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Introduction

The study and application of commutative rings with identity.

(a) Commutative algebra in calculus. We have that C(R) = {continuous functions R — R} and
D(R) = {differentiable functions R — R} are both commutative rings with identity.

(b) Commutative algebra in graph theory. Let G be a finite simple graph with vertex set V =
{v1,...,v4}. The edge ideal of G is I(G) = (v;v; | v;v; is an edge in G) < Klv1,...,vq].

algebraic properties of I(G) Z—— combinatorial properties of G.

(¢) Commutative algebra in combinatorics. A simplicial complex A on V. Stanley-Reisner ideal
J(A) < Klvy, ..., vd].

algebraic properties of J(A) == combinatorics properties of A.
Let P be a poset and A(P) = “order complex of P” = {chains in P}. Study P via J(A(P)).

(d) Commutative algebra in number theory. Number theory is the study of solutions of polynomial
equations over Z. Given an intermediate field Q C K C C, let

R ={a € K | Jan monic f € Z[z] s.t. f(a) =0},
then Z C R C K are subrings. (Chapter 5)

(e) Commutative algebra in algebraic geometry. Algebraic geometry is the study of solution sets
for systems of polynomial equations over fields. Let k be a field, f1,..., fm € k[X1,..., X4],

Vi=V(fi, o fm) ={z € k| fi(z) =0,Vi=1,...,m},
where V is for “variety”, and
IV)y={f€ek[X1,....,Xd] | f(z) =0,Vz eV} < Kk[Xy,...,X4]
algebraic properties of I(V') == geometric properties of V.

Why modules? Because in number theory, R = {& € K | 3monic f € Z[z] s.t. f(o) =0} is a
subring of K.

Challenge-exercise: prove this by definition. For «, 8 € R, note there exist f, g € Z[X] monic
such that f(a) = 0 = f(B), then try to prove or construct monic polynomials s,d,p € Z[X] such
that s(a + ) =0, d(ow — B) = 0 and p(af) = 0.



2 CONTENTS

Proof is a straightforward application of modules.

Why topology? To study geometry, need continuity. Let V.=V (f1,..., fm), W=V (g1,...,9n)
and ¢ : V — W. What does it mean for ¢ to be continuous if £ = F3? Need a notion of open sets
inV and W.



Chapter 1

Rings and Ideals

Let R be a commutative ring with identity.

Rings and Ring Homomorphisms

Fact 1.1. R =0 if and only if 13 = 0p.
Fact 1.2. (a) 1g and Or are both unique.
(b) For any r € R, —r is unique.
1

(c) If r € R is a unit, then there exists a unique 7=! € R such that rr=! =15 = r~1r.

Definition 1.3. A (unital) homomorphism of commutative rings with identity is a function ¢ :
R — S with R and S commutative rings with identity, such that for all ,7’ € R,

(a) o(r+1") =o(r) + o(r'),

(b) ¢(rr') = ¢(r)o(r),

(c) #(1r) = 1s.

It is also known as “ring homomorphism”.

Fact 1.4. Let ¢ : R — S be a ring homomorphism.

(a) #(0r) = 0s.

(b) ¢(—r) = —¢(r) for r € R.

(c) &(r—s)=o¢(r) —¢(s) for r,s € R.

(d) o> risi) = >im, d(ri)e(si) for ri,...,"m, S1,...,Sm € R.
(e) If r is a unit in R, then @(r) is a unit in S and ¢(r)~* = ¢(r~1).
(f) A composition of ring homomorphisms is a ring homomorphism.

3
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Definition 1.5. A subring of R is a subset S C R such that S is a commutative ring with identity
under the operations for R and such that 1g = 1g, i.e., 1g € S.

Fact 1.6 (Subring test). A subset S C R is a subring if and only if it is closed under +,-, — and
1p € S.

Example 1.7. Subring test: need ) # S C R, S is closed under +,-,— and 1z € S.

If S is not closed under —, then fail. Let Ng = {0,1,2,---} C Z not a subring.

If 1 ¢ S, then fail. Let R = F3 x F3 D {(a,a) | a € Fg} =: S. Then S is a subring of R.
Although S := {(a,0) | @ € F3} = F3 = {(0,a) | a € Fg} =: Sy are rings but not subrings of R
since 1 = (1,1) € S; and 1z = (1,1) & Ss.

Fact 1.8. If S C R is a subring, then the inclusion map € : S — R given by e(s) = s is a ring
homomorphism.

Ideals and Generators

Definition 1.9. An ideal of R is a non-empty subset a C R, an additive subgroup such that for
all7 € Rand a € a, ra € qa, i.e., closed under scalar multiplication.

An ideal a < R is prime if a # R and for any a,b € R, if a,b & a, then ab & a, i.e., if ab € qa,
thena€aorbea.

An ideal a < R is mazimal if a # R and for any ideal b < R, if a C b C R, then either a = b or
b=R.

Fact 1.10 (Ideal test). If a # () and a is closed under scalar multiplication -, then —a = (—1g)a € a
for a € a, also, since a is closed under +, it is automatically closed under —.

Thus, A subset a C R is an ideal if and only if a # ) and a is closed under + and scalar
multiplication -.

Example 1.11. (a) Let R = Z, then ideals of R are of the form nZ = {nm | m € Z}, where n € Z.
nZ is prime if and ounly if n = 0 or |n| is prime.

nZ is maximal if and only if |n| is prime.
(b) Tf I < R for A € A, then (N, Ir < R.

(¢) fry,...,7m € R, then

(riy.cosrm) ={(r1,...,rm)R=(r1,...,7m) = (r1,...,rm)R = ﬂ I

1, "TmEISR
m
= E a;7T;

=1

aiER,Wzl,...,m}<R.

In particular,

(rY=(R=(r)=(r)R=rR=Rr={ar |a€ R} = ﬂ I,Vr € R.
reI<R



(d) If AC R, then (A) = (N yc;<x ! and

finite
(A) = RAR = AR = RA = {Zraa TGERN(IEu}.
a€cA
Fact 1.12. For any ry,...,7, € R, (r1,...,7my) is the smallest ideal of R containing ry,...,7m,
ie, for any a < R, r1,...,7m € aif and only if (ry,...,7,) C a. Similarly, A C a if and only if

(A) Ca,eg.,if A<R,then A= (A).
Construction 1.13. Let a < R. Forany r € R, r+a={r+a|a € a} =7. Let
R/a:={r+a|reR}.

Then R/a is a commutative ring with identity with 7 £5 = r£s, 75 = 75, Op/q = Ogr and
lrja = 1n.

Let 7 : R — R/a be given by m(r) = 7. Then 7 is a well-defined ring epimorphism.

(UMP) For any ¢ : R — S ring homomorphism, if ¢(a) = 0, then there exists a unique ring
homomorphism ¢ : R/a — S making the following diagram commute.

R ¢ > S
r— o(r

1/

e
-,
-

R/a

Note that ¢(a) = 0 if and only if a C Ker(¢). In particular, if a = (A), then a C Ker(¢) if and
only if A C Ker(¢).

Fact 1.14. Let a < R.

(a) ais prime if and only if R/a is an integral domain.
(b) a is maximal if and only if R/a is a field.

(¢) If R is a field, then it is an integral domain.

Hence if a is maximal, then a is prime.

Fact 1.15 (Ideal correspondence for quotients). Let a < R and w : R — R/a be the canonical ring
epimorphism.

{ideals I < R/a} = {ideals J < R|a C J}

I— 7 'I)={reR|r+acl}D>n'(0)=a
Jja+—JDa
{ideals I < R/a} = {ideals J < R|a C J}

{primes ideals of R/a} == {prime ideals p < R |a C p}

{maximal ideals of R/a} = {maximal ideals m < R | a C m}.
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In both R and R/a, maximal ideals are a subset of prime ideals and prime ideals are a subset
of ideals.
We claim that

R/a ~ R
Tja — J

R/~

It is straightforward to show that J = Ker(7 o p). Then the first isomorphism theorem says the
map ¢ is a ring isomorphism.

Notation. Spec(R) = {primes ideals of R}, called the prime spectrum of R.
The variety determined by an ideal a < R is V(a) = {p € Spec(R) | p D a}.
m-Spec(R) = {maximal ideals of R} C Spec(R).

Fact 1.16. Let ¢ : R — S be a ring homomorphism. Then Ker(¢) < R, Im(¢) C S is a subring
and Im(¢) = R/ Ker (o).

If S is an integral domain, then so is Im(¢). Hence Ker(¢) is prime.

More generally, ¢~ 1(b) = {x € R| ¢(z) € b} < R for b < S.

Let q € Spec(S). Then S/q is an integral domain. Also, since R/ Ker(m o ¢) = Im(m o ¢) C
S/q, we have that R/Ker(m o ¢) is an integral domain and then Ker(w o ¢) is prime. Observe
#~1(q) = Ker(m o ¢) is then prime, i.e., $~1(q) € Spec(R). Thus, ¢ induces a well-defined map
¢* : Spec(S) — Spec(R) given by ¢*(q) = ¢~ (q).

Example. Let ¢ : Z — Q be an inclusion map. Note that q := (0)Q < Q is maximal, but
»71(q) = ¢71(0) = Ker(¢) = 0Z, which is not maximal in Z. Hence the map ¢* does not take
maximal ideals to maximal ideals in general.

Fact 1.17. We have the following.

(a) Let R # 0. Then R has a maximal ideal m and so R has a prime ideal. Moreover, for any
a < R, there exists a maximal ideal m 2 a. In particular, V(a) = {p € Spec(R) | p D a} # 0.

One generally proves the second statement first, then derives the first statement as the special
case a = 0. Next, we show how to derive the second statement from the first one.

(b) Let a < R. Then 0 # R/a is a commutative ring with identity. Hence R/a has a maximal ideal
and by Fact 1.15, it is of the form m/a, where m is a maximal ideal of R containing a.



Local Rings

Definition 1.18. R is local if it has a unique maximal ideal m, also known as “quasi-local”. The
residue field of R is R/m.

“Assume (R, m, k) is local” or “assume (R, m) is local”, shorthand, we mean m is the unique
maximal ideal of R and k = R/m.

Example 1.19. (a) Any field is local with the maximal ideal (0).

(b) Let n > 1 and p be prime in Z. Note that 0 # Z/(p™) has a maximal ideal m = (p)/(p"),
where (p) is a maxiaml ideal of R containing (p™). Assume there is m; < R maximal such that
my; DO (p"). Then my is prime, so p € my and hence (p) C my. Since (p) is prime in Z and Z is
a PID, (p) is maximal. Hence (p) = my. Thus, (p) is the unique maximal ideal containing (p™)
and so Z/(p") is local. Similarly, we can show (p) is the unique prime ideal containing (p™), so

Spec(Z/{p")) = {{p)/(P")}-

(c) Let k be a field. As in part (b), we see that R = k[X]/(X™) is local with m = (X)/(X™). In
fact, Spec(R) = {(X)/{X"}}.

(d) Let kbeafieldand R = k[Xq,..., Xq]/(X{", -+, XJ?), wherea; > 1fori=1,...,d. Then Ris
local with m = (X1,..., Xq)/(X{", ..., X7%). In fact, Spec(R) = {(X1,..., Xq) (X", , X7}

Fact 1.20. If (R, m) is local and a < R, then (R/a,m/a) is also local and Rja o R/m, so these

m/a
rings have canonically isomorphic residue fields. The converse fails in general by Example 1.19.

Notation 1.21. Let R* = R* = U(R) = {units of R}.
Proposition 1.22. The following are equivalent.

(i) R is local.
(i) RN R* <R.

(iii) There exists a < R such that R~ a C R*.
When these are satisfied, m = R~ R* = a.

Proof. (1)==(ii) Assume (R, m) is local.

We claim that m = R~ R*. It suffices to show R~ m = R*. D Let u € R*. Then (u) = R
andsou gm < R, ie,u€ R~m. Hence R* C R~m. C Let z € R~ R*. Then (x) < R. Since
m is the unique maximal ideal in R, () C m, i.e., z € m. Thus, R~ R* Cm, i.e., R~ m C R*.

(ii)==(iii) Assume R~ R* < R. Set a= R~ R*. Then R~ a = R*.

(ili)==(i) Let a < R such that R~ a C R*.

We claim that a = R~ R*. “27. It is straightforward. “C”. Let a € a < R, then a ¢ R* since
a< R,soa € R~ R* and hence a C R~ R*. Thus, a = R~ R*.

Let n < R be maximal and y € n. Then y ¢ R*. Hence y € R~ R* =a. Thus, n Ca < R.
Since n is maximal, n = a. Thus, a is the unique maximal ideal in R and so R is local. O

Proposition 1.23. Let m < R be maximal such that 1 +m C R*. Then R is local.

Proof. By the previous proposition, it suffices to show R~ m C R*. Let x € R~ m. Set (z,m) =
{z}Um) ={ax+m |a € R,m e m}. Since z € m, m C (x,m) < R. Also, since m is maximal,
(x,m) = R. Hence ax + m =1 for some a € R and m € m, i.e., axr =1 —m € 1 +m C R*. Thus,
a,x € R*. O
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The Nilradical

Definition 1.24. x € R is nilpotent if there exists n > 1 such that ™ = 0. The nilradical of R is
Nil(R) = N(R) = Mg = N = {nilpotent elements of R}.

Example 1.25. In the ring Z/(p™), we have that p is nilpotent. It is similar in k[X]/(X™) and
E[Xq, ..., X /(X7 ..., X)), where k is a field, n > 1 and a; --- ,aq > 1.

Proposition 1.26. We have the following.
(a) Nil(R) < R.
(b) Nil(R/Nil(R)) = {0}.
(¢) Nil(R) = R if and only if R = 0.
)

( Nﬂ( ) ﬂpESpec( )p

Proof. (a) Since 0 € Nil(R), Nil(R) # (). Let r € R and a,b € Nil(R). Then there exists m,n > 1
such that ™ = 0 = b". Then (ra)™ = r™a™ = 0 and so ra € Nil(R). By the binomial theorem,
(a + bymtn = S (M) gipmtn=i = (. Since for i = 0,...,m + n, either i > m or i < m, i.e.,
t>morm-+n—1i>n, we have that a = 0 when ¢ > m, and pmtn—t = 0 when m +n —1i > n.
Hence (a + b)™*" = 0 and thus a + b € Nil(R).

(b) Let z € Nil(R/Nil(R)). Then there exists n > 1 such that 2 = z"

= Nil(R).
Hence there exists m > 1 such that (2™)™ =0, i.e., z™" = 0. Thus, z € Nil(R

0, i.e., 2™ €
), e, T=0.
(¢) We have that Nil(R) = R if and only if 1 € Nil(R) if and only if there exists n > 1 such that
1=1"=0if and only if 1 = 0 if and only if R = 0.

(d) “C”. Let « € Nil(R). Then there exists n > 1 such that 2™ = 0 € p for p € Spec(R). Hence
z € p for p € Spec(R). Thus, z € Nyegpec(r) P-
“D”. Let x € R~ Nil(R). Need to show z ¢ mpESpec(R) It is equivalent to show there exists

p € Spec(R) such that = ¢ p. Let ¥ = {a < R | z,22,2% - ¢ a}. Since » € Nil(R), z* # 0 for
k > 1. Hence (0) € ¥ and then ¥ # ). Let ¥ C X be chaln Then we have that q := (J .o a < R.
Suppose 2™ € q for some n > 1. Then z" € a for some a € ¥ C %, contradicting a € 3. Hence
™ & q for n > 1 and hence q € 2. Hence q is an upper bound for & in X. Since the chain € C X
is arbitrary, by Zorn’s lemma, ¥ has a maximal element I. We claim that I € Spec(R). Suppose
I =R. Then z € R = I, contradicting I € ¥. Hence I < R. Let r,s € R~ 1. Then I C (r,I) <R
and I C (s,I) < R. By the maximality of I in 3, we have that (r,I), (s, I) € ¥. Hence there exists
m,n > 1 such that 2™ € (r,I) and 2™ € (s,I). Then 2™ = ar + i for some ¢ € R and i € I, and
" = bs + j for some b € R and j € I. Hence

"t = 22" = (ar +4)(bs + j) = abrs + (arj + bsi +ij) € (rs, I).
eI
Hence (rs,I) ¢ 3. Therefore, since I € X, we have that I # (rs,I), so rs € I. Thus, I € Spec(R)
such that x & I. 0

TNil(R) C ZD(R), but not conversely.



Example. Let k be a field and R = k[X1,..., Xq]/(X{", ..., X]?) # 0, where a; > 1 for i =

1,...,d. Then Nil(R) = (X3, ..., Xq)/(XT, ..., XJ).

Proof. Method 1. Since Spec(R) = {(Xi,..., Xq)/(XT", ..., Xq")} Nil(R) = Nyespeer) P =

(X1, Xa) (X7, XG0, B -
Method 2. Since X; € Nil(R) < Rfori=1,...,d, we have that (X;,...,X4) = (X1,...,Xqg) C

Nil(R) C R since R # 0. Also, since (X7, ..., X4) is maximal, we have that Nil(R) = (X1,..., Xq4).
O

Fact. If a < R and ry,...,r, € R, then R/a 2 (F1,...,7p) = (r1,...,7p,a)/a. In particular, if
(riy...,rn) 2 a, then (Fy, -+, Tp) = (r1,...,rs)/a.

The Jacobson Radical
Definition 1.27. The Jacobson radical of R is

Jac(R)=3(R)= (] m

m<R max’l

Fact 1.28.
Jac(R) DO Nil(R)= () ».
peSpec(R)

Proposition 1.29.
JR)={re€eR|1—zye R*,Vy € R}.

Proof. “C”. Let x € J(R). By way of contradiction, suppose there is y € R such that 1 —zy & R*.
Then there exists m < R maximal such that 1 — 2y € m. Since z € J(R) C m, zy € m. Hence
1= (1—=2y)+ 2y € m, a contradiction.

“D”. Argue by contrapositive. Let x € R such that 1 — zy € R* for any y € Y. Suppose
x € J(R). Then there exists m < R maximal such that ¢ m. Hence m C (m,z) C R. Hence
(x,m) = R. Then there exists y € R and m € m such that zy+m = 1, i.e,, 1 —zy = m € m. Hence
1—zy & R*, a contradiction. O

Operations on Ideals

Let a,b,c < R, ay,...,a, <R, Sy CRand ay,by <R for A € A, where A is an index set.

Sums of Ideals

Definition 1.30.
a+b=(aUb) = ﬂ I
aUbCI<R

Fact 1.31. We have the following.
(a) a+bCcifand onlyifaUb Cc.

(b) a+ b is the (unique) smallest ideal of R that contains a U b.
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(c) a+b={a+b|a€cabeb}

(d) If a=(S) and b = (T), thena+b=(SUT).

(e) fa=(z1,...,zm)and b= (y1,...,yn), then a+b = {(x1,...,Zm,Y1,---,Yn)-
(f) If x € R, then (z,a) = (z) + a.

(g) a+(b+c¢)=(a+b)+c.

Proof. (a) and (b) are by definition.

(c) Set I={a+b|acabeb}. Check I is an ideal of R. Fora € a,a =a+0 € I and for b € b,
b=0+bel. HenceaUbCI. By (a),a+bCI. On the other hand, for a+b € I with a € a and
b € b, we have that a,bcaUbCa+b< R, soa+bca+b.

(d) Let I < R. Note that I D aUb if and only if I D a,b if and only if T D (S), (T) if and only if
1D S,Tif and only if I O SUT. Hence

atb= () I= () I=(Sum).

aUbCI<R  SUTCI<R
(e) By (d).
(f) By (c).
(g) The essential point isa+ (b+¢) = (aU(bUc)) = ((aUb)Uc) = (a+b)+c. O

Example. mZ +nZ = (m,n)Z = ged(m, n)Z, where m # 0 or 1 % 0.

Recall. Spec(R) = {prime ideals of R}. For S C R, V(S) = {p € Spec(R) | p 2 S}.
Proposition 1.32. Let S C R.

(a) V(S) = V((3).
(b) a= R if and only if V(a) = 0.

(¢) a CNil(R) if and only if V(a) = Spec(R).

(d) If a C b, then V(a) D V(b)I. If S C T C R, then V(S) D V(T).

Proof. (d) Since S C T C R, we have that V(S) D V(T') by definition.

(a) p € V(S) if and only if p D S if and only if p D (S) if and only if p D V((5)).

(b) We have that a = R if and only if b 2 a for any b < R if and only if m 2 a for any m < R
maximal if and only if p 2 a for any p € Spec(R) by Fact 1.14 and Fact 1.17.

(¢) a € Nil(R) if and only if p D a for all p € Spec(R) by Proposition 1.26(d) if and only if
V(a) = Spec(R). O

TV (a) C V(b) if and only if rad(a) D rad(b); V(a) = V(b) if and only if rad(a) = rad(b).
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Proposition 1.33. We have the following.
(a) V(a+b)=V(aUb) =V(a)NV(b).
(b) V(a)nV(b) =0 if and only if a + b = R.

Proof. (a) Since a+b=(aUb), V(a+b)=V({(aUb)) =V(aUb).
Let p € Spec(R). Note that p D aUb if and only if p O a and p D b. Hence V(aUb) = V(a)NV(b).

(b) V(a)NV(b) =0 if and only if V(a+ b) = §) by part (a) if and only if a + b = R by Proposition
1.32(b). O

Remark. The sum a; + - - + a,, is defined for ay,...,a, for all n € Z>3 and same properties as
above hold for finite sums.

Definition 1.34.

Za,\:<Ua,\>: ﬂ I

A€A AEA U, CI<R
Fact 1.35. We have the following.
(a) > yeaax Ccifand only if (Jycp ax Cc.
(b) D> sea @a is the (unique) smallest ideal of R containing (Jyc, @a-
(€) Yaea®n = {X0ex ax | ax € ax, VA € A}
(d) Ifay = (Sx) for A€ A, then Y7,y ax = (Uyen Sh)-
Fact 1.36. We have the following.
(8) V(2 aea @) = V(Uxea ax) = MNiyea Viar).
(b) Nyea V(ax) =0 if and only if -, ) ax = R.

Products of Ideals
Definition 1.37.

where N = {ab|a € a,b € b}.

Fact 1.38. Let N = {ab|a € a,b € b}.

(a) ab C ¢ if and only if N C c.

b) ab is the (unique) smallest ideal of R containing N.
c) ab = {3 ab; | a; € a, b; € b,Vi}.

d) If a=(S) and b = (T), then ab = (st | s € S,t € T').

e) fa=(z1,...,Tm) and b= (y1,...,yn), then ab = (z;y; |i=1,... . m,j=1,...,n).
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(f) abCanb.
Proof. (c) Let I = {3 ab; | a; € a,b; € b}. Check I < R through I C ab C I like Fact 1.31(c).

(f) Method 1. For any a € a < R, we have that ab € a for any b € b. For any b € b < R, we have
that ab € b for any a € a. Hence ab € anNb for any a € a and b € b. Hence ab C anb by Fact 1.12.

Method 2. It follows from ab C aR = a and ab C Rb = b. ]
Proposition 1.39. We have the following.
(a) V(ab) =V(anb) =V(a) UV(b).
(b) V(a) UV(b) = Spec(R) if and only if ab C Nil(R) if and only if anb C Nil(R).
Proof. (a) Let p € Spec(R). We claim that p DO ab if and only if p D a or p D b*.

< LetpDaorpDOb. Thenp=pRDODaRDaborp=Rp D RbDab.

— Let p D ab. Suppose p 2 a and p 2 b. Then there exists a € a \ p and exists b € b \ p.
Since p € Spec(R), ab & p, contradicting ab € ab C p.

Hence V(ab) = V(a) UV (b).
Since ab C anb, V(ab) D V(anNb). Let p € V(ab). Then p D ab. Hence p D a or p D b. Hence
p 2 anb and then p € V(anb). Hence V(ab) € V(anb). Thus, V(ab) = V(anb)’.

(b) V(a) UV(b) = Spec(R) if and only if V(ab) = Spec(R) by part (a) if and only if ab C Nil(R)
by Proposition 1.32(c) and similarly for a N b. O

Proposition 1.40. We have the following.
(a) ab = ba and (ab)c = a(bc).
(b) a(b+c)=ab+ ac.

(c) anb=abifa+b=R,ie., aand b are “coprime” or “comazimal”.
The converse holds if R is a PID and a,b # 0.

Proof. (a) and (b) are straightforward.

(c) “27. We always have anb 2 ab.
“C”. Assume a+b = R.

Method 1. Note that 1 =a+bforsomea €aand b€ b. Let zx € anb. Then x € b and z € a.
Hence x =12 = (a+b)x = ax + bz = ax + xb € ab. Hence anb C ab.

Method 2. Note that

anb=R@Nb)=(a+b)(anb)=a(anb)+blanb) C ab
Co Ca

by (a) and (b).

*In some texts, this is the definition of prime ideal.
TLet p € Spec(R). Then by (f), p D anb D ab if and only if p D a or p D b, to get V(anb) = V(a) UV(b).
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Conversely, assume R is a PID and a,b # 0. Then R is a UFD, so each reducible element
has a unique factorization into multiple of irreducible elements, also, since R is a PID, every
irreducible element is actually prime. Hence we can write a = pj*---pé"R and b = p{l ~pnR
with e;, f; > 0 for i = 1,...,n, and p1,...,p, € R are non-associate prime elements. Assume
anb = ab. Since a = (p§'---p<) and b = (pf*---pfr), anb = lem(p$* - per,pl* - pI R =
prlnax{el’fl} . -p;“a"{“’"’f"}R. By Fact 1.38(e), ab = pfﬁ'ﬁ -oopentin . Hence max{e;, fi} = e; + fi,
ie,e;=0o0r fi=0fori=1,...,n. In other words, for p € Spec(R), either a Z p or b Z p’. Hence
V(a)NV(b) =0 for p € Spec(R). Thus, a + b = R by Proposition 1.33(b). O

Remark. The product a; - - - a,, is defined for a;,...,a, for all n € Z>3.

Example 1.41. Let R = k[X,Y], a = (X) and b = (Y). Then anb = (XY) = ab by Fact 1.38(¢).
But a+ b= (X,Y) C R. Hence the converse in Proposition 1.40(c) fails in general.

Definition 1.42. Let n > 1. Let a* = a---a and a® = R.

n times

Warning 1.43. a™ is not generated by {a"™ | a € a}. For example, if R = F3[X,Y] and a = (X,Y),
then a? = (X2, XY,Y?) £ (f? | f €a) # XY.

Fact 1.44. Let n>1land N ={a1---a, | a; €a,Vi=1,...,n}.

(a) a™ = (N) and for any b < R, we have that a™ C b if and only if N C b.

(b) a™ is the (unique) smallest ideal of R containing N.

(c) am = {X™ a0 - aim | iy € a,Vi,Vj=1,...,n}.

(d) If a=(S), then a™ = (s1---sp | 5, € S,Vi=1,...,n).

(e) fa=(z1,...,Tm), then a™ = (z;, ---a;, |i; € {1,...,m},Vi=1,...,n).

Fact 1.45. V(a™) = V(a).

Proof. By Proposition 1.39, V(a™) = [J;_, V(a) = V(a). O
Proposition 1.46 (Chinese Remainder Theorem). We have the following.

(a) The function ¢ : R — (R/ay) x -+ x (R/ay,) given by ¢(z) = (Z,--- ,T) = (x+a1,...,z+ a,)
is a well-defined ring homomorphism.

(b) If a; +a; = R for 1 < 4,5 < n with i # j, ie., {a1,...,a,} are pairwise coprime, then
Nizyai = ar---ay and a; + (N, ;. 0)R=Rfori=1,...,n.

(c) ¢ is surjective if and only if a, +a; = R for 1 <4,j < n with i # j.
(d) Ker(¢) =N, a;.
(e) Ifa; +a; =Rfor 1 <i,j <nwithi#jand(),_, a; =0, then R (R/a;) x --- x (R/ay).

TLet p € R be prime and a € R. Then p | a if and only if (p) D (a). Furthermore, if a has a prime factorization,
then p | a if and only if p occurs in the prime factorization of a.
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Proof. (b) Leti € {1,...,n}. Toshow a;+((,; a;)R = R, it suffices to show V(a;) (Ujﬂ V(aj))
= V(a;) NV (ﬂj# aj> = V(a; + ;% 95) = 0. Suppose V(a;) () <Uj#V(aj)> # (. Then there
exists p € V(a;) N V(a;) = V(a; + a;) = V(R) = 0 for some j # 4, a contradiction.

Now for ﬂ?zl a; = aj---a,, prove by induction on n. Base case n = 1: trivial. Base case

n = 2: by Proposition 1.40(c). Induction step: assume n € Z>3 and ﬂ 1 a; =ay---a,_1. Then
a, +0ay---ap_1 =a, + ﬂ;:l a; = R. Hence by Proposition 1.40(c), we have that

n n—1
(Nai= <ﬂ ai>ﬂan=(a1~-~an1)ﬂan=(a1---an1)an=a1~-~an.

i=1 i=1
(c) = Assume ¢ is surjective. In particular, there exists z € R such that (1,0,...,0) = ¢(z) =
(z,%,---,%). Hence x + a1 = 1+4+a; and v +a; =0+ a; for i =2,...,n. Hence 1 —x € a; and
€ q; for i = 2,...,n. Also, since (z)+(1 —x)= 1, we have that a; + a; = Rfor i = 2,...,n
€a; €ay
Similarly, consider (0, - - ,(),;,ﬂ(? +,0) ~> a;+a;=Rfor1<i,j<n withi#j.
J

<= Assume a;, +a; = R for 1 <4,j < n with ¢ # j. By (b), &1 + (ﬂj 2ct])R R. Hence
ay +y=1with a; € a; and y € }_, a5, i.e., 1 =y =ay € ay and y € q; for j = 2,...,n. Then

¢(y):(y7ya 7@):(y+a17y+a27"' 7y+an):(1+a170+a27'-'70+an):(1767"' 5())

Similarly, for j = 1,...,n, there exists y; such that ¢(y;) = (0,---,0 ; }(3 -,0). Then for any

P,y Tn) € 2o x &,
n n
(F1yeeyTn) :er(of-- ’0’%%}9’”. ,0) 2273 o(y;) Zr7y7
j=1 / j=1
Hence ¢ is surjective. O

Proposition 1.47. Let a1,...,a, < R and p € Spec(R).
(a) If p=uay---a,, then p = a; for some i € {1,...,n}.

(b) If p Da;N---Nay, then p D a; for some i € {1,...,n}.
(¢) fp=a;N---Nay,, then p =a; for some ¢ € {1,...,n}.

Proof. (b) Assume p D a;N---Na, 2 a;---a, by Fact 1.38(f). Since p € Spec(R), there exists
some i € {1,...,n} such that p D qa;.

(¢) By (b), there exists ¢ € {1,...,n} such that a; Cp=a; N---Na, C a;. Hence p = a,.

(a) Since p D ay---a,, we have that p D a; for some ¢ € {1,...,n}. Also, we have that p =
a;---a, Ca;. ]

Example. The converses fail in general. Let R = k[X,Y], p = a; = (X) and az = (Y). Then
a Nay = (XY) #(X)=p=(X) #(XY) = aja,.
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Prime Avoidence

Lemma 1.48. Let k be an infinite field, 0 # V' a vector space over k, and Vi,...,V,, < V. Then
U VeV,

Proof. Induction on n. Base case n = 1: trivial.

Induction step: assume n > 2 and U#J—Vj C V for j = 1,...,n. Then there exists 0 #
v; € V. ~{U;y,; Vj} for j = 1,...,n. By way of contradiction, suppose UL,V; = V. Then
v; € {U?:m}\{u#jv;—} CViforj=1,...,n Let 1 <4,j <nwithi# j. Since v; # 0, we have
that v; +Av; # vi+pv; for any A # pin k. Since k is infinite, there exists [ such that V; contains two
distinct elements v;+Av; and v;+pv; with 0 # A,y € k. Then (A—p)v; = (v;+Av;)—(v;i+pv;) € V.
Since A # p, we have that v; € Vj. Since v; € Vi, for any k # j and v; € V}, we have that | = j.
Also, since (A7 — p™Hv; = A (v + ;) — (v + pwj) € Vi, we have that v; € V; and then
similarly, we have that [ = ¢. Hence i = [ = j, a contradiction. O

Example 1.49. If £ = R and V = R?, then the lemma says that R? is not a finite union of lines
through the origin, which is straightforward to show.

Y

If |k| < oo, then the lemma fails. For example, V = k* = (J,p2{v} = Uooerz span{v} but
0 # span(v) < k* =V for 0 # v € k2.
The same technique shows that can’t replace Vi, ..., V,, with Vi, V5,--- over Q.

Theorem 1.50 (Prime avoidence, general version). Let by,...,b,,a < R. Assume
(a) R contains an infinite field k as a subring, or

(b) bs,...,b, € Spec(R).

Then if a Z b; for alli=1,...,n, then a Z J;_, b;.

Proof. (a) For each i = 1,...,n, since a € b;, anb; < a. Also, since a is a k-vector space, by

=

Lemma 1.48, anJ;_; b; = U (aNb;) < a. Hence a Z J;", b;.

(b) Induct on n. Base case n = 1: done. Base case n = 2. Let a; € a~ b; for i = 1,2. Then
a1+ az € a. Suppose a C by Ubs. Then a1 4+ as € by Ubs, say a1 +ag € by. Since a; € a C by U by
and a1 € by, a; € ba. Hence as = (a1 + az) — a; € ba, a contradiction.

Induction step n > 3. Let a € b; for i = 1,...,n. Assume a € U#j b; for j =1,...,n. Then
there exists a; € a \ {Ui# b;} for j = 1,...,n. By way of contradiction, suppose a C [J;_, b;.
Then a; € J_, b; ™ {Uix; bi} € by for j = 1,...,n. Note that ai---ay—1 +a, € a C Ui, b
Hence there exists [ € {1,...,n} such that ay---a,—1 + a, € b;. Suppose | = n. Since a,, € by,
aj -+ ap—1 € by. Since n > 3, we have that b,, € Spec(R) and then a; € b, for some 1 <1i < n, a
contradiction. Hence we must have [ < n. But since ay---a;---a,_1 € by, we have that a,, € b;, a
contradiction. O
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Theorem 1.51 (Prime avoidence). Let py,...,p, € Spec(R). If a C |J;_, p;, then a C p; for some
ie{l,...,n}, de,ifalp; fori=1,....r, thena € U, pi.

Fact (Avoidence for monomial ideals). Let A be a nonzero commutative ring with identity and

a,by,...,b, be monomial ideals of A[X;,...,Xy4]. If a C U?Zl b;, a C b; for some i € {1,...,n}.

Proof. By Dickson’s lemma, a = (fi,..., f;,) for some monomials fi,...,fn € A[Xy,..., X4l
Then f1 + -+ fm € a C U, b;. Hence fi +---+ fo, € b; for some i € {1,...,n}. But b; is a
monomial ideal, so fi,..., fin € b;. Thus, a = {(f1,..., fm) C b;. O

Colon Ideals
Definition 1.52. Let S C R.

(a) Define the colon ideal by

(a:8):={reR|rscaVseS}<RT

(b) Define the annihilator of S by

Anng(S):=(0:5)={reR|rs=0,¥se S} <R.

In this notation, the set of all zero divisors of R is

= U Anng(z)

z#0
Example 1.53. Let R = k[X,Y].
(a) (XY):{X,V}) = ((XY): (X,V)) = ((XY) : (X)) N((XY) : (V)) = (V) (X)) = (XY).
(b)
(X2, XY) {X,Y}) = (X, XY) : (X)) = ((X?) : (X)) + ((X?) : (V)))
N((XY) : (X)) + ((XY) : (V) = (X) + (X)) N(Y) + (X))
= (X)NXY) = (X, XY) =

Fact 1.54. Let S,T C R.
a) aC(a:S5) <R
b) (a:b)b Ca.

d) If a C b, then (a:S5) C(b:5).
e) (a:5) = (a:(5)).

TFor instance, (mZ : nZ) =

(
(
(¢c) IfSC T, then (a:S) 2 (a: 7).
(
(

(%)Z for m,n > 1.
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f) b Caif and only if (a:b) =

(
(8) (a:UxeaSr) =Meala: Sy).

(h) (a:>5enbr) = (a:Uyea br) = MNyeala: by).

(1) (Nyax:S) =healar:9).

() (a:b) )= (a:b0) = ((a:¢): b).

Proof. (b) For each r € (a : b) and each b € b, we have that br € a. It then follows from Fact 1.12.

(e) “27. Since S C (5), by (c), (a : ) 2 (a: (S)). “C". Let r € (a:S). Then rs € a
for s € S. Let s € (S). Then s = Zﬁmte a;s; for some a; € R and s; € S for each i. Hence

rs = T(Z?nite a;8;) = Z?nite a;(rs;) € R. Hence r € (a: (S5)).

(h) This follows from (e) and (g).

(j) It is enough to prove the first equality since bc = ¢b. Note that r € ((a : b) : ¢) if and only if
re € (a:b) for ¢ € ¢ if and only if r(bc) = (rc)b € a for any b € b and ¢ € ¢ if and only if r € (a : bc)
by (e). O

Example 1.55. Let R = k[X,Y]. It is straightforward to show the following.
(a)
(XY) : (X, 1)) = ((XY) : {X,Y}) = (XY) : X) N ((XY) - YV) = (V) N (X) = (XY).

(b)

X2 XYy
X2 XY

)

(X2, XY) 1 (X,Y)) = ({ ) {X,Y})
(( YV X)N (X2 XY):Y)

= (X.Y) N {X) = (X).

Radicals of Ideals
Definition 1.56. The radical of a < R is

rad(a) =r(a) =va={r € R| 2" € a,¥n>> 0} = {x € R| 2™ € a for some n > 1}.
Remark. rad(0) = Nil(R).
Example 1.57. In R = k[X,Y], we have that

rad((X?Y, XY?)) = m-rad((X?Y, XY?)) = m-rad((X?Y) + (XY?))
= m-rad((X?Y)) + m-rad((XY?)) = (XY) + (XY) = (XY).

Fact 1.58. Let 7 : R — R/a be the natural projection.

(a) rad(a) = 7 1(Nil(R/a)) < R
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(b) If a C b, then rad(a) C rad(b).

(¢) a Crad(a) =rad(rad(a)).

(d) rad(ab) =rad(anb) =rad(a) Nrad(b).

(e) rad(a) = R if and only if a = R.

(f) rad(a+ b) = rad(rad(a) + rad(b)).

(g) rad(a) = Npev(a) P

(h) rad(N, p;*) =i, pi, where p; € Spec(R) and e; > 1fori=1,...,n
(i) a4+ b= R if and only if rad(a) 4+ rad(b) = R.

Proof. (a) Let r € R. Then r € 7~ *(Nil(R/a)) if and only if 7(r) € Nil(R/a) if and only if #* = 0
in R/a for some n > 1 if and only if ™ € a for some n > 1 if and only if r € rad(a).

(b) It is straightforward.

(c) Since a' = a € a for any a € a, we have that a € rad(a) for a € a. Hence a C rad(a). Then
by (b), rad(a) C rad(rad(a)). Let r € rad(rad(a)). Then there exists n > 1 such that »™ € rad(a).
Hence there exists m > 1 such that ™" = (r™)™ € a. Hence r € rad(I).

(d) Since ab Canb C a,b, by (b), we have that rad(ab) C rad(a N b) C rad(a),rad(b) and then
rad(ab) C rad(a Nb) C rad(a) Nrad(b). On the other hand, let = € rad(a) Nrad(b). Then there
exist m,n > 1 such that 2™ € a and 2™ € b. Hence 2™ = 2™ - 2" € ab. Hence x € rad(ab).

(e) a= R if and only if 1 € a if and only if 1™ € a if and only if rad(a) = R.

(f) Since a+ b C rad(a) + rad(b), we have that rad(a + b) C rad(rad(a) + rad(b)).

Let z € rad(rad(a) +rad(b)). Then there exists n > 1 such that 2™ € rad(a) +rad(b). Hence there
exist a € rad(a) and b € rad(b) such that 2™ = a + b. Then there exist j,k > 1 such that o/ € a
and b* € b. Hence

Jj+k
n(j+k) _ n\j+k _ itk _ l1j+k—1
x = (z =(a+0 = . a't’! .
=t =30 (1)

Since for 0 <1 < j + k, either [ > jor [ < j,ie., 1> jor j+k —1> k, we have that a' € a when
[ >j,and b+~ € b when j + k — | > n. Hence 2"U**) = 0. Thus, € rad(a + b).
(g) By Fact 1.15, Spec(R/a) = {p/a | p € V(a)}. Hence Nil(R/a) = Nycspec(r/a) P = Npev(a) P/

Then by (a),

rad(a) =7 '(Nil(R/a)) =7~" [ () p/a|= () = '®/a)= [) »

peV(a) peV(a) peV(a)
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(h) Since p; € Spec(R), p; € V(p;) and then p; C rad(p;) = Nyev(p,) P € Pis Le., pi = rad(p;) for
t=1,...,n. Then by (d),

rad (ﬂ p?‘) = () rad(ps?) = [ rad(p;) = ﬂp

i=1 i=1

(i) By (e) and (f), a+ b = R if and only if rad(a + b) = R if and only if rad(rad(a) 4+ rad(b)) = R
if and only if rad(a) + rad(b) = R. O

Example 1.59. (b) Example of a € b when rad(a) C rad(b). Let R = Z. Then rad((2)) = (2) =
rad((4)), but (2) Z (4).

(c) Example of a C rad(a). Let R = Z. Then (4) C (2) = rad({4)).

(d) Example of rad((;o; a;) € e, rad(a;). Let R = k[X1, Xo, -], a1 = (X1), as = (X?, X3),
,a; = (Xi,..., X)), ---. Since (Xi,...,X;) € Spec(R) for i > 1, by (f) and (g), we have that
fori>1,

rad(a;) = rad((X{, ..., X)) =rad((X1,..., X)) = (X1,..., X;).
Hence

ﬁ rad(a;) = ﬁ(Xl, .., Xi) =(X1) 2 0=rad(0) =rad (ﬁ ai> .

i=1 i=1

(f) Example of rad(a + b) 2 rad(a) + rad(b). Let R = k[X,Y], a = (X + Y?2) and b = (X). Then
a,b € Spec(R). Also, since (X,Y) € Spec(R),

rad(a) +rad(b) =a+b= (X + Y% X) = (X,Y?) C(X,Y) = rad((X,Y?)) = rad(a + b).

Example 1.60. (a) Let R = F5[X,Y], a = (X,Y), by = (X, XY,V?) = (X, X2, XY,Y?2), by =
(X +Y,X2,XY,Y?) and by = (Y, X2, XY) = (Y, X2, XY,Y?). Thena ¢ b; for i = 1,2,3. Let
f € a. Then f can be written as

[=Xg(X)+ X?a(X,Y) + XYy(X,Y) ++Y?B(X,Y) + Yh(Y)

=X>. M + (X g(0) + Yh(0)) + Y2 M

+ X2%a(X,Y) + XY~(X,Y) + Y?B(X,Y).

for some g € Fo[X], h € Fo[Y] and a, 8,7 € Fo[X,Y]. Since ¢(0),h(0) € {0,1}, f € by Uba U bs.
Also, since by U by U bs C a, we have that a = by U by U b3.

(b) Let R = % and r = X,y =Y € R. Then R = Fy ® Fox @ Foy and a := (x,y) =

Faox @ Fay as Fa-vector space. Let by = (z), ba = (x + y) and b3 = (y). Then a € b; for i = 1,2,3,
but a = by U by U bs.
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Extensions and Contractions

Let f: R — S be a ring homomorphism, a,a;,da; < R and b, by,by < S.

Definition 1.61. The eztension of a along f is

finite
a=aS=(f(a))S = f(a)S = {Z flai)si | a; € a, s; € S,W} <S.

The contraction of b along f is
b¢ = f1(b) < R.

Example 1.62. (a) Let R be an integral domain with the field of fraction Q(R). Then R C Q(R)
with the inclusion map € : R — Q(R) given by £(r) = r/1. Note that 0Q(R) = 0 and a@Q(R) = Q(R)
for 0 # a < R.

(b) Note that (X)k[X] C k[X] C k[X,Y], ((X)k[X]) k[X,Y] = (X)k[X,Y].
(¢c) Let RC S beringsand €: R S8 Ifb < S, then e~1(b) = bN R.

(d) Let ¢ : k[X] = k[X,Y]. Since (X,Y)k[X,Y] < k[X,Y], we have that e~1((X,Y)k[X,Y]) =
(X, V)E[X, Y] E[X] = (X)k[X].
Proposition 1.63. We have the following.

(a) aC f_l(ClS) and f‘l(b)S Cb. Ifa; C as, then a15 CaxS. If by C bs, then f_l(bl) - f_l(bg).
If T C R, then ((T)R)S = (f(T))S.

Example of a C f~1(aS). Let f: R=7 5 S = Q and a = (2)R. Then f~(aS) = f~1(S) =
R2(2)R=na.

Example of f~1(6)S C b. Let f: R = k[X] 59 = k[X,Y]. Let b = (Y)S. Then f~1(b) =0
and so f~1(6)S=0C (Y)S =b.
(b) aS = f~Y(aS)S and f~1(b) = f~1(f~1(b)9), i.e., a® = a®® and b® = poec.|
(C) (Cll + ClQ)S =aS + axS and f71(51 + bz) B fﬁl(bl) + fﬁl(bg).

Example of f~1(by + by) D f Lby) + f~(bs). Let f: R =k < S = k[X], by = (X)S and
by = (X +1)S. Then f~1(b; ) = f71(b2). Hence

F7Hbr+02) = fF7H(S) =R 20 = f"1(b1) + ' (b2).

(d) (a1 n 02)5 Ca;SNayS and f71(51 N bz) ( ) ﬂ ( )
Example of (a3 Naz)S € a3.5 NazS. Let f : [X ] — S =Ek[X,Y]/(X, Y) , a1 = (X)R
and a2 = (X + Y?)R. Then a; Nay = <X(X Y2)R = (X% + XYHR, 0,5 = <)7>S and

a2S = (X +Y2)S = (X)S. Hence

(Cll N CLQ)S = <X2 —|—XY2>S =0¢C¢ <Y>S =mSNayS.

TWe have a bijection {a < R|a®® =a} 2 {b < S| b° = b} given by a — a® and b¢ < b.
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(e) (a1a2)S = (a15)(azS) and f~'(b1by) 2 f1(b1)f " (b2).
Example of f=1(b1) N f=1(bg) = f71(by Nby) D f1(b1b2) 2 F1(by)f1(b2). Let f: R =
k[X] — S, where
S =Kk[X]/(X(X —1)) = k[X]/(X? - X) 2 k[X]/(X) x k[X]/(X —1) =k xk

by Chinese Remainder Theorem. Note that in k x k, (1,0) = (1,0)?. Let by = (X)S = by. Then
blbg = <X2>S = <X>S = bl. Hence

FHb1b2) = f7H(b1) = fTH(X)S) = (X)R 2 (X*)R = f~1(b1) f~ (b2).

(f) (a1 : CIQ)S - (alS : CIQS) and f71(51 : 52) - (fil(bl) : fﬁl(bg)).
Example of (a1 : a2)S C (a15 : a2S). Let f: R=k[X] — S = k[X]/(X) 2k, a; = (X?)R and
az = (X)R. Then a;.5 =0 = a5 and so

(015 :028) =(0:0)=520=(X)S = ((X?): (X))S = (a1 : az)S.

Example of f~1(by : by) C (f~1(b1) : f~1(b2)). Let f: R =k = S = k[X], by = (X)S and
bo = (X —1)S. Then (b1 : ba) = ((X): (X — 1)) = (X) and f~1(by) =0 = f~!(b2). Hence

F7Hbr b)) = FTHU(X) =0C R=(0:0) = (f'(b1) : f7'(b2)).

(g) rad(a)S C rad(aS) and f~'(rad(b)) = rad(f~1(b)).
Example of rad(a)S € rad(aS). Let f: R = k[X] — S = k[X]/(X?) and a = OR. Then

rad(a)S =rad(0R)S =05 =0 C (X)S =rad(0S) = rad(aS).

Proof. (a) Note that a C f~1(f(a)) C f~1(f(a)S) = f~1(aS).

To show (f(f~1(b)))S = f~1(b)S C b, it suffices to show (f(f~1(b))) C b, then it is equivalent
to show f(f~1(b)) C b, which is true.

A set of generators of ((I')R)S over S is

finite finite
{f <Z tiﬁ') = Z f(t:) f(ri)

A set of generators of (f(T))S over Sis {f(t) |t € T} = {f(t-1) |t € T} which is a subset of
the generators of ((T)R)S.

(b) € By (a), a C f~(a9), so aS C f~1(aS)S. D A set of generators of f~!(aS)S over S is
{f(2) [z € fH(aS)} = f(f7'(a$)) C aS.

C By (a), b 2 f~1(b)S, hence f~1(b) D f~1(f~1(b)S). C Let z € f~(b). Then f(z) =
F(r)-T€ (F(F0))S = /' (6)S. Hence z € £1(f(8)S).

(c) D Since a7 + az D ag, az, we have that (a1 + a2)S 2 a15,a25. Hence (a3 + a2)S 2 a1.5 + a25.
C A set of generators of (a1 + az)S over S is

t; € T, T € S,VZ} - <f(T)>S

{f(a1 +a2) = f(a1) + f(az) | a1 € a1,a2 € a2} C 1.5 + a5,
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(d) Since a; Nay C aj, a2, (a3 Naz)S C a1.5,a25. Hence (a1 Nag)S C a; S NasS.

Note that = € f~1(b; N by) if and only if f(x) € by N by if and only if f(x) € by, by if and only
if z € f71(by1), f1(b2) if and only if x € f~1(by) N f~1(b2).

(e) C A set of generators of (aja3)S over S is

finite finite
{f (Z aZﬁl) Z f az z

i

a; €ay, B; € ag,Vz} (a15)(a25).

D Note that
(a1.5)(a25) = (f(a1)S)(f(a2)S) = (f(a1) f(a2))S = (f(a1) f(a2) | a1 € a1,a2 € a2)S

= (f(ara2) | a1 € a1,a2 € a2)S C (f(a102))S = (ajaz)S.

Moreover, let Y1 | aj;az; € f71(by)f~1(by) for some n > 1, a; € f~1(by) and ag; € f~1(b2)
fori=1,...,n. Then f(a1;) € by and f(ag;) € ba for i =1,...,n. Since f is a ring homomorphism,

f(Z?:l aliagi) = E?:l f(ali)f(agi) € by1bs. Hence Z?:l a1;a2; € f_l(bl [JQ)

(f) A set of generators of (a; : az)S over S is

{f(r)Ire(a:ax)} ={f(r) |raz Car} C{f(r) [rf(az) C fla1)} S{s € 5 |sf(az) C f(ar)}
= {3 es ‘ sf(ag)S - f(al)S} = {S cs ‘ sasS C alS} = (a15 : ClQS).

Note that

SNy b)) = {f 7 (s) | s € (by:b2)} ={f7"(s) | sb2 C b1} C{f7'(s) | sf"(b2)
CFr o)} C{reR|rf (b)) C fH(b1)} = (f1(b1) : f(b2)).

(g) Let s € rad(a)S. Then there exist m > 1, a; € rad(a) and s; € S for i = 1,...,m such that

s =Y., f(a;)s;. Since a; € rad(a), there exists n; > 1 such that a]* € a for i = 1,...,m. Let
n=mny+- -+ ny,. Note that if ky +--- + k,, = n with kq,...,k, > 0, then there exists some
i €{1,...,m} such that k; > n; and so ai—“ € a. Hence
m n '
n! & &
(D)« X sl € s - s
i=1 kidodkg=n LT

Thus, s € rad(aS).

Note that x € f~(rad(b)) if and only if f(z) € rad(b) if and only if f(z") = f(x)" € b for
some n > 1 if and only if 2 € f~1(b) for some n > 1 if and only if z € rad(f~1(b)). O
Proposition 1.64. R* +Nil(R) C R*. For any u € R* and x € Nil(R), we have that u+x € R*.
For example, 1 + x € R*.

Proof. For any y € Nil(R), there is a n > 1 such that y™ =0, so
Q-—y+y* =+ D)"Y HA+y) =1-y" =1,

hence 1 +y € R*.
Let w € R* and x € Nil(R). Then v~ !z € Nil(R). Hence 1 + v 'z € R*. Thus, u+z =
u(l+ (u=tz)) € R*. O
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Power Series Rings

Let A be a nonzero commutative ring with identity.
Definition 1.65. - -
AIX]={f=) aX'|acAVi=0}=]]A

i=0 i=0
with addition and multiplication defined by (3> ;=ja;: X?) + (3o biX?) = > i2o(a; + b;)X* and
(o aiX) (2o biX) = Y2 i X?, where ¢; = Y70 _gajbij = ZPJ”J:” apbg for ¢ > 0. Then
A[X] is called a power series ring with Oapx) = 04 = >, 04X" and 1apx] = 14 = 14 +
Y2004 X" More generally, a[X] = {> 2, a; X" | a; € a,Vi >0} for a < A.

Example 1.66. X =3 1 X' c R[X].

Theorem 1.67. A[X] is a commutative ring with identity 14 and A C A[X] C A[X] are subrings.
Proposition 1.68. Let f(X) =" a;,X* with a; € A for i > 0.

(a) f e A[X]* if and only if ag € A*.

(b) If ¢ : A — B is a ring homomorphism, then there exists a well-defined ring homomorphism
o[X] : A[X] — B[X] taking Y ;=g o X? to > ooy (a;) X" and A[X] > Ker(p[X]) = Ker(p)[X].

(c) For any a < A, a- A[X] C a[X] < A[X] and A[X]/a[X] = 2[X]. In addition, if a < A is
finitely generated, a - A[X] = a[X].

(d) Let a < A. Then

(X, 0)A[X] = X -A[X]+a-A[X] = XA[X]+a[X] = {f: bi X"

bo € a, b; € A,VZ > 1} < AHX]]

and A[X]/(X,a)A[X] = A/a. In particular, (X)A[X] = {3202, 5:; X" | b; € A,Vi > 1} < A[X]
and A[X]/(X)A[X] = A.

(e) If f € Nil(A[X]), then a; € Nil(A) for ¢ > 0. The converse holds if (ag, a1, as,---) is finitely
generated. Also, Nil(A) - A[X] C Nil(A[X]) C Nil(4)[X].

(f) f € Jac(A[X]) if and only if ag € Jac(A). Also, Jac(A[X]) = (Jac(A), X)A[X].
(g) A[X] is an integral domain if and only if A is an integral domain. Also, A[X] is never a field.
(h) a < Ais prime if and only if a[X] < A[X] is prime if and only if (a, X)A[X] < A[X] is prime.

Let e: A S A[X]. Then €* : Spec(A[X]) — Spec(A) taking p[X] to e *(p[X]) is always onto
and never 1-1.

(i) @ < A is maximal if and only if (a, X)A[X] < A[X] is maximal. Also, a[X] < A[X] is never

maximal.

(j) Let m € m-Spec(A[X]). Then
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(1) mN A € m-Spec(A4),
(2) X em,
(3) m=(mn A, X)A[X].

Therefore,
m-Spec(A) % m-Spec(A[X])

n— (n, X)A[X]
mNA+—m

Proof. (a) = Let f € A[X]* with the multiplicative inverse f~1(X) = >7° b, X" € A[X] with
b; € A for ¢ > 0. Then

la=f-f1t= (Zaz ) > b X7 | = agho + (aghy + a1be) X +
j=0

Hence agby = 14 and hence ag € A*.

4= We try to find g = 3272 b; X’ € A[X] such that fg =1 de, 1= 3020 (g ajbi_j) X
Then aobo = ].7 a0b1 + a1b0 = 0 a0b2 + a1b1 + a2b0 = 0 L If apg = 1 then bo = aobo =1 and we
can solve b, for n > 1 one by one, so g is the inverse of f and hence f € A[X]. If ag # 1, since
apbg = 1, we have that ag € A* and so by definition of multiplication in A[X],

f= ZaiXi = Zao(aalai)Xi = ay (1 + Z(aalai)Xl) e A[X]*.
=0 =0 i=1

EA[X]*

(b) Tt is straightforward to show ¢[X] is a well-defined ring homomorphism with

Ker(o[X]) = {Z%XZ Z(p )Xt = o} = {ZaiXi ‘ (o) =0,Vi > 0}
1=0

= {ZaiXi a; € Ker(p),Vi > 0} = Ker(p)[X].

=0

(¢c) Let 7 : A - A/a be the natural projection. Then by (b), 7[X] : A[X] — é[[X]] is a well-
defined ring homomorphism with A[X] > Ker(7[X]) = Ker(7)[X] = a[X]. Since 7 is onto,
by the first isomorphism theorem, A[X]/a[X] = 24[X]. Since a C Ker(r[X]), we have that
() A[X] C Ker(r[X]) = a[X].

In addition, assume a = (a,...,a,)A for some a1,...,a, € a. Let f € a[X]. Then a; € a =
(at,...,an)A for i > 0. Hence for ¢ > 0, we have that a; = >, bj;a; for some b;1,..., b, € A.
Hence by the definition of addition and multiplication in A[X],

f = ZaiXi = Z Zbijaj Xi = Z (Z Oéjbini> Za] (Z b”X ) A[[XH

i=0 \j=1 j=1

7j=1
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(d) Note that

A[X] ™

-1x] I I

21

It is straightforward to show 7 and 7! are well-defined ring epimorphisms and the diagram
commutes.

Note that

Ker(m {Zb X!

i=1

b1 € A,Vi> o} = X - A[X].

bi esz>1} {Zbiﬂxi
=0

In general,

A[X] > Ker(rom) = {ZbXZ bo €a, b; esz>1} 1.

=0

Let Zfio qul € I with by € a and b; € A for i > 1. Then Zjio bzXZ =by +XZ;.20 bi+1Xi
€a+ XA[X] C (X,a)A[X]. Hence I C (X, a)A[X].

Since X =0+1-X and 0 € a and 1 € A, we have that X € I < A[X]. Also, for > ;° ;X" €
a[X]
< A[X] with by € a and b; € a C A for ¢ > 1, we have that Z?io b;X* € I and so a[X] C I. Hence
(X)A[X] + o[ X] C I

Thus, by (c),

(X, a)A[X] 2 1 2 (X)A[X] + a[X] 2 (X)A[X] + (@)A[X] = (X, &) A[X].

Hence (X, a)A[X] = (X)A[X] + (0} A[X] = (X)A[X] + a[X] = I = Ker(7 o 7). By the first
isomorphism theorem, A[X]/(X,a)A[X] = A/a.

(e) Assume f € Nil(A[X]). Then 0 = f™ = af + Xg(X) for some n > 1 and g € A[X]. Hence
aj = 0 and then ag € Nil(A4) C Nil(A[X]). Hence Y .2, a; X" = f — ag € Nil(A[X]). Similarly, we
have that a; € Nil(A[X]). By induction, a,; € Nil(A4) for ¢ > 0.

Hence we can conclude Nil(A[X]) C Nil(A)[X]. Furthermore, since Nil(4) C Nil(A[XT])
A[X], we have that Nil(4) = Nil(Nil(4)) € Nil(A[X]) < A[X] and then Nil(A) - A[X]
Nil(A[XT). Thus, Nil(4) - A[X] € Nil(A[X]) € Nil(4A)[X].

Assume a; € Nil(A4) for ¢ > 0 and (ag,aq,---) is finitely generated. Then (ag,a1,---)
(ag,ai,...,as) for some t > 1. Hence f = Y ;2 a; X" = Z;‘:O a;jfj, where f; € Nil(A) - A[X]
Nil(A[X]) < A[X] for 5 =0,...,t. Thus, f € Nil(A[X]).

INIA

Nl
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(f) = Assume f € Jac(A[X]). Then by Proposition 1.29, 1 — fg € A[X]* for g € A[X]. Hence
(1 —apa) + araz + azaxr® +--- =1 — fa € A[X]* for a € A. Then by (a), 1 —aga € A for a € A.
Hence ag € Jac(A) by Proposition 1.29.

< If ap € Jac(A), then 1 — apa € A* for a € A. Let g = > o~ b; X" € A[X] with b; € A for
i > 0. To show f € Jac(A[X]). Need to show 1 — fg € A[X]*. By (a), it is equivalent to show
the constant term of 1 — fg is in A*. Note that

1—fg=1- <iaiXi> (ilez> = (1—a0b0)+-~-
i=0 =0 -

€AX
Thus,
Jac(A[X]) = {Z a; X" | ag € Jac(A)} = (Jac(A4), X)A[X]
i=0
by (d).
(g) Define ord(f) = inf{i > 0] a; # 0}. Then ord(fg) > ord(f) + ord(g) with equality if, e.g., A is
an integral domain.

<= Let A be an integral domain and f,g # 0 in A[X]. Then ord(f),ord(g) # oo. Hence
ord(fg) = ord(f)ord(g) # oo. Hence fg # 0.

= Let A[X] be an integral domain. Since 0 # A is a subring of A[X], A is also an integral
domain.

Since X € A[X] and the constant term of X is 0, which is not in A%, by (a), X & A[X]*.
Hence A[X] is not a field.

(h) Note that a < A is prime if and only if A/a is an integral domain if and only if %[[X ] is
an integral domain by (g) if and only if A[X]/a[X] is an integral domain by (c) if and only if
a[X] < A[X] is prime.

Note that a < A is prime if and only if A/a is an integral domain if and only % is an
integral domain by (d) if and only if (a, X)A[X] < A[X] is prime.

Let p € Spec(A). Then p[X], (p, X)A[X] € Spec(A[X]).

By the proof of (¢) and (d), we have that p[X]N A = p and (p, A)A[X]N A = p. Hence by Fact
1.16,
e (p[X]) = € 1 (p[X]) = p[X]T N A =p = ({p, DA[X]) N A = e ({p, X)A[X]) = " ({p, X) A[X]).

Thus, €* is onto. Also, since X ¢ p[X], but X € (p, X)[X], we have that p[X] # (p, X)A[X] and
then €* is not 1-1.

(i) Note that a < A is maximal if and only if A/a is a field if and only A[X]/(X, a)A[X] is a field
by (d) if and only if (a, X)A[X] < A[X] is maximal.
Since 4[X] is not a field by (g), A[X]/a[X] is not a field by (c), then a[X] < A[X] is not

maximal.

(G) (2) Since X € Jac(A[X]) by (f), and m € m-Spec(A[X]), we have that X € m.
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(1) By prime correspondence under quotients, we have that m corresponds to a maximal ideal in
A[X]/(X)A[X] = A by (d).

A[X] - A[X]/(X)A[X] — A
m ~= m/(X)A[X] ~=n
Define 7 : A[X] — A by 7(f) = f(0). Then we can find n € m-Spec(A) such that m = 77 1(n).

Hence
mNA=etm)=e(r7(n)) = (roe) 1 n) =id;'(n) = n € m-Spec(A).
(3) Since mN A, (X) C m, we have (mN A, X) C m. Since m < A[X] is maximal, and by (i) and
(1), (mN A, X) < A[X] are maximal, we have that (mN A, X) =m
Note that €*(m-Spec(A[X]) € m-Spec(A) since by the proof of (1), €*(m) = ¢~!(m) € m-Spec(A).

Note that A(m-Spec(A)) € m-Spec(A[X]) since by (i), A(n) = (n, X)A[X] € Spec(A[X]) for
any n € Spec(A).

Note that
A(e"(m)) = A(e_l(m)) =AmNA)=(mnNA X)YA[X] =
by (3).
Note that

¢ (Am)) = € ((n, X)A[X]) = ' ((n, X)A[X]) = (n, X) N A =n

by the proof of (c) for any n < m-Spec(A).

Therefore, we have a 1-1 correspondence between m-Spec(A[X]) and m-Spec(A). O
Example 1.69. (c) Example of (a)A[X] C a[X] for some a < A. Let A = k[Y¥7,Y2,Ys,---
and a = (Y1,Y5,Y3,---)A. Let f = > 7 VX € a[X]. We claim that f & (a)A[X]

(Y1,Ys,---)A[X]. Suppose that f € (¥1,Ys,---)A[X]. Then there exists m > 1 and Y 72 bi; X7 =
gi € A[X] for i =1,...,m such that

ZYXJ f= ng ZZb”XY ZZbUYX

i=1 j=0 7j=0i=1

Hence for j > 1, we have that Y; = Y." b;;Y; € (Y1,...,Y,,)A. Then Yy, 1 € (Y1,...,Y)A4, a
contradiction.

(e) Example of f ¢ Nil(A[X]) when a; € Nil(A) for ¢ > 0. Let A = I SLY;/?;’ZY;Z+}1> and
ap =0 € Nil(A) and a; = Y, for i > 1. Then a/™" = Y™ =0 and so a; € Nil(A) for i > 1.

We claim that f ¢ Nil(A[X]). Note that

0o 2
= (Z YiXZ) =V2X24+(2Y1V ) X% +
i=1

=0 #0
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and

00 3
fr= (Z YiXZ‘) — VX (V1 Vs + V)X 4o
=1 =0 #0

and inductively, we find f™ has lots of nonzero coefficients for n > 1.

Definition 1.70. Define
A[X, Y] = A[X][YT,

and for d > 2,
A[le s 7Xdﬂ = AHle s 7Xd—1]]HXd]]'

Fact 1.71. A[Xq,..., X4 = {ZneNg’ anX®™ | ap € A} for d > 1, where X* = X" ... X/* and
n = (nla"'and) € Ng

Warning 1.72. The operations on A[X7, X3, X3, -] are ambiguous.
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Zariski Topology

Let R be a nonzero commutative ring with identity.

Definition 2.1. For ¢ > 0 and x € R", the open ball centered at x with radius € is
B (z) ={y e R" ’ |z —y| < €}

A subset U C R™ is open if for any = € U, there exists € > 0 such that B.(z) C U, i.e., if U is
a union of (possible infinitely many) open balls. e.g., if n = 1, Be(x) = (x — €,z + €) is an open
interval.

More generally, this works for any metric space.

Fact 2.2. R™ and () are both open in R™.

The set of open sets in R™ is closed under arbitrary union and finite intersection, i.e., if Uy is
open for A € A, then |, Ux is open, and if U; open for i = 1,...,d, then ﬂle U; is open.

The set of open sets in R™ is (usually) not closed under infinite intersections. For example,
Mooy (—1/i,1/i) = {0}, is not open in R™.

Definition 2.3. A topology on a non-empty set X is a collection of sets 7 of subsets of X
(Z CP(X)) such that

(a) 0, X € 7,
(b) for any {UA})\EAQ 7, U)\eAU)\ € 7 and
(c) forn>1and Uy,...,U, € .7, N, Ur € 7.

The elements of .7 are the open subsets of X.
A topological space is a set X # () equipped with a topology 7.

Example 2.4. The FEuclidean topology on R™ is the topology on R™ from Definition 2.1. More
generally, this is the metric space topology.

Definition 2.5. The Zariski topology on Spec(R) = X has open sets
{Spec(R) N V(S) [ S € R} = {p € Spec(R) | p 2 S C R}.
For example, Xy := Spec(R) ~ V({f}) = {p € Spec(R) | f ¢ p} is open in X for f € R.

29
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Proposition 2.6. If S C R, then V(S) = V((S)) and so Spec(R) \ V(S) = Spec(R) ~ V({S)). In
other words, the open sets are exactly the sets {Spec(R) \ V(a) | a < R}.

Notation. Denote the Zariski open sets
Z = {Spec(R) ~V(S) | S C R} = {Spec(R) ~V(a) | a < R}.

Example 2.7. Compute Z of Spec(Z) = X. Since Z is a P1.D., 2 = {Spec(Z) ~ V(m) | m > 0}.
Since V(0) = Spec(Z), Xo = Spec(Z) ~ V(0) = 0, and since V(1) = 0, X; = Spec(Z) ~ V(1) =
Spec(Z). For m > 2, write m = p§*---ptr with pq,...,p, distinct primes and eg,...,e, > 1,
then V(m) = {{(p1), -+, {pn)} and so X,, = Spec(Z) ~ V(m) = X ~ {{p1),...,(pn)}. Note that
Z =, _o Xm. In particular, p = {0} € ()7_; X, L.e., p = {0} is in every non-empty open set
of X.

Fact 2.8. Let X = Spec(R). Then X =X ~V(0) =0 and X; = X \ V(1) = X.
Proposition 2.9. Let X = Spec(R). Then (;_, Xy, = Xy,...5, for fi,..., f, € R.

Proof. Let p € X. Then p € (), Xy, ifand only if p € Xy, fori =1,...,nif and only if f; & p for
i=1,...,nif and only if if and only if f1--- f, € p if and only if p € X¢,.., . O

Definition 2.10. If X is a topological space, then Y C X is closed if X \'Y open, i.e., if and only
if Y = X \ U for some open subset U C X.

Example 2.11. In X = Spec(R), the closed sets are {V(S) | S C R} = {V(a) | a < R}.

Proposition 2.12. Let X be a non-empty set, # C P(X) and ¥ = {X \Y |Y € #}. Then &
is a topology on X if and if only ¥ satisfies the followings.

(a) X,0 eV,

(b) closed under arbitrary intersections, i.e., for any {Vi}aea C 7, then oo Va € 7,

(c) closed under fintie unions, i.e., forn >1and Vi,...,V, € ¥, U, V; € V.

Proof. Tt follows from X N\ 0 =0, X N\ X =0 and (), A (X N Ux) = X N (Uren Un). O
Theorem 2.13. The Zariski topology on Spec(R) = X is a topology.

Proof. Note that 2 = {Spec(R)~V(a) |a<R}. Let ¥ ={X 2| Z€ Z}={V(a) | a <R}.
(a) X=V(0)e ¥ and D =V(1) e ¥,

(b) For ay < aforany A € A, (Nycp V(an) = V(3 ,cp @a) € ¥ by Fact 1.36.

(¢) Forn>1and ay,...,a, <R, J; V(a;) = V(N,_, a;) € ¥ by Proposition 1.39(a). O
Hence by Proposition 2.12, the Zariski topology on Spec(R) = X is a topology.

Definition 2.14. A basis for the topology 7 on a topological space X is a subset B C 7 such
that for any open set U C X and any u € U, there exists B C B such that u € B C U.

Example 2.15. In the Euclidean topology, B = {B.(z) | z € R", e > 0} is a basis.
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Theorem 2.16. In X = Spec(R), B={X; | f € R} is a basis for the Zariski topology.

Proof. Tt suffices to show X \ V(S) = (J,.g Xs for S € R. Note that p € X \ V(S) if and only if
S ¢ p if and only if there exists s € S such that s € p if and only if there exists s € S such that
p € X, if and only if p € |, g X. O

Proposition 2.17. If R is noetherian, then for any open subset U C X = Spec(R), there exist
51,...,5, € Rsuch that U = X, U---U X, , i.e., open sets are the finite union of the basis open
sets.

Proof. Write U = X \ V(a) for some a < R. Since R is noetherian, a = (sy,..., s,) for some n > 1
and s1,...,8, € a. Then

U:X\V(<51,...,sn>):X\V(sl,...,sn):UXsi

by the proof of Theorem 2.16. O

Definition 2.18. A topological space X is quasi-compact if “every open cover of X has a finite
sub-cover”, i.e., for any {Ux}rea € 7, if X = Jycp Un, then there exist n > 1 and Ay,..., A\, € A
such that X = J'_, U,,.

Theorem 2.19. Spec(R) is quasi-compact.

Proof. Since each open set Uy can be written as a union of X;’s with f € R, without loss of
generality, assmue X = (Jycp X7n = X N V(U,ca fr) by the proof of Theorem 2.16. Then () =
V(Uxea fr) = V({Uxea fr)). Hence by Proposition 1.32(b), (Uyea /) = R 2 1. Then 1 =
g)\1f)\1+' . '+g,\nf)\n forsomen > 1, A\1,..., A\, € Aand Gris- -5 90, € R. Hence <f,\1,. . f)\n> = R.
Then

V(f/\lv"‘vf)\n) :V(<f)\1a"'7f/\n>) :V(R) ZQ

Thus, X = X N0 =X\ V(fa,, -5 fo,) = Xp U UXy, O
Question. What do the X look like? Answer: Spec(R).

Construction (Classical algebraic geometry). Geometry: Let k be a field, usually &k = R or C.
Define d-dimensional affine space: Al = A? = k4.
Let a = (ai,...,aq) € A% and S C k[X] = k[X1,..., X4]. Define

7(S) :={a € A?| f(a) =0,V f € S} =: “zero locus of S” C A%

e.g., Z(X? +Y?2+ 72 — 1) = “unit sphere” C A2 = R3.

Zariski topology on AZ. Closed sets: Z(S) = Z({S)) C A? with S C k[X]. Open sets: A?\ Z(S)
with S C k[X]. Basic open sets: A? \ Z(f) with f € k[X].

Let T' C k[X] be fixed. Zariski topology on Z(T'). Closed sets: Z(S) N Z(T) with S C k[X].
Open sets: (A%~ Z(S))NZ(T) with S C k[X]. Basic open sets: (A?~ Z(f)) NZ(T) with f € k[X].

open in A?

We have that

o AT mSpec(k[X]) C Spec(k[X])
ar— (X1 —ay,...,Xq— aq),
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Hilbert’s Nullstellensatz: If k = k, then Z(b) # () for b < k[X].
Grothendieck: there exists more geometric data in Spec(k[X]).
Let V := Z(T) = Z(b), where b = (T') < k[X]. Then

rad(b) <I(V) :={f € k[X] | f(a) =0,Va € V} = “vanishing ideal of V" < k[X].
Hilbert’s Nullstellensatz: If k = k, then I(Z(b)) = b.
Coordinate ring of V: T(V) = k[ X]/I(V).
We have that

»: V — m-Spec(k[V]) C Spec(k[V])

(X1 —al,...,Xd—Cl,d)
I(V)
Hilbert’s Nullstellensatz: If & = k, then similarly, % is onto.
Grothenick: there exists more geometric data in Spec(k[V]).

Set up: R > f,

ar—

:<x1—0,1,...,$d—ad).

X = Spec(R) 2 Xy = X N V(f) = {p € Spec(R) | f & p}.
Recall. Let S = {1, f, f2,---}. We have that
T
I
Proposition 2.20. Define ¢ : R — Ry by ¢(g) = ¢ and ¢* : Spec(Ry) — Spec(R) = X by
¥ (a) = ¢~ (a).
(a) &*(a) € X for q € Spec(Ry).

Rf:s—le{ |r€R,n20} = R[1/f].

(b) Restrict codomain, the induced map ©} Spec(Ryf) — X is 1-1 and onto.

Slogan: Spec(Ry) = X “open affine subsets”.

Proof. (a) Let q € Spec(Ry¢). Then ¢*(q) = ¢~ '(q) € Spec(R) by Fact 1.16. Note that f & ¢*(q) =
0 1(q), otherwise, R;f E) { = (f) € p(p~(q) C q € Spec(Ry), a contradiction.

(b) Let p € Xy, then p € Spec(R) and so

finite
. pbi T .
PiGP»yz‘GRfaW}—{Z T ‘piepari€R,ni>OaW}

finite

pr:=pRy = {Z o(pi) - i

%

finite finite -
S iy fEIA
- [

p; €Ep,1i € R,n; ZO,V@} — {]i’;

Since f™ & p for n > 0, % Zpy. Hence pr < Ry. Let fi,fl € Ry with z,y € R and n,m > 0 such
that % = fim € py and so zy € p. Since p € Spec(R), x € p or y € p. Hence 7 € Py or

7 € py. Hence py € Spec(Ry).

pep,nZO}SRJc.

On the other hand, by (a), ¢*(q) € X for q € Spec(Ry). Thus, we have the 1-1 correspondence:
Xy = {p € Spec(R) | f & p} == Spec(By)
pr—ps
P (@) =@ Ha) = AN R <. O
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Subspaces

Proposition 2.21. Let X be a topological space with a topology 7 and Y C X. Define %y =
{UNY |U € 7}. Then 4 is a topology on Y, called the subspace topology.

Proof. Y =XNY € Py since X € 7. 0=0NY € Fy since D € T. Let {U\NY | Uy € T}ren C
Jy. Since 7 is a topology on X, Jycp Ux € 7. Hence |Jycpa(UxNY) = (Uyea Ur) NY € Fy.
Let U1 NY,...,U,NY € Jy. Similarly, we have that ;_,(UxNY) € Fy. O

Remark. The closed subsets of Y are {VNY | V C X is closed} since

(Y UNY)|Ue Ty ={YNUNY)|Ue T} ={U°uY)nY |Ue T}
—{((U°NY)U(Y°NY)|Ue T} ={U°NY|Ue 7).

Proposition 2.22. If B is a basis for 7, then By = {BNY | B € B} is a basis for .

Proof. Let UNY € 3 with U € 7. Since Bis a basisof 7, U = U/\E,\U B, for some {Byx}xea, C
B. Hence UNY = Ujycp, (BANY). O

Corollary 2.23. Let f € R. Subspace topology on Xy C X = Spec(R) has
(a) closed sets: V(a) N Xy = {p € Spec(R) |a Cp # f}, where a < R;

(b) open sets: (X \V(a))N Xy ={p e Spec(R)|aZypZ [}, where a < R;
(c) basic open sets: X, N Xy = X4, where g € R.

Remark. Let a < R. Subspace topology on V(a) C X = Spec(R) has

(a) closed sets: V(b) NV (a) = {p € Spec(R) | b+ a C p}, where b < R;

(b) open sets: (X N\ V(b)) NV(a) ={p € Spec(R) | b Z p D a}, where b < R;
(c) basic open sets: X, N V(a), where g € R.

Proposition 2.24. Let a < R, ¢ : R — Ry and ¢} : Spec(Ry) =: Z — Xy as in Proposition 2.20.
(a) (¢}) " (V(a) N Xy) = V(ay).

(b) () (X \V(a)) N Xy) = Spec(Ry) \ V(ay).

(¢) (0})~H(XgN Xy) = Zyp for g € R.

Proof. (a) Let p € Spec(Ry). p € (¢3)~"(V(a) N Xy) if and only if o~ '(p) = ¢3(p) € V(a) N X}
if and only if =*(p) € V(a) if and only if a C ¢~ 1(p) if and only if af = aRy C ¢~ 1(p)Ry = p if
and only if p € V(ay).

TMethod 1: Let Lp;(p) = ¢~ (p) =: q € X;. By the proof of Proposition 2.20(a), gp}(qf) = q. Also, since ¢} is

11, ¢ (p)Ry = qRp = q5 = p.
Method 2: We claim that ¢~'(I)Ry = I for I < Ry. “C”. By 1.63(a). “2”. Let i € I. Then i = an € I for some

r € Rand n > 0. Hence p(r) = T 4 . fL" € 1. Then r € p~1(I). Hence i = an :(p(r)-f% € o 1 (I)Ry.
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(b) Let p € Spec(Ry). p € (¢5) " ((X\V(a))NXy) if and only if " (p) = ¢}(p) € (X \V(a))N X}
if and only if ¢ ~*(p) € X \ V(a) if and only if p € Spec(R¢) \ V(as) by the proof of (a).

(¢) Method 1. By (a), we have that

(5) " (XgNXyp) = (97) (X N V(9)) N Xy) = Spec(Ry) ~ V((9))
={ps | p € Spec(R),py 2 (9)s} ={ps | g & p € Spec(R)}
={pslpe Xy}

Method 2. Let p € Spec(Ry). Then p € (¢})~ (X, N Xy) if and only if p}(p) € X, N X} if and
only if % (p) € X, if and only if p € {q7 [ g € X,}. O

Continuous Functions and Homeomorphisms

Let X # () be a topological space.

Definition 2.25. Let f : X — Y be a function between topological spaces. Then f is continuous
if f~1(U) € Ix for U € F. “Inverse image of arbitrary open set in Y is open in X”.

c
Remark. Let Y C X. The subspace topology 9y is the smallest topology on Y such that Y <— X
is continuous.

Fact 2.26. To show f is continuous, it is equivalent to showing f~!(arbitrary closed sets of Y) is
closed in X, equivalent to showing f~!(basic open subsets of Y) is open in X.

Theorem 2.27. Let ¢ : R — S be a ring homomorphism, then ¢* : Spec(S) — Spec(R) is
continuous.

Proof. Let a < R and p € Spec(S). Then p € (¢*)~(V(a)) if and only if ¢*(p) € V(a) if and only
if o71(p) = ©*(p) D aif and only if p D w(© 1(p)) D p(a) if and only if p € V(aS). O

Theorem 2.28. Let f € R, ¢ : R — Ry and ¢* : Spec(Ry) — Spec(R). Then ¢*(Spec(Ry)) = X
“principal open set”. Restrict codomain, ©} Spec(Ry) — Xy is 1-1 and onto. Moreover, give the
codomain subspace topology, ¢} and (w?)_l are continuous. “homeomorphism”.

Proof. By Proposition 2.24, we have that gp} is continuous or by Theorem 2.27 and Lemma 2.30.
By Proposition 2.20, ¢7% is 1-1.
Let I < Ry. Then I = ¢~ '(I)R; by the proof of Proposition 2.24(a). Since ¢} is a bijection,
((£7) ") (VD) = 93 (VD) = 3(V(~ (I)Ry) = V(9" (I)) N X by Proposition 2.24(a). O

Example. Let k be a field and R = k[X]. We claim that Spec(R) = {0,(X)}. Let 0 # f €
[X] Then f = Y ;2,a; X" for some a; € k for i > 0. Let m = min{i > 0 | a; # 0}. Then
f(X) = X™(Y 2y ams+:X"). Since a,, € kX, we have that Y .- a1 X' € R*. Hence every
0 # f € R is of the form uX' for some | > 0 and u € R*. Hence if 0 # I < R, [ = (X™), where
m =min{j > 0| X’/ € I}. Thus, p = (X) for 0 # p € Spec(R).

Define ¢ : R — S = k x Q(R) by Z?:lte a; X" — (GO,M)- Note that ¢ is a ring
homomorphism and Spec(S) = {k x 0,0 x Q(R)}. Hence the continuous function ¢* : Spec(S) —
Spec(R) sending k x 0 to 0 and 0 x Q(R) to (X) is 1-1 and onto.
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Closed sets of Spec(S) are V(1,1) = (Z),V(0,0) = Spec(S), V(0,1) = {0 x Q(R)} and V(1,0) =
{k x 0}. Closed ses of Spec(R ) are V(1) =, V(0) = Spec(R) and V(X) = {(X)}. Since ¢* is a
bijection, we have that ((¢*)~1)~1({k x 0}) = ¢*({k x 0}) = {0} is not closed in Spec(R). Hence

(p*)~! is not continuous.

Corollary 2.29. X is quasi-compact.

Proof. It follows from X is homeomorphic to Spec(Ry) and Spec(R;) is quasi-compact. O
Example. U C Spec(R) = X may not be quasi-compact. Let R = k[X7, X2, X3,---]. Let
U =X V(Xy, Xy, Xs, - X\ﬂV UX\V( i)
i=1

by Fact 1.36(a). Let n > 1. We claim that V(X1, Xo, X3,--+) # V(X1,Xo,..., Xp). “C". It
is straightforward. “2”. Let p = (Xy,...,X,) € V(Xy,...,X,). Then p & V(X;, X5, ) since
<X1,X2, e > =) Xn+1 g p. Hence

U=XV(X, Xy, X3, - ) A#XV(Xq,..., X X\ﬂv = J&xX V(X))
=1

for n > 1.
Fact. If R is noetherian and U C X = Spec(R) is open, then U is quasi-compact.
Proof. Let U = [Jycp Ux be an open cover with Uy open in X for A € A. Use the fact that X;’s
form a basis to assume without losss of generality Uy = Xy, for some f\ € R for A € A. Then
U= X = JENV(A) =X V({(H | AeA).
AeA AeA

Since R is noetherian, there exist fy,,..., fo, € R such that (fy | A € A) = (fx,,..., fr,). Hence
U:X\V(<f)\1,...,f)\">):U?:le)\i~ 0

Lemma 2.30. Let f : X — Y be a continuous function between two topological spaces. If
f(X) C Z CY, then consider the natural map fz : X — Z and give Z the subspace topology, we
have that fz is continuous.

Proof. Let U C Z be open. Since Z has the subspace topology, U = Z N U for some U C Y open.
Since f(X) C Z,

710 = fHZn0) = U Z)n L U) = f7HO)

is open in X since f is continuous. O

Theorem 2.31. Let b < R, m: R — R/b be the natural surjection and consider 7* : Spec(R/b) —
Spec(R).

(a) 7 (Spec(R/b)) = V(b).

(b) Give the codomain subspace topology and restrict the codomain, then wj : Spec(R/b) — V(b) is
continuous, 1-1 and onto, and (7§)~" is continuous. “homeomorphism”.
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Proof. By prime correspondence,
Spec(R/b) = V(b)
p/b—p2Db
pr—r 7l (p) =7 (p).

Hence 7*(Spec(R/b)) = V(b), and 7 is 1-1 and onto. By Theorem 2.27 and Lemma 2.30, 7 is
continuous. Let b C a < R. Then by prime correspondence,

()™ (V(a/b)) = m(V(a/b)) = V(a) N V(b) = V(a).
Hence (7)) ™! is continuous. O

Corollary 2.32. V(b) is quasi-compact for b < R.

Definition 2.33. X is irreducible if for ) # Uy, Us C X open, Uy NUs # ().
X is reducible if it is not irreducible, i.e., if and only if there exist # # Uy, Uy € X open such
that Uy N Uz = 0.

Example 2.34. If R is an integral domain, then X = Spec(R) is irreducible.

Proof. Let ) # U C X be open. Then § # U = X ~ V(a) for some a < R. Hence V(a) # X =
Spec(R). Hence a # (0) and so (0) ¢ V(a). Also, since R is an integral domain, (0) € X. Hence
0)eU. 0

Definition 2.334. A subset (} # Y C X with subspace topology is an irreducible subset if it is
irreducible as topological space. Equivalently, # # Y C X with subspace topology is irreducible if
Y=VUW for VW CY closed, then Y =V or Y =W.

Corollary 2.35. If q € Spec(R), then V(q) C Spec(R) with subspace topology is irreducible.

Proof. Let q € Spec(R). Then R/q is an integral domain. Hence Spec(R/q) is irreducible by
Example 2.34. Since V(q) is homeomorphic to Spec(R/q) by Theorem 2.31, we have that §§ # V(q)
is irreducible. O

Definition 2.36. Let Y C X. The closure of Y in X is
Y= ) WV
YCVCX

V closed

Fact 2.37. If Y C X, then z is the (unique) smallest closed subset of X containing Y.
If VC X is closed, then Y C V if and only if Y C V.

Example. In X = Spec(Z), Zariski topology is almost the “cofinite topology”, open sets are X, ()
and {X ~{p1Z,...,pnZ} | n > 1,0 # p; is prime, Vi =1,...,n}.

Lemma 2.38. The followings are equivalent.
(i) X is irreducible.
(if) For V1,Va € X closed, V1 U U C X.
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(iii) For ) ## U C X open, U = X.

“Non-empty open sets are dense”.

Proof. (1)<=>(ii) By Definition 2.33.
(il)==(iii) Assume (b). Let ) # U C X be open. Suppose V; := U # X. Let Vo := X \ U.
Then Vi, V5 C X are closed. Hence

X=UUX\U)CTUXU)=VULCX

by assumption, a contradiction.
(iii)==(i) By contrapositive. Assume X is reducible. Then there exist () # U;,Us C X open
such that U;NUs = (). Hence U; € X\ Uy € X. Also, since X\ Uz isclosed, U1 C XU C X O

Definition 2.334++. X is irreducible if and only if for V4, Vo C X closed, V3 U Vo # X.
Proposition 2.39. X = Spec(R) is irreducible if and only if Nil(R) € Spec(R).

Proof. <= Assume Nil(R) € Spec(R). By Proposition 1.32(c), V(Nil(R)) = Spec(R). Then by
Corollary 2.35, Spec(R) = V(Nil(R)) is irreducible.

= Assume X = Spec(R) is irreducible. Since R # 0, Nil(R) # R by Proposition 1.26(b). Let
a,b € R such that ab € Nil(R). Then V(a)UV(b) = V(ab) = Spec(R). Since Spec(R) is irreducible,
V(a) = Spec(R) or V(b) = Spec(R). Hence a € Nil(R) or b € Nil(R). O

Proposition 2.40. We have the following.

(a) If Y C X is irreducible, then Y C X with subspace topology is irreducible.

(b) If € is a chain of irreducible subsets of X, then (Jy . ¥ with subspace topology is irreducible.
(c¢) For irreducible Y C X, there exists a maximal irreducible subset Z C X such that Y C Z.
(

d) X is the union of its maximal irreducible subsets which are all closed.

Proof. (a) Assume Y C X is irreducible. Let Y = Vi UV, with Vi,Va C Y closed. Let i € {1,2}.
Since V; is closed in Y and Y has subspace topology, there exists V; C X closed in X such that
Vi=V,NnY. Set V/ =V,nY =(V;NnY)NY =V, NY. Since V;isclosedin Y, V/ =V, NY is
closed in Y. Then

Y=WuV,=WnY)u(nY)=(Wulk)nY.
Hence Y CY C 171 U ‘72. Thus,

Y=WMuW)nY=WnY)u(,nY)=V/ uVj.

Since Y is irreducible, Y = V] or V4. Say Y =V/ =V;NY. Then Y C V; C V. Since V; C X is
closed, Y CV;. Thus, Y =VinY = V.

TLet Z C X have a subspace topology. If Y C Z, then the topology that Y inherits as a subspace of Z is the
same as the topology that Y inherits as a subspace of X
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(b) Let C be a chain of irreducible subsets of X and Z := (Jy . Y. Let V1, V2 C Z be closed. Then
there exist 1 € Z N Vj and x5 € Z ~ V5. Hence there exist Y7,Ys € C such that x; € Y7 and
To € Y. Since C is a chain, Y7 C Y5 or Yo C V7. Say Yo C Y7, then z7 € Y1 N\ Vj and 5 € Y7 N\ V5.
Hence V1 NY: C Y7 and Vo NY; C Y;. Since Vi, V3 are closed in Z, V3 NY; and Vo NY; are closed
in Y7 similar to (a). Also, since Y; is irreducible, we have that (Vi NY1)U (VanNYy) € Y;. Hence
Y1 £ V1 UV, Also, since Y1 C Z, Z € V1 U Vs, Thus, VUV, C Z.

(¢) Let Y C X be irreducible. Set ¥ = {irreducible subsets Z C X | Y C Z}. Since Y € &, ¥ # {).
From (b), Zorn’ lemma applies. Hence ¥ has a maximal element.

(d) Let M be the union of the maximal irreducible subsets of X. We claim that X = M. “27. It
is straightforward. “C”. Let z € X, then {«#} C X is irreducible. By (c), there exists a maximal
irreducible subset Z C X such that {x} C Z. By (a), Z is irreducible. Also, since Z C Z and Z is
maximal irreducible, we have that Z = Z, i.e., Z is closed. O]

Definition 2.41. The maximal irreducible subsets of X are the irreducible components of X.
Proposition 2.42. T Let X = Spec(R).

(a) V C X with subspace topology is closed and irreducible if and only if V' = V(p) for some
p € Spec(R).

(b) The irreducible components of X are V(p), where p € Min(Spec(R)) = Min(R).

Proof. (a) <= Let p € Spec(R). Let V,W C V(p) be closed such that V(p) = V UW. Then
V =V(a)NV(p) and W = V(b) N V(p) for some a,b < R. Since p € Spec(R),

peVip) =VUW=(V(a)nV(p)) U (V(b)NV(p)) = V(a+p)UV(b+p)=V(a+p)(b+p)).
Hence p 2O (a+p)(b+p). Since p € Spec(R), p 2a+p2aorpDb+p2Db. Hence V(p) C V(a)
or V(p) CV(b). Hence V(p) =V(a)NV(p) =V or V(p) =V(b)NV(p) =W.

= Assume V C X is closed and irreducible. Then ) # V = V(a) = V(rad(a)) for some a < R.
Hence is suffices to show rad(a) € Spec(R). Note that v :=rad(a) < R.

Method 1. Let z,y € R such that zy € v. Then t2 C (zR + t)(yR +t) C v. Hence V(xr) =
V(r?) D V((zR +t)(yR +t)) D V(t). Hence

V=V()=V({(zR+v)(yR+1)) = (V(zR)NV(t))U(V(yR)NV(r)) = (V(zR)NV)U (V(yR)NV).

Also, since V(zR) NV and V(zR) NV are closed in V and V is irreducible, we have that V(r) =
V(@R)NV CV(zR) or V(r) =V(yR)NV C V(yR). Then
x € xR Crad(zR) = ﬂ pC ﬂ p=rad(t) =t

peEV(zR) peV(t)

by Fact 1.58(c) and (g), or y € v similarly. Hence rad(a) = v € Spec(R).

Method 2. Assume rad(a) 2 IJ for some I,J < R. Then V(I) UV (J) = V(IJ) D V(rad(a)) =
V(a). Since V(a) =V is irreducible and

V(a)= (V(a)NnV())U (V(a)NV(J)) =V(al)UV(aJ),

TThis proposition also holds for V(a) with subspace topology and with Min(V(a)).
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we have that V(I) 2 V(a) or V(J) 2 V(a). Hence by Proposition 1.32(d), rad(a) 2 rad(f) 2 I or

rad(a) D rad(J) 2 J.

(b) Let V be an irreducible component of X = Spec(R). Then V is closed by Proposition 2.40(c)
and maximal irreducible. Hence by (a), V' = V(p) for some p € Spec(R). Let q € Spec(R) such that
q Cp. Then V(q) D V(p) = V. By (a), V(q) is closed and irreducible. Hence by the maximality of
V, V(q) = V(p). Thus, q = p by Proposition 1.32(d). O

Remark. Example 2.34, Corollary 2.35, and Proposition 2.39 follow from Proposition 2.42(a).

Example 2.43. Let R = M, where k is a field. Then
(XY,YZ,XZ)

(XY, YZ,XZ)=(X,YZ,XZ)N(Y,YZ,XZ) = (X,YZ)N(Y,XZ)
— (X, V)N (X, Z)n (Y, X)N(Y,Z) = (X,Y) N (X, Z) N (Y, Z).

Or let G be the following graph:
X
Z —Y

Then the edge ideal of G is I = (XY, YZ,XZ). Let Py = (X | X € V) for V C V(G). Then we
have that

Ig = m Py = PixyyN Pyzy N Pix zy = (X, Y)N (Y, Z) (X, Z).

V min. v.cover

Hence
Min(k[X,Y, Z]) = {Py | V min. v.cover} = {(X,Y), (Y, 2),(X, Z)}.

By Fact 1.15, Min(R) = {(X,Y), (Y, Z),(X,Z)}. Hence the irreducible components of Spec(R)
are V((X,Y)), V({X,Z)) and V({Y, Z)).

Corollary 2.44. (a) Min(R) # 0.
(b) For q € Spec(R), there exists p € Min(R) such that p C q.
Proof. (a) Since Spec(R) # (), by Proposition 2.42(b), Min(R) # 0.

(b) Let q € Spec(R). Then V(q) C Spec(R) are closed and irreducible by Proposition 2.42(a).
Hence there exists a (closed) maximal irreducible subset Z C Spec(R) such that V(q) C Z by
Proposition 2.40(c). Then V(q) C Z = V(p) for some p € Min(R) by Proposition 2.42(b). Hence
p C q by Proposition 1.32(d). O

Proposition 2.45. Let p € Spec(R).
(a) {p} =V(p).
(b) {p} = {p} if and only if p € m-Spec(R). “closed points are maximal”.

(c) If R is an integral domain, then {0} = V(0) = Spec(R). 0 is the “the generic point”.
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Proof. (a) One point set {p} is clearly irreducible. Then {p} is also irreducible by Proposition
2.40(a). Also, since {p} is closed, {p} = V(a) for some a < R by Proposition 2.42(a). Hence a C p.
Hence V(p) C V(a) = {p}. Since {p} is the smallest closed subset containing p, we have that

{p} =Vn).

(b) = Assume {p} = {p}. Since p # R, there exists m € m-Spec(R) such that m DO p. Then
m C V(m) C V(p) = {p} = {p} by (a). Hence by the maximality of m, we have that p = m.

<= Assume p € m-Spec(R). Then by (a), {p} = V(p) = {p}.
(c) Tt follows from (a). O



Chapter 3

Localization

Let R be a commutative ring with identity but not a field.

Recall 3.1. A subset U C R is multiplicatively closed if 1 € U and for u,v € U, uv € U,
Example 3.2. (a) {1, f, f?,---} C R is multiplicatively closed for f € R.

(b) R* C R is multiplicatively closed.

(¢) R~ p C R is multiplicatively closed for p € Spec(R).

(d) 14 a C R is multiplicatively closed for a < R.

Let U C R be multiplicatively closed.

Recall 3.3. U"'R={L |re Ruec U}, where L = ;—l, if and only if there exists u” € U such that

. " ! . . . .
u’(rv’ —r'u) =0, ie., L~ = L formally, £ is the equivalence class under an equivalence relation.
’ T uu u’’ oy

U~'R is a commutative ring with identity with Tt 2= % and -2 = = for © 2 ¢ U™ 'R.

—_0r _ 0 —1lr _u
OUflRf1R7uand1U71RflRfuforallueU.

£ = 0 if and only if there exists u” € U such that u"r = 0.

r

Y : R— U™'R given by ¢(r) = 1 is a well-defined ring homomorphism. ¢ is 1-1 if and only if
U C NZD(R).

Notation 3.4. (a) If U = {1, f, f2,---}, write U"'R = R;. (Ry =0 for f € Nil(R).
(b) If U = R~ p for some p € Spec(R), write U"'R = R,.

(c) If U C R is multiplicatively closed, write U"'R = Ry = R[U1].

Let ¢ : R — U~'R be the natural ring homomorphism.

Recall 3.3+e¢. (U) C (U'R)* since + = (%)~ = ((u)) ™" for u € U. Hence localization makes
more elements invertible.

Let ¢ : R — S be a ring homomorphism.

Proposition 3.5 (UMP for ¢). Let ¢(U) C S*. Then there exists a unique ring homomorphism
®:U 'R — S such that ® o) = ¢. In fact, D(£) = (r)p(u)~! for L € UT'R.

r
u

41



42 CHAPTER 3. LOCALIZATION

R—Y5 UR R4 U'R
X e X l"
s s

_ : " 7 / 1) — : : :
Proof. Let - = 7. Then there exists v’ € U such that u”(ru’ — r'u) = 0. Since ¢ is a ring

homomorphism, we have that p(u”)(o(r)p(u') — o(r')e(u)) = 0. Also, since p(u”) € S*, we have

that o(r)p(u’) = o(r')p(u), ie., o(r)p(u)™" = p@')p’)~" since p(u),p(u’) € S*. Hence ¢ is
well-defined. Since

B (24 2) =@ (M) = o swhptun) ™ = (e0)el0) + (o))t (o)

= e + (e =0 (2) + e (2)

and similarly, ®(Z - 2) = ®(L)®(2) for £, £ € U~'R, we have that ® is a ring homomorphism.

Suppose there is another ring homomorphism A : U"'R — S such that A o ¢ = ¢. Then
@(r) = A(y(r)) = A(7) for r € R. Hence

M) =2 (52) =2 (AG =strem =2 (7)
for - € U~'R. Thus, A = ®. O
Proposition 3.6. We have the following.
(a) p(U) C S is multiplicatively closed and p(U)~1S =: U~1S.
(b) There is a unique ring homomorphism U 1o : U"1R — U1 given by U o (r/u) = ¢(r)/¢(u).

R— Y L U-R

r
1

©

—
-}
&

>
}—}Lp

.
o(r) (r)

-1
§——f—— U'S

(c) If ¢ is onto, U1y is onto.
(d) If pis 1-1, U~ L is 1-1.
(e) If a: S — T is a ring homomorphism, then U~ (a0 ¢) = (o(U)"ta) o (U™ Lyp).

R— Y  LU'R
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Proof. (b) Let = = Z—l, € U7'R. Then there exists u” € U such that u” (ru’ —r'u) = 0. Hence there

exists p(u”) € p(U) such that p(u”)(p(r)e(u') — o(r')e(u)) = 0. Hence ZE;% = Z((z:; e U™1S.

Hence U~ 1y is well-defined. Since

g (44 3) =t (L) Sl sjole) ¢ ot

uv pluv) p(u)p(v)
_er) els) e (T “1(p) (2
= o =)0
and similarly, U= (@)(£ - £) = Ut p(L) U~ p(2) for £,2 € UT'R.

Since ¢(U) C S is multiplicatively closed, by Recall 3.3+¢, p(p(U)) C ((p(U))"1S)* =
(U~1S)*. Then the uniqueness follows from Proposition 3.5.
(c) Assume ¢ is onto. Let ﬁ € U71S with s € S and u € U. Since ¢ : R — S is onto, there

exists 7 € R such that ¢(r) = s. Then U™ 1p(L) = i((:;)) = St

(d) Assume ¢ is 1-1. Let £ € U"'R with r € R and u € U. Then £ € Ker(U '¢) if and only if
0=U"p(%) = z((g if and only if there exists u” € U such that 0 = p(u”)p(r) = e(u’r) if and
only if there exists u” € U such that u”r = 0 since ¢ is 1-1 if and only if £ =0 in U™'R.

(e) Since p: R — S and a: S — T are ring homomorphisms, a o ¢ is a ring homomorphism. Since
(aop)(U) = alp(U)) C T is multiplicatively closed by (a), we have that U~!(ao¢) and ¢o(U) '«
are well-defined.

U'R
\ Sa(,,‘) (U)_IS
o e ¥
(a0p)(r) __ alp(r))
(co)(u) afe(u))
(o p)(U)™'T a(eU)~'T
Then by the commutative diagram, U~ (a0 ) = (p(U) " 1a) o (U 1yp). O

Proposition 3.7. Let ¢(U) C S be multiplicatively closed. Then Im(U~tp) = U~ Im(p) given
by 200, i) _ )
Yopt) T i) T e

Proof. We have that
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By Proposition 3.6(e), Im(U~'¢) = Im(i o 7) = Im((7(U) i) o U"1x). Since 7 is onto, U~ (7
is onto by Proposition 3.6(c). Hence Im(U~ty) = Im(w(U)~%). Since i is 1-1, m(U)~ % is 1-
by Proposition 3.6(d). Hence by the first isomorphism theorem, U~!Im(y) = Im(x(U) 14)
Im(U ).

—

Ol

Let a,b < R.

Definition 3.8. Define a relation “~” on U x a by (u,a) ~ (v/,a’) if and only if there exists u” € U
such that v”(v'a — ua’) = 0.

Fact 3.9. This is an equivalence relation.

a
u

Notation 3.10. U~ 'a = {equivalence classes from U x a under ~}, and a/u or ¢ with a € a and

u € U are its elements, i.e., U la = {a/u|a € a,u € U}.
Proposition 3.11. We have the following.

(a) The map i : U~'a — U~'R given by i(a/u) = a/u is a well-defined ring monomorphism.
Identify U~ta with Im(i) C U™ R, so write U~ 'a C U~ !R.
Warning. - € U~'R such that T € U~'a may have r ¢ a.

(b) If = € U~'R, then € U~'a if and only if there exists v € U such that vr € a, in this case,
we have that £ = 22 € U~ 'a with ur € a and vu € U.

(c) Let m : R — £ be the natural surjection. Then U~'a = Ker(U~'m) < U™'R and %_,11];‘ =
Uflg = W(U)’lg.

(d) More generally, if ¢ : R — S is a ring homomorphism, then U~! Ker(¢) = Ker(U 1¢) < U 'R
- ~ _U'R

such that Im(U 1@) = Wer(tp)'

(e) U la=a-U"!R, extension of a along ¢ : R — U~ 'R.

Proof. (a) By the definition of “~”, i is a well-defined ring monomorphism. Let & € U~'la with
a € Rand u € U. Then ¢ € Ker(i) if and only if 0 = (%) = 2 in U™ R if and only if there exists

a

u
v € U such that va=0 € a C Rif and only if ¢ =% = 2 =0 in U 'a by (b). Also, since i is a
ring homomorphism, ¢ is 1-1.

(b) Method 1. = Assume £ € U™ 'a. Then £ = % € U™'R for some a € a and v € U. Hence

there exists v” € U such that «”u'r = v"ua € a since a € a. Let v = w”v’. Then vr = v u'r € a.

<= Assume vr € a for some v € U. Then £ = 2L ¢ U~ 'q.

Method 2. Note that = € U~la if and only if L = % for some a € a and v’ € U if and only if

uu'r — u"ua =0 for some a € a and v/, u” € U ifand only if 1 -v-r—1-1-a =0 for some a € a

and v € U if and only if there exists v € U such that vr € a.

(¢) Note that by Proposition 3.7, Im(U~'m) = U~ Im(r) = U~' £ given by Z — Z. Then by (d),
vt U_({;(e]r{(ﬂ) = U=t given by £ i L.
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(d) Let Z e U"'R with r € Rand u € U. Then £ € U~ Ker(yp) if and only if there exists v € U
such that vr € Ker(p) by (b) if and only if there exists w(v) € p(U) such that 0 = p(vr) = ¢(v)p(r)
if and only if U~ 'p(L) = 2 — 0 in U=1S = o(U)~1S if and only if L e Ker(U ty).

o(u) —
By the first isomorphism theorem, Im(U 1) = Kerrj(UlRw) 7= 1;<er(<p) given by ig% L
-1 U 'R
UTR Ker(U—1yp)
U\ !
Im(U~ 1)
(e) D It follows from a-U~'R is generated by {¢(a) = ¢ |a € a} CU ta.
CLet 2 €U 'awitha€aandu € U. Then ¢ =2%.1 =y(a)l ca-U'R O

Proposition 3.12. We have the following.

(a) U Y a+b) = (U ta) + (U tp).

(b) U= (anb) = (U ta)n (U 1b).

(c) U~(ab) = (U~'a)(U).

(d) U trad(a) =rad(U 'a).

(e) U Nil(R) = Nil(U™R).

(f) UY(b:a) = (U 'b: U ta) if a is finitely generated.

Proof. (a) By Proposition 3.11(e) and 1.63(c), we have that
Ula+b)=(a+b)-U'R=(a-U'R)+(b-U'R) = (U 'a)+ (U 'b).

(b) C By Proposition 3.11(e) and 1.63(d),
U lanb)=(anb)-U'RC (a-U'R)N(b-U'R) = (U a) N (U 'b).

“D” Let L € UT'R with r € R,u € U such that
v,w € U such that vr € a and wr € b by Proposition 3.
vw e U, L € U™ (anb) by Proposition 3.11(b).

€ (U 'a)n (U~'b). Then there exist
(b). Hence (vw)r € anb. Also, since

11

(¢) By Proposition 3.11(e) and 1.63(e), we have that
U Yab) = (ab) - U 'R=(a-U'R)(b-U'R) = (U a)(U'b).
(d) C By Proposition 3.11(e) and 1.63(g),
U 'rad(a) =rad(a)- U 'R Crad(a- U 'R) = rad(U 'a).

D Let £ € rad(U~'a) with r € R and uw € U. Then ;—Z = (£)" € U 'a for some n > 1. Hence
there exists v € U such that vr™ € a by Proposition 3.11(b). Hence (vr)" = v"~1 . vr"™ € a. Hence
vr € rad(a). Thus, £ € U~ ' rad(a) by Proposition 3.11(b).
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(e) Special case of (d) with a = 0.
(f) C By Proposition 3.11(e) and 1.63(f),

Ulb:a)=(0b:a)- U'RC(b-U'R:a-U'R)=U""'b:U"a).

“>”. Let £ € U™'R with r € R,u € U such that £ € (U'b : U 'a). Since a is finitely
generated, a = (a1, ...,a,)R for some n > 1 and ay,...,a, € R. Then U la = (Fyeee “T")U_lR.
Since L € (U 'b: U ta), 1% = L4 € U~'p for i = 1,...,n. Hence by Proposition 3.11(b), there

exists v; € U such that v;ra; € b fori =1,...,n. Let v = vy---v, € U. Then (vr)a; € b for
i=1,...,n. Hence vr € (b:a). Thus, Z € U~!(b : a) by Proposition 3.11(b). O

Proposition 3.13. We have the following.

(a) For I < U!R, there exists a < R such that I = U~ !a, i.e., every ideal of U~ R is an extension
of an ideal of R along ).

(b) If a < R, then v ' (Ua) ={re R|Jv e U s.t. vr € a} = U,ep(a:v).

(c) UT'E =0 if and only if %:111;” =0 if and only if U='a = U~ 'R if and only if U Na # 0.

Proof. (a) Since I < U~'R, we have that ¢»~1(I) < R. We claim that I = U~!(¢p=1(I)).

D By Proposition 1.63(a), I 2 ¢~ Y1) - U 'R=U"1(¢y=1(I)).

C LeticI. Theni= I for some r € Rand u € U. Also, since ¥ € R, ¥(r) =7 =1+ -7 €,
e, reyp HI). Hence i =2 e U (v~ (1)).

(b) Let r € R. Then r € ¢~*(U~'a) if and only if £ = ¢(r) € U 'a if and only if vr € a for some
v € U by Proposition 3.11(b) if and only if » € (a : v) for some v € U if and only if r € {J, ¢y (a2 v).

(¢) By Proposition 3.11(c), U='£ = 0 if and only if U_R _ (). Note that U~la = U~R if and

U-Ta —
only if 1 € U7 laif and only if 1 € (U 'a) = U,y (a :uv) if and only if U Na # ( by (b). O

vel

Corollary 3.14. Let p € Spec(R) and Q(R/p) be the field of fraction. Then R, = U'R is local
with maximal ideal p,, := pR, = U~ 'p and Q(R/p) & R, /py given by 7/t < r/u.
Proof. Note that I < U~'R if and only if there exists a < R with U Na = ) such that I = U~ 'a
by Proposition 3.13(a) and (c). Since max{a < R|U Na =0} = p, m-Spec(R,) = {U " 'p}.

Let 7 : R — R/p be the natural projection. Then by Proposition 3.11(c), R, /p, = %1111;‘
UL = (U) E = Q(R/p).

[

Corollary 3.15. If m € m-Spec(R), then Ry /my & R/m.

Proof. Since m € m-Spec(R), R/m is a field. Hence by Corollary 3.14, Ry /my, = Q(R/m)
R/m.

o

Example. (a) Let p € Z be prime. Then (p) € m-Spec(Z). Hence Z,)/(p)p) = Z/pZ = Fp.

In this case, some textbook denotes it (R/p)p.
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(b) Let a1,...,aq € k. Then, similarly,

k[X17'..7Xd](X1—a1 ..... Xd—ad) %Q( k[Xl,.,Xd} )
(Xl —ay,... 7Xd - ad)(Xl—al,.A.,Xd—ad) (Xl —ai,... aXd - ad)

1%

Qk) = k.

Let p € Spec(R).

Question. U Nyp = ( if and only if U~'p € Spec(U~LR) by prime correspondence for localization.
What does (U™*R)y-1, look like?

Lemma 3.16. Let UNp=0. Let £ € U"'R. Then £ € U~'p if and only if r € p.

Proof. <= follows from the definition.
= Assume ; € U~!p. Then there exists v € U such that vr € p € Spec(R). Hence v € p or
r € p. Since v € U and U Np = B, we have that v € p. Hence r € p. O

Proposition 3.17. Let UNp = (). Then U~!p € Spec(U~R) and

(U'R)y-1p, — Ry

r/1
8/—1<—|r/ss€R\p

Proof. We have that

T T
R — R,
lﬂl\‘ iﬂg&

U'R 2 (U’lR)U—1p
r/1 %

Let 8 = o). By proposition 3.5, to show ¢ is a well-defined ring homomorphism, it suffices to show
B(R~p) C (U 'R)y-1p)* since U € R\ p. Let 2 € R~ p. Then f(z) = % Since /1 € UT'R

and = ¢ p, we have that /1 ¢ U~!p by Lemma 3.16. Hence 1 is an allowable denominator in

(U 'R)y-1,. Hence i—ﬁ € (U'R)y-1p. Thus, ‘f—ﬁ € (UT'R)y-1,)* with (31”7/})*1 = i—ﬁ Besides,
r/1

by Proposition 3.5, we have that ¢(r/s) = 8(r)/B(s) = o1 for 5 € Ry.

Let = € Ry. Then T € Ker(yp) if and only if 0 = ¢(%) = ;/7} € (U'R)y-1, if and only if there
exists % € U'R~ U 'p with t € R~ p such that %T = % -1 =0in U~!R by Proposition 3.11(b)
and Lemma 3.16 if and only if there exist t € R\ p and w € U C R\ p such that witr =0 in R by
Proposition 3.11(b) if and only if there exists v' € U C R\ p such that v'r =0 in R since R\ p is
multiplicatively closed if and only if £ = 0 in R, by Proposition 3.11(b). Hence ¢ is 1-1.

Let T € (U'R)y-1, withr € R, u,v € U C R~pand s € R\ p. Then us € R~ p since R~\p

s/v
is multiplicatively closed. Hence = € R,. Also, since p(2L) = ggzg = Z;ﬁ = :ﬁiﬁz% = ;/7:’

S
have that ¢ is onto.

we
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Corollary 3.18. If q € Spec(R) with p C q, then p; € Spec(Ry) and (Rq)p =l R, given by
27/1 —r/s.

q

Proof. Take U = R \ q in Proposition 3.17. O

Example. (a) Let 0 # p € Z be prime. Then (0) C (p) € Z and Z,) = {% € Q| (n,p) =1} is a
domain. Hence by Corollary 3.18, Q(Z(m) = (Z(p))(o)(p) = Z(O) = Q(Z) = Q

(b) Let R be a domain and 0 € U. Then U™ 'R is a domain and p := (0) € Spec(R). Hence
QU™R) = (U_lR)Ufl(O) = Ry = Q(R) by Proposition 3.17. In fact, the map QU™R) =
Q(R) is given by % —ir/s.

Proposition 3.19. Let R # 0. Then NZD(R) C R is multiplicatively closed. Moreover, it is
saturated: if r,s € R such that rs € NZD(R), then r,s € NZD(R).

Proof. Since R # 0, 1 € NZD. Let r,s € NZD(R). Assume (rs)t = 0 for some t € R. Then
r(st) = 0. Since r € NZD(R), st = 0. Also, since s € NZD(R), t = 0. Hence rs € NZD(R).

Let z,y € R such that xy € NZD(R). By symmetry, we need to show x € NZD(R). Assume
xz = 0 for some z € R. Then (zy)z = y(xz) = 0. Since 2y € NZD(R), z = 0. O

Definition 3.20. The total ring of fractions of R (or total quotient ring of R) is
Q(R) = NZD(R)'R.

Example. (a) If R is an integral domain, then NZD(R) = R~ {0} and Q(R) = NZD(R)"'(R) =
(R~ 0)"Y(R) = Q(R). Hence the total ring of fractions of a domain is equal to the field of fraction.

(b) Let R = %, not an integral domain. Let x = X, y =Y, 2 = Z and w = W.
Since (0)R = (z, z) N (y, w) is a minimal primary decomposition, Assg(0) = {(z, z), (y, w)}. Hence
ZD(R) = Upeassp(0) P = (2, 2)U(y, w) by Corollary 4.34. Then U := NZD(R) = R~{(z, 2)U{y, w)}.

By prime correspondence for localization, Spec(Q(R)) = {U 'p | p € Spec(R),pNU = 0} =
{U Nz, 2), U y,w)}. Let p1 = Uz, 2) and pa = U~ (y, w). Then by Proposition 3.12(b),

pL0p2 =U""(z,2) N (y,w)) = U oy, yz, 2w, 2w) = 0.

Hence m-Spec(U™1R) = {p1,p2}. Hence p; +p2 = U'R = Q(R). Let m : R — R/(z,z) and
w2 : R = R/{y,w) be natural surjections. Then by Chinese Remainder Theorem and Proposition
3.17 with 0 € m (R~ (2, 2) U (y,w)) = m(U) and 0 & mo(U),

_U'R_U'R__(U'R U'R\ _ . R . R )
AR = o, _Q< 1 >XQ< p2 >_Q<U <mvz>>XQ(U (y, w)

(Ul <xi>>U_1(0) g (Ul <yf%w>>U-1<0) (<:cR>>() : (<yi)>)(0)

~ 0 (@};) «Q (@%) ~ Q(K[Y, W]) x Q[X, Z]) = k(Y, W) x k(X, Z).

IR
IR

Proposition 3.21. The natural ring homomorphism ¢ : R — Q(R) is 1-1. Moreover, NZD(R) is
the unique largest multiplicatively closed subset of R with this property.
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Proof. Let r € R. Then r € Ker(¢) if and only if ¢)(r) = 0 = { in Q(R) if and only if there exists

v € NZD(R) such that vr = 0 by Proposition 3.11(b)(b) if and only if » = 0. Hence % is 1-1.
Assume U C R is multiplicatively closed such that the natural ring homomorphism ¢ : R —

U™ 'Ris 1-1. Let u € U. Let r € R such that ur = 0. Then ¢(r) = = % = % = 0. Also, since ¢

u

is 1-1, r = 0. Hence u € NZD(R). O
Question 3.22. Let ¢* : Spec(S) — Spec(R).
(a) When is p € Im(p*)?, i.e., when does there exist q € Spec(S) such that p = ¢~1(q).

(b) What does (¢*)"(p) = {q € Spec(S) | ¢*(q) = p} look like? In general, if f:Y — X is a
(continuous) function and = € X, then f~!(z) = {y € Y | f(y) = 2} = fibre over x w.r.t. f.

Construction 3.23. Let U = R\ p.

R—*% 8§

Q(R/p)=Be — _U'R woU-l¢ p-is . _u-ls ._ _U-ls
P) =5 =R pU-18 ‘"= pSU-IS ‘' U ipU 1S

Sy . _eU)*'s
Fo) = 5% = 209
Note that p- U~1S is the extension of p along po o, pS-U~1S is the extension of pS along p, and
U~lp-U~1S is the extension of U~'p along U 1. F(p) is fibre over p w.r.t. .

Let 2 € U™'p with p € p and w € U. Then mo (U™ p)(E) = W(igg) =0in % since

©(p) C pS. Hence by Construction 1.13, 7o (U~ 1yp) is a well-defined ring homomorphism.

U 'R
U'R — TTh
wo(U™ ") iﬂ—o(U 2
~
_ _p()~'s
Fb) = sor e
P - S
/ )
_ \ Uy U_1S P €
\ \ - .
TO S
1/}/ N o
mo(U~Tgp) o(U)~'s
P(U)~1(pS)

Let 7 € % with € R. Then

o U 19)o(To§)(F) = w0 (U-1p)(row(r)) = 7o (U-19) (1) =) (7) = G = 27
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and

7ropoeo<p(77)=7'rop(eop)(r):m(%)zﬂop((ﬁ(r)):@.

Hence the diagram on the bottom also commutes.

Theorem 3.24. Let ¢* : Spec(S) — Spec(R) and U = R~ p. Then the following are equivalent.

(i) p € Im(p*), i.c., (¢*) " (p) # 0.
(ii) p = o 1 (pS), where pS is not necessarily prime.

(iti) p-UTS #U'S, i.e., F(p) = pUU_i—lss 7 0.

Moreover, the map 0 : Spec(F(p)) — (p*)1(p) C Spec(S) given by 0(Q) = p~H(r~1(Q)) is a
well-defined bijection, where (¢*)~1(p) is the fibre over p w.r.t. ©* : Spec(S) — Spec(R).

R—* S

5 L

Proof. (i)==>(ii) Assume there is q € Spec(S) such that p = »~1(q). Then by Proposition 1.63(b),

“Ha) = e M e H@)9) = ¢ (pS).
(ii)==(iii). Assume p = p~*(pS). Note that

p-U S =pS-U'S=pS-oU) "5 =pU) ' (pS).

To show that o(U)~(pS) # o(U)~1S, it is equivalent to show that pS N p(U) = @ by Proposition
3.13(c). Suppose (u) € pSNyp(U) for someu € U. Thenu € ¢~ 1(pS) = p = R~\U, a contradiction.

(iii)=(i) and well-definedness of 6: It suffices to show that ¢*(0(Q)) = p for @ € Spec(p.UUi_ISS)7
ie, o 1(p 1 (77 HQ))) = p. Let q := 7 1(Q) € Spec(U~1S). Then by prime correspondence for

quotients, we have that p-U~'S C 771(Q) = q and Q = W%IS. Since q € Spec(U~1S), by

-1

-1
prime correspondence for localization Spec(U~1S) £— Spec(S), for v := p~1(q) = p~ (=~ 1(Q)) €
Spec(S) with tN(U) = ), we have that

q=t-U 'S =t -oU)™ 'S = pU) '
Hence by Proposition 1.63(a),

pCotop Hp-UTS) Cop  (mHQ))) = ¢ (v).

Suppose p C ¢ (r). Then there exists x € ¢~ !(r) such that z € R~ p = U. Hence ¢(x) €
tN(U) =0, a contradiction. Thus, p = ¢~ 1(t) = o~ (p~ (77 1(Q))).

By prime correspondence for quotients, 7* is 1-1 and by prime correspondence for localization,
p* is 1-1. Since

0 : Spec(F(p)) s V(p - U—Lg) Llemtriction, (o)1)
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we have that 6 is the restriction of p* o 7*. Hence 6 is 1-1.

Let q € (¢*)71(p). Then q € Spec(S) such that ¢=*(q) = p € Spec(R). Since, pUU = 0,
qNe(U) = 0. Hence q-U1S = q-p(U)~1S = p(U)"1q € Spec(U~1S) such that p=(q-U~1S) = q.
Since p~1(q) = p, we have that pS = p=1(q)S C q by Proposition 163( ). Hence p U-1s =
pS-U~'S C q-U~'S. Hence by prime correspondence for quotients, 9—15 € Spec( SS) such

that ﬂil(gg S)fq U~1S. Hence
q-U"'S f _1,9-U71S = 1
9 L = —_— = U S == 0q.
<pU15> p |7 (prls) p~(q )=4q

Proposition 3.25. If (R, m) is local, then F(m) = mis

Proof. Since (R, m) is local, we have that U := R~ m = R* by Proposition 1.22. Hence U~!(—) =
-, e.g., f(m):%%%. O
Definition 3.26. (a) If (R,m) is local, then F(m) = S/mS is the closed fibre of ¢ (fibre over
unique closed point of Spec(R)).

O

Thus, 6 is onto.

(b) If R is an integral domain, then F(0) is the generic fibre of ¢ (fibre over the generic point of
R).
Example 3.27. (a) Let ¢ : R <> R[X1,..., Rd.

(1) If (R, m) is local, then

RIXi,...,Xa _ R[Xi,....Xd R
m-R[Xl,...,Xd] m[Xl,...,Xd}

IR

F(m)

(2) If p € Spec(R), then with U = R ~\ p, we have that

UNR[X1,....Xd) _ (UTR[Xi,....X,] _ Ry

O = R, o Xa) - G0 R X K] e

[X1,..., Xn] & Q(—)[Xl,...,Xd]

since U~Y(R[X]) = (U~'R)[X] defined by Zf”"“’r z’ — Zﬁnlte rigi

(b) Let R <> R[X,, ... Xd]-
(1) If (R, m) is local, then F(m) = £[X,, ..., X4] similarly.

(¢) Let k be a field and ¢ : k[X1, ..., Xa] <> E[X1,..., Xa]-

(1) Let m = (Xq,...,Xq) = k[X1,..., X4] be maximal. Then m-k[Xy,..., Xg] = (X1,...,Xg) <
k[X4,...,X4]. Hence with U = k[Xq,..., X4] N\ m,

TE[X . Xa]) o RIX X  K[XG ., Xd]

F(m) = m-U-LNE[X,..., Xq])  m-k[Xy,...,Xq]  (X1,...,Xaq)

=k

since U1 (R[X]) = (U 'R)[X] given by e 1TI DD
(2) F(0) is weired, which has chains of prlme ideals of length d—1.
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Chapter 4

Primary Decomposition

Let R be a nonzero commutative ring with identity.

Discussion 4.1. UFD’s have prime factorization. In fact, it is “if and only if”.
Aternative versions for non-UFD’s.

(a) Irreducible factorizations:

Pros Cons
familiar don’t necessarily exist
(b) Primary decompositions:
Pros Cons
exist, e.g., if R is noetherian, replace factorizations of elements
there exists more general form with intersections of nice ideals

than just for principal ideal

Theorem 4.2. Let R be a noetherian integral domain and a € R~ {R* U 0}.
(a) a has an irreducible factor in R.
(b) There exist irreducible by, ..., b, € R such that a =by ---by,.

Proof. (a) Let X = {(b) # R:b| a}. Since (a) € 3, 3 # (). Since R is noetherian, ¥ has a maximal
element, say (b). We claim that (b) is irreducible. Since a # 0 and b | a, we have that b # 0. Since
(b) # R, b ¢ R*. Suppose b = c¢d for some ¢ € R~ R* and d € R. Since ¢ | b | a, we have that
¢ | a. Also, since ¢ ¢ R*, (¢) € ¥. Since (b) C (¢) C R and (b) is maximal in ¥, we have that
(ed) = (b) = (c). Also, since R is an integral domain, d € R*. Hence b is irreducible in R.

(b) If a is irreducible, then done. Else by (a) there exists by € R irreducible such that b; | @ and
a = bia; for some a; € R. If ay is irreducible, then done. Else by (a) there exists irreducible
by € R such that by | a1 and ay = baas for some as € R. If as is irreducible, then done and we have
that (a) C (a1) C (az). Since R is noetherian, by the ascending chain condition, the process will
terminate in finite number of steps. O

53
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Example 4.3. (a) Let k be a field and A = k[XB20] := {3000 xi | ¢, € k}. Let m =

1€R>o
(X®>0) < A. Then m € m-Spec(R) and A/m = k. Let R = Ap. Then A~ m C R*. Since X
has no irreducible factors in R, X has no irreducible factorization. Let r € R~ {R* U0}. Then
r=X¢- f for some e >0 and f € R~ {0}. Since X¢- f = X5 - X3 - f. Hence 7 is not irreducible
in R. Thus, R has no irreducible elements.

(b) In Zg, we have that 32 = 3, 22 =4, 23 = 2.
Definition 4.4. If R satisfies the condition of Theorem 4.2(b), then R is atomic.

Lemma 4.5 (Nakayama’s Lemma). Let I, J < R such that I C Jac(R) and J is finitely generated.
If J=1J, then J =0.

Proof. Let n be the minimum number of generators of J. Suppose n > 2. Since J is finitely
generated, I.J = J = (z1,...,2,) for some z1,...,x, € J. Hence z,, € IJ and then z,, = > | a;x;
for some ay,...,a, € I, ie., x,(1l —a,) = 2?2—11 a;x;. Since a, € I C Jac(R), 1 —a, € R* by
Proposition 1.29. Hence z,, € (x1,...,Z,_1), contradicting minimality of n. Hence n = 1 or 0. If
n = 1, similarly, we have that x1(1 — ay1) = 0 for some a; € I with 1 —a; € R*, so z1 = 0, a
contradiction. Thus, n = 0. O

Lemma 4.6. Let (R, m) be local and 0 # b = ¢d with b, ¢,d € R such that (b) = (¢). Thend € R*.

Proof. Since b = c¢d and (b) = (c), we have that (¢c) = (b) = (ed) = (d){(c). Suppose d ¢ R*.
Then (d) C m = Jac(R). Hence by Lemma 4.5, ¢ = 0. Hence b = ¢d = 0, a contradiction. Thus,
de R*. O

Theorem 4.7. Let (R, m) be local and noetherian. Let a € R~ {R* UO0}.

(a) a has an irreducible factor in R.

(b) a =by---by, for some irreducible elements by, ..., b, € R.

Proof. Tt is similar to the proof of Theorem 4.2. O

Discussion 4.8. Let R be noetherian and (local or a domain). Let ¢ € R~ {R* U0} with
irreducible factorization a = by - - - b,. Then V(a) = V(b1 ---by) = V(by) U---V(b,), which are not
necessarily an irreducible decomposition.

Example 4.9. Let

KXY, Z kv o XY Zxva) < k[X,Y, Z] >
(X2-Y2Z) (X2 =Y Z)xv,2) (X2-YZ) (X,Y.Z)

or R = a7k, Since X2 — YZ € k[Y, Z][X] and Y is prime (irreducible) in k[Y, Z][X], by

Eisenstein’s Criterion, X2 — Y Z is irreducible in k¥[X,Y, Z]. Since (k[X,Y, Z],(X,Y, Z)) is local,
k[X,Y,Z]
(X2-Y7Z)

is irreducible. Let y = Y,z = Z € R. Since (z,2) € V(z) ~ V(y) and (z,y) € V(z) \ V(2),
V(x) # V(y) and V(x) # V(z). Also, since V(x) = V(z?) = V(yz) = V(y) U V(z), we have that
V(z) is not irreducible in Spec(R).

is local. Hence R is a local, noetherian and integral domain. Let x = X € R, which
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Primary decomposition does the job.

Definition 4.10. An ideal q < R is primary if zy € q with z,y € R, then = € q or y € rad(q), i.e.,
if Zy = 0 with Z,7 € R/q, then Z = 0 or § € Nil(R/q), i.e., if zy € q with z,y € R, then z € q or
y € g or x,y € rad(q), i.e., if Nil(R/q) = ZD(R/q).

Example 4.11. We have the following examples.
(a) If p € Spec(R), then p is primary since rad(p) = p.
(b) If m € Spec(R) and q < R such that m” C q C m for some n > 1, then q is primary. In

particular, m™ is primary for n > 1.

Proof. Let zy € ¢ C m with x,y € R. Assume y ¢ rad(q). Since rad(m) = rad(m™) C rad(q) C
rad(m), we have that rad(q) = rad(m) = m € m-Spec(R). Hence (y,m) = R. As in Proposition
1.46(b), we can show (y,m"™) = R by Proposition 1.39(a). Hence 1 = zy + « for some z € R and
aem™ C q. Also, since zy € q, z = z(zy + a) = (2y)z + za € q. O
(c) Proof of (b) shows that if ¢ < R such that rad(q) = m € m-Spec(R), then q is primary.

Alternating proof of (b). Let Z,7 € R := R/q such that 7 = 0. Let p/q € Spec(R) with
p € Spec(R) such that p D g O m™. Then

R 2 p =rad(p) D rad(q) 2 rad(m”) = m € Spec(R).

Hence p = m. Hence Spec(R) = {m/q}. Hence (R,m/q) is local. If j € m/q = Nil(R/q) by
Proposition 1.26(d), done. Assume now 7 ¢ Nil(R/q) = m/q. Then y € R* by Proposition 1.22.
Also, since zy =0 in R, T = 0.

(d) Let p € Z be prime. Then (p) is maximal and so (p™) is primary by (b).

Example 4.12. We have the following examples.

(a) If Ris a UFD and p € R is prime, then (p") is primary.

b) Let R = *IXY2] 4q 2 = X € R. Then x is irreducible. Note that
(X2—YZ)

_ kXY, Z]

HIX Y, 2] kXY, 2] kY, Z]

(X, X2-YZ) (X,YZ) (YZ)

1%

Lety=Y,z=7Z¢€ k}gf’ZZ)H. Then yz = 0 with y,z # 0. Hence y,z ¢ (0) = rad(0) = Nil(R/(x)).
Thus, (z) is not primary.

(c) Let R=k[Xy,...,Xq]. Then I = (X7, , Xi") with ey,...,e, > 1 is primary.

Let J = (X', ..., X3, fi,..., fan) < Rwith ey,...,eq > 1 and fi,...,fn € R~ R*. Since
rad(J) = (Xy,...,X4) € m-Spec(R), by Example 4.11(c), we have that J is primary.
(d) Let R = k[X,Y,Z] and I = (X?,XY). Then rad(I) = (X). Since XY € I with X ¢ I and
Y & rad(I), I is not primary.

Let J = (X,YZ). Then R/J = % = % Hence similar to (b), we have that J is not
primary.
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Proof. (a) Let zy € (p™) with z,y € R. If y € rad({p")) = (p), then done. Assume y & (p). Then
pty. Since zy € (p"), p" | ry. Since zy has a unique factorization and pty, p" | z, i.e., z € (p).

(¢) Assume by symmetry I = (X7*',..., X). Let f,g € R such that fg € I. If f € I, then
done. Assume f & I. Let f =37, a;f; for some s > 1, a; € R~ {0} and f; € R monomial for
i=1,...,sand g = Zf 1 big; for some t > 1, b; € R~ {0} and g; € R monomial for i = 1,...,t.
Since f € I, f; ¢ I for somei € {1,...,s}. Let f = f—i—f, where f are all monomials in I and f are
all monomials not in I. Since fg + fg €l =fgeland fg el, fg € I. Use a monomial ordering,
e.g. lexicographical order, asssume fs is the largest monomial occuring in f and g; is the largest
monomial occuring in g. Then fsg; is the largest monomial occuring in fg € I. Hence fsg; € 1.
Since the monomial fs & I, X" { f, for i = 1,...,n. Hence g, is not a constant in R and hence
X, | g for some j € {1,...,n}. Then ¢ € (X1,...,X,) = rad((X7*,..., X)) = rad(I). Hence
g= Zf;} big; + brg: with brgy € rad(I). Induct on ¢, we have that b;g; € rad(I) for alli =1,... ¢
Thus, g € rad([). O

Let a < R for the rest of this section.

Definition 4.13. a is reducible if a = I N J for some I, J < R with I # a and J # a.
a is irreducible if it is not reducible, i.e., if a = I N J for some I,J < R, then I =a or J = a.

Example 4.14. (a) If p € Spec(R), then p is irreducible.

(b) If a is primary in R, then q may not be irreducible.

Proof. (a) Assume p = I N J for some I,J < R. Then p = INJ D IJ by Fact 1.38(f). Since
pe€Spec(R),pD2ITorp2DJ. Hence IDINJ=p2lorJ2INJ=p2J. Hencep =1 or
p=1J

(b) Counterexample. In R = k[X,Y], let a = (X?, XY, Y?), then by Example 4.11(c), a is primary
since rad(a) = (X,Y) € m-Spec(R), but a is not irreducible since a = (X,Y?) N (X2,Y). O

Proposition 4.15. Let R be noetherian. If a is irreducible, then a is primary.

Proof. Case 1. Assume a = 0. Let x,y € R such that xy = 0. If x = 0, then done. Assume x # 0.
Note that (0:y) € (0:y*) C (0:y3) C---. Since R is noetherian, (0 : y") = (0 : y"*!) for some
n > 1. Letze( )N (y > Then xs = 2z = y"t for some s € R and t € R. Hence y" "'t = zys = 0,
ie.,t e (0:y"™) = (0:y"). Hence z = y"t = 0. Hence (z) N (y") = 0 = a. Also, since a is
1rreduc1ble and (x) # 0, we have that (y") =0, i.e., y™ = 0. Hence y € rad(0) = rad(a). Thus, a is
primary.

Case 2. Assume a is arbitrary. To show a is primary, by Case 1 it suffices to show (0) < R/ais
irreducible. Let I,J < R/a such that 0 =1NJ = Iﬁ‘] m‘] for some a < I,J <R (a<INJ).
Hence I NJ = a. Also, since a is irreducible, I = a or J = a. Hence 1= % =0orJ= E] 0. O

Definition 4.16. A primary decomposition of a is a = (;_, J; such that Ji,...,J, are primary.

Theorem 4.17 (Noether). Assume R is noetherian. Then a has a primary decomposition.
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Proof. Tt suffices to show a = (!_, J; for some n > 1 such that J; is irreducible for i = 1,...,n.
Suppose not. Let ¥ = {b < R | b does not have a irreducible decomposition}. Since a € X, ¥ # ().
Since R is noetherian, 3 has a maximal element, say q. Then q = I'N.J for some q C I, JJ < R. Since
q is maximal, we have that I, J ¢ . Hence there exists m > n > 1 and irreducible Jy,...,J,, <R
such that I =(/_, J; and J = (2, . Ji. Thus, q=10NJ =2, J;, contradicting q € X. O

Example 4.18. We have the following examples.

(a) Let R be a UFD and a € R~ {R* U0} has a prime factorization a = up* - - - p&» with u € R*,
e; > 1 and p; { p; for 1 <4i,j <n with ¢ # j. Then (a) =, (p{), a primary decomposition by
Example 4.12(a).

(b) Let R = k[X1,...,Xq] and a be an monomial ideal with an m-irreducible decomposition a =
Ni_, Ji with Ji,...,J, generated by pure power of variables. Hence a = (., J; is a primary
decomposition by Example 4.12(c). Moreover, it is an irreducible decomposition.

(¢) Let R = k[X1,...,X4] and a be an monomial ideal with an m-irreducible decomposition a =
i, Ji. Then a is primary if and only if rad(J;) = rad(J;) for 1 <i,j < n.

Proof. (c) <= Assume that rad(J;) = rad(J;) for 1 < ¢,j < n. Let zy € a with z,y € R. If
y € rad(a), done. Assume that

y € rad(a)! = rad <ﬂ J¢> = () rad(J;) = rad(J;)

=1 =1

for i = 1,...,n by Fact 1.58(d). Since R is noetherian and J; is irreducible, J; is primary for
i=1,...,n. Also, since zy € a C J; for i = 1,...,n, we have that x € J; for i = 1,...,n. Hence
HARS ﬂ?:l Ji =a.

= Assume that a is primary. Induct on n. The base case n = 2 is the important case. Suppose
rad(J1) # rad(J2). Then we have that there exist a € rad(J;) \rad(Jz) and b € rad(J2) \ rad(Jy).
Hence a,b ¢ rad(Jy) Nrad(Jz) = rad(J; N J2) = rad(a) and ab € rad(Jy) Nrad(Jz) = rad(a),
contradicting rad(a) € Spec(R) by Proposition 4.19. O

Proposition 4.19. If ¢ < R is primary, then rad(q) € Spec(R). In particular, rad(q) is the unique
smallest prime ideal of R containing q.

Proof. Since q < R, rad(q) < R. Let zy € rad(q) with x,y € R. Then 2™y™ = (zy)™ € q for some
m > 1. Since q is primary, ™ € q or y™ € rad(q). Hence z € rad(q) or y € rad(rad(q)) = rad(q)
by Fact 1.58(c). Hence rad(q) € Spec(R). The minimality follows from the definition of prime ideal
and equivalent definition of primary ideal. O

Definition 4.20. If ¢ < R is primary and p = rad(q), then q is p-primary.

Example 4.21. (a) Let p € Z be prime. Then q = (p") is primary with rad(q) = (p) € Spec(Z)
for n > 1.

C m for some n > 1. Then q is primary with

(b) Let m € m-Spec(R) and q < R such that m” C q
11(b).

rad(q) = m € Spec(R) by the proof of Example 4.

TNot try to assume z & a.
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(c) Let R = k[X;,...,X4] and q = <XZ¢11,”
rad(q) = (Xi,,..., Xy, ) € Spec(R).

., Xim) with eq,--- ,e, > 1. Then q is primary with
Proposition 4.22. Let qq,...,q, < R be p-primary. Then ();_, q; is p-primary.

Proof. It is similar to the proof of Example 4.18(c). O
Definition 4.23. A primary decomposition a = (), q; is minimal if

(a) rad(q;) # rad(q;) for 1 < 4,5 < n with ¢ # j,

(b) Miziixz; 0 L a5, ie, a &g,z 0 for j=1,...,n.

Example 4.24. (a) Let n € Z and n = p{' ---p% such that pq,...,p, are distinct primes and
€1,...,en > 1. Then the primary decomposition (n) = (), (p;) is minimal.

(b) Let R =k[X,Y]. Then
(X2, XY)=(X2Y)Nn(X)=(X* XY, Y?) N (X)
are two minimal primary decompositions.
Notice: minimal primary decomposition is not necessarily unique up to re-ordering.

Definition 4.25. Let a = (!, q; be a minimal primary decomposition such that rad(g;) = p; for
1=1,...,n.

(a) The associated primes of a are py,...,p,. Write it as
Assg(a) = {p1,...,pn}

(b) The minimal (associated) primes of a are the minimal elements of {p1,...,p,} w.r.t. C. Write
it as
Min(a) = min{Assg(a))} = min{p1,...,pn}

(¢) The embedded primes of a are the non-minimal associated primes of a, i.e., Assr(a) \ Min(a).

Example 4.26. Let R = k[X,Y] and a = (X2, XY). Then Assg(a) = {(X),(X,Y)}, Min(a) =
{{X)} and the embedded prime(s) of a is {(X,Y)}.

Goals: Assp(a) is independent of the minimal primary decomposition, so Min(a) is also indepen-
dent of the minimal primary decomposition. Assg(a) = Assg(R/a) if R is noetherian.

Proposition 4.27. If a has a primary decomposition, then a has a minimal primary decomposition.

Proof. Let a =()_, q; be a primary decomposition. If rad(q;) = rad(q;) for some i, j € {1,...,n}
with i # j, then q; Nq; is p-primary where p := rad(q;) by Proposition 4.22, so combine ¢; and q; to
get a new shorter decomposition, this process terminates in at most n steps. Then without loss of
generality, assume that p; = rad(q;) # rad(q;) = p; for 1 <i,j <n with i # j. If ﬂ?:l’#j p; Cq;
for some j € {1,...,n}, then a =, q; = ﬂ?:u;sj q;, SO ﬂ?:lji#j g; is a shorter decomposition,
the process terminates in at most n steps. O

By definition of associated prime from module theory, Assr(R/a) = Spec(R) N {Anng(Z) | Z € R/a}.
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Let a = ()., q; be a minimal primary decomposition such that rad(q;) = p; for i = 1,.

Proposition 4.28. Re-order the g;’s if necessary to assume without loss of generality, Min(a) =
{p1,...,pm}. Then the irreducible components of V(a) with subspace topology are V(p1), ..., V(pm).

Proof. We claim that Min(V(a)) = {p1,...,pm}. Then V(p1),...,V(p,,) are all maximal irre-
ducible subset of V(a) by Proposition 2.42.

“C”. Let p € Min(V(a)). Then p 2 a = (N, q;. Hence p D rad(a) = rad(N_,q;) =
Nizirad(q) = iz, pi = (=, p; since there exists j; € {1,...,m} such that p; C p; for i =
m+1,...,n. Since p € Spec(R), p 2 pr 2 ﬂ;’;l p; = rad(a) D a for some k € {1,...,m}. Also7
since pi € Spec(R) by Proposition 4.19 and p € Min(V(a)), we have that p = p.

“2”. Fix j € {1,...,m}. Suppose there exists p € Spec(R) such that a C p C p;. Then
aRy, CpRy, S pjR,, by prime correspondence for localization. For i = 1,...,m with i # j, since
pi € p;, we have that p; N (R~ p;) # 0 and then p;R,, = Ry, by Proposition 3.13(c). Hence we
have that

aRy, = (R~ p;) ta= (R~p;)~ (ﬂp) mR\pJ)_lpi
=1

= m pilty, = ﬂ Ry, ﬂijPj = p; Ry,
i=1 i=1,i#j
by Proposition 3.12(a), a contradiction. Thus, p; € Min(V(a)). O

Proposition 4.29. Let q < R be p-primary and € R. Then

R ifxeq
(q:2)=1 4 itz dp
p-primary if x € q

Proof. If x € q, then 1 € (q: x), so (q: z) = R.

Assume x ¢ p = rad(q). Note that (q: ) 2 q by definition of colon ideal. Let y € (q : x), then
yx € q. Since q is primary, y € q or = € rad(q). By assumption, y € q. Hence (q: z) C g.

Assume = & q. Let y € (q: ). Then ay € q. Since q is primary, 2 € q or y € rad(q) = p. Hence
by assumption, y € p. Then q C (q : ) C p. Hence p = rad(q) C rad(q : ) C rad(p) = p. Hence
rad(q : ) = p. Next, let ab € (q: z) with a,b € R. If b € rad(q : x), then (g : x) is p-primary, done.
Assume b ¢ rad(q : ) = p = rad(q). Since ab € (q : x), ax - b = abx € q. Also, since q is primary
and b € rad(q), ax € q, i.e., a € (q: ). Thus, (q: x) is p-primary. O

Proposition 4.30.

Assg(a) := {p1,...,pn} = Spec(R) N {rad(a: z) | € R}.

Hence Assg(a) is independent of the minimal primary decomposition.

TAssp(a) = Spec(R) N {rad(a: z) | x € a}.



60 CHAPTER 4. PRIMARY DECOMPOSITION

Proof. Let x € R. Then (a: x) = (i 9i : @) = (1=, (q: : ) by Fact 1.54(i). Hence rad(a : z) =
rad((i=, (qi : @) = (=, rad(q; : ©) = (Vi1 4gq, Pi by Proposition 4.29, where the intersection of
empty ideals is the R.

“2”. Let p € Spec(R) N{rad(a : ) | # € R}. Then p € Spec(R) and there exists x € R
such that p = rad(a : z) = m?:l,w&qi p; which is not an empty intersection since p # R. Hence by
Proposition 1.47(b), p = p; with « & ¢; for some ¢ € {1,...,n}.

“C”. Let j € {1,...,n}. Since a = (., q; is a minimal primary decomposition, (\;_, ,.; qi €
q;. Hence there exists x € ﬂ?zl’i# q; such that & q;, i.e., v € g; for 1 <4 < n with 7 # j and
x & q;. Hence rad(a: z) = m?:l,w&qi p; = p;. Hence p; € Spec(R) N {rad(a: z) | z € R}. O

Theorem 4.31. If R is noetherian, then

Assg(a) :={p1,...,pn} = Spec(R)N{(a:z) |z € R}
= Spec(R) N {Anng(Z) | T € R/a} =: Assg(R/q).

Proof. Proof of the first equality. “D”. Let p € Spec(R) such that p = (a : z) for some = € R.
Then p = rad(p) = rad(a : z). Hence by Proposition 4.30, p = p; for some i € {1,...,n}.
“C”. Let j € {1,...,n}. Since a = (;_, q; is a minimal primary decomposition, a C (VL ;. di-
Since R is noetherian, p; is finitely generated. Also, since rad(q;) = p;, there exists m > 1
such that p* C q;. Let a; := ﬂ?zl’#j gi- Then a;p? C a; NpT C a;Na; = (9 = a
Let [ = min{m > 1 | a;p}* C a}. Note that ajp? = a; 2 a. Since ajpé-fl Z a, there exists
x € ajpz_l ~aCajNa= (ﬂ?zl’i;éjqi) N g, e,z €q; for 1 <i<mnwithi#jandz ¢ q;.
Hence by the proof of Proposition 4.30, (a : ) C rad(a : ) = p;. On the other hand, since
xp; C ajpé-flpj = ajpé C a, we have that p; C (a: x). Hence p; = (a: z). O

Example 4.32. If R is not noetherian, then a < R may not have a primary decomposition. Let
R = (C([0,1]) = {continuous f : [0,1] — R} with pointwise operations. We claim that 0 < R does
not have a primary decomposition.

(a) For a € [0,1], define @, : R — R by ®,(f) = f(a). Then @, is a well-defined ring epimorphism.

Hence Kcr}&a) ~R. Hence {f € R| f(a) = 0} = Ker(®,) € m-Spec(R) C Spec(R).

(b) We claim that 0 ¢ Spec(R). For a € (0,1), there exist gq,h, € R such that g,h, = 0 but
gaa ha 7é O

Ya he

a X a X

= 0. Let f € Nil(R). Then f™ = 0 for some m > 1, i.e., (f(a))™ =0 for

c) We claim that Nil(R)
) CR and R is an integral domain, f(a) =0 for a € [0,1], i.e., f = 0.

)
a € [0,1]. Since f([0,1]

(d) We claim that (0 : f) =rad(0: f) for f € R. “C”. Done. “D”. Let g € rad(0 : f). Then
g™ - f =0 for some m > 1. Hence g™ f™ = 0. Hence gf € Nil(R) =0 by (c¢), i.e., g € (0: f).
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(e) We claim that (0 : f) & Spec(R) for f € R. Suppose (0: f) € Spec(R). Then (0: f) # R, i.e.,
f # 0. Hence there exists y € [0,1] such that f(y) # 0. Since f is continuous, there exists y € (0, 1)
such that f(y) #0. Let 0 < x <y. Then g,h, =0 € (0: f) € Spec(R).

Y

Hence g, € (0: f) or hy € (0: f), i.e., gof =0 or h,f = 0. Since h,(y)f(y) > 0, h,f # 0. Hence
g.f = 0. Also, since g,(a) # 0 for 0 < a < z < y, we have that f(a) =0 for 0 < a < z < y. Since
x € (0,y) is arbitrary, f(a) =0 for 0 < a < y. Since f is continuous, f(y) = lim,_,,- f(a) =0, a
contradiction.

Now suppose 0 = ﬂ?zl g; is a primary decomposition. Assume without loss of generality that
the decomposition is minimal by Proposition 4.27. By (d), (e) and Proposition 4.30, there exists
f1 € R such that Spec(R) Z (0: f1) =rad(0: f1) =rad(qy) € Spec(R), a contradiction.

(f) Note that

0={feR|fl@=0,Yac[0,1]}= () {f€R]|fla)=0}

a€l0,1]

= [ Ker(®@) =[] Ker(®)="--

a€(0,1] a€0,1]NQ

€Spec(R), .. primary

cannot be pruned to a minimal primary decomposition.

Proposition 4.33.

weRl@na=Un= U »
1=1 pEAssgr(a)

Proof. We claim that {z € R | (a : z) # a} = g rad(a : y). “C". Then z € R such that
(a:z)# a. Hence (a:x) 2 a. Then there exists z € (a:z) N a,ie, z ¢ aand zz € a, i.e, 2 € a
and z € (a:z) Crad(a:z) C U,grad(a:y). “27. Let z € rad(a : y) for some y & a. Then
2™y € a for some m > 1. Let n = min{m > 1| 2™y € a}. Note that 2%y = y € a. Then 2"y € a
but 2" 'y € a. Hence 2" 'y € (a: ). Hence (a: 1) # a.

We claim that J, o, rad(a : y) = Ui, pie “C7. Let y ¢ a = (V;_; ;. Then by the proof of

Proposition 4.30,
rad(a : y) = m pi:ﬂpigupi-
i=1,y¢q; i=1 i=1

“D”. By Proposition 4.30, there exists y; ¢ a such that p; = rad(a : y;) for ¢ = 1,...,i. Hence
Uygarad(a:y) 2 Uiz, pi- O
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Corollary 4.34. Set a = 0 in Proposition 4.33, we get
D(R)={zeR[(0:2)#£0}=Jpi= |J »
i=1 pEAssr(0)

Summary 4.35. Let R be noetherian and a = 0. Then ZD(R) = |J;_, p; = Upeassr(o) P (Use
with prime avoidence to get useful information about ideals and NZD(R).)

Nﬂ(R):rad(o)zrad<ﬂ ) ﬂpz_ N »

1=1 pEMin(0)

Example. Let R = 453k = rriegdyy and 2 = X,y =Y € R. Then (0)R = (z) N (22,y) is

a minimal primary decomposition. Hence ZD(R) = (x) U (z,y) = (z,y). For f € R with constant
term 0, we have that f = xf; + yfo for some fi, fo € R, then zf = 22f;, + zyfy = 0. Hence
f € ZD(R).

Proposition 4.36. We have that
Min(a) = min{py,...,p,} = Min(V(a)).

In particular,
Min(0) = Min(V(0)) = Min(Spec(R)) = Min(R).

Proof. Tt follows from the proof of Proposition 4.28. O

Lemma 4.37. Let U C R be multiplicatively closed and q < R be p-primary. Let v : R — U 'R
be the natural ring homomorphism.

(a) FUNp#0D, then U lq=U"'R.
(b) FUNp =0, then U"1q < U 'R is U 'p-primary and ¢y~ (U~ 1q) = q.

Proof. (a) Let u € UNp. Since p = rad(q) and U is multiplicatively closed, there exists n > 1 such
that ™ € ¢ N U. Hence by Proposition 3.13, U"'q = U"'R.

(b) Since q Cpand UNp =0, U 1q C U~'p C U'R by Proposition 3. 13 Let £, 4 ¢ U'R
L. Y eytq If £ erad(U 'q), then U 'q is primary. Assume ¥ ¢ rad( ) Since —y c U g,
there exists w € U such that z(wy) = wry € q. Since £ ¢ rad(U lg) = U trad(q) = U’lp by

x

Proposition 3.12(d), wy € p = rad(q). Also, since q is primary, x € q. Hence L ¢ U~'q. Hence
U~1q is primary.

Since g C p = rad(q) € Spec(R), by Proposition 3.12(d), we have that rad(U~1q) C rad(U~!p) =
U=trad(p) = U 'p = U rad(q) = rad(U'q). Hence rad(U1q) = U~ !p.

We claim that ¥ ~1(U~1q) = q. “D”. By Proposition 1.63(a). “C”. Let 2 € ¢»~*(U"1q). Then
T =) € U~1q. Hence there exists u € U such that zu € q. Since UNp =0, u ¢ p = rad(q).
Also, since q is primary, z € q. O

Theorem 4.38 (Second uniqueness theorem). (a) Let q = q; be p-primary for somei € {1,...,n}
with p € Min(a). Then q = 1~ 1(ay)T, where ¢ : R — Ry and U = R\ p, so q is independent of
choice of minimal primary decomposition.

TThat is, q is the kernel of the ring homomorphism R — (R/a)p.
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(b) If A = (pir,.--pi,,) is an “isolated” subset of Assg(a) = {p1,...,pn}, then (N, qi; =
YU 1a), where W : R - U 'R and U = R~ {p;, U---Up,, }. Hence =y ai; is independent
of choice of minimal primary decomposition.

Proof. (b) By Proposition 3.12(b) and Lemma 4.37, we have that ¢='(U~'a) = U1 (UYL, q;)) =
N, U g) =N, O U gy) = ﬂ?:l,me:(Z) qi = ﬂ;nzl qi; since A is “isolated”.

(a) It follows from (b) since {p} is “isolated” for p € Min(a). O

Definition 4.39. A C Assg(a) is “isolated” if it is “closed under subsets”, i.e., if p,p’ € Assg(a)
such that p’ C p and p € A, then p’ € A.

Discussion 4.40. Consider the following.
(a) If m € m-Spec(R), then m™ is m-primary for n > 1 by Example 4.11(b).
(b) Let k be a field. If p = (X;,, -+, X;,.) < k[X1,...,Xq4], then p™ is p-primary for n > 1.
Proof. (b) Note that (X',..., X{"™) is p-primary for ai,...,a,, > 1 by Example 4.12(c). Let
A={aeN"|a + - +an=m+n—1} Set p, = (X',..., X") for a € A. We claim that
pt = ﬂgEA Pa, then by Proposition 4.22, p™ is p-primary.

“C”. Let Ag :{QEZZLO ler+ - +en=n}. Forn>1,

Pr= (X)) 4+ (X, )= ) (XS X,
e€Ao

Suppose that X(gi) = Xfll XZ’: € p" N\ p, for some e € Ag and @ € A. Then a; > e; + 1 for
i=1,...,m. Hencem+n—-1=3" a; >m+>..", e; = m+n, a contradiction. Hence X(QZ.) € Pa

for all e € Ag and a € A. Hence p"™ C mgGA Pa-
D" Let R = k[X,,,...,Xi,] C K[X1,...,X4) and p' = (X;,...,X; )R Set p), =

(X3, X{™)R' for a € A. We know p" in R’ has an (irredundant) parametric decomposi-
tion p™ = Npec,, (o) PRI = Naea Pa- Let ¢ = #A. Since (N,ep Pa and (N,ep by have the same
generating set {lem(fi,..., fq) | f; is a generator of pa, with a; € Afor j=1,... ,q}, we have that

the generators of (1),c, Pa are in (\,cp P = P C p". Hence p”™ 2 (,cp Pa- O

Example 4.41. In general, p™ is not p-primary for p € Spec(R). For example, let R = %

andx =7,y =Y,z =7 € R, then p := (x,2) € Spec(R), but p? is not p-primary since ry = 22 € p?
but x ¢ p% and y & p = rad(p?).

Definition 4.42. Let p € Spec(R) and ¢ : R — R,. Then for n > 1, the nt" symbolic power of p
is

P =7 (p™)p) = o ((pp)")
Note 4.43. p" C p(™ because by Proposition 1.63(a), p™ C ¢~ ((p™),) = p™.
Example 4.44. We have the following examples.

(a) Let m € m-Spec(R) and ¢ : R — Ry. Since m™ is m-primary by Example 4.11(b) and
mN (R~ m) =0, by Lemma 4.37(b), m" = ¢~ ((m")y,) =: m™ for n > 1.
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b) Let k be a field and p = (X;,, -+, X; ) < k[X4,..., Xg4]. Since p™ is p-primary by Discussion
4.40(b) and p N (R~ p) = 0, by Lemma 4.37(b), p™ = ¢~ 1((p"),) =: p™ for n > 1.

(c) Let R = % andz =X,y=Y,2=2Z¢c R. Let p = (z,2). We claim that p(® = (2). “D”.
Since y & p and xy = z* € p?, we have that z = £ = S € (p?)p in Ry. Hence x € ¢~ (p?),) = p®@.
“C”. Let a € p®. Then a = ¢ = y(a) € (p?),. Hence there exists b € R \ p such that
ab € p? = (22, x2,2%) = (2%, 2z, xy). Also, since b ¢ (z), a € (z). Hence p® C (). Thus,
p® = (2) 2 (2%, x2,zy) = p.

Note that a basis for R over k is {z%y®, 2%’z | a,b > 0}.

Proposition 4.45. If p € Spec(R), then p(™ is the “p-primary component” of p", i.e., if p" has a
minimal primary decomposition p" = (), g; such that p; = rad(q;) for i = 1,...,m, then p; = p
and q; = p(™ for some j € {1,...,m}.

Proof. Since rad(p™) = p, Min(p™) = {p}. Hence p = rad(q;) = p; for some j € {1,...,m}. Then
by the second uniqueness theorem, q; = 1/1*1((p;?)pj) = H(p")p) = p(™). 0

Example 4.46. Let R = % and x = X,y=Y,2=27 € R. Let p = (x,2) € Spec(R). Then

by Example 4.44(c), p® = (z). Note that p? = (z) N (2?2, z,y) with rad((z)) = (z,2) = p since

22 = xy, and with rad({z?, z,y)) = (2,7, 2) € m-Spec(R) since

KX, Y, X] KIX,Y, Z]

<XY*Z27X7Y,Z> <X3KZ>

Il
I

R/(x,y, z) k.

Definition 4.47 (Calculus content). Let R = C[X7, ..., X4] and p € Spec(R) (Zariski).

0 .
p(2):{f€p‘ajep,Vz:L...,d},

of
z

p("):{fep‘ 3 €p, allpartialsoforderizl,...,n—l},Vn>3.



Chapter 5

Modules and Integral Dependence

Modules

Let R be a commutative ring with identity.

Definition 5.1. An R-module is an additive abelian group M equipped with a scalar multiplication
R x M — M denoted (r,m) — rm that is unital, associative and distributive.

o Im =m for all m € M.

e r(sm) = (rs)m for all r,s € R and m € M.

o (r+s)m=rm+smforall r,s € Rand m € M.
e r(m+n)=rm+rnforalreRand mne M.
(Closure) rm € M for all r € R and m € M.

T1 T1 STt
Example 5.2. (a) For n = 1,2,3,---, let R"* = ; Tyt ERp with s | 1] =

T T STy,
for s € R, then R™ is an R-module. e.g., R is an R-module.

(b) A Z-module is an additive abelian group.

(c) Let ¢ : R — S be a ring homomorphism. Then S is an R-module with r-s = ¢(r)s for r € R
and s € S.

Let M be an R-module.

Definition 5.3. A submodule of M is a subset N C M such that N is an R-module using the
operations from M.

Example 5.4. (a) If I < R, then I is a submodule of R.

(b) A submodule of an Z-module is a subgroup.

65
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(c) Submodule test. 0 # N C M is a submodule of M if and only if n+n' € N for all n,n’ € N
and rn € N for all r € R and n € N if and only if n +rn’ € N for all r € R and n,n’ € N.

(d) If My € M is a submodule for A € A, then (., My € M and ), ., My € M are submodules.

Definition 5.5. Let Y C M. Define

intersection of all submodules N C M such that Y C N. This is the (unique) smallest submodule
of M containing Y. e.g., for a submodule N C M, (Y) C N if and only if Y C N.

(Y) is the submodule of M generated by Y.

M is finitely generated if there exist y1,...,y, € M such that M = (y1,...,Yn).

Fact 5.6. (a) Let Y C M. Then

(v) = {ﬁieryy \ ry € R,Vy} "}

yey yey

(b) If y1,...,yn € M, then

T1yeenyTn GR}.

n
<y17 cee 7yn> = {Zrlyz
i=1

Example 5.7. Submodules of a finitely generated R-module may not be finitely generated. Note
that R := k[X7, X3, -] = (1) is a finitely generated R-module, but m = (X1, Xo,---) C R is not
finitely generated.

Integral Dependence

Let R be a nonzero commutative ring with identity. Let R C S be a subring.

Definition 5.8. An element s € S is integral over R if there exists a monic f € R[X] such that
f(s) =0, i.e., there exists n > 1 and rg,...,7,_1 € R such that s” +r,_ 15"t + .-+ 79 = 0.

S is integral R if every s € S is integral over R, (or R C S is an integral extension).

Example 5.9. (a) Let k C K be a field extension. Then K is integral over k if and only if kK C K
is an algebraic extension.

(b) Every r € R is integral over R since r satisfies X —r € R[X].
(c) Z C Z[i] is an integral extension since a + bi € Z[i] satisfies X? — 2aX + (a? + b%) € Z[X].

(d) Z € Q. The only © € Q that are integral over Z are the elements of Z.
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Proof. (c) Let £ € Q be integral over Z, where s # 0 and (r,s) = 1. Then (£)" 4+ ¢, (5)" ' +

S

n =1 -1 n
-+ e1(£)+¢o =0 for some n > 1 and cg,...,c—1 € R. Hence - Fenoar étnﬂlm teos. —,
ie.,
n __ n—1 n—1 ny __ n—1 n—2 n—1
"= —(cp_1r" T s+ s + cps™) = —s(cp—1r + - deqrs +cos" ).
Hence s | ™. Since (r,s) =1, (r",s) = 1. Hence s = £1. Thus, © = +r € Z, O

Definition 5.10. An intermediate subring is a subring T' C S such that R C T. (Notice if
R C T C S is an intermediate subring, then R C T' is a subring.)
Let y1,...,yn € S. Define the subring of S generated over R by y1,...,y, by

Rlyi,...,yn] = ﬂ T,
RCTCS,
Y1,--Yn €T
where the intersection is taken over all intermediate subrings R C T' C S such that y1,...,y, € T.

Fact 5.11. Let y1,...,yn € S.

(@) Rlys,-.. yn]l ={f(yr,-..,yn) € S| f € R[Y1,... . Ya]}.

(b) ¥: R[Y1,...,Y,] = S given by ¢(f) = f(y1,---,yn) is a well-defined ring homomorphism with
Im(v)) = Rly1,...,ys) and Y1,...,Y, € R[Y1,...,Y,]/ Ker(¢) = Rly1,...,yn]. Hence if y1,...,yn
have no polynomial relations, then Ker(¢)) = 0 and hence R[Y1,...,Y,] = Rly1,. .., Yn]-

(¢) Let T C S be a subring. Then R[y1,...,yn] CT if and only if RC T and y1,...,yn € T.
Example 5.12. Z C Z[i] C C is an intermediate subring, where Z[i] & Z[X]/(X? + 1).
Proposition 5.13. Let s € S. Then the following are equivalent.

(i) s is integral over R.

(ii) R[s] is a finitely generated R-module.

(iii) There exists an intermediate subring R C T' C S such that s € T' and T is a finitely generated
R-module.

Proof. (i)=>(ii). Method 1. Assume s is integral over R. Then s +r,_1s" ' +--- 4+ 19 = 0 for

some n > 1 and 7g,...,r,_1 € R. We claim that R[s] = R(1,s,...,s""1).

D It is straightforward.

C It suffices to show s™ € R(1,s,...,s" 1) for m = n,n+1,---. Use induction on m. Base case:
st = — Z;ZOI rist € R(1,s,...,s" ). Inductive step: assume m > n+1 and s* € R(1,s,...,s"})

for 0 <k <m —1. Then
n—1
s =g"s"T" = — Z rs T R(s™ L 8™ C R(1s, ..., 8"
i=0

by inductive hypothesis.
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Method 2. Assume s is integral over R. Then there exists f € R[z] monic such that f(s) = 0.
Let g € R[z]. Write g(x) = f(x)q(x) 4+ r(x) with ¢,r € R[z], where r = 0 or deg(r) < deg(f). Then
g(s) = f(s)q(s) + r(s) = r(s). This implies R[s] is finitely generated by 1,s,...,5%8)=1 as an
R-module.

(il)==>(iii) Use T = R][s].

(iii)==(i) (Determinant trick). Assume s € T'= R(y1, ..., Yyn) for some y1,...,y, € S. Then for
j=1,...,n, sy; € T and so there exist ay;,...,an; € R such that > | §;;sy; = sy; = > i QijYis
e, > (8i58 — aij)y; = 0. Let B = (0;;8 — a;;) € T"*". Then By = 0. Let (d;;) € T™ " be the
identity matrix. Then (det(B)(0;;))7 = adj(B)Bj = 0, ' i.e., det(B)y; = 0 for j = 1,...,n. Since
1eT=R{y1,...,Yn), there exist c1,...,c, € R such that 1 = Z?zl c;y;. Hence det(d;58 — a;5) =
det(B) -1 =det(B) }_7_, ¢;y; = 35—, ¢jdet(B)y; =0, i.e.,

s—air  —aiz v —Q1n
—a21 §—az2 - —Q2n 1
0 = det(d;js — a;;) = ) , L =s"+ 18"+ -+ s+ co,
—an1 —0an2 T S — ann
where cg,...,c,—1 € R since they are built from a;; € R. O
Theorem 5.14. s1,...,8, € S are integral over R if and only if R[s1, ..., Sy is a finitely generated

R-module.

Proof. = Assume B = A(by,...,by) and C = Bley,...,c,) with A C B C C an intermediate
subring. We claim that C = A(b;c; |i=1,...,m,j=1,...,n).

D It is straightforward.

C Let ¢ € C. Then ¢ = Z?:I Bjc; for some Bi,...,B8, € B. Note that for j = 1,...,n,
B; = it ayjb; for some ayj, ...,y € A. Hence ¢ = Z?=1(Z:;1 aiibi)ej = >0 Z?zl aijbic;.

Since sp is integral over R, by Proposition 5.13, R[s;] is a finitely generated R-module. Since
s is integral over R, clearly s, is integral over R[s1] and then R[s1,s2] = R[s1][se] is a finitely
generated R[s1]-module. Hence R[sy, 2] is a finitely generated R-module by our result. Continuing
in this fashion, we have that R[s1,...,s,] is a finitely generated R-module.

< follows from Proposition 5.13 by considering the intermediate subring R C R[s1,...,s,] C
S. O

Theorem 5.15. Let R := {s € S | s is integral over R}. Then R C R C S is an intermediate
subring. Hence for s,s’ € S integral over R, the elements s +s' and ss’ are integral over R.

Proof. R C R is straightforward. Since s, s’ are integral over R, T := R|[s, s'] is a finitely generated
R-module by Theorem 5.14. Hence s + s, ss’ are integral over R by Proposition 5.13(iii). Hence

s+ s’ s’ € R. Since R C S is a subring, 1¢ = 1g € R. Hence by subring test, R C S is a
subring. O

Note. Let s,s" € R be integral over R. Assume s, s’ satisfies a monic f, g € R[X] of degree m,n,
respectively. Since s’ also satisfies the monic g € R[s][X] of degree n, by the proof (i)=(ii) of

tAadj(A) = adj(A)A = det(A)(5;5) for A € Mat,(R). When A is invertible, adj(A) is unique.
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Proposition 5.13, we have that

R[s,s'] = R[s][s'] = R[s](1,s",...,s™ 1) = R(1,s,...,s" 1) (1,8,...,s"1)

/ m— / m— — — / — m—
=R(1,s,...,8" 5,58, ... 88 L s s Mg

)

which has mn generators. Hence by the proof (iii)==-(i) of Proposition 5.13, we have that all
elements in R[s, '], e.g., s £ s, ss’ satisfy a monic polynomial of degree mn in R[X].

Definition 5.16. R = {s € S| s is integral over R} is the integral closure of R in S.
If R= 25, then S is integral over R. If R = R, then R is integrally closed in S.

Example 5.17. (a) Z[i] is integral over Z with Z = Z[i].
(b) Z is integrally closed in Q with Z = Z.
(¢) Z = Z[i] in Q(3).

Definition 5.18. Let ¢ : R — S be a ring homomorphism. Then ¢ is integral if Im(p) C S is an
integral extension.

Theorem 5.19. The following are equivalent.

(i) S is a finitely generated R-module.

(ii) S = Rl[s1,...,sy] for some s1,...,s, and is integral over R.
(iii) S = R[s1,...,8,] for some s1,...,s, integral over R.

Proof. (1)==(ii) Assume S = R(s1,...,8,). Then S = R(s1,...,5,) C R[s1,...,8,] C S. Hence
S = R[s1,...,5,]). Note that there exists an intermediate subring R C R[s1,...,8,] :=T C S such
that T is a finitely generated R-module. Then s;,...,s, € S are integral over R by Proposition
5.13. Since R C S is a subring by Theorem 5.15, S = R|[s1,...,s,] € R C S by Fact 5.11(c). Hence
R=S.

(if)==> (i) is trivial.

(iii)==(i) follows from Theorem 5.14. O

Corollary 5.20. If R C S and S C T are integral extensions, then R C T is an integral extension.

Proof. Let t € T. Then t is integral over S. Hence t" + s,_1t" ! + --- 4+ 59 = 0 for some

n > 1 and sg,...,8,—1 € S. Hence t is integral over R][sg,...,Sn—1]. Hence R[sq,...,Sp—1,t] =
Rl[so,...,8n—1][t] is a finitely generated R|[so,...,Sn—1]-module by Proposition 5.13. Since S is
integral over R and sg,...,8,—1 € S, Sg,...,8,—1 are integral over R. Hence R|[sq,...,Sp—_1] is

a finitely generated R-module by Theorem 5.14. Thus, R][sq,...,Sn—1,t] is a finitely generated
R-module by the claim in the proof of Theorem 5.14. Therefore, t is integral over R by Proposition
5.13(iii). O

Corollary 5.21. If R is an integral closure of R in S, then R is integrally closed in S, i.e., R=TF.

Proof. Let s € R. Then s € S be integral over R. Hence R C R C R[s] are integral extensions by
Theorem 5.15. Hence R C R[s] is an integral extension by Corollary 5.20. Hence s is integral over
R, ie., s € R. O
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Proposition 5.22. Let R C S be an integral extension.

(a) If b < S and a = RNb, then R/a — S/b given by r + a > r + b is 1-1 and integral.

(b) If U C R is multiplicatively closed, then U"'R C U~1S given by © + + is an integral extension.
Proof. (a) Consider

R—)S

5k
 Rlagiy S/

T r

Since Ker(p) = Ker(w) N R = b N R = a, by the first isomorphism, R/a = Im(p) C S/b.

Let s € S/b. Then s is integral over R since S is integral over R. Hence s satisfies X™ +
Zn 01 a; X* for some ay,...,an,—1 € R. Hence 5 satisfies X" + Z 0 a; X"* for some @g, ...,Gn_1 €
R/a = Im(p).

(b) Let 2 € U~'S withs € Sand u € U. Then s is integral over R. Hence s"+a,,_15" ' 4---+ag =
0 for some ag,...,a,_1 € R. Hence

s"tan 18"+ tasta S\™  fap_1\[/S\"! a s a
(o et st ()5 e (2)(0)+ ()
u u u u u™ U u

for some 20 41 fn=l ¢ IR, O

Discussion 5.23. Let p € Spec(R). When does there exist q € Spec(S) such that p = q N R? ie.,
when is the induced map Spec(S) — Spec(R) surjective?
By Cohen-Seidenberg, it is a surjection when S is integral over R.

Let R C S be an integral extension.
Proposition 5.24. Let S be an integral domain. Then R is a field if and only if S is a field.

Proof. = Assume R is a field. Let 0 # s € S. Then s is integral over R since S is integral over R.
Hence there exists n := min{deg(f) | s satisfies a monic f € R[X]}. Then s"+a,_ 15" *+---+ag =
0 for some ag,...,a,_1 € R. Suppose ag = 0. Then s(s" ! +---+ay) = 0. Since s # 0 and S is
an integral domain, s"~! +--- 4+ a; = 0, contradicting the minimality of n. Hence ag # 0. Since R
is a field, ap € R* C S*. Hence s(s" "1 +---+a;) = —ag € S*. Thus, s € S*.

<= Assume S is a field. Let 0 #2 r € R C S. Then r—! € S. Note that »~! is integral over R
since S is integral over R. Then 7"~ 1[(r~ ) +a _1( “Hr=t oo ag(r7t) 4+ ag] = 0 for some
ao,a1,...,an—1 € R. Hence r' +ap_1 4+ -+ +a1r" 2 +aor" ! = 0. Hence r—! € R. O

€ER

Example. Conclusion of Proposition 5.24 fails if S is not an integral domain. Let k be a field .
Restrict the domain of the projection ¢ : k[X] — k[X]/(X?), we have an induced ring homomor-
phism |, : k — k[X]/(X?). Since p|x(1) =1 # 0 in k[X]/(X?), ¢|x # 0. Also, since k is a field,
@[k is 1-1. Hence we regard R := k as a subring of S := k[X]/(X?). Let x = X € S. Then z is
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integral over k since 22 = 0. Hence S = k[x] is integral over k. However, R is a field but S is not a
field.

Let € # 0 and € = 0 in a ring extension T D k, then ¢ : k[X] — k[e] given by f — f(e) is a
ring epimorphism with Ker(¢) = (X?2), so k[X]/(X?) = k[e] = ke + k.

Corollary 5.25. Let q € Spec(S) and p = qNR. Then p € m-Spec(R) if and only if g € m-Spec(S5).

Proof. Since S is integral over R, R/p C S/q is an integral extension by Proposition 5.22(a). Since
S/q is an integral domain, by Proposition 5.24, R/p is a field if and only if S/q is a field. O

Theorem 5.26. Spec(S) — Spec(R) given by q — qN R is a surjection, i.e., for p € Spec(R),
there exists q € Spec(S) such that p = qN R.

Proof. Let U = R ~\ p. Consider

R—=—5

v 1%
U-R —S» U8
pp=RpNQ 1 Q

Since R C S is an integral extension, U~ R C U~1S is an integral extension by Proposition 5.22(b).
Since 0 # RC S,0# Ry, =U 'R CU'S. Hence there exists @ € m-Spec(U~1S). By Corollary
5.25, QN R, € m-Spec(Ry) = {p,} by Corollary 3.14. Hence QN R, = p,. Consider ¢ : R — U~ 'R.
Since U Np = (), by Proposition 3.13, we have that

p- U MU 'R)=p - U'R#U 'R=UYU'R).
Hence by Theorem 3.24,
p=v"1p-UTTR) =9 (pp) =0 (QNRy) =p  (Q)NR.
Let q := p~1(Q). Since Q € Spec(U~1S), q € Spec(S) by Fact 1.16. O
Proposition 5.27. Let q,q" € Spec(S) such that N R =¢ N R. Then q C q if and only if q = ¢'.

Proof. Let p=qN R =q NR e Spec(R) by Fact 1.16. Let U = R\ p. By prime correspondence
for localization,

Spec(U'S) «» {y € Spec(S) | v N (R~ p) = 0} = {y € Spec(S) [y N R C p}

given by U~y -+ ~. Hence U~'q,U~'q" € Spec(U~'S). Hence U 'qNR,,U"'q'N R, € Spec(R,).

p - 1q,q’
R—S5 45§
¥ lr
U'R —S5 U-18
Py U-tq,U g
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Since U™'q,U~'q’ D U 'p =p, and Ry 2D py,
R, 2U 'qNR,, U 'q' N R, D p, € m-Spec(Ry).

Hence U"'qN Ry, = pp = U~'q' N R,.T Since R C S is an integral extension, U"'R C U~1S is an
integral extension by Proposition 5.22(b). Hence by Corollary 5.25, U~1q,U~'q’ € m-Spec(U~15).
Also, since U"'q C U~ 'q/, U=1q = U"1q’. Thus, q = q’ by the prime correspondence for localiza-
tion. O

Theorem 5.28 (Going up theorem). Let p; C --- C p,, be a chain in Spec(R) and q1 C -+ C qm,
(m < n) be a chain in Spec(S) such that p; = q; "R fori=1,...,m. Then there exists a chain
dm C -+ C gy in Spec(S) such that ; "R =yp; fori=1,... n.

Proof. By induction on n — m. It suffices to consider the case n = 2 and m = 1. Need to find
g2 € V(q1) C Spec(S) such that g3 N R = p2. Consider

P2 t g2
R—F——S
Lo
R/p1 —— S/m

p2/P1 ————— Clz/lh

Since R C S is an integral extension and p; = g1 N R, by Proposition 5.22(a), R/p1 € S/q; is an
integral extension. Also, since po/p; € Spec(R/p1) by prime correspondence for quotients, there
exists q2/q1 € Spec(S/q1) such that (q2/q1) N (R/p1) = p2/p1 by Theorem 5.26.

Note that © + p; € (RN qz2)/p1 if and only if x € R and « € qq if and only if z + ¢q; =
x+p1 € (q2/91) N (R/p1) = p2/p1 since we can regard R/p; C S/q; by Proposition 5.22(a). Hence
(g2 N R)/p1 = p2/p1. Thus, g2 N R = py by prime correspondence for quotients. O

Example 5.29. Integral assumption is crucial.
(a) Z C Q. Let 0 C 2Z be a chain in Spec(Z), Note that 0 is a (unique) chain in Spec(Q) = {0}.

(b) Z C Z[X]. Let 0 C 2Z be a chain in Spec(Z) and (2X — 1) be a chain in Spec(Z[X]) since
(22)?5]1) =~ 7o' = Z[] € Q given by X and Z[3] is an integral domain. Note that ZN(2X —1) =
0. Suppose there exists @ € Spec(Z[X]) such that (2X —1) C Q and ZNQ = 2Z. Then 2,2z—1 € Q.

Hence 1 € Q, i.e., @ = Z[X], a contradiction.

This example also shows the need for integral assumption in Proposition 5.27 because
(1) 0,(2X — 1) € Spec(Z[X]) and ZN0=0=ZN (2X — 1), but 0 C (2X — 1);
(2) (2),(2,X) € Spec(Z[X]) and ZN (2) = 2Z =7Z N (2,X), but (2) C (2, X).
Proposition 5.30. Let U C R be multiplicatively closed. Let R be the integral closure of R in S
and U~1R be the integral closure of U 'R in U~1S. Then U-'R = U~ 'R.

U qNRy = U qNU ' R=U"1(qNR) =U"Yp=p, =U"p=U"Y¢'NR) =U"'¢NU ' R=U"1¢'NR,.
1Zs is the localization of Z away from 2 while Z(2) is the localization of Z at 2.
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Proof. “27. gince R C R C S with R C R integral, we haﬂle that U"'R C U~'R C U~'S with
U~'R C U7'R integral by Proposition 5.22(b). Hence U"'R C U-'R.
“C”. Let 2 € U'RC U~1S. Then

s\™ Gy syn—1 a S a
= ()" (22) () (2) )+ (2)
U Un—1 U U1 U Vo
in U~'S for some ag,...,a,-1 € R and vg,...,v,_1 € U. Let v := vg---v,_; € U and multiply
the equation by (uv)™,

n—1 n
0=(vs)" + (u ! an—1> (vs)" L4 (u”lv a1> (vs) + <u”va0>
U1 Vo

Un—1

bn—1€ER bieR bo€ER
in U~ R. Hence there exists w € U C R such that

0=w"-0= (wvs)" + (whp_1)(wvs)" "t + - 4 (w" " by) (wvs) + (w™by).

N Nl N
€ER €R €R
Hence wvs € R. Thus, £ = 2 ¢ U~1R. O

T u wuu

Definition 5.31. If R is an integral domain, then R is integrally closed if it is integrally closed in
the field of fraction Q(R).

Example 5.32. (a) Z is integrally closed.
(b) Any UFD is integrally closed.

(c) Let R := k[X?%,XY,Y? C k[X,Y]. Then R is not a UFD since X2Y? = (XY)(XY) with
X2, Y2 XY irreducible in R.

Note that Q(R) = k(X,Y) = Q(k[X,Y]). Since X,Y satisfies Z? — X2, Z%2 — Y2 € R[Z],
respectively, we have that X,Y are integral over R. Also, since k is integral over R, R C k[X,Y] is
integral. Since k[X,Y] is a UFD, k[X,Y] is integrally closed by (b). Hence R is integrally closed
by Corollary 5.20.

We claim that R &2 % Let ¢ : k[U,V,W] — k[X,Y] be a ring homomorphism given by
U~ X2,V XY and W — Y2, Then Im(p) = k[X2, XY,Y?] and (V? — UW) C Ker(p). Let
f € Ker(y). Then by long division, f = (V2 —UW)q+r for some ¢, € k[U, W][V] and deg(r) < 2
in k[U, W][V]. Since ¢(f) = 0 and ¢ is a ring homomorphism, ((XY)? — X2Y?)p(q) + (r) = 0,
i.e., p(r) = 0. Note that r = aV + b for some a,b € k[U, W]. Hence a(X?,Y2)XY +b(X2,Y?) =0.
Hence a = 0= b, i.e., r = 0. Hence f € (V2 - UW).

Example. If S is noetherian, then R is not necessarily noetherian. Let Q be the algebraic closure
of Qin C and R :=Q + XQ[X] C Q[X] =: S. Note that R C S is an integral extension since Q is
algebraic over Q C R and X € R, but R is not noetherian since [Q : Q] = oc.

Lemma 5.33. If R is an integral domain, then R = (¢, spec(r) fom € Q(R).
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Proof. “C”. Since R is an integral domain, we have that R~m C NZD(R). Hence R C Ry, C Q(R)
for m € m-Spec(R). Hence R C (e spec(r) Bim € Q).

“27. Let @ € Nyemspec(r) Bm- Let I ={r € R|rz € R} =: (R :g z) < R. By Proposition
3.12(f), Im = (R :g @)m = (Rm :r, *) = Ry for m € m-Spec(R). Hence I N (R~ m) # 0, ie.,
I  m for m € m-Spec(R). Hence I = R, ie.,1€I=(R:gz). Thus,z=1-z € R. O

Proposition 5.34 (being integrally closed is a “local condition”). Let R be an integral domain.
Then the following are equivalent.

(i) R is integrally closed.

(i) UIR is integrally closed for multiplicatively closed U C R with 0 ¢ U.
(iii) R, is integrally closed for p € Spec(R).

(iv) Ry, is integrally closed for m € m-Spec(R).

Proof. (i)=>(ii) Assume R is integrally closed. Let U C R be multiplicatively closed with 0 ¢ U.
Since R is an integral domain and 0 ¢ U, U C NZD(R). Hence R C U™'R C Q(R) =: S are
subrings. By Proposition 5.30, U"1R = U"'R = U~'R since R is integral closed in Q(R). Hence
U~'R is integrally closed in U™1S = Q(R). Also, since QU 'R) = Q(R)', U'R is integrally
closed.

(ii)==>(iii) and (iii)==>(iv) Done.

(iv)=>(i) Assume Ry, is integrally closed for m € m-Spec(R). Since R is an integral domain
and R C Ry C Q(R), Q(Rn) = Q(R) for m € m-Spec(R). Let # € R, where R is the integral
closure of R in Q(R). Then z € Q(R) = Q(Rw) and z is integral over R C Ry, for m € m-Spec(R).
Hence * € Ry, = Ry, for m € m-Spec(R). Thus, by Lemma 5.33, x € ﬂmEm-Spec(R) Ry = R. O

Let R C S be a subring.

Definition 5.35. Let a < R. s € S is integral over a if s satisfies f(X) = X" +a,_1 X" 1+ -+ag
for some n > 1 and aq,...,a,_1 € a.
The integral closure of a in S is

a={s €S |sis integral over a}.
Warning 5.36. There exists another notion of integral closure of an ideal.

Lemma 5.37. Let R be the integral closure of R in S and a < R. Then a = rad(aR) < R. Hence
a is closed under sums and products.

Proof. “C”. Let s € @. Then s + a,_15" '+ --- +ag = 0 for some n > 1 and ag,...,an_1 € a.
Hence s" = —(a,_15" "'+ +ap) € aa C aR. Hence s € rad(aR).

“D”. Let t € rad(aR). Then t" € aR for some n > 1. Hence t" = 1" | a;s; for some m > 1,
a1,...,qm € aand s1,...,8, € R. Let T := R[s1,...,8,] € R C S. Then t" € aT. Hence
t"I' C aT. Since s, ..., Sy, is integral over R, T is a finitely generated R-module by Theorem 5.19.
By determinant trick as in the proof of Proposition 5.13, we have that t" is integral over a. Hence
(t") +bg_1 (t")* "1+ -+ by = 0 for some £ > 1 and by, ...,b_1 € a. Hence t is integral over a. []

fFact: If R is an integral domain and R C S C Q(S), then Q(S) = Q(R).
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Proposition 5.38. Let R be integrally closed and a be the integral closure of a < R in S. Let
sc€aand g(X) = X"+ 1 X™ 1+ +co € Q(R)[X] be the minimal polynomial of s over
Q(R). Then cg,...,Cmn—1 € rad(a).

Proof. Let s1 := s, 89,...,8n, be the roots of g(X) in some algebraic closure of Q(R). Since s is
integral over a, s satisfies a monic f € a[X] C Q(R)[X] = Q(R)[X]. Also, since g is the minimal
polynomial of s over Q(R), there exists h € Q(R)[X] such that f = hg. Since f(s;) = h(si)g(si) =

0, si € afori=1,...,m. Since g(X) = (X —s1)---(X — s) and @ < R by Lemma 5.37,
o5 -+ ,Cm—1 € d =rad(aR) =rad(aR) = rad(a). O

Theorem 5.39 (Going down theorem). Let R be integrally closed and S be an integral domain.
Let p1 O -+ D py, be a chain in Spec(R) and q1 2 -+ 2 qm (M < n) be a chain in Spec(S) such
that q; "R = p; fori =1,...,m. Then there exists a chain q,, 2 -+ 2 q, in Spec(S) such that
GNR=yp; fori=1,...,n.

Proof. As in the going up theorem, assume without loss of generality that m = 1 and n = 2. Let
p D p’ be a chain in Spec(R) and q € Spec(S) such that g R = p. Since S is an integral domain,
S~ q C NZD(S). Hence Sq O S O R. We claim that (p'Sy) N R = p’, then (if and only if)
there exists Q" € Spec(Sy) such that Q" N R = p’ by Theorem 3.24, so (if and only if) there exists
q 2 q’ € Spec(S) such that ¢’ N R = p’t by prime correspondence for localization.

“37 By 1.63(a).

“C”. Let 0 # x € (p'Sq)NR. Then z € p'Sq = p'(S~q) 1S = (S~ q)~'(p'S). Hence z = £ for
some s € p’S and v € S\ q. Since R C S is integral, R = S, where R is the integral closure of R in
S. Hence s € p'S C rad(p’S) = rad(p’R) = p’ by Lemma 5.37. Hence s € S is integral over p’. Let
g(X) = X"+ u,1 X"+ - +up € Q(R)[X] be the minimal polynomial of s over Q(R). Then
by Proposition 5.38, ug,...,u,—1 € rad(p’) = p’. Since 0 # x = 2 and R is an integral domain,
v=sz~!in Q(R). Note that v satisfies

X" (up 12 ) X7 (0™ 2) X772 - 4 (uoz ") € Q(R)[X],

—_——

tr—1 tr_2 to

which is a minimal polynomial for v over Q(R) since if v satisfies a smaller degree polynomial over
Q(R), then so does S. Also, since v € S is integral over R, by Proposition 5.38, we have that
to, ... tr—1 € rad((1)R) = R. Suppose x ¢ p’. Since u; = t;x"~% € p’ € Spec(R), t; € p’ for
i=0,...,r—1. Hence v" = —(t, 10" 1 +t, 20" 24+ +t5) €p’'SCpS=(qNR)SCqS=gq¢€
Spec(S). Hence v € g, a contradiction. Thus, z € p’. O

Theorem 5.40 (Noether normalization). Let k be a field and k C R := k[z1,...,x,] be a subring.

(a) There exist an intermediate subringk C S C R and y1,...,yqa € R such that S = k[yi, ..., yq] =
k[Y1,..., Yy, a polynomial ring, with d < n and R integral over S. Hence R = S[x1,...,x,)
is a finitely generated S-module. Moreover, y; is a polynomial in x;’s with coefficients in k for
i=1,....d.

(b) If |k| = oo, then we can take some d and y; = 2?21 a;;x; for some a;,...,am € k for

i=1,....d.

fFor =, take ¢/ = Q' NS, then ¢ "R = (' NS)NR = Q NR = p/. For <, take Q' = ¢'Sg, then
Q' NR=(¢4S4NS)NR=4q NR=yp’ by prime correspondence for localization.
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(In fact, d is uniquely determined and is the Krull dimension of R.)

Proof. Definition. Let z1,...,2, € R and k[Z1,...,Z,] be a polynomial ring. Consider the
ring homomorphism k[Z1, ..., Z,] 5 klz1,...,2m] given by F — F(z1,...,2m). 21y--.,2m 18
algebraically independent over k if n is 1-1, i.e., n is an isomorphism. (No polynomial relations
between the z;’s.)

Structure of proof: induct on n. Base case n = 0: R = k (S = k). Base case n = 1I:
R = kx] & E[X]. If nis 1-1, then S = R. If n is not 1-1, then z satisfies some monic F' € k[X], so
x is integral over k, hence S = k C R = k[z] with d = 0 and S C R an integral extension.

Inductive step: Assume n > 1 and the result is true for rings of form k[z1,...,2z,-1]. If
Z1,...,2, are algebraically independent over k, then use S = R = k[z1,...,z,] % k[ X1,..., X5
Assume now zy,...,x, are not algebraically independent over k. Re-order x1,...,z, such that
Z1,...,&y (r < n) are algebraically independent and z1,...,z,,zs are algebraically dependent
for s = r+1,...,n. Then by inductive hypothesis and Corollary 5.20, it suffices to show R is
integral over k[wy,...,w,_1] for some wy,...,w,—1 € R. Consider k[X1,...,X,] 5 Elxi,. .., Tn].
Then there exists 0 # F € k[X1,...,X,] such that n(F) = 0. Let e = deg(F) and write F =
Fy+ Fy + - - + F,, where F; is homogeneous of degree ¢ for : =0, ..., e.

(b) Assume |k| = co. Since F, # 0, Fo(A1,...,A\n—1,1) # 0 for some Aj,..., A\,—1 € k. Look at

k[wh sy Wn—1, mn] € R. For b = (bla s ;bn) € Zgo; (’LU1 + Alxn)bl e (wnfl + )\nflmn)bn71 . xi)ln =
)\}{1 . o/\f[‘:fwl,%‘ + lower degree terms in x,,, where |b| = by + - -+ + b,,. Note that for i =0,..., e,
— by bn—1 7 .
Fi(wi + MZp, .oy Wne1 + Ape 1%,y ) = Z ap(A] - A )z, + lower degree terms in x,
[b|=1
=Fi(M\,..., A1, 1)z, + lower degree terms in z,.
Let
Gwy, .y Wp—1,%n) = Flwy + MZp, oo, Woe1 + Ap— 1%, Tn)
=F.(A1,..., A1, 1)xl + lower degree terms in .
Let w; :=x; — Nz, fori=1,...,n— 1. Then
G(wh ce awnflyxn) = F(xl - Alxn + /\lmny sy -1 — )\nflxn + )\nflxnaxn)

=F(z1,...,%n-1,2,) =n(F)=0.

Since Fe(A1,..., An_1,1) # 0, z,, satisfies a monic % € klwi,...,w,_1][X,]. Hence
Z, is integral over k[ws,...,w,_1]. Hence

R=k[x1,...,2n-1,%n] = k[T1 — AZp, ..., Zn1 — Ap—1Tn, Tpn] = klw, ..., wp_1][2n)
is integral over k[wy, ..., w,—1] by Theorem 5.19.

(a) Look at k[wy,...,wp_1,2,] € R. Let e,, = 1. For b= (by,...,b,) € Z%y and eq, ..., en1 > 1,

bn i

e;b; .
(wy + x€)0 o (wyy g F xCrmt)ort L ghe — g 2=1 9P 4 lower degree terms in .
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. . b; ; .
Write F' = Z;nzl ajgbi for some m > 1 and distinct 2% := xt ~xfﬂ” and a; #0for j=1,...,m.

Let A; = max{by,,...,bm,} —min{by,,... by, } for i =1,...,n. Choose e;_1 > Aje; +---+ Anen
for i = 2,...,n. Re-order ajz¥, ..., a,zt» such that b, = -+ =D, is in reverse lexicographical
order. Then Y 1" e;by, > > i jeiby, > -+ > 3" €iby,. Let

Gwy, ..., Wpo1,Zpn) = Flwr + 25t . o ywp—1 + 28 2)
i eiby, .
= ala:nz":1 “M 4 Jower degree terms in z,.
Let w; := z;—a% fori=1,...,n—1. Then G(w1,...,wp—1,2n) = F(x1,...,2p_1,2,) =n(F) =0.
Since aq # 0, z,, satisfies a monic %:”X") € klw,...,wy—-1][X,]. Hence x,, is integral over
klwy, ..., w,—1]. Hence
R=Ek[x1,...,¢n-1,2s] = k[z1 — 25}, .. X1 — 20t ] = Elwy, ..oy Wy ][2n)

is integral over k[wy, ..., w,_1] by Theorem 5.19. O

Theorem 5.41 (Hilbert Nullstellensatz, version 1). Let k C K := k[z1,...,x,] be a subfield.
(a) K is algebraic over k and [K : k| < oco.
(b) If k is algebraically closed, then K = k.

Proof. (a) Let k C S C K be a Noether normalization of k¥ C K. Then there exists y1,...,yqs € K
such that S = k[y1,...,y4] = k[Y1,...,Yy] € K and K is integral over k[Y7,...,Yy]. Since K
is a field, by Proposition 5.24, k[Y7,...,Yy] is a field. Hence d = 0. Then S = k. Hence K =
klxy1,...,z,] is integral over k. Hence K is a finite-dimensional k-vector space by Theorem 5.19.

(b) Since k is algebraically closed, there is no proper algebraic extensions. Hence K = k. O

Theorem 5.42 (Hilbert Nullstellensatz, version 2). Let k be an algebraically closed field, R =
k[X1,...,Xn] and m € m-Spec(R). Then there exists a € k™ such that m = (X1 —aq,..., X, —ap).

Proof. Set K = R/m = k[zy,...,7,] <> k, where #; = X; € R/m for i = 1,...,n. Since k
is algebraically closed and k& < K is a subfield, by Hilbert Nullstellensatz, version 1(b), k <

klxz1,...,z,] = R/mis onto. Since z; € R/m, there exists a; € k such that a; — x; fori=1,...,n.
Hence x; —a; = 0in R/m, i.e., X; —a; € mfor i = 1,...,n. Then m 2 (X; —ay,..., X, — ap).
Since m, (X7 —aq,..., X, —a,) € m-Spec(R), m = (X1 —ay,...,Xp — an). O

Theorem 5.43 (Hilbert Nullstellensatz, version 3). Let k be an algebraically closed field, a < R =
k[X1,...,Xn]. ThenZ(a):={a € k™| F(a) =0,VF € a} #10.

Proof. Since a # R, by Hilbert Nullstellensatz, version 2, a C m := (X; — ay,..., X, — a,) for
some a € k". Let F € a C m. Then F = Y ", ¢;(X; — a;) for some ¢1,...,9, € R. Hence
F(a) =37, gi(a)(a; — a;) = 0. Thus, a € Z(a). O

Theorem 5.44 (Hilbert Nullstellensatz, version 4). Let k be an algebraically closed field, a < R =
EX1,...,Xn] and Z =Z(a). Let I =1(Z) ={F € R| F(a) =0,Va € Z} < R. Then I =rad(a).
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Proof. “2”. Since
I=1(2Z)=1(Z(a)) ={F € R| F(a) =0,Va € Z(a)} D q,

rad(a) C rad(I) = 1.

“C”. Let F' € R~rad(a). Then F' ¢ rad(a) = (\,cy (e P by Fact 1.58. Hence there exists
p € V(a) such that F ¢ p. Set R = R/p = k[z1,...,z,], an integral domain, where z; = X; € R/p
fori=1,...,n. Since F ¢ p, f:=F #0in R. Then 0 # R C Ry = R[1/f] = k[z1,...,2n,1/f].
Hence there exists m € m-Spec(Ry). Consider k «— Ry/m = k[T7,..., Ty, 1/f], where 1/f # 0
in Ry/m since 1/f € RJT. Since k is algebraically closed and k < Ry/m is a subfield, by Hilbert
Nullstellensatz, version 1(b), k < Ry/m is onto. Since Z; € Ry/m, there exists a; € k such that
a;— T; for i =1,...,n. Since a C p, a- R =0. Hence a- Ry/m = 0. Then G(a) = §(771,...,T,) =
g=0in Ry/m for all G € a. Hence a € Z(a) = Z. Also, since F(a) = f(#1,...,Z,) = f # 0 in
Ry/m, we have that F ¢ 1(Z) = I. O
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