COHEN-MACAULAY TYPE IN TERMS OF FREE RESOLUTION

Let k be a field, and set R = k[Xy,...,X4] and X = (X1,...,Xg) < R. Let I be an
ideal of R generated by non-constant homogeneous polynomials. Assume that R = R/I is
Cohen-Macaulay of dimension A.

Fact 1. There is a free resolution

9i_a
—> ..

8 9, pp O
F=(0— RP» 2L R DL R50)
S——

deg d — A

of R over R such that the entries of the matrices representing 9 are non-constant and
homogeneous. Furthermore, one has depth;(R) = d — A.

The goal of this project is to prove that S4_a = type(R). We accomplish this in steps.
Exercise 2. Let f = fi,..., fa € X be a homogenous maximal R-regular sequence. As in
Homework 2, let K = K®(f, F) be defined inductively as K%(fa, F) = Cone(F Ia, F') and
K = KR(£, F) = Cone(K*(f', F) L KR (f', F)) where f' = fa, ..., fa.

(a) Prove that

R B A a5 A+By o
K=K"f,F)=0— RV > — ... =5 R — R —0)
——
deg d
is a resolution of R/{f)R = R/(I + (f)) over R such that the entries of the matrices
representing GZ»K are non-constant and homogeneous.

Proof. Let F* be the corresponding augmented free resolution of R:

N oF aF J—
F+:(O_> RBa-a 422, RP y R R —0).
S——
deg d — A
It is enough to prove the claim: Let g = ¢1,...,9p € X be a homogeneous R—regular
sequence, then
R 9 p ok _pig OF
L=KRgF)=(0— Rp 2 ... 2, RP+A T, R )
S——
deg d

is a resolution of R/(g)R = R/(I+(g)) over R such that the entries of the matrices rep-
resenting 97 are non-constant and homogeneous. To prove the claim, we use induction
on D.

Base case: The case for D = 0 is covered in Fact [l Let D = 1. Then

B ag—A azp 3 8f T 5
Ft=(0— RP-2 2. . 23R 23 RO R—0),
deg d — A

and L = Kf(gy, F) = Cone(F 2, F). So
1
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0 0
F, [ aF} 0 R [ 0f] 0 g1 of
ok g 12, g — ok o2 o1 ¢ = oF: R'H —>[1 l R.
P Fo RA1 R

Since F'T is exact, we have Im(df") = Ker(r) = I. So
Im(97) =Im([g1 0f]) = (g1) + Im(0f) = (g1) + I.
Hence
Ho(L) = R/Im(87) = R/({g1) + ).

We claim that H;(L) = 0 fori = 1,...,d—1. Since I is a resolution, we have H;(F") = 0
for i > 1 and Ho(F) = R. By Theorem 1.D.20, the following sequence is exact:

0 F L X F 0.

We consider the long exact sequence of homology modules that rises from the above

short exact sequence.
(1) Let ¢ > 2. Then

. —— Hy(F) —— H;(L) —— H;_1(F) 25 H;_(F) —— -
I I I
0 0 0

So by Fact 1.B.2(c), we have H;(L) = 0.
(2) Let ¢ = 1. Then

. —— Hy{(F) — Hy(L) —— Ho(F) -2 Hy(F) — ---

l
0

Since Hy (F') = 0 and the above sequence is exact, we have Ker(H; (L) — Ho(F)) =
0. Since g; is a non-zero-divisor on R, we have Ho(F) 25 Hy(F) is 1-1. So

Therefore, H;(L) = 0 for i = 1,...,d — 1. So L = KF(g;,F) is a free resolution of
Ho(L) = R/({g1) + I) by Lemma II.A.3. Since g; € X is homogenous and a non-zero-
divisor on R, we have g; is non-constant and homogeneous. Also, since the entries of the
matrices representating af are non-constant and homogeneous, we have the entries of
—0f,
g1

Inductive case: Set g’ = g1,...,9p_1 and L' = K(g', F). By definition, g’ is R-
regular. The inductive hypothesis tells us that L’ is a free resolution of R/({g') + I)
and the entries of the matrices representating 8{4/ are non-constant and homogeneous.
Then we claim that ((g')+ I : gp) = (g') + I.

Proof of claim. “2” follows from Proposition I1.A.6. “C”. Let o € ({g')+ 1 : gp), so
gp-a € (g')+1. Then gpa = gpa = 0in R/((g')+I). But gp is a non-zero-divisor on
R/({g') +1I) = R/{(g')R by condition (D) of Definition IL.B.5, so @ = 0 in R/((g') + I).
Therefore, a € (g’) + 1.

. . 0
the matrices representating 9F = { 9 F] are also non-constant and homogeneous.
i
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Now consider the following free resolutions given by the inductive hypothesis:

Rr/((g") +1)
|

(LY =0 — RPas-p+1 — ... s RP-14H v R s R/((g\+T:9p) — O
lgD lgD Jgp \[gD

(LYY =0 — RPa-p+1 — ... — RD-1+A R R/({(gy+1) —— 0

By Theorem I1.A.7,

L= K"(g, F) = Cone(K™(g', F) 2% K" (g',F)) = Cone(L' 2% L)
-oF, 0

" 1 aiL,} and

the entries of the matrices representing 8{‘, are non-constant and homogeneous and ¢,

is non-constant and homogeneous, we have the entries of the matrices representing 9%
are non-constant and homogeneous. O

is a free resolution of R/({(g') +I+gpR) = R/({g) +I). Since 0F = [

(b) Since type (R) = type (E/ (f >), conclude that we may assume without loss of generality
that A = 0.

Proof. We need to show that Sq_a = type(R), it is enough to show that Sg_a =
type(R/(f)) since type(R) = type(R/(f)). But part (a) gives a free resolution for
R/(f), which is Cohen-Macaulay of dimension dim(R) — A = A — A = 0, so we may
assume without losss of generality that A = 0. g

Remark. We can also just use Theorem II.A.7 to prove the base case D =1 in (a).

Assume for the rest of the project that A = 0. It follows that we have tyBe(R) =
dimy, (Hompg(k, R)) = dimy (Homg(k, R)), and the goal is to prove that 34 = type(R).

Exercise 3. (a) Use Fact |1|to prove that Ext’s (R, R) = 0 for all i # d.

Proof. We have
Fy\* Fy\*
F*:0 = Homg(R, R) 25 .. ©D% Homp (R, R) 5 0.
Since (F*); = Fr,=0"=0 for all j < —d — 1, we have

Ker(9F) ~ Ker(0— (F*)_i_1)

Im(af;-l) B Im(af;—&-l)

Since A = 0, we have depth;(R) = d — A = d. So there exists a R-regular sequence in
I of length d, which is also weakly R-regular. So Ext’z(R,R) =0 for all i < d — 1 by
Theorem II1.C.4(a). O

Ext%(R,R) =

=0,Vi>d+1.

(b) Prove that ¥F* = ¥ Hompg(F, R) is a free resolution of w := Ext&(R, R).
Proof. We have

_1)d(aF > _1)2(§F)*
COYOD, DRI g (BB R Sy 0),

Y?F* = (0 — Homg(R, R)
N————
deg d

implying
(D70 (=DTE)”

YIF*=(0—R RP - 0).
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By (a) we have H;(F*) = Ext]_%j(}?7 R) =0 for j > 1—d. Then by Remark 1.D.7,
we have H;(Z¢F*) = H;_4(F*) = 0 for i > 1. Also note that (Z?F*); = (F*);_q4 is
free for each 7. So by Lemma II.A.3, we have L¢F* is a free resolution of Ho(X4F*) =
H_4(F*) = Exth(R, R) = w. O

(¢) Use Nakayama’s lemma to prove that w is minimally generated by S; many elements.

Proof. Note that
Ker(95))  Ker((Fy)* — 0) RPa

m(0%,,)  Im(@f))  Im((9F)")
Let C € Matg, ,xs,(R) be the matrix representing 9% : R% — RP¢-1_ Then D := CT
is the matrix representing (9%)* : R%-1 — RP¢. Since the entries C; ; are non-constant

and homogeneous, we have C; ; € X and then D;; € X. Hence we have Im((9})*) =
D(RPa-1) C XRP4 is a submodule. So by the third isomorphism theorem for modules,

w RSB RBa RBa <R> Ba o o

w=Ext4(R,R) =

~ ~

Xo  XRP +Im((0F)")  XRPa  (X)Pi

X

Since the length of basis of the k-vector space kP4 is B4, we have the length of basis of

the k-vector space 57 is 84. So the R-module w is minimally generated by ; many

elements by Nakayama’s lemma. O

Fact 4. Let M be an R-module. Then M has a well-defined R-module structure defined
by the formula 7m := rm if and only if IM = 0.

Fact 5. If M is an R-module and N is an R-module, then Ext% (M, N) and Exth (N, M)
are R-modules for i € Z.

Proof. Since Ext% (M, N) and Ext% (N, M) are R-modules, by Fact 4|it suffices to show that
TExt%(M,N) = 0 = I Ext’;(N,M). Since M is an R-module, IM = 0 by Fact 4l Then
pMe M 2 M is the zero map for all a € 1. So for all a € I:
PR (MN) @ — Bl (uM) N) = Ext’ (0, N) = 0
= Ext% (N, 0) = Ext% (N, p?) = uEXtiR(N’M)’a.
Hence
a-Exth(M,N)=0=a-Exth(N,M), Vacl.

Thus, I Ext (M, N) =0 = I Exth (N, M). O
Fact 6. Let M, N be R-modules and f : M — N a function. Then f is an R-module homo-

morphism if and only if it is an R-module homomorphism. In other words, Homg (M, N) =
Homp (M, N).

Proof. Let ¥ € R with r € R and m € M. Since M, N are R-modules, we have f(rm) =
f(rm) and 7f(m) = rf(m). So f(Fm) =7f(m) if and only if f(rm) =rf(m). O
Fact 7. Given R-complexes A, B, C one can construct Hom-complexes and tensor-product-

complexes such that there is an isomorphism

Homp(A,Hompg(B,(C)) = Homp(A®r B, C). (7.1)



COHEN-MACAULAY TYPE IN TERMS OF FREE RESOLUTION 5

Also, if P is free resolution of M, and @ is a free resolution of N, then for all ¢ we have
H_;(Homg(P,Q)) = H_;(Homg(P, N)) = Ext’ (M, N) (7.2)
Homp(X'A,Y'B) = Homg(A, B) (7.3)
H ,(P®rQ)=2H_;(P®grN) (7.4)
ARrB=B®rA (7.5)
(X'A)@p (XT'B) =2 A®r B (7.6)

In particular, one has Homg(w,w) = R because w is an R-module by Fact [5| and

Homp(w, w) = Homp(w,w) by Fact [f]
>~ Bxt% (w,w)
~ Ho(Homp(Z4F*, X4F*)) by
~ Hoy(Homp(F*, F*)) by
>~ Hy(Hompg (F*,Homg(F, R)))
~ Ho(Homp(F* @ F, R)) by
~ Ho(Homp(F ®r F*, R)) by
>~ Hy(Hompg (F,Homg(F*, R)))
> Hy(Homp (F, F*))
>~ Hy(Hompg(F, F))
=~ Hy(Homp(F, R)) by (7.2)
=~ Ext% (R, R)
=~ Hompg (R, R)

Exercise 8. Let L be a complex of finite rank free R-modules, and let N be an R-module.
Prove that the natural map ®: L* @ g N — Hompg(L, N) given by ®(a ® n)(z) = a(x)n is
an isomorphism of R-complexes. (Hint: Prove that it is a chain map, then prove that it is
an isomorphism when L = R?.)

Proof. Let i € Z. Define
¢:L*, x N— Hompg(L_;,N)
d(a,n)(x) — a(z)n.

Then to prove ®; is a well-defined R-module homomorphism, we need to show that ¢ is a
well-defined R-bilinear function. Let (a,n) € L*; x N. Then a € L*, = Homg(L_;, R).
Let l1,lo € L_;41 and r € R. Then

o(a,n)(rly +1z) = a(rly + l2)n = (ra(l) + a(l2))n = ra(li)n + a(lz)n
=r¢(a,n)(l) + ¢(a,n)(l).

So ¢(a,n) € Homp(L_;, N). Hence ¢ is well-defined. Let ai,as,a € L*,, ny,n2,n € N
and r,s € R. Then for x € L_;;1 we have

d(rag + ag,n)(z) = (rag + az)(z)n = rag(z)n + az(x)n = ré(ag, n)(x) + ¢(az, n)(zx),
¢, nys + ng)(x) = afz)(n1s +n2) = (a(z)ni)s + a(z)ng = (¢, n1)s)(z) + ¢(a, na)(z).
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So ¢(rax + az,n) = ré(ar,n) + ¢(az,n) and (a, nis +n2) = ¢(a,n1)s + ¢(a, n2). Hence
¢ is R-bilinear. Consider the following diagram.

oL @rN
S L'®gN L on Li @ N — -+

l@i J/q)i—l
L

Hompg(0Z,,,N)
- HomR(L_i,N) HOHIR(L_H_l,N) —_— -

To show the commutativity of the above diagram, it is enough to show that it is commutative
on the generators of L7 ® g N. Let c ®n € LY ®g N. Then for x € L_;;;, we have

®i-1((0F” ®r N)(@®n))(z) = ;-1 (9 () @) () = (9 () (2)n
= (L) (@) (@)n = (a 0 8, ) (x)n,
and
Homp (9,1, N)(@i(a®n))(z) = (®i(a @n) 0 9L, ,1)(z) = ®i(a®@n) (L, (x))
= O‘(afiﬂ(f))n = (a0 3£i+1)(37)“'
So ®;_1((0F ®@r N)(a®n)) = Homg(9X,, 1, N)(®;(e®n)) and thus ®;_; 0 (9F" @ N) =
Hompg (0L, +1,N) o ®;. Hence ® is a chain map. Assume without loss of generality that
L;= RY for all j € Z. Then L} = (L_;)* = Homg(L_;, R) = Homg(R"-¢, R). To prove ®

is an isomorphism, it is enough to show that ®; is bijective. Let {e)\}l;\’:il C R’ be a basis.
Then we have the following isomorphisms

Homp(R', R) — Rt~
P (Y(er)),

Homp (R, N) — N’

and
R @z N — N
(ex) @ n+— (exn).
So we have an induced isomorphism:
Homp(R',R)®r N — R~ @z N —» NU-
a®@nr— (aley)) @n+— (alex)n).

Hence the following diagram commutes.

a®n a()n

Homp(R*i,R) ®r N —+ Homp (R, N)

~| I

Nb_i - Nb—i

(afex)n) (afex)n)

Thus, ®; is an isomorphism. O
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Exercise 9. (a) Use the Koszul resolution K of k over R to prove that

()

Homy (k,w) = Hompg(k,w) = Ext (k,w) = Ho(F* ®p k) = k.

Proof. Since I C X, we have Ik = 0. So k is an R-module. Also, since w is an R-module
by Fact |5, we have Homp(k,w) = Hompg(k,w) by Fact @ The first isomorphism is
by the proof of Theorem L.E.6. Since K is a free resolution of k and Y%F* is a free

resolution of w by Exercise 3(b),

Ext%(k,w) = Ho(Homp (K, Z9F*)) by
>~ Ho(Homp(X4K*, X4F*)) K is self-dual
=~ Ho(Hompg(K*, F*)) by
~ Ho(Homp (K™, Hompg(F, R)))
~ Ho(Homp(K* ®r F, R)) by
=~ Ho(Homp(F ®@r K*, R)) by
=~ Hy(Hompg(F,Homg (K™, R))) by
~ Ho(Homp(F, K**))
= Ho(Homp(F, K))
>~ Ho(Homp(F, k)) by
>~ Hy(F* Qg k) by Exercise 8

Note that
Fronk:0— Ropk 2%k GOk poig gy,
implying
FPUXF = P @pk:0— kS CRE e QIGRE g, .

Note that
Im((07)* ® R/X) = Im((8])*) @r R/X = Im((0{")")/XIm((])").

Similar to Exercise 3(c), we have Im((0{")*) C X. So Im((8{")* ® R/X) = 0. Hence

Ho(F* ®p k) 2 Ker((0f )" ® R/X) = k.
Prove that Homgp(k, R) = Homg(k,w)P = kP,

Proof. By (a), it is enough to show that Homg(k, R) = Homgp(k,w)".

minimally generated §; many elements by Exercise 3(c), we have kP > w@prk 2 kQpw

by Lemma VII.3.12 in Homological Algebra Notes and by (7.5)). So
Homy (k, w)?* = Homp (K7, w)

= Homg(k ®p w,w)
= Homg(k, Homp(w, w)) by (7.1)
=~ Hom(k, R) by Fact [7]

Conclude that type(R) = B4, as desired.
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Proof. By Fact 6 and proof of (a), we have Homp(k, R) = Homgp(k, R). Since depth(R) <

dim(R) = A = 0, we have depth(R) = 0. So by (b),
type(R) = dimy,(Ext},(k, R)) = dimy (Homp(k, R)) = dimy, (Homg(k, R)) = Ba. 0



