the corresponding rings of integers ox and
Ox+ with the use of Dirichlet’s Unit Theorem, stated below. Since ¢ = 1, |(c)| = 2 and then
K: Kt =2.
Theorem 5.51 (Dirachlet’s Unit Theorem). For any number field K, rank(0g) =r + s — 1.
Theorem 5.52. Let p > 2 and K = Q(§,). Then

p—1

(a) K is totally complex field, i.e., r =0 and s = P5~.

(b) The maximal totally real subfield of K, i.e., the largest subfield fized by complex conjugations is
Kt =Q(& +¢&,') = KNR. Furthermore, 0+ = Z[6, + &, and [K: K1] = 2.

(¢) K and K have the same unit rank, i.e., 05 and OE+ have the same rank. In particular, the
embedding Ox+ — 0% has finite index.

Proof. (a) Let o : K — C be an embedding. Since all nontrivial p*® roots of unity are primitive,
(&) = f’; for some k with p{ k. Since p > 2, 55 ¢ R for any k with pt k. Sor =0 and 2s =p—1.

Q& + §p_1) C K*. Since z — &, € Q(&, + fp_l)[x] and &, is a root of f(x) = xﬁ)— (& + §p_1)x +
€ Q(& + &, ")[z], we have f is the minimal polynomial for &, over Q(§, 4+ ¢,') = Kt and so
[K: K*] = 2. Since K is not totally real, Q(§, + &, ') must be the maximal real subfield in K.

(b) Since the imaginary coefficients of £, and &, 1 are additive inverses, &, + ;! € R and then
1

(c) By Dirichlet’s Unit Theorem, rankz(ox*) = r+s— 1 = 251 — 1. Furthermore, [K* : Q] =

% = % and as K is totally real, rankz(ox+*) =r+s—1=[KT:Q]+0—-1= %71.
O

Remark. Units in 0 can be easily described in terms of units in o, since the maximal real
subfield is rather large in such a manner that the index of the unit groups is finite. we show in the
following Proposition that any unit of C can be decomposed into a product of p*" root of unity and
a totally real unit in 0g, .

Proposition 5.53. For any u € oy, there exist v € o and r € Z such that u = §pv. In particular,
this gives [0g : 05, ] = p.

Proof. Not given. O

Remark. Note 2 = 27 + ¢y = (z +y)(x + &y) - - - (¢ + &5~ 'y). Want to consider this in terms of
ideals: (2)? = (v +y){x + &) -+ (v + &5~ "y)-

Lemma 5.54. Let (z,y,z) be a nontrivial solution to 2? + y? = zP. The ideals (x + &y) for
j=0,...,p—1 are either relatively prime (will be when p { zyz) or have exactly one common

j
factor (1 —¢,) so that the ideals (x+§”y> for j =0,...,p— 1 are relatively prime.

T—¢,
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Proof. Wlog., we can assume ged(z,y,z) = 1. Suppose there exists p < Z[€,] prime such that
pl{x+&y) andp | (x4 &y) for 0 <i#j <p—1. Thenp | (x+ &y) — (x+ &y). Since
0<i,j<p—1 andi;«éjYp.J(i—j and p{ j —i. Also, since &, € Z[&,]*, p | (:v—i—ﬁ;y}_— _<x+§gy> =
€y — &) = (€01 — &) = (1— &) Sop | (1—&) or p | (y). Since & € 2[5,
(@ + &y) = (& Ne+ &y) = (G2 +&y). Sop | (§7x+&y) — (x+ y) = (1 - &) ().
Similarly, we have p | (1 — &) or p | (x). Hence either p | (1 —&,) or p | (x) and p | (y). Since
ged(z,y) =1, we get p | (1 —&p). Also, since (1 — &) is prime, p = (1 —¢,). Furthermore, since
(+&"y) = (@ +&y) + (& — Dy, if (1= &) | (z+ &), then (1 -&) | (z +&*'y). Hence if
(1 —¢&p) is a factor of (z + &,y) for one i € Z, then it is a factor of it for all 7 € Z. In particular, if
(1—¢,) is a common factor, then z 4+ &)y = x+y =0 (mod (1 —¢,)). Since 1 —¢, | 2 +y, we have
N(1-¢&,) |IN(z+y), ie,p|(z+y)P. Sop|z+y. SozP =aP+yP = (z+y)’ =z +y =0 (mod p)
and then z = 0 (mod p), i.e., p| 2, i.e., p | xzyz. If p1 z, then we’ve arrived at a contradiction and
we are done and so (z + &y) for j =0,...,p — 1 are relatively prime. Assume now p | z and then
we can assume p 1 y, otherwise, p | z since p | ¢ 4+ y, which is contradicted to ged(z,y,z) = 1. Since
1—& | pty, wehave (1 —&,)% 1t (z + &ly) for any i € Z. So (1 —&,)* { (z + Ely) for any i € Z.
Thus, the ideals <$1t§’py> for j =0,...,p—1 are relatively prime. (Note (x —l—f%y) and (z +§;y> are
both divisible by (1 — &,)2.) O

Remark. New proof: If p{ h,, Gal(Q/Q(&,)) — GL;. If p | hy, Gal(Q/Q(&,)) — GLa.

Lemma 5.55 (Kummer’s Lemma). Suppose p > 3 is a regular prime and u € o satisfies u is
congruent to an integer modulo p. Then u is a p'™ power of an element in og.

Theorem 5.56. Let p > 3 be reqular. Then zP + y? = 2P has no nontrivial integer solution with
pfzyz.

Proof. We can assume if (x,y, z) is a solution, then ged(z,y,2) = 1. Claim we can assume x #
y (mod p). Suppose x = y = —z (mod p). Then z = 2P = 2P + y?» = z + y (mod p). So
3z =0 (mod p) and then p | 3 or p | z, which is contradicted by p > 3 and p { xyz. We must have
either  Z y (mod p) or y Z —z (mod p). Suppose z = y (mod p), then y £ —z (mod p), i.e.,
x # —z (mod p). If (x,y, z) is a solution to aP+yP = 2P, then a? —2P = —yP i.e., 2P+(—2)P = (—y)P.
So (z,—z,—y) is a solution with the first two entries not congruent modulo p. Suppose we have
a nontrivial solution with p { zyz, then (2)? = (z + y)(x + &) - (x + &~ 'y). Since p f 2z, by
previous proof, the ideals (x + §£y> are relatively prime. Since this decomposition is equal to the
p' power of the ideal generated by z, each (z + fgy> for j =1,...,p— 1 must be a power of an
ideal I;. Then (x + &y) =1} for j=0,...,p—1. So I} € Px for j =0,...,p— 1. Hence I} + Pk
is the identity of Clg for j = 0,...,p — 1 and then the order of I; + Px € Clg must divide p for
j=0,...,p—1. Since p is regular, p{ hx = |Clx| and the order of I; +Px is 1 for j =0,...,p—1.
So I; € Pg for j =0,...,p—1. For j =0,...,p— 1, write I; = («;) for some o € Z[{,]. Then
(r+ &y =1) = (af) for j = 0,...,p = 1. Sofor j =0,....p—1, z+ &y = ujal for some

uj € og. For j =0,...,p—1, by previous proposition, we can write u; = f;j v; for some r; € Z and
vj € 0g,. For j =0,...,p—1, since a; € Z[{,], by previous lemma, such that of = a; (mod p)
for some a; € Z. Then for j =0,...,p—1, x4+ &y = ujal = §;jvja§ = &’vja; (mod p). Also, for

j=0,...,5—1,since z,y € Z and v; € 0, CKT CR,

T+ &Iy =a+8Gy = &l vl = &0l = & vall = €M va; = € vja; (mod p),
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ie.,vja; =& (z4&,7y) (mod p). Sofor j =0,...,p—1, 24+&y = &lvja; = 5,2,” (z4+&,7y) (mod p),

le,plz+ys—=x zrj - yngrj. Actually, for j = 1,...,p— 1, we can find a contradiction and
solet 1 <j<p—1 If1,¢, 2 gariTd

contradiction. Since 0 < j < p, 1 # &) and 512)” * 512,” —,

are distinct, then by previous lemma, p |  and p | y, a

(a) Let 1= 5,2,”. Then p | x4+ y&) —x —y&,7 =y(&) — &,7). So p |y, a contradiction.

(b) Let & = 2l gi”gp—f. Since p > 2, &9 # 1. Also, since p | x — 26,7, we have p | z, a
contradiction.

(c) Let 1= 512,” 7 then fg = fzrj andsop|xz—y+ (yfx)fg. Then p | z — y, which is contradicted
by « #Z y (mod p). O

Remark. What if p | zyz? By dividing out ged(z, y, z), we can assume p only divides one of z,y, z.
Claim. We can assume p only divide z. If (zg, yo, 20) is a solution with p | 29 and p 1 yozo, then
b +yb =28, ie, (—20)? + yh = (—z0)P. So (z1,y1,21) = (—20,%0, —T0) is another solution with
p|z and pfaiy:.

Lemma 5.57. Let a € ox \ (1 —&,). Then there exist [, a such that £, = a (mod (1 — &,)?).

Proof. Since ox = Z[&,] = Z[1 — &), powers of 1 — ¢, form a Z-basis. Then there exist ap,a1 € Z
such that @ = ag + a1(1 — &) (mod (1 — &,)?). Since o & (1 —¢,) and 1 — ¢, | p, we have
ap #Z 0 (mod p). So there exists I € Z such that a; = agl (mod p). Since &, = 1 — (1 —¢&,),
gh=1-1(1-¢) (mod (1 —&)?). Thus, since 1 =&, | p| a1 — lag,

Ga=(1—1(1-&)) (a0 +a1(1-§&)) =ag+ (a1 —lag)(1 — &) = ag (mod (1 —&,)?). O
Theorem 5.58. Let p > 3 be reqular. Then xP + yP = 2P with p | z has no nontrivial solution.

Proof. We prove a stronger statement: there are no nontrivial solutions to 27 +y? = u(1—§,)*?z8
U ((1 — §p)kz0)p, with z,y, 2o € ok relatively prime and u € o and k > 1. In particular, let u =
and z = pizg with p t zp and j > 1. Since p = (1 — &,)P71, letting k = j(p — 1), 2 = pizo
(1 —&)P Yz = (1 —&,)F2. Suppose we have a solution (z,y,z), then (u(l — &,)*P2F)
(x+y)--- (z+&1y). Since k > 0 and (1—-&,) is prime, (1—&,) | (z+&y) for some j. By previous

=

proof, (1—¢,) | (x+&y) for each 4. By previous theorem, we also have <x1+_§§py> forj=0,...,p—1
are relatively prime. Since 1 —¢, |pfzand 1 —¢&, | pty, z,y € ox ~ (1 —¢&,). By previous lemma,
there exist [,j € Z and a,b € Z such that §éx = a (mod (1 —§,)?) and &y = b (mod (1 —&,)?).
Then &a + &y = a+b (mod (1 — &,)?). Since (&) + (&y)* = 2P + 3P = u((1—&)*2)",
we have (§Zl)x,fgy7zo) is a new solution. Replace (z,y,z9) with (5}053, ;y,zo)7 we have x +y =
a+b (mod (1 —¢,)?%), ie, (1—-6)*| (x+y)—(a+b). Since 1 — &, | x+ &)y = = +y, we have
1—¢, | a+b. Then like before, since a +b € Z, we have p | a +b and then (1 —§,)? = (p) | (a +b).
Since p > 2, (1-¢&,)? |a+bandso (1—&,)? | z+y. If k=1, then 1—&, | 9. But since 1—¢&, | p 1t 2o,
1—¢, 1 20, a contradiction. Our goal now is to apply infinite descent to the power k. We just showed
k > 2. Pick our solution to have the minimum k. Then we will construct a new solution with a

J
smallest k, giving the contradiction. Since <a:1+_§£py> for 5 = 0,...,p — 1 are relatively prime and

(1=&)? [ (@+y), 1=&) || @+&y) forj=1,....,p=1. So (1=&)P7 || (z+&y) - (z+ & My).
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Also, (1= &)™ || (zF) = (2 +yP). So (1= &) PH || (z +y), Le, (1—&)FDP || (F1E).
Consider

_ T4y 4+ &y
(1= &) t2)P = R ).
P 1-¢, 1-¢
p—1
Since <ztg_"§p Yy for j =0,...,p— 1 are relatively prime, the same argument as in previous version

of Kummer’s theorem (put where we have p 1 hi) gives each ideal is the pt® power of a primitive
+£5

ideal. So for j = 0,...,p — 1, there exists a; € 0k and u; & = ujoz§. Since
ap, ..., a,_, are relatively prime, ag,...,a, 1 are relatively prime. Since (1 — §p> || (z + &Jy) for

j=1,...,p—1,wehave 1 — &, fa; for j = 1,...,p— 1. Also, since 1 — &, { 2o, {1 —&,)* 71 || (o).
So we can write ag = (1 — &)k 713 with 1 — &, { 8. Since

y="t y)f_(g; o - fjﬁi - mlt%py = uoaf — waf = up(1 — &)* 7B —uief,
and
@Gy @ty L (e ly aty ) (k—1)
' fpfl(l —&p) 7 ( 1 _ng C1-4, = Spttp1poy — Gpuio(L = &)Y

we have ujaf + &up_10p 1 = (1 + Eup(l — &) F-PEr e ol + 5""7’;*1042_1 = %(1 -

g)k Dpgp. S1nce1+§p— - 5 ,1—1—{;176(’),C So v zg”ui”leo and 7 := %Eoé. Then
of +vap = 9(1 — &) F=DPBr. Since p | (1 —&,)P71, of + vap _; =0 (mod p). Then there exist
ai,ap—1 € Zsuch that of = a; (mod p) and ag_l = ap—1 (mod p). So a1 +va,_1 = 0 (mod p). Since
ptap_1,ptap—1. Also, since a; € Z, v = b (mod p) for some b € Z. By Kummer’s Lemma, v = w?
for some w € 0f. Set 2’ = oy and y' = wa,_q and 2y = B. Then z? + y'? = v(1 — §p)(k*1)ng’.
This contradicts the minimality of k£ and gives an contradiction.



Chapter 6

Zeta Functions and L-series

6.1 Riemann Zeta function

o0

Definition 6.1. Define the Riemann zeta function {(s) =>_ -, n~°, where s = o 4 it € C.
Remark. Consider ((s) on R. Then

e ((1) is not defined since it is the divergent harmonic series.

e ((o) converges for o € Ry 1. (p-series)

o ((o) diverges for 0 € Ry. (p-series)
Remark. For r € R\ 0, since Arg(r) = 0, we have

1
e(o+it) In|r|

1 1

eo In|r| = W'

1

-

_ 1
" | es Log(r)

_ 1
- |es(1n|r|+i Arg(r)) |

Theorem 6.2. ((s) converges absolutely for Re(s) > 1 and uniformly on Re(s) = 1+ 6 for any
deR—->0.

Proof. Apply Weierstrass’s M-test with M,, = ﬁ O

Remark. From calculus, given f(x) that is infinitely many differentiable at a point = a, then
we have a taylor series f(z) =Y .° a,(z — a)" that converges for some = € Bs(a).

Definition 6.3. A zero of a function f(x) is a value such that f(a) = 0. If 2 is a zero of 1/f,
then it is a pole of f.

Definition 6.4. A function f is meromorphic in a Bs(z9) C C if either f or 1/f is holomorphic in
some Bj(zp).

Definition 6.5. If f is a function that is meromorphic in Bs(zg) C C, then there exists n € N such

that (z]i (,:O))n is holomorphic and nonzero in a neighborhood of z.

(a) If n > 0, then zj is a zero of order (or multiplicity) n.

67
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(b) If n < 0, then 2 is a pole of order |n|.
Simple zero and simple pole are zeroes and poles of order 1.

Theorem 6.6. In Bs(zy), a nonzero meromorphic function f can be written as a Laurent series

flz) = Z ar(z — 20)* for some n € Z and a_, # 0.

k=—n

(a) If n >0, zo is a pole of order n and the residue at z = zg s a_1.
(b) If n <0, 2z is a zero of order |n|.

Remark. In complex analysis, analytic continuation is a technique to extend the domain of a given
analytic function. Analytic continuation oftn succeeds in defining further values of a function, for
example in a new region where an infinite series representation in terms of which it is initially
defined becomes divergent.

Definition 6.7. Given a function f that is analytic on some domain S C C, we say g is the analytic
continuation of f to R D S (really just need RN .S contains an open ball) if g is analytic on R and

9|Rms =f.

Definition 6.8. Let o be the smallest real number for which the series Zzozl ann~° converges for
Re(s) > gp. The number oy is called the abscissa of convergence.

Remark (Partial summation). Let {an}n>1 and {b,},>1 be two sequences. Let A, = ;" ak.
Then since ag = Ao, ZIICV:() arbr = agby + Zgzl(Ak — Akfl)bk = Anby + leevziol Ak(bk — bk+1). So
for n > m, we have ZZ:mH apby = Anby, — Amby, + ZZ;; Ap(bg — brt1).

Theorem 6.9. Let A, = > ,_, ar. Assume there ezist c,01 € Rsq so that |A,| < en for any
n € N. Then the abscissa of convergence og < 01.

Proof. Set P,(s) =}, % =Y ;_, axk™%, assume n > m, then
= 1 1
Pp(s) = P(s) = Ann™" = Apm™ + kZ;lAk (ks - (lf—Fl)'s)
n—1 k+1
A Am 1
:F—ms +k;n14.k;s/k 7xs+1dm.

Let 6 > 0. Then for Re(s) > o1 + 0, we have for k € N,

k+1 k+1 k+1 o
1 i i 1 ckr (1 1
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So

n—1 k+1
[An| | A 1
|P,(s) — Pm(s)] < e + ] + ) Isl|Ax : —rde
k=m
e em L ek [ 1 1
g -
no + me +Z|S| o (ko’ (k+1)o’)
k=m

n—1 o
c c cls| 1 1 k !
< —_ — .
= no—o1 + mo—o1 + o Z (kcf—ﬂl (k_|_1)<7—¢71 <k+1>

k=m

If 0 > 01, this can be made arbitrarily small by choosing m,n large. Thus, we have the result. [

Theorem 6.10. ((s) has analytic continuation to Re(s) > 0 except for a simple pole at s = 1 with
residue 1.

Proof. The previous theorem gives the abscissa of convergence is 1. For n € N and s € R, we
1
have f:+ %dm < ni < fn Ldz. So

n—1 x*

1 ® 1 < Mmoo > Mt 1
= —dr < <1 —dz =1 —dr =1+ —,
s—1 /1 xs v C(S) +2/ xS v +7;/” xS r +s—1

n=27n-1

ie, 1 < (s —1)((s) < s. Once we prove that ((s) has analytic continuation to ¢ > 0 except
a possible pole at s = 1, this equality shows it has a single pole at s = 1 of residue 1. Set
Gas) = D02 (=)™ n=¢. Let a, = (—=1)"T! for any n € N and A, = > a;. Then |A4,] < 1.
By previous theorem, ((s) is analytic for ¢ > 0 (right half plane). Note 2Z((s) 4+ (2(s) = ((s).
So (a(s) = (1 — 2%1) ¢(s). This gives the only possible pole of ((s) are when 271 = 1, i.e.,
s = 21:;—12” + 1. Set

00 n(r—1) 1

Go(s) =Y (=) > 7

n=1 j=(n—-1)(r—1)+1
Let a, = 1if | n/r] is even and a,, = —1 otherwise, for any n € N and 4,, = > ; a;. Then
|A,| < r. By previous theorem, (.(s) is analytic for Re(s) > 0 (right half plane). Note that
LC(5)+ ¢ (s) = C(s). So ¢ (s) = (1 — 1) ¢(s). This gives the only possible pole of ((s) are when

Ts—l

r®~1 =1, i.e., the only poles are s = 21;”; + 1. The only pole of {(s) with s # 1 gives 2™ = r™ for
r > 3 and for some m,n € N, a contradiction. Thus, s = 1 is the only pole of {(s). O

Theorem 6.11. For Re(s) > 1, one has Euler product ((s) = ][, 1%}),5 = E(s).

Proof. Let {an}n>1 C C be a sequence. We say Hfle a, converges if H?=1 a; has nonzero limit.
This is the case if and only if the series >~ , Loga, converges. The product is called absolutely
convergent if the series converges absolutely. In this case the product converges to the same limit
even after a reordering of its terms a,. Observe if Re(s) = o > 1+ § for some 6 > 0, then

)B)DELS D D) DEEED Sp B

p n=1 p n=1 p n=1

=/ 1 \" 1 1
<ZZ(W> =ZP—H5,1<2ZW-
p

p n=1 p

[Log E(s)| =

1
npns
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So Log E(s) and thus E(s) converges absolutely for Re(s) > 1+ §. Let N € N. For all prime

pl,...,pT<N7write17;,s -4 ---. Then
(o]
II 1_s: > %: 'i
sen 1P oy () —n

where Z/ denotes the sum over all natural numbers which are divisible only by prime numbers
p < N. Since for any n < N, n must be divisible only by prime p < N, we have

ST T

pgN n<N n>N
So
1 1 1
Hl_p,S—C(S) < X ns <2:,11%7
p<N n>N,p;|n n>N
where the right hand side goes to zero as N — oo. O

Definition 6.12. For Re(s) > 0, define the gamma function
o d
I'(s) :/ e*yys—y.
0 Y

Proposition 6.13. (a) I'(s) is analytic on operatornameRe(s) > 0 and has meromorphic contin-
uation to all of C.

(b) T'(s) # 0 on Re(s) > 0 and has simple poles at s = —n for all n € Zgo with resiude (_nl!)n.
These are the only poles.

(c¢) Tt satisfies functional equations
1) T(s+1) = sI'(s),

2) D(s)0(1 = 5) = s

3) I'(s)['(s+1/2) = 22‘2(I‘(25) (Legendre’s duplication formula)

4) Tt has the special values I'(1/2) = y/m, T'(1) = 1 and I'(k + 1) = k! for any k € N.

(
(
(
(

Remark. Under which conditions, integrals and sums can be interchanged? This is given by a
special case of Fubini’s theorem.

Theorem 6.14. Suppose f,, € L}(R) for all n € Z and that f,(t) €' for allt € R. If either

/Z'f" )|dt < oo or Z/‘f” )|dt < oo,

nez neZ

then

| Zitonae= 3 [ 15, 0lar

nEZ nez
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Remark. To relate the gamma function to the zeta function, start with the substitution y — 7n2y,

which gives
1 *° d
7 °T(s) = / e‘”"zyys—y.
0 Y

n25
Then
oo [e]
7 °T'(s)((2s) = Z/ e_”"2yy8@.
n=170 Y
Since
= > —mn? y s dy 77rn y Re(s) dy 7Re (s)
> e ; Z ; P(Re(s))¢(2Re(s)) < oo,
we have

—SF 28 Z/ —‘n'n y s / Ze—ﬂn2yys dy
=1

Note g(y) = 307, e~™¥ aries from Jacobi’s classical theta series
2 i 2
Z) — Zeﬂ'in z _ 1+226wivL z,
neZ n=1
i.e., we gave g(y) = (6(iy) — 1).

Remark. Let 9(z) = 0(2z) =", o5 e2™"*z Then for any

7:<‘; 2)6F0(4):{<Z Z)eSLg(Z):c:O(modél)},

and for any z € H = {z € C : Im(z) > 0}, one has the formula ¢ (gjig) = j(v,2)9(z), where
Jn2) = (5) 3" (e + )12, whre

otherwise i if d=3 (mod 4)

ife<0,d<0 if d=1 (mod 4)
&-{ at
1d]
)

So Jacobi’s theta function ¥(z) is an example of a modular form of weight 1/2 for the group I'g(4).

Definition 6.15. Define the completed Riemann function as A(s) = 7~%/2T'(s/2){(s).

Remark. The completed Riemann function implies ((s) = 0 whenever I'(s/2). Since A(s) has
simple poles only at s = 0,1 and I' has simple poles at s = —n for all n € Zgg, we have {(s/2)
must have zero at s/2 = —n for all n € Z¢_1, i.e., {(s) must have zero at all —2Z ~ {0}. These are
the “trivial zeros of ((s)”.

Theorem 6.16. The function A(s) has analytic continuation to C except for simple poles at s =
0 and s = 1 with residue —1 and 1. It satisfies a functional equation A(s) = A(1 — s), i.e.,
7120 (s/2)((s) = 7 1-I2T((1 — 8)/2)¢(1 — 5).
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Remark. All our L-functions will have
e momermorphic function,
e Euler product,
e functional equation.

Remark. By Euler product, ((s) # 0 for Re(s) > 1. Then by functional equation, ((s) # 0 for
s < 0 except for n € —2Z ~ {0}, we have other zeros have to lie in the critical strip 0 < Re(s) < 1.

Remark (Riemann Hypothesis). All the nontrivial zeroes of ((s) satisfies o = 1/2.
Definition 6.17. Define the Bernoulli number as By, where ﬁ = Z;O:O Bk%.
Remark. By, =0forall ke N. By=1, B, =1/6, By =—1/30 and Bg = 1/42.

Theorem 6.18. For every k € N, (1 —k) = —Z&.

Corollary 6.19. For every k € N, ((2k) = (—1)¥! (22(23:; Boy,.

Remark. The values ((2k—1) for k € Z>5 forms a higher K-groups K;(Z) from algebraic K-theory,

which take the lead. In fact one has a mysterious canonical isomorphism r : Kyr_1(Z) ®z R =R
The image Roj, of a nonzero element in K41 ®zQ is called the 2kt regulator. It is well-determined
up to a rational factor, i.e., it is an element of R*/Qx, and one has ((2k — 1) = Ry (mod Q)*.
This is part of the Beilinson-Bloch conjecture.

Theorem 6.20. p | hq,) if and only if p | B; for some j = 2,4,...,p— 3.



Chapter 7

Finite Fields

Theorem 7.1. For a prime p and a monic irreducible f € F,[x] of degree n, the ring Fy[z]/{f) is
a field of order p™.

Proof. The cosets modulo f are represented by remainders co -+ - -+ cp_12" 1 with cp,...,ch_1 €
F,. Note there are p™ remainders. Since Fp[z] is a UFD and f is irreducible, we have f is prime
and then (f) is a prime ideal. Since F,[z] is a PID, (f) is maximal ideal and then F,[z]/(f) is a
field. O

Remark. We will see that every finite field is isomorphic to a field of the form F,[z]|/(f). However,
not every finite field is literally of the form F,[z]/(f). For instance, Z[v/2]/(3) is another field of
size 9, which is isomorphic to F3[z]/(z? — 2) = Fs[z]/(z* + 1).

Remark. For a finite field, the multiplicative group F'* is cyclic but the additive group of F is
usually not cyclic. When F' contains I, since p = 0 in F,,, every nonzero element of F' has additive
order p, so F' = IF)- is not additively cyclic unless r = 1.

Theorem 7.2. Every finite field is isomorphic to Fplz]/(f) for some prime p and some monic
irreducible f € Fp[x].

Proof. Let F be a finite field. Then F' has order p™ for some n € N, there is a field embedding
F, — F and F* is cyclic. Let F* = (). Define an evaluation at v: evl, : F,[z] — F given by
f(xz) — f(v). Then evl, is a ring homomorphism that fixes F,. Since evl,(0) = 0 and for any
t € F'~. {0}, t is a power of v, evl, is onto. So F,[z]/Ker(evl,) = F. Since Fp[z] is a PID and F is
field, Ker(evl,) = (g) for some monic irreducible g € F,[]. O

7.1 Finite fields as splitting fields

Lemma 7.3. A field of prime power order p™ is a splitting field over F, of [ a—

Proof. Let F be a field of order p™. From the proof of previous theorem, F' contains a subfield
isomorphic to Z/(p) = F,. Explicitly, the subring of F' generated by 1 is a field of order p. Since
|F*| =p* —1,t*"~t =1 for any t € F*. So t*" =t for any ¢t € F. Since the polynomial z?" —
has every element of F as a distinct root, F is a splitting field of 2" — 2 over Fp. O
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Theorem 7.4. For every prime power p", a field of order p™ exists.

Proof. Let F be a field extension of F,, over which zP" — x splits completely. Inside F, the roots
of 2" — x form the set S = {t € F: t*" = t}. Since 2?" — x is separable, |S| = p". Since S is a
subfield of F', S is a field of order p™.

O

Theorem 7.5. Any irreducible f(x) in Fy[x] of degree n divides x?" — x and is separable.

Proof. Since the field F,[z]/(f) has order p”, t*" =t for any t € F,[z]/(f). In particular, zP" =
z (mod f), so f | (zP" —z) in F[x]. Since xP" —x is separable in F, [z], its factor f is separable. [

Remark. For finite field [Fpn,
e it contains a unique subfield isomorphic to Fy;
o Fpn:Fpl=m;
e it is a splitting field of z?" — 1.

Remark. Although z" — x has degree p", its splitting field over F, has degree n, not p™ since
2P" — z is reducible.

Theorem 7.6. Any finite fields of the same size are isomorphic.
Proof. Follow from that any two splitting fields are isomorphic. O

Theorem 7.7. For each d | n, Fyn has a subfield .



Chapter 8
Rings

Let R be a ring.

Definition 8.1. Let I,J < R. The sum of [ and J is theideal I+ J={ax+y,x € ,ye J}. If I
and J are right (respectively left) ideals, so is their sum.

Definition 8.2. Let R be a commutative ring with identity. I, J < R are relatively prime (coprime)
ifI+J=R.

Lemma 8.3. Let R be a commutative ring with identity. If I,J < R and I + J = R, then
I1J=1InJ.

Proof. Clearly, IJ C INJ. Suppose u € INJ. Since I +J = (1) = R, there exists i € I and j € J
such that ¢ + j = 1. Since R is commutative, u = u(i + j) = wi + uj = iu +uj € IJ. O

Lemma 8.4. Let I,J < R be two distinct maximal ideals, then I, .J are coprime, i.e., [ +.J = R.

Proof. Note I + J is also a maximal ideal. Since I # J, I C I +J C R. Since I is maximal,
I+J=R. O

Definition 8.5. If a,b € R and I < R, we say a is congruent to b modulo I if a — b € I.

Theorem 8.6 (Chinese Remainder Theorem). Let R be a ring with 1 and I, ..., I, < R such that
Ii +1; =R foranyi#j.

(a) Let ay,...,a, € R. Then there exists a € R such that a = a; (mod I;) fori=1,...,n.

(b) Let b € R and a be given from (1). Then b = a; (mod I;) for i = 1,...,n if and only if
b=a (mod N, ;).

(c) We have R/ N{_y I; = [}y R/I; = @D, R/I:.

Proof. (a) Since Iy +I; = R for j = 2,...,n, there exists b; € I and d; € I; such that b, +d; =1
for j =2,...,n. Then

1 = (ba+da)(bs+ds) - (bp+dy) = (babg+bods+dabs+dads) - - - (b +dy) = (b+dads) - - - (b +dn),

(6]



76 CHAPTER 8. RINGS

where b := bybs + bads + dobs € I;. By induction, we have ¢; :=do---d,, € Is--- I, = IoN--- I,
and ¢; = 1 (mod I;). Then ¢; € I, ie,, ¢; = 0 (mod I;) for j = 2,...,n. More generally, for
i=1,...,n, we can find ¢; with ¢; =1 (mod I;) and ¢; = 0 (mod I;) for any 1 < j # ¢ < n. Let
a=ayc1++ancy,. Thenfori=1,...,n,a—a; =a—a;c; =0 (mod I).

(b) Foralli=1,...,n,b=a; (mod I;) if and only if b = a (mod I;) if and only if b — a (mod I;),
which finally is equivalently to b —a € (), I;

(¢) Define the ring homomorphism f : R — [[, R/I; given by a — (a + I1,...,a + I,,). Let
(a1 +1Ih,...,an+ I,) € [[;—; R/I;. Then by (1), there exists a € R such that a; = a (mod I;) and
so f(a)=(a+T1,...,a+1I,) = (a1 + I1,...,a, + I). Thus, it is onto. Moreover,

Ker(f)={ae€R: f(a)=(I1,....In)}={a€R:(a+ I1,...,a+ 1) = (I1,...,In)}

:{GER:QEIi,iil,...,n}:ﬂ[i. O

Remark. The Chinese remainder theorem says that a ring element can be specified by giving
its congruence class modulo each ideal in a collection of pairwise relatively prime ideals, and this
element is unique modulo the product (intersection) of the ideals.

Lemma 8.7. Let R be a commutative ring with identity, I,J < R and I + J = R, then for any
m,neN, I+ J"=R.

Proof. Let m,n € Z>°. Since I + J = R, there exist a € I and b € J such that a +b = 1. Then

m4n—1 m4+n—1 et m+n—1 kim+n—1—k

k
k=0
m— m+n—1
Z <m+n > akpmAn—1-k | Z <m+n > gkpmAn—1-k
Sincem+n—1—k>2nforany 0 < k<m—1and k> m for any m < k <m+n — 1, we have

b | o™t =1=F for any 0 < k < m — 1 and a™ | b™tn—1- kforanym<k m+n—1. So

m—1 m+n—1
-1 -1
Z ( “1‘]:/ )akbm+n_1_k " and 2 : <m+n > kbm—i-n—l—k caq™

k=0
Hence
— m4+n— mint m-4+n—
Z < > kbm+n 1— k+ Z ( > kbernflfk eIm 4+ Jn.
Since I™ + J™ is an ideal, I™ + J" = 1. O

Corollary 8.8. Let R be a commutative ring and pi,p2 < R be distinct primes, then for any
m,n €N, p" +py = R and pi"py = pi" N p3. Thus, R/p7"ps = R/pT" ® R/p5.

Corollary 8.9. Let n = p{' ---p;* be the distinct prime decomposition. Then f(z) =0 (mod n)
has a solution if and only if f(z) =0 (mod p;*) for ¢ = 1,...,k has a solution.



7

Proof. “=". Tt is clear.

“<”. Assume f(x;) = 0 (mod pj*). Since gcd(pfi,p;j) =1forany 1 <7 # j < k, by
Chinese Remainder Theorem, there exists « € Z such that x = z; (mod n). Then f(z) = f(z;) =
0 (mod n). O

Definition 8.10. If Ry,..., R, are commutative rings with identity, the direct product of the R;
is defined as the ring of n-tuples (a,...,a,),a; € R;, with componentwise addition and multipli-
cation. The zero element is (0, ...,0) and the identity is (1,...,1).

Theorem 8.11. Let R be a Noetherian ring, then for any ideal a < A, a contains a product of
nonzero prime ideals.

Proof. Suppose not and since R is Noetherian, we can choose a a < R be such that a does not
contains a product of nonzero prime ideals and no bigger ideal that contains a properly. Then
a can not be prime and so there exists x,y € R such that xy € a but z,y € a. Note that the
ideals a + (z) and a + (y) strictly contains a, but their product is contained in a. By assumption,
a-+ (z) and a+ (y) contains a product of prime ideals and so a contains a product of prime ideals,
a contradiction. O
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Chapter 9

Product

Remark. Let X;’s be algebraic structures, for instance, groups, rings, modules and vector spaces.
Since direct products do not have the restriction that all but finitely many coordinates must be
Zero, @fil Xl Q H?il Xl

Remark. (a) Cartesian product takes multiple sets and returns a set. No structure on the sets s
assumed. For example for sets A and B, their Cartesian product C = A x B = {(a,b) :a € A,B €
B}.

(b) One often writes f : A x B — C meaning that the argument of the function f is a tuple (a,b),
where a € A and b € B, and function values lie in C. This is a typical use case of the Cartesian
product.

(c) If sets A and B carry some algebraic structure (e.g. they are groups), then we can define a
suitable structure on the product set as well. For example, if (4, -) and (B, -) are groups, their direct
product (A x B, -) forms a group with (a,b)-(a’,b") = (a-a’,b-b"). Direct product is closely related
to direct sum. If the number of operands is finite, they are just the same thing. For example, A® B
and A x B are the same things. The choice of the symbol is usually dicated by the kind of group
operation used (addition or multiplication).

(d) The motication for introducing tensor product comes from the study of multilinear maps. If
A has a basis {e1,...,ey,} and B has a basis {f1,..., fn}, then A® B has a basis {e; ® f; : i =
1,...,m,j=1,...,n}. For example, R™ @ R™ = R™". That’s how one could build a basis in the
space of m X n matrices of rank 1.
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Chapter 10

Orders in Arithmetic

Remark. Euler’s theorem tell us that a?(™ = 1 (mod n) for all m > 2 and a € Z with ged(a,n) = 1.
Depending on the value of a, it’s possible for a smaller power than the ¢(n)*™ power to be congruent
to 1 mod n. There are exactly ¢(p(n)) such a’s such that ¢(n) is the order of @ mod n.

Theorem 10.1. Let a; modm and as mod m have respective orders ny and na. If ged(ny,ng) =1,
then aias modm has order nins.

Proof. Let n be the order of ajas (mod m). Since Z/mZ is commutative, (ayaz)™ "™ = (af*)™2(ay?)™
1 (mod m). So n | ning. Since (a1a2)” = 1 (mod m), (af?ay?)” = 1 (mod m), ie., af™
1 (mod m). Sony | nng. Since ged(ny,n2) = 1, ny | n. Similarly, ny | n. Also, since ged(ny, ne) =

ning | n. Thus, n = nins.

O

Theorem 10.2. Let ay modm and as modm be two units with respective orders ni and ns. For
some ki, ko, alflag€2 modm has order lem(nq, n2).

Proof. Let n = lem(ny,ng). Then ged(n/ni,n/ng) = 1. Let n = ny := nymg. Then

n2
ged(ny,na)

. d(n1,
ged(ng,ma) = 1. Also, since a; modm has order n; and aj° (m1:m2) odm has order mg, by
. d(n1,
previous theorem, a;a3° (n1m2) yas order nymy = lem(nq, o). O

Proposition 10.3. Let g be a primitive root modulo p. Then gp%l = —1 (mod p). In particular,
[
P

Proof. By FLT, ¢! = 1 (mod p), so ng_l = +1 (mod p). Since the order of g mod p is p — 1,
p=1

gp%l = 1. Suppose g = h? (mod p) for some h € Z. Then gz = h?~! =1 (mod p), a contradiction.
Or follow from Euler’s Criterion. O

Remark. Let g be a primitive root modulo p. If p = 1 (mod 4), then 4 | (p — 1), so (ng_l)2 =

g T =1 (mod p) and thus (_71) =1.

Corollary 10.4. 3 (7,7~ (%) =0.
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Proof. Let g be a primitive root modulo p. Let a € Z. Then a = g' for some i € N. Then
(%) = (%). If ¢ is odd, (%) = (%) = 1; if ¢ is even, (%) = % = 1. Thus, ZaE(Z/pZ)X (%) =
(%) =o. =
Theorem 10.5. If p =5 (mod 8), letting t be the order of 2 modulo p, then 22 || t.

Proof. Let p = 8k + 5 for some k € Z and t be the order of 2 moduloe p. Then 2! = 1 (mod p).
Since 2P7' =1 (mod p), t |p—1,ie,t|8k+4. Sot=1,2,40rt|2k+1,2(2k + 1),4(2k + 1).
Ift =1,2 2" =24 % 1 (mod p) for any p = 5 (mod 8). If t = 4, 2t = 16 = 1 (mod 5).
Assume t | 2k + 1,2(2k + 1),4(2k + 1). Now to show 22 || ¢, it is equivalent to show t | 8k + 4
and then it suffices to show 22(%*1) = 1 (mod p). Since 2(2k + 1) = %, by Euler’s Criterion,

92(2k+1) _ 925t — (%) = —1 (mod p). =



	Field Theory
	Definitions
	Trace, Norm and Determinant
	Rings of integers

	Dedekind domain
	Fractional ideal
	Revisit quadratic field
	Extensions of Dedekind domain
	Relative Extensions

	Ramification Theory
	Galois Theory
	Ramification Theory

	Cyclotomic Extension
	Roos of Units
	Properties
	Möbius Function
	Cyclotomic Polynomial
	Ramification
	Quadratic Fields
	Applications

	Class Group and Unit
	Lattices
	Minkowski Theory and Geometry number
	The Class Number
	Dirichlet's Unit Theorem
	Kummer's theorem

	Zeta Functions and L-series
	Riemann Zeta function

	Finite Fields
	Finite fields as splitting fields

	Rings
	Product
	Orders in Arithmetic

