
COHEN-MACAULAY TYPE IN TERMS OF FREE RESOLUTION

Let k be a field, and set R = k[X1, . . . , Xd] and X = ⟨X1, . . . , Xd⟩ ≤ R. Let I be an
ideal of R generated by non-constant homogeneous polynomials. Assume that R = R/I is
Cohen-Macaulay of dimension ∆.

Fact 1. There is a free resolution

F = (0 → Rβd−∆︸ ︷︷ ︸
deg d − ∆

∂F
d−∆−−−→ · · · ∂F

2−−→ Rβ1
∂F
1−−→ R→ 0)

of R over R such that the entries of the matrices representing ∂Fi are non-constant and
homogeneous. Furthermore, one has depthI(R) = d−∆.

The goal of this project is to prove that βd−∆ = type(R). We accomplish this in steps.

Exercise 2. Let f = f1, . . . , f∆ ∈ X be a homogenous maximal R-regular sequence. As in

Homework 2, let K = KR(f , F ) be defined inductively as KR(f∆, F ) = Cone(F
f∆−−→ F ) and

K = KR(f , F ) = Cone(KR(f ′, F )
f1−→ KR(f ′, F )) where f ′ = f2, . . . , f∆.

(a) Prove that

K = KR(f , F ) = (0 → Rβd−∆︸ ︷︷ ︸
deg d

∂K
d−∆−−−→ · · · ∂K

2−−→ R∆+β1
∂K
1−−→ R→ 0)

is a resolution of R/⟨f⟩R ∼= R/(I + ⟨f⟩) over R such that the entries of the matrices
representing ∂Ki are non-constant and homogeneous.

Proof. Let F+ be the corresponding augmented free resolution of R:

F+ = (0 → Rβd−∆︸ ︷︷ ︸
deg d − ∆

∂F
d−∆−−−→ · · · ∂F

2−−→ Rβ1
∂F
1−−→ R

τ−→ R→ 0).

It is enough to prove the claim: Let g = g1, . . . , gD ∈ X be a homogeneous R-regular
sequence, then

L = KR(g, F ) = (0 → Rβd−D︸ ︷︷ ︸
deg d

∂L
d−D−−−→ · · · ∂L

2−−→ RD+β1
∂L
1−−→ R→ 0)

is a resolution of R/⟨g⟩R ∼= R/(I+⟨g⟩) over R such that the entries of the matrices rep-
resenting ∂Li are non-constant and homogeneous. To prove the claim, we use induction
on D.

Base case: The case for D = 0 is covered in Fact 1. Let D = 1. Then

F+ = (0 → Rβd−∆︸ ︷︷ ︸
deg d − ∆

∂F
d−∆−−−→ · · · ∂F

2−−→ Rβ1
∂F
1−−→ R

τ−→ R→ 0),

and L = KR(g1, F ) = Cone
(
F

g1−→ F
)
. So
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2 COHEN-MACAULAY TYPE IN TERMS OF FREE RESOLUTION

∂L1 :
F0

⊕
F1

0
⊕
F0

[
0 0
g1 ∂F

1

]
=⇒ ∂L1 :

R
⊕
Rβ1

0
⊕
R

[g1 ∂F
1 ]

=⇒ ∂L1 : R1+β1 R.
[g1 ∂F

1 ]

Since F+ is exact, we have Im(∂F1 ) = Ker(τ) = I. So

Im(∂L1 ) = Im
([
g1 ∂

F
1

])
= ⟨g1⟩+ Im(∂F1 ) = ⟨g1⟩+ I.

Hence

H0(L) = R/ Im(∂L1 ) = R/(⟨g1⟩+ I).

We claim that Hi(L) = 0 for i = 1, . . . , d−1. Since F is a resolution, we have Hi(F ) = 0
for i ≥ 1 and H0(F ) ∼= R. By Theorem I.D.20, the following sequence is exact:

0 F L ΣF 0.

We consider the long exact sequence of homology modules that rises from the above
short exact sequence.
(1) Let i ≥ 2. Then

· · · Hi(F ) Hi(L) Hi−1(F ) Hi−1(F ) · · ·

0 0 0

g1

So by Fact I.B.2(c), we have Hi(L) = 0.
(2) Let i = 1. Then

· · · H1(F ) H1(L) H0(F ) H0(F ) · · ·

0

R R

g1

∼= ∼=

g1

Since H1(F ) = 0 and the above sequence is exact, we have Ker
(
H1(L) → H0(F )

)
=

0. Since g1 is a non-zero-divisor on R, we have H0(F )
g1−→ H0(F ) is 1-1. So

H1(L) ∼= H1(L)/Ker(H1(L) → H0(F )) ∼= Ker
(
H0(F )

g1−→ H0(F )
)
= 0.

Therefore, Hi(L) = 0 for i = 1, . . . , d − 1. So L = KR(g1, F ) is a free resolution of
H0(L) = R/(⟨g1⟩ + I) by Lemma II.A.3. Since g1 ∈ X is homogenous and a non-zero-
divisor on R, we have g1 is non-constant and homogeneous. Also, since the entries of the
matrices representating ∂Fi are non-constant and homogeneous, we have the entries of

the matrices representating ∂Li =

[
−∂Fi−1 0
g1 ∂Fi

]
are also non-constant and homogeneous.

Inductive case: Set g′ = g1, . . . , gD−1 and L′ = KR(g′, F ). By definition, g′ is R-
regular. The inductive hypothesis tells us that L′ is a free resolution of R/(⟨g′⟩ + I)

and the entries of the matrices representating ∂L
′

i are non-constant and homogeneous.
Then we claim that (⟨g′⟩+ I : gD) = ⟨g′⟩+ I.

Proof of claim. “⊇” follows from Proposition II.A.6. “⊆”. Let α ∈ (⟨g′⟩+ I : gD), so
gD ·α ∈ ⟨g′⟩+I . Then gDα = gDα = 0 in R/(⟨g′⟩+I). But gD is a non-zero-divisor on
R/(⟨g′⟩+ I) ∼= R/⟨g′⟩R by condition (D) of Definition II.B.5, so α = 0 in R/(⟨g′⟩+ I).
Therefore, α ∈ ⟨g′⟩+ I.
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Now consider the following free resolutions given by the inductive hypothesis:

R/(⟨g′⟩+ I)

(L′)+ = 0 Rβd−D+1 · · · RD−1+β1 R R/(⟨g′⟩+ I : gD) 0

(L′)+ = 0 Rβd−D+1 · · · RD−1+β1 R R/(⟨g′⟩+ I) 0

gD gD gD gD

By Theorem II.A.7,

L = KR(g, F ) = Cone
(
KR(g′, F )

gD−−→ KR(g′, F )
)
= Cone

(
L′ gD−−→ L′)

is a free resolution of R/(⟨g′⟩+ I + gDR) = R/(⟨g⟩+ I). Since ∂Li =

[
−∂L′

i−1 0

g1 ∂L
′

i

]
and

the entries of the matrices representing ∂L
′

i are non-constant and homogeneous and g1
is non-constant and homogeneous, we have the entries of the matrices representing ∂Li
are non-constant and homogeneous. □

(b) Since type
(
R
)
= type

(
R/⟨f⟩

)
, conclude that we may assume without loss of generality

that ∆ = 0.

Proof. We need to show that βd−∆ = type(R), it is enough to show that βd−∆ =
type(R/⟨f⟩) since type(R) = type(R/⟨f⟩). But part (a) gives a free resolution for
R/⟨f⟩, which is Cohen-Macaulay of dimension dim(R) − ∆ = ∆ − ∆ = 0, so we may
assume without losss of generality that ∆ = 0. □

Remark. We can also just use Theorem II.A.7 to prove the base case D = 1 in (a).

Assume for the rest of the project that ∆ = 0. It follows that we have type(R) =
dimk(HomR(k,R)) = dimk(HomR(k,R)), and the goal is to prove that βd = type(R).

Exercise 3. (a) Use Fact 1 to prove that ExtiR(R,R) = 0 for all i ̸= d.

Proof. We have

F ∗ : 0 → HomR(R,R)
(∂F

1 )∗−−−−→ · · · (∂F
d )∗−−−−→ HomR(R

βd , R) → 0.

Since (F ∗)j = F ∗
−j = 0∗ = 0 for all j ≤ −d− 1, we have

ExtiR(R,R) =
Ker(∂F

∗

−i )

Im(∂F
∗

−i+1)
=

Ker(0 → (F ∗)−i−1)

Im(∂F
∗

−i+1)
= 0, ∀ i ≥ d+ 1.

Since ∆ = 0, we have depthI(R) = d−∆ = d. So there exists a R-regular sequence in
I of length d, which is also weakly R-regular. So ExtiR(R,R) = 0 for all i ≤ d − 1 by
Theorem II.C.4(a). □

(b) Prove that ΣdF ∗ = Σd HomR(F,R) is a free resolution of ω := ExtdR(R,R).

Proof. We have

ΣdF ∗ = (0 → HomR(R,R)︸ ︷︷ ︸
deg d

(−1)d(∂F
1 )∗−−−−−−−→ · · · (−1)d(∂F

d )∗−−−−−−−→ HomR(R
βd , R) → 0),

implying

ΣdF ∗ = (0 → R
(−1)d(∂F

1 )∗−−−−−−−→ · · · (−1)d(∂F
d )∗−−−−−−−→ Rβd → 0).
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By (a) we have Hj(F
∗) = Ext−j

R (R,R) = 0 for j ≥ 1 − d. Then by Remark I.D.7,
we have Hi(Σ

dF ∗) = Hi−d(F
∗) = 0 for i ≥ 1. Also note that (ΣdF ∗)i = (F ∗)i−d is

free for each i. So by Lemma II.A.3, we have ΣdF ∗ is a free resolution of H0(Σ
dF ∗) ∼=

H−d(F
∗) = ExtdR(R,R) = ω. □

(c) Use Nakayama’s lemma to prove that ω is minimally generated by βd many elements.

Proof. Note that

ω = ExtdR(R,R) =
Ker(∂F

∗

−d)

Im(∂F
∗

−d+1)
=

Ker((Fd)
∗ → 0)

Im((∂Fd )∗)
∼=

Rβd

Im((∂Fd )∗)
.

Let C ∈ Matβd−1×βd
(R) be the matrix representing ∂Fd : Rβd → Rβd−1 . Then D := CT

is the matrix representing (∂Fd )∗ : Rβd−1 → Rβd . Since the entries Ci,j are non-constant
and homogeneous, we have Ci,j ∈ X and then Dj,i ∈ X. Hence we have Im((∂Fd )∗) =
D(Rβd−1) ⊆ XRβd is a submodule. So by the third isomorphism theorem for modules,

ω

Xω
∼=

Rβd

XRβd + Im((∂Fd )∗)
=

Rβd

XRβd
=

Rβd

(X)βd

∼=
(
R

X

)βd

∼= kβd .

Since the length of basis of the k-vector space kβd is βd, we have the length of basis of
the k-vector space ω

Xω is βd. So the R-module ω is minimally generated by βd many
elements by Nakayama’s lemma. □

Fact 4. Let M be an R-module. Then M has a well-defined R-module structure defined
by the formula rm := rm if and only if IM = 0.

Fact 5. If M is an R-module and N is an R-module, then ExtiR(M,N) and ExtiR(N,M)
are R-modules for i ∈ Z.

Proof. Since ExtiR(M,N) and ExtiR(N,M) are R-modules, by Fact 4 it suffices to show that
I ExtiR(M,N) = 0 = I ExtiR(N,M). Since M is an R-module, IM = 0 by Fact 4. Then

µM,a :M
a−→M is the zero map for all a ∈ I. So for all a ∈ I:

µExtiR(M,N),a = ExtiR(µ
M,a, N) = ExtiR(0, N) = 0

= ExtiR(N, 0) = ExtiR(N,µ
M,a) = µExtiR(N,M),a.

Hence

a · ExtiR(M,N) = 0 = a · ExtiR(N,M), ∀ a ∈ I.

Thus, I ExtiR(M,N) = 0 = I ExtiR(N,M). □

Fact 6. LetM,N be R-modules and f :M → N a function. Then f is an R-module homo-
morphism if and only if it is an R-module homomorphism. In other words, HomR(M,N) =
HomR(M,N).

Proof. Let r ∈ R with r ∈ R and m ∈ M . Since M,N are R-modules, we have f(rm) =
f(rm) and rf(m) = rf(m). So f(rm) = rf(m) if and only if f(rm) = rf(m). □

Fact 7. Given R-complexes A,B,C one can construct Hom-complexes and tensor-product-
complexes such that there is an isomorphism

HomR(A,HomR(B,C)) ∼= HomR(A⊗R B,C). (7.1)
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Also, if P is free resolution of M , and Q is a free resolution of N , then for all i we have

H−i(HomR(P,Q)) ∼= H−i(HomR(P,N)) ∼= ExtiR(M,N) (7.2)

HomR(Σ
iA,ΣiB) ∼= HomR(A,B) (7.3)

H−i(P ⊗R Q) ∼= H−i(P ⊗R N) (7.4)

A⊗R B ∼= B ⊗R A (7.5)

(ΣiA)⊗R (Σ−iB) ∼= A⊗R B (7.6)

In particular, one has HomR(ω, ω)
∼= R because ω is an R-module by Fact 5 and

HomR(ω, ω) = HomR(ω, ω) by Fact 6

∼= Ext0R(ω, ω)

∼= H0(HomR(Σ
dF ∗,ΣdF ∗)) by (7.2)

∼= H0(HomR(F
∗, F ∗)) by (7.3)

∼= H0(HomR(F
∗,HomR(F,R)))

∼= H0(HomR(F
∗ ⊗R F,R)) by (7.1)

∼= H0(HomR(F ⊗R F
∗, R)) by (7.5)

∼= H0(HomR(F,HomR(F
∗, R)))

∼= H0(HomR(F, F
∗∗))

∼= H0(HomR(F, F ))

∼= H0(HomR(F,R)) by (7.2)

∼= Ext0R(R,R)

∼= HomR(R,R)

∼= R

Exercise 8. Let L be a complex of finite rank free R-modules, and let N be an R-module.
Prove that the natural map Φ: L∗ ⊗R N → HomR(L,N) given by Φ(α ⊗ n)(x) = α(x)n is
an isomorphism of R-complexes. (Hint: Prove that it is a chain map, then prove that it is
an isomorphism when L = Rb.)

Proof. Let i ∈ Z. Define

ϕ : L∗
−i ×N −→ HomR(L−i, N)

ϕ(α, n)(x) 7−→ α(x)n.

Then to prove Φi is a well-defined R-module homomorphism, we need to show that ϕ is a
well-defined R-bilinear function. Let (α, n) ∈ L∗

−i × N . Then α ∈ L∗
−i = HomR(L−i, R).

Let l1, l2 ∈ L−i+1 and r ∈ R. Then

ϕ(α, n)(rl1 + l2) = α(rl1 + l2)n =
(
rα(l1) + α(l2)

)
n = rα(l1)n+ α(l2)n

= rϕ(α, n)(l1) + ϕ(α, n)(l2).

So ϕ(α, n) ∈ HomR(L−i, N). Hence ϕ is well-defined. Let α1, α2, α ∈ L∗
−i, n1, n2, n ∈ N

and r, s ∈ R. Then for x ∈ L−i+1 we have

ϕ(rα1 + α2, n)(x) = (rα1 + α2)(x)n = rα1(x)n+ α2(x)n = rϕ(α1, n)(x) + ϕ(α2, n)(x),

ϕ(α, n1s+ n2)(x) = α(x)(n1s+ n2) = (α(x)n1)s+ α(x)n2 = (ϕ(α, n1)s)(x) + ϕ(α, n2)(x).
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So ϕ(rα1 + α2, n) = rϕ(α1, n) + ϕ(α2, n) and ϕ(α, n1s+ n2) = ϕ(α, n1)s+ ϕ(α, n2). Hence
ϕ is R-bilinear. Consider the following diagram.

· · · L∗
i ⊗R N L∗

i−1 ⊗R N · · ·

· · · HomR(L−i, N) HomR(L−i+1, N) · · ·

∂L∗
i ⊗RN

Φi Φi−1

HomR(∂L
−i+1,N)

To show the commutativity of the above diagram, it is enough to show that it is commutative
on the generators of L∗

i ⊗R N . Let α⊗ n ∈ L∗
i ⊗R N . Then for x ∈ L−i+1, we have

Φi−1((∂
L∗

i ⊗R N)(α⊗ n))(x) = Φi−1(∂
L∗

i (α)⊗ n)(x) = (∂L
∗

i (α))(x)n

= ((∂L−i+1)
∗(α))(x)n = (α ◦ ∂L−i+1)(x)n,

and

HomR(∂
L
−i+1, N)(Φi(α⊗ n))(x) = (Φi(α⊗ n) ◦ ∂L−i+1)(x) = Φi(α⊗ n)(∂L−i+1(x))

= α(∂L−i+1(x))n = (α ◦ ∂L−i+1)(x)n.

So Φi−1((∂
L∗

i ⊗RN)(α⊗ n)) = HomR(∂
L
−i+1, N)(Φi(α⊗ n)) and thus Φi−1 ◦ (∂L

∗

i ⊗RN) =

HomR(∂
L
−i+1, N) ◦ Φi. Hence Φ is a chain map. Assume without loss of generality that

Lj = Rbj for all j ∈ Z. Then L∗
i = (L−i)

∗ = HomR(L−i, R) = HomR(R
b−i , R). To prove Φ

is an isomorphism, it is enough to show that Φi is bijective. Let {eλ}b−i

λ=1 ⊆ Rb−i be a basis.
Then we have the following isomorphisms

HomR(R
b−i , R)

∼=−→ Rb−i

ψ 7−→ (ψ(eλ)),

HomR(R
b−i , N)

∼=−→ N b−i

ϕ 7−→ (ϕ(eλ)),

and

Rb−i ⊗R N −→ N b−i

(eλ)⊗ n 7−→ (eλn).

So we have an induced isomorphism:

HomR(R
b−i , R)⊗R N

∼=−→ Rb−i ⊗R N
∼=−→ N b−i

α⊗ n 7−→ (α(eλ))⊗ n 7−→ (α(eλ)n).

Hence the following diagram commutes.

α⊗ n α(·)n

HomR(R
b−i , R)⊗R N HomR(R

b−i , N)

N b−i N b−i

(α(eλ)n) (α(eλ)n)

Φi

∼= ∼=

=

Thus, Φi is an isomorphism. □
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Exercise 9. (a) Use the Koszul resolution K of k over R to prove that

HomR(k, ω) = HomR(k, ω) ∼= Ext0R(k, ω)
∼= H0(F

∗ ⊗R k) ∼= k.

Proof. Since I ⊆ X, we have Ik = 0. So k is an R-module. Also, since ω is an R-module
by Fact 5, we have HomR(k, ω) = HomR(k, ω) by Fact 6. The first isomorphism is

by the proof of Theorem I.E.6. Since K is a free resolution of k and ΣdF ∗ is a free
resolution of ω by Exercise 3(b),

Ext0R(k, ω)
∼= H0(HomR(K,Σ

dF ∗)) by (7.2)

∼= H0(HomR(Σ
dK∗,ΣdF ∗)) K is self-dual

∼= H0(HomR(K
∗, F ∗)) by (7.3)

∼= H0(HomR(K
∗,HomR(F,R)))

∼= H0(HomR(K
∗ ⊗R F,R)) by (7.1)

∼= H0(HomR(F ⊗R K
∗, R)) by (7.5)

∼= H0(HomR(F,HomR(K
∗, R))) by (7.1)

∼= H0(HomR(F,K
∗∗))

∼= H0(HomR(F,K))

∼= H0(HomR(F, k)) by (7.2)

∼= H0(F
∗ ⊗R k) by Exercise 8

Note that

F ∗ ⊗R k : 0 → R⊗R k
(∂F

1 )∗⊗k−−−−−−→ · · · (∂F
d )∗⊗k−−−−−−→ Rβd ⊗R k → 0,

implying

F ∗/XF ∗ ∼= F ∗ ⊗R k : 0 → k
(∂F

1 )∗⊗R/X−−−−−−−−→ kβ1 → · · · (∂F
d )∗⊗R/X−−−−−−−−→ kβd → 0.

Note that

Im
(
(∂F1 )∗ ⊗R/X

)
= Im((∂F1 )∗)⊗R R/X ∼= Im((∂F1 )∗)/X Im((∂F1 )∗).

Similar to Exercise 3(c), we have Im((∂F1 )∗) ⊆ X. So Im
(
(∂F1 )∗ ⊗R/X

)
= 0. Hence

H0(F
∗ ⊗R k) ∼= Ker

(
(∂F1 )∗ ⊗R/X

)
= k. □

(b) Prove that HomR(k,R)
∼= HomR(k, ω)

βd ∼= kβd .

Proof. By (a), it is enough to show that HomR(k,R)
∼= HomR(k, ω)

βd . Since ω is

minimally generated βd many elements by Exercise 3(c), we have kβd ∼= ω⊗Rk ∼= k⊗Rω
by Lemma VII.3.12 in Homological Algebra Notes and by (7.5). So

HomR(k, ω)
βd ∼= HomR(k

βd , ω)

∼= HomR(k ⊗R ω, ω)

∼= HomR(k,HomR(ω, ω)) by (7.1)

∼= HomR(k,R) by Fact 7.

□

(c) Conclude that type(R) = βd, as desired.
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Proof. By Fact 6 and proof of (a), we have HomR(k,R) = HomR(k,R). Since depth(R) ≤
dim(R) = ∆ = 0, we have depth(R) = 0. So by (b),

type(R) = dimk(Ext
0
R(k,R)) = dimk(HomR(k,R)) = dimk(HomR(k,R)) = βd. □


