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Chapter 1

Introduction

Number Theory: algebraic properties of integers.
Analytic: tools from complex analysis, inequalities, issues of convergence and rearrangements of
series.

Example 1.1. Let S = 1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + · · · . 1 + 1

3 + 1
5 + 1

7 + · · · . − 1
2 − 1

4 − 1
6 − · · · .

1− 1
2 +

1
3 −

1
6 +

1
5 −

1
10 +

1
7 −

1
14 + · · · . − 1

4 −
1
6 −

1
12 − · · · . 1

2 +
1
6 +

1
10 +

1
14 + · · · . − 1

4 −
1
8 −

1
12 − · · · .

1
2 − 1

4 + 1
6 − 1

8 + 1
10 − 1

12 + 1
14 + · · · = 1

2 (1−
1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − · · · ) = 1
2S.

Theorem 1.2. Any conditionally but not absolutely convergent series of real numbers can be rear-
ranged to converge to any number we like.

Remark. Since
∑

p prime
1
p = ∞ and

∑∞
n=1

1
n(logn)2 < ∞, # primes > #{n(log n)2 | n ∈ N}. So

#{p < x} > x · x
x(log x)2 = x

(log x)2 since there are at least x primes from 1 to x(log x)2.

Definition 1.3. A system a1 (mod m1), a2 (mod m2), · · · , ak (mod mk) with m1 ⩽ m2 ⩽ · · ·mk

and 0 ⩽ aj < mj is a covering system of convergence if for every n ∈ Z⩾0, there is a j so that
n ≡ aj (mod mj). It is a disjoint covering system if every n ∈ Z⩾0 is covered by exactly one
congruence.

Remark. For any disjoint covering system of convergence, the two largest moduli must be equal.

Theorem 1.4. Let a1 (mod a1), a2 (mod m2), · · · , ak (mod mk) with m1 ⩽ m2 ⩽ · · · ⩽ mk be a
disjoint covering system, then mk−1 = mk.

Proof. Consider

fj(x) = xaj + xaj+mj + xaj+2mj + · · · =
∑

n≡aj (mod mj)

xn,∀j = 1, . . . , k.

Since it is a disjoint covering system, xa1

1−xm1
+ xa2

1−xm2
+ · · ·+ xak

1−xmk
= f1(x)+ f2(x)+ · · ·+ fk(x) =

1
1−x (*). Now let w = e2πi/mk , then wmk = 1. RHS is well-behaved at x = w, but LHS is not.

If mk−1 < mk, we have exactly one term wak

0 and all other terms would be finite. Hence for (*)
holds, we must have mk−1 = mk. If mk−2 < mk−1, then we must have wak−1 = −wak to cancel
last two infinite terms. So e2πiak−1/mk = −w2πiak/mk . Hence mk is even. In fact, if m1 < m2 <
· · · < mk−1 = mk, then we must have m1 = 2, m2 = 4, m3 = 8, · · · , mk−1 = mk = 2k−2.
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2 CHAPTER 1. INTRODUCTION

Fact 1.5. Useful facts about C. Let 0 ⩽ j ⩽ n− 1 with n ∈ Z⩾2.

(a) Let w = e2πij/n, then
∑n−1

k=0 w
k =

{
0 if j ̸= 0
n if j = 0

.

(b) If k ∈ Z,
∫ 1

0
e2πikxdx = 1

2π

∫ 2π

0
eikxdx =

{
0 if k ̸= 0
1 if k = 0

.

Question: what happens if k ̸∈ Z. Nice fact: an =
∑n

k=1 sin(k). Exercise: ak is bounded.

Recall 1.6. Let f and g be non-zero functions of x. f(x) ∼ g(x) as x ! ∞ means precisely that
f(x)−g(x)

g(x) ! 0 as x!∞, it is equivalent to say f(x)
g(x) ! 1 as x!∞, i.e., f(x)−g(x)

f(x) ! 0 as x!∞.

f(x) = o(g(x)) means that f(x)
g(x) ! 0 as x!∞.

f(x) = O(g(x)) means there exists c > 0 and x0 so that |f(x)| < cg(x) for x > x0.

Definition 1.7. Let π(x) be the number of primes ⩽ x for x ∈ N.

Definition 1.8.

Li(x) =

∫ x

2

1

log t
dt,

where log is loge.

Theorem 1.9 (Prime number theorem).

π(x) ∼ Li(x).

Remark. Sometimes we see Li(x) =
∫ x

0
1

log tdt = limδ,ϵ!0+
∫ 1−δ

0
1

log tdt+
∫ x

1+ϵ
1

log tdt.

Theorem 1.10.
π(x) ∼ x

log x
.

But Li(x) is a better approximation to π(x) than x
log x is.

Proof. Let ϵ > 0 be small. Then if x > t > x1−ϵ, then log x > log t > (1 − ϵ) log x, i.e., 1
log x <

1
log t <

1
(1−ϵ) log x . So

∫ x

x1−ϵ
1

log tdt <
1

1−ϵ
x−x1−ϵ

log x < 1
1−ϵ

x
log x and Li(x) =

∫ x

0
1

log tdt >
x

log x . This

means that Li(x) ∼ x
log x . So prime number theorem implies π(x) ∼ x

log x .

Lemma 1.11 (RH = Riemann Hypothesis (approximately)). For any ϵ > 0,

|π(x)− Li(x)| = O
(
x

1
2+ϵ
)
.

Fact 1.12. More careful analysis shows that Li(x) = x
log x + x

(log x)2 +O
(

x
(log x)3

)
. So if RH is true,∣∣∣∣π(x)− x

log x

∣∣∣∣ ∼ x

(log x)2
.

Question 1.13. If we average a nice number theoretic function, how does it behave?

Definition 1.14.

1p(n) =

{
1 if n is prime
0 if n is not prime

.
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Fact 1.15.
π(x) =

∑
n⩽x

1p(n).

Definition 1.16. Let
τ(n) = # of divisor of n =

∑
d|n

1.

Question 1.17. Pick x uniformly in {1, . . . , N}, what are E[τ(X)] and Var(τ(X)). Fix x > 0,
how many integer lattice points in a circle of radius x?

Theorem 1.18. There are infinitely many primes.

Proof. Method 1. We construct an infinite list p1, p2, . . . , pi, · · · of primes. First p1 = 2 is prime.
Now given p1, p2, . . . , pk, let pk+1 be the least prime factor of p1p2 · · · pk + 1, so p2 = 3, p3 = 7,
p4 = 43. Then p1, p2, . . . , pk, · · · is an infinite list of primes. Question: Which primes are in/not in
this list? Is 5 in the list? Heuristically speaking, how dense do we expect this list to be relative to
the list of all primes?

Method 2. Claim. There are infinitely many primes congruent to 3 (mod 4). If n = 4k+3, then
at least one of its prime factors is congruent to 3 (mod 4). Hence if p1 = 3, p2 = 7, . . . , pk is a list of
primes congruent to 3 (mod 4), then 4p1p2 · · · pk − 1 is congruent to 3 (mod 4) and is not divisible
by p1, p2, . . . , pk. Hence it has a prime factor pk+1 ≡ 3 (mod 4). So we construct p1, . . . , pk, · · · an
infinite list.

Method 3(Euler). Lemma. Let Hn =
∑n

k=1
1
k . Then Hn ∼ log n as n ! ∞. Let s > 1,

and consider ζ(s) =
∑∞

k=1
1
ks . Then for all Re(s) > 1, ζ(s) converges and since Hn ! ∞, ζ(s)

diverges at s = 1, hence lims!1+ ζ(s) = ∞. But if s > 1, ζ(s) =
∏

p(1−
1
ps )

−1. So if there are only

finitely many primes, then the RHS would be bounded at 1, but lims!1+ ζ(s)!∞, a contradiction.
Question: Can we use the rate at which Hn approaches ∞ to estimate π(x)?

Method 4. Define Fn = 22
n

+ 1, the nth Fermat number, for n ⩾ 0. Claim. (Fermat) Fn is
prime for all n. FALSE. ABOUT AS FALSE AS IS POSSIBLE. Probable fact: Fn is compositve if
n ⩾ 5?6? Lemma. If m ̸= n, then gcd(Fm, Fn) = 1, and

Fn+1 − 2 = 22
n+1

− 1 = (22
n

)2 − 1 = (22
n

+ 1)(22
n

− 1) = Fn(Fn − 2) = FnFn−1(Fn−1 − 2)

= FnFn−1 · · ·F3F2F1F0(F0 − 2) = FnFn−1 · · ·F1F0

i.e., Fn+1 = F0F1 · · ·Fn + 2. Since Fn is odd for all n ⩾ 0, gcd(Fn, Fn+1) = 1. By induction,
gcd(Fm, Fn) = 1 for m ̸= n. Let pn = least prime factor of Fn. Then p0, p1, p2, . . . , pn, . . . , is an
infinite list of primes.

What more can we say about prime factors of Fn? Let p | Fn, 2
2n = Fn − 1 ≡ −1 (mod p) and

22
n+1

= (22
n

)2 ≡ 1 (mod p). Since 2n | 2n+1, the order of the residue class of 2 is 2n+1. Also, since
|(Z/pZ)×| = p− 1, 2n+1 | p− 1. So p = 2n+1k + 1 for some k ⩾ 1.

Corollary 1.19. If q1, q2, · · · is a list of all primes with qn ⩽ pn for n ∈ N, then qn ⩽ Fn for n ∈ N.
So π(x) > log2 log2 x.

Exercise 1.20. Proof Method 1-2 give a lower bound too. So does defining pn = least prime factor
of (n! + 1).

Many of the things we discuss will be “average theorem”. e.g., if we pick a random integer
n ⩽ x,
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(a) What is the probability it is prime?

(b) What is the distribution of the value of a nice function of n?

Recall π(x) =
∑

n⩽x 1p(n). 1p(n) is a complicated function but it is computable in time polynomial
in log(n). (Agrawal et al, AKS, 2002) But thanks to the Prime Number Theory, we know quite a
lot about the “smoothed” function π(x). So long as we don’t ask for too preicise an estimate for
π(x), we can approximate it.

Since we know π(x) ∼ Li(x) or x/ log(x), can we use this fact to estimate other “smoothed
functions”? For example,∑

n⩽x

1p(n) log n =
∑
p⩽x

log p,
∑
n⩽x

1p(n)
1

n
=
∑
p⩽x

1

p
,
∑
n⩽x

1p(n)n =
∑
p⩽x

p.

Roughly speaking (Heuristic), PNT says is that for a large number N ,

P (x is prime) ≈
(
the average of {1p(n) | n ⩽ x} =

1

x

∑
n⩽x

1p(n) =

)
π(x)

x
≈ 1

log x
.

Note

E

[∑
p⩽x

f(p)

]
= E

[∑
n⩽x

1p(n)f(n)

]
=
∑
n⩽x

E[1p(n)]f(n) =
∑
n⩽x

f(n)P (n prime) ≈
∑

2⩽n⩽x

f(n)
1

log n
.

So
∑

p⩽x f(p) should behave like
∑

2⩽n⩽x f(n)
1

logn . Similarly,
∑

p⩽x log p should behave like∑
2⩽n⩽x

logn
logn = x− 1 ∼ x. So we expect

∏
p⩽x p ≈ ex. More precisely, we expect

(a) for every c > 1,
∏

p⩽x p = O(ecx),

(b) for every c < 1, ecx = O(
∏

p⩽x p).

Theorem 1.21 (Abel summation). Suppose {ak}k⩾1 and {bk}k⩾1 are sequences (here ak will be
weired but have a reasonable “smooth” estimate, and bk will be a nice smooth function of k). Suppose
we know A(x) =

∑
k⩽x ak (to some precision):

∑
k⩽x akbk = A(x)bx +

∑
k⩽x−1A(k)(bk − bk+1).

Here if we are lucky, bk − bk+1 behaves nicely, and is small enough that we can bound the sum
and control errors in our approximation of A(k).

Proof. ∑
k⩽x

akbk =
∑
k⩽x

(A(k)−A(k − 1))bk =
∑
k⩽x

A(k)bk −
∑
k⩽x

A(k − 1)bk

=
∑
k⩽x

A(k)bk −
∑

k⩽x−1

A(k)bk+1 = A(x)bx +
∑

k⩽x−1

A(k)(bk − bk+1).

Example 1.22. Let ak = 1p(k) for k ∈ N. Then A(x) =
∑x

k=1 ak = π(x) ∼ x
log x . Let bk = log k

for k ∈ N. Then bk − bk+1 = log k − log(k + 1) = log( k
k+1 ) = − log(k+1

k ) = − log(1 + 1
k ). If ϵ < 1,
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log(1 + ϵ) = ϵ − ϵ2

2 + ϵ3

3 − ϵ4

4 + · · · . This is an alternating series, so ϵ − ϵ2

2 < log(1 + ϵ) < ϵ. So
bk − bk+1 = − 1

k + 1
2k2 +O( 1

k3 ) = − 1
k +O( 1

k2 ) for k ⩾ 2. Hence∑
p⩽x

log p =
∑
k⩽x

1p(k) log k =
∑
k⩽x

akbk = A(x)bx +
∑

k⩽x−1

A(k)(bk − bk+1)

∼ π(x) log(x) +
∑

k⩽x−1

π(k)
(
−1

k
+O

( 1

k2

))
≈ x−

∑
k⩽x−1

1

log k
+O

( ∑
k⩽x−1

1

k log k

)
.

Example 1.23. Estimate
∑n

k=2
1

log k . How to estimate this? Various techniques: We will see Euler-

Maclourin, a very general method for estimating
∑

k⩽n f(k) when f is a nice smooth function in

terms of
∫ n

a
f(x)dx.

What can we do with Abel summation? How big is n!? (Stirling approximation: n! ∼
(ne )

n
√
2πn) We’ll estimate

log(n!) = n log n− n+
1

2
log n+ log

√
2π + o(1) = n log n− n+

1

2
log n+O(1).

Let ak = 1, bk = log k for k ⩾ 1, An =
∑n

k=1 ak = n and bk − bk−1 = − log(1 + 1
k ) for k = 2, . . . , n.

Then

log(n!) =

n∑
k=1

log k =

n∑
k=1

akbk = Anbn +

n−1∑
k=1

Ak(bk − bk−1) = n log n−
n−1∑
k=1

k log(1 +
1

k
)

= n log n− log 2−
n−1∑
k=2

k log(1 +
1

k
) = n log n− log 2−

n−1∑
k=2

∞∑
j=1

k
(−1)j−1

jkj

= n log n− log 2−
n−1∑
k=2

k

k
+

n−1∑
k=2

k

2k2
−

n−1∑
k=2

∞∑
j=3

k
(−1)j−1

jkj

= n log n− log 2− (n− 2) +
1

2

(
n∑

k=1

1

k
− 1− 1

n

)
−

n−1∑
k=2

∞∑
j=3

k
(−1)j−1

jkj

= n log n− n+
1

2
log n− log 2 +

3

2
+

1

2
γ −

n−1∑
k=2

∞∑
j=3

k
(−1)j−1

jkj
+ o(1)

= n log n− n+
1

2
log n+ C + o(1),

where γ = limn!∞(− log n+
∑n

k=1
1
k ) = 0.577 is the Euler-Mascheroni costant and

C = − log 2 +
3

2
+

1

2
γ −

n−1∑
k=2

∞∑
j=3

k
(−1)j−1

jkj
= log

√
2π.

Hence n! ∼ (ne )
n
√
nC (*).

Aside: to show C =
√
2π: use 22n =

∑n
k=−n

(
2n
n+k

)
. Use ∗ to estimate

(
2n
n

)
. Now approximate

( 2n
n+k)
(2nn )

for k = o(n). After easy but somewhat tedious calculation, we see C =
√
2π.
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Euler-Maclourin summation give not just the same result but a different formula for logC. plus
an explicit asymptotic formula for subsequenct terms in 1

n ,
1
n2 .

Exercise 1.24. (a) If |x| < 1
2 , give explicit bounds in

(1) |− log(1− x)− x| < cx2

i. for x ∈ (0, 12 );

ii. for x ∈ (− 1
2 , 0).

Plot to compare reality.

(2)
∣∣∣− log(1− x)− x− x2

2

∣∣∣ < cx3

i. for x ∈ (0, 12 );

ii. for x ∈ (− 1
2 , 0).

(3)
∣∣∣· · · − x− x2

2 − x3

3

∣∣∣
i. for x ∈ (0, 12 );

ii. for x ∈ (− 1
2 , 0).

(b) Consider
∑n

k=2
1

log k . Take ak = 1, bk = 1
log k .

(1) Given careful estimates for bk − bk−1.

(2) Use abel summation to estimate
∑n

k=2
1

log k .

(c) Can you improve this? Compare to doing integrating by parts twice. You may wish to consider
something like

∑
(k − 1)( 1

log k − 1
log(k+1) ).

Side note.
∫ x

2
1

log tdt ∼ x
∑∞

k=0
k!

(log x)k+1 as an asymptotic series, meaning that for any m, as

x ! ∞,
∣∣∣∫ x

2
1

log tdt− x
∑m

k=0
k!

(log x)k+1

∣∣∣ = O( x(m+1)!
(log x)m+2 ). In particular, for any x, there is a “best”

m to use to approximate Li(x), i.e., to minimize
∣∣∣∫ x

2
1

log tdt− x
∑m

k=0
k!

(log x)k+1

∣∣∣.
(d) (1) For x = 102, 103, 104, 105, 106, 107, (...?), find m to minimize

∣∣∣Li(x)−∑m
k=0

xk!
(log x)k+1

∣∣∣.
Once the sum exceeds Li(x), if we take one more term, we’ve gone too far. So we know when
to stop. Question: how often is the best approximation when

∑
< Li(x) and how often when

Li(x) <
∑

?

(2) How big is m as a function of x when
∣∣∫ −

∑∣∣ is minimized?

(3) How big is xk!
(log x)k+1 in this region. How good is the approximation? (If log x is big, say 106,

then the first few terms of the sum start out very well, decrease very rapidly, then finally start
increasing and diverge to ∞ very rapidly. How does this relate to the optimal choice for m?). The
graph of x

∑m
k=0

k!
(log x)k+1 is the following:

Replace k! by the Γ to obtain a continuous of y: F (m) =
∫m+1

0
Γ(y+1)

(log x)y+1 dy. Plot F (m).



Chapter 2

Arithmetic, multiplicative and
completely multiplicative functions

Let N = {1, 2, 3, · · · }.

Definition 2.1. Define the Möbius function µ : N! {0,±1} by

µ(n) =

{
0 if n is divisible by the square of a prime
(−1)k k is the number of prime factors of n

.

Remark. The Möbius function is fundamental to the theory of multiplicative functions.

2.1 Möbius inversion

Theorem 2.2 (Möbius 1832). Assume F : [1, t] ! C. For all x ⩽ t, define G(x) =
∑

n⩽x F (
x
n ),

then F (x) =
∑

m⩽x µ(m)G( x
m ).

Theorem 2.3 (Dirichlet,1857). If arithmetic functions g and f satisfying g(n) =
∑

d|n f(d) =∑
d|n f(

n
d ) for n ⩾ 1, then f(n) =

∑
d|n µ(d)g(

n
d ) for n ⩾ 1.

Proof. Let F (x) = 0 whenever x ̸∈ N and F (n) = f(n) when n ∈ N. Set g(n) = G(n).

Remark. In effect, the original f(n) can be determined given g(n) by using the inversion formula.
The two sequences are said to be Möbius transforms of each other.

Compare this to An, an in Abel summation: If An =
∑

k⩽n ak, then an = An −An−1.
For nice ordered sets, we can define sums over interesting sets, and invert the definitions.

Theorem 2.4 (Dedekind). For n ∈ N,
∑

d|n µ(d) =

{
1 if n = 1
0 if n > 1

.

Proof. Let f(1) = 1 and f(n) = 0 for n > 1. Then g(n) =
∑

d|n f(
n
d ) = 1 for n ∈ N. Then

f(n) =
∑

d|n µ(d).

Exercise 2.5. Prove Dedekind implies Möbius.

Example 2.6. Let n = 6 and d = 1, 2, 3, 6. Then µ(1) + µ(2) + µ(3) + µ(6) = 1− 1− 1 + 1 = 0.

7
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2.2 Multiplicative and completely multiplicative functions

Example 2.7. φ(n) is a multiplicative function.

Proof. By CRT,

Z/(mZ ∩ nZ) ∼= Z/mZ× Z/nZ
k 7! (k, k)

bm−1
n m+ an−1

m n [ (a, b),

where m−1
n is the inverse of m modulo n and n−1

m is the inverse of n modulo m. If gcd(m,n) = 1,
then mZ ∩ nZ = mnZ, given 0 ⩽ a < m and 0 ⩽ b < n, there is a unique 0 ⩽ k < mn so that
k ≡ a (mod m) and k ≡ b (mod n), so φ(m)φ(n) = φ(mn). We actually have (Z/mnZ)× ∼=
(Z/mZ)× × (Z/nZ)× since we have the units (R× S)× = R× × S×.

Remark. The RSA encryption algorithm relies on the difficulty of factoring n = pq, where p, q are
large distinct primes. If we know m = φ(pq) as well as n = pq, m := φ(pq) = (p − 1)(q − 1) =
n− (p+ q) + 1, i.e., p+ n

p = n−m+ 1, gives a quadratic in p, which can be easily solved. Hence

knowing p, q if and only if knowing pq, (p− 1)(q − 1).

Definition 2.8. Let f, g be multiplicative functions. Define the Convolution of f, g by

f ∗ g(n) =
∑
d|n

f(d)g
(n
d

)
=

∑
d1d2=n

f(d1)g(d2),∀n ∈ N.

Definition 2.9. Let f1, . . . , fk be multiplicative functions. Define the n-fold Convolution of
f1, . . . , fn by

(f1 ∗ · · · ∗ fk)(n) =
∑

d1···dk=n

f1(d1) · · · fk(dk),∀n ∈ N.

Remark. k-fold convolution must be associative.

Throught experiment, is there a correponding idea for F : [1, t]! C and G : [1, t]! C, looking
at functions of real intervals? Does it give any thing intersesting?

Theorem 2.10. If f, g are multiplicative functions, then so is f ∗ g. This gives us an algebra on
the set of multiplicative functions.

Proof. Let m,n ∈ N such that gcd(m,n) = 1. If d | mn, then d = d1d2 with d1 | m and d2 | n.
Note gcd(d1, d2) = 1 = gcd(md1

, n
d2
). Since f, g are multiplicative function,∑

d|mn

f(d)g
(mn
d

)
=
∑
d1|m

∑
d2|n

f(d1d2)g
( mn
d1d2

)
=
∑
d1|m

∑
d2|n

f(d1)f(d2)g
(m
d1

)
g
( n
d2

)
=
∑
d1|m

f(d1)g
(m
d1

)∑
d2|n

f(d2)g
( n
d2

)
= f ∗ g(m) · f ∗ g(n).

Exercise 2.11. Prove or give a counterexmaple to each of the following.

(a) If f, g are completely multiplicative, then f ∗ g is multiplicative.
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(b) If f, g are multiplicative, then f ∗ g is multiplicative.

(c) If f, g are completely multiplicative, then so if f ∗ g.

(d) If one of f, g are completely multiplicative and the other is multiplicative, then f∗g is completely
multiplicative.

Corollary 2.12. The set of multiplicative functions form a group under ∗. The identity is 1, where

1(n) =

{
1 if n = 1
0 if n > 1

.

Question 2.13. What is the inverse of f under ∗? (Hint: Möbius/Dedekind). So we get lots of
new functions.

Example 2.14. τ(n) = #divisors of n =
∑

d|n 1 =
∑

d|n 1(d)1(
n
d ) = 1 ∗ 1(n).
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Chapter 3

Dirichlet Series

Definition 3.1. Given an arithmetic function a : N! C, we define the associated Dirichlet series

A(s) =

∞∑
n=1

an
ns
, s ∈ C.

Remark. This is defined formally for a variable s, but if we want to evaluate it at a given s, we
need to worry about convergence.

Some Dirichlet series don’t converge for any s ∈ C: for example
∑∞

n=1
n!
ns diverges no matter

which s ∈ C, we use for fixed s, n!
ns ! ∞ as n ! ∞. However, suppose we have a series

∑∞
n=1

an

ns

and it converges at s0 ∈ C. Then
∣∣ an

ns0

∣∣! 0 as n!∞. Write s0 = σ0 + iτ0 with σ0, τ0 ∈ R, then∣∣∣ an
ns0

∣∣∣ = ∣∣∣ an
nσ0niτ0

∣∣∣ = ∣∣∣ an
nσ0

∣∣∣ · ∣∣e−iτ0 logn
∣∣ = ∣∣∣ an

nσ0

∣∣∣.
Hence if s = σ + it with σ > σ0, then it is easy to see

∑∞
n=1

∣∣an

ns

∣∣ converges absolutely by Direct
comparison series test.

Example 3.2. Particular Dirichlet series of immense importance: introduced by Euler for integer
s ⩾ 2 and considered for complex s by Riemann using the Riemann zeta-function ζ(s).

If s ∈ C with Re(s) = σ > 1, we define ζ(s) =
∑∞

n=1
1
ns . Observe this is a valid definition for

s = σ + it with σ > 1, since
∑∞

n=1

∣∣ 1
ns

∣∣ =∑∞
n=1

1
nσ converges, i.e.,

∑∞
n=1

1
ns converges absolutely.

It diverges to ∞ at s = 1 since
∑m

n=1
1
n ≈

∫m

1
1
ndn = logm!∞ as m!∞. Hence ζ(σ)!∞

as σ ! 1+.
Next, let s = 1 + it with t ∈ R ∖ {0}. Let Sn =

∑n
k=1

1
ks . For, {xn} ⊆ C,

∑∞
n=1 xn converges

if and only if for ϵ > 0, there exists ℓ ∈ C and N ∈ N such that |Sn − ℓ| ⩽ ϵ for any n > N if and
only if there exists N ∈ N such that

∣∣∑n
k=m+1 xn

∣∣ = |Sn − Sm| < ϵ for n ⩾ m > N . We’ll show

the series doesn’t converge. Note 1
ns = 1

n1+it = 1
ne

−it logn = 1
n cos(t log n)− i

n sin(t log n). Consider
just Re( 1

n1+it ) =
1
n cos(t log n). Let 2πr − π

4 ⩽ t log n ⩽ 2πr + π
4 , i.e.,

2πr
t − π

4t ⩽ log n ⩽ 2πr
t + π

4t ,
i.e., exp( 2πrt − π

4t ) ⩽ n ⩽ exp( 2πrt + π
4t ). Then cos(t log n) ⩾ 1√

2
and

exp( 2πr
t + π

4t )∑
n=exp( 2πr

t − π
4t )

∣∣∣∣ 1

n1+it

∣∣∣∣ ⩾ 1√
2n0

exp
(2πr

4t

)(
exp
( π
4t

)
− exp

(
− π

4t

))
,

11
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where n0 = exp(2πr4t − π
4t ). So we get this partial sum is bounded below by a constant depending

only on t.
Hence

∑∞
n=1

1
n1+it fails to converge for all t ∈ R.

Theorem 3.3. Assume F (s) =
∑∞

n=1
f(n)
ns and G(s) =

∑∞
m=1

g(m)
ms converge absolutely at s. Then

F (s)G(s) =
∑∞

n=1
f∗g(n)

ns and it converges absolutely at s too.

Proof. Since we’ll be concerned with absolute convergence, we can assume s is real and f(n), g(m) ⩾
0 for m,n ∈ N. Since they converge absolutely, we can rearrange at will. So

F (s)G(s) =

∞∑
n=1

f(n)

ns

∞∑
m=1

g(m)

ms
=

∞∑
n=1

∞∑
m=1

f(n)

ns
f(m)

ms
=

∞∑
r=1

∑
mn=r

f(n)g(m)

rs

=

∞∑
r=1

1

rs

∑
mn=r

f(n)g(m) =

∞∑
r=1

1

rs

∑
n|r

f(n)g
( r
n

)
=

∞∑
r=1

f ∗ g(r)
rs

= (F ∗G)(s).

Corollary 3.4. Extend in a natural way, we get

(F1 ∗ · · · ∗ Fk)(s) = F1(s) · · ·Fk(s).

Theorem 3.5. Let p be fixed. For n ∈ N, let fp(n) =

 apk if n = pk is a power of p
0 if n is not a power of p
a1 = 1 otherwise

. Then

Fp(s) =
∑∞

n=1
fp(n)
ns =

∑∞
k=1

fp(p
k)

(pk)s
=
∑∞

k=1

a
pk

(pk)s
and

∏
p<x

Fp(s) =
∏
p<x

∞∑
n=1

fp(n)

ns
=

∞∑
n=1

∏
p<x

fp(n)

ns
=

∞∑
n=1

1

ns

∏
p<x

fp(n) =

∞∑
n=1

1

ns

∏
p<x,pk||n

apk .

So ∏
p

Fp(s) = lim
x!∞

∏
p<x

Fp(s) =

∞∑
n=1

f(n)

ns
,

where f(n) =
∏

pk||n apk , i.e., f is the multiplicative function defined by the sequences apk , k =
0, 1, 2, · · · and p = 2, 3, 5, 7, · · · .

Example 3.6. Let apk = 1 for any prime p and k ∈ N. Then Fp(s) =
∑∞

k=1
1

pks = (1− 1
ps )

−1 and

f(n) = 1 for n ⩾ 1. So

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

Fp(s) =
∏
p

(
1− 1

ps

)−1

.

Note in this example, Fp(s) = 1+ 1
ps + 1

p2s + · · · is absolutely convergent for Re(s) > 0, but ζ(s) is

only absolutely convergent for Re(s) > 1.

Remark. Can you construct sequences apk , k = 0, 1, 2, · · · and p = 2, 3, 5, 7, · · · so that each Fp(s)
is absolutely convergent for Re(s) > 0, but

(a) F (s) diverges at s = 2, s = 3, s = n?
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(b) F (s) is never convergent.

The argument that an is fixed once x exceeds doesn’t fail: it is only convergence which fails. Hence
if we define f(n) =

∏
pk||n apk , then if F (s) converges absolutely, F (s) :=

∏
p Fp(s).

Note ((1− 1
ps )

−1)−1 = 1− 1
ps = 1− 1

ps + 0
p2s + 0

p3s + · · · . Set apk =

 1 if k = 0
−1 if k = 1
0 if k > 1

. Then

f(n) =
∏
pk||n

apk =

{
0 if n is divisible by the square of a prime
(−1)j j is the number of prime factors of n

= µ(n).

So provided 1
ζ(s) converges,

1

ζ(s)
=
∏
p

(
1− 1

ps

)
=

∞∑
n=1

f(n)

ns
=

∞∑
n=1

µ(n)

ns
.

Observe the Dirichlet series of 1 is 1.

Theorem 3.7. 1 ∗ µ = 1, where 1(n) = 1 for n ∈ N.

Proof. Since 1 = ζ(s) 1
ζ(s) =

∑∞
n=1

1
ns

∑∞
n=1

µ(n)
ns =

∑∞
n=1

1∗µ(n)
ns , we have 1 ∗ µ = 1.

Corollary 3.8.
∑

d|n µ(d) = 1(n).

Remark. 1
ζ(s) is absolutely convergent at Re(s) > 1 since

∑∞
n=1

∣∣∣µ(s)ns

∣∣∣ = ∑
n square free

1
nRe(s) <∑∞

n=1
1

nRe(s) , which is absolutely convergent if Re(s) > 1.

Question 3.9. What happens when s = 1?

Exercise 3.10. Show by counting that
∑

d|n φ(d) = n.

Since n =
∑

d|n φ(d) =
∑

d|n φ(
n
d ) =

∑
d|n 1(d)φ(

n
d ) = 1 ∗ φ(n), we have

ζ(s) ·
∞∑

n=1

φ(n)

ns
=

∞∑
n=1

1

ns
·

∞∑
n=1

φ(n)

ns
=

∞∑
n=1

1 ∗ φ(n)
ns

=

∞∑
n=1

n

ns
=

∞∑
n=1

1

ns−1
= ζ(s− 1),

i.e.,
∑∞

n=1
φ(n)
ns = ζ(s−1)

ζ(s) . The sum of divisor function: σ(n) =
∑

d|n d. By definition of convolution,

ζ(s)ζ(s− 1) =

∞∑
n=1

1

ns

∞∑
n=1

n

ns
=

∞∑
n=1

σ(n)

ns
.

In general, let σk(n) =
∑

d|n d
k =

∑
d|n d

k1(nd ), then

∞∑
k=1

σk(n)

ns
= ζ(s− k)ζ(s).

Euler observed the ζ(s) diverges as s ! 1+, so
∏
(1 − 1

ps )
−1 diverges as s ! 1+. So there are

infinitely many primes.
Euler asked: how does

∑
p

1
p behave?
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3.1 The ζ function: elementary approach

Definition 3.11. For Re(s) > 1, ζ(s) is defined by

ζ(s) =

∞∑
n=1

1

ns
.

Remark. There is a natural extension from ζ : {2, 3, 4, · · · }! R, to ζ : {s ∈ C | Re(s) > 0}! C.
Is there a natural way to extend ζ to larger domain?

First observation: need to deal with the problem at s = 1. Let’s restrict ourself to real s > 1.

Then 1
xs is decreasing in (0,∞). So

∫ n+1

n
1
xs dx <

1
ns <

∫ n

n−1
1
xs dx for n ∈ N. Hence∫ ∞

1

1

xs
dx <

∞∑
n=1

1

ns
=

1

1s
+

∞∑
n=2

1

ns
< 1 +

∫ ∞

1

1

xs
dx,

i.e., 1
s−1 <

∑∞
n=1

1
ns <

1
s−1 + 1. So the bad behaviors in ζ(s) appears to look like a singulrity 1

s−1
at s = 1.

Question 3.12. . Can you improve this? Can you bound
∣∣∣ 1
ns −

∫ n+1

n
1
xs ds

∣∣∣? Can you identify

errors and sum them too, giving error of the form o(1)? How does ζ(s)− 1
1−s behave as s! 1+?

A different approach: Define the Dirichlet η series, sometimes called the alternating ζ function,
denoted η(s), ζ∗(s), A(s) or α(s) by

η(s) =

∞∑
n=1

(−1)n+1

ns
.

By the alternating series test, for Re(s) > 0, η(s) is conditionally convergent.

Recall 3.13. If {an}n⩾1 such that 0 ⩽ an ! 0 as n ! ∞ and an+1 ⩽ an for n ∈ N, then∑∞
n=1(−1)n+1an converges at least conditionally.

Proof. Note

a1 − a2 + a3 − a4 + a5 − a6 + · · · = (a1 − a2) + (a2 − a3) + · · ·+ (a2n−1 − a2n) + · · · .

Let S2n := a1 − a2 + a3 − a4 + · · ·+ a2n−1 − a2n and S2n+1 := S2n + a2n+1 ⩾ S2n. Then S2n+1 =
a1 − (a2 − a3)− (a4 − a3)− · · · − (a2n − a2n+1) ⩽ a1. So the sequence S2, S4, S6, · · · is a bounded
monotonic sequence, hence converges. Since an ! 0 as n ! ∞, |S2n − S2n+1| = |a2n+1| ! 0 as
n!∞. So S1, S2, S3, · · · converges.

Note

η(1) =

∞∑
n=1

(−1)n+1

n
= log 2 = lim

ϵ!0
log(2− ϵ) = lim

ϵ!0

∫ 1−ϵ

0

1

1 + x
dx.

For Re(s) > 0,

η(s) =

∞∑
n=1

(−1)n+1

ns
=

1

1s
− 1

2s
+

1

3s
− 1

4s
+ · · · = ζ(s)− 2

2s
(
1

1s
+

1

2s
+

1

3s
) = ζ(s)(1− 2s−1).
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So for Re(s) > 0 with s ̸= 1, we can define ζ(s) by

ζ(s) =
η(s)

1− 2s−1
.

Let’s consider for this extension of ζ to (0, 1) ∪ (1,∞), lims!1(s− 1)ζ(s) = lims!1().
Proofs that there are infinitely many primes (usually) lead to lower bounds for π(x). Recall

pn < 22
n

, i.e., log2 log2 pn < n, i.e., π(x) > log2 log2 x. Similarly get bad estimates from Euclid’s
proof. We’ll get much more interesting estimator that Euler would have easily given.

Fact 3.14. For all ϵ > 0,

(a) we have
∫∞
1

1
x diverges,

∫∞
1

1
x1+ϵ converges,

∫∞
2

1
x log xdx diverges,

∫∞
2

1
x(log x)1+ϵ dx converges,∫∞

3
1

x log x log log xdx diverges,
∫∞
3

1
x log x(log log x)1+ϵ dx converges, · · · ;

(b)
∑

1
n diverges,

∑
1

n1+ϵ converges,
∑

1
n logn diverges,

∑
1

n(logn)1+ϵ converges,
∑

1
n logn log logn

diverges,
∑

1
n logn(log logn)1+ϵ converges, · · · .

Theorem 3.15 (Euler). If s > 1, then
∏

p(1 −
1
ps )

−1 =
∑∞

n=1
1
ns . If finitely many primes, LHS

bounded as s! 1+. Since RHS !∞ as s! 1+, LHS is a infinite product.

Theorem 3.16 (Euler). Let {an}n⩾1 be with 0 < an < 1 for n ∈ N. Then
∏∞

k=1(1+ ak) converges
if and only if

∑∞
k=1 ak converges if and only if

∏∞
k=1(1 − ak) converges to > 0 if and only if∏∞

k=1(1− ak)
−1 converges. Hence if

∏
p(1−

1
p )

−1 diverges, then
∑

p
1
p diverges.

Proof. Take logs and use careful approximations.

Remark. Fix ϵ > 0, supose pn > n log n(log log n)1+ϵ for n > n0, then
1
pn

< 1
n logn(log logn)1+ϵ for

n > n0, so
∑∞

n=1
1
pn

converges, a contradiction. Hence pn < n log n(log log n)1+ϵ infinitely often.

Note pn ≈ n log n is equivalent to π(x) ≈ x x
x log x ≈ x2

px
> x

log x(log log x)1+ϵ infinitely often. This

suggests that estimates for π(x) might be around x
log x .

We now extend previous discussion to show that η(s) converges conditionally for Re(s) > 0.

If s = 1, η(s) =
∑∞

n=1
(−1)n+1

n =
∑∞

k=1(
1

2k−1 − 1
2k ) =

∑∞
k=1

1
2k(2k−1) , which is absolutely

convergent. Assume now s ∈ R>0. Note

∞∑
n=1

(−1)n+1

ns
=

∞∑
k=1

( 1

(2k − 1)s
− 1

(2k)s

)
=

∞∑
k=1

(2k)s − (2k − 1)s

(2k(2k − 1))s
=

∞∑
k=1

1− (1− 1
2k )

s

(2k − 1)s
.

By the Binomial theorem for non-integer exponents,

(1 + x)α = 1 + αx+
α(α− 1)

2
x2 + · · ·+

(
α

m

)
xm + · · · ,

where
(
α
m

)
= α(α−1)···(α−m+1)

m! . Assume 0 < s < 1 now. Then (s − 1), (s − 2), · · · , (s −m + 1) are

all negative for m ⩾ 2. So
(
s
m

)
> 0 when m ⩾ 2 is even and

(
s
m

)
< 0 when m ⩾ 2 is odd. Hence

(1− 1

2k
)s = 1− s

2k
+

(
s

2

)
1

(2k)2
−
(
s

3

)
1

(2k)3
+ · · · ⩾ 1− s

2k
,
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i.e., 1 − (1 − 1
2k )

s < s
2k . So η(s) =

∑∞
k=1

1−(1− 1
2k )s

(2k−1)s <
∑∞

k=1
s

2k(2k−1)s . Thus, η(s) is conditionally
convergent.

Remark. Since (1− 1
2k )

s = 1− s
2k +

(
s
2

)
1

(2k)2 −
(
s
3

)
1

(2k)3 + · · · ,

0 < (1− 1

2k
)s − 1 +

s

2k
<

1

2

1

(2k)2
+

1

3

1

(2k)3
+ · · · < 1

(2k)2
+

1

(2k)3
+ · · · = 1

(2k)2(1− 1
2k )

<
2

(2k)2
,

i.e., s
2k − 2

(2k)2 < 1 − (1 − 1
2k )

s < s
2k . So η(s) =

∑∞
k=1

1−(1− 1
2k )s

(2k−1)s =
∑∞

k=1(
s

2k(2k−1)s − ϵk), where

0 < ϵk <
2

(2k)2(2k−1)s for k ⩾ 1.

Question 3.17. Can you make a similarly argument work for s ∈ C with Re(s) > 0? Difficulties

might arise comparing s
m to 1

m or to 1?
∣∣( s

m

)∣∣ = ∣∣∣ s(s−1)···(s−(m−1))
m!

∣∣∣ <? Instead, more directly, write

s = σ + it, σ > 0. 1
nσ = 1

nσnit = cos(t logn)−i sin(t logn)
nσ and so Re(η(s)) =

∑∞
n=1(−1)n+1 cos(t logn)

nσ ,

Im(η(s)) =
∑∞

n=1(−1)n sin(t logn)
nσ . These are no longer alternating series because

(a) the signs only alternate,

(b) the absolute values of summand are no longer monotonic.

However, the series will decompose into a sum of alternating pairs, together with “glitch” terms

exponentially far apart. If we can bound the size of alternating pairs, e.g., cos(t logn)
nσ − cos(t log(n+1))

(n+1)σ

and similarly for the sin terms and bound the contribution of the terms when cos(t log n) switches
signs.

Exercise 3.18. Go back to Calculus I/II and find bounds for cos(t logn)
nσ − cos(t log(n+1))

(n+1)σ by differ-

entiating cos(t log x)
xσ . Deduce that η(s) =

∑∞
n=1

(−1)n+1

ns converges conditionally for all s ∈ C with
Re(s) > 0.

Question 3.19. ζ(s) =
∑∞

n=1
1
ns for Re(s) > 1, ζ(s) = 1

1−zs−1 η(s) for Re(s) < 0 with s ̸= 1. Both
definition agrees in {s ∈ C | Re(s) > 1}, big question, how do we extend ζ to the rest of C?



Chapter 4

Averages of Arithmetic Functions

Number theoretic functions typically bounce around a lot. We want to be able to describe this
smoothed-out behaviors. We’ll do this using the concept of “average order”. We’ll say that two
functions f and g have the same average order if

∑
n⩽x f(n) ∼

∑
n⩽x g(n) as x!∞. Typically, g

will be a “nice function”, e.g., g(n) = n, g(n) = 1
logn , g(n) = n2, · · · .

f(n) has average order n if
∑

n⩽x f(n) ∼
x2

2 . Sometimes we may wish for extra asymtotic terms

on RHS. For exmple, if x is an integer,
∑

n⩽x n = x(x+1)
2 = x2

2 + x
2 . So

∑
n⩽x n ∼ x2

2 + x
2 .

Remark. Typically a more accurate asymtotic estimate will imply extra smoothness properties of
f . Some functions for which we might try to find average orders: τ(n), σ(n) and φ(n).

Since τ is multiplicative, τ(n) =
∏

pk||n τ(p
k) =

∏
pk||n(k + 1) = f(n). So apk = τ(pk) = k + 1

and then the Dirichlet series

∞∑
n=1

τ(n)

ns
=
∏
p

Fp(s) =
∏
p

∞∑
k=1

apk

(pk)s
=
∏
p

(
1 +

2

p
+

3

p2
+

4

p3
+ · · ·

)
.

Question 4.1. How big can τ(n) be? One approach: multiply by losts of distinct primes together.
Let nk =

∏
p⩽k p. Then τ(nk) =

(
k
0

)
+
(
k
1

)
+
(
k
2

)
+ · · ·+

(
k
k

)
= 2k. This will be almost the best we

can do. Check log nk =
∑

p⩽k log p ∼ k by assuming PNT and Abel summation. So nk is about ek

and τ(nk) = 2k = ek log 2 ≈ nlog 2 = n0.69.
The average order is∑

n⩽x

τ(n) =
∑
d⩽x

⌊x
d

⌋
=
∑
d⩽x

x

d
+O(x) = x

∑
d⩽x

1

d
+O(x)

= x(log x+ γ +O(1)) +O(x) = x log x+O(x),

since each divisor d gets counted ⌊x
d ⌋ times and x

d − 1 ⩽ ⌊x
d ⌋ ⩽

x
d .

Recall/Check
∑

n⩽x log n ∼ x log x− x+ 1
2 log x. So τ(n) has average order log n.

When d is large, the summand is small and the error in approximating ⌊x
d ⌋ by x

d is relatively
large. Furthermore, there are lots of large values of d ⩽ x. When d is small, the summand is much
large, and the relative errors are small, and there are fewer values of d.

17
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Dirichlet observed that
∑

md⩽x 1 is the number of integer points which lie beneath the hyperbola
uv = x. So∑

n⩽x

τ(n) = 2
∑

md⩽x,m⩾d

1−
∑
d2⩽x

1 = 2
∑

d⩽
√
x

∑
m⩽ x

d

1− ⌊
√
x⌋ = 2

∑
d⩽

√
x

x

d
+O(

√
x)

= 2

(
x log

√
x+ xγ +O

( x√
x

))
+O(

√
x) = 2x log

√
x+ 2γx+O(

√
x)

= x log x+ 2γx+O(
√
x).

Note σ(pk) = 1 + p+ p2 + · · ·+ pk = pk+1−1
p−1 .

Question 4.2 (Open). Does there exists odd n so that σ(n) = 2n?

Example 4.3. Note∑
n⩽x

σ(n) =
∑
n⩽x

∑
d|n

d =
∑

md⩽x

d =
∑
m⩽x

∑
d⩽ x

m

d =
∑
m⩽x

1

2

⌊ x
m

⌋(⌊ x
m

⌋
+ 1
)

=
1

2

∑
m⩽x

( x
m

− ϵm

)( x
m

+ 1− ϵm

)
=

1

2

∑
m⩽x

( x2
m2

+
x

m
(1− 2ϵm)− ϵm(1− ϵm)

)

=
1

2
x2
∑
m⩽x

1

m2
+

1

2
xO

(∑
m⩽x

1

m

)
+O(x) =

1

2
x2

(
ζ(2)−

∑
m>x

1

m2

)
+O(x log x) +O(x)

=
1

2
x2ζ(2) +O(x) +O(x log x) =

1

2
x2ζ(2) +O(x log x) ∼ π2x2

12
+O(x log x).

Hence average order of σ(n) is π2

6 n.

Question 4.4. How large can σ(n) be?

Example 4.5. Since n =
∑

d|n φ(d), φ(n) =
∑

d|n µ(d)
n
d by Möbius inversion. So∑

n⩽x

φ(n) =
∑
n⩽x

∑
d|n

µ(d)
n

d
=
∑

md⩽x

µ(d)m =
∑
d⩽x

µ(d)
∑
m⩽ x

d

m =
1

2

∑
d⩽x

µ(d)
⌊x
d

⌋(⌊x
d

⌋
+ 1
)

=
1

2

∑
d⩽x

µ(d)

(
x2

d2
+O

(x
d

))
=

1

2
x2
∑
d⩽x

µ(d)

d2
+O(x log x).

Now
∑∞

d=1
µ(d)
d2 is absolutely convergent and is 1

ζ(2) =
6
π2 . So the average order of φ(n) is 6

π2n.

Interpretetion: Fix x large, Pick two integers uniformly in [1, x]. The probability that they are
coprime is about 6

π2 .

Remark (Upper bound on π(x)). Tchebyshev(when? How long from proving these to Hadamard/de
la Valee-Poussin proving π(x) ∼ Li(x)?) proved that there are constants A,B so that for all x ⩾ 2,
Ax
log x < π(x) < Bx

log x . He also proved that if there is a contant C so that π(x)
C x

log x
! 1, then C = 1.

Problem 4.6 (Open). Show there are infinitely many n so that
(
2n
n

)
is coprime to 205; but only

finitely many n so that
(
2n
n

)
is coprime 1115.
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4.1 Estimate π(x) using factorials and binomial coefficients

Definition 4.7. Let p be prime. The p-adic valuation or p-adic order is the function given νp :
Z⩾0 ! N ∪ {∞} defined by

νp(n) := {k : pk || n} =: ordp(n).

Theorem 4.8 (Legendre’s formula).

νp(n!) =
⌊n
p

⌋
+
⌊ n
p2

⌋
+ · · ·+

⌊ n
pk

⌋
=
⌊n
p

⌋
+
⌊ n
p2

⌋
+ · · · ,

where k is such that pk ⩽ n < pk+1.

Remark. Note νp(n!) ⩽ n
p + n

p2 + · · · + n
pk + · · · = n

p−1 . If p < n, νp(n!) ⩾
⌊
n
p

⌋
. If p2 < n,

νp(n!) ⩾ n
p . By definition, n! =

∏
p⩽n p

νp(n!), i.e., log(n!) =
∑

p⩽n νp(n!) log p.

Question 4.9. Can we use this identity to prove that there are infinitely primes? Let’s suppose
that there were only finitely many primes p1, . . . , pk ⩽ p. Then

log(n!) ⩽
∑
p⩽n

n

p− 1
log p ⩽

∑
p⩽n

n log p = nk log p < np log p.

But we know log(n!) ∼ n log n−n+ 1
2 log n+O(1). So log(n!) > np log p as soon as log n >> p log p.

Clealry, this naive bound is not going to be near the truth. Let’s try and be smarter.
Note log(n!) =

∑
p⩽n νp(n!) log p. How big is the error in estimating νp(n!) by

n
p−1 or n

p ? and
can you improve the estimate?

If n
2 < p ⩽ n, then νp(n!) = 1, so log(n!) =

∑
p⩽n

2
νp(n) log p+

∑
n
2 <p⩽n log p.

If n
3 < p ⩽ n

2 , then νp(n!) = 2 , so log(n!) =
∑

p⩽n
3
νp(n) log p+

∑
n
3 <p⩽n

2
2 log p+

∑
n
2 <p⩽n log p.

In fact, so long as p2 > n, νp(n) =
⌊
n
p

⌋
, and p2 ⩽ n if and only if p ⩽ n

(⌈n
1
2 ⌉−1)+1

= n

⌈n
1
2 ⌉
, so

log(n!) =
∑
p2⩽n

νp(n) log p+

⌈n
1
2 ⌉−1∑
k=1

∑
n

k+1<p⩽n
k

k log p =
∑
p2⩽n

νp(n) log p+

⌈n
1
2 ⌉−1∑
k=1

k
∑

n
k+1<p⩽n

k

log p.

Assuming PNT, what is contributed from k = 1:
∑

n
2 <p⩽n log p <

∑
n
2 <p⩽n log n = log n(π(n)−

π(n2 )). Since π(n) ∼
n

logn and π(n2 ) ∼
n
2

1
log n

2
,

π(n)− π
(n
2

)
“=”

n

log n
− n

2 log n
2

= n
2 log n

2 − log n

2 log n
2 log n

= n
log n− 2 log 2

2 log n
2 log n

≈ n

2 log n
2

≈ n

2 log n
.

Assuming PNT,

∑
p>n

1
2

νp(n) log p =

n
1
2∑

k=1

k
∑

n
k+1<p⩽n

k

log p ≈
n

1
2∑

k=1

k

(∑
p⩽n

k

log p−
∑

p⩽ n
k+1

log p

)

=

n
1
2∑

k=1

k
(n
k
− n

k + 1

)
= n

n
1
2∑

k=1

1

k + 1
≈ n log n

1
2 =

1

2
n log n.

Where are we making errors here? Can we bounded them?
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Exercise 4.10. Write e(n) = π(n) − n
logn , estimate

∑
n

k+1<p⩽n
k
k log p assuming PNT, with error

bounds in terms of e(n).

Remark. Using n! to investigate the distribution of primes:

(a) get π(x)!∞;

(b) where is the greatest contribution to log(n!) =
∑

p⩽n νp(n) log p ≈ n
∑

p⩽n
log p
p−1 ;

(1) primes are more frequent when they are small;

(2) log k
k−1 ! 0 as k !∞.

So the biggest contribution is from the smallest primes. This suggests that this approach will have
difficulty being sensitive enough to behavior of large primes to estimate them. (Assuming PNT,
heuriestically since we want to check that this method won’t be sensitive enough to count large
primes). So splitting

∑
p⩽n νp(n) log p =

∑
p⩽n

1
2
νp(n) log n +

∑
p>n

1
2
νp(n) log p gives approxi-

mately equal contributions. So, to use this to estimate π(x), we’d have to control our first half very
well, which is hard, since νp(n) is not nicely behaved when p is small compared to p. The difficulty
is that νp(n) is too big, and bounces around too much.

Let n = 2m. Consider
(
2m
m

)
= (2m)!

m!m! ∼ ( 2m
e )2m

(m
e )2m

√
2π2m
2πm = 22m√

πm
< 4m for m ⩾ 1. Note every

prime between m + 1 and 2m divides
(
2m
m

)
. So

∏
m<p<2m p < 4m. Hence mπ(2m)−π(m) < 4m, i.e.,

π(2m)−π(m) < logm 4m = m log 4
logm = n log 2

log n
2
< n

logn if n > 2some number. So we get (with some work)

π(n) < 2n
logn .

Remark. Note if we consider
(
2m−1

m

)
, we can get π(n)−π(n2 ) <

n log 2
logn−log 2 , π(

n
2 )−π(

n
4 ) <

n
2 logn

logn−log 4 ,

· · · . Some case then gives π(n) < 2n log 2
logn (1 + ϵ).

Exercise 4.11. A lower bound on π(x) is n
logn + 2n

log2 n
+ 3n

log3 n
+ · · · .

We have # digits in n base p ⩽ logp n+ 1, # number of carries ⩽ logp n.

Exercise 4.12. νp
((

n
n
2

))
=
{
k : pk

∣∣∣∣∣∣ (nn
2

)}
and

νp

((n
n
2

))
= νp(n)− 2νp(

n

2
) = #

{
times we carry computing

n

2
+
n

2
= n in base p

}
⩽ logp n.

Remark. If p > n
1
2 , i.e., p2 > n, then νp(n) =

⌊
n
p

⌋
and νp(

n
2 ) =

⌊
n
2p

⌋
, so νp(n) − 2νp(

n
2 ) =⌊

n
p

⌋
− 2
⌊

n
2p

⌋
= 0 or 1.

Let αp(n) = νp(n)− 2νp(
n
2 ). Then

(
n
n
2

)
=
∏

p⩽n p
αp(n). So

∑
p⩽n

αp(n) log p = log

(
n
n
2

)
≈ n log 2− 1

2
log n+ log

√
2

π
.
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Also, assuming PNT,

∑
p⩽n

1
2

αp(n) log p ⩽
∑

p⩽n
1
2

logp n log p =
∑

p⩽n
1
2

log n = log nπ(n
1
2 ) ≈ log n

n
1
2

log n
1
2

= 2n
1
2 .

So this contribution is small enough that it is on the order of the conjected value in RH.

Question 4.13. When are νp(n) = 2νp(
n
2 ) and νp(n) = 2νp(

n
2 ) + 1?

Exercise 4.14. Let n = 2m. Then for p >
√
m, p

∣∣∣∣ (2m
m

)
when one of the following holds (i)

p > m or 2m
2 < p, n

2 < p ⩽ n (ii) 2m
4 < p ⩽ 2m

3 , n
4 < p ⩽ n

3 , (iii)
2m
6 < p ⩽ 2m

5 , n
6 < p ⩽ n

5 , (iv)
2m
5 < p ⩽ 2m

7 , n
8 < p ⩽ n

7 . So

log

(
n
n
2

)
=
∑

p⩽n
1
2

αp(n) log p+
∑

2k<n
1
2

∑
n
2k<p⩽ n

2k−1

log p.

Hence the second term captures most of n log 2 and there exists c so that π(x) ∼ cx
log x . So we can

estimate
∑

n
2k<p⩽ n

2k−1
log p using abelian summation and deduce Chebyshev’s result that c must

be 1. However, trying to prove that c must exist using this method eludes Chebyshev and many
others.

Books to read: The Thread, Philip Davis, Mathematician’s apology, G.H.Hardy, Two cultures.
C.P. Snow.

4.2 Return to ζ

Bernoulli asked what the value of
∑

n⩾1
1
n was. Euler showed

∑∞
n=1

1
n2 = π2

6 . (Why “showed” not
“proved”?)

If p(x) =
∏n

i=1(x− ai) is a polynomial, then [xn−1]p(x) = −a1 − · · · − an. Note sinx has roots
at 0,±π,±2π, · · · , so let’s write sinx =

∏∞
k=−∞(x− πk). This is a bad idea.

Better idea: write p(x) =
(∏

(1 − x
ai
)
)
· p(0), where ai’s are roots of p(x). Since sin 0 = 0 and

limx!0
sin x
x = 1, Euler wrote sin x

x =
∏

k ̸=0(1−
x
πk ) · 1. This is a bad idea since

∑∞
k=−∞,k ̸=0 −

1
πk =∑∞

k=−∞,k ̸=0
1
πk is not absolutely convergent.

Better idea: merge the roots at ±πk and write sin x
x =

∏∞
k=1(1 − x2

(πk)2 ). (It is not a rigorous

thing to do: but it turns out that for deep reasons in Complex Analysis that for sinx, this works.)
Then we have an identity

sinx = x

∞∏
k=1

(
1− x2

π2k2

)
.

RHS converges to sinx at every x ∈ R. Euler assumed this, and deduced that [x3] sinx =

[x2]
∏∞

k=1(1 − x2

π2k2 ) = −
∑∞

k=1
1

π2k2 . But [x3] sin(x) = −1
3! = − 1

6 . Hence
∑∞

k=1
1

π2k2 = 1
6 . So
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ζ(2) =
∑∞

k=1
1
k2 = π2

6 . [x5] sinx = 1
5! . Similarly,

[x5]x
∏(

1− x2

π2k2

)
= [x4]

∏(
1− x2

k2π2

)
=
∑
k ̸=l

1

π2k2π2l2
=

1

2

( ∞∑
k,l=1

1

π2k2
1

π2l2
−

∞∑
k=1

1

(π2k2)2

)

=
1

2

(( ∞∑
k=1

1

π2k2

)2

− ζ(4)

π4

)
=

1

2

((1
6

)2
− ζ(4)

π4

)
.

But [x5] sinx = 1
5! =

1
120 , we have ζ(4) = π4

90 .

Fact 4.15. There are no non-real zeros of sin z.

Proof. Write 2 sin z = eiz − e−iz, so if sin z = 0, eiz = e−iz. Set z = x + iy with x, y ∈ R, then
eix−y = e−ix+y, so |e−y| = |ey|, i.e., y = 0, hence z ∈ R.

Definition 4.16 (Euler’s formula for sin(πx)).

sin(πz) = πz

∞∏
k=1

(
1− z2

k2

)
, z ∈ C.

Motivated by this, our goal now will be consider ζ as a function of s ∈ C and write

ζ(s) = ()

∞∏
n=1

(
1 +

s

2n

)
e−

s
2n

∏
r: nontrivial roots

(
1− s

r

)
e

s
r .

Note 4.17. (a) So far () is opaque.

(b) The “trivial” zeros of ζ(s) are all known: all negative even integers. Note we don’t know how
to even define ζ(s) if Re(s) ⩽ 0.

Euler’s factorization of sin(πx) = −π
∏∞

k=−∞(k − x) didn’t work. No convergence! Likewise,
sin(πx) = πx

∏∞
k ̸=0,k=−∞(1 − x

k ) didn’t work either, because
∑∞

k ̸=0,k=−∞
x
k diverges. However, if

we were to group together (1− x
k ) and (1 + x

k ), then the convergence issues vanished.
An alternative approach: 1

k goes to zero too slowly. We want a function which has a root at
x = k, but when we expand it out in terms of x

k , the linear terms vanish. If we consider e
x
k , this

has no roots, but(
1− x

k

)
e

x
k =

(
1− x

k

)(
1 +

x

k
+

x2

2k2
+

x3

6k3
+ · · ·

)
= 1 +

x

k
− x

k
+

x2

2k2
− x2

k2
+

x3

6k3
− x3

2k3
+ · · ·

= 1− x2

2k2
− x3

3k3
− x4

8k4
− · · · = 1− x2

2k2
+O

(x3
k3

)
.

This factor has a root at x
k , but

∏∞
k=−∞,k ̸=0(1−

x
k )e

x
k =

∏∞
k=−∞,k ̸=0,

(
1− x2

2k2 +O(x
3

k3 )
)
, for small

x at least, will be convergent. So πx
∏∞

k ̸=0,k=−∞(1− x
k )e

x
k converges. Keep the terms (1− x

k ) and

e
x
k paired, we can write sinx = πx

∏∞
k=1(1 +

x
k )e

− x
k (1− x

k )e
x
k = πx

∏∞
k=1(1−

x2

k2 ) as before.
In our hoped-for expression for ζ(s), the terms

∏∞
n=1(1 +

s
2n )e

− s
2n work even if now we don’t

have the symmetric part with n ⩽ −1. Provided
∑

1
|r2| is convergent, the remaining product over

the non-trivial roots
∏
(1− s

r )e
s
r works, simialrly. This will be something we’ll have to worry about.
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Note

log(ζ(s)) = log() +

∞∑
n=1

(
log
(
1 +

s

2n

)
− s

2n

)
+
∑
r

(
log
(
1− s

r

)
+
s

r

)
.

Since log(ζ(s)) =
∑

p − log(1− 1
ps ),

ζ ′(s)

ζ(s)
=
(
log(ζ(s))

)′
=
∑
p

1
ps log p

1− 1
ps

=
∑
p

1

ps
log p

∑
k⩾0

1

pks
=
∑
p

∑
k⩾0

log p

p(k+1)s
=
∑
p

∑
k⩾1

log p

pks
.

We’ll want to relate π(x) to the behavior of this Dirichlet series.

Note if we take log f , where f is a complex function of z, we get bad behavior when f(z) = 0

and f(z) = ∞. If f(z) = (z − r)α, near z = r, f ′(z)
f(z) behaves like α(z−r)α−1

z−r = α
z−r . So if r is either

a pole or a root of some order, possibly even fractional, it converted to a simple pole of f ′(z)
f(z) .

Our goal is to understand π(x) =
∑

p⩽x 1. However, we’ll see that it is sometimes easier to work
with related functions: for example,

Π(x) =
∑
pk⩽x

1 =
∑
p⩽x

1 +
∑
p⩽x

1
2

1 +
∑
p⩽x

1
3

1 + · · · = π(x) + π(x
1
2 ) + π(x

1
3 ) + π(x

1
4 ) + · · · =

∑
r⩾1

π(x
1
r ).

Then good approximation for Π(x) can give approximations for π(x) via

π(x) =
∑
r⩾1

π(x
1
r )µ(r) = π(x)− π(x

1
2 )− π(x

1
3 )− π(x

1
5 ) + π(x

1
6 )− · · · .

Note that these apparently infinite series for Π in terms of π, and π in terms of Π actually only

have at most log2 x terms for any fixed x ⩾ 1. If r > log2 x, x
1
r < x

1
log2 x = 2. We’ll also want to

transform between estimate for
∑

p⩽x log p,
∑

pk⩽x log p, and estimate for Π(x), π(x).

Definition 4.18. Define the von Mangoldt function Λ : N! R by

Λ(n) =

{
log p if n = pk is a prime power
0 otherwise

.

Exercise 4.19. Now let am = Λ(m) and bm = 1
logm . Write ψ(x) =

∑
pk⩽x log p =

∑
m⩽x Λ(m).

Express Π(x) in terms of ψ(x) using summation by parts.

Theorem 4.20.

log n =
∑
d|n

Λ(d).

Then by Möbius inversion,

Λ(n) = −
∑
d|n

µ(d) log d.

Proof. It follows from the fundamental theorem of arithmetic.
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4.3 Gamma Function

Definition 4.21. Define the gamma function by

Γ(s) =

∫ ∞

0

e−tts−1dt, Re(s) > 0.

Remark. This integral converges because

(a)
∫ 1

0

∣∣e−tts−1
∣∣dt < ∫ 1

0

∣∣ts−1
∣∣dt = ∫ 1

0
tRe(s)−1dt <∞;

(b)
∫∞
1
e−tts−1dt converges: for any t > 0, tn

n! < et, so e−t < n!
tn , now choose ns > Re(s), then∫∞

1

∣∣e−tts−1
∣∣dt ⩽

∫∞
1

ns!
tns

∣∣ts−1
∣∣dt = ns!

∫∞
1
t−(ns+1−Re(s))dt = ns!

ns−Re(s) < ∞. The second point

actually shows that
∫∞
1
e−tts−1dt converges for all s ∈ C!

Fact 4.22. Γ(n+ 1) = n! for n ∈ Z⩾0.

Theorem 4.23 (Functional equation). Γ(s+ 1) = sΓ(s) for Re(s) > 0.

Proof. Use integration by parts.

We could also now define Γ(s) for s ∈ C ∖ {0,−1,−2,−3,−4, · · · } via Γ(s) =
∫∞
0
e−tts−1dt if

Re(s) > 0 and Γ(s) = Γ(s+1)
s = Γ(s+2)

s(s+1) = · · · = Γ(s+k)
s(s+1)···(s+k−1) for Re(s) > k!. This only breaks at

non-positive integers.

Instead, let’s consider
∫ 1

0
e−tts−1dt more carefully. Provided Re(s) > 0, we have∫ 1

0

∞∑
k=0

∣∣∣∣(−1)k
tk

k!
ts−1

∣∣∣∣dt = ∫ 1

0

∞∑
k=0

tk

k!

∣∣ts−1
∣∣dt = ∫ 1

0

et
∣∣ts−1

∣∣dt < e

∫ 1

0

tRe(s)−1dt <∞.

So by Fubini/Tonelli theorems,∫ 1

0

e−tts−1dt =

∫ 1

0

∞∑
k=0

(−1)k
tk

k!
ts−1dt =

∞∑
k=0

(−1)k

k!

∫ 1

0

tk+s−1dt =

∞∑
k=0

(−1)k

k!

1

k + s
.

Hence for Re(s) > 0,

Γ(s) =

∞∑
k=0

(−1)k

k!

1

k + s
+

∫ ∞

1

e−tts−1dt.

This formula works for all s ∈ C∖ {0,−1,−2,−3, · · · } and in fact, if we define Γ(s) this way, then

Γ(s)−
∑∞

k=0
(−1)k

k!
1

k+s is analytic around s = −k.

Exercise 4.24. Show that with the new definition of Γ(s) for all s ̸= 0,−1,−2,−3, · · · , Γ(s+1) =
sΓ(s). So the two extensions to C∖ {0,−1,−2, · · · } agree.

Why are we interested in Γ(s)? sin(s)? Our underlying goal is to studying π(x)? We will see
that π(x) can be expressed as a function over the roots of ζ(s).

Lemma 4.25 (RH). Riemann Hypothesis is: zeros of ζ in 0 ⩽ Re(s) ⩽ 1 all lie on line s = 1
2 + it.



4.4. UNDERSTAND WHY Γ(S)Γ(1− S) = π
SIN(πS) 25

Remark. Implication for π(x) is this: if RH is true, then |π(x)− Li(x)| = O(x
1
2+ϵ). If all roots

have Re(s) < 1
2 + α, then for any ϵ > 0, |π(x)− Li(x)| < O(x

1
2+α+ϵ). If there is a root with

Re(s) = 1
2 + α, then |π(x)− Li(x)| will get as big as x

1
2+α−ϵ.

We’ve managed to define ζ for Re(s) > 1 via ζ(s) =
∑

n⩾1
1
ns . We’ve extended the definition to

Re(s) > 0, s ̸= 1 via η(s) =
∑∞

n=1
(−1)n

ns = (1− 2s−1)ζ(s).

Question 4.26. What should ζ(0) be? What is lims!0+ η(s)? If s = σ+ it, what is limσ!0+ η(σ+
it)? Can we extend the definition of ζ(s) to Re(s) = 0?

We’ll see a better way to extend the definition of ζ.

Recall 4.27 (Analytic Continuation). Given a complex analytic function f on D ⊆ C, pick z0 ∈ D,
then in Br(z0) ⊆ D, we have a convergent power series

f̃(z) =
∞∑
k=0

(z − z0)
k f

(k)(z0)

k!
.

Then f̃ : BRz0
(z0) ! C is an analytic continuation of f at z0, where the radius of convergence of

the power series is

Rz0 = sup{r > 0 | ∃F : Br(z0)! C an analytic continuation of f at z0}.

Then we can extend the function f to D ∪ {z ∈ C
∣∣ |z − z0| < Rz0}.

Example 4.28. Let f(z) = 1+z+z2+z3+· · · = 1
1−z if |z| < 1. Then f(z) is analytic in |z| < 1. But

at z0 = − 1
2 , say, the function f(z) for z near z0 is given by a power series f(z) =

∑∞
k=0 ak

(z+ 1
2 )

k

k! ,
which has radius of convergence 3

2 .

We’ll show

(a) Γ(s)Γ(1− s) = π
sin(πs) ,

(b) ζ(s) satisfies the functional equation: the reflection formula

Γ
(s
2

)
ζ(s)π− s

2 = Γ
(1− s

2

)
ζ(1− s)π− 1−s

2 , s ∈ C.

This gives ζ(s) for Re(s) ⩽ 1
2 in terms of ζ(s) for Re(s) ⩾ 1

2 defining ζ(s) for all of C except s = 1.

At s = 0, Γ(0)ζ(0)π− 1
2 = Γ( 12 )ζ(1)π

1
2 saying nothing about ζ(0), where Γ(0) and ζ(1) are poles.

Question 4.29. What is 1−1+1−1+1−· · · ? What is 1+1+1+1+· · · ? What is 1+2+3+4+5+· · · ?
What is 1− 2 + 3− 4 + 5− · · · ?

4.4 Understand why Γ(s)Γ(1− s) = π
sin(πs)

First, note since Γ(s) has pole at 0,−1,−2, · · · , Γ(1 − s) has pole at 1, 2, 3, · · · . Note sin(πs) has
zeros at ±k, π

sin(πs) has poles at ±k.
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Second: At s = 1
2 ,

π
sin(π

2 ) = π. Note Γ( 12 ) =
∫∞
0
e−tt−

1
2 dt, substituting t = u2, then dt =

2udu = 2
√
tdu, i.e., t−

1
2 dt = 2du, so Γ( 12 ) = 2

∫∞
0
e−u2

du =
∫∞
−∞ e−u2

du =
√
π. So at s = 1

2 , the
formula is correct.

Hence the formula seems reasonable at least.
Outline to prove Euler’s formula sin(πx) = πx

∏∞
k=1(1−

x2

k2 ). Define In(x) =
∫ π

2

0
cos(xt) cosn(t)dt

for n ⩾ 0. Then I0(x) = 1
x sin(πx2 ) with I0(0) = π

2 . So by integrating by parts, we have n(n −
1)In−2(x) = (n2−x2)In(x). Then n(n−1)

n(n−1)
In−2(x)
In−2(0)

= n2−x2

n2

In(x)
In(0)

, i.e., In−2(x)
In−2(0)

= (1− x2

n2 )
In(x)
In(0)

. Hence

by induction,

I0(x)

I0(0)
=

n∏
k=1

(
1− x2

(2k)2

)I2n(x)
I2n(0)

, n ⩾ 1.

Since1− cos(xt) ⩽ x2t2

2 , check

|I2n(0)− I2n(x)| =
∫ π

2

0

(1− cos(xt)) cos2n(t)dt ⩽
∫ π

2

0

x2t2 cos2n(t)

2
dt ⩽

x2

2

π2

4

∫ π
2

0

cos2n(t)dt! 0,

which implies I2n(x)
I2n(0)

! 1 as n!∞. Moreover, since
∏∞

k=1(1−
x2

(2k)2 ) converges for each x ∈ C, we

have
1
x sin(π x

2 )
π
2

= I0(x)
I0(0)

=
∏∞

k=1(1 −
x2

(2k)2 ) for x ∈ R, i.e., sin(πx2 ) = πx
2

∏∞
k=1(1 −

x2

(2k)2 ) for x ∈ R.

Thus, sin(πx) = πx
∏∞

k=1(1−
x2

k2 ) for x ∈ R.

Remark. For x ∈ C, need some work with the integer to prove it directly, or muttes something
about analytic continuation which agree on a disk).

Suppose we know f is an analytic function in |z| < 1+ ϵ with ϵ > 0 and we know f on the circle
|z| = 1. Then Cauchy’s integral formula gives

f(z0) =
1

2πi

∫
|z|=1

f(z)

z − z0
dz.

So knowledge of f at |z| = 1 gives f for |z| < 1, provided that f(z) is analytic on an open subset
of C containing |z| ⩽ 1.



Chapter 5

Roadmap

We want to understand ζ(s) for Re(s) ⩽ 0, so we can have it defined for all s ∈ C ∖ {1}. To do
this, we want to prove the reflection formula

Γ
(s
2

)
ζ(s)π− s

2 = Γ
(1− s

2

)
ζ(1− s)π− 1−s

2 , 0 < Re(s) < 1.

Then since ζ(s) is analytic in Re(s) > 0, s ̸= 1, we’ll define ζ(s) by the reflection formula for
Re(s) ⩽ 0 (except s = 0 since it is the reflection point of s = 1). The resulting function will
be the (unique) analytic continuation to C ∖ {0, 1}. To define at 0, we consider lims!0+ η(s) =

lims!0+
∑∞

n=1
(−1)n+1

ns . The result wil be analytic at 0 as well. To do this, we need to show
Γ(s)Γ(1 − s) = π

sin(πs) . To show it, we’ve proved Euler’s product for sin(x): we want to show

Γ(s)Γ(1− s) has the approximate product form to get Γ ̸= 0. To do this, we’ll show

Γ(x) = lim
n!∞

(n− 1)!nx

(x)n
,

where (x)n = x(x+ 1) · · · (x+ n− 1).

Theorem 5.1. There is a unique F satisfying F (0) = 1, F (x+ 1) = xF (x), limn!∞
F (x+n)
nxF (n) = 1.

Furthermore, F (x) = limn!∞
(n−1)!nx

(x)n
. So, if we prove limn!∞

Γ(x+n)
nxΓ(n) = 1, we’ll deduce Γ = F .

Proof. Assume F (x) satisfies the conditions. Then F (x+ n) = (x+ n− 1)(x+ n− 2) · · ·xF (x) =
(x)nF (x). So F (x+n)

nxF (x) = (x)n
nx . Hence limn!∞

(x)n
nx

F (x)
F (n) = limn!∞

F (x+n)
nxF (n) = 1. So F (x) =

limn!∞
F (n)nx

(x)n
= limn!∞

(n−1)!nx

(x)n
. This shows that if the limit exists, F is unique. We’ll

show Γ satisfies limn!∞
Γ(x+n)
nxΓ(n) = 1 for 0 < x < 1, hence the limit does exist and Γ satisfies

Γ(x) = limn!∞
(n−1)!nx

(x)n
.

Indeed, let J = Γ(x+n)
nx(n−1)! =

1
nx(n−1)!

∫∞
0
e−ttx+n−1dt. Replace t by ny, dt = ndy, we obtain

J =
1

nx(n− 1)!

∫ ∞

0

e−nyyx+n−1nx+n−1ndy =
nn

(n− 1)!

∫ ∞

0

e−nyyx+n−1dy.

27
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We want to show this converges to 1 as n!∞. Since 0 < x < 1,

nn

(n− 1)!

(∫ 1

0

e−nyyndy +

∫ ∞

1

e−nyyn−1dy
)
< J <

nn

(n− 1)!

(∫ 1

0

e−nyyn−1dy +

∫ ∞

1

e−nyyndy
)
.

Note ∫ 1

0

e−nyyndy +

∫ ∞

1

e−nyyn−1dy =

∫ 1

0

ynd
(
− 1

n
e−ny

)
+

∫ ∞

1

e−nyyn−1dy

= − 1

n
e−nyyn

∣∣∣∣1
0

+

∫ ∞

1

e−nyyn−1dy

= −e
−n

n
+

∫ ∞

0

e−nyyn−1dy =
(n− 1)!

nn
− e−n

n
,

and ∫ 1

0

e−nyyn−1dy +

∫ ∞

1

e−nyyndy =

∫ 1

0

e−nyyn−1dy +

∫ ∞

1

ynd
(
− 1

n
e−ny

)
=

∫ 1

0

e−nyyn−1dy − 1

n
e−nyyn

∣∣∣∣∞
1

+

∫ ∞

1

yn−1e−nydy

=
e−n

n
+

∫ ∞

0

yn−1e−nydy =
(n− 1)!

n
+
e−n

n
.

So we get nn

(n−1)! (
(n−1)!
nn − e−n

n ) < J < nn

(n−1)! (
(n−1)!
nn + e−n

n ), i.e., 1− ( e
n )

n 1
n! < J < 1+(ne )

n 1
n! . Since

(ne )
n 1
n! ∼

1√
2πn

, limn!∞ J = 1.

Remark. We can also do the above proof through considering the difference between upper and

lower bounds by integrating
∫ 1

0
e−ny(yn−1 − yn)dy = 1

ne
−nyyn

∣∣1
0
= 1

ne
−n.

Intuitively, how big is
∫ 1

0
e−ny(yn−1−yn)dy? Approximate the integral near its maximum value:

let 0 = d
dy (e

−ny(yn−1 − yn)) = e−nyyn−2(ny2 − 2ny + (n − 1)), then y = 1 ± 1√
n
. How big is the

integrand at y1 = 1− 1√
n
? Note

e−ny1yn−1
1 (1− y1) = e−n+

√
n
(
1− 1√

n

)n−1 1√
n
≈ e−ne

√
ne−

√
n 1√

n
≈ e−n

√
n
,

where

yn−1
1 = exp

(
(n− 1) log

(
1− 1√

n

))
= exp

(
(n− 1)

( 1√
n
+

1

2n
+

1

3n
3
2

+ · · ·
))

= exp

(√
n+

1

2
+
(1
3
− 1
) 1√

n
+O

( 1
n

))
≈ exp

(√
n+

1

2

)
.

Now expand the integrand about y = 1 − 1√
n
, it looks approximately normal, with width about

1√
n
, so we expect integral to be about c√

n
e−n
√
n

= ce−n

n . Similarly, for
∫∞
1
e−n(yn − yn−1)dy.



29

So now apply the results to get

Γ(x)Γ(1− x) = lim
n!∞

(n− 1)!nx

(x)n

(n− 1)!n1−x

(1− x)n
=

(n− 1)!2n

x(1 + x) · · · (n− 1 + x)(1− x) · · · (n− x)

= lim
n!∞

(n− 1)!2n

x(1 + x)(1− x)(2 + x)(2− x) · · · (n− 1 + x)(n− 1 + x)(n− x)

= lim
n!∞

(n− 1)!2n

x(1− x2)(22 − x2) · · · ((n− 1)2 − x2)(n− x)

= lim
n!∞

1

x(1− x2

1 )(1− x2

22 ) · · · (1−
x2

(n−1)2 )(1−
x
n )

=
1

x

∞∏
k=1

1

1− x2

k2

.

So
Γ(x)Γ(1− x) =

π

sin(πx)
, x ∈ R.

Since Γ(x) has simple poles at 0,−1,−2, · · · and Γ(1− x) has simple poles at 1, 2, 3, · · · , the poles
of Γ(x)Γ(1− x) are at precisely the poles of π

sin(πx) . Consequently, Γ(x) cannot be zero. Indeed, if

Γ(x) = 0, then x ̸∈ Z, also since 1
sin(πx) ̸= 0, Γ(1 − x) has a pole there, but we know the poles of

Γ(1− x) correspond to zeros of sin(πx), a contradiction. Hence Γ(x) ̸= 0 for any x ∈ C.
Γ(s) =

∫∞
0
e−tts−1dt. So by a change of variable,

∫∞
0
e−ntts−1dt = 1

nsΓ(s). Hence

∞∑
n=1

1

ns
Γ(s) =

∞∑
n=1

∫ ∞

0

e−ntts−1dt.

Remark. Integrands are positive if s is real, but more care is needed otherwise.

For Re(s) > 1,

ζ(s)Γ(s) =

∫ ∞

0

∞∑
n=1

e−ntts−1dt =

∫ ∞

0

ts−1 e−t

1− e−t
dt =

∫ ∞

0

ts−1

et − 1
dt.

Exercise 5.2. Prove carefully that
∫ 1

0
ts−1

et−1dt converges for Re(s) > 1, and
∫∞
1

ts−1

et−1dt converges
for all s ∈ C.

Fact 5.3.

t

et − 1
=

t

t+ t2

2! +
t3

3! + · · ·
=

1

1 + t
2! +

t2

3! + · · ·
=

∞∑
k=1

Bkt
k

k!
= 1− t

2
+

∞∑
k=1

B2kt
2k

(2k)!
,

where B2k’s are the Bernoulli number, which converges in the disk |t| < 2π.

Since the zeros of ez − 1 are at z = 2πki, k ∈ Z, the poles of z
ez−1 are at 2πki, k = 1, 2, · · · . So

the power series converges for |t| < 2π.
Note∫ 1

0

ts−1

et − 1
dt =

∫ 1

0

(
ts−2 − ts−1

2
+

∞∑
k=1

B2kt
2k+s−2

(2k)!

)
dt =

1

s− 1
− 1

2s
+
∑
k⩾1

B2k

(2k)!

1

2k + s− 1
,
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which is valid for all s ∈ C, s ̸= −2k + 1, 0, 1 (for all s ∈ C if we allow poles). So we can define

ζ(s)Γ(s) =
1

s− 1
− 1

2s
+
∑
k⩾1

B2k

(2k)!

1

2k + s− 1
+

∫ ∞

1

ts−1

et − 1
dt.

Since we have a valid expression for Γ(s), s ∈ C∖ {0,−1,−2,−3, · · · } which is non-zero, we can
use this to define an analytic function ζ(s) with a simple pole at s = 1.

Remark. Note we don’t have a good handle on the value of ζ(−2k)Γ(−2k).

By the following proposition, we see that does give an analytic (and hence the analytic) contin-
uation of ζ to C∖ {1} or of (s− 1)ζ(s) to C.

Proposition 5.4. Suppose f(z) = a
z−z0

+ f1(z) and g(z) =
b

z−z0
+ g1(z), where f1(z) is analytic

near z0 and g1(z) is analytic near z0. Then

lim
z!z0

f(z)

g(z)
= lim

z!z0

a
z−z0

+ f1(z)
b

z−z0
+ g1(z)

= lim
z!z0

a+ (z − z0)f1(z)

b+ (z − z0)g1(z)
=
a+ 0f1(z0)

b+ 0g1(z0)
=
a

b
.

Note 5.5. The pole at 0 in this expression comes from Γ(s) since 0 is a simple pole of Γ(s) and
ζ(s)Γ(s).

Since Γ(s) has poles at even negative integers but Γ(s)ζ(s) does not, we must have ζ(−2k) = 0
for k = 1, 2, 3, · · · .

Theorem 5.6. ζ(0) = − 1
2 = B1 and

ζ(−n) = − Bn+1

(n+ 1)!
,∀n ⩾ 1.

Proof. By the expression of ζ(s)Γ(s), it has a pole B2k

(2k)!
1

2k+s−1 in the vicinity of s = −(2k − 1).

Since Γ(s) has a pole (−1)2k−1

2k−1+s = −1
2k−1+s at s = −(2k − 1), we know that

ζ(−(2k − 1)) =
ζ · Γ(−(2k − 1))

Γ(−(2k − 1))
=

B2k

(2k)!
1

2k+s−1

−1
2k−1+s

= − B2k

(2k)!
.

Moreover, ζ(−2k) = 0 = − 0
(2k+1)! = − B2k+1

(2k+1)! for k ⩾ 1.

Similarly, ζ(0) =
− 1

2
(−1)0

0!

= − 1
2 = B1.

We know ζ(s) diverges at s = 1, and we’ve seen Euler’s evaluation of ζ(2k), k ⩾ 1. ζ(2) = π2

6 ,

ζ(4) = π4

90 , ζ(2k) =
r
sπ

2k with r
s ∈ Q. The expression involving Bernoulli numbers:

ζ(2k) = (−1)k+1B2k(2π)
2k

2(2k)!
.

So ζ(6) = π6

945 , ζ(8) = π8

9450 , ζ(10) = π10

93555 , ζ(12) = 691π12

638512875 , ζ(14) = 2π14

18243225 . So ζ(2k) is
irrational, and indeed, transcendental!

1970s, ζ(3) was shown by Aperg to be irrational. Believed by all to be transcendental. Believed
by all not to be a rational multiple of π3.
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Question 5.7. What about ζ(5), ζ(7), ζ(9), ζ(11)? Zudelin (2001) showed that at least one of these
four values must be irrational.

Digression: 33 is the sum of 3 cubes. Is 42?

Our gosl is to relate ζ(s) and its zeros to π(x) and related functions.

Fact 5.8. If we approximate f(x) on [a, b] by fourier series, if f(x) has a discontinuity at c, then
our approximation looks like average of the end points.

If we want a function which has a nice approximation by something like Fourier series, it makes
sense to have jumps average at discontinuities. So, for example, we’ll define

Π(x) =
1

2

(
#{n < x | n is prime}+#{n ⩽ x | n is prime}

)
.

So π( 12 ) = 0, π(2) = 1
2 , π(2

1
2 ) = 1, π(3) = 1 1

2 , π(4) = 2 and so on.

Fact 5.9.

Π(x) =
∑
p<x

1 +
1

2
1{x is prime}.

Definition 5.10. Define the Jacobi Theta function by

θ(t) =

∞∑
k=−∞

e−πk2t.

Remark. θ converges for t > 0. For small t, this looks like a discrete analog of the normal integral.
For large t, it looks like 1 + 2e−πt ≈ 1.

Theorem 5.11.

θ
(1
t

)
=

√
tθ(t).

Remark. Is this believable? If t is big, θ(t) ≈ 1, θ( 1t ) is a sum of terms for which πk2

t is not too big,

that is, k2 is not too much bigger than t, that is, k is on the order of
√
t. If we carefully approximate

θ( 1t ) by a normal integral, if t is big, θ(t) ≈
√
t. Remarkably, it is not just approximation true, it

is exact!

Fact 5.12. (
1

105

∞∑
k=−∞

e−
k2

1010

)2

̸= π.

But it is correct to 42 billion digits!

Proof. Set − k2

1010 = −πk2t, i.e., πt = 1
1010 , i.e, t =

1
1010π . Since

1
t = 1010π is large,

10−5θ(t) = 10−5 1√
t
θ
(1
t

)
= 10−5105

√
πθ
(1
t

)
≈

√
π
(
1 + 2e−

π
t

)
≈

√
π
(
1 + 2e−1010

)
.

So (
1

105

100∑
k=−100

e−
k2

1010

)2

≈ π
(
1 + 4e−1010

)
,

which turns out to mean we get π to about 42 billion digits.
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Fact 5.13.

P (100 heads and 100 tails tossing a fair coin 200 times) ≈ 1

10
√
π

=
1√
100π

.

5.1 Mini Polemic

Γ(x) =
∫∞
0
e−ttx−1dt is the wrong way to think about this! dt is the wrong differential! Better:

use dt
t , Γ(x) =

∫∞
0
e−ttx dt

t . Reason: consider the change of variable u = tα. Then du = αtα−1dt =

αtα dt
t = αudt

t . So the change of variables u = tα introduces a change of differentials dt
t = 1

α
du
u .

We’ll want to consider for t > 0, f(t) =
∑∞

k=1 e
−πk2t = 1

2 (θ(t)− 1) or θ(t) = 2f(t) + 1. Note

f(t) =
1

2

(
1√
t
θ
(1
t

)
− 1

)
=

1

2

(
1√
t

(
2f
(1
t

)
+ 1
)
− 1

)
=

1√
t
f
(1
t

)
+

1

2
√
t
− 1

2
.

Let R(s) = π− s
2Γ( s2 )ζ(s). Start with Γ( s2 ) =

∫∞
0
e−tt

s
2
dt
t , so

1
nsπ

− s
2Γ( s2 ) =

∫∞
0
e−πn2tt

s
2
dt
t ,

hence for Re(s) > 1,

R(s) = π− s
2Γ
(s
2

)
ζ(s) =

∞∑
n=1

1

ns
π− s

2Γ
(s
2

)
=

∫ ∞

0

( ∞∑
n=1

e−πn2t

)
t
s
2
dt

t
=

∫ ∞

0

f(t)t
s
2
dt

t

=

∫ 1

0

f(t)t
s
2
dt

t
+

∫ ∞

1

f(t)t
s
2
dt

t
=

∫ ∞

1

f
(1
t

)
t−

s
2
dt

t
+

∫ ∞

1

f(t)t
s
2
dt

t

=

∫ ∞

1

(
−1

2
+

√
t

2
+
√
tf(t)

)
t−

s
2
dt

t
+

∫ ∞

1

f(t)t
s
2
dt

t
=

1

s(s− 1)
+

∫ ∞

1

f(t)
(
t
1−s
2 + t

s
2

)dt
t
.

So by symmetry R(s) = R(1− s) for Re(s) > 1 or Re(s) < 0. Hence

π− s
2Γ
(s
2

)
ζ(s) = π

1−s
2 Γ
(1− s

2

)
ζ(1− s).

Definition 5.14. Define Riemann Xi function by

ξ(s) = s(1− s)R(s).

Then ξ(s) = ξ(1− s) and ξ(s) is an entire function.

5.2 Zeros of ζ

Where can ζ be zero? We know s = −2,−4,−6, · · · are “the trivial zeros” of ζ. No other zeros
coming from poles of Γ. Can we have ζ(s) = 0 with Re(s) > 1? No: indeed, if ζ(s) = 0, then
1

ζ(s) is a pole, but 1
ζ(s) =

∑∞
n=1

µ(n)
ns converges absolutely if Re(s) > 1, so 1

ζ(s) has no poles with

Re(s) > 1, i.e., ζ(s) has no zeros with Re(s) > 1. Hence, other than −2,−4,−6, · · · , the reflection
formula tells ζ(s) has no zeros with Re(s) < 0. Thus, all non-trial zeros of ζ(s) have 0 ⩽ Re(s) ⩽ 1.
Furthermore, all non-trivial zeros ρ either have ρ = 1

2 + it, or come in pairs ρ = σ + it with σ > 1
2 ,

ρ′ = 1− σ + it with 1− σ < 1
2 .

Short term goal: factor ζ(s) as a product of zeros plus necessary extra terms, and to then

consider ζ′(s)
ζ(s) = d

ds (log ζ(s)), which is naturally a sum over zeros of ζ(s).
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Theorem 5.15 (Weierstrass). If f(z) is an entire function, and the zeros of f (with multiplicity)
are α1, α2, · · · with αn ! ∞ as n ! ∞, then there exists a polynomial g(z) and an integer k so
that f(z) = zkeg(z)

∏
αj
Emj

( z
αj

), where for each root αj, we have an integer mj, and Em( z
α ) =(

1− z
α

)
exp
( z
α
+

z2

2α2
+

z3

3α3
+ · · ·+ zm

mαm︸ ︷︷ ︸
truncation at zm

m of log(1 − z
α )

)
.

Example 5.16.

sin(πz) = πz

∞∏
k=−∞,k ̸=0

(
1− z

k

)
= πz

∞∏
k=−∞,k ̸=0

(
1− z

k

)
e

z
k = zelog π

∞∏
k=−∞,k ̸=0

(
1− z

k

)
exp
( z
k

)
.

When we try to write sin(πz) = πz
∏∞

k=−∞,k ̸=0(1−
z
k ), we had a product whose corresponding series

was only conditionally convergent. Introducing the e
z
k term means (1− z

k )e
z
k = 1− z2

2k2 +O( z
3

k3 ).

In general, we need exp( z
α + z2

2α2 + z3

3α3 + · · ·+ zm

mαm ) as a correction factor.

Example 5.17.

1

Γ(s+ 1)
= eγs

∞∏
n=1

(
1 +

s

n

)
e−

s
n .

Example 5.18. Since we’ve seen that (s− 1)ζ(s) is entire, by Weierstrass, (plus some work)

(s− 1)ζ(s) =
1

2

(2π
e

)s ∞∏
n=1

(
1 +

s

2n

)
e−

s
2n

∏
ρ

(
1− s

ρ

)
e

s
ρ ,

where 1
2 (

2π
e )s = exp(− log 2 + s log( 2πe )) = exp(g(s)),

∏∞
n=1(1 + s

2n )e
− s

2n is the product over the

trivial zeros−2,−4,−6, · · · , and
∏

ρ(1−
s
ρ )e

s
ρ is the product over the zeros with ρ = σ+it, 0 ⩽ σ ⩽ 1,

the nontrivial zeros.
Since (s− 1)ζ(s) is entire, it has a power series expansion valid in C, which we could obtain by

multiplying out the terms in the two infinite products. Also, 1
Γ(s) =

s
Γ(s+1) = seγs

∏∞
n=1(1+

s
n )e

− s
n ,

so 1
Γ( s

2 )
= s

2e
γ s

2

∏∞
n=1(1 +

s
2n )e

− s
2n , hence

(s− 1)ζ(s) =
( 2πe )s

seγ
s
2

· 1

Γ( s2 )
·
∏
ρ

(
1− s

ρ

)
e

s
ρ .

Note there is a statement here about covergence. It implies that the roots ρ cannot grow too slowly:

in particular, (1 − z
ρ )e

z
ρ = 1 − z2

2ρ2 + O( z
3

ρ3 ), so for fixed z, in order to have convergence, we need∑
ρ

1
|ρ2| converges. So |ρn| should grow substantially faster than n

1
2 .

Let NT = #roots in [0, 1]× [−T, T ], then we cannot have NT as big as T 2.

Definition 5.19. Define the (second) Chebyshev ψ-function by

ψ(x) =
∑
pk⩽x

log p =
∑
n⩽x

Λ(n).
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Remark. This formula relates ψ(x) to the roots ρ of ζ(s).

Since (s − 1)ζ(s) is entire and (s − 1)ζ(s) is real for real s, we have if ρ is a root of ζ in the
critical strip H = {0 < Re(s) < 1}, so is ρ. So we can write the product as∏

ρ∈H

(
1− s

ρ

)(
1− s

ρ

)
e

s
ρ+

s
ρ =

∏
ρ∈H

(
1−

( s
ρ
+
s

ρ

)
+
s2

ρρ

)
e

s
ρ+

s
ρ ,

where s( 1ρ + 1
ρ ) = sρ+ρ

ρρ . If ρ = 1
2 + it, i.e., it is a root as predicted by RH, then ρ + ρ = 1, so

s
ρ + s

ρ = s
ρρ , (ρρ = 1

4 + t2) hence

∏
ρ∈H

(
1− s

ρ

)(
1− s

ρ

)
e

s
ρ+

s
ρ =

∏
ρ∈H

(
1− s

ρρ
+
s2

ρρ

)
e

s
ρρ .

Remark. If ρ = σ + it with σ ̸= 1
2 , then the value ρ′ = ( 12 − σ) + it is also a root by reflection

formula, as are ρ and ρ′.

Note

d

ds

(
log((s− 1)ζ(s))

)
=

d

ds

(
log

(
1

2

(2π
e

)s ∞∏
n=1

(
1 +

s

2n

)
e−

s
2n

∏
ρ

(
1− s

ρ

)
e

s
ρ

))
,

i.e.,

1

s− 1
+
ζ ′(s)

ζ(s)
= log

(2π
e

)
+

∞∑
n=1

(
1

2n

1

1 + s
2n

− 1

2n

)
+
∑
ρ

(
−1

ρ

1

1− s
ρ

+
1

ρ

)

= log(2π)− 1 +

∞∑
n=1

(
1

s+ 2n
− 1

2n

)
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
,

i.e.,

ζ ′(s)

ζ(s)
= log(2π)− s

s− 1
+

∞∑
n=1

(
1

s+ 2n
− 1

2n

)
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
.

But if Re(s) > 1, ζ(s) =
∏

p(1−
1
ps )

−1, and so

ζ ′(s)

ζ(s)
=

d

ds

(
log(ζ(s))

)
=
∑
p

d

ds

(
− log

(
1− 1

ps

))
=
∑
p

1

1− 1
ps

d

ds
(e−s log p) = −

∑
p

p−s log p

1− p−s

= −
∑
p

(log p)
( 1

1− p−s
− 1
)
= −

∑
p

log p

∞∑
k=1

1

(ps)k
= −

∑
pk

log p

pks
= −

∑
n

Λ(n)

ns
.

Earlier we wrote ψ(x) =
∑

n⩽x Λ(n). This is fine if x is not a prime power. We need to smooth
out the jumps.

Definition 5.20. Define

Ψ(x) =
1

2

(∑
n<x

Λ(n) +
∑
n⩽x

Λ(n)

)
=
∑
n<x

Λ(n) +
1

2
Λ(x).
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For now all summations include half of the final term. e.g., Ψ(x) =
∑

n<x Λ(n) =
∑

pk<x log p.
Let

Π(x) :=
∑
pk<x

1

k
=
∑
p<x

1 +
1

2

∑
p<x

1
2

1 +
1

3

∑
p<x

1
3

1 + · · · =
∞∑
k=1

1

k
π(x

1
k ) = π(x) +

⌊log2 x⌋∑
k=2

1

k
π(x

1
k ).

By Chebyshev, there are constants C1, C2 > 0 so that for all x ⩾ 2, C1
x

log x < π(x) < C2
x

log x . So

|Π(x)− π(x)| =
⌊log2 x⌋∑
k=2

1

k
π(x

1
k ) <

1

2
π(x

1
2 ) + π(x

1
3 )

(
1

3
+ · · ·+ 1

⌊log2 x⌋

)

<
1

2
π(x

1
2 ) + π(x

1
3 ) log(log2 x) <

1

2
C2

x
1
2

1
2 log x

+ C2
x

1
3

1
3 log x

log(log2 x).

Hence |Π(x)− π(x)| = O( x
1
2

log x ). This is smaller than the difference between π(x) and Li(x) even

if the Riemann Hypothesis is true. So RH has same implication for |Π(x)− Li(x)|, as it does for
|π(x)− Li(x)|.

Note by Mobius inversion,

π(x) =

∞∑
n=1

µ(n)

n
Π(x

1
n ) = Π(x)−Π(x

1
2 )−Π(x

1
3 )−Π(x

1
5 ) + Π(x

1
6 ) + · · · .

We now wish to relate Ψ and Π. If we let an = Λ(n), bn = 1
logn , then anbn =

{
0 if n ̸= pk
1
k if n = pk

,

so
∑

n<x anbn = Π(x) (again half the term for x). Hence (taking care to check how Abelian
summations behave with “half the x-term”) we can show

Π(x) = Axb⌊x⌋ +
∑
k<x

Ak(bk − bk+1) =
Ψ(x)

log x
+
∑
k<x

Ψ(k)

(
1

log k
− 1

log(k + 1)

)
=

Ψ(x)

log x
+
∑
k<x

Ψ(k)

log k log(k + 1)
log

k + 1

k
≈ Ψ(x)

log x
+
∑
k<x

1

log k log(k + 1)
=

Ψ(x)

log x
+O

(
x

(log x)2

)
.

So if we show Ψ(x) ∼ x, then Π(x) ∼ x
log x , so π(x) ∼

x
log x and ψ(x) ∼ x.

So our local goal is to Prove von Mangoldt’s formula

Ψ(x) = x−
∑
ρ

xρ

ρ
− 1

2
log(1− 1

x2
)− log(2π),

and show the contribution from
∑

ρ
xρ

ρ is o(x). This will prove the Prime Number Theorem.

Definition 5.21. The Mellin transform M : f !Mf is given by

Mf =

∫ ∞

1

f(x)x−s dx

x
.

Remark. M is linear, so we can compute MΨ through 1
ρMxρ,− 1

2M(log(1− 1
x2 )),M(log(2π)).
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Theorem 5.22.

Ψ(x) = x−
∑
ρ

xρ

ρ
− 1

2
log
(
1− 1

x2

)
− log(2π).

Proof. How to get to sMΨ? First n−s = s
∫∞
n
x−s dx

x , so

ζ ′(s)

ζ(s)
= −

∑
n⩾1

Λ(n)

ns
= −s

∑
n⩾1

Λ(n)

∫ ∞

n

x−s dx

x

= −s
∫ ∞

1

∑
n⩽x

Λ(n)x−s dx

x
= −s

∫ ∞

1

Ψ(x)x−s dx

x
= −sMΨ,

where the third from last doesn’t include half x-term, the Penultimate does include, but this
doesn’t change the integral.

Observe for k ∈ Z, Mxk =
∫∞
1
xkx−s dx

x = 1
s−k provided Re(s) > k. So for all s ̸= k, the

complex function 1
s−k is defined. Since log(1− 1

x2 ) =
∑∞

n=1
1

nx2n , we have

−sM

(
x−

∑
ρ

xρ

ρ
− 1

2
log
(
1− 1

x2

)
− log(2π)

)
= − s

s− 1
+ s

∑
ρ

1

ρ

1

s− ρ
+
s

2

∞∑
n=1

1

n

1

s+ 2n
+ log(2π)

= log(2π)− s

s− 1
+

∞∑
n=1

s

2n(s+ 2n)
+
∑
ρ

s

ρ(s− ρ)
.

But we know
ζ ′(s)

ζ(s)
= log(2π)− s

1− s
+
∑ −s

2n(s+ 2n)
+
∑ s

ρ(s− ρ)
,

where sign difference is from the half of the final term.

Exercise 5.23. M log(1− 1
x2 ) reasonably behaved as an integral, in the vivinity of x = 1?

Exercise 5.24. Do we need to worry about ρ being complex in sMxρ?

Definition 5.25. Von Mangoldt’s explicit formula:

Ψ(x) = x− lim
T!∞

∑
|x|<T

xρ

ρ
− 1

2
log
(
1− 1

x2

)
− log(2π).

Remark. We’ve just shown both sides have the same Mellin transform, hence are the same except
at points of discontinuity.

Key term in Von Mangoldt’s explicit formula is the sum
∑

ρ
xρ

ρ .

Nontrial roots of ζ come in conjugate pairs ρ, ρ. If ρ = σ + it, then

xρ

ρ
+
xρ

ρ
= xσ

(
xit

σ + it
+

x−it

σ − it

)
=
xσ

ρρ

(
eit log x(σ − it) + e−it log x(σ + it)

)
=
xσ

ρρ
2
(
σ cos(t log x) + t sin(t log x)

)
.



5.2. ZEROS OF ζ 37

If we now write σ + it = |ρ|eiα so that cosα = σ
|ρ| and sinα = t

|ρ| , then

xρ

ρ
+
xρ

ρ
=

2xσ

|ρ|
(
cosα cos(t log x) + sinα sin(t logα)

)
=

2xσ

|ρ|
cos(t log x− α).

If we suppose RH is true, i.e., for all ρ, σ = 1
2 , then the contribution to Von Mangoldt explicit

formula is x
1
2

∑
Im(ρ)>0

2
|ρ| cos(t log x−α). If this sum is such that it behaves reasonable well (which

is true), then the summand is a reasonable function of α, so the summand changes fairly smoothly.
If we can show (which is true) for all ϵ > 0, f(x) :=

∑
2
|ρ| cos(t log x− α) = O(xϵ), then we’ll get

Ψ(x) = x− x
1
2 f(x) +O

( 1

x2

)
+O(1) = x+O

(
x

1
2+ϵ
)
.

Hence π(x) = x
log x +O(x

1
2+ϵ).

Converse is true too: if we take a root ρ with σ > 1
2 , we’ll get a contribution to the error on the

order of xσ. Whenever t log x − α is an integer multiple of 2π, we’d get a contribution 2
|ρ|x

σ. So

the contribution would in periodic in log x.

Theorem 5.26 (Abel summation via integrals). Suppose f : R ! C has a continuous derivatives
on the interval [y, x] on R with y < x. Let r ∈ N0. Then∑

y<r⩽x

a(r)f(r) = A(x)f(x)−A(y)f(y)−
∫ x

y

A(t)f ′(t)dt,

where as before A(t) =
∑

y<r⩽t a(r).
In particular, if y = 1, ∑

1⩽r⩽x

a(r)f(r) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt.

Remark. A(t) is continuous except when t is an integer (and indeed is constant on (n, n+ 1).)

Proposition 5.27. Let f have continuous derivatives on [1, x], e.g., f(x) = log(x). (Check end-
points in the preceding.)

(a)
∑

1⩽r⩽x a(r)f(r) = A(x)f(x)−
∫ x

1
A(t)f ′(t)dt.

(b)
∑

1⩽r⩽x a(r)(f(x)− f(r)) =
∫ x

1
A(t)f ′(t)dt.

(c) If f has continuous derivative on [2, x] and a(1) = 0, then
∑

2⩽r⩽x a(r)f(r) = A(x)f(x) −∫ x

2
A(t)f ′(t)dt.

Example 5.28. (a)
∑

1⩽r⩽x
a(r)
r = A(x)

x +
∫ x

1
A(t)
t2 dt.

(b)
∑

y<r⩽x a(r) log r = A(x) log x−A(y) log y −
∫ x

y
A(t)
t dt.

(c)
∑

1⩽r⩽x(x− r)a(r) =
∫ x

1
A(t)dt, f(x) = x on [1, x].

(d)
∑

1⩽r⩽x ra(r) = xA(x)−
∫ x

1
A(t)dt.
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(e) If a(1) = 0,
∑

2⩽r⩽x
a(r)
log r = A(x)

log x +
∫ x

2
A(t)

t log2 t
dt.

We can get upper bounds on growth of some sums.

Example 5.29. Suppose a(r) is such that for some c > 0, A(t) ⩽ ct for all t. Then

∑
1⩽r⩽x

a(r)

r
=
A(x)

x
+

∫ x

1

A(t)

t2
dt ⩽ c+ c log x = c(1 + log x).

Morel: if we replace a(r) by its “average behavior”, we get the same growth in
∑ a(r)

r .

Example 5.30. Suppose there is a constant c > 0,

(a) A(t) ⩽ c,

(b) f(t)! 0 as t!∞,

(c) I =
∫∞
1

|f ′(t)|dt converges.

e.g., if f(t) # 0. Then
∑∞

r=1 a(r)f(r) converges and is at most cI.

For f(r) = 1
r , if A(t) ⩽ c for all t, then

∑∞
r=1

a(r)
r =

∫∞
1

A(t)
t2 dt, i.e., the sum converges.

Exercise 5.31. Suppose |a(r)| ⩽ 1 and A(n) ⩽ c for all n. Show
∑∞

r=1
a(r)
r ⩽ 1 + log c. Hint:

A(t) ⩽ t for 1 ⩽ t ⩽ c.

Exercise 5.32. (a) Prove that if B(n)! B as n!∞, then 1
n (B(1)+ · · ·+B(n))! B as n!∞.

(b) Suppose
∑∞

r=1
a(r)
r converges. Write b(r) = a(r)

r , B(n) the summatory function. Express B(r)

in terms of A(r), and deduce A(n)
n2 ! 0 as n!∞.

Lemma 5.33.
∑∞

r=1
sin(rθ)

r converges.

Proof. If eiθ ̸= ±1,

s(n) :=

n∑
r=1

sin(rθ) =
1

2i

(
n∑

r=1

eirθ −
n∑

r=1

e−irθ

)
=

1

2i

(
eiθ(1− einθ)

1− eiθ
− e−iθ(1− e−inθ)

1− e−iθ

)
.

If eiθ = ±1, then sin(rθ) = 0. So |s(n)| < 1
|1−eiθ| +

1
|1−e−iθ| <

2
|1−eiθ| . So for any fixed θ, s(n) is

bounded. Hence
∑∞

r=1
sin(rθ)

r converges (conditionally) by previous Exercise.

Now we use Abel summation to relate the value of Dirichlet series
∑∞

n=1
a(n)
ns to Mellin transforms

via ∑
n⩽x

a(n)

ns
=
A(x)

xs
+ s

∫ x

1

A(t)

ts
dt

t
.

So if A(x)
xs ! 0, then the Dirichlet series

∑∞
n=1

a(n)
ns converges if and only if s

∫∞
1

A(t)
ts

dt
t converges.
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The Euler-Maclourin summation formula works in a different way compared to abel summation.
We wish to evaluate

∑
a<n⩽b f(n), where f(x) is a very well behaved function of x. We wish to

relate
∑

a<n⩽b f(n) to
∫ b

a
f(t)dt, where a, b ∈ Z. Note

f(n) =

∫ n

n−1

f(t)dt−
∫ n

n−1

(f(t)−f(n))dt =
∫ n

n−1

f(t)dt−(f(t)−f(n))(t−cn)|nn−1+

∫ n

n−1

f ′(t)(t−cn)dt.

where cn is a constant for n ∈ N. If we choose cn = n − 1
2 , then on the interval [n − 1, n],

t− cn = t− n+ 1
2 = {t} − 1

2 , where {t} is the fractional part of t. So

∑
a<n⩽b

f(n) =

∫ b

a

f(t)dt−
∑

a<n⩽b

(f(t)− f(n))({t} − 1/2)|nn−1 +

∫ b

a

f ′(t)({t} − 1/2)dt

=

∫ b

a

f(t)dt+
∑

a<n⩽b

(f(n− 1)− f(n))({n− 1} − 1/2) +

∫ b

a

f ′(t)({t} − 1/2)dt

=

∫ b

a

f(t)dt+
1

2

∑
a<n⩽b

(f(n)− f(n− 1)) +

∫ b

a

f ′(t)({t} − 1/2)dt

=

∫ b

a

f(t)dt+
1

2
(f(b)− f(a)) +

∫ b

a

f ′(t)({t} − 1/2)dt.

Let’s write b1(t) = {t}− 1
2 on [0, 1], which is not a polynomial on [0, 1], but a perfectly nice function.

Iteratively define br(t) by b
′
r(t) = rbr−1(t) (so br(t) is defined up to a constant of integration) and∫ 1

0
br(t)dt (this gives us the constant of integration). We then extend these functions to Br(t) by

Br(t) = br({t}) if t ∈ R∖ Z.
If we choose cn = n, t− cn = t− n = {t}, then we have the following theorem:

Theorem 5.34.
∞∑

n=2

f(n) =

∫ N

1

f(x)dx+

∫ N

1

{x}f ′(x)dx.

Theorem 5.35. For any integers a ⩽ b, k ⩾ 0 and any function f ∈ Ck+1[a, b], we have

∑
a<n⩽b

f(n) =

∫ b

a

f(t)dt+

k∑
r=0

(−1)r+1Br+1(0)

(r + 1)!

(
f (r)(b)− f (r)(a)

)
+

(−1)k

(k + 1)!

∫ b

a

Bk+1(t)f
(k+1)(t)dt,

where the Br+1(0) are the Bernoulli numbers and Bk+1(t) are Bernoulli polynomials.
Estimating

log(b!) =
∑

1<n⩽b

log n =

∫ b

1

log tdt+

k∑
r=0

Br+1(0)

(r + 1)!
(r − 1)!

( 1

br
− 1

ar

)
+

1

k + 1

∫ b

a

Bk+1(t)
1

tk+1
dt.

This easily gives the (divergent) asymptotic series for log(b!).

Lemma 5.36. 3 + 4 cos θ + cos 2θ ⩾ 0 for all θ.

Proof. 3 + 4 cos θ + cos 2θ ⩾ 0 = 3 + 4 cos θ + 2 cos2 θ − 1 = 2(cos θ + 1)2 ⩾ 0.
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Proposition 5.37. Suppose we have a Dirichlet series f(s) =
∑

n⩾1
a(n)
ns with an ⩾ 0 for n ⩾ 1,

and suppose the Dirichlet series converges for all Re(s) > σ0. Then for σ > σ0, 3f(σ)+ 4Re
(
f(σ+

it)
)
+Re(f(σ + 2it)) ⩾ 0.

Proof. It is enough to show Re
( 3a(n)

nσ + 4a(n)
nσ+it +

a(n)
nσ+2it

)
⩾ 0. Note

Re

(
a(n)

nσ

(
3 +

4

nit
+

1

n2it

))
=
a(n)

nσ
(
3 + 4 cos(t log n) + cos(2t log n)

)
⩾ 0.

Corollary 5.38. Fix t ∈ R. For σ > 1, define

H(σ) = ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)|.

Then H(σ) ⩾ 1.

Proof. Consider log(H(σ)). For Re(s) ⩾ 1, f(s) := log(ζ(s)) = −
∑

p log(1 − 1
ps ) =

∑
pk

1
kpks =∑

n⩾1
a(n)
ns , where a(n) =

{
1
k if n = pk

0 o.w.
⩾ 0. Also, log|z| = Re(log z), so the result follows from

the previous proposition with σ0 = 1.

Corollary 5.39. Since ζ is continuous,

lim
σ!1+

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ⩾ 1.

Theorem 5.40 (Weierstrass’s Theorem for Series). . Assume f1, f2, · · · are holomorphic in an
open set D and

∑∞
n=1 fn(z) converges uniformly on every closed and bounded subset of D. Then

(a) F (z) =
∑∞

n=1 fn(z) is holomorphic on D,

(b) For all k ⩾ 1,
∑∞

n=1 f
(k)
i (z) converges on D, and converge uniformly on every closed and

bounded subset of D with limit F (k)(z). (So the series can be differentiated term by term.)

Example 5.41. Note {x}
xs+1 is not continuous in x given s, s. Define fn(s) =

∫ n+1

n
{x}
xs+1 dx for n ⩾ 1.

Then we can show for any δ > 0,

(a)
∫∞
1

{x}
x1+s dx =

∑∞
n=1 fn(s) converges uniformly on Re(s) > δ,

(b) for n ⩾ 1, fn is holomorphic on Re(s) > δ with derivative

d

ds
fn(s) =

∫ n+1

n

{x}
xs+1

(− log x)dx.

So

d

ds

∫ ∞

1

{x}
xs+1

dx =
d

ds

∞∑
n=1

fn(s) =

∞∑
n=1

d

ds
fn(s) = −

∞∑
n=1

∫ n+1

n

{x}
xs+1

log xdx = −
∫ ∞

n=1

{x}
xs+1

log xdx.
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Theorem 5.42. The analytic continuation of ζ to Re(s) > 0 is given by

ζ(s) =
1

s− 1
+

1

2
− s

∫ ∞

1

x− ⌊x⌋ − 1
2

xs+1
dx = 1 +

1

s− 1
− s

∫ ∞

1

{x}
xs+1

dx,

where x−s−1 takes the principal value e− log(x)(s+1).

Proof. By previous theorem,
∑∞

n=2 f(n) =
∫ N

1
f(x)dx+

∫ N

1
{x}f ′(x)dx. So

N∑
n=1

1

ns
= 1 +

∫ N

1

1

xs
dx− s

∫ N

1

{x}
xs+1

dx = 1 +
1

s− 1
− N1−s

s− 1
− s

∫ N

1

{x}
xs+1

dx.

If Re(s) > 1,
∣∣N1−s

∣∣ = N1−σ ! ∞ as N ! ∞, while by previous example,
∫ N

1
{x}
xs+1 converges as

N !∞ since
∣∣∣ {x}
xs+1

∣∣∣ ⩽ 1
xσ+1 . So ζ(s) = 1 + 1

s−1 − limN!∞ s
∫ N

1
{x}
xs+1 dx.

Corollary 5.43.

ζ(s) =

N∑
n=1

1

ns
+
N1−s

s− 1
− s

∫ ∞

N

{x}
xs+1

dx.

Corollary 5.44. ζ(s) ̸= 0 for all s with Re(s) ⩾ 1.

Proof. We’ve known ζ(s) ̸= 0 for Re(s) > 1. Suppose ζ(s) = 0 for some s = 1+ it with t ̸= 0. Since

ζ(s) is analytic at s = 1+ it, we have limσ!1+
ζ(σ+it)
σ−1 = limσ!1+

ζ(σ+it)−ζ(1+it)
σ−1 = ζ ′(1+ it). Also,

since (σ − 1)ζ(σ)! 1 as σ ! 1+, (σ > 1)

lim
σ!1+

|ζ ′(1 + it)|4|ζ(σ + 2it)| = lim
σ!1+

∣∣∣∣ζ(σ + it)

σ − 1

∣∣∣∣4|ζ(σ + 2it)|

= lim
σ!1+

1

σ − 1

1(
(σ − 1)ζ(σ)

)3 ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ⩾ 1

σ − 1
.

So as σ ! 1+, ζ(σ+2it)!∞, a contradiction since ζ(s) has no poles except s = 1 for σ ⩾ 1. Hence
our assumption that ζ(1 + it) = 0 must be false, and hence ζ(s) ̸= 0 for all s with Re(s) ⩾ 1.

Question 5.45. Since we know that for t > 0, |ζ(1 + it)| > 0, can we obtain upper bounds on
|ζ(s)|, s = σ + it, σ > 1? Note |ζ(s)− 1| =

∑
n⩾2

1
|ns| ⩽

1
2σ +

∫∞
2

1
xσ dx.

Assume t ⩾ 0.

Let r∗(s) = −s
∫∞
1

x−⌊x⌋− 1
2

xs+1 dx. Check |r∗(s)| ⩽ |s|
2σ using

∣∣ 1
xs

∣∣ = 1
xσ . Hence for |s− 1| > 1,

|ζ(s)| < 3
2 + |s|

2σ <
3
2 + σ

2σ + t
2σ = 2 + t

2σ . This is linear in t: not a very good bound. If we assume
t is a little bigger, say t ⩾ 2, then we can obtain better bounds.

Once we know that ζ has no zeros with s = 1+ it, we’ll also know (since it has no poles except

at s = 1 and no zeros when Re(s) ⩾ 1) that ζ′(s)
ζ(s) = d

ds log(ζ(s)) has a pole at 1 and no other

poles when Re(s) ⩾ 1. Hence ζ(s) − ζ′(s)
ζ(s) is well-behaved for Re(s) ⩾ 1. When we consider the

corresponding Dirichlet series, this will lead us to ψ(x) ∼ x and hence to π(x) ∼ x
log x and hence

PNT.
Assume now σ ⩾ 1, t ⩾ 2, s = σ + it.
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Theorem 5.46. For σ ⩾ 1 and t ⩾ 2, |ζ(σ + it)| ⩽ 4 + log t.

Proof. Prove for σ > 1, and deduce for σ = 1 by continuity (since t ⩾ 2, we avoid s = 1).

ζ(s) =
∑N

n=1
1
ns + N1−s

s−1 + rn(s), where rn(s) = −s
∫∞
N

{x}
xs+1 dx. So |rn(s)| ⩽ |s|

σNσ .

So for fixed σ > 1, t ⩾ 2, put N = ⌊t⌋,
∣∣∣∑N

n=1
1
ns

∣∣∣ ⩽
∑N

n=1
1
n < 1 + logN ⩽ 1 + log t,∣∣∣N1−s

s−1

∣∣∣ ⩽ 1
|s−1| <

1
t ⩽ 1

2 , |rn(s)| ⩽
|s|

σNσ ⩽ (1+ t
σ )

1
Nσ ⩽ 1+t

N ⩽ N+2
N ⩽ 2. So |ζ(s)| < 1+log t+ 1

2+2 <

4 + log t.

Exercise 5.47. When s = 1 + it, t > 0 fixed, ζ(s) =
∑N

n=1
1
ns + e−it log N

it + O( 1
N ). So the partial

sum asymptotically approach to a circle of radius 1
t around ζ(1 + it).

Also want upper bounds on ζ ′(s). By previous example,

ζ ′(s) =

N∑
n=1

log n

ns
− N1−s

s− 1
logN − N1−s

(s− 1)2
−
∫ ∞

N

{x}
xs+1

dx+ s

∫ ∞

N

{x} log x
xs+1

dx.

Let I1(s) =
∫∞
N

{x}
xs+1 dx and I2(s) =

∫∞
N

{x} log x
xs+1 dx. Then for fixed σ > 1, t ⩾ 2, setting N = ⌊t⌋.

Then
∣∣∣∑N

n=1
logn
ns

∣∣∣ ⩽ ∣∣∣∑N
n=1

logn
n

∣∣∣ ⩽ 1
2 (logN)2 + 1

8 ⩽ 1
2 log

2 t + 1
8 ,
∣∣∣N1−s

s−1 logN
∣∣∣ ⩽ logN

t ⩽ log t
t ⩽

1
e +

1
2 ,
∣∣∣ N1−s

(s−1)2

∣∣∣ ⩽ 1
t2 <

1
4 , |I1(s)| ⩽

∫∞
1

1
x2 dx = 1

N ⩽ 1
2 , |sI2(s)| ⩽ |s|

∫∞
N

log x
xσ+1 dx ⩽ |s| logN

σNσ + 1
σ2Nσ ⩽

(1 + t
σ )

log t+1
N < (1 + t

σ )(logN + 1) < 2(log t+ 3)? Putting it together,

|ζ ′(s)| ⩽

∣∣∣∣∣
N∑

n=1

log n

ns

∣∣∣∣∣+
∣∣∣∣N1−s

s− 1
logN

∣∣∣∣+ ∣∣∣∣ N1−s

(s− 1)2

∣∣∣∣+ |I1(s)|+ |sI2(s)| ⩽
1

2
(log t+ 3)2.

So we have upper bounds for ζ(s), ζ ′(s). But we want upper bounds on ζ′(s)
ζ(s) too. So we’ll need to

improve the proof that ζ(s) ̸= 0 for s = 1+ it to obtain lower bounds on |ζ(1 + it)| or equivalently,
upper bounds on

∣∣∣ 1
ζ(1+it)

∣∣∣ so that we get |ζ(s)| < P1(log t),
∣∣∣ ζ′(s)
ζ(s)

∣∣∣ ⩽ P2(log t) for polynomials P1()

and P2(), then we can consider
∣∣∣ζ(s)− ζ′(s)

ζ(s)

∣∣∣ < P3(log t), where ζ(s)− ζ′(s)
ζ(s) has no poles for σ ⩾ 1.

We’ll then interpret this in terms of Dirichlet series ζ(s) =
∑∞

n=1
1
ns and ζ′(s)

ζ(s) =
∑∞

n=1
Λ(n)
ns .

We’ll show that since
∣∣∣ζ(s)− ζ′(s)

ζ(s)

∣∣∣ < P3(log t), the function A(x) =
∑

n⩽x(1− Λ(n)) will have

A(x) = o(x), which will imply Ψ(x) =
∑

n⩽x Λ(n) will satisfy Ψ(x) ∼ x. This will imply the Prime

Number Theorem, π(x) ∼
∫ x

2
1

log tdt.

Theorem 5.48. Suppose for all σ ⩾ 1 and t ⩾ t0, we have bounds M1(t),M2(t) ⩾ 1 so that

|ζ(σ + 2it)| < M1(t) and |ζ ′(σ + it)| < M2(t). Then
∣∣∣ 1
ζ(σ+it)

∣∣∣ ⩽ 25M1(t)M2(t)
3. In particular, with

t0 = 2, M1(t) = 4 + log t < 5 + log t and M2(t) =
1
2 (3 + log t)2, we get

∣∣∣ 1
ζ(σ+it)

∣∣∣ ⩽ 4(5 + log t)7. So∣∣∣ ζ′(s)
ζ(s)

∣∣∣ ⩽ c(5 + log t)9.
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Proof. We’ll prove for σ > 1, and deduce for σ = 1 by continuity. If σ > 5
4 , the result is easy:∣∣∣ 1

ζ(s)

∣∣∣ < ζ(σ) < σ
σ−1 , where the second inequality is from

∞∑
n=1

1

nσ
< 1 +

∫ ∞

1

1

xσ
dx = 1 +

1

σ − 1
=

σ

σ − 1
<

5/4

1/4
= 5 < 25 ⩽ 25M1(t)M2(t).

So we can assume 1 < σ < 5
4 . Hence σ

σ−1 < 5
4

1
σ−1 < 21/3 1

σ−1 . So for σ ∈ (1, 5/4), the in-

equality ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ⩾ 1 implies ( 2
1/3

σ−1 )|ζ(σ + it)|4M1(t) ⩾ 1. Hence |σ + it| ⩾
(σ−1)3/4

21/4M1(t)1/4
=: f(σ). Now find η so that f(η) = 2(η − 1)M2(t) so that η − 1 = 1

25M1(t)M2(t)
⩽ 1

25

(so η < 5
4 ) (Note η − 1 = f(η)

M2(t)
= (η−1)3/4

21/4M1(t)1/4M1(t)1/4
, 24(η − 1)4M2(t)

4 = f(η)4

M2(t)4
= (η−1)3

2M1(t)
).

Then we have two cases to consider: if η ⩽ σ, then f(σ) ⩾ f(η) = 1
25M1(t)M2(t)4

; if η > σ, then

ζ(η+ it)− ζ(σ+ it) =
∫ η

0
ζ ′(x+ it)dx, so |ζ(η + it)− ζ(σ + it)| ⩽ (η− σ)M2(t) ⩽ (η− 1)M2(t). So

by the triangle inequality,

|ζ(σ + it)| ⩾ |ζ(η + it)| − (η − 1)M2(t) = 2(η − 1)M2(t)− (η − 1)M2(t) ⩾
1

25M1(t)M2(t)5
.

Completing the proof of the upper bound for 1
|ζ(s)| and hence the upper bound for

∣∣∣ ζ′(s)
ζ(s)

∣∣∣.
How does this average behaviors of a Dirichlet series affect the analytic behaviors and vice

versa? Suppose A(x) =
∑

n⩽x an ( 12 when x ∈ Z). How can we obtain information about A(x)
from f(s) =

∑
n⩾1

an

ns ? Some generating functions and complex analysis. If we could find a

generating function G(z) =
∑∞

n=1 anz
n and if G(z) converges inside |z| < R, then for 0 < r < R

we’d have an = 1
2πi

∮
|z|=r

G(z)
zn+1 dz. So An =

∑
k⩽n ak, An = [zn]G(z)

1−z . So if r < min(1, R),

An = 1
2πi

∮
|z|=r

G(z)
(1−z)zn+1 dz.

Exercise 5.49. Go back through notes and find where we used integrals to transform zn into 1
ns .

Review: ζ has a simple pole at s = 1 and no zeros with Re(s) ⩾ 1; |ζ(1 + it)| < P1(log|t|) for

|t| ⩾ 2; ζ′

ζ has a simple pole at s = 1 and no other poles for Re(s) ⩾ 1; since ζ ′(s) ⩽ P2(log|t|), |t| ⩾

2, s = 1 + it and
∣∣∣ 1
ζ(s)

∣∣∣ ⩽ P3(log|t|), s = 1 + it, |t| ⩾ 2, we have
∣∣∣ ζ′(s)
ζ(s)

∣∣∣ < P4(log|t|) for |t| ⩾ 2.

So by making the polynomials have even degree (which we can do) when adding positive con-

stants, we can extend
∣∣∣ ζ′(s)
ζ(s)

∣∣∣ ⩽ P (log|t|) for all s = 1 + it, t ̸= 0. Hence
∣∣∣ζ(s)− ζ′(s)

ζ(s)

∣∣∣ ⩽ P5(log|t|)
for all s = 1 + it.

Dirichlet series

ζ(s)− ζ ′(s)

ζ(s)
=
∑
n⩾1

1− Λ(n)

ns
.

We want to conclude that if f(s) has no poles for Re(s) ⩾ 1 and f(s) =
∑

n⩾1
an

ns and (some
condition about |f(s)| not growing too fast on s = 1+it), then A(x) =

∑
n⩽x an has nice behaviors,

say A(x) = o(x). This would prove PNT! Then we’d have
∑

n⩽x(1−Λ(n)) = o(x). So
∑

n⩽x Λ(n) =∑
n⩽x 1−o(x) = ⌊x⌋−o(x) = x+o(x). Hence Ψ(x) ∼ x. Thus Π(x) ∼ Li(x) by Riemann summation,

so π(x) ∼ Li(x) by Mobius inversion.
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Note 5.50. We don’t know that an is small: it can be relative large: |an| = log n − 1 when n is
prime. This means we’re not going to be able to use any sorts of convergence results, especially

since the series we’re subtracting ζ(s) and ζ′(s)
ζ(s) both fail to converge at s = 1. We’re going to

need cancellations in the summands of A(x) to help us out. So suppose we have f(s) =
∑

n⩾1
an

ns ,
A(x) =

∑
n⩽x an. What information about A(x) can we obtain from information about f(s)?

Some tools:

(a) Cauchy’s residue theorem: Suppose f(s) has a simple pole at s0 and f(s) − r−1

s−s0
= r0 + (s −

s0)r1(s) and r1(s) is analytic inside a domain D. Then provided Γ lies inside D (so in particular it
encloses no other poles of f(s)!) and encloses s0, then

1

2πi

∮
Γ

f(s)ds = r−1.

(b) If Γ is a curve of length L and if |f(s)| ⩽M for s on Γ, then
∣∣∮

Γ
f(s)ds

∣∣ ⩽ML.

(c) Principal values: suppose f(s) is such that for each T > 0,
∫ c+iT

c−iT
f(s)ds =

∫ c+iT

c−iT
f(c + iT )idt

exists, integral along the line c+ it, |t| ⩽ T , and if limT!∞
∫ c+iT

c−iT
f(s)ds exists, we’ll write∫

Lc

f(s)ds = lim
T!∞

∫ c+iT

c−iT

f(s)ds

for the principal value of this integral.

Note it doesn’t imply the integral converges: for that we’d need distinct upper and lower bounds
for T, T ′. Hence we’ll take advantage, perhaps, of cancellation in the integral.

(d) (Shifted) Heaviside function E(x) =

{
1 if x ⩾ 1
0 if x < 1

. Fact. If x > 0 and c > 0, then

1
2πi

∫
Lc

xs

s2 ds = E(x) log x. Why log x? xs = es log x =
∑∞

k=0
(s log x)k

k! . Let c1, c2 be the portions of

the circle of radius R =
√
c2 + T 2 to either side of Lc,T .

R

c

−T

T

c1 c2
Lc,T

So
1

2πi

∮
c1∪c2

xs

s2
ds− 1

2πi

∮
c1∪c2

∞∑
k=0

sk−2 (log x)
k

k!
ds = [s1]es log x = log x.
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So if
∫
c1

xs

s2 ds ! 0 as R ! ∞, then 1
2πi

∫
Lc

xs

s2 ds = log x. Want to show this holds if x ⩾ 1.

Conversely, if limR!∞
∮
c2

xs

s2 ds = 0, then since Lc,T ∪ c2 doesn’t enclose 0,
∫
Lc,T∪c2

xs

s2 ds = 0, so
1

2πi

∮
Lc

xs

s2 ds = 0. Want to show this holds if x < 1.

Theorem 5.51. 1
2πi

∫
Lc

xs

s2 ds = E(x) log x.

Proof. We want to show

(a) if x ⩾ 1,
∫
c1

xs

s2 ds = 0 as R!∞;

(b) if x < 1,
∫
c2

xs

s2 ds! 0 as R!∞.

Assume x ⩾ 1. Then on c1, Re(s) < c, so |x|s < |xc|, then
∣∣xs

s2

∣∣ < xc

R2 on c1, so
∣∣∣ 1
2πi

∫
c1

xs

s2 ds
∣∣∣ ⩽

1
2πx

c 2πR
R2 = xc

R ! 0 as R!∞, hence 1
2πi

∫
Lc

xs

s2 ds = log x.

If x ∈ (0, 1), consider c2∪Lc,T . On c2, Re(c) > c, so xRe(s) < xc, so
∣∣∣ 1
2πi

∫
c2

xs

s2 ds
∣∣∣ ⩽ 1

2πx
c 2πR

R2 =

xc

R ! 0 as R!∞. Since
∫
c2∪Lc,T

xs

s2 ds = 0 and
∫
c2

xs

s2 ds! 0 as R!∞, we have
∫
Lc

xs

s2 ds! 0.

Likewise, using some contours c1, c2, we can prove

Proposition 5.52. If x > 0, c > 1, 1
2πi

∫
Lc

xs

s(s−1)ds = (x − 1)E(x), 1
2πi

∫
c1∪c2

( xs

s−1 − xs

s )ds =

x1 − x0 = x− 1.

Now if we let f(s) =
∑

n⩾1
an

ns and consider xsf(s) =
∑

n⩾1 an(
x
n )

s, then 1
2πi

∫
Lc

xsf(s)
s(s−1)ds “ought

to be”∑
n⩾1

an
2πi

∫
Lc

( xn )
s

s(s− 1)
ds =

∑
n⩾1

an

(x
n
− 1
)
E
(x
n

)
=
∑
n⩽x

an

(x
n
− 1
)
= x

∑
n⩽x

an
n

−
∑
n⩽x

an?

Let’s try to get there. Suppose f(s) =
∑

n⩾1
an

ns is convergent for Re(s) > 1. A(x) =
∑

n⩽x an.
Then for any c > 1 and x > 1,

1

2πi

∫
Lc

xs

s(s− 1)
f(s)ds =

∑
n⩽x

an

( 1
n
− 1

x

)
=

∫ x

1

A(y)

y2
dy.

Proof in a moment.

Theorem 5.53. Suppose f(s) =
∑

n⩾1
an

ns is absolutely convergent for Re(s) > 1. A(x) =∑
n⩽x an. Then for c > 1, c > 1,

1

2πi

∫
Lc

xs

s(s− 1)
f(s)ds =

∑
n⩽x

an(
1

n
− 1

x
) =

∫ x

1

A(y)

y2
dy.

Proof. Write xsf(x) = G(s) +H(s), where G(s) =
∑

n⩽x an(
x
n )

s and H(s) =
∑

n>x an(
x
n )

s. Since

c > 1, H(c) converges, say to M . For n > x and Re(s) ⩽ c,
∣∣( xn )s∣∣ ⩽ ∣∣ xn ∣∣c, so absH(s) ⩽M . Since

G(s) is a finite sum, 1
2πi

∫
Lc

G(s)
s(s−1)ds =

∑
n⩽x an(

x
n−1) (=

∑
n⩾1 an(

x
n−1)E( xn )).

∣∣∣ 1
2πi

∫
Lc

H(s)
s(s−1)ds

∣∣∣
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is bounded, so the integral exists, and since H(s) is analytic in Re(s) > 1, the integral is 0 (by

considering 1
2πi

∫
c2

H(s)
s(s−1)ds = 0, so

∫
Lc

H(s)
s(s−1)ds = 0). Hence

1

x

(
1

2πi

∫
Lc

G(s)

s(s− 1)
ds+

1

2πi

∫
Lc

H(s)

s(s− 1)
ds

)
=
∑
n⩽x

an(
1

n
− 1

x
) =

∫ x

1

A(y)

y2
dy.

Theorem 5.54 (Riemann-Lebesgue). Suppose φ : R ! C has a continuous derivative, and that∫∞
−∞|φ(t)|dt converges. Let F (λ) =

∫∞
−∞ eiλtφ(t)dt (which exists for all λ since

∣∣eiλt∣∣ = 1).
1

2πiF (−λ) is the Fourier transform φ(t). Then F (λ) ! 0 as λ ! ∞. Furthermore, if
∫∞
−∞ φ′(t)dt

converges and
∣∣∣∫∞

−∞ φ′(t)dt
∣∣∣ = I1 also converges, then F (λ) = − 1

iλ

∫∞
−∞ eiλtφ′(t)dt and |F (λ)| ⩽ I1

λ

giving a rate of convergence of F (λ) to 0 as λ!∞.

Proof. Let ϵ > 0. Pick (fix) T such that
∫ −T

−∞|φ(t)|dt < ϵ
3 and

∫∞
T

|φ(t)|dt < ϵ
3 . Let FT (λ) =∫ T

−T
eiλtdt = 1

iλe
iλtφ(t)|T−T − 1

iλ

∫ T

−T
eiλTφ′(t)dt by integrating by parts. Now φ′ is continuous, and

hence bounded on [−T, T ], say |φ(t)| ⩽ M for t ∈ [−T, T ], so |FT (λ)| ⩽ 1
λ |φ(T )| +

1
λ |φ(−T )| +

2
λMT = 1

λ (|φ(T )| + |φ(−T )| + 2MT ). Choose λ sufficiently large so that |FT (λ)| ⩽ ϵ
3 . Then

|F (λ)| < ϵ
3 + ϵ

3 + ϵ
3 = ϵ.

Theorem 5.55 (Fundamental). f(s) =
∑

n⩾1
an

ns converges absolutely for Re(s) > 1 to a function
analytic on a region including Re(s) ⩾ 1 except at s = 1, where it has at most a simple pole, so

f(s) =
α

s− 1
+ α0 + (s− 1)h(s),

where h(s) is analytic in a region containing Re(s) ⩾ 1, and hence there is a function P (t) and

t0 ⩾ 1, so that |f(σ + it)| ⩽ P (t) for all σ ⩾ 1, t ⩾ t0 and
∫∞
1

P (t)
t2 dt converges, then

∫∞
1

A(x)−αx
x2 dx

converges to α′ = α0 − α, A(x) =
∑

n⩽x an.

Proof. Let f(s) = α
s−1 +α0+(s−1)h(s) and φ(s) = h(s)

s . Then φ, h are both analytic on Re(s) ⩾ 1

and 1
s−1 = s

s−1 − 1. So (s − 1)h(s) = f(s) − α
s−1 − α0 = f(s) − αs

s−1 − α′. Hence φ(s) = f(s)
s(s−1) −

α
(s−1)2 − α′

s(s−1) , i.e., s(s− 1)φ(s) = f(s)− sα
s−1 − α′. So |s(s− 1)φ(s)| ⩽ P (t) + |α|+ |α′| ⩽ P1(t).∣∣∣ s

s−1

∣∣∣ = ∣∣∣ σ+it
(σ−1)+it

∣∣∣ = |(σ+it)((σ−1)−it)|
(σ−1)2+t2 . Assume this is fixed. Then |s(s− 1)| = |s||s− 1| > t2. So

|φ(s)| ⩽ P1(t)
t2 and we’ll need to check

∫∞
1

P1(t)
t2 dt converges, hence so does

∫∞
1

|φ(σ + it)|dt and

hence so does
∫∞
−∞|φ(σ + it)|dt. Now for x > 1 and c ⩾ 1, define I(x, c) = 1

2πi

∫
Lc
xs−1φ(s)ds.

Then for c > 1,

I(x, c) =
1

2πi

∫
Lc

xs−1

s(s− 1)
f(s)ds− α

2πi

∫
Lc

xs−1

(s− 1)2
ds− α′

2πi

∫
Lc

xs−1

s(s− 1)
ds

=

∫ x

1

A(y)

y2
dy − α log x− α′(1− 1

x
).

Note this is independent of c. Now we need to show I(x, 1) = limc!1+I(x,c) = I(x, 1). Check this:
use the fact that tails are small, and the functions are uniformly continuous on [−T, T ]. Hence for
x > 1,

I(x, 1) =

∫ x

1

A(y)

y2
dy − α log x− α′(1− 1

x
) =

∫ x

1

A(y)− αy

y2
dy − α′ +

α′

x
.
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So if we show limx!∞ I(x, 1) = 0, then we’ll have limx!∞
∫∞
1

A(y)−αy
y2 dy = α′. But

I(x, 1) =
1

2πi

∫ ∞

−∞
xitφ(1 + it)dt =

1

2πi

∫ ∞

−∞
eiλtφ(1 + it)dt,

where λ = log x and since
∫∞
−∞|φ(1 + it)| <∞, by the Riemann-Lebesgue Theorem, I(x, 1)! 0 as

x!∞. So we have Bunch o’stuff implies
∫∞
1

A(x)−αx
x2 dx converges. Now we need to show that the

convergence of this integral, for nice sequences an, implies the converges of A(x)
x to α as x!∞.

Proposition 5.56. SupposeA(x) is a real-valued function on [1,∞) and α is such that
∫∞
1

A(x)−αx
x2 dx

converges. Suppose further that either

(i) A(x) is non-negative and weakly increasing, or

(ii) A(x) = B(x)−(B(x)−A(x)) and B(x) and B(x)−A(x) are non-negative and weakly increasing

and for some β ∈ R,
∫∞
1

B(x)−βx
x2 dx converges.

Then A(x)
x ! α as x!∞.

Proof. First, we show (i) implies (ii): If
∫∞
1

A(x)−αx
x2 dx and

∫∞
1

B(x)−β(x)
x2 dx converge, then so does∫∞

1
B(x)−A(x)−(β−α)x

x2 dx, so if B,B −A satisfy (i), B(x)
x ! β, B(x)−A(x)

x ! β − α, then A(x)
x ! α.

Observe also since A(x) is non-negative that if A(x)
x ! α, there are only two possibilities: α = 0

or α > 0.
Case 1. α > 0: by replacing A(x) by A(x)

α , i.e., an is replaced by an

α , we may assume α = 1. So

take A(x) weakly increasing, A(x) ⩾ 0, and suppose
∫∞
1

A(x)−x
x2 dx converges. Want to show is that

if 0 < ϵ < 1
2 , we can find x0(ϵ) so that if x > x0,

∣∣∣A(x)
x − 1

∣∣∣ < ϵ. Part (a): find x1 so that if x > x1,

A(x)
x < 1+ϵ. Part (b): find x2 so that x > x2,

A(x)
x > 1−ϵ. Since

∫∞
1

A(x)−x
x2 dx converges, for every

δ > 0, we can find M(δ) so that if M1 > M0 > M ,
∣∣∣∫M2

M1

A(x)−x
x2 dx

∣∣∣ < δ. Suppose A(M0)
M0

> 1 + ϵ.

Since A(x) is weakly increasing, A(M1) ⩾ A(M0), so∫ M1

M0

A(x)− x

x2
dx ⩾

∫ M1

M0

A(M0)− x

x2
dx =

∫ M1

M0

A(M0)

x2
dx−

∫ M1

M0

x

x2
dx = A(M0)(

1

M0
− 1

M1
)−log

M1

M0
.

Now fix M1 =M0(1 + ϵ), so

A(M0)(
1

M0
− 1

M1
)−A(M0)(

1

M0
− 1

M0(1 + ϵ)
) =

A(M0)

M0

ϵ

1 + ϵ
>

1 + ϵ

1 + ϵ
ϵ = ϵ, log

M1

M0
= log(1 + ϵ).

So
∫M1

M0

A(x)−x
x2 dx ⩾ ϵ − log(1 + ϵ). Now since ϵ < 1

2 , ϵ − log(1 + ϵ) > ϵ2

3 say. In other words, we

can’t make the tail small. Lets tidy it up. Given ϵ > 0, with ϵ < 1
2 , let δ = ϵ− log(1 + ϵ) > ϵ2

3 > 0.

Now let M = M(δ) be such that if M1 > M0 > M ,
∫M1

M0

A(x)−x
x2 dx < δ. Then we must have

A(M0)
M0

⩽ 1 + ϵ. Let M1 = M0(1 + ϵ), since otherwise, a contradiction. Check similarly that for all

ϵ > 0, there exists x2 so that if x > x2,
A(x)
x > 1− ϵ.

Case 2. α = 0: then
∫∞
1

A(x)
x2 dx converges, then for every ϵ > 0, there existsM so that if x0 > M ,∫∞

x0

A(x)
x < ϵ. (*) But if A(x0)

x0
> ϵ, sinceA(x) is weakly increasing,

∫∞
x0

A(x)
x2 ⩾

∫∞
x0

A(x0)
x2 = A(x0)

x0
> ϵ,

contradicting (*). Hence A(x0)
x0

< ϵ, completing the proof.
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This puts the final nail in place in the proof of the PNT! Indeed, we have Ψ(x) =
∑

n⩽x Λ(n).

We’ve seen the Dirichlet series ζ′(s)
ζ(s) . We’ve seen that ζ′(1+it)

ζ(1+it) < P (t) for |t| > 2, where P is a

polynomial in log t. Setting f(s) = ζ′(s)
ζ(s) , we get

(a) f(s) =
∑

n⩾1
Λ(n)
ns absolutely convergent for Re(s).

(b) f(s) = 1
s−1 + c+ (s− 1)h(s), h(s) is analytic in a region containing Re(s) ⩾ 1.

(c) ζ′(1+it)
ζ(1+it) < P (t).

Hence by the fundamental theorem,
∫∞
1

Ψ(x)−x
x2 dx converges. Since Λ(n) ⩾ 0, Ψ(x) is weakly

increasing, non-negative, hence
∫∞
1

Ψ(x)−x
x2 dx converges, so Ψ(x)

x ! 1 as x!∞, which is equivalent
to π(x) ∼ Li(x) by Abel summation.

Remark. Hadamard, De la Valée-Poussin in 1896, both proved PNT in much the same way. For
decades, wondered “are all the complex analysis tools necessary”? 1948, Atle Selberg communicated
some ideas to Paul Turan, who communicated then to Paul Erdös.

Primes act somewhat randomly. Often even if we can’t prove what a sequence behavior must
be we can determine what it ought to be by heuristic, probability argument. For example, the twin
prime conjecture: infinitely many p so that p1, p2 are prime. The Goldbach conjecture: for all even
n ⩾ 4, n is the sum of two primes. The twin Goldbach conjecture: for all sufficiently large n, 6n
can be expressed as 6n = p+(6n− p) and 6n = (p+2)+ (6n− p− 2) with p, p+2, p+2, 6n− p− 2
are all prime. (When p ⩾ 3, p = 6n− 1 or p = 6n+ 1).

Why should we expect these to be true? Heuristically, the “probability” that a number n is
prime is about 1

logn by PNT.

The probability and odd n is prime is 2
logn since all even numbers are not prime. If we also rule

out odd multiple of 3, we get more like 3
logn . So probability 6n− 1, 6n+ 1 are both prime is about

3
log(6n−1)

3
log(6n+1) ≈

9
(logn)2 . So

∑
n⩽x 1{6n±1 prime} should behave like 1 +

∑
n⩾2,n⩽x

9
(logn)2 .

In studying π(x) we determined that
∑

p prime,p⩽x
1
p ∼ log log x. How does

∑
6n±1 prime,n⩽x

1
n

behave? Heuristically,∑
p prime,p⩽x

1

p
≈

∑
2⩽n⩽x

1

n log n
≈
∫ x

2

1

t log t
dt = log log t|x2 ∼ log log x,

∑
6n±1 prime,n⩽x

1

n
“≈”

∑
2⩽n⩽x

9

n(log n)2
≈
∫ x

2

1

t(log t)2
dt,

which is bounded as x!∞.
Brun invented sieve methods to prove that

∑
6n±1 prime,n⩽x

1
n converges. How many twin primes

⩽ x should we see? Should look like cx
(log x)2 .

AIM: Riemann Hypothesis, Statement equivalent to RH.
Turning to Goldbach: 2n = p + q has g(n) solutions, where g(n) > 0 for n ⩾ 2 and g(n) ∼

cn
(logn)2 + L(n).

Twin prime conjection:

π2(n) ∼
c′n

(log n)2
.
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How many twin-prime pair representations of 6n do we get? 2n = p + q = (p + 2) + (q − 2),
p, q, p+2, q− 2 are all prime. Need p, p+2 prime (so except for 3,5). So p = 6k− 1, p+2 = 6k+1
and q = 6l + 1, q − 2 = 6l − 1. So p+ q = 6k − 1 + 6l + 1 = 6(k + l). Hence 2n ≡ 0 (mod 6).

Exercise 5.57. Heuristically, how tg(6n) should grow? Also, how much spread in the graph should
we see?
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Chapter 6

Generating Functionology

Let n ∈ Z⩾0.

Definition 6.1. The power series associated with this will have a varible z and will be denoted by

f(z) = a0 + a1z + · · ·+ anz
n + · · · =

∑
n⩾0

akz
k.

Remark. Under certain circumstances, f(z) will have nice properties, e.g., when evaluating f(z)
at z = 1 or regarding f as a function of a complex variable or a rational function, etc.

Example 6.2. Let an = bn for any n ⩾ 0, where b is a constant. Then f(z) =
∑

n⩾0 b
nzn.

So bzf(z) =
∑

n⩾0 b
n+1zn+1 =

∑
n⩾1 b

nzn = f(z) − 1, i.e., f(z) = 1
1−bz . So we have a nice

representation for f(z) as a quotient of polynomial.

Example 6.3. Let a0 = 1 and an = ban−1 for any n ⩾ 1, where b is a constant. Then f(z) =
1 +

∑
n⩾1 ban−1z

n = 1 + bz
∑

n⩾1 an−1z
n−1 = 1 +

∑
n⩾0 anz

n = 1 + bzf(z), i.e., f(z) = 1
1−bz .

Example 6.4. Let a0 = 1, a1 = 2 and an = an−1 + an−2 for any n ⩾ 2.

(a) Approch 1: f(z) = 1+ 2z+
∑

n⩾2(an−1 + an−2)z
n = 1+2z+

∑
n⩾2 an−1z

n +
∑

n⩾2 an−2z
n =

1 + 2z + z
∑

n⩾1 anz
n + z2

∑
n⩾0 anz

n = 1 + 2z + z(f(z)− 1) + z2f(z), i.e., f(z) = 1+z
1−z−z2 .

(b) Approch 2: Since anz
n = an−1z

n+an−2z
n for any n ⩾ 2, we have

∑
n⩾2 anz

n = z
∑

n⩾1 anz
n+

z2
∑

n⩾0 anz
n, i.e., f(z), i.e., f(z)− 1− 2z = z(f(z)− 1) + z2f(z), i.e., f(z) = 1+z

1−z−z2 .

In C, we can write (1 − z − z2) = (1 − αz)(1 − βz), where α = 1+
√
5

2 and β = 1−
√
5

2 . So we

can write 1+z
1−z−z2 = A

1−αz + B
1−βz = A

∑
n⩾0 α

nzn + B
∑

n⩾0 β
nzn for some A,B ∈ C. Thus,

an = Aαn +Bβn = A
(

1+
√
5

2

)n
+B

(
1−

√
5

2

)n
for any n ⩾ 0. Since B

(
1−

√
5

2

)n
! 0 as n!∞, we

have the nth Fibonacci number is the nearest integer to A
(

1+
√
5

2

)n
when n is large enough.

Example 6.5. Let a0 = 1, a1 = 2 and an = an−1 + an−2 for any n ⩾ 2. Set µ1 =

[
a1
a0

]
and

µn =

[
an
an−1

]
=

[
an−1 + an−2

an−1

]
=

[
1 1
1 0

] [
an−1

an−2

]
for any n ⩾ 2. So µn =

[
1 1
1 0

]n−1

µ1.
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Remark. What can generating functions do for us?

(a) Sometimes allows us to find an exact value for a count of some type of object.

(b) When that’s not possible, perhaps can we obtain a recurrence? E.g., how many set partitions
of {1, . . . , n} are there?

(c) Find averages of values and other statistical properties of a sequence.

(d) Find asymptotics for growth rate of sequences.

(e) Prove nice properties of the sequence, e.g., monotonic log concave unimodal.

(f) Prove identities, e.g.,
∑n

j=0

(
n
j

)2
=
(
2n
n

)
.

Remark (Four Colors Theorem).

Theorem 6.6 (Tutte).

Theorem 6.7.

Corollary 6.8.

Definition 6.9. Dirichlet generating function: {an}n⩾1  ! f(s) =
∑

n⩾1
an

ns .

Definition 6.10. (a) An ordinary generating function (ogf): {an}n⩾0  ! f(x) =
∑

n⩾0 anx
n.

Purely formal series.
Useful for counting unlabelled objects, e.g., binary sequence with restrictions, partitions of integers.

(b) An exponential generating function (egf): {an}n⩾0  ! f(x) =
∑

n⩾0
anx

n

n! .
Useful for counting labelled objects, e.g., set partition: labelled trees, hands of cards.

Remark. Generally, egf’s tend to be more useful when the number of objects grows faster than
exponentially in n.

Example 6.11. (a) an = 1
n! for any n ⩾ 0, ogf f(x) = ex =

∑
n⩾0

xn

n! .

(b) an = 1 for any n ⩾ 0, egf f(x) = ex =
∑

n⩾0
xn

n! .

Remark. Note ex =
∑

n⩾0
xn

n! for all x ∈ C. Let x > 0. Then xn

n! < ex, i.e., n! > xn

ex . Let x = n,

n! > (ne )
n. The truth is n! ≈

(
n
e

)n√
2πn.

Can we improve this? Maximize xne−x. Since d
dx (x

ne−x) = (nxn−1 − xn)e−x, it is maximized at
x = n.
Can we do a better job of comparing ex and the terms around xn

n! ? Compare xn+k

(n+k)! to xn

n! at

x = n for k = −l, . . . , l, where l is something like n1/2. This method works very well. For many
combinatorial sequence it gives a lower bound for an ogf from reality by c

√
n.

Remark (Notation, due to Knuth). If f(x) =
∑

n⩾0 anx
n, then

[xn]f(x) = an, [x
n] = “the coefficient of xn in”.

If g(x) =
∑

n⩾0 bn
xn

n! , then [x
n

n! ]g(x) = bn.
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Remark. Some useful series to know:
∑

n⩾0 x
n = 1 + x + x2 + · · · = 1

1−x . Euler introduces

that we can operate
∑

n⩾0 anx
n by x d

dx : x d
dx

∑
n⩾0 anx

n =
∑

n⩾1 nanx
n. So

∑
n⩾1 nx

n =

x d
dx

1
1−x = x

(1−x)2 . Moreover, we can integrate it to get − log(1− x) =
∫ x

0
1

1−tdx =
∫ x

0

∑
n⩾0 t

ndt =∑
n⩾0

∫ x

0
tndt =

∑
n⩾0

xn+1

n+1 =
∑

n⩾1
xn

n .

Theorem 6.12 (Binomial Theorem). We have the following versions.

(a) Version A.
∑n

k=0

(
n
k

)
xk = (1+ x)n, where

(
n
k

)
= n(n−1)···(n−k+1)

k! This formula works even if n
is not a nonnegative integer.

(b) Version B. If n ̸∈ N, then (1 + x)n =
∑

k

(
n
k

)
xk. Useful convention: sum over all k for which

the summand is defined. (1+x)−1 =
∑

k

(−1
k

)
xk, where

(−1
k

)
= (−1)(−2)···(−k)

k! = (−1)k. So we have
1

1+x = (1 + x)−1 =
∑

k⩾0(−1)kxk. Then 1
1−x = (1 − x)−1 =

∑
k⩾0(−1)k(−x)k =

∑
k⩾0 x

k. Let

m ∈ N. Then 1
(1−x)m = (1− x)−m =

∑
k⩾0

(−m
k

)
(−1)kxk, where(

−m
k

)
=

(−m)(−m− 1) · · · (−m− k + 1)

k!
= (−1)k

m · · · (m+ k − 1)

k!
= (−1)k

(
m+ k − 1

m− 1

)
.

So 1
(1−x)m = (1− x)−m =

∑
k⩾0

(
m+k−1
m−1

)
xk.

(c) Version C. 1
(1−x)1/2

= (1− x)−1/2 =
∑

k⩾0(−1)k
(−1/2

k

)
xk, where(

− 1
2

k

)
=

(− 1
2 ) · · · (−1/2− k + 1)

k!
= (−1)k

1 · 3 · · · (2k − 1)

2kk!
= (−1)k

2k!

2kk!2 · 4 · · · · 2k
=

(−1)k

4k

(
2k

k

)
.

So 1
(1−x)1/2

= (1− x)−1/2 =
∑

k⩾0
1
4k

(
2k
k

)
xk and then (1− 4x)−1/2 =

∑
k⩾0

(
2k
k

)
xk.

(d) Version C. Let z be a variable. (1+ x)z =
∑

k⩾0

(
z
k

)
xk. This is a bivariate generating function

and its terms are monomials of the form aijx
izj, where j ⩾ i. We will revisit these coefficients

aij’s later.

Remark. ex =
∑

k⩾0
xk

k! . Why is the first binomial theorem true? Note if
(
n
k

)
denotes the number of

k-subsets of {1, . . . , n}, then
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
. Obverse that

(
0
0

)
= 0!

0!0! is true and that f(n, k) =
n!

k!(n−k)! satisfies f(n, k) = f(n − 1, k) + f(n − 1, k − 1). Hence by induction on n, f(n, k) =
(
n
k

)
.

Also, note #P({1, . . . , n}) = 2n. So
∑n

k=0

(
n
k

)
xk is the generating function for subsets of {1, . . . , n},

where k marks the size of the subset (1+x)n = (1 + x) · · · (1 + x)︸ ︷︷ ︸
n times

corresponding to picking a subset

of {1, . . . , n} one element at a time. Hence (1 + x)n =
∑n

k=0

(
n
k

)
xk.

Note that
∞∑

n=0

n∑
k=0

(
n

k

)
xkyn =

∞∑
n=0

(1 + x)nyn =

∞∑
n=0

((1 + x)y)n =
1

1− (1 + x)y
=

1

1− y − xy

=
1(

1− xy
1−y

)
(1− y)

=
1

1− y

∑
k⩾0

xk
(

y

1− y

)k

=
∑
k⩾0

xk
yk

(1− y)k+1
.

Since xk term dominates,
(
n
k

)
= [ynxk] 1

1−y−xy = [yn] yk

(1−y)k+1 = [yn−k] 1
(1−y)k+1 . This implies

the binomial theorem for negative exponents that we derived eariler.
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6.1 Set partions and Permutation

Definition 6.13. A set partion of {1, . . . , n} into k parts is a set {S1, . . . , Sk} such that ∅ ≠ Sj ⊆
{1, . . . , n}, Si ∩ Sj = ∅ for any 1 ⩽ i ̸= j ⩽ k and

⊔k
j=1 Sj = {1, . . . , n}.

Remark (Notation). Kruth, Wif and only if, etc. :

{
n
k

}
. Stanley: S(n, k).

Definition 6.14. The numbers S(n, k) are called Stirling numbers of the second kind.

Remark. facts

(a) S(0, 0) = 1.

(b) S(n, 0) = 0 for any n ∈ N.

(c) S(n, 1) =

{
1 if n ⩾ 1
0 if n = 0

.

(d) S(n, n) = 1 for any n ∈ Z+.

(e) S(n, n+ t) = 0 for any n ∈ Z+ and t ∈ N.

Remark. How can we compute a table of S(n, k)? Consider a set partition of {1, . . . , n} into k
parts. Either n is a part of by itself, or n is a part of size ⩾ 2. So S(n, k) = S(n−1, k−1)+kS(n−
1, k). Then we can compute S(n, k) for all k.

S(0, 0) = 1
S(1, 0) = 0 S(1, 1) = 1
S(2, 0) = 0 S(2, 1) = 1 S(2, 2) = 1

S(3, 1) = 1 S(3, 2) = 3
S(3, 3) = 1.

Definition 6.15. Define the Bell number B0 = 1, Bn =
∑n

k=0 S(n, k) for any n ∈ N.

Remark. Is there a formula for Bn? How fast does Bn grow?
Is there a nice form for the ogf for Bn?
Is there a nice form for the egf for Bn?
Is there a nice way for to compute Bn? E.g., a recurrence.

Remark. What about generating functions for S(n, k)? An(y) =
∑

k S(n, k)y
k, Bk(x) =

∑
n S(n, k)x

n

and C(x, y) =
∑

n,k S(n, k)x
nyk.

(a) Bk(x) = x
∑

n S(n−1, k−1)xn−1+kx
∑

n S(n−1, k)xn−1, i.e., Bk(x) = xBk−1(x)+kxBk(x).

So Bk(x)(1− kx) = xBk−1(x). Then B0(x) = 1, B1(x) =
1

1−x , B2(x) =
x2

(1−x)(1−2x) , · · · , Bk(x) =

xk

(1−x)···(1−kx) . Use partial fractions to expand RHS as
∑k

j=1
αj

1−jx . Fix 1 ⩽ r ⩽ k, multiply by

(1− rx) and evaluate at x = 1
r , Bk(x) becomes

(1/r)k

(1− 1/r) · · · (1− (r − 1)/r)(1− (r + 1)/r) · · · (1− k/r)
=

1

r

1

(r − 1) · · · (1)(−1) · · · (−(k − r))
.
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RHS is αr. So αr = (−1)k−r

r!(k−r)! = (−1)k−r

k!

(
k
r

)
. Hence S(n, k) = [xn]Bk(x) =

∑k
j=1[x

n]
αj

1−jx =∑n
j=1 αjj

n =
∑n

j=1
(−1)k−j

k!

(
k
j

)
jn. When k > n, S(n, k) = 0.

k!S(n, k) =
∑k

j=1(−1)k−j
(
k
j

)
jn is the number of onto functions from {1, . . . , n} to {1, . . . , k}.

(b) An(y) =
∑

k S(n, k)y
k = y

∑
k S(n − 1, k − 1)yk−1 +

∑n
k=0 kS(n − 1, k)yk = yAn−1(y) +

y d
dyAn−1(y), i.e., An(y) = y(1 +Dy)An−1(y).

Define

bn :=

∞∑
k=0

Sn,k =

∞∑
k=0

1

k!

k∑
j=1

(−1)k−j

(
k

j

)
jn =

∞∑
j=0

jn

j!

∞∑
k=j

(−1)k−j

(k − j)!
=

1

e

∞∑
j=0

jn

j!
.

So we try to find a nice expression for B(x) =
∑

n⩾0
bnx

n

n! .

B(x)− 1 =
1

e

∑
n⩾1

∞∑
j=0

jn

n!j!
xn =

1

e

∑
j⩾1

1

j!

∑
n⩾1

(jx)n

n!
=

1

e

∑
j⩾1

1

j!
(ejx − 1)

=
1

e

∑
j⩾1

(ex)j

j!
− 1

e

∑
j⩾1

1

j!
=

1

e
(ee

x

− 1)− 1

e
(e− 1) = ee

x−1 − 1.

So B(x) = ee
x−1.

Why ee
x−1 is more natural than ee

x

. Note ee
x−1 =

∑∞
j=0

(ex−1)j

j! =
∑∞

j=0
(x(1+ x

2!+
x2

3! +··· ))j

j! . So the

jth term in the expansion has all powers of x ⩾ j. To compute [x
n

n! ]
∑∞

j=0
(x(1+ x

2!+
x2

3! +··· ))j

j! , we only

have to consider finitely many different j’s and only finite partitions of (1 + x
2! +

x2

3! + · · · )j .
If f is a generating function, then we will be able to consider ef(x) as a generating function if
and only if f(0) = 0. So

∑
n⩾0 bn

xn

n! = B(x) = ee
x−1. We want to obtain from this expression a

recurrence for bn. Apply x d
dx to the log of both sides, we have

∑
n⩾0 nbn

xn

n! = xexee
x−1 = xexB(x).

So nbn = [x
n

n! ]xe
xB(x) = n[ xn−1

(n−1)! ]e
xB(x). Hence if n > 0, bn = [ xn−1

(n−1)! ]e
xB(x) = [ xn−1

(n−1)! ]e
xee

x−1.

Since ex =
∑

i⩾0 1
xi

i! and ee
x−1 =

∑
j⩾0 bj

xj

j! , we have exee
x−1 =

∑∞
n=0

xn

n!

∑n
k=0

(
n
k

)
bk. So

[ xn−1

(n−k)! ]e
xee

x−1 =
∑n−1

k=0

(
n−1
k

)
bk. Thus, bn =

∑n−1
k=0

(
n−1
k

)
bk. Then b0 = 1, b(1) = 1, · · · .

How fast does bn grow? Note bn
n! x

n < ee
x−1 for all x ∈ R, i.e., bn

n! <
ee

x
−1

xn . Let d
dx

ee
x−1

xn =
ee

x−1(xex−n)
xn+1 = 0. Since ee

x−1 > 0 for any x ∈ R, we have xex − n = 0, i.e., x ≈ log n− log log n ≈
log n. Clearly, ee

x−1

xn obtains its minimal around log n. So bn
n! <

ee
log n−1

(logn)n , i.e., bn < n! e
elog n−1

(logn)n =

n! en−1

(logn)n = 1
e

(
e

logn

)n
n! ≈ 1

e

(
n

logn

)n √
2πn.

Remark. (a) ( ∞∑
i=0

cix
i

) ∞∑
j=0

djx
j

 =

∞∑
n=0

n∑
k=0

ckx
kdn−kx

n−k =

∞∑
n=0

n∑
k=0

ckdn−kx
n

=

∞∑
n=0

(c0dn + c1dn−1 + · · ·+ cnd0)x
n.
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(b) ( ∞∑
i=0

ai
xi

i!

) ∞∑
j=0

bj
xj

j!

 =

∞∑
n=0

n∑
k=0

ak
xk

k!
bn−k

xn−k

(n− k)!
=

∞∑
n=0

xn

n!

n∑
k=0

(
n

k

)
akbn−k.

Example 6.16. Can we give a combinatorial explanation of bn =
∑n−1

k=0

(
n−1
k

)
bk?

Example 6.17. Using the x d
dx operator, we can get a useful information. Let f(x) =

∑
n⩾0 anx

n

and g(x) =
∑

n⩾0 bnx
n.

(a) Consider f(x) = eg(x). Assume g(0) = 0. Then log f = g, so x d
dx log f(x) = x d

dxg(x), i.e.,
xf ′(x)
f(x) = xg′(x), i.e., xf ′(x) = f(x)(xg′(x)). Then we have

∑
n⩾1

nanx
n =

∑
n⩾0

anx
n

∑
n⩾1

nbnx
n

 .

So nan =
∑n−1

k=0 ak(n− k)bn−k for any n ∈ N. Thus, just as eex−1, we can compute the coefficients
of eg recursively.

(b) Consider f(x) = g(x)k, here g(0) is not assumed to be 0 and if k < 0, it will be assumed
to be 1. Similarly, xf ′(x) = kxg′(x)g(x)k−1, i.e., xf ′(x)g(x) = kxg′(x)g(x)k = kxg′(x)f(x). So∑

n⩾1 nanx
n
∑

n⩾0 bnx
n =

∑
n⩾1 knbnx

n
∑

n⩾0 anx
n. Hence

∑n
j=1 ajbn−j =

∑n
j=1 kjbjan−j . So

anb0 =
∑n

j=1 kjbjan−j −
∑n−1

j=1 ajbn−j for any n ∈ N. If g(0) = b0 = 0, then we can’t do this.
But if k ∈ N and br ̸= 0 is the first nonzero coefficient of g, then we can write g(x) = brx

rh(x)
with h(0) = 1. Then f(x) = g(x)k = bkrx

rkh(x)k. So we can compute, for example, for k = −1,

f(x) = 1
g(x) provided g(0) ̸= 0, i.e., f(x)g(x) = 1, so [xn]f(x)g(x) =

{
1 if n = 0
0 if n > 0

. So a0 = 1
b0

and
∑n

k=0 akbn−k = 0, i.e., an = −
∑n−1

k=0 akbn−k for any n ∈ N. When g is a polynomial of degree

d with constant term 1, an = −
∑n−1

k=max{n−d,0} akbn−k for any n ∈ N, this shows that an satisfies
a d-term recurrence.

(c) Consider f(x) = log g(x). Assume g(0) = 1. Then xf ′(x) = x d
dx log g(x) = x g′(x)

g(x) , i.e.,

xf ′(x)g(x) = xg′(x), etc. Alternately f(x) = log(1 + xh(x)) =
∑∞

k=1(−1)k−1 xkh(x)k

k .

(d) When can we compute f(g(x)) as a generating function?

Definition 6.18. An integer partition λ ⊢ n is a nonincreasing sequence λ1 ⩾ λ2 ⩾ · · · ⩾ λk ⩾ 1
with λ1, . . . , λk ∈ N such that n = λ1 + · · ·+ λk. Define i(λ) = (i1, i2, · · · ), where ij is the number
of copies of j in λ.

Remark. (a) Note # parts of λ is
∑

i⩾0 ij .

(b) i(λ) has only finitely many nonzero terms. For example, the partition 5 = 3 + 1 + 1 can be
written as (2, 0, 1, 0, 0, · · · ).

(c) There is a bijection between integer partition and nonnegative integer sequences with finitely
many positive entries.
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(d) Partitions were studied extensively by Euler.

Definition 6.19. Define p(n) be the number of integer partitions of n.

Remark. n = 0, the sum of no parts, p(0) = 1;
n = 1, 1, p(1) = 1;
n = 2, 2, 1 + 1, p(2) = 2;
n = 3, 3, 2 + 1, 1 + 1 + 1, p(x) = 3;
n = 4, 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1, p(4) = 5;
n = 5, 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, p(5) = 7;
Can we get an expression for p(x) =

∑∞
n=0 p(n)x

n?

Remark. Choose a partition of n by picking i1, picking i2, · · · .

(a) How many ways can we write n as a sum of 1’s? The generating function for this is
∑

n⩾0 1x
n =

1
1−x =:

∑
k⩾0 akx

k.

(b) How many ways can we write n as a sum of 2’s? 0 if n is oddr; and 1 if n is even. gf =∑
n even x

n =
∑

k⩾0 x
2k = 1

1−x2 =:
∑

k⩾0 bkx
k.

(c) How many ways can we write n as a sum of 1’s and 2’s?∑
k

(# ways of writing k as sum of 1’s)(# ways of writing n− k as a sum of 2’s)

=
∑
k⩾0

akbn−k = [xn]

∑
k⩾0

akx
k

∑
k⩾0

bkx
k

 .

Remark. Suppose we have two sets S, T of objects with weights.
egf for g is

∑
k⩾0 x

k(# objects of weights k in S) =
∑

k⩾0 akx
k.

egf for T is
∑

k⩾0 x
k(# objects of weights k in T ) =

∑
k⩾0 bkx

k.
Then the number of pairs (s, t), s ∈ S, t ∈ T of total weight n is

n∑
k=0

akbn−k = [xn]

∑
k⩾0

akx
k

∑
k⩾0

bkx
k

 .

The # ways to represent n as a sum of 1’s and 2’s in non-decreasing order is the # ways of
choosing i1, i2 so that i1 + 2i2 = n, which is [xn] 1

x−1
1

1−x2 . # ways of writing
∑

n⩾0 p(n)x
n =∏

j=1
1

1−xj . [xn]
∏∞

j=1
1

1−xj = [xn]
∏n

j=1
1

1−xj = [xn]
∏n

j=1(1 + xj + 22j + · · · + x⌊n/j⌋j), which is
the product of n polynomials each of degree leqn. So for any n, this gives a finite algorithm for
computing p(n) and indeed for generating all p(n) partitions, since if we consider

∏∞
j=1

1
1−xjyj

and

truncate products and series. [xn] 1
1−xjyj

will be a polynomial in y1, . . . , yn. each monomial will

be yi11 · · · yinn , where (i1, . . . , in, 0, 0, · · · ) is the sequence of multiplicities for λ. f(x) =
∏∞

j=1
1

1−xj ,

log f(x) =
∑∞

j=1 − log(1− xj) =. Note − log(1− xj) =
∑∞

k=1
xjk

k ,

[xn]

∞∑
j=1

− log(1− xj) =
∑
d|n

1

d
=

1

n

∑
d|n

n

d

 =
1

n

∑
d|n

d =
1

n
σ(n).
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So log f(x) =
∑

n⩾1 x
n σ(n)

n = L(x), i.e., f = eL.

Remark. Last time we saw how to compute the exponential of a power series with constant
coefficients 0.
Exercise: find a recurrence for p(n) in terms of p(0), p(1), . . . , p(n− 1).
Faa DiBrun considered f(g(x)).

(a) g(x) is a power series, f(x) is a polynomial,

(b) f(x) is a power series, g(x) is a power series with g(0) = 0.

Coefficient of xn is [xn]f(g(x)) = 1
n!

(
d
dx

)n
f(g(x))

∣∣
x=0

. So it is enough to be able to compute(
d
dx

)n
f(g(x)). Note d

dxf(g(x)) = f ′(g(x))g′(x), d
dx

(
d
dxf(g(x))

)
= f ′′(g(x))(g′(x))2+f ′(g(x))g′′(x),(

d

dx

)3

f(g(x)) = f ′′′(g′)3 + 2f ′′g′′g′ + f ′′g′′g′ + f ′g′′′ = f (3)g(1)
3
+ 3f (2)g(2)g(1) + f (1)g(3)

= f (3)g1,1,1 + 3f (2)g2,1 + f (1)g3 =
∑
λ⊢3

cλf
(π(λ))gλ,

where λ is a partiton of n, π(λ) = # partitiones in λ and if λ = λ1 + · · ·+ λk, gλ = g(λ1) · · · g(λk).(
d
dx

)n
f(g(x)) =

∑
λ⊢n cλf

(π(λ))gλ.
Exercise: What are cλ’s? Put f(y) = ey, compute cλ for λ 7! n for n ⩽ 5. Conjecture a form for
cλ in terms of λ1, . . . , λk and i1, . . . , in. Prove you formula works.

6.2 The Magic of Power Series

Remark. The number of partitions of n into odd parts = the number of partitions of n into distinct
parts.
Partitions into distinct parts. i1 = 0 or 1, i2 = 0 or 1, i3 = 0 or 1.
Let f(x) = (1 + x)(1 + x2)(1 + x3) · · · . Then

1− x

1− x
f(x) =

(1− x2)(1 + x2)(1 + x3)(1 + x4)

1− x
=

(1− x4)(1 + x3)(1 + x4)(1 + x5)(1 + x6) · · ·
1− x

=
(1− x4)(1− x3)(1 + x3)(1 + x4)(1 + x5)(1 + x6) · · ·

(1− x)(1− x3)

=
(1 + x5)(1− x6)(1− x8)(1 + x6)(1 + x7) · · ·

(1− x)(1− x3)

= · · · = 1

(1− x)(1− x3)(1− x5)(1− x7) · · ·

=
(1 + x)

(1− x2)(1− x3)(1− x5) · · ·
=

(1 + x)(1 + x2)

(1− x3)(1− x4)(1− x5) · · ·

=
(1− x2)(1− x4)(1− x6)(1− x8) · · ·

(1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6) · · ·
= (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · .
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Remark (Euler Maclaurin). Suppose we wish to estimate
∑b

k=a f(k), where f is a nice smooth
function. We might recall from calculus II that is similar to

∫
f(x)dx integrating over an interval

near [a, b] of width b− a+ 1. This leads to the equation of how big is

f(k)−
∫ k

k−1

f(x)dx ≈
∫ k

k−1

(f(k)− f(x))d(x− ck) = (x− ck)(f(k)− f(x))|kk−1 +

∫ k

k−1

(x− ck)f
′(x)dx

= −(x− ck)f(x) |kk−1 +

∫ k

k−1

(x− ck)f
′(x)dx.

We’re going to want to repeat the process of using integration by parts. It turns out that it is a

very good thing if we choose ck so that
∫ k

k−1
(x − ck)dx = 0, i.e., ck = k − 1/2 for each k. Then

x− ck = x− (k− 1/2) = x− (k− 1)− 1/2 = {x}− 1/2 for x ∈ [k− 1, k], where {x} is the fractional
part of x. Then∫ k

k−1

(f(k)− f(x))dx = −({x} − 1/2)f(x)|kk−1 +

∫ k

k−1

({x} − 1/2)f ′(x)dx

= f(k − 1)/2− f(k)/2 +

∫ k

k−1

({x} − 1/2)f ′(x)dx.

So
b∑

k=a

f(k) =

∫ b

a−1

f(x)dx+
1

2

b∑
k=a

(f(k − 1))− f(k) +

∫ b

a

f ′(x)r1(x)dx.

· · · . Claim
∫ n

1
1
x ({x} − 1/2)dx converges as n!∞.∫ k

k−1

1

x
({x} − 1/2)dx =

∫ k−1/2

k−1

1

x
({x} − 1/2)dx+

∫ k

k−1/2

1

x
({x} − 1/2)dx

= −
∫ k−1/2

k−1

1

x
(1/2− {x})dx+

∫ k

k−1/2

1

x
({x} − 1/2)dx = O(1/k2)

Exercise. Find an explicit d so that
∫ k

k−1
1
x ({x} − 1/2)dx < d

k2 .

Consequently, log n!−n log n+n− 1
2 log n! log c for log c = 1+

∫∞
1

1
x ({x}−1/2)dx. So n!

(n
c )n

√
n
! c.

Hence n! ∼
(
n
e

)n √
nc. What is c? How can we show c =

√
2π.

Idea
∑n

k=−n

(
2n
n+k

)
= 22n = 4n.

∑n
k=−n

(
2n
n+k

)
=
(
2n
n

)∑n
k=−n

( 2n
n+k)
(2nn )

.

How big is
∑n

k=−n
( 2n
n+k)
(2nn )

? Note that

(
2n
n+k

)(
2n
n

) =

(2n!)
(n+k)!(n−k)!

(2n)!
n!n!

=
n(n− 1) · · · (n− k + 1)

(n+ 1)(n+ 1) · · · (n+ k)
=

1(1− 1
n )(1−

2
n ) · · · (1−

k−1
n )

(1 + 1
n )(1 +

2
k ) · · · (1 +

k
n )

.

We know log(1− x) ≈ −x and log(1 + x) ≈ x, etc when x is small

Remark. Another look at n! ez =
∑

n⩾0
zn

n! . Some elementary complex analysis. We know i2 = −1.

eiθ =
∑
n⩾0

(iθ)n

n!
=
∑

n even

θn

n!
(−1)

n
2 +

∑
n odd

i
θn

n!
(−1)

n−1
2 = cos θ + i sin θ.
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Any complex number z = a + ib with a, b ∈ R. Then z = reiθ, where r = |z| =
√
a2 + b2 and

|z|2 = (a+ ib)(a− ib) = zz.
Complex analysis. Functions of a complex variable z which are well-behaved in a region D are
really well-behaved in D. In particular, if f : D ! C,

(a) first derivative exists everywhere in a disc D means second derivative does too, hence infinitely
differentiable.

(b) f(z) is well approximated by polynomials.

Integration for complex functions. Let γ be a path in C.
∫
γ
f(z)dz ≈

∑
f(zi)∆zi, where ∆zi

has a direction as well as magnitude. Now let γ be a line z0 ! z1, we can parametrize γ by
γ = {z0 + t(z1 − z0) | 0 ⩽ t ⩽ 1} and z(t) = z0 + t(z1 − z0) with

dz
dz = z1 − z0, then∫

γ

zdz =

∫ 1

0

z(t)
dz

dt
dt =

∫ 1

0

(z0 + t(z1 − z0))(z1 − z0)dt

=

(
z0t+

t2

2
(z1 − z0)

)
(z1 − z0)

∣∣∣1
0
=
z21
2

− z20
2
.

By induction, we have
∫
γ
zkdz =

zk+1
1

k+1 − zk+1
0

k+1 for any k ∈ Z+. Let p ∈ C[z] with antiderivative P .

Then
∫
γ
p(z)dz = P (z1)−P (z0), where P ′(z) = p(z). If γ = γ1+γ2, where γ1 : z0 ! z1, γ2 : z1 ! z2

are two lines, then∫
γ

=

∫
γ1

p(z)dz +

∫
γ2

p(z) = P (z1)− P (z0) + P (z2)− P (z1) = P (z2)− P (z1).

So if γ is a nice curve from z0 to z1, then approximate γ by a piecewise line, then we have
∫
γ
p(z) =

P (z1)− P (z0) and is 0 when γ is closed.

Consider zk when k ∈ Z<0 and γ = {z ∈ C | |z| = 1}. Then
∫
|z|=1

zkdz = i
∫ 2π

0
eikθeiθdθ =

i
∫ 2π

0
ei(k+1)θdθ = i 1

i(k+1)e
i(k+1)θ

∣∣2π
0
=

{
0 if k ̸= −1
2πi if k = −1

, i.e., 1
2πi

∫
|z|=1

zkdz =

{
0 if k ̸= −1
1 if k = −1

.

Same for |z| = r for other r > 0.

Remark. Let f(z) =
∑

n⩾0 anz
n be a generating function with radius of convergence R. Then

inside any open disc Dr of radius r < R centered at 0, f(z) will be as well behaved as we like. In this

case, an = 1
2πi

∫
γ

f(z)
zn+1 dz, where γ is any closed curve enclosing 0 exactly onece in counterclockwise

direction inside Dr.
ez =

∑
n⩾0

zn

n! has infinite radius of convergence. So if γn = {z
∣∣ |z| = n} = {neiθ | 0 ⩽ θ ⩽ 2π},

then

1

n!
=

1

2πi

∫
γn

ez

zn+1
dz =

1

2πi

∫ 2π

0

ene
iθ

ei(n+1)θ
ieiθdθ

=
1

2π

∫ 2π

0

en cos θ+in sin θe−inθdθ =
1

2π

∫ 2π

0

en cos θein(sin θ−θ)dθ.

First suppose θ is small, say θ << n− 1
4 , then n cos θ ≈ n−n θ2

2! +n
θ4

4 ≈ n−n θ2

2 when θ = o(n−
1
4 ). So

in this range, en cos θ = en−n θ2

2 (1+o(1)). When θ = o(n−
1
3 ), then in(sin θ−θ) = in(− θ3

3!+
θ5

5!+· · · )!
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0, so ein(sin θ−θ) ! 1. Note n−
1
2 = o(n−

2
5 ) and n−

2
5 = o(n−

1
3 ). If we let θ lie between −n− 2

5 and

n−
2
5 , we’ll get

(a) outside of this range, contribution to the integral is abot en

nn · e−n
− 1

2
2 , which is en

nn · o(1). So the
contribution to the integral is negligible.

(b) n−
2
5 , I = · · · . So as n!∞, I = nn

en
√
n2π !

∫∞
−∞ e−

x2

2 dx =
√
2π. So 1

2π ∼
(
e
n

)n 1√
2πn

. Hence

n! ∼
(
n
e

)n √
2πn.

Euler’s method: for nonnegative aj ’s, an ⩽ f(x)
xn for any x ∈ (0, R). In this case, f(x) = ex, this

was minimized.

6.3 Sequences with restrictions

The set of all finite binary strings.

Definition 6.20 (Binary strings). Binary string:

– Could have length 0, the empty string ϵ.

– Starts with some number of 0’s (possibly none).

– k blocks of positive number of 1’s followed by positive number of 0’s., but k may be 0.

– Ends with some number of 1’s (possibly none).

Example 6.21. 0001001110101. Break each binary string into maximal blocks, it is given uniquely
as an element of 0∗(11∗00∗)∗1∗, 0∗ = {ϵ, 0, 00, 000, 0000, · · · }. 1∗ = {ϵ, 1, 11, 111, 11111, · · · }.
11∗00∗ = {1i0j , i, j ⩾ 1}. (11∗00∗)∗ = set of concatenations of strings in 11∗00∗ (possibly none).
S∗ = set of concatenations of objects in S (possibly none) provided that no object is attainable in
more than one way. So we’ll not talk about {1, 11}∗ (Related to regular languages). Let’s use
generating functions in conjunction with this....
then clearly, fA∪B(x) = fA(x) + fB(x). Second if A,B are ...... (no long necessarily disjoint)
and if we consider A × B, where if a ∈ A and b ∈ B, weight((a, b)) = weight(a) + weight(b), then
fA×B(x) = fA(x)fB(x). Similarly for multiple setsA1, . . . , Ak. Suppose we weight strings by length.
String with k places has weight k. e.g., for 0∗ = {ϵ, 0, 00, 000, · · · } is 1

1−x = 1
1−(ogf for {0}) . gf for

1∗ = 1
1−x , for 11

∗ is x
1−x , for 00

∗ = x
1−x , for 11

∗00∗ = x2

1−x . (11
∗00∗)∗ has ogf 1+ x2

(1−x)2 +
(

x2

(1−x)2

)2
+(

x2

(1−x)2

)3
+ · · · = 1

1− x2

(1−x)2

. So ogf for all binary strings is 1
1−x

1

1− x2

(1−x)2

1
1−x = 1

(1−x)2−x2 = 1
1−2x =.

How many binary strings of length n have k 1’s. Bivariate ogf: x marks length, y marks ... the
number of 0’s, 0∗ ! 1

1−x , 1
∗ ! 1

1−xy . 00
∗ ! x

1−x , 11
∗ ! xy

1−xy ....

Alt. [yk][xn] 1
1−x−yx = [yk][xn] 1

1−(1−y)x = [yk](1 − y)n =
(
n
k

)
. Binary strings with/without ||.

0∗(100∗)∗{ϵ, 1}. 1
1−x

1

1− x2

1−x

(1 + x) = 1+x
1−x−x2 = A

1−αx + B
1−βx , where α = 1+

√
5

2 and β = 1−
√
5

2 .

Example 6.22. Fibonacci strings. Fn .
Fibonacci strings of length n with k 1’s? 1

1−x
1

1− x2y
1−x

(1 + xy) = 1+xy
1−x−x2y .
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Last time: 0∗(100∗)∗ = (ϵ, 1). 1
1−x · 1

1− x2y
1−x

· (1 + xy). Computing [xn] or [yk] in 1
1−x−x2y . [x

n].

we wish to write 1
1−x−x2y and A(y)

1−α(y)x + B(y)
1−β(y)x . α(y) + β(y) = 1 and αβ = −y, i.e., β = − y

α(y)

and α(y)− y
α(y) = 1, i.e., α = 1±

√
1+4y
2 . So we are goint to compute [xn] in an expression involving(

1+
√
1+4y
2

)n
. Unfortunately, this will have to wait until we’ve see Lagrange inversion. Insteed, let’s

try [yk] first.

[yk] =
1

1− x− x2y
= [yk]

1

(1− x)(1− x2

1−xy)
=

1

1− x
[yk]

1

1− x2

1−xy
=

1

1− x

(
x2

1− x

)k

.

So

[xnyk]
1

1− x− x2y
= [xn]

x2k

(1− x)k+1
= [xn−2k]

1

(1− x)k+1
=

(
−(k + 1)

n− 2k

)
(−1)n−2k = (−1)...

[xnyk]
xy

1− x− x2y
= [xn−1][y(k−1)]

1

1− x− x2y
=

(
(n− 1)− (k − 1)

k − 1

)
=

(
n− k

k − 1

)
.

So fn,k =
(
n−k
k

)
+
(
n−k
k−1

)
=
(
n−k+1

k

)
.

Corollary 6.23. Fn =
∑

k

(
n−k+1

k

)
. F0 = 1, F1 = 2, F2 = 3, F3 = 5, F4 = 8, F5 = 13.(

6
0

)
+
(
5
1

)
+
(
4
2

)
+
(
3
3

)
, 13 = 1+5+6+1. Revisiting partition function. Write λ 7! n in non-decreasing

order instead of non-increasing order. Partition are generated by 1∗2∗3∗4∗5∗ = 1
1−x

1
1−x2

1
1−x3 · · · =∏∞

i=1
1

1−xi . keep track of the number of parts: y marks each part. 1
1−xy

1
1−x2y

1
1−x3y · · · =

∏∞
i=1

1
1−xiy .

Remark. Partition into odd number of parts vs Partiton into even number of parts. Partitions
into distinct parts.

Empiracally, it appears
∏∞

i=1(−1)kx
k(2k±1)

2 . In fact,
∏∞

i=1 =.

Remark. How to use bivariate generating functions to count two aspects of partitions. Partitons
are generated by 1∗2∗3∗ · · ·n∗ · · · . 1

1−x
1

1−x2
1

1−x3 · · · = (1 + x+ x2︸︷︷︸
11

+ · · · )(1 + x2 + x4 + x6︸︷︷︸
222

· · · )(1 +

x3 + x6︸︷︷︸
33

+ · · · ) · · · . 3 + 3 + 2 + 2 + 2 + 1 + 1 ⊢ 14, a partition of 14 into 7 parts. Consider instead

1
1−xy

1
1−x2y

1
1−xny · · · = (1+xy+x2y2︸ ︷︷ ︸

11

+ · · · )(1+x2y+x4y2+x6y3︸ ︷︷ ︸
222

+ · · · )(1+x3y+x6y2︸ ︷︷ ︸
33

+x8y4) · · · .

x14y7.
We could modify this to count something different for example the number of different part sizes

used.

(1 + xy + x2y + x3y)(1 + x2y + x4y + x6y + · · · ) = (1 +
xy

1− x
)(1 +

x2y

1− x2
)(1 +

x3y

1− x3
) · · · .

Theorem 6.24 (Euler’s Theorem). Let E(n) =# partitions into even number of distinct parts.
O(n) =# partitions into odd number of distinct parts. Then

E(n)−O(n) =

{
0 if n is not a pentagonal number

(−1)k if n = k(3k+1)
2 for some k ∈ Z∏∞

i=1(1− xi) =
∑∞

k=−∞(−1)kxk(3j).
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Proof. Give a map which either takes a partition with odd number of parts (all distinct) to one
with even number, verse vice.

o o o o o o o
o o o o o o
o o o o o
o o o
o o

Trasform it to
o o o o o o o o
o o o o o o o
o o o o o
o o o

If smallest row ⩽ size of diagonal, move it up. If diagonal < size of smallest row, move it down.
Problem can rise

(a) smallest row = size of diagonal, but they intersect.

o o · · · o o o o o
o o · · · o o o o
...
o o · · · o o o
o o · · · o o

On the left, we have a k×k terms and on the right, we have k(k−1)
2 terms. In total, it is k2+ k(k−1)

2 =
k(3k−1)

2 .

(b) smallest row = 1 more than diagonal and they intersect.

o o o o o o
o o o o o
o o o o

Since number of rows in these exceptional Ferrers graph is k contribution to E(n)−O(n) = (−1)k

if n = k(3k+1)
2 .

Remark (8550 Conjection). Pn(y)
1+y is a polynomial with positive integer coefficients.

6.4 Other generating functions for partitions

Remark (Durfee Square). For every λ ⊢ n, there is a unique k so that λk ⩾ k and λk+1 < k + 1.
Then since the generating function for partitions into at most k parts = generating functions for
partitions into parts of size ⩽ k =

∏k
i=1(1−xi)−1. So

∏∞
i=1(1−xi)−1 =

∑∞
k=0 x

k2 ∏k
i=1(1−xi)−2.

Remark (Self conjugate partitions). Partial row and partial columns plus diagonal element on
both. Unfold the books: get a partition into distinct odd parts. ogf.

∏∞
i=0(1 + x2i+1).
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Remark. Euler:
∏∞

i=1 x =
∑∞

k=−∞(−1)kxk(3k+1)/2. P (x) =
∏∞

i=1(1− xi).

So P (x)
∑∞

k=−∞(−1)kxk(3k+1)/2 = 1. Hence
∑

k(3k+1)
2 ⩽n

P
n− k(3k+1)

2
(x)(−1)k = 0 unless n = 0.

How far does Pn grow? Pn = [xn]
∏∞

i=1(1− xi)−1 ⩽ P (x)
xn , where x ∈ (0, 1).

Euler Criterion: If
∑

|ak| converges, so does
∏
(1 + ak), so

∑
xi converges if |x| < 1, hence∏

(1− xi)−1 converges.
How big is P (x)?

Remark. Can we bound P (x)
xn , where P (x) =

∏∞
i=1(1− xi)−1 and use this to give an upper bound

for pn. Suppose x ∈ (0, 1). B < P (x)
xn = exp{log

∏
i=1(1− xi)−1 − n log x}. Note that

exp

{
log

∞∏
i=1

(1− xi)−1

}
= exp

{∑
log(1− xi)−1

}
= exp

{
−
∑

log(1− xi)
}

= exp

{∑
i=1

∞∑
k=1

xik

k

}
= exp

{ ∞∑
k=1

1

k

∞∑
i=0

xik

}
= exp

{ ∞∑
k=1

1

k

xk

1− xk

}
.

Aside: (1−x)xk

1−xk = xk

1+x+x2+···+xk−1 <
1
k . So

S =

∞∏
i=1

(1− xi)−1 = exp

{ ∞∑
k=1

1

k

1

1− x

(1− x)xk

1− xk

}
< exp

{ ∞∑
k=1

1

1− x
· 1

k2

}
.

Note
∑∞

k=1
1
k2 = ζ(2) = π2

6 . So S < exp{ π2

6(1−x)}. Since we expect (do we? will this be borned out

by this?) that as n!∞, this minimizing value of x approaches 1, we’ll parametrize by x = 1− ϵ

and minimize w.r.t. ϵ (Note: any ϵ will give a valid upper bound). pn < exp{π2

6ϵ − n log(1 − ϵ)}.
Since exp(·) is increasing, we can minimize π2

6ϵ − n log(1− ϵ). d
dϵ (

π2

6ϵ − n log(1− ϵ)) = − π2

6ϵ2 + n
1−ϵ .

So π2

6ϵ2 = n
1−ϵ . So π

2 − π2ϵ = 6ϵ2n. Then

ϵ =
−π2 +

√
π4 + 24π2n

12n
= − π2

12n
+

π

12n

√
π2 + 24n ≈ π

√
1

6n
.

If we now playing ϵ = π
√

1
6n into pn < exp{π2

6ϵ − n log(1− ϵ)}, we get

pn < exp{π
√
n

6
−n log(1−π

√
1

6n
)} = exp{π

√
n

6
+

nπ√
6n

+ o(
1√
n
)} ≈ exp{2π

√
n

6
} = exp(π

√
2n

3
).

Remark. ( 1
105

∑∞
n=−∞ e−

n2

1010 )2 ̸= π, but it is correct to 42 billion decimal digits.
Jacobi theorem and the inversion theorem.

Remark. How big is the number of patitions of n into distinct parts? # partitions of n into
distinct parts = # partitions of n into odd parts.

If we take a partition of n into odd parts, and remove a 1 from each part, we get a partition of
something close to n into even parts, corresponds to a partition of something close to n

2 into any

parts. Heuristically, expect qn ∼= pn/2, pn/2 ∼= eπ
√

2n
3·2 = eπ

n
3 . This turns out to be correct as an

order of magnitude.
Next approaches
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(a) Try Q(x) =
∏∞

i=1(1 + xi) bound Q(x)
xn , etc.

(b) Compute
∏∞

i=0(1− x2i+1)−1 and
∏∞

i=1(1− x2i+1)−1 to p(x2)
∏∞

i=1(1− x2i)−1.

What proportion of partitions has a part of size 1? How big is pn−1

p . Asymtotically

c
n−1 exp

(
π
√

2(n−1)
3

)
c
n exp

(
π
√

2n
3

) ≈ exp

(
π

√
2

3
(
√
n− 1−

√
n)

)
≈ exp

(
π

√
2

3

−1√
n− 1 +

√
n

)

≈ exp

(
−π
√

2

3

2√
n

)
≈ 1− π

√
2

3

2√
n
.

Other questions we could ask: can we get this estimate in any other way? What is the distribution of
the number of 1’s? What is the distribution of the number of 2’s, . . . , d’s? What is the distribution
of the size of the largest part? number of parts?

Remark. Partitions don’t have labels. Labels make things fun! We’ll see some examples of labelled
objects, and ways of combining them.

Our labels will typically be (always be?) {1, . . . , n}.

Example 6.25. Directed cycles.

(1 3 4 2 6 7) in cycle form.
How many labelled cycles of length n, labelled with {1, . . . , n} are there? (n − 1)! : cn. How

many pairs of cycles are there on a total of n vectices, labelled together by {1, ·, n}? There are no
cycle on 0 vertices.

1
2

∑n−1
k=1

(
n
k

)
(k−1)! Since the ck’s grow quickly, define c(x) =

∑∞
n=0 cn

xn

n! =
∑∞

n=1
xn

n = − log(1−
x). Let bn = # pairs of cycles labelled with {1, . . . , n}.

Remark. Suppose we have two sets of labelled objects A1, A2 so that objects of weights n have
exactly n lables 1, . . . , n. (e.g., graphs on vertices {1, . . . , n} trees with n edges labelled {1, . . . , n}.
set partitions of {1, . . . , n}).

6.5 Permutation

Definition 6.26. Construct a set S = A1 × A2 of all parts of objects (α1, α2) with α1 ∈ A1 and
α2 ∈ A2 and label set for (α1, α2) is {1, 2, . . . ,weights(α1) +weights(α2)} and then labels partition
this set.

Example 6.27. A1 has

1 2

4 3
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A2 has (1 2 3). (squre,( )) has total weights 7. Pick a 4-set of labels from {1, . . . , 7} to label the
square and the complement to ( ).

Remark. The number of labelled objects of size n thus created is
∑n

k=0

(
n
k

)
fkgn−k, where fk =

# of labelled objects of weight, gm = # of labelled objects of weight m in A2. If f(x) =
∑∞

k=0 fk
xk

k!
is the edf for A1........
If A1, . . . , Am are sets of labelled objects with egf f1(x), . . . , fm(x) respectively, then the number
of ordered k-tuples of labelled (α1, . . . , αk) with αi ∈ Ai has egf f1(x) · · · fk(x). Some sets of com-
binatorial objects have a natural subset of objects which could be considered “connected”. e.g.,
finite connected graphs as a subset of the set of all finite graphs. finite trees as a subset of all finite
forests sets as a subset of set partitions. cycles as a subset of set of partitions.

Suppose our class A is a set of labelled connected objects with egf f(x). Then the egf for
A× · · · ×A with all labellings is f(x)k. The set of all sets of k objects chosen from A and labelled
thus has egf 1

k!f(x)
k. So as 2 tuples ((1 2 4), (3 5)) and ((3 5), (1 2 4)) are distinct, but {(1 2 4), (3 5)}

is the same as {(3, 5), (1 2 4)}.

Convention 6.28 (Important!). # of connected objects of weight 0 is 0, that is f(0) = 0. Then the

sets of all labelled objects formed from relabelling sets of connected objects has edf
∑∞

k=0
f(x)k

k! =
exp{f(x)}.

Example 6.29. Set of all permutations: # of cycles on {1, . . . , n} is (n− 1)! if n ⩾ 1. Cycles have
egf

∑
n⩾1(n − 1)!x

n

n! = − log(1 − x). So egf for all permutations is exp{− log(1 − x)} = 1
1−x as

expected.

Remark. The set of non-fixed point cycles has egf − log(1−x)−x. So the egf for all permutations
without fixed point is exp{− log(1− x)− x} = e−x 1

1−x .[
xn

n!

]
e−x

1− x
= n![xn]

1

1− x
e−x = n![xn](1 + x+ · · ·+ xk + · · · )(1− x+

x2

2!
− · · ·+ (−1)k

xk

k!
+ · · · )

= n!

n∑
k=0

1
(−1)k

k!
= n!(e−1 −

∞∑
k=n+1

(−1)k

k!
) = n!e−1 − n!

∞∑
k=n+1

(−1)k

k!
.

∣∣∣∑∞
k=n+1

(−1)k

k!

∣∣∣.
Remark. We saw that #permutations of {1, . . . , n} without a fixed point is the closest integer to
n!
e (also, if n ⩾ 2, ⌊n!

e + 1
3⌋, check this).

One way to interpret this is the following: random permution has probability ≈ 1
e of having no

fixed points. How about the probability that a permutation has one fixed point? two? seven?
Precisely one fixed point. Pick the fixed point in n ways. Pick a derangement on remaining set

in ≈ (n−1)!
e ways. So ≈ n(n−1)!

e permutations with one fixed point.

Remark (Exercise). (say n ⩽ 8), use sage to count # with 0, 1 · · · , 8 fixed points.

How far apart can [n!e ] and n[
(n−1)!

e ] be?. Here [] is a temporary nearest integer-notation.

Clearly, fix k, # with exactly k fixed points is
(
n
k

)
[ (n−k)!

e ] when n ̸= k, 1, otherwise. So

n! =
∑n

k=0

(
n
k

)
[ (n−k)!

e ] + 1. Is this reasonable? Divide by n! and approximate 1 =
∑

1
k! ×

closest to 1
e ,

reasonable.



6.5. PERMUTATION 67

How many cycles does a ramdonn permutation have? Return to “all = exp{connected}”.Mixed
generating function, exponential for # of labels, ordinary for # cycles. egf for connected permua-
tions is −y log(1− x). Then # permutations of {1, . . . , n} with k-cycles

[yk
xn

n!
] exp(−y log(1− x)) = [yk

xn

n!
](1− x)−y = [yk]n!

(
−y
n

)
(−1)n = [yk]y(y + 1) · · · (y + n− 1).

Unsigned Stirling number of the first kind.
Let f(n, k) = [yk xn

n! ] exp{−y log(1− x)}.

[y]y(y + 1)(y + 2) · · · (y + n− 1) = [1](y + 1)(y + 2) · · · (y + (n− 1))

= [1](y + 1)(y + 1)(y + 2) · · · (y + n− 1)

= 1 · 2 · 3 · (n− 1) = (n− 1)!.

Probability of a random permutation has 1 cycle is (n−1)!
n! = 1

n .

f(n, 2) = [y2]y(y + 1)(y + 2) · · · (y + n− 1) = [y](y + 1)(y + 2) · · · (y + n− 1).

Can we find recurrence for f(n, k)? f(n, k) = f(n − 1, k − 1) + (n − 1)f(n − 1, k), f(n − 1, k) =
f(n, k − 1) + nf(n, k). Expected # cycles in a random permutation is

1

n!

∑
k

k[yk]y(y + 1) · · · (y + n− 1).

1

n!

d

dx
y(y + 1) · · · (y + n− 1)|y=1 =

1

n!
y(y + 1) · · · (y + n− 1)(

1

y
+

1

y
+ · · ·+).

Euler Mach,

Remark. # k-cycles in a permutation. Let y count k-cycles. The egf for cycles is

− log(1− x)− xk

k
+ y

xk

k
= − log(1− x) + (y − 1)

xk

k
.

So the egf for all permutations with y combining k-cycles is exp{− log(1 − x) + (y − 1)x
k

k } =
1

1−x exp{(y − 1)x
k

k }. f(n, k) = [x
k

n! y
k] 1

1−x exp{(y − 1)x
k

k }. To compute the expected # of cycles of
length k, f(n, j) = # permutations on {1, . . . , n} having exactly j k-cycles. The expected number
is ∑

j=0

jf(n, j)

n!
=

1

n!

∑
j=0

[
xn

n!
yj ]

d

dy

1

1− x
e−(y−1) xk

k =
1

n!
[
xn

n
]
xk

k

e0

1− x
=

1

k

provided 1 ⩽ k ⩽ n.
So expected number of k-cycles in a random permutation is exactly 1

k !

Remark. Revisiting set partitions. What does a connected set partiton of {1, 2, 3, 4, 5} look like?
{1, 2, 3, 4, 5}? The number of connected set partitions of {1, . . . , n} is 1 for n ⩾ 1. So egf for
connected set partitions is

∑
n⩾1

xn

n! = exp(x)− 1. So the egf for all set partitions is ee
x − 1. How

about counting parts? If y marks the number of parts, then f(n, k) = # set partitions with k parts.
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f(n, k) = [x
n

n! y
k] exp{y(ex − 1)}. So to try to calculate the expected number of parts, we’d differ-

entiate w.r.t. y as before. But now we run into difficulties since it is harder to compute [x
n

n! ]e
ex−1,

then in 1
1−x .

Instead. How many set partitions of {1, . . . , n} have exactly k parts?

[
xn

n!
yk]ey(e

x−1) = [
xn

n!
]
(ex − 1)k

k!
= [

xn

n!
]
1

k!

k∑
j=0

ejx
(
k

j

)
(−1)k−j

=
1

k!

k∑
j=0

(
k

j

)
(−1)k−j [

xn

n!
]ejx =

1

k!

k∑
j=0

(
k

j

)
jn(−1)k−j .

Remark (Exercise). Can you recover the recurrence for S(n, k) from week (2?). From exp{y(ex −
1)}?

Corollary 6.30. The number of onto functions from {1, . . . , n} to {1, . . . , k} is k!.

1

k!

k∑
j=0

(
k

j

)
(−1)k−jjn =

k∑
j=0

(
k

j

)
(−1)k−jjn = kn −

(
k

1

)
(k − 1)n +

(
k

2

)
(k − 2)n − · · · .

When k is small, # onto functions is thus k = 1: 1n− k · 0n = 1, k = 2: 2n−
(
2
1

)
1n = 2n− 2, k = 3:

3n −
(
3
1

)
· 2n +

(
3
2

)
1n = 3n − 3 · 2n + 3.

It is similar to permutations. We could try to count # of parts of size k instead?

6.6 Labelled trees and forest

6.6.1 Labelled notes

Definition 6.31. Tree is a connected graph without cycles. # of trees on n vertices: n = 1: 1, 1−1,
1,

n = 2: 1, 20, 1− 2,
n = 3: 3, 31, · − − − · − −− ·: 3 choices for lable, other two lables are forces.
n = 4: 16, 42.

6.7 Pm̈fer sequences

Remark. Since the number of labelled trees on n vertices is nn−2, we look for a bijection from
the set of trees on {1, . . . , n} to the set of sequences of length n − 2 having entries 1, . . . , n with
repetition allowed. (graph).

Observe if a finite graph has minimum degree 2, then it has a cycle. Pick x1. Given x1, . . . , xk,
where (x1, x2), · · · , (xk−1, xk) are edges of G, xk has another vertex adjacent to it. If it is in
x1, . . . , xk−2, it will create a cycle. Otherwise, get xk+1, k is bounded by # vertices. So eventually
we must have created cycle.

Corollary 6.32. If T is a tree, it has a vertex of degree ⩽ 1. If T has n vertices, n ⩾ 2 degree. In
fact, easy to see if n ⩾ 2, T has ⩾ 2 vertices of degree 1.
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To create a Pm̈fer sequence for T , create an empty list, find the leaf of T with smallest label,
delete it, and append the lable of its neighbor to the list. (graph) [2, 1, 8, 5, 10, 8, 8, 1, 10, 2]. Clearly,
this process creates a list on n−2 numbers from {1, . . . , n}. Distinct trees clearly give distinct lists.
Exercise. Write a careful proof.

To remove the tree from the list: note n (in this case 12) is never the lowest label of a leaf since
T has ⩾ 2 leaves. Given the sequence [2, 1, 8, 5, 10, 8, 8, 1, 10, 2]. Any number not in the sequence
was a leaf in T . Numbers are not in [2, 1, 8, 5, 10, 8, 8, 1, 10, 2] are {3, 4, 6, 7, 9, 11, 12}. Least of
these is 3. So (3, 2) is in T . This leaves out list as [1, 8, 5, 10, 8, 8, 1, 10, 2] and {4, 6, 7, 9, 11, 12}
as leaves to consider. (4, 1) is an edge. [8, 5, 10, 8, 8, 1, 10, 2] and {6, 7, 9, 11, 12}. (6, 8) is an edge
[5, 10, 8, 8, 1, 10, 2] and {7, 9, 11, 12}. [10, 8, 8, 1, 10, 2] and {5, 9, 11, 12}. (graph).

2,4,6,7,5,9,11,8,
[8, 8, 1, 10, 2] and {9, 11, 12}. [8, 1, 10, 2] and {11, 12}. [1, 10, 2] and {8, 12}. [10, 2] and {12}. [2]

and {10, 12}. [] and {2, 12}. This process works in general.
This gives us a way to uniformly generate randomly labelled trees. Furthermore, it gives us

extra information about.......

6.8 Connection between labelled trees and forests

. Functional equation for forests. Why this has a unique solution? Next time: Lagrange Inverse
Formula.

Aim: show r(x) =
∑

n⩾0 rn
xn

n! and t(x) =
∑

n⩾0 tn
xn

n! . r(x) = exp(t(x)), but this is not particu-
larly helpful as the sage computation shows. Switch to tn = # rootted labelled trees distinguish one
of the n vertices as a root = nn−2·n = nn−1. r = # rooted labelled forests: each subtree get a root.

Rooted lablled trees on n+1 vertices give rise to rooted labelled forests on n vertices, erase root
of tree: make adjoint vertices roots of the forest. Relabel with {1, . . . , n}, n + 1 rooted labelled
trees on (n + 1) vertices give rise to same rooted labelled forest. So tn+1 = (n + 1)rn. Thus,

rn = (n+1)n

n+1 = (n+ 1)n−1. r(x) =
∑∞

n=1(n+ 1)n−1 xn

n! and t(x) =
∑

n⩾1 n
n+1 xn

n! . So

xr(x) =
∑
n⩾0

(n+ 1)n−1x
n+1

n!
=
∑
n⩾0

(n+ 1)n
xn+1

(n+ 1)!
=
∑
n⩾1

nn−1x
n

n!
= t(x),

i.e., t(x) = xr(x) = x exp(t(x)).
So we obtain a functional equation for t(x), t(x) = x exp(t(x)). We can hence write x(t) via

x(t) = t exp(−t). We can hence write x(t) via x(t) = t exp(−t) enabling us to give a power series

x(t) for x in terms of t: [tn]x(t) = [tn−1]e−t = (−1)n−1

(n−1)! , n ⩾ 1. This has positive (indeed ∞
radius of convergence). Why does this ensure that we can find coefficients t1, t2, . . . , tn, · · · so that
t(x) =

∑
n⩾1 tn

xn

n! ?

Remark (Lagrange Inversion). Given a relationship like x(t) = t
p(t) find coefficients tn so that

t(x) =
∑
tn

xn

n! satifies t(x) = xφ(t(x)).... We’ll need certain conditions and furthermore, ...

Recall 6.33. Labelled rooted trees, then t(x) = xet(x), which is easy to solve for x : x = te−t =∑∞
n=1 t

n+1 (−1)n

n! .
What we want to do is to invest this power series x(t) to find a compositional inverse t(x).
Little results (but useful). We’ve seen making liberal use of [xn]. However, this is not the

fundamental operator to use. The best operator to use is [x−1]. We can then recover [xn]f(x)
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by computing [x−1]x−(n+1)f(x). This require us to work in the realm of Laurent series instead of
power series, series of the form

∑∞
k=−m akx

k. Why is [x−1] different from all other [xn]? Because 1
x

is different in nature from xn for any n ̸= −1. 1
x is not the derivative of x−n or any Lauranet series.

So if f ∈ R(x) or C[x], [x−1]f ′(x) = 0. If f(x)g(x) ∈ R[[x]], then f(x)g(x) ∈ R[x], [x−1](fg)′ = 0
and [x−1]fg′ = [x−1]fg.

Following Wilf’s notation, (completely incompatible with last class’s notation). We’ll have a
function equation of the form u = tφ(u). (in our earlier discussion, we had t = et(x).) So t plays
the role of x and u plays the role of t, φ plays the role of exp().

Theorem 6.34. Let f(u) and φ(u) be formal power series in u with φ(0) = 1. Then there is
a unique formal power series u(t) satisfying u(t) = tφ(u(t)), i.e., φ = u

t and furthermore if we
compute f(u(t)) as a power series in t, about t = 0, satisfies [tn]f(u(t)) = 1

n [u
n−1](f ′(u)φ(u)n).

Example 6.35. Before we prove this, let’s apply it. If φ() = exp(), f(u) = u, then [tn]f(u) =
1
n [u

n−1](1 exp(un)) = 1
n

nn−1

(n−1)! = nn−1

n! . So # of labelled rooted trees is nn−1. It is sufficient to

prove for f a polynomial in u and for φ a in u....

=
1

2πi

∫
t−nf ′(ut)u′(t)dt =

1

2πi

∫
t−n d

dt
f(u(t))dt = [t−1]t−n d

dt
f(u(t)) = [t−1]t−(n+1)t

d

dt
f(u(t)).

Since [t−1]g(t)h′(t) = −[t−1]g′(t)h(t), we have [t−1]t−nf ′ = [tn].

Remark (Lagrange Version). Let f(u), φ(u) be power series in u with φ(u) = 1. Then we can find a
unique power series u(t) so that u(t) = tφ(u(t)) and furthermore, [tn]f(u(t)) = 1

n [u
n−1]f ′(u)φ(u)n.

Theorem 6.36 (Galois, Abeletc). “You can’t solve some quintics”.

(a) Consider the degree 5: x5−x+ z = 0, where z is a parameter we can vary. Clearly for some z,
we can solve this, e.g., z = 0. It is in fact known that this has solutions in radicals if and only if it
has an integer solution, or if z = ±15,±22440 or ±2759640. We’ll see how to solve xp − x+ z = 0
(not in radical). Rewrite this as z = x − xp. Want to get a formula for x = x(z) so that this is
satisfied. Note x = z

1−xp−1 = zφ(x), where φ(x) = 1
1−xp−1 . So z plays the role of t in LIF and x

plays the role of u. Hence [z]x(z) = 1
n [x

n−1]φ(x)n. So we need to consider 1
n [x

n−1]( 1
1−xp−1 )

n. Let

y = xp−1. Then

(1−xp−1)−n = (1−y)−n = 1+ny+
n(n+ 1)

2
y2+· · · =

∞∑
k=0

(
n+ k − 1

k

)
yk =

∞∑
k=0

(
n+ k − 1

k

)
xk(p−1).

So want k(p−1) = n−1. If n−1 = k(p−1), then n−1+k = kp, so we get 1
k(p−1)+1

(
kp
k

)
as coefficient.

So we get x(z) =
∑∞

k=0
1

(p−1)k+1

(
kp
k

)
zk(p−1)+1, which converges inside. |z| ⩽ (p − 1)p−p(p−1). If

p = 5, we get 4, 5−
4
5 = 4

514 . In particular, if you are interested in solving problems involving interest
rates. e.g., converges these technique can often be helpful.

Remark. Story: Minutes before the drawing for a lottery, you buy a ticket. You know current
total # tickest T (include you) for this drawing, the (constant for all tickets) probability p of a
particular ticket winning, and the current prize value V . When a ticket is bought, it is assigned
uniformly and independent from all tickets. Want to know the expected value of the ticket you but.
There are n = 1

p possible tickets, each equally likely to win. Only one of these can win (though
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multiply copies may have been sold). If w copies of the winning ticket are sold, then the payoff to
each winning ticket is V

w . Let X be how much you win.

E[X] = V · P (you win, w = 1) +
V

2
P (you win, w = 2) + · · ·+ V

T
P (you win, w = T )

= V p

T−1∑
k=0

1

k + 1

(
T − 1

k

)
pk(1− p)T−1−k.

3 approaches to get the final answer.

(a) “correct approach”. introduce an xk+1 in the kth term, differentiate w.r.t. x, sum and integrate.

(b) Be smart, get lucky: 1
k+1

(
T−1
k

)
= (T−1)!

(k+1)k!(T−1−k)! =
(T−1)!

(k+1)!(T−(k+1)! =
1
T

(
T

k+1

)
.

E[X] = V p

T−1∑
k=0

1

T

(
T

k + 1

)
pk(1− p)T−1−k =

V

T

T−1∑
k=0

(
T

k + 1

)
pk+1(1− p)T−(k+1) =

V

T
(1− (1− p)T ).

(c) Your ticket has the same expected value as everyone elses.
∑

all ticket soldE[Xt] = V (1 − (1 −
p)T ) = V × probability tiket at least one wins.

As p is very small, (1− p)T ≈ e−pT

.

Theorem 6.37 (Ramsey Theorem). R(3, 3) = 6 meaning that if we color the edges of K6 with two
colors, yellow and brown, either there will be a yellow triangle or a brown triangle, but not true for
K5.

Take a coloring of K6. Pick a vertex of K6. Five edges implies ⩾ 3 yellow edges or ⩾ 3 brown
edges. Suppose yellow. (graph). Similar proof shows that R(m, k) is finite, there is at least n so
that 2 coloring of Kn has either a yellow Km or a brown Kk.

The best lower bounds are much smaller than the best upper bounds.

Remark (The probabilistic methodin combinatorics). Idea: generate combinatorial objects at
random from some distribution and investigate their properties.

How to obtain information about R(m,m)? Take Kn with equal probability and independently

color each edge y or b. For a given sd S ⊆ V of m vertices, P (S is monochromatic Km) = 2 ·2−(
m
2 ).

Let XS = 1 of S is monochromatic and 0 otherwise. Let X =
∑

|S|=m,S⊆V XS . Then E[X] =(
n
m

)
21−(

m
2 ). If E[X] ⩽ 1, then since X is non-negative integer valued, there must exist a coloring

of Kn with 0 monochromatic Km’s. E[X] =
∑

k kPr(X = k). How big is m if
(
n
m

)
= 2(

m
2 )−1. Can

m = cn? (c fixed, n ! ∞). LHS < nm = ncn. Exponent cn log n. RHS = 2
c2n2

2 −1. Exponent

Cn2. How about nc some fixed c ∈ (0, 1).
(
n
nc

)
< nn

c

= en
c logn. 2(

m
2 ) ≈ 2

n2c

2 . So m = o(nc) for all

c > 0. The nice thing about this is that if m = o(n1/2), then
(
n
m

)
= n(n−1)···(n−m)+1

m! ≈ nm

m! .

n(n− 1) · · · (n−m+ 1) = nm(1− 1

n
)(1− 2

n
) · · · (1− m− 1

m
)

≈ nm exp{− 1

n
− 2

n
− · · · − m− 1

n
} = nm exp{−

(
m
2

)
n

}.
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Now want nm

m! ≈ 2(
m
2 )−1. Forget (−1), nm

(m
e )m

√
2πm

= 2m
m−1

2 . ne
m = 2

m−1
2 (

√
2πm

1
m ) ≈ 2

m−1
2 ,

i.e., n = m2
m−1

2

e . log2 n = m
2 + log2m + log c. First approximation m = 2 log2 n. Better m =

2 log2 n− log2m− log c. log2m < log2(log2 n) + log 2. So m > 2 log2 n− log2 log2 n− log c.

Definition 6.38. A set S ⊂ N is sum free if there is no x, y, z ∈ S with x+ y = z.

Theorem 6.39. If |T | <∞, is a non-empty subset of N, then there exists S ⊆ T with |S| > |T |
3 so

that S is a sum free.

Proof.

Remark. If x is small, say 0 < x < 1
2 , then

− log(1− x) = x+
x2

2
+
x3

3
+ · · · < x+

x2

2
+

1

3
(x3 + x4 + x5 + · · · ) = x+

x2

2
+

x3

3(1− x)

< x+ ....

Remark. How big is
(
n
k

)
when n is large? How big is

∑
k⩽l

(
n
k

)
.

(a) Case 1: k is not big, say k = o(n1/2). nk exp(∗) < n(n− 1) · · · (n− k+1) < exp(). So provided

k3

n2 ! 0, i.e., k = o(n2/3). n(n − 1) · · · (n − k + 1) = nk exp

(
− (k2)

n

)
(1 + o(1)). This of course

explains the Birthday Paradov. How about when k is on the same order of magnitude as n? Fix
αn(0, 1), k = αn (more precisely, k = kn,

kn

n ! ∞ as n ! ∞).
(
n
k

)
= n!

(k!)((n−k)!) = n!
(αn)!((1−α)n)! .

By Stirling again,
(
n
k

)
∼ (ne )

n
√
2πn. ...

Special case α = 1
2 .

2
1
2
n2

1
2
n√

π 1
2n

=
√

2
πn2

n. Recall...

If we fix p ∈ (0, 1) and look instead at 1 =
∑n

k=0

(
n
k

)
pk(1 − p)n−k. We could ask where is the

summand maximized? At the maximum, we should have something like
(
n
k

)
pk(1 − p)n−k ≈(

n
k+1

)
pk+1(1 − p)n−k−1. 1

n−k (1 − p) ≈ 1
kp.

1
n−k = p( 1k + 1

n−k ) = np
k(n−k) or p = k

n or k = np.

Then more careful, estimate show quadratic decay away from pn.

Remark (Partial sums of binomial coefficients, n even). Fix l < n
2 for

∑
k⩽l

(
n
k

)
. If l > n

2 ,∑
k⩽l

(
n
k

)
= 2n −

∑
k⩽n−l−1

(
n
k

)
. If l = n

2 ,
∑

k⩽n
2

(
n
k

)
= 2n−1 − 1

2

(
n

n/2

)
.

Since l < n
2 ,

∑
k⩽l

(
n

k

)
=

(
n

l

)
+

(
n

l − 1

)
+

(
n

l − 2

)
=

(
n

l

)(( n
l−1

)(
n
l

) +

(
n

l−2

)(
n
l

) ) .
6.9 Open problems

....
Heuristically speaking: What proposition of integer up to N are 3 good? If N < 3k, then 2k

integer are 3-good. So “Pr” n is 3-good = ( 23 )
k = ( 23 )

log 3N = elog(
2
3 )

log N
log 3 .
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Remark. Representating #’s in binary corresponds 1
1−x = (1+x)(1+x2)(1+x4)(1+x8)(1+x16) · · · .

Likewise, base 10 becomes 1
1−x = (1+x+x2 + · · ·+x9)(1+x10 +x20 + · · ·+x90) · · · . What about

non-constant bases? ...

Every integer has a unique representation as n =
∑∞

i=1 aii! with ai ∈ {0, . . . , i}.
Let p be a prime. Base p has a nice extensions to number theory. We can define a distance,

the “p-adic” metric on Z. Given γ > 1, usually γp = p. dp(m,n) = |m− n|p = p−r, where
pr || (m− n)....

We can define a distance metric dx(p(x), q(x)) on polynomials in X.

dx(p(x), q(x)) = |p(x)− q(x)| = 2−n

if the smallest xk with non-zero coefficients in p(x)− q(x) is xn. This defines a topology on k[X].

Remark.

6.10 Inclusion Exclusion

Theorem 6.40. Given finite sets A1, . . . , An, we have |
⋃n

i=1Ai| =
∑n

k=1

∑
|S|=k(−1)k+1

∣∣⋂
s∈S As

∣∣.
Proof. Let x ∈

⋃n
i=1Ai. Fix the subset S ⊆ {1, . . . , n} so that x ∈ Ai if i ∈ S and x ̸∈ Aj if j ̸∈ S.

Then S ̸= ∅ since x ∈
⋂n

i=1Ai....

Let O = sets of all objects. Given S ⊆ P, OS = objects with all of the properties in S (plus
possibly some more). N⩾S = |OS |. N=S = #objects having precisely the properties in S. So
typically, N⩾S is easy to compute, and we want to be able to compute N=S .

EasyN⩾S =
∑

T⊇S N=T . We’ll assume S = ∅. SoN⩾∅ =
∑

T⊆P N=T . P = ∅, N⩾∅ = N=∅. P =
{1}. N⩾∅ = N=∅+N⩾1. N=∅ = N⩾∅−N⩾1. N={2} = N⩾{2}−N⩾{1,2}. N={1} = N⩾{1}−N⩾{1,2}.
P = {1, 2}. N⩾∅ = N=∅ +N={1} +N={2} +N={1,2}. So N∅ = N⩾∅ −N={1} −N={2} −N={1,2} =

... =
∑

T⊆P N⩾T (−1)|T |.

Exercise. Prove N=∅ =
∑

T⊆P(−1)|T |N⩾T .

Examples P = {P1, . . . , Pn}. O = set of all permutations of {1, . . . , n}. Pi = π fixes i. N=0 =
# of dearrangement of {1, . . . , n} = # of fixed point-free permutations of {1, . . . , n}. N⩾T = (n−
|T |)!. N=0 =

∑
T⊆P

(−1)|T |(n− |T |)! =
∑n

k=0(−1)k
(
n
k

)
(n− k)!.

We’ve seen how to compute N∅ from N⩾T over all subsets T ⊆ P. This allows us to compute
N=0 = #objects with exactly 0 properties from P . What if we want N=k = # of objects with
exactly k properties from P . Equivalently, what if we want to compute

∑
|T |=kN=T ? (for fixed k).

Sometime not too bad.

Example 6.41. Permutation with exactly k fixed points could be written as(
n

k

)
·Dn−k =

(
n

k

) n−1∑
j=0

(−1)j
(n− k)!

j!
.

Can we improve on this (either in general or in this particular example)?
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Then N=T =
∑

T⊆S(−1)|S|−|T |N⩾S =
∑n

j=k

∑
|S|=j,S⊇T (−1)j−kN⩾S . So

∑
N|T |=k

N=T =
∑

N|T |=k

n∑
j=k

∑
|S|=j,T⊆S

(−1)j−kN⩾S =

n∑
j=k

∑
|S|=j

∑
|T |=k,T⊆S

N⩾S =

n∑
j=k

∑
|S|=j

N⩾S

(
j

k

)
.

In the case of derangement if |S| = j, N⩾S = (n− j)!, so we get
∑

j

(
n
j

)
(n− j)!(−1)j

(
j
k

)
.

6.11 Combinatorics and Probability

Suppose we have a non-negative integer valued random variable X with E[X] < ∞. So we can
think of interpreting X as follows. We have a set Ω of objects, e.g., graphs. For each G ∈ Ω,
we count some non-negative integer parameter X(G). Then P (X > 0) =

∑∞
k=1 P (X = k) ⩽∑∞

k=1 kP (X = k) =
∑∞

k=0 kP (X = k). So if E[X] < 1. then P (X = 0) = 1 − P (X > 0) > 0.
Hence there exists a G ∈ Ω so that X(G) = 0. Similarly, if E[X] is large, then there must exist
G ∈ Ω with X(G) ⩾ E[X]; and if there exists G ∈ Ω with X(G) < E[X], then there exists G ∈ Ω
with X(G) > E[X].

Example 6.42. A set T ⊆ {1, 2, 3, · · · } is sum-free if for x, y, z ∈ T , x+ y ̸= z.

Theorem 6.43 (AlonErdos Kleitmen). If S is a non-empty set of positive integer, then there exists
T ⊆ S with |T | > |S| and T is sum-free.

Q(Erdos) Can 1
3 be replaced by some α > 1

3?

Proof. For α ∈ (0, 1), defines Sα = {n ∈ S : {nα} ∈ ( 13 ,
2
3 )}, where {nα} is the fractional part of

nα. Then, if n1, n2 ∈ Sα, we have {(n1 + n2)α} = {n1α} + {n2α} (mod 1) ∈ [0, 13 ] ∪ [ 23 , 1]. So
n1 + n2 ̸∈ Sα. Hence Sα is sum-free.

Now let Xα = |Sα|. Xα =
∑

n∈S In∈Sα
.

Exercise 6.44. Let n > 0 be an integer. Pick α uniformly in [0, 1). Show P ({nα}) ∈ ( 13 ,
2
3 ) =

1
3 .

Hence E[Xα] =
∑

n∈S
1
3 = |S|

3 . Let m = maxn∈S n. Since |Sα| = 0 if α ∈ (0, 1
3m ), P (Xα =

0) > 1
3m . Hence P (Xα > |S|

3 ) > 0. Hence there exists α such that T = Sα satisfying |T | > |S|
3 .

How hard to improve upper bounds? Find a good set S of cardinality |S| = s. Consider all
(

S
S/3+t

)
subsets of size S/3 + t. Huge search space.

Question. Can the probabilistic proof inform good choices for S with small max |T |? Can you
show if S has “too many small element”, then S has a larger sum-free subset?

Another combinatorial number theory question. Reference: B. Lindstrom. An Inequality for
B2 Sequences 1969.

Theorem 6.45. There exists C > 0 such that if S ⊆ {1, . . . , n} is Sidon, |S| < n
1
2 + Cn

1
2 + 1, 7

6 .

What is max|S|, S.

Remark. Suppose you play a game, in which there is a non-negative integer payoff X, a random
variable, P (X = k) = pk, 0 ⩽ k ⩽ N . How much should you pay to play the game? It is

E[X] =
∑N

k=0 kpk. Indeed, if you play the game for a sufficiently long period of time, then if you
pay < X, you win over the long term, if you pay > X, you lose over the long term? How long is
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sufficiently long? If we play one game, at the rate of a Cesuim atom vibrating, about 10−10 period
until the heal death of the universe, say 10110 seconds, we “only” get to play T = 10120 rounds of
the game. Can we use up with reasonable games whose E[X] is too much to pay if we only get to
pay T times?

Flip a coin n times? Payoff X = c · 3k when k = # heads. E[X] =
∑n

j=0 3
j
(
n
j

)
2−n = c (1+3)n

2n =

c2n. (So if we choose c = 2−n, E[X] = $1. What happens if we play the game just a few times?
With high probability, we see that n

2 heads, say n
2 + i, where i is not too much bigger than

√
n. So

we win 2−n · 3n
2 +1 = ( 43 )

n
2 · 3 which is very small. How many heads would we need to see for us to

get a payoff of $1. Want 2n = 3j . j = log 2
log 3n = αn, where α = 0.6309 > 1

2 .

What is P (in n coin tosses we see more than αn heads)? 1
2n

∑n
k=αn

(
n
k

)
≈ 1

2n

(
n
α

)
ndα.

n!

(αn)!(1− α)n!
=

(ne )
n
√
2πn

(αne )αn( (1−α)n
e )(1−α)n

√
2παn

√
2π(1− α)n

.

(α−α(1−α)−(1−α))n√
2πα(1−α)n

. When is α−α(1−α)−(1−α)

2 ≈ pn = 0.97n.

Theorem 6.46 (Kruth). Given a rooted tree T , we wish to count the number of leaves in T .
Algorithm. Take a random walk from the root to a leaf, choosing uniformly at each vertex among
its children. Let X = product of the degrees you see. Then E[X] = #leaves of T . Prove: give a
leaf l. X(l) =

∏
di of degrees on path to l. Probability we end at is i∏

di
. So

∑
lX(l)P (l) =

∑
l 1.

Extension: Label each edge from v to its children with a probability (not necessarily 1
d(v) , so

probability sum to 1).
Aside. Allowing for favorite children, how do you pick your favarite and how do you assign

relative probability.

Remark. Non-attacking configuration of King. In one dimension, written vertically F (k, 1) =
#k × 1 boards without attacking k = F (k − 1, 1) + F (k − 2, 1) with k ⩾ 3. F (1, 1) = 2 and
F (0, 1) = 1. (Check out Pingla, Sanskrit poetry, “Pascal Identity” and Fibonacci numbers. Also,
Keith Devlin on why golding ratio is less interesting than you’ve been told.) To compute F (k,m).
Use Kruth. T has a depth n. Each vertex at depth j is labelled by a k × 1 board B. Its children
are the k× 1 boards that can be adjacent to B.(graph). Let’s check the 1×n case, 2 possible 1× 1
boards. (graph).

Remark (depth 10000). 2 × 107 simulations. X never exceed E[X]. Want to contral max X(l1)
X(l2)

for trees l1 and l2.

Theorem 6.47. If we modifying the weight on the edge of T so that (graph), where p + p2 = 1,

i.e., p = 0.6801, whenever we are at, then all leaves have one of two X-values, with max X(l1)
X(l2)

= 1
p .

Remark (More on Kruthian counting). Counting 2 dimensional k×n configuration of non-attacking
kings. Set up a matrix A, labelled by permissible k× 1 columns of non-attacking kings. e.g., k = 3,

possible 3×1 configuration are (graph). A3 =


1 1 1 1 1
1 0 0 1 0
1 0 0 0 0
1 1 0 0 0
1 0 0 0 0

. .. Ak(i, j) = 1 if columns i, j can

be adjacent w/o attacking kings.
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Remark (Constructing the Kruthian tree). Start with the root, labelled with (empty col). Each
vertex is labelled with a column. Children are permissible columns like thoese that can be adjacent
to the current column. (graph). How should we adjust the probability of choosing each child so
that the values of X of the random varible, when sampled, give a good estimation of E[X].

The adjacency matrix A has dominant eigenvalue (i.e., the Peron Frobenius eigenvalue) φ =

1+
√
5

2 and the corresponding eigenvector is

[
1/φ
1/φ2

]
. Normalize to have 1

φ + 1
φ2 = 1. We saw last

time that if p = 1
φ , so p+ p2 = 1. (graph) then with these probabilities for children, the Kruthian

variable X, when sampled, does give good estimates for E[X].
For small k, we’ve verified that if we label the edges with probabilities derived from the PF

eigenvector, (the only eigenvector with strictly positive entries), so for example, the probabilities
in (graph) are normalized so that α+ β = 1 and αα (graph) entry of eigenvector βα (graph) entry
of eigenvector. Then at each level of the tree, there are a fixed number of values taken by X.

Conjecture: # values taken by X is at most Fk, the dimension of the matrix Ak.
Conjecture. Given a (big) tree, we’re doing a weighted Kruthian sample from, then

(a) if when sampling X, the ratio of largest value of X seen to smallest is not too big, we have
confidence X ≈ E[X];

(b) if ratio of largest X to smallest X is too big, X << E[X].

Remark (Possibly BS in general). In the case where the tree corresponds to long walks on finite
graphs G, conjecture is probably trees with weights chosen from eigenvectors, should get conver-
gence.

Let A be a non-negative symmetric (not necessarily) matrix, in which the undirected graph
(with loops) G having (i, j) ∈ E if and only if Aij > 0 is connected, and not bipartite. (So high
power of A have stricly positve entries). (In our case, A2

k has strictly positve entries), then there
is a unique eigenvalue λ with λ > |λj | for all other eigenvalues λj , λ > 0 and the corresponding
eigenvector has strictly positve entries.

How to take a random Kruthian sample when G is too big to do an eigen analysis?

Continuing with the Kings problems.
In 2 dimensional F (n, k) = # k × n configs. In 3 dimensional F (k,m, n) = #k × m × n

configs. In any finite number of dimensions, we have two inequalities. If we take logs of F (),
writing h(n1, . . . , nd) = log(F (n1, . . . , nd)), then h(n1 + m1, n2, . . . , nd) ⩽ h(n1, n2, . . . , nd) +
h(m1, n2, . . . , nd) (with the same being true for the jth component) and h(n1+m1+1, n2, . . . , nd) ⩾
h(n1, n2, . . . , nd)+h(m1, n2, . . . , nd). So for example, with d = 1 and F (0) = 1, F (1) = 2, F (2) = 3.
F (3) = 5, F (4) = 8, F (5) = 13, F (6) = 21, F (7) = 34, we have F (m + n) ⩽ F (m)F (n) and
F (m + n + 1) ⩾ F (m)F (n). Example F (2 + 3) = 13 ⩽ F (2)F (3) = 15, F (2 + 3 + 1) = 21 ⩾
F (2)F (3) = 15. The inequality for h(n1, . . . , nd) imply that h(rn1, . . . , rnd) ⩽ rdh(n1, . . . , nd).
h(rn1 + r − 1, . . . , rnd + r − 1) ⩾ rdh(n1, . . . , nd). (r − 1)dh(n1, . . . , nd). This will imply that
limn1,...,nd!∞

1
n1···nd

h(n1, . . . , nd) exists.

We can defined ηd = limn1,...,nd!∞
1

n1···nd
h(n1, . . . , nd). We can call this the entropy of the

configuration of non-attacking king in d dimension.

What is known η1 = log(φ) = log(1.618) = · · · = log( 1+
√
5

2 ). In 2 dimensions, Probably know
to 6 digits. Morally known to 60 digits. In dimensions greater or equl to 3 know first digit of eµd ,
eµd = 1?
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Restricting ourselves to d = 2. Recall Ak =. If we denote the largest eigenvalue of Ak by λk,
then for fixed k, F (k, n) = #k× n boards = k× (n+2) boards starting with (graph: emptyboard)
and ending with (graph: emptysboard) = (An+1

k )1×1, (1,1)-entry in the F2 × F2 matrix An+1
k .

Now (An1

k ) =
∑

eigenvalue λ of Ak
cλλ

n+1 for fixed and computational values λ. Ak is real and
symmetric, so all λ’s are real, by Person Frobenius, λk, the largest eigenvalue of Ak, is positive and
has magnitude strictly greater than all other eigenvalues of Ak, implying that F (k, n) = cλk

λn+1
k (1+∑

λ̸=λk

cλ
cλk

( λ
λk

)n+1). So F (k,n)

cλk
λn+1
k

− log(cλk
λn+1
k ) ! 0, 1

n logF (k, n) − 1
n log(cλk

) − n+1
n log λk ! 0

as n!∞, cλk
> 0.

So 1
n log(F (k, n))! log(λk) or F (k, n)

1
n ! λk. Hence limk!∞

1
k log(λk) = η2. Experimentally

it appears that 1
k log λk − η alternates positive and negative. (Compare to the alternating series

test.
∑n

k=−1
(−1)k+1

k alternating above and below ith limit).

Example 6.48.

Remark. Two views of permutations.

(a) Function from {1, . . . , n} to {1, . . . , n}. Represented by for example(
1 2 3 4 5 6 7
5 1 2 4 3 7 6

)
,

which we could abbreviate to
(5 1 2 4 3 7 6).

(b) Can list a permutation by its cycles

(1 5 3 2)(4)(6 7),

where
(1 5 3 2) = (5 3 2 1) = (3 2 1 5) = (2 1 5 3).

Replace each cycle by the one with the largest entry first.

(5 3 2 1)(4)(7 6).

Write cycles in increasing order of their largest element

(4)(5 3 2 1)(7 6).

Erase parenthesis,
4 5 3 2 1 7 6.

This gives us a 1-line representation of(
1 2 3 4 5 6 7
4 5 3 2 1 7 6

)
.

So we have a map from Sn ! Sn. Can we undo it? 4 5 3 2 1 7 6. 4 < 5, so (4). 5 > 3 > 2 > 1 and
1 < 7, so (5 3 2 1). 7 > 6, so (7 6). This transformation is due to Domimiefiite referred to as the
Foate Transformation.

Q: Pick a permutation in Sn uniformly at random. What is the probability that j is in a cycle
of length k. Observation: by relabelling j as in If n is in a cycle of length k, then the modified cycle
notation will be ( )( )( n︸︷︷︸

kterms

).....
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