COHEN-MACAULAY TYPE IN TERMS OF FREE RESOLUTION

Let k be a field, and set $R = k[X_1, \ldots, X_d]$ and $\mathfrak{X} = \langle X_1, \ldots, X_d \rangle \leq R$. Let I be an ideal of R generated by non-constant homogeneous polynomials. Assume that $\overline{R} = R/I$ is Cohen-Macaulay of dimension Δ .

Fact 1. There is a free resolution

$$F = (0 \to \underbrace{R^{\beta_{d-\Delta}}}_{\deg d - \Delta} \xrightarrow{\partial_{d-\Delta}^F} \cdots \xrightarrow{\partial_2^F} R^{\beta_1} \xrightarrow{\partial_1^F} R \to 0)$$

of \overline{R} over R such that the entries of the matrices representing ∂_i^F are non-constant and homogeneous. Furthermore, one has depth_I(R) = $d - \Delta$.

The goal of this project is to prove that $\beta_{d-\Delta} = \text{type}(\overline{R})$. We accomplish this in steps.

Exercise 2. Let $\mathbf{f} = f_1, \ldots, f_\Delta \in \mathfrak{X}$ be a homogenous maximal \overline{R} -regular sequence. As in Homework 2, let $K = K^R(\mathbf{f}, F)$ be defined inductively as $K^R(f_\Delta, F) = \operatorname{Cone}(F \xrightarrow{f_\Delta} F)$ and $K = K^R(\mathbf{f}, F) = \operatorname{Cone}(K^R(\mathbf{f}', F) \xrightarrow{f_1} K^R(\mathbf{f}', F))$ where $\mathbf{f}' = f_2, \ldots, f_\Delta$. (a) Prove that

$$K = K^{R}(\mathbf{f}, F) = (0 \to \underbrace{R^{\beta_{d-\Delta}}}_{\deg d} \xrightarrow{\partial_{d-\Delta}^{K}} \cdots \xrightarrow{\partial_{2}^{K}} R^{\Delta + \beta_{1}} \xrightarrow{\partial_{1}^{K}} R \to 0)$$

is a resolution of $\overline{R}/\langle \mathbf{f} \rangle \overline{R} \cong R/(I + \langle \mathbf{f} \rangle)$ over R such that the entries of the matrices representing ∂_i^K are non-constant and homogeneous.

Proof. Let F^+ be the corresponding augmented free resolution of \overline{R} :

$$F^{+} = (0 \to \underbrace{R^{\beta_{d-\Delta}}}_{\deg d - \Delta} \xrightarrow{\partial_{d-\Delta}^{F}} \cdots \xrightarrow{\partial_{2}^{F}} R^{\beta_{1}} \xrightarrow{\partial_{1}^{F}} R \xrightarrow{\tau} \overline{R} \to 0).$$

It is enough to prove the claim: Let $\mathbf{g} = g_1, \ldots, g_D \in \mathfrak{X}$ be a homogeneous \overline{R} -regular sequence, then

$$L = K^{R}(\mathbf{g}, F) = (0 \to \underbrace{R^{\beta_{d-D}}}_{\deg d} \xrightarrow{\partial_{d-D}^{L}} \cdots \xrightarrow{\partial_{2}^{L}} R^{D+\beta_{1}} \xrightarrow{\partial_{1}^{L}} R \to 0)$$

is a resolution of $\overline{R}/\langle \mathbf{g} \rangle \overline{R} \cong R/(I + \langle \mathbf{g} \rangle)$ over R such that the entries of the matrices representing ∂_i^L are non-constant and homogeneous. To prove the claim, we use induction on D.

Base case: The case for D = 0 is covered in Fact 1. Let D = 1. Then

$$F^{+} = (0 \to \underbrace{R^{\beta_{d-\Delta}}}_{\deg d - \Delta} \xrightarrow{\partial_{d-\Delta}^{F}} \cdots \xrightarrow{\partial_{2}^{F}} R^{\beta_{1}} \xrightarrow{\partial_{1}^{F}} R \xrightarrow{\tau} \overline{R} \to 0),$$

and $L = K^R(g_1, F) = \operatorname{Cone}(F \xrightarrow{g_1} F)$. So

$$\partial_1^L: \stackrel{F_0}{\oplus} \xrightarrow{\begin{bmatrix} 0 & 0\\ g_1 & \partial_1^F \end{bmatrix}}_{F_0} \stackrel{0}{\Longrightarrow} \partial_1^L: \stackrel{R}{\oplus} \xrightarrow{\begin{bmatrix} g_1 & \partial_1^F \end{bmatrix}}_{R} \stackrel{0}{\bigoplus} \implies \partial_1^L: R^{1+\beta_1} \xrightarrow{\begin{bmatrix} g_1 & \partial_1^F \end{bmatrix}}_{R} R.$$

Since F^+ is exact, we have $\operatorname{Im}(\partial_1^F) = \operatorname{Ker}(\tau) = I$. So

$$\operatorname{Im}(\partial_1^L) = \operatorname{Im}\left(\left[g_1 \ \partial_1^F\right]\right) = \langle g_1 \rangle + \operatorname{Im}(\partial_1^F) = \langle g_1 \rangle + I.$$

Hence

$$H_0(L) = R/\operatorname{Im}(\partial_1^L) = R/(\langle g_1 \rangle + I).$$

We claim that $H_i(L) = 0$ for i = 1, ..., d-1. Since F is a resolution, we have $H_i(F) = 0$ for $i \ge 1$ and $H_0(F) \cong \overline{R}$. By Theorem I.D.20, the following sequence is exact:

$$0 \longrightarrow F \longrightarrow L \longrightarrow \Sigma F \longrightarrow 0.$$

We consider the long exact sequence of homology modules that rises from the above short exact sequence.

(1) Let $i \geq 2$. Then

So by Fact I.B.2(c), we have $H_i(L) = 0$. (2) Let i = 1 Then

Since $H_1(F) = 0$ and the above sequence is exact, we have $\operatorname{Ker}(H_1(L) \to H_0(F)) = 0$. Since g_1 is a non-zero-divisor on \overline{R} , we have $H_0(F) \xrightarrow{g_1} H_0(F)$ is 1-1. So

$$\mathrm{H}_{1}(L) \cong \mathrm{H}_{1}(L) / \operatorname{Ker}(\mathrm{H}_{1}(L) \to \mathrm{H}_{0}(F)) \cong \operatorname{Ker}(\mathrm{H}_{0}(F) \xrightarrow{g_{1}} \mathrm{H}_{0}(F)) = 0.$$

Therefore, $\mathbf{H}_i(L) = 0$ for $i = 1, \ldots, d-1$. So $L = K^R(g_1, F)$ is a free resolution of $\mathbf{H}_0(L) = R/(\langle g_1 \rangle + I)$ by Lemma II.A.3. Since $g_1 \in \mathfrak{X}$ is homogenous and a non-zerodivisor on \overline{R} , we have g_1 is non-constant and homogeneous. Also, since the entries of the matrices representating ∂_i^F are non-constant and homogeneous, we have the entries of the matrices representating $\partial_i^L = \begin{bmatrix} -\partial_{i-1}^F & 0\\ g_1 & \partial_i^F \end{bmatrix}$ are also non-constant and homogeneous.

Inductive case: Set $\mathbf{g}' = g_1, \ldots, g_{D-1}$ and $L' = K^R(\mathbf{g}', F)$. By definition, \mathbf{g}' is \overline{R} -regular. The inductive hypothesis tells us that L' is a free resolution of $R/(\langle \mathbf{g}' \rangle + I)$ and the entries of the matrices representating $\partial_i^{L'}$ are non-constant and homogeneous. Then we claim that $(\langle \mathbf{g}' \rangle + I : g_D) = \langle \mathbf{g}' \rangle + I$.

Proof of claim. "⊇" follows from Proposition II.A.6. "⊆". Let $\alpha \in (\langle \mathbf{g}' \rangle + I : g_D)$, so $g_D \cdot \alpha \in \langle \mathbf{g}' \rangle + I$. Then $g_D \overline{\alpha} = \overline{g_D \alpha} = 0$ in $R/(\langle \mathbf{g}' \rangle + I)$. But g_D is a non-zero-divisor on $R/(\langle \mathbf{g}' \rangle + I) \cong \overline{R}/\langle \mathbf{g}' \rangle \overline{R}$ by condition (D) of Definition II.B.5, so $\overline{\alpha} = 0$ in $R/(\langle \mathbf{g}' \rangle + I)$. Therefore, $\alpha \in \langle \mathbf{g}' \rangle + I$.

Now consider the following free resolutions given by the inductive hypothesis:

By Theorem II.A.7,

$$L = K^{R}(\mathbf{g}, F) = \operatorname{Cone}\left(K^{R}(\mathbf{g}', F) \xrightarrow{g_{D}} K^{R}(\mathbf{g}', F)\right) = \operatorname{Cone}\left(L' \xrightarrow{g_{D}} L'\right)$$

is a free resolution of $R/(\langle \mathbf{g}' \rangle + I + g_D R) = R/(\langle \mathbf{g} \rangle + I)$. Since $\partial_i^L = \begin{bmatrix} -\partial_{i-1}^{L'} & 0\\ g_1 & \partial_i^{L'} \end{bmatrix}$ and the entries of the matrices representing $\partial_i^{L'}$ are non-constant and homogeneous and g_1 is non-constant and homogeneous, we have the entries of the matrices representing ∂_i^L are non-constant and homogeneous.

(b) Since type $(\overline{R}) = \text{type}(\overline{R}/\langle \mathbf{f} \rangle)$, conclude that we may assume without loss of generality that $\Delta = 0$.

Proof. We need to show that $\beta_{d-\Delta} = \text{type}(\overline{R})$, it is enough to show that $\beta_{d-\Delta} = \text{type}(\overline{R}/\langle \mathbf{f} \rangle)$ since $\text{type}(\overline{R}) = \text{type}(\overline{R}/\langle \mathbf{f} \rangle)$. But part (a) gives a free resolution for $\overline{R}/\langle \mathbf{f} \rangle$, which is Cohen-Macaulay of dimension $\dim(\overline{R}) - \Delta = \Delta - \Delta = 0$, so we may assume without losss of generality that $\Delta = 0$.

Remark. We can also just use Theorem II.A.7 to prove the base case D = 1 in (a).

Assume for the rest of the project that $\Delta = 0$. It follows that we have $\operatorname{type}(\overline{R}) = \dim_k(\operatorname{Hom}_R(k,\overline{R})) = \dim_k(\operatorname{Hom}_{\overline{R}}(k,\overline{R}))$, and the goal is to prove that $\beta_d = \operatorname{type}(\overline{R})$.

Exercise 3. (a) Use Fact 1 to prove that $\operatorname{Ext}_{R}^{i}(\overline{R}, R) = 0$ for all $i \neq d$.

Proof. We have

$$F^*: 0 \to \operatorname{Hom}_R(R, R) \xrightarrow{(\partial_1^F)^*} \cdots \xrightarrow{(\partial_d^F)^*} \operatorname{Hom}_R(R^{\beta_d}, R) \to 0.$$

Since $(F^*)_j = F^*_{-j} = 0^* = 0$ for all $j \le -d - 1$, we have

$$\operatorname{Ext}_{R}^{i}(\overline{R},R) = \frac{\operatorname{Ker}(\partial_{-i}^{F^{*}})}{\operatorname{Im}(\partial_{-i+1}^{F^{*}})} = \frac{\operatorname{Ker}(0 \to (F^{*})_{-i-1})}{\operatorname{Im}(\partial_{-i+1}^{F^{*}})} = 0, \ \forall \ i \ge d+1.$$

Since $\Delta = 0$, we have depth_I(R) = $d - \Delta = d$. So there exists a R-regular sequence in I of length d, which is also weakly R-regular. So $\operatorname{Ext}^{i}_{R}(\overline{R}, R) = 0$ for all $i \leq d - 1$ by Theorem II.C.4(a).

(b) Prove that $\Sigma^d F^* = \Sigma^d \operatorname{Hom}_R(F, R)$ is a free resolution of $\omega := \operatorname{Ext}_R^d(\overline{R}, R)$.

Proof. We have

$$\Sigma^{d} F^{*} = (0 \to \underbrace{\operatorname{Hom}_{R}(R, R)}_{\operatorname{deg} d} \xrightarrow{(-1)^{d}(\partial_{1}^{F})^{*}} \cdots \xrightarrow{(-1)^{d}(\partial_{d}^{F})^{*}} \operatorname{Hom}_{R}(R^{\beta_{d}}, R) \to 0),$$

implying

$$\Sigma^{d} F^{*} = (0 \to R \xrightarrow{(-1)^{d} (\partial_{1}^{F})^{*}} \cdots \xrightarrow{(-1)^{d} (\partial_{d}^{F})^{*}} R^{\beta_{d}} \to 0).$$

By (a) we have $H_j(F^*) = \operatorname{Ext}_R^{-j}(\overline{R}, R) = 0$ for $j \ge 1 - d$. Then by Remark I.D.7, we have $H_i(\Sigma^d F^*) = H_{i-d}(F^*) = 0$ for $i \ge 1$. Also note that $(\Sigma^d F^*)_i = (F^*)_{i-d}$ is free for each *i*. So by Lemma II.A.3, we have $\Sigma^d F^*$ is a free resolution of $H_0(\Sigma^d F^*) \cong H_{-d}(F^*) = \operatorname{Ext}_R^d(\overline{R}, R) = \omega$.

(c) Use Nakayama's lemma to prove that ω is minimally generated by β_d many elements.

Proof. Note that

$$\omega = \operatorname{Ext}_{R}^{d}(\overline{R}, R) = \frac{\operatorname{Ker}(\partial_{-d}^{F^{*}})}{\operatorname{Im}(\partial_{-d+1}^{F^{*}})} = \frac{\operatorname{Ker}((F_{d})^{*} \to 0)}{\operatorname{Im}((\partial_{d}^{F})^{*})} \cong \frac{R^{\beta_{d}}}{\operatorname{Im}((\partial_{d}^{F})^{*})}$$

Let $C \in \operatorname{Mat}_{\beta_{d-1} \times \beta_d}(R)$ be the matrix representing $\partial_d^F : R^{\beta_d} \to R^{\beta_{d-1}}$. Then $D := C^T$ is the matrix representing $(\partial_d^F)^* : R^{\beta_{d-1}} \to R^{\beta_d}$. Since the entries $C_{i,j}$ are non-constant and homogeneous, we have $C_{i,j} \in \mathfrak{X}$ and then $D_{j,i} \in \mathfrak{X}$. Hence we have $\operatorname{Im}((\partial_d^F)^*) = D(R^{\beta_{d-1}}) \subseteq \mathfrak{X}R^{\beta_d}$ is a submodule. So by the third isomorphism theorem for modules,

$$\frac{\omega}{\mathfrak{X}\omega} \cong \frac{R^{\beta_d}}{\mathfrak{X}R^{\beta_d} + \operatorname{Im}((\partial_d^F)^*)} = \frac{R^{\beta_d}}{\mathfrak{X}R^{\beta_d}} = \frac{R^{\beta_d}}{(\mathfrak{X})^{\beta_d}} \cong \left(\frac{R}{\mathfrak{X}}\right)^{\beta_d} \cong k^{\beta_d}$$

Since the length of basis of the k-vector space k^{β_d} is β_d , we have the length of basis of the k-vector space $\frac{\omega}{\widehat{\mathfrak{x}}\omega}$ is β_d . So the *R*-module ω is minimally generated by β_d many elements by Nakayama's lemma.

Fact 4. Let M be an R-module. Then M has a well-defined \overline{R} -module structure defined by the formula $\overline{r}m := rm$ if and only if IM = 0.

Fact 5. If M is an \overline{R} -module and N is an R-module, then $\operatorname{Ext}^{i}_{R}(M, N)$ and $\operatorname{Ext}^{i}_{R}(N, M)$ are \overline{R} -modules for $i \in \mathbb{Z}$.

Proof. Since $\operatorname{Ext}_{R}^{i}(M, N)$ and $\operatorname{Ext}_{R}^{i}(N, M)$ are *R*-modules, by Fact 4 it suffices to show that $I \operatorname{Ext}_{R}^{i}(M, N) = 0 = I \operatorname{Ext}_{R}^{i}(N, M)$. Since *M* is an \overline{R} -module, IM = 0 by Fact 4. Then $\mu^{M,a}: M \xrightarrow{a} M$ is the zero map for all $a \in I$. So for all $a \in I$:

$$\mu^{\text{Ext}_{R}^{i}(M,N),a} = \text{Ext}_{R}^{i}(\mu^{M,a},N) = \text{Ext}_{R}^{i}(0,N) = 0$$
$$= \text{Ext}_{R}^{i}(N,0) = \text{Ext}_{R}^{i}(N,\mu^{M,a}) = \mu^{\text{Ext}_{R}^{i}(N,M),a}.$$

Hence

$$a \cdot \operatorname{Ext}^{i}_{R}(M, N) = 0 = a \cdot \operatorname{Ext}^{i}_{R}(N, M), \ \forall \ a \in I.$$

Thus, $I \operatorname{Ext}^{i}_{R}(M, N) = 0 = I \operatorname{Ext}^{i}_{R}(N, M).$

Fact 6. Let M, N be \overline{R} -modules and $f: M \to N$ a function. Then f is an R-module homomorphism if and only if it is an \overline{R} -module homomorphism. In other words, $\operatorname{Hom}_{\overline{R}}(M, N) = \operatorname{Hom}_{R}(M, N)$.

Proof. Let
$$\bar{r} \in R$$
 with $r \in R$ and $m \in M$. Since M, N are R -modules, we have $f(\bar{r}m) = f(rm)$ and $\bar{r}f(m) = rf(m)$. So $f(\bar{r}m) = \bar{r}f(m)$ if and only if $f(rm) = rf(m)$.

Fact 7. Given R-complexes A, B, C one can construct Hom-complexes and tensor-productcomplexes such that there is an isomorphism

$$\operatorname{Hom}_{R}(A, \operatorname{Hom}_{R}(B, C)) \cong \operatorname{Hom}_{R}(A \otimes_{R} B, C).$$

$$(7.1)$$

Also, if P is free resolution of M, and Q is a free resolution of N, then for all i we have

$$H_{-i}(\operatorname{Hom}_{R}(P,Q)) \cong H_{-i}(\operatorname{Hom}_{R}(P,N)) \cong \operatorname{Ext}_{R}^{i}(M,N)$$
(7.2)

$$\operatorname{Hom}_{R}(\Sigma^{i}A, \Sigma^{i}B) \cong \operatorname{Hom}_{R}(A, B)$$
(7.3)

$$\mathcal{H}_{-i}(P \otimes_R Q) \cong \mathcal{H}_{-i}(P \otimes_R N) \tag{7.4}$$

$$A \otimes_R B \cong B \otimes_R A \tag{7.5}$$

$$(\Sigma^{i}A) \otimes_{R} (\Sigma^{-i}B) \cong A \otimes_{R} B$$
(7.6)

In particular, one has $\operatorname{Hom}_{\overline{R}}(\omega,\omega) \cong \overline{R}$ because ω is an \overline{R} -module by Fact 5 and

$$\operatorname{Hom}_{\overline{R}}(\omega,\omega) = \operatorname{Hom}_{R}(\omega,\omega) \qquad \text{by Fact 6} \\ \cong \operatorname{Ext}_{R}^{0}(\omega,\omega) \\ \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(\boldsymbol{\Sigma}^{d}F^{*},\boldsymbol{\Sigma}^{d}F^{*})) \qquad \text{by (7.2)} \\ \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F^{*},F^{*})) \qquad \text{by (7.3)} \\ \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F^{*},\operatorname{Hom}_{R}(F,R))) \\ \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F^{*}\otimes_{R}F,R)) \qquad \text{by (7.1)} \\ \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F\otimes_{R}F^{*},R)) \qquad \text{by (7.5)} \\ \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F,\operatorname{Hom}_{R}(F^{*},R))) \\ \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F,F^{**})) \\ \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F,F^{**})) \\ \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F,\overline{R})) \\ \cong \operatorname{Ext}_{R}^{0}(\overline{R},\overline{R}) \\ \cong \operatorname{Hom}_{R}(\overline{R},\overline{R}) \\ \cong \overline{R} \end{aligned}$$

Exercise 8. Let L be a complex of finite rank free R-modules, and let N be an R-module. Prove that the natural map $\Phi: L^* \otimes_R N \to \operatorname{Hom}_R(L, N)$ given by $\Phi(\alpha \otimes n)(x) = \alpha(x)n$ is an isomorphism of R-complexes. (Hint: Prove that it is a chain map, then prove that it is an isomorphism when $L = R^b$.)

Proof. Let $i \in \mathbb{Z}$. Define

$$\phi: L_{-i}^* \times N \longrightarrow \operatorname{Hom}_R(L_{-i}, N)$$
$$\phi(\alpha, n)(x) \longmapsto \alpha(x)n.$$

Then to prove Φ_i is a well-defined *R*-module homomorphism, we need to show that ϕ is a well-defined *R*-bilinear function. Let $(\alpha, n) \in L_{-i}^* \times N$. Then $\alpha \in L_{-i}^* = \operatorname{Hom}_R(L_{-i}, R)$. Let $l_1, l_2 \in L_{-i+1}$ and $r \in R$. Then

$$\phi(\alpha, n)(rl_1 + l_2) = \alpha(rl_1 + l_2)n = (r\alpha(l_1) + \alpha(l_2))n = r\alpha(l_1)n + \alpha(l_2)n$$

= $r\phi(\alpha, n)(l_1) + \phi(\alpha, n)(l_2).$

So $\phi(\alpha, n) \in \operatorname{Hom}_R(L_{-i}, N)$. Hence ϕ is well-defined. Let $\alpha_1, \alpha_2, \alpha \in L^*_{-i}, n_1, n_2, n \in N$ and $r, s \in R$. Then for $x \in L_{-i+1}$ we have

$$\phi(r\alpha_1 + \alpha_2, n)(x) = (r\alpha_1 + \alpha_2)(x)n = r\alpha_1(x)n + \alpha_2(x)n = r\phi(\alpha_1, n)(x) + \phi(\alpha_2, n)(x),$$

$$\phi(\alpha, n_1s + n_2)(x) = \alpha(x)(n_1s + n_2) = (\alpha(x)n_1)s + \alpha(x)n_2 = (\phi(\alpha, n_1)s)(x) + \phi(\alpha, n_2)(x).$$

So $\phi(r\alpha_1 + \alpha_2, n) = r\phi(\alpha_1, n) + \phi(\alpha_2, n)$ and $\phi(\alpha, n_1s + n_2) = \phi(\alpha, n_1)s + \phi(\alpha, n_2)$. Hence ϕ is *R*-bilinear. Consider the following diagram.

$$\cdots \longrightarrow L_{i}^{*} \otimes_{R} N \xrightarrow{\partial_{i}^{L^{*}} \otimes_{R} N} L_{i-1}^{*} \otimes_{R} N \longrightarrow \cdots$$

$$\downarrow \Phi_{i} \qquad \qquad \qquad \downarrow \Phi_{i-1}$$

$$\cdots \longrightarrow \operatorname{Hom}_{R}(L_{-i}, N) \xrightarrow{\operatorname{Hom}_{R}(\partial_{-i+1}^{L}, N)} \operatorname{Hom}_{R}(L_{-i+1}, N) \longrightarrow \cdots$$

To show the commutativity of the above diagram, it is enough to show that it is commutative on the generators of $L_i^* \otimes_R N$. Let $\alpha \otimes n \in L_i^* \otimes_R N$. Then for $x \in L_{-i+1}$, we have

$$\begin{split} \Phi_{i-1}((\partial_i^{L^*} \otimes_R N)(\alpha \otimes n))(x) &= \Phi_{i-1}(\partial_i^{L^*}(\alpha) \otimes n)(x) = (\partial_i^{L^*}(\alpha))(x)n \\ &= ((\partial_{-i+1}^L)^*(\alpha))(x)n = (\alpha \circ \partial_{-i+1}^L)(x)n, \end{split}$$

and

$$\operatorname{Hom}_{R}(\partial_{-i+1}^{L}, N)(\Phi_{i}(\alpha \otimes n))(x) = (\Phi_{i}(\alpha \otimes n) \circ \partial_{-i+1}^{L})(x) = \Phi_{i}(\alpha \otimes n)(\partial_{-i+1}^{L}(x))$$
$$= \alpha(\partial_{-i+1}^{L}(x))n = (\alpha \circ \partial_{-i+1}^{L})(x)n.$$

So $\Phi_{i-1}((\partial_i^{L^*} \otimes_R N)(\alpha \otimes n)) = \operatorname{Hom}_R(\partial_{-i+1}^L, N)(\Phi_i(\alpha \otimes n))$ and thus $\Phi_{i-1} \circ (\partial_i^{L^*} \otimes_R N) = \operatorname{Hom}_R(\partial_{-i+1}^L, N) \circ \Phi_i$. Hence Φ is a chain map. Assume without loss of generality that $L_j = R^{b_j}$ for all $j \in \mathbb{Z}$. Then $L_i^* = (L_{-i})^* = \operatorname{Hom}_R(L_{-i}, R) = \operatorname{Hom}_R(R^{b_{-i}}, R)$. To prove Φ is an isomorphism, it is enough to show that Φ_i is bijective. Let $\{e_\lambda\}_{\lambda=1}^{b_{-i}} \subseteq R^{b_{-i}}$ be a basis. Then we have the following isomorphisms

$$\operatorname{Hom}_{R}(R^{b_{-i}}, R) \xrightarrow{\cong} R^{b_{-i}} \\ \psi \longmapsto (\psi(e_{\lambda})),$$
$$\operatorname{Hom}_{R}(R^{b_{-i}}, N) \xrightarrow{\cong} N^{b_{-i}} \\ \phi \longmapsto (\phi(e_{\lambda})),$$

and

$$R^{b_{-i}} \otimes_R N \longrightarrow N^{b_{-i}}$$
$$(e_{\lambda}) \otimes n \longmapsto (e_{\lambda}n).$$

So we have an induced isomorphism:

$$\operatorname{Hom}_{R}(R^{b_{-i}}, R) \otimes_{R} N \xrightarrow{\cong} R^{b_{-i}} \otimes_{R} N \xrightarrow{\cong} N^{b_{-i}}$$
$$\alpha \otimes n \longmapsto (\alpha(e_{\lambda})) \otimes n \longmapsto (\alpha(e_{\lambda})n).$$

Hence the following diagram commutes.

Thus, Φ_i is an isomorphism.

Exercise 9. (a) Use the Koszul resolution K of k over R to prove that

$$\operatorname{Hom}_{\overline{R}}(k,\omega) = \operatorname{Hom}_{R}(k,\omega) \cong \operatorname{Ext}_{R}^{0}(k,\omega) \cong \operatorname{H}_{0}(F^{*} \otimes_{R} k) \cong k.$$

Proof. Since $I \subseteq \mathfrak{X}$, we have Ik = 0. So k is an \overline{R} -module. Also, since ω is an \overline{R} -module by Fact 5, we have $\operatorname{Hom}_{\overline{R}}(k,\omega) = \operatorname{Hom}_{R}(k,\omega)$ by Fact 6. The first isomorphism is by the proof of Theorem I.E.6. Since K is a free resolution of k and $\Sigma^{d}F^{*}$ is a free resolution of ω by Exercise 3(b),

$$\operatorname{Ext}_{R}^{0}(k,\omega) \cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(K,\Sigma^{d}F^{*})) \qquad \text{by (7.2)}$$

$$\cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(\Sigma^{d}K^{*},\Sigma^{d}F^{*})) \qquad K \text{ is self-dual}$$

$$\cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(K^{*},F^{*})) \qquad by (7.3)$$

$$\cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(K^{*}\otimes_{R}F,R)) \qquad by (7.1)$$

$$\cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F\otimes_{R}K^{*},R)) \qquad by (7.5)$$

$$\cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F,\operatorname{Hom}_{R}(K^{*},R))) \qquad by (7.1)$$

$$\cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F,\operatorname{K}^{**})) \qquad by (7.1)$$

$$\cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F,K^{**})) \qquad by (7.2)$$

$$\cong \operatorname{H}_{0}(\operatorname{Hom}_{R}(F,k)) \qquad by (7.2)$$

Note that

$$F^* \otimes_R k : 0 \to R \otimes_R k \xrightarrow{(\partial_1^F)^* \otimes k} \cdots \xrightarrow{(\partial_d^F)^* \otimes k} R^{\beta_d} \otimes_R k \to 0$$

implying

$$F^*/\mathfrak{X}F^* \cong F^* \otimes_R k: 0 \to k \xrightarrow{(\partial_1^F)^* \otimes R/\mathfrak{X}} k^{\beta_1} \to \cdots \xrightarrow{(\partial_d^F)^* \otimes R/\mathfrak{X}} k^{\beta_d} \to 0.$$

Note that

$$\operatorname{Im}((\partial_1^F)^* \otimes R/\mathfrak{X}) = \operatorname{Im}((\partial_1^F)^*) \otimes_R R/\mathfrak{X} \cong \operatorname{Im}((\partial_1^F)^*)/\mathfrak{X}\operatorname{Im}((\partial_1^F)^*).$$

Similar to Exercise 3(c), we have $\operatorname{Im}((\partial_1^F)^*) \subseteq \mathfrak{X}$. So $\operatorname{Im}((\partial_1^F)^* \otimes R/\mathfrak{X}) = 0$. Hence

$$\mathrm{H}_{0}(F^{*} \otimes_{R} k) \cong \mathrm{Ker}\left((\partial_{1}^{F})^{*} \otimes R/\mathfrak{X}\right) = k.$$

(b) Prove that $\operatorname{Hom}_{\overline{R}}(k,\overline{R}) \cong \operatorname{Hom}_{\overline{R}}(k,\omega)^{\beta_d} \cong k^{\beta_d}$.

Proof. By (a), it is enough to show that $\operatorname{Hom}_{\overline{R}}(k,\overline{R}) \cong \operatorname{Hom}_{\overline{R}}(k,\omega)^{\beta_d}$. Since ω is minimally generated β_d many elements by Exercise 3(c), we have $k^{\beta_d} \cong \omega \otimes_R k \cong k \otimes_R \omega$ by Lemma VII.3.12 in Homological Algebra Notes and by (7.5). So

$$\begin{split} \operatorname{Hom}_{\overline{R}}(k,\omega)^{\beta_d} &\cong \operatorname{Hom}_{\overline{R}}(k^{\beta_d},\omega) \\ &\cong \operatorname{Hom}_{\overline{R}}(k\otimes_R\omega,\omega) \\ &\cong \operatorname{Hom}_{\overline{R}}(k,\operatorname{Hom}_{\overline{R}}(\omega,\omega)) \qquad \qquad \text{by (7.1)} \\ &\cong \operatorname{Hom}_{\overline{R}}(k,\overline{R}) \qquad \qquad \text{by Fact 7.} \end{split}$$

(c) Conclude that type(\overline{R}) = β_d , as desired.

7

Proof. By Fact 6 and proof of (a), we have $\operatorname{Hom}_{R}(k, \overline{R}) = \operatorname{Hom}_{\overline{R}}(k, \overline{R})$. Since $\operatorname{depth}(\overline{R}) \leq \operatorname{dim}(\overline{R}) = \Delta = 0$, we have $\operatorname{depth}(\overline{R}) = 0$. So by (b),

 $\operatorname{type}(\overline{R}) = \dim_k(\operatorname{Ext}^0_R(k,\overline{R})) = \dim_k(\operatorname{Hom}_R(k,\overline{R})) = \dim_k(\operatorname{Hom}_{\overline{R}}(k,\overline{R})) = \beta_d. \qquad \Box$