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Introduction

The study and application of commutative rings with identity.

(a) Commutative algebra in calculus. We have that C(R) = {continuous functions R → R} and
D(R) = {differentiable functions R→ R} are both commutative rings with identity.

(b) Commutative algebra in graph theory. Let G be a finite simple graph with vertex set V =
{v1, . . . , vd}. The edge ideal of G is I(G) = ⟨vivj | vivj is an edge in G⟩ ≤ K[v1, . . . , vd].

algebraic properties of I(G) −−−−→←−−−− combinatorial properties of G.

(c) Commutative algebra in combinatorics. A simplicial complex ∆ on V . Stanley-Reisner ideal
J(∆) ≤ K[v1, . . . , vd].

algebraic properties of J(∆) −−−−→←−−−− combinatorics properties of ∆.

Let P be a poset and ∆(P) = “order complex of P” = {chains in P}. Study P via J(∆(P)).

(d) Commutative algebra in number theory. Number theory is the study of solutions of polynomial
equations over Z. Given an intermediate field Q ⊆ K ⊆ C, let

R = {α ∈ K | ∃an monic f ∈ Z[x] s.t. f(α) = 0},

then Z ⊆ R ⊆ K are subrings. (Chapter 5)

(e) Commutative algebra in algebraic geometry. Algebraic geometry is the study of solution sets
for systems of polynomial equations over fields. Let k be a field, f1, . . . , fm ∈ k[X1, . . . , Xd],

V := V(f1, . . . , fm) = {x ∈ kd | fi(x) = 0,∀ i = 1, . . . ,m},

where V is for “variety”, and

I(V ) = {f ∈ k[X1, . . . , Xd] | f(x) = 0,∀x ∈ V } ≤ k[X1, . . . , Xd].

algebraic properties of I(V ) −−−−→←−−−− geometric properties of V .

Why modules? Because in number theory, R = {α ∈ K | ∃monic f ∈ Z[x] s.t. f(α) = 0} is a
subring of K.

Challenge-exercise: prove this by definition. For α, β ∈ R, note there exist f, g ∈ Z[X] monic
such that f(α) = 0 = f(β), then try to prove or construct monic polynomials s, d, p ∈ Z[X] such
that s(α+ β) = 0, d(α− β) = 0 and p(αβ) = 0.
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2 CONTENTS

Proof is a straightforward application of modules.
Why topology? To study geometry, need continuity. Let V = V(f1, . . . , fm), W = V(g1, . . . , gn)

and ϕ : V → W . What does it mean for ϕ to be continuous if k = F3? Need a notion of open sets
in V and W .



Chapter 1

Rings and Ideals

Let R be a commutative ring with identity.

Rings and Ring Homomorphisms

Fact 1.1. R = 0 if and only if 1R = 0R.

Fact 1.2. (a) 1R and 0R are both unique.

(b) For any r ∈ R, −r is unique.

(c) If r ∈ R is a unit, then there exists a unique r−1 ∈ R such that rr−1 = 1R = r−1r.

Definition 1.3. A (unital) homomorphism of commutative rings with identity is a function ϕ :
R→ S with R and S commutative rings with identity, such that for all r, r′ ∈ R,

(a) ϕ(r + r′) = ϕ(r) + ϕ(r′),

(b) ϕ(rr′) = ϕ(r)ϕ(r′),

(c) ϕ(1R) = 1S .

It is also known as “ring homomorphism”.

Fact 1.4. Let ϕ : R→ S be a ring homomorphism.

(a) ϕ(0R) = 0S .

(b) ϕ(−r) = −ϕ(r) for r ∈ R.

(c) ϕ(r − s) = ϕ(r)− ϕ(s) for r, s ∈ R.

(d) ϕ(
∑m
i=1 risi) =

∑m
i=1 ϕ(ri)ϕ(si) for r1, . . . , rm, s1, . . . , sm ∈ R.

(e) If r is a unit in R, then ϕ(r) is a unit in S and ϕ(r)−1 = ϕ(r−1).

(f) A composition of ring homomorphisms is a ring homomorphism.
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4 CHAPTER 1. RINGS AND IDEALS

Definition 1.5. A subring of R is a subset S ⊆ R such that S is a commutative ring with identity
under the operations for R and such that 1S = 1R, i.e., 1R ∈ S.

Fact 1.6 (Subring test). A subset S ⊆ R is a subring if and only if it is closed under +, ·,− and
1R ∈ S.

Example 1.7. Subring test: need ∅ ≠ S ⊆ R, S is closed under +, ·,− and 1R ∈ S.
If S is not closed under −, then fail. Let N0 = {0, 1, 2, · · · } ⊆ Z not a subring.
If 1R ̸∈ S, then fail. Let R = F3 × F3 ⊇ {(a, a) | a ∈ F3} =: S. Then S is a subring of R.

Although S1 := {(a, 0) | a ∈ F3} ∼= F3
∼= {(0, a) | a ∈ F3} =: S2 are rings but not subrings of R

since 1R = (1, 1) ̸∈ S1 and 1R = (1, 1) ̸∈ S2.

Fact 1.8. If S ⊆ R is a subring, then the inclusion map ε : S → R given by ε(s) = s is a ring
homomorphism.

Ideals and Generators

Definition 1.9. An ideal of R is a non-empty subset a ⊆ R, an additive subgroup such that for
all r ∈ R and a ∈ a, ra ∈ a, i.e., closed under scalar multiplication.

An ideal a ≤ R is prime if a ̸= R and for any a, b ∈ R, if a, b ̸∈ a, then ab ̸∈ a, i.e., if ab ∈ a,
then a ∈ a or b ∈ a.

An ideal a ≤ R is maximal if a ̸= R and for any ideal b ≤ R, if a ⊆ b ⊆ R, then either a = b or
b = R.

Fact 1.10 (Ideal test). If a ̸= ∅ and a is closed under scalar multiplication ·, then −a = (−1R)a ∈ a
for a ∈ a, also, since a is closed under +, it is automatically closed under −.

Thus, A subset a ⊆ R is an ideal if and only if a ̸= ∅ and a is closed under + and scalar
multiplication ·.

Example 1.11. (a) Let R = Z, then ideals of R are of the form nZ = {nm | m ∈ Z}, where n ∈ Z.
nZ is prime if and only if n = 0 or |n| is prime.

nZ is maximal if and only if |n| is prime.

(b) If Iλ ≤ R for λ ∈ Λ, then
⋂
λ∈Λ Iλ ≤ R.

(c) If r1, . . . , rm ∈ R, then

⟨r1, . . . , rm⟩ = ⟨r1, . . . , rm⟩R = (r1, . . . , rm) = (r1, . . . , rm)R =
⋂

r1,...,rm∈I≤R

I

=

{
m∑
i=1

airi

∣∣∣∣ ai ∈ R,∀ i = 1, . . . ,m

}
≤ R.

In particular,

⟨r⟩ = ⟨r⟩R = (r) = (r)R = rR = Rr = {ar | a ∈ R} =
⋂

r∈I≤R

I, ∀r ∈ R.
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(d) If A ⊆ R, then ⟨A⟩ =
⋂
A⊆I≤R I and

⟨A⟩ = RAR = AR = RA =

{
finite∑
a∈A

raa

∣∣∣∣ ra ∈ R,∀a ∈ a

}
.

Fact 1.12. For any r1, . . . , rm ∈ R, ⟨r1, . . . , rm⟩ is the smallest ideal of R containing r1, . . . , rm,
i.e., for any a ≤ R, r1, . . . , rm ∈ a if and only if ⟨r1, . . . , rm⟩ ⊆ a. Similarly, A ⊆ a if and only if
⟨A⟩ ⊆ a, e.g., if A ≤ R, then A = ⟨A⟩.

Construction 1.13. Let a ≤ R. For any r ∈ R, r + a = {r + a | a ∈ a} = r. Let

R/a := {r + a | r ∈ R}.

Then R/a is a commutative ring with identity with r ± s = r ± s, rs = rs, 0R/a = 0R and
1R/a = 1R.

Let π : R→ R/a be given by π(r) = r. Then π is a well-defined ring epimorphism.
(UMP) For any ϕ : R → S ring homomorphism, if ϕ(a) = 0, then there exists a unique ring

homomorphism ϕ : R/a→ S making the following diagram commute.

R S

r ϕ(r)

r

R/a

ϕ

π
∃ ! ϕ

Note that ϕ(a) = 0 if and only if a ⊆ Ker(ϕ). In particular, if a = ⟨A⟩, then a ⊆ Ker(ϕ) if and
only if A ⊆ Ker(ϕ).

Fact 1.14. Let a ≤ R.

(a) a is prime if and only if R/a is an integral domain.

(b) a is maximal if and only if R/a is a field.

(c) If R is a field, then it is an integral domain.

Hence if a is maximal, then a is prime.

Fact 1.15 (Ideal correspondence for quotients). Let a ≤ R and π : R→ R/a be the canonical ring
epimorphism.

{ideals I ≤ R/a} −−⇀↽−− {ideals J ≤ R | a ⊆ J}

I 7−→ π−1(I) = {r ∈ R | r + a ∈ I} ⊇ π−1(0) = a

J/a←− [ J ⊇ a

{ideals I ≤ R/a} −−⇀↽−− {ideals J ≤ R | a ⊆ J}

{primes ideals of R/a} −−⇀↽−− {prime ideals p ≤ R | a ⊆ p}

{maximal ideals of R/a} −−⇀↽−− {maximal ideals m ≤ R | a ⊆ m}.
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In both R and R/a, maximal ideals are a subset of prime ideals and prime ideals are a subset
of ideals.

We claim that R/a
J/a
∼= R

J .

R R/a R/a
J/a

r r r

r

R/J

p

π

τ

∃ ! ϕ

It is straightforward to show that J = Ker(τ ◦ p). Then the first isomorphism theorem says the
map ϕ is a ring isomorphism.

Notation. Spec(R) = {primes ideals of R}, called the prime spectrum of R.
The variety determined by an ideal a ≤ R is V(a) = {p ∈ Spec(R) | p ⊇ a}.
m-Spec(R) = {maximal ideals of R} ⊆ Spec(R).

Fact 1.16. Let ϕ : R → S be a ring homomorphism. Then Ker(ϕ) ≤ R, Im(ϕ) ⊆ S is a subring
and Im(ϕ) ∼= R/Ker(ϕ).

If S is an integral domain, then so is Im(ϕ). Hence Ker(ϕ) is prime.
More generally, ϕ−1(b) = {x ∈ R | ϕ(x) ∈ b} ≤ R for b ≤ S.

R S S/q
r ϕ(r) ϕ(r)

r
R

ϕ−1(q)

ϕ

p

π

∃ ! π◦ϕ

Let q ∈ Spec(S). Then S/q is an integral domain. Also, since R/Ker(π ◦ ϕ) ∼= Im(π ◦ ϕ) ⊆
S/q, we have that R/Ker(π ◦ ϕ) is an integral domain and then Ker(π ◦ ϕ) is prime. Observe
ϕ−1(q) = Ker(π ◦ ϕ) is then prime, i.e., ϕ−1(q) ∈ Spec(R). Thus, ϕ induces a well-defined map
ϕ∗ : Spec(S)→ Spec(R) given by ϕ∗(q) = ϕ−1(q).

Example. Let ϕ : Z → Q be an inclusion map. Note that q := (0)Q ≤ Q is maximal, but
ϕ−1(q) = ϕ−1(0) = Ker(ϕ) = 0Z, which is not maximal in Z. Hence the map ϕ∗ does not take
maximal ideals to maximal ideals in general.

Fact 1.17. We have the following.

(a) Let R ̸= 0. Then R has a maximal ideal m and so R has a prime ideal. Moreover, for any
a ⪇ R, there exists a maximal ideal m ⊇ a. In particular, V(a) = {p ∈ Spec(R) | p ⊇ a} ≠ ∅.

One generally proves the second statement first, then derives the first statement as the special
case a = 0. Next, we show how to derive the second statement from the first one.

(b) Let a ⪇ R. Then 0 ̸= R/a is a commutative ring with identity. Hence R/a has a maximal ideal
and by Fact 1.15, it is of the form m/a, where m is a maximal ideal of R containing a.
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Local Rings

Definition 1.18. R is local if it has a unique maximal ideal m, also known as “quasi-local”. The
residue field of R is R/m.

“Assume (R,m, k) is local” or “assume (R,m) is local”, shorthand, we mean m is the unique
maximal ideal of R and k = R/m.

Example 1.19. (a) Any field is local with the maximal ideal (0).

(b) Let n ≥ 1 and p be prime in Z. Note that 0 ̸= Z/⟨pn⟩ has a maximal ideal m = ⟨p⟩/⟨pn⟩,
where ⟨p⟩ is a maxiaml ideal of R containing ⟨pn⟩. Assume there is m1 ≤ R maximal such that
m1 ⊇ ⟨pn⟩. Then m1 is prime, so p ∈ m1 and hence ⟨p⟩ ⊆ m1. Since ⟨p⟩ is prime in Z and Z is
a PID, ⟨p⟩ is maximal. Hence ⟨p⟩ = m1. Thus, ⟨p⟩ is the unique maximal ideal containing ⟨pn⟩
and so Z/⟨pn⟩ is local. Similarly, we can show ⟨p⟩ is the unique prime ideal containing ⟨pn⟩, so
Spec(Z/⟨pn⟩) = {⟨p⟩/⟨pn⟩}.

(c) Let k be a field. As in part (b), we see that R = k[X]/⟨Xn⟩ is local with m = ⟨X⟩/⟨Xn⟩. In
fact, Spec(R) = {⟨X⟩/⟨Xn⟩}.

(d) Let k be a field and R = k[X1, . . . , Xd]/⟨Xa1
1 , · · · , Xad

d ⟩, where ai ≥ 1 for i = 1, . . . , d. Then R is
local with m = ⟨X1, . . . , Xd⟩/⟨Xa1

1 , . . . , Xad
d ⟩. In fact, Spec(R) = {⟨X1, . . . , Xd⟩/⟨Xa1

1 , · · · , Xad
d ⟩}.

Fact 1.20. If (R,m) is local and a ⪇ R, then (R/a,m/a) is also local and R/a
m/a
∼= R/m, so these

rings have canonically isomorphic residue fields. The converse fails in general by Example 1.19.

Notation 1.21. Let R× = R∗ = U(R) = {units of R}.
Proposition 1.22. The following are equivalent.

(i) R is local.

(ii) R∖R× ⪇ R.

(iii) There exists a ⪇ R such that R∖ a ⊆ R×.

When these are satisfied, m = R∖R× = a.

Proof. (i)=⇒(ii) Assume (R,m) is local.
We claim that m = R ∖ R×. It suffices to show R ∖ m = R×. ⊇ Let u ∈ R×. Then ⟨u⟩ = R

and so u ̸∈ m ⪇ R, i.e., u ∈ R ∖m. Hence R× ⊆ R ∖m. ⊆ Let x ∈ R ∖R×. Then ⟨x⟩ ⪇ R. Since
m is the unique maximal ideal in R, ⟨x⟩ ⊆ m, i.e., x ∈ m. Thus, R∖R× ⊆ m, i.e., R∖m ⊆ R×.

(ii)=⇒(iii) Assume R∖R× ⪇ R. Set a = R∖R×. Then R∖ a = R×.
(iii)=⇒(i) Let a ⪇ R such that R∖ a ⊆ R×.
We claim that a = R∖R×. “⊇”. It is straightforward. “⊆”. Let a ∈ a ⪇ R, then a ̸∈ R× since

a ⪇ R, so a ∈ R∖R× and hence a ⊆ R∖R×. Thus, a = R∖R×.
Let n ⪇ R be maximal and y ∈ n. Then y ̸∈ R×. Hence y ∈ R ∖ R× = a. Thus, n ⊆ a ⪇ R.

Since n is maximal, n = a. Thus, a is the unique maximal ideal in R and so R is local.

Proposition 1.23. Let m ⪇ R be maximal such that 1 +m ⊆ R×. Then R is local.

Proof. By the previous proposition, it suffices to show R ∖m ⊆ R×. Let x ∈ R ∖m. Set ⟨x,m⟩ =
⟨{x} ∪ m⟩ = {ax +m | a ∈ R,m ∈ m}. Since x ̸∈ m, m ⊊ ⟨x,m⟩ ≤ R. Also, since m is maximal,
⟨x,m⟩ = R. Hence ax+m = 1 for some a ∈ R and m ∈ m, i.e., ax = 1−m ∈ 1 +m ⊆ R×. Thus,
a, x ∈ R×.
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The Nilradical

Definition 1.24. x ∈ R is nilpotent if there exists n ≥ 1 such that xn = 0. The nilradical of R is

Nil(R) = N(R) = NR = N = {nilpotent elements of R}†.

Example 1.25. In the ring Z/⟨pn⟩, we have that p is nilpotent. It is similar in k[X]/⟨Xn⟩ and
k[X1, . . . , Xn]/⟨Xa1

1 , . . . , Xad
d ⟩, where k is a field, n ≥ 1 and a1 · · · , ad ≥ 1.

Proposition 1.26. We have the following.

(a) Nil(R) ≤ R.

(b) Nil(R/Nil(R)) = {0}.

(c) Nil(R) = R if and only if R = 0.

(d) Nil(R) =
⋂

p∈Spec(R) p.

Proof. (a) Since 0 ∈ Nil(R), Nil(R) ̸= ∅. Let r ∈ R and a, b ∈ Nil(R). Then there exists m,n ≥ 1
such that am = 0 = bn. Then (ra)m = rmam = 0 and so ra ∈ Nil(R). By the binomial theorem,
(a + b)m+n =

∑m+n
i=0

(
m+n
i

)
aibm+n−i = 0. Since for i = 0, . . . ,m + n, either i ≥ m or i < m, i.e.,

i ≥ m or m + n − i > n, we have that ai = 0 when i ≥ m, and bm+n−i = 0 when m + n − i > n.
Hence (a+ b)m+n = 0 and thus a+ b ∈ Nil(R).

(b) Let x ∈ Nil(R/Nil(R)). Then there exists n ≥ 1 such that xn = xn = 0, i.e., xn ∈ Nil(R).
Hence there exists m ≥ 1 such that (xn)m = 0, i.e., xmn = 0. Thus, x ∈ Nil(R), i.e., x = 0.

(c) We have that Nil(R) = R if and only if 1 ∈ Nil(R) if and only if there exists n ≥ 1 such that
1 = 1n = 0 if and only if 1 = 0 if and only if R = 0.

(d) “⊆”. Let x ∈ Nil(R). Then there exists n ≥ 1 such that xn = 0 ∈ p for p ∈ Spec(R). Hence
x ∈ p for p ∈ Spec(R). Thus, x ∈

⋂
p∈Spec(R) p.

“⊇”. Let x ∈ R ∖ Nil(R). Need to show x ̸∈
⋂

p∈Spec(R). It is equivalent to show there exists

p ∈ Spec(R) such that x ̸∈ p. Let Σ = {a ≤ R | x, x2, x3 · · · ̸∈ a}. Since x ̸∈ Nil(R), xk ̸= 0 for
k ≥ 1. Hence (0) ∈ Σ and then Σ ̸= ∅. Let C ⊆ Σ be chain. Then we have that q :=

⋃
a∈C a ≤ R.

Suppose xn ∈ q for some n ≥ 1. Then xn ∈ a for some a ∈ C ⊆ Σ, contradicting a ∈ Σ. Hence
xn ̸∈ q for n ≥ 1 and hence q ∈ Σ. Hence q is an upper bound for C in Σ. Since the chain C ⊆ Σ
is arbitrary, by Zorn’s lemma, Σ has a maximal element I. We claim that I ∈ Spec(R). Suppose
I = R. Then x ∈ R = I, contradicting I ∈ Σ. Hence I ⪇ R. Let r, s ∈ R∖ I. Then I ⊊ ⟨r, I⟩ ≤ R
and I ⊊ ⟨s, I⟩ ≤ R. By the maximality of I in Σ, we have that ⟨r, I⟩, ⟨s, I⟩ ̸∈ Σ. Hence there exists
m,n ≥ 1 such that xm ∈ ⟨r, I⟩ and xn ∈ ⟨s, I⟩. Then xm = ar + i for some a ∈ R and i ∈ I, and
xn = bs+ j for some b ∈ R and j ∈ I. Hence

xm+n = xmxn = (ar + i)(bs+ j) = abrs+ (arj + bsi+ ij︸ ︷︷ ︸
∈I

) ∈ ⟨rs, I⟩.

Hence ⟨rs, I⟩ ̸∈ Σ. Therefore, since I ∈ Σ, we have that I ̸= ⟨rs, I⟩, so rs ̸∈ I. Thus, I ∈ Spec(R)
such that x ̸∈ I.

†Nil(R) ⊆ ZD(R), but not conversely.
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Example. Let k be a field and R = k[X1, . . . , Xd]/⟨Xa1
1 , . . . , Xad

d ⟩ ≠ 0, where ai ≥ 1 for i =
1, . . . , d. Then Nil(R) = ⟨X1, . . . , Xd⟩/⟨Xa1

1 , . . . , Xad
d ⟩.

Proof. Method 1. Since Spec(R) = {⟨X1, . . . , Xd⟩/⟨Xa1
1 , . . . , Xad

d ⟩}, Nil(R) =
⋂

p∈Spec(R) p =

⟨X1, . . . , Xd⟩/⟨Xa1
1 , . . . , Xad

d ⟩.
Method 2. Since Xi ∈ Nil(R) ≤ R for i = 1, . . . , d, we have that ⟨X1, . . . , Xd⟩ = ⟨X1, . . . , Xd⟩ ⊆

Nil(R) ⊊ R since R ̸= 0. Also, since ⟨X1, . . . , Xd⟩ is maximal, we have that Nil(R) = ⟨X1, . . . , Xd⟩.

Fact. If a ≤ R and r1, . . . , rn ∈ R, then R/a ⊇ ⟨r1, . . . , rn⟩ = ⟨r1, . . . , rn, a⟩/a. In particular, if
⟨r1, . . . , rn⟩ ⊇ a, then ⟨r1, · · · , rn⟩ = ⟨r1, . . . , rn⟩/a.

The Jacobson Radical

Definition 1.27. The Jacobson radical of R is

Jac(R) = J(R) =
⋂

m≤R max’l

m.

Fact 1.28.
Jac(R) ⊇ Nil(R) =

⋂
p∈Spec(R)

p.

Proposition 1.29.
J(R) = {x ∈ R | 1− xy ∈ R×,∀y ∈ R}.

Proof. “⊆”. Let x ∈ J(R). By way of contradiction, suppose there is y ∈ R such that 1−xy ̸∈ R×.
Then there exists m ≤ R maximal such that 1 − xy ∈ m. Since x ∈ J(R) ⊆ m, xy ∈ m. Hence
1 = (1− xy) + xy ∈ m, a contradiction.

“⊇”. Argue by contrapositive. Let x ∈ R such that 1 − xy ∈ R× for any y ∈ Y . Suppose
x ̸∈ J(R). Then there exists m ≤ R maximal such that x ̸∈ m. Hence m ⊊ ⟨m, x⟩ ⊆ R. Hence
⟨x,m⟩ = R. Then there exists y ∈ R and m ∈ m such that xy+m = 1, i.e., 1−xy = m ∈ m. Hence
1− xy ̸∈ R×, a contradiction.

Operations on Ideals

Let a, b, c ≤ R, a1, . . . , an ≤ R, Sλ ⊆ R and aλ, bλ ≤ R for λ ∈ Λ, where Λ is an index set.

Sums of Ideals

Definition 1.30.
a+ b = ⟨a ∪ b⟩ =

⋂
a∪b⊆I≤R

I.

Fact 1.31. We have the following.

(a) a+ b ⊆ c if and only if a ∪ b ⊆ c.

(b) a+ b is the (unique) smallest ideal of R that contains a ∪ b.
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(c) a+ b = {a+ b | a ∈ a, b ∈ b}.

(d) If a = ⟨S⟩ and b = ⟨T ⟩, then a+ b = ⟨S ∪ T ⟩.

(e) If a = ⟨x1, . . . , xm⟩ and b = ⟨y1, . . . , yn⟩, then a+ b = ⟨x1, . . . , xm, y1, . . . , yn⟩.

(f) If x ∈ R, then ⟨x, a⟩ = ⟨x⟩+ a.

(g) a+ (b+ c) = (a+ b) + c.

Proof. (a) and (b) are by definition.

(c) Set I = {a+ b | a ∈ a, b ∈ b}. Check I is an ideal of R. For a ∈ a, a = a+ 0 ∈ I and for b ∈ b,
b = 0+ b ∈ I. Hence a∪ b ⊆ I. By (a), a+ b ⊆ I. On the other hand, for a+ b ∈ I with a ∈ a and
b ∈ b, we have that a, b ∈ a ∪ b ⊆ a+ b ≤ R, so a+ b ∈ a+ b.

(d) Let I ≤ R. Note that I ⊇ a ∪ b if and only if I ⊇ a, b if and only if I ⊇ ⟨S⟩, ⟨T ⟩ if and only if
I ⊇ S, T if and only if I ⊇ S ∪ T . Hence

a+ b =
⋂

a∪b⊆I≤R

I =
⋂

S∪T⊆I≤R

I = ⟨S ∪ T ⟩.

(e) By (d).

(f) By (c).

(g) The essential point is a+ (b+ c) = ⟨a ∪ (b ∪ c)⟩ = ⟨(a ∪ b) ∪ c⟩ = (a+ b) + c.

Example. mZ+ nZ = ⟨m,n⟩Z = gcd(m,n)Z, where m ̸= 0 or n ̸= 0.

Recall. Spec(R) = {prime ideals of R}. For S ⊆ R, V(S) = {p ∈ Spec(R) | p ⊇ S}.

Proposition 1.32. Let S ⊆ R.

(a) V(S) = V(⟨S⟩).

(b) a = R if and only if V(a) = ∅.

(c) a ⊆ Nil(R) if and only if V(a) = Spec(R).

(d) If a ⊆ b, then V(a) ⊇ V(b)†. If S ⊆ T ⊆ R, then V(S) ⊇ V(T ).

Proof. (d) Since S ⊆ T ⊆ R, we have that V(S) ⊇ V(T ) by definition.

(a) p ∈ V(S) if and only if p ⊇ S if and only if p ⊇ ⟨S⟩ if and only if p ⊇ V(⟨S⟩).

(b) We have that a = R if and only if b ̸⊇ a for any b ⪇ R if and only if m ̸⊇ a for any m ≤ R
maximal if and only if p ̸⊇ a for any p ∈ Spec(R) by Fact 1.14 and Fact 1.17.

(c) a ⊆ Nil(R) if and only if p ⊇ a for all p ∈ Spec(R) by Proposition 1.26(d) if and only if
V(a) = Spec(R).

†V(a) ⊆ V(b) if and only if rad(a) ⊇ rad(b); V(a) = V(b) if and only if rad(a) = rad(b).
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Proposition 1.33. We have the following.

(a) V(a+ b) = V(a ∪ b) = V(a) ∩V(b).

(b) V(a) ∩V(b) = ∅ if and only if a+ b = R.

Proof. (a) Since a+ b = ⟨a ∪ b⟩, V(a+ b) = V(⟨a ∪ b⟩) = V(a ∪ b).
Let p ∈ Spec(R). Note that p ⊇ a∪ b if and only if p ⊇ a and p ⊇ b. Hence V(a∪ b) = V(a)∩V(b).

(b) V(a)∩V(b) = ∅ if and only if V(a+ b) = ∅ by part (a) if and only if a+ b = R by Proposition
1.32(b).

Remark. The sum a1 + · · · + an is defined for a1, . . . , an for all n ∈ Z≥3 and same properties as
above hold for finite sums.

Definition 1.34. ∑
λ∈Λ

aλ = ⟨
⋃
λ∈Λ

aλ⟩ =
⋂

∪
λ∈Λ

aλ⊆I≤R

I.

Fact 1.35. We have the following.

(a)
∑
λ∈Λ aλ ⊆ c if and only if

⋃
λ∈Λ aλ ⊆ c.

(b)
∑
λ∈Λ aλ is the (unique) smallest ideal of R containing

⋃
λ∈Λ aλ.

(c)
∑
λ∈Λ aλ = {

∑finite
λ∈Λ aλ | aλ ∈ aλ,∀λ ∈ Λ}.

(d) If aλ = ⟨Sλ⟩ for λ ∈ Λ, then
∑
λ∈Λ aλ = ⟨

⋃
λ∈Λ Sλ⟩.

Fact 1.36. We have the following.

(a) V(
∑
λ∈Λ aλ) = V(

⋃
λ∈Λ aλ) =

⋂
λ∈Λ V(aλ).

(b)
⋂
λ∈Λ V(aλ) = ∅ if and only if

∑
λ∈Λ aλ = R.

Products of Ideals

Definition 1.37.
ab = ⟨N⟩ =

⋂
N⊆I≤R

R,

where N = {ab | a ∈ a, b ∈ b}.

Fact 1.38. Let N = {ab | a ∈ a, b ∈ b}.

(a) ab ⊆ c if and only if N ⊆ c.

(b) ab is the (unique) smallest ideal of R containing N .

(c) ab = {
∑finite
i aibi | ai ∈ a, bi ∈ b,∀ i}.

(d) If a = ⟨S⟩ and b = ⟨T ⟩, then ab = ⟨st | s ∈ S, t ∈ T ⟩.

(e) If a = ⟨x1, . . . , xm⟩ and b = ⟨y1, . . . , yn⟩, then ab = ⟨xiyj | i = 1, . . . ,m, j = 1, . . . , n⟩.
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(f) ab ⊆ a ∩ b.

Proof. (c) Let I = {
∑finite
i aibi | ai ∈ a, bi ∈ b}. Check I ≤ R through I ⊆ ab ⊆ I like Fact 1.31(c).

(f) Method 1. For any a ∈ a ≤ R, we have that ab ∈ a for any b ∈ b. For any b ∈ b ≤ R, we have
that ab ∈ b for any a ∈ a. Hence ab ∈ a∩ b for any a ∈ a and b ∈ b. Hence ab ⊆ a∩ b by Fact 1.12.

Method 2. It follows from ab ⊆ aR = a and ab ⊆ Rb = b.

Proposition 1.39. We have the following.

(a) V(ab) = V(a ∩ b) = V(a) ∪V(b).

(b) V(a) ∪V(b) = Spec(R) if and only if ab ⊆ Nil(R) if and only if a ∩ b ⊆ Nil(R).

Proof. (a) Let p ∈ Spec(R). We claim that p ⊇ ab if and only if p ⊇ a or p ⊇ b∗.

⇐= Let p ⊇ a or p ⊇ b. Then p = pR ⊇ aR ⊇ ab or p = Rp ⊇ Rb ⊇ ab.

=⇒ Let p ⊇ ab. Suppose p ̸⊇ a and p ̸⊇ b. Then there exists a ∈ a ∖ p and exists b ∈ b ∖ p.
Since p ∈ Spec(R), ab ̸∈ p, contradicting ab ∈ ab ⊆ p.

Hence V(ab) = V(a) ∪V(b).

Since ab ⊆ a ∩ b, V(ab) ⊇ V(a ∩ b). Let p ∈ V(ab). Then p ⊇ ab. Hence p ⊇ a or p ⊇ b. Hence
p ⊇ a ∩ b and then p ∈ V(a ∩ b). Hence V(ab) ⊆ V(a ∩ b). Thus, V(ab) = V(a ∩ b)†.

(b) V(a) ∪ V(b) = Spec(R) if and only if V(ab) = Spec(R) by part (a) if and only if ab ⊆ Nil(R)
by Proposition 1.32(c) and similarly for a ∩ b.

Proposition 1.40. We have the following.

(a) ab = ba and (ab)c = a(bc).

(b) a(b+ c) = ab+ ac.

(c) a ∩ b = ab if a+ b = R, i.e., a and b are “coprime” or “comaximal”.

The converse holds if R is a PID and a, b ̸= 0.

Proof. (a) and (b) are straightforward.

(c) “⊇”. We always have a ∩ b ⊇ ab.

“⊆”. Assume a+ b = R.

Method 1. Note that 1 = a+ b for some a ∈ a and b ∈ b. Let x ∈ a ∩ b. Then x ∈ b and x ∈ a.
Hence x = 1 · x = (a+ b)x = ax+ bx = ax+ xb ∈ ab. Hence a ∩ b ⊆ ab.

Method 2. Note that

a ∩ b = R(a ∩ b) = (a+ b)(a ∩ b) = a(a ∩ b︸ ︷︷ ︸
⊆b

) + b(a ∩ b︸ ︷︷ ︸
⊆a

) ⊆ ab

by (a) and (b).

∗In some texts, this is the definition of prime ideal.
†Let p ∈ Spec(R). Then by (f), p ⊇ a ∩ b ⊇ ab if and only if p ⊇ a or p ⊇ b, to get V(a ∩ b) = V(a) ∪V(b).
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Conversely, assume R is a PID and a, b ̸= 0. Then R is a UFD, so each reducible element
has a unique factorization into multiple of irreducible elements, also, since R is a PID, every
irreducible element is actually prime. Hence we can write a = pe11 · · · penn R and b = pf11 · · · pfnn R
with ei, fi ≥ 0 for i = 1, . . . , n, and p1, . . . , pn ∈ R are non-associate prime elements. Assume
a ∩ b = ab. Since a = ⟨pe11 · · · penn ⟩ and b = ⟨pf11 · · · pfnn ⟩, a ∩ b = lcm(pe11 · · · penn , p

f1
1 · · · pfnn )R =

p
max{e1,f1}
1 · · · pmax{en,fn}

n R. By Fact 1.38(e), ab = pe1+f11 · · · pen+fnn . Hence max{ei, fi} = ei + fi,
i.e, ei = 0 or fi = 0 for i = 1, . . . , n. In other words, for p ∈ Spec(R), either a ̸⊆ p or b ̸⊆ p†. Hence
V(a) ∩V(b) = ∅ for p ∈ Spec(R). Thus, a+ b = R by Proposition 1.33(b).

Remark. The product a1 · · · an is defined for a1, . . . , an for all n ∈ Z≥3.

Example 1.41. Let R = k[X,Y ], a = ⟨X⟩ and b = ⟨Y ⟩. Then a∩ b = ⟨XY ⟩ = ab by Fact 1.38(e).
But a+ b = ⟨X,Y ⟩ ⊊ R. Hence the converse in Proposition 1.40(c) fails in general.

Definition 1.42. Let n ≥ 1. Let an = a · · · a︸ ︷︷ ︸
n times

and a0 = R.

Warning 1.43. an is not generated by {an | a ∈ a}. For example, if R = F2[X,Y ] and a = ⟨X,Y ⟩,
then a2 = ⟨X2, XY, Y 2⟩ ≠ ⟨f2 | f ∈ a⟩ ̸∋ XY .

Fact 1.44. Let n ≥ 1 and N = {a1 · · · an | ai ∈ a,∀ i = 1, . . . , n}.

(a) an = ⟨N⟩ and for any b ≤ R, we have that an ⊆ b if and only if N ⊆ b.

(b) an is the (unique) smallest ideal of R containing N .

(c) an = {
∑finite
i ai1 · · · ain | aij ∈ a,∀ i,∀j = 1, . . . , n}.

(d) If a = ⟨S⟩, then an = ⟨s1 · · · sn | si ∈ S, ∀ i = 1, . . . , n⟩.

(e) If a = ⟨x1, . . . , xm⟩, then an = ⟨xi1 · · ·xin | ij ∈ {1, . . . ,m},∀j = 1, . . . , n⟩.

Fact 1.45. V(an) = V(a).

Proof. By Proposition 1.39, V(an) =
⋃n
i=1 V(a) = V(a).

Proposition 1.46 (Chinese Remainder Theorem). We have the following.

(a) The function ϕ : R→ (R/a1)× · · · × (R/an) given by ϕ(x) = (x, · · · , x) = (x+ a1, . . . , x+ an)
is a well-defined ring homomorphism.

(b) If ai + aj = R for 1 ≤ i, j ≤ n with i ̸= j, i.e., {a1, . . . , an} are pairwise coprime, then⋂n
i=1 ai = a1 · · · an and ai + (

⋂n
j=1,j ̸=i aj)R = R for i = 1, . . . , n.

(c) ϕ is surjective if and only if ai + aj = R for 1 ≤ i, j ≤ n with i ̸= j.

(d) Ker(ϕ) =
⋂n
i=1 ai.

(e) If ai + aj = R for 1 ≤ i, j ≤ n with i ̸= j and
⋂n
i=1 ai = 0, then R ∼= (R/a1)× · · · × (R/an).

†Let p ∈ R be prime and a ∈ R. Then p | a if and only if ⟨p⟩ ⊇ ⟨a⟩. Furthermore, if a has a prime factorization,
then p | a if and only if p occurs in the prime factorization of a.
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Proof. (b) Let i ∈ {1, . . . , n}. To show ai+(
⋂
j ̸=i aj)R = R, it suffices to show V(ai)

⋂(⋃
j ̸=iV(aj)

)
= V(ai)

⋂
V
(⋂

j ̸=i aj

)
= V(ai +

⋂
j ̸=i aj) = ∅. Suppose V(ai)

⋂(⋃
j ̸=iV(aj)

)
̸= ∅. Then there

exists p ∈ V(ai) ∩V(aj) = V(ai + aj) = V(R) = ∅ for some j ̸= i, a contradiction.

Now for
⋂n
i=1 ai = a1 · · · an, prove by induction on n. Base case n = 1: trivial. Base case

n = 2: by Proposition 1.40(c). Induction step: assume n ∈ Z≥3 and
⋂n−1
i=1 ai = a1 · · · an−1. Then

an + a1 · · · an−1 = an +
⋂n−1
j=1 aj = R. Hence by Proposition 1.40(c), we have that

n⋂
i=1

ai =

(
n−1⋂
i=1

ai

)⋂
an = (a1 · · · an−1) ∩ an = (a1 · · · an−1)an = a1 · · · an.

(c) =⇒ Assume ϕ is surjective. In particular, there exists x ∈ R such that (1, 0, . . . , 0) = ϕ(x) =
(x, x, · · · , x). Hence x + a1 = 1 + a1 and x + ai = 0 + ai for i = 2, . . . , n. Hence 1 − x ∈ a1 and
x ∈ ai for i = 2, . . . , n. Also, since (x)

∈ai

+(1− x)
∈a1

= 1, we have that ai + a1 = R for i = 2, . . . , n.

Similarly, consider (0, · · · , 0, 1
↑jth
, 0, · · · , 0) // ai + aj = R for 1 ≤ i, j ≤ n with i ̸= j.

⇐= Assume ai + aj = R for 1 ≤ i, j ≤ n with i ̸= j. By (b), a1 + (
⋂n
j=2 aj)R = R. Hence

a1 + y = 1 with a1 ∈ a1 and y ∈
⋂n
j=2 aj , i.e., 1− y = a1 ∈ a1 and y ∈ aj for j = 2, . . . , n. Then

ϕ(y) = (y, y, · · · , y) = (y + a1, y + a2, · · · , y + an) = (1 + a1, 0 + a2, . . . , 0 + an) = (1, 0, · · · , 0).

Similarly, for j = 1, . . . , n, there exists yj such that ϕ(yj) = (0, · · · , 0, 1
↑jth
, 0, · · · , 0). Then for any

(r1, . . . , rn) ∈ R
a1
× · · · × R

an
,

(r1, . . . , rn) =

n∑
j=1

rj(0, · · · , 0, 1
↑jth
, 0, · · · , 0) =

n∑
j=1

rjϕ(yj) = ϕ

 n∑
j=1

rjyj

 .

Hence ϕ is surjective.

Proposition 1.47. Let a1, . . . , an ≤ R and p ∈ Spec(R).

(a) If p = a1 · · · an, then p = ai for some i ∈ {1, . . . , n}.

(b) If p ⊇ a1 ∩ · · · ∩ an, then p ⊇ ai for some i ∈ {1, . . . , n}.

(c) If p = a1 ∩ · · · ∩ an, then p = ai for some i ∈ {1, . . . , n}.

Proof. (b) Assume p ⊇ a1 ∩ · · · ∩ an ⊇ a1 · · · an by Fact 1.38(f). Since p ∈ Spec(R), there exists
some i ∈ {1, . . . , n} such that p ⊇ ai.

(c) By (b), there exists i ∈ {1, . . . , n} such that ai ⊆ p = a1 ∩ · · · ∩ an ⊆ ai. Hence p = ai.

(a) Since p ⊇ a1 · · · an, we have that p ⊇ ai for some i ∈ {1, . . . , n}. Also, we have that p =
a1 · · · an ⊆ ai.

Example. The converses fail in general. Let R = k[X,Y ], p = a1 = ⟨X⟩ and a2 = ⟨Y ⟩. Then
a1 ∩ a2 = ⟨XY ⟩ ≠ ⟨X⟩ = p = ⟨X⟩ ≠ ⟨XY ⟩ = a1a2.
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Prime Avoidence

Lemma 1.48. Let k be an infinite field, 0 ̸= V a vector space over k, and V1, . . . , Vn ⪇ V . Then⋃n
i=1 Vi ⊊ V .

Proof. Induction on n. Base case n = 1: trivial.
Induction step: assume n ≥ 2 and

⋃
i̸=j Vj ⊊ V for j = 1, . . . , n. Then there exists 0 ̸=

vj ∈ V ∖{
⋃
i̸=j Vj} for j = 1, . . . , n. By way of contradiction, suppose

⋃n
i=1 Vi = V . Then

vj ∈ {
⋃n
i=1 Vi}∖{

⋃
i ̸=j Vj} ⊆ Vj for j = 1, . . . , n. Let 1 ≤ i, j ≤ n with i ̸= j. Since vj ̸= 0, we have

that vi+λvj ̸= vi+µvj for any λ ̸= µ in k. Since k is infinite, there exists l such that Vl contains two
distinct elements vi+λvj and vi+µvj with 0 ̸= λ, µ ∈ k. Then (λ−µ)vj = (vi+λvj)−(vi+µvj) ∈ Vl.
Since λ ̸= µ, we have that vj ∈ Vl. Since vj ̸∈ Vk for any k ̸= j and vj ∈ Vj , we have that l = j.
Also, since (λ−1 − µ−1)vi = λ−1(vi + λvj) − µ−1(vi + µvj) ∈ Vl, we have that vi ∈ Vl and then
similarly, we have that l = i. Hence i = l = j, a contradiction.

Example 1.49. If k = R and V = R2, then the lemma says that R2 is not a finite union of lines
through the origin, which is straightforward to show.

X

Y

If |k| < ∞, then the lemma fails. For example, V = k2 =
⋃
v∈k2{v} =

⋃
0̸=v∈k2 span{v} but

0 ̸= span(v) ⪇ k2 = V for 0 ̸= v ∈ k2.
The same technique shows that can’t replace V1, . . . , Vn with V1, V2, · · · over Q.

Theorem 1.50 (Prime avoidence, general version). Let b1, . . . , bn, a ≤ R. Assume

(a) R contains an infinite field k as a subring, or

(b) b3, . . . , bn ∈ Spec(R).

Then if a ̸⊆ bi for all i = 1, . . . , n, then a ̸⊆
⋃n
i=1 bi.

Proof. (a) For each i = 1, . . . , n, since a ̸⊆ bi, a ∩ bi ⪇ a. Also, since a is a k-vector space, by
Lemma 1.48, a ∩

⋃n
i=1 bi =

⋃n
i=1(a ∩ bi) ⪇ a. Hence a ̸⊆

⋃n
i=1 bi.

(b) Induct on n. Base case n = 1: done. Base case n = 2. Let ai ∈ a ∖ bi for i = 1, 2. Then
a1 + a2 ∈ a. Suppose a ⊆ b1 ∪ b2. Then a1 + a2 ∈ b1 ∪ b2, say a1 + a2 ∈ b2. Since a1 ∈ a ⊆ b1 ∪ b2
and a1 ̸∈ b1, a1 ∈ b2. Hence a2 = (a1 + a2)− a1 ∈ b2, a contradiction.

Induction step n ≥ 3. Let a ̸⊆ bi for i = 1, . . . , n. Assume a ̸⊆
⋃
i ̸=j bi for j = 1, . . . , n. Then

there exists aj ∈ a ∖ {
⋃
i ̸=j bi} for j = 1, . . . , n. By way of contradiction, suppose a ⊆

⋃n
i=1 bi.

Then aj ∈
⋃n
i=1 bi ∖ {

⋃
i ̸=j bi} ⊆ bj for j = 1, . . . , n. Note that a1 · · · an−1 + an ∈ a ⊆

⋃n
i=1 bi.

Hence there exists l ∈ {1, . . . , n} such that a1 · · · an−1 + an ∈ bl. Suppose l = n. Since an ∈ bn,
a1 · · · an−1 ∈ bn. Since n ≥ 3, we have that bn ∈ Spec(R) and then ai ∈ bn for some 1 < i < n, a
contradiction. Hence we must have l < n. But since a1 · · · al · · · an−1 ∈ bl, we have that an ∈ bl, a
contradiction.
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Theorem 1.51 (Prime avoidence). Let p1, . . . , pn ∈ Spec(R). If a ⊆
⋃n
i=1 pi, then a ⊆ pi for some

i ∈ {1, . . . , n}, i.e., if a ̸⊆ pi for i = 1, . . . , r, then a ̸⊆
⋃n
i=1 pi.

Fact (Avoidence for monomial ideals). Let A be a nonzero commutative ring with identity and
a, b1, . . . , bn be monomial ideals of A[X1, . . . , Xd]. If a ⊆

⋃n
i=1 bi, a ⊆ bi for some i ∈ {1, . . . , n}.

Proof. By Dickson’s lemma, a = ⟨f1, . . . , fm⟩ for some monomials f1, . . . , fm ∈ A[X1, . . . , Xd].
Then f1 + · · · + fm ∈ a ⊆

⋃n
i=1 bi. Hence f1 + · · · + fm ∈ bi for some i ∈ {1, . . . , n}. But bi is a

monomial ideal, so f1, . . . , fm ∈ bi. Thus, a = ⟨f1, . . . , fm⟩ ⊆ bi.

Colon Ideals

Definition 1.52. Let S ⊆ R.

(a) Define the colon ideal by

(a : S) := {r ∈ R | rs ∈ a,∀s ∈ S} ≤ R.†

(b) Define the annihilator of S by

AnnR(S) := (0 : S) = {r ∈ R | rs = 0,∀s ∈ S} ≤ R.

In this notation, the set of all zero divisors of R is

ZD(R) =
⋃
x ̸=0

AnnR(x).

Example 1.53. Let R = k[X,Y ].

(a) (⟨XY ⟩ : {X,Y }) = (⟨XY ⟩ : ⟨X,Y ⟩) = (⟨XY ⟩ : ⟨X⟩)
⋂
(⟨XY ⟩ : ⟨Y ⟩) = ⟨Y ⟩

⋂
⟨X⟩ = ⟨XY ⟩.

(b)

(⟨X2, XY ⟩ : {X,Y }) = (⟨X2, XY ⟩ : ⟨X,Y ⟩) =
(
(⟨X2⟩ : ⟨X⟩) + (⟨X2⟩ : ⟨Y ⟩)

)⋂
((⟨XY ⟩ : ⟨X⟩) + (⟨XY ⟩ : ⟨Y ⟩)) = (⟨X⟩+ ⟨X2⟩)

⋂
(⟨Y ⟩+ ⟨X⟩)

= ⟨X⟩
⋂
⟨X,Y ⟩ = ⟨X,XY ⟩ = ⟨X⟩.

Fact 1.54. Let S, T ⊆ R.

(a) a ⊆ (a : S) ≤ R.

(b) (a : b)b ⊆ a.

(c) If S ⊆ T , then (a : S) ⊇ (a : T ).

(d) If a ⊆ b, then (a : S) ⊆ (b : S).

(e) (a : S) = (a : ⟨S⟩).
†For instance, (mZ : nZ) = ( m

(m,n)
)Z for m,n ≥ 1.
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(f) b ⊆ a if and only if (a : b) = R.

(g) (a :
⋃
λ∈Λ Sλ) =

⋂
λ∈Λ(a : Sλ).

(h) (a :
∑
λ∈Λ bλ) = (a :

⋃
λ∈Λ bλ) =

⋂
λ∈Λ(a : bλ).

(i) (
⋂
λ aλ : S) =

⋂
λ∈Λ(aλ : S).

(j) ((a : b) : c) = (a : bc) = ((a : c) : b).

Proof. (b) For each r ∈ (a : b) and each b ∈ b, we have that br ∈ a. It then follows from Fact 1.12.

(e) “⊇”. Since S ⊆ ⟨S⟩, by (c), (a : S) ⊇ (a : ⟨S⟩). “⊆”. Let r ∈ (a : S). Then rs ∈ a

for s ∈ S. Let s ∈ ⟨S⟩. Then s =
∑finite
i aisi for some ai ∈ R and si ∈ S for each i. Hence

rs = r(
∑finite
i aisi) =

∑finite
i ai(rsi) ∈ R. Hence r ∈ (a : ⟨S⟩).

(h) This follows from (e) and (g).

(j) It is enough to prove the first equality since bc = cb. Note that r ∈ ((a : b) : c) if and only if
rc ∈ (a : b) for c ∈ c if and only if r(bc) = (rc)b ∈ a for any b ∈ b and c ∈ c if and only if r ∈ (a : bc)
by (e).

Example 1.55. Let R = k[X,Y ]. It is straightforward to show the following.

(a)

(⟨XY ⟩ : ⟨X,Y ⟩) = (⟨XY ⟩ : {X,Y }) = (⟨XY ⟩ : X) ∩ (⟨XY ⟩ : Y ) = ⟨Y ⟩ ∩ ⟨X⟩ = ⟨XY ⟩.

(b)

(⟨X2, XY ⟩ : ⟨X,Y ⟩) = (⟨X2, XY ⟩ : {X,Y })
= (⟨X2, XY ⟩ : X) ∩ (⟨X2, XY ⟩ : Y )

= ⟨X,Y ⟩ ∩ ⟨X⟩ = ⟨X⟩.

Radicals of Ideals

Definition 1.56. The radical of a ≤ R is

rad(a) = r(a) =
√
a = {x ∈ R | xn ∈ a,∀n≫ 0} = {x ∈ R | xn ∈ a for some n ≥ 1}.

Remark. rad(0) = Nil(R).

Example 1.57. In R = k[X,Y ], we have that

rad(⟨X2Y,XY 2⟩) = m-rad(⟨X2Y,XY 2⟩) = m-rad(⟨X2Y ⟩+ ⟨XY 2⟩)
= m-rad(⟨X2Y ⟩) + m-rad(⟨XY 2⟩) = ⟨XY ⟩+ ⟨XY ⟩ = ⟨XY ⟩.

Fact 1.58. Let π : R→ R/a be the natural projection.

(a) rad(a) = π−1(Nil(R/a)) ≤ R.
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(b) If a ⊆ b, then rad(a) ⊆ rad(b).

(c) a ⊆ rad(a) = rad(rad(a)).

(d) rad(ab) = rad(a ∩ b) = rad(a) ∩ rad(b).

(e) rad(a) = R if and only if a = R.

(f) rad(a+ b) = rad(rad(a) + rad(b)).

(g) rad(a) =
⋂

p∈V(a) p.

(h) rad(
⋂n
i=1 p

ei
i ) =

⋂n
i=1 pi, where pi ∈ Spec(R) and ei ≥ 1 for i = 1, . . . , n.

(i) a+ b = R if and only if rad(a) + rad(b) = R.

Proof. (a) Let r ∈ R. Then r ∈ π−1(Nil(R/a)) if and only if π(r) ∈ Nil(R/a) if and only if rn = 0
in R/a for some n ≥ 1 if and only if rn ∈ a for some n ≥ 1 if and only if r ∈ rad(a).

(b) It is straightforward.

(c) Since a1 = a ∈ a for any a ∈ a, we have that a ∈ rad(a) for a ∈ a. Hence a ⊆ rad(a). Then
by (b), rad(a) ⊆ rad(rad(a)). Let r ∈ rad(rad(a)). Then there exists n ≥ 1 such that rn ∈ rad(a).
Hence there exists m ≥ 1 such that rmn = (rn)m ∈ a. Hence r ∈ rad(I).

(d) Since ab ⊆ a ∩ b ⊆ a, b, by (b), we have that rad(ab) ⊆ rad(a ∩ b) ⊆ rad(a), rad(b) and then
rad(ab) ⊆ rad(a ∩ b) ⊆ rad(a) ∩ rad(b). On the other hand, let x ∈ rad(a) ∩ rad(b). Then there
exist m,n ≥ 1 such that xm ∈ a and xn ∈ b. Hence xm+n = xm · xn ∈ ab. Hence x ∈ rad(ab).

(e) a = R if and only if 1 ∈ a if and only if 1n ∈ a if and only if rad(a) = R.

(f) Since a+ b ⊆ rad(a) + rad(b), we have that rad(a+ b) ⊆ rad(rad(a) + rad(b)).
Let x ∈ rad(rad(a) + rad(b)). Then there exists n ≥ 1 such that xn ∈ rad(a) + rad(b). Hence there
exist a ∈ rad(a) and b ∈ rad(b) such that xn = a + b. Then there exist j, k ≥ 1 such that aj ∈ a
and bk ∈ b. Hence

xn(j+k) = (xn)j+k = (a+ b)j+k =

j+k∑
l=0

(
l

j + k

)
albj+k−l.

Since for 0 ≤ l ≤ j + k, either l ≥ j or l < j, i.e., l ≥ j or j + k − l > k, we have that al ∈ a when
l ≥ j, and bj+k−l ∈ b when j + k − l > n. Hence xn(j+k) = 0. Thus, x ∈ rad(a+ b).

(g) By Fact 1.15, Spec(R/a) = {p/a | p ∈ V(a)}. Hence Nil(R/a) =
⋂

p∈Spec(R/a) p =
⋂

p∈V(a) p/a.

Then by (a),

rad(a) = π−1(Nil(R/a)) = π−1

 ⋂
p∈V(a)

p/a

 =
⋂

p∈V(a)

π−1(p/a) =
⋂

p∈V(a)

p.
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(h) Since pi ∈ Spec(R), pi ∈ V(pi) and then pi ⊆ rad(pi) =
⋂

p∈V(pi)
p ⊆ pi, i.e., pi = rad(pi) for

i = 1, . . . , n. Then by (d),

rad

(
n⋂
i=1

peii

)
=

n⋂
i=1

rad(peii ) =

n⋂
i=1

rad(pi) =

n⋂
i=1

pi.

(i) By (e) and (f), a+ b = R if and only if rad(a+ b) = R if and only if rad(rad(a) + rad(b)) = R
if and only if rad(a) + rad(b) = R.

Example 1.59. (b) Example of a ̸⊆ b when rad(a) ⊆ rad(b). Let R = Z. Then rad(⟨2⟩) = ⟨2⟩ =
rad(⟨4⟩), but ⟨2⟩ ̸⊆ ⟨4⟩.

(c) Example of a ⊊ rad(a). Let R = Z. Then ⟨4⟩ ⊊ ⟨2⟩ = rad(⟨4⟩).

(d) Example of rad(
⋂∞
i=1 ai) ⊊

⋂∞
i=1 rad(ai). Let R = k[X1, X2, · · · ], a1 = ⟨X1⟩, a2 = ⟨X2

1 , X
2
2 ⟩,

· · · , ai = ⟨Xi
1, . . . , X

i
i ⟩, · · · . Since ⟨X1, . . . , Xi⟩ ∈ Spec(R) for i ≥ 1, by (f) and (g), we have that

for i ≥ 1,

rad(ai) = rad(⟨Xi
1, . . . , X

i
i ⟩) = rad(⟨X1, . . . , Xi⟩) = ⟨X1, . . . , Xi⟩.

Hence
∞⋂
i=1

rad(ai) =

∞⋂
i=1

⟨X1, . . . , Xi⟩ = ⟨X1⟩ ⊋ 0 = rad(0) = rad

( ∞⋂
i=1

ai

)
.

(f) Example of rad(a+ b) ⊋ rad(a) + rad(b). Let R = k[X,Y ], a = ⟨X + Y 2⟩ and b = ⟨X⟩. Then
a, b ∈ Spec(R). Also, since ⟨X,Y ⟩ ∈ Spec(R),

rad(a) + rad(b) = a+ b = ⟨X + Y 2, X⟩ = ⟨X,Y 2⟩ ⊊ ⟨X,Y ⟩ = rad(⟨X,Y 2⟩) = rad(a+ b).

Example 1.60. (a) Let R = F2[X,Y ], a = ⟨X,Y ⟩, b1 = ⟨X,XY, Y 2⟩ = ⟨X,X2, XY, Y 2⟩, b2 =
⟨X + Y,X2, XY, Y 2⟩ and b3 = ⟨Y,X2, XY ⟩ = ⟨Y,X2, XY, Y 2⟩. Then a ̸⊆ bi for i = 1, 2, 3. Let
f ∈ a. Then f can be written as

f = Xg(X) +X2α(X,Y ) +XY γ(X,Y ) + +Y 2β(X,Y ) + Y h(Y )

= X2 · g(X)− g(0)
X

+ (Xg(0) + Y h(0)) + Y 2 · h(Y )− h(0)
Y

+X2α(X,Y ) +XY γ(X,Y ) + Y 2β(X,Y ).

for some g ∈ F2[X], h ∈ F2[Y ] and α, β, γ ∈ F2[X,Y ]. Since g(0), h(0) ∈ {0, 1}, f ∈ b1 ∪ b2 ∪ b3.
Also, since b1 ∪ b2 ∪ b3 ⊆ a, we have that a = b1 ∪ b2 ∪ b3.

(b) Let R = F2[X,Y ]
⟨X2,XY,Y 2⟩ and x = X, y = Y ∈ R. Then R ∼= F2 ⊕ F2x ⊕ F2y and a := ⟨x, y⟩ ∼=

F2x⊕ F2y as F2-vector space. Let b1 = ⟨x⟩, b2 = ⟨x+ y⟩ and b3 = ⟨y⟩. Then a ̸⊆ bi for i = 1, 2, 3,
but a = b1 ∪ b2 ∪ b2.
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Extensions and Contractions

Let f : R→ S be a ring homomorphism, a, a1, a2 ≤ R and b, b1, b2 ≤ S.

Definition 1.61. The extension of a along f is

ae = aS = ⟨f(a)⟩S = f(a)S =

{
finite∑
i

f(ai)si

∣∣∣ ai ∈ a, si ∈ S,∀ i

}
≤ S.

The contraction of b along f is
bc = f−1(b) ≤ R.

Example 1.62. (a) Let R be an integral domain with the field of fraction Q(R). Then R ⊆ Q(R)
with the inclusion map ϵ : R→ Q(R) given by ε(r) = r/1. Note that 0Q(R) = 0 and aQ(R) = Q(R)
for 0 ̸= a ≤ R.

(b) Note that ⟨X⟩k[X] ⊆ k[X] ⊆ k[X,Y ], (⟨X⟩k[X]) k[X,Y ] = ⟨X⟩k[X,Y ].

(c) Let R ⊆ S be rings and ε : R
⊆−→ S. If b ≤ S, then ε−1(b) = b ∩R.

(d) Let ε : k[X]
⊆−→ k[X,Y ]. Since ⟨X,Y ⟩k[X,Y ] ≤ k[X,Y ], we have that ε−1(⟨X,Y ⟩k[X,Y ]) =

⟨X,Y ⟩k[X,Y ]
⋂
k[X] = ⟨X⟩k[X].

Proposition 1.63. We have the following.

(a) a ⊆ f−1(aS) and f−1(b)S ⊆ b. If a1 ⊆ a2, then a1S ⊆ a2S. If b1 ⊆ b2, then f
−1(b1) ⊆ f−1(b2).

If T ⊆ R, then (⟨T ⟩R)S = ⟨f(T )⟩S.

Example of a ⊊ f−1(aS). Let f : R = Z ⊆−→ S = Q and a = ⟨2⟩R. Then f−1(aS) = f−1(S) =
R ⊋ ⟨2⟩R = a.

Example of f−1(b)S ⊊ b. Let f : R = k[X]
⊆−→ S = k[X,Y ]. Let b = ⟨Y ⟩S. Then f−1(b) = 0

and so f−1(b)S = 0 ⊊ ⟨Y ⟩S = b.

(b) aS = f−1(aS)S and f−1(b) = f−1(f−1(b)S), i.e., ae = aece and bc = bcec.†

(c) (a1 + a2)S = a1S + a2S and f−1(b1 + b2) ⊇ f−1(b1) + f−1(b2).

Example of f−1(b1 + b2) ⊋ f−1(b1) + f−1(b2). Let f : R = k
⊆−→ S = k[X], b1 = ⟨X⟩S and

b2 = ⟨X + 1⟩S. Then f−1(b1) = 0 = f−1(b2). Hence

f−1(b1 + b2) = f−1(S) = R ⊋ 0 = f−1(b1) + f−1(b2).

(d) (a1 ∩ a2)S ⊆ a1S ∩ a2S and f−1(b1 ∩ b2) = f−1(b1) ∩ f−1(b2).

Example of (a1 ∩ a2)S ⊊ a1S ∩ a2S. Let f : R = k[X,Y ] → S = k[X,Y ]/⟨X,Y ⟩2, a1 = ⟨X⟩R
and a2 = ⟨X + Y 2⟩R. Then a1 ∩ a2 = ⟨X(X + Y 2)⟩R = ⟨X2 + XY 2⟩R, a1S = ⟨X⟩S and
a2S = ⟨X + Y 2⟩S = ⟨X⟩S. Hence

(a1 ∩ a2)S = ⟨X2 +XY 2⟩S = 0 ⊊ ⟨X⟩S = a1S ∩ a2S.

†We have a bijection {a ≤ R | aec = a}⇄ {b ≤ S | bce = b} given by a 7→ ae and bc ← [ b.
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(e) (a1a2)S = (a1S)(a2S) and f
−1(b1b2) ⊇ f−1(b1)f

−1(b2).

Example of f−1(b1) ∩ f−1(b2) = f−1(b1 ∩ b2) ⊇ f−1(b1b2) ⊋ f−1(b1)f
−1(b2). Let f : R =

k[X]→ S, where

S = k[X]/(X(X − 1)) = k[X]/(X2 −X) ∼= k[X]/⟨X⟩ × k[X]/⟨X − 1⟩ ∼= k × k

by Chinese Remainder Theorem. Note that in k × k, (1, 0) = (1, 0)2. Let b1 = ⟨X⟩S = b2. Then
b1b2 = ⟨X2⟩S = ⟨X⟩S = b1. Hence

f−1(b1b2) = f−1(b1) = f−1(⟨X⟩S) = ⟨X⟩R ⊋ ⟨X2⟩R = f−1(b1)f
−1(b2).

(f) (a1 : a2)S ⊆ (a1S : a2S) and f
−1(b1 : b2) ⊆ (f−1(b1) : f

−1(b2)).

Example of (a1 : a2)S ⊊ (a1S : a2S). Let f : R = k[X]→ S = k[X]/⟨X⟩ ∼= k, a1 = ⟨X2⟩R and
a2 = ⟨X⟩R. Then a1S = 0 = a2S and so

(a1S : a2S) = (0 : 0) = S ⊋ 0 = ⟨X⟩S = (⟨X2⟩ : ⟨X⟩)S = (a1 : a2)S.

Example of f−1(b1 : b2) ⊊ (f−1(b1) : f
−1(b2)). Let f : R = k

⊆−→ S = k[X], b1 = ⟨X⟩S and
b2 = ⟨X − 1⟩S. Then (b1 : b2) = (⟨X⟩ : ⟨X − 1⟩) = ⟨X⟩ and f−1(b1) = 0 = f−1(b2). Hence

f−1(b1 : b2) = f−1(⟨X⟩) = 0 ⊊ R = (0 : 0) = (f−1(b1) : f
−1(b2)).

(g) rad(a)S ⊆ rad(aS) and f−1(rad(b)) = rad(f−1(b)).

Example of rad(a)S ⊊ rad(aS). Let f : R = k[X]→ S = k[X]/⟨X2⟩ and a = 0R. Then

rad(a)S = rad(0R)S = 0S = 0 ⊊ ⟨X⟩S = rad(0S) = rad(aS).

Proof. (a) Note that a ⊆ f−1(f(a)) ⊆ f−1(f(a)S) = f−1(aS).

To show ⟨f(f−1(b))⟩S = f−1(b)S ⊆ b, it suffices to show ⟨f(f−1(b))⟩ ⊆ b, then it is equivalent
to show f(f−1(b)) ⊆ b, which is true.

A set of generators of (⟨T ⟩R)S over S is{
f

(
finite∑
i

tiri

)
=

finite∑
i

f(ti)f(ri)

∣∣∣∣ ti ∈ T, ri ∈ S, ∀ i
}
⊆ ⟨f(T )⟩S.

A set of generators of ⟨f(T )⟩S over S is {f(t) | t ∈ T} = {f(t · 1) | t ∈ T} which is a subset of
the generators of (⟨T ⟩R)S.

(b) ⊆ By (a), a ⊆ f−1(aS), so aS ⊆ f−1(aS)S. ⊇ A set of generators of f−1(aS)S over S is
{f(x) | x ∈ f−1(aS)} = f(f−1(aS)) ⊆ aS.

⊆ By (a), b ⊇ f−1(b)S, hence f−1(b) ⊇ f−1(f−1(b)S). ⊆ Let x ∈ f−1(b). Then f(x) =
f(x) · 1 ∈ ⟨f(f−1b)⟩S = f−1(b)S. Hence x ∈ f−1(f−1(b)S).

(c) ⊇ Since a1 + a2 ⊇ a1, a2, we have that (a1 + a2)S ⊇ a1S, a2S. Hence (a1 + a2)S ⊇ a1S + a2S.
⊆ A set of generators of (a1 + a2)S over S is

{f(a1 + a2) = f(a1) + f(a2) | a1 ∈ a1, a2 ∈ a2} ⊆ a1S + a2S.
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(d) Since a1 ∩ a2 ⊆ a1, a2, (a1 ∩ a2)S ⊆ a1S, a2S. Hence (a1 ∩ a2)S ⊆ a1S ∩ a2S.

Note that x ∈ f−1(b1 ∩ b2) if and only if f(x) ∈ b1 ∩ b2 if and only if f(x) ∈ b1, b2 if and only
if x ∈ f−1(b1), f

−1(b2) if and only if x ∈ f−1(b1) ∩ f−1(b2).

(e) ⊆ A set of generators of (a1a2)S over S is{
f

(
finite∑
i

αiβi

)
=

finite∑
i

f(αi)f(βi)

∣∣∣∣ αi ∈ a1, βi ∈ a2,∀ i

}
⊆ (a1S)(a2S).

⊇ Note that

(a1S)(a2S) = (f(a1)S)(f(a2)S) = (f(a1)f(a2))S = ⟨f(a1)f(a2) | a1 ∈ a1, a2 ∈ a2⟩S
= ⟨f(a1a2) | a1 ∈ a1, a2 ∈ a2⟩S ⊆ ⟨f(a1a2)⟩S = (a1a2)S.

Moreover, let
∑n
i=1 a1ia2i ∈ f−1(b1)f

−1(b2) for some n ≥ 1, a1i ∈ f−1(b1) and a2i ∈ f−1(b2)
for i = 1, . . . , n. Then f(a1i) ∈ b1 and f(a2i) ∈ b2 for i = 1, . . . , n. Since f is a ring homomorphism,
f(
∑n
i=1 a1ia2i) =

∑n
i=1 f(a1i)f(a2i) ∈ b1b2. Hence

∑n
i=1 a1ia2i ∈ f−1(b1b2).

(f) A set of generators of (a1 : a2)S over S is

{f(r) | r ∈ (a1 : a2)} = {f(r) | ra2 ⊆ a1} ⊆ {f(r) | rf(a2) ⊆ f(a1)} ⊆ {s ∈ S | sf(a2) ⊆ f(a1)}
= {s ∈ S | sf(a2)S ⊆ f(a1)S} = {s ∈ S | sa2S ⊆ a1S} = (a1S : a2S).

Note that

f−1(b1 : b2) = {f−1(s) | s ∈ (b1 : b2)} = {f−1(s) | sb2 ⊆ b1} ⊆ {f−1(s) | sf−1(b2)

⊆ f−1(b1)} ⊆ {r ∈ R | rf−1(b2) ⊆ f−1(b1)} = (f−1(b1) : f
−1(b2)).

(g) Let s ∈ rad(a)S. Then there exist m ≥ 1, ai ∈ rad(a) and si ∈ S for i = 1, . . . ,m such that
s =

∑m
i=1 f(ai)si. Since ai ∈ rad(a), there exists ni ≥ 1 such that ani

i ∈ a for i = 1, . . . ,m. Let
n = n1 + · · · + nm. Note that if k1 + · · · + km = n with k1, . . . , km ≥ 0, then there exists some
i ∈ {1, . . . ,m} such that ki ≥ ni and so akii ∈ a. Hence

sn =

(
m∑
i=1

f(ai)si

)n
=

∑
k1+···+km=n

n!

k1! · · · km!
f(ak11 · · · akmm )sk11 · · · skmm ⊆ f(a)S = aS.

Thus, s ∈ rad(aS).

Note that x ∈ f−1(rad(b)) if and only if f(x) ∈ rad(b) if and only if f(xn) = f(x)n ∈ b for
some n ≥ 1 if and only if xn ∈ f−1(b) for some n ≥ 1 if and only if x ∈ rad(f−1(b)).

Proposition 1.64. R×+Nil(R) ⊆ R×. For any u ∈ R× and x ∈ Nil(R), we have that u+x ∈ R×.
For example, 1 + x ∈ R×.

Proof. For any y ∈ Nil(R), there is a n ≥ 1 such that yn = 0, so

(1− y + y2 − · · ·+ (−1)n−1yn−1)(1 + y) = 1− yn = 1,

hence 1 + y ∈ R×.
Let u ∈ R× and x ∈ Nil(R). Then u−1x ∈ Nil(R). Hence 1 + u−1x ∈ R×. Thus, u + x =

u(1 + (u−1x)) ∈ R×.



23

Power Series Rings

Let A be a nonzero commutative ring with identity.

Definition 1.65.

AJXK = {f =

∞∑
i=0

aiX
i | ai ∈ A,∀ i ≥ 0} ∼=

∞∏
i=0

A

with addition and multiplication defined by (
∑∞
i=0 aiX

i) + (
∑∞
i=0 biX

i) =
∑∞
i=0(ai + bi)X

i and

(
∑∞
i=0 aiX

i)(
∑∞
i=0 biX

i) =
∑∞
i=0 ciX

i, where ci =
∑i
j=0 ajbi−j =

∑
p+q=i apbq for i ≥ 0. Then

AJXK is called a power series ring with 0AJXK = 0A =
∑∞
i=0 0AX

i and 1AJXK = 1A = 1A +∑∞
i=0 0AX

i. More generally, aJXK = {
∑∞
i=0 aiX

i | ai ∈ a,∀ i ≥ 0} for a ≤ A.

Example 1.66. eX =
∑∞
i=0

1
i!X

i ∈ RJXK.

Theorem 1.67. AJXK is a commutative ring with identity 1A and A ⊆ A[X] ⊆ AJXK are subrings.

Proposition 1.68. Let f(X) =
∑∞
i=0 aiX

i with ai ∈ A for i ≥ 0.

(a) f ∈ AJXK× if and only if a0 ∈ A×.

(b) If φ : A → B is a ring homomorphism, then there exists a well-defined ring homomorphism
φJXK : AJXK→ BJXK taking

∑∞
i=0 αiX

i to
∑∞
i=0 φ(αi)X

i and AJXK ≥ Ker(φJXK) = Ker(φ)JXK.

(c) For any a ≤ A, a · AJXK ⊆ aJXK ≤ AJXK and AJXK/aJXK ∼= A
a JXK. In addition, if a ≤ A is

finitely generated, a ·AJXK = aJXK.

(d) Let a ≤ A. Then

⟨X, a⟩AJXK = X ·AJXK+a·AJXK = XAJXK+aJXK =

{ ∞∑
i=0

biX
i

∣∣∣∣ b0 ∈ a, bi ∈ A,∀ i ≥ 1

}
≤ AJXK

and AJXK/⟨X, a⟩AJXK ∼= A/a. In particular, ⟨X⟩AJXK = {
∑∞
i=1 biX

i | bi ∈ A,∀ i ≥ 1} ≤ AJXK
and AJXK/⟨X⟩AJXK ∼= A.

(e) If f ∈ Nil(AJXK), then ai ∈ Nil(A) for i ≥ 0. The converse holds if ⟨a0, a1, a2, · · · ⟩ is finitely
generated. Also, Nil(A) ·AJXK ⊆ Nil(AJXK) ⊆ Nil(A)JXK.

(f) f ∈ Jac(AJXK) if and only if a0 ∈ Jac(A). Also, Jac(AJXK) = ⟨Jac(A), X⟩AJXK.

(g) AJXK is an integral domain if and only if A is an integral domain. Also, AJXK is never a field.

(h) a ≤ A is prime if and only if aJXK ≤ AJXK is prime if and only if ⟨a, X⟩AJXK ≤ AJXK is prime.

Let ϵ : A
⊆−→ AJXK. Then ϵ∗ : Spec(AJXK)→ Spec(A) taking pJXK to ϵ−1(pJXK) is always onto

and never 1-1.

(i) a ≤ A is maximal if and only if ⟨a, X⟩AJXK ≤ AJXK is maximal. Also, aJXK ≤ AJXK is never
maximal.

(j) Let m ∈ m-Spec(AJXK). Then
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(1) m ∩A ∈ m-Spec(A),

(2) X ∈ m,

(3) m = ⟨m ∩A,X⟩AJXK.

Therefore,

m-Spec(A)
ϵ∗−−⇀↽−−
Λ

m-Spec(AJXK)

n 7−→ ⟨n, X⟩AJXK
m ∩A←− [ m

Proof. (a) =⇒ Let f ∈ AJXK× with the multiplicative inverse f−1(X) =
∑∞
i=0 biX

i ∈ AJXK with
bi ∈ A for i ≥ 0. Then

1A = f · f−1 =

( ∞∑
i=0

aiX
i

) ∞∑
j=0

bjX
j

 = a0b0 + (a0b1 + a1b0)X + · · · .

Hence a0b0 = 1A and hence a0 ∈ A×.

⇐= We try to find g =
∑∞
j=0 biX

i ∈ AJXK such that fg = 1, i.e., 1 =
∑∞
i=0(

∑i
j=0 ajbi−j)X

i.
Then a0b0 = 1, a0b1 + a1b0 = 0, a0b2 + a1b1 + a2b0 = 0, · · · . If a0 = 1, then b0 = a0b0 = 1 and we
can solve bn for n ≥ 1 one by one, so g is the inverse of f and hence f ∈ AJXK. If a0 ̸= 1, since
a0b0 = 1, we have that a0 ∈ A× and so by definition of multiplication in AJXK,

f =

∞∑
i=0

aiX
i =

∞∑
i=0

a0(a
−1
0 ai)X

i = a0

(
1 +

∞∑
i=1

(a−1
0 ai)X

i

)
︸ ︷︷ ︸

∈AJXK×

∈ AJXK×.

(b) It is straightforward to show φJXK is a well-defined ring homomorphism with

Ker(φJXK) =

{ ∞∑
i=0

αiX
i

∣∣∣∣ ∞∑
i=0

φ(αi)X
i = 0

}
=

{ ∞∑
i=0

αiX
i

∣∣∣∣ φ(αi) = 0,∀ i ≥ 0

}

=

{ ∞∑
i=0

αiX
i

∣∣∣∣ αi ∈ Ker(φ),∀ i ≥ 0

}
= Ker(φ)JXK.

(c) Let τ : A ↠ A/a be the natural projection. Then by (b), τJXK : AJXK → A
a JXK is a well-

defined ring homomorphism with AJXK ≥ Ker(τJXK) = Ker(τ)JXK = aJXK. Since τ is onto,
by the first isomorphism theorem, AJXK/aJXK ∼= A

a JXK. Since a ⊆ Ker(τJXK), we have that
⟨a⟩AJXK ⊆ Ker(τJXK) = aJXK.

In addition, assume a = (α1, . . . , αn)A for some α1, . . . , αn ∈ a. Let f ∈ aJXK. Then ai ∈ a =
(α1, . . . , αn)A for i ≥ 0. Hence for i ≥ 0, we have that ai =

∑n
j=1 bijαj for some bi1, . . . , bin ∈ A.

Hence by the definition of addition and multiplication in AJXK,

f =

∞∑
i=0

aiX
i =

∞∑
i=0

 n∑
j=1

bijαj

Xi =

n∑
j=1

( ∞∑
i=0

αjbijX
i

)
=

n∑
j=1

αj

( ∞∑
i=0

bijX
i

)
∈ ⟨a⟩AJXK.
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(d) Note that

AJXK A∑∞
i=0 biX

i b0

∑∞
i=0 biX

i b0

A
a JXK A

a

π

τJXK τ

π′

It is straightforward to show π and π−1 are well-defined ring epimorphisms and the diagram
commutes.

Note that

Ker(π) =

{ ∞∑
i=1

biX
i

∣∣∣∣ bi ∈ A,∀ i ≥ 1

}
= X

{ ∞∑
i=0

bi+1X
i

∣∣∣∣ bi+1 ∈ A,∀ i ≥ 0

}
= X ·AJXK.

In general,

AJXK ≥ Ker(τ ◦ π) =

{ ∞∑
i=0

biX
i

∣∣∣∣ b0 ∈ a, bi ∈ A,∀ i ≥ 1

}
=: I.

Let
∑∞
i=0 biX

i ∈ I with b0 ∈ a and bi ∈ A for i ≥ 1. Then
∑∞
i=0 biX

i = b0 +X
∑∞
i=0 bi+1X

i

∈ a+XAJXK ⊆ ⟨X, a⟩AJXK. Hence I ⊆ ⟨X, a⟩AJXK.

Since X = 0 + 1 ·X and 0 ∈ a and 1 ∈ A, we have that X ∈ I ≤ AJXK. Also, for
∑∞
i=0 biX

i ∈
aJXK
≤ AJXK with b0 ∈ a and bi ∈ a ⊆ A for i ≥ 1, we have that

∑∞
i=0 biX

i ∈ I and so aJXK ⊆ I. Hence
⟨X⟩AJXK + aJXK ⊆ I.

Thus, by (c),

⟨X, a⟩AJXK ⊇ I ⊇ ⟨X⟩AJXK + aJXK ⊇ ⟨X⟩AJXK + ⟨a⟩AJXK = ⟨X, a⟩AJXK.

Hence ⟨X, a⟩AJXK = ⟨X⟩AJXK + ⟨a⟩AJXK = ⟨X⟩AJXK + aJXK = I = Ker(τ ◦ π). By the first
isomorphism theorem, AJXK/⟨X, a⟩AJXK ∼= A/a.

(e) Assume f ∈ Nil(AJXK). Then 0 = fn = an0 + Xg(X) for some n ≥ 1 and g ∈ AJXK. Hence
an0 = 0 and then a0 ∈ Nil(A) ⊆ Nil(AJXK). Hence

∑∞
i=1 aiX

i = f − a0 ∈ Nil(AJXK). Similarly, we
have that a1 ∈ Nil(AJXK). By induction, ai ∈ Nil(A) for i ≥ 0.

Hence we can conclude Nil(AJXK) ⊆ Nil(A)JXK. Furthermore, since Nil(A) ⊆ Nil(AJXK) ≤
AJXK, we have that Nil(A) = Nil(Nil(A)) ⊆ Nil(AJXK) ≤ AJXK and then Nil(A) · AJXK ⊆
Nil(AJXK). Thus, Nil(A) ·AJXK ⊆ Nil(AJXK) ⊆ Nil(A)JXK.

Assume ai ∈ Nil(A) for i ≥ 0 and ⟨a0, a1, · · · ⟩ is finitely generated. Then ⟨a0, a1, · · · ⟩ =
⟨a0, a1, . . . , at⟩ for some t ≥ 1. Hence f =

∑∞
i=0 aiX

i =
∑t
j=0 ajfj , where fj ∈ Nil(A) · AJXK ⊆

Nil(AJXK) ≤ AJXK for j = 0, . . . , t. Thus, f ∈ Nil(AJXK).
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(f) =⇒ Assume f ∈ Jac(AJXK). Then by Proposition 1.29, 1− fg ∈ AJXK× for g ∈ AJXK. Hence
(1− a0a) + a1ax+ a2ax

2 + · · · = 1− fa ∈ AJXK× for a ∈ A. Then by (a), 1− a0a ∈ A× for a ∈ A.
Hence a0 ∈ Jac(A) by Proposition 1.29.

⇐= If a0 ∈ Jac(A), then 1 − a0a ∈ A× for a ∈ A. Let g =
∑∞
i=0 biX

i ∈ AJXK with bi ∈ A for
i ≥ 0. To show f ∈ Jac(AJXK). Need to show 1 − fg ∈ AJXK×. By (a), it is equivalent to show
the constant term of 1− fg is in A×. Note that

1− fg = 1−

( ∞∑
i=0

aiX
i

)( ∞∑
i=0

biX
i

)
= (1− a0b0)︸ ︷︷ ︸

∈A×

+ · · · .

Thus,

Jac(AJXK) =

{ ∞∑
i=0

aiX
i | a0 ∈ Jac(A)

}
= ⟨Jac(A), X⟩AJXK

by (d).

(g) Define ord(f) = inf{i ≥ 0 | ai ̸= 0}. Then ord(fg) ≥ ord(f) + ord(g) with equality if, e.g., A is
an integral domain.

⇐= Let A be an integral domain and f, g ̸= 0 in AJXK. Then ord(f), ord(g) ̸= ∞. Hence
ord(fg) = ord(f) ord(g) ̸=∞. Hence fg ̸= 0.

=⇒ Let AJXK be an integral domain. Since 0 ̸= A is a subring of AJXK, A is also an integral
domain.

Since X ∈ AJXK and the constant term of X is 0, which is not in A×, by (a), X ̸∈ AJXK×.
Hence AJXK is not a field.

(h) Note that a ≤ A is prime if and only if A/a is an integral domain if and only if A
a JXK is

an integral domain by (g) if and only if AJXK/aJXK is an integral domain by (c) if and only if
aJXK ≤ AJXK is prime.

Note that a ≤ A is prime if and only if A/a is an integral domain if and only AJXK
⟨X,a⟩AJXK is an

integral domain by (d) if and only if ⟨a, X⟩AJXK ≤ AJXK is prime.

Let p ∈ Spec(A). Then pJXK, ⟨p, X⟩AJXK ∈ Spec(AJXK).

By the proof of (c) and (d), we have that pJXK∩A = p and ⟨p, A⟩AJXK∩A = p. Hence by Fact
1.16,

ϵ∗(pJXK) = ϵ−1(pJXK) = pJXK ∩A = p = (⟨p, A⟩AJXK) ∩A = ϵ−1(⟨p, X⟩AJXK) = ϵ∗(⟨p, X⟩AJXK).

Thus, ϵ∗ is onto. Also, since X ̸∈ pJXK, but X ∈ ⟨p, X⟩JXK, we have that pJXK ̸= ⟨p, X⟩AJXK and
then ϵ∗ is not 1-1.

(i) Note that a ≤ A is maximal if and only if A/a is a field if and only AJXK/⟨X, a⟩AJXK is a field
by (d) if and only if ⟨a, X⟩AJXK ≤ AJXK is maximal.

Since A
a JXK is not a field by (g), AJXK/aJXK is not a field by (c), then aJXK ≤ AJXK is not

maximal.

(j) (2) Since X ∈ Jac(AJXK) by (f), and m ∈ m-Spec(AJXK), we have that X ∈ m.
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(1) By prime correspondence under quotients, we have that m corresponds to a maximal ideal in
AJXK/⟨X⟩AJXK ∼= A by (d).

AJXK π−−→ AJXK/⟨X⟩AJXK
∼=−−→ A

m // m/⟨X⟩AJXK // n

Define τ : AJXK → A by τ(f) = f(0). Then we can find n ∈ m-Spec(A) such that m = τ−1(n).
Hence

m ∩A = ϵ−1(m) = ϵ−1(τ−1(n)) = (τ ◦ ϵ)−1(n) = id−1
A (n) = n ∈ m-Spec(A).

(3) Since m ∩A, ⟨X⟩ ⊆ m, we have ⟨m ∩A,X⟩ ⊆ m. Since m ≤ AJXK is maximal, and by (i) and
(1), ⟨m ∩A,X⟩ ≤ AJXK are maximal, we have that ⟨m ∩A,X⟩ = m.

Note that ϵ∗(m-Spec(AJXK) ⊆ m-Spec(A) since by the proof of (1), ϵ∗(m) = ϵ−1(m) ∈ m-Spec(A).

Note that Λ(m-Spec(A)) ⊆ m-Spec(AJXK) since by (i), Λ(n) = ⟨n, X⟩AJXK ∈ Spec(AJXK) for
any n ∈ Spec(A).

Note that

Λ(ϵ∗(m)) = Λ(ϵ−1(m)) = Λ(m ∩A) = ⟨m ∩A,X⟩AJXK = m

by (3).

Note that

ϵ∗(Λ(n)) = ϵ∗(⟨n, X⟩AJXK) = ϵ−1(⟨n, X⟩AJXK) = ⟨n, X⟩ ∩A = n

by the proof of (c) for any n ≤ m-Spec(A).

Therefore, we have a 1-1 correspondence between m-Spec(AJXK) and m-Spec(A).

Example 1.69. (c) Example of ⟨a⟩AJXK ⊊ aJXK for some a ≤ A. Let A = k[Y1, Y2, Y3, · · · ]
and a = ⟨Y1, Y2, Y3, · · · ⟩A. Let f =

∑∞
i=1 YiX

i ∈ aJXK. We claim that f ̸∈ ⟨a⟩AJXK =
⟨Y1, Y2, · · · ⟩AJXK. Suppose that f ∈ ⟨Y1, Y2, · · · ⟩AJXK. Then there exists m ≥ 1 and

∑∞
j=0 bijX

j =
gi ∈ AJXK for i = 1, . . . ,m such that

∞∑
j=1

YjX
j = f =

m∑
i=1

giYi =

m∑
i=1

∞∑
j=0

bijX
jYi =

∞∑
j=0

m∑
i=1

bijYiX
j .

Hence for j ≥ 1, we have that Yj =
∑m
i=1 bijYi ∈ ⟨Y1, . . . , Ym⟩A. Then Ym+1 ∈ ⟨Y1, . . . , Ym⟩A, a

contradiction.

(e) Example of f ̸∈ Nil(AJXK) when ai ∈ Nil(A) for i ≥ 0. Let A = Q[Y1,Y2,Y3,··· ]
⟨Y 2

1 ,Y
3
2 ,Y

4
3 ,...,Y

i+1
i ,··· ⟩ and

a0 = 0 ∈ Nil(A) and ai = Y i for i ≥ 1. Then ai+1
i = Y i+1

i = 0 and so ai ∈ Nil(A) for i ≥ 1.

We claim that f ̸∈ Nil(AJXK). Note that

f2 =

( ∞∑
i=1

Y iX
i

)2

= Y 2
1X

2

︸ ︷︷ ︸
=0

+(2Y 1Y 2)X
3

︸ ︷︷ ︸
̸=0

+ · · · ,
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and

f3 =

( ∞∑
i=1

Y iX
i

)3

= Y 3
1X

3

︸ ︷︷ ︸
=0

+(2Y 1Y 3 + Y 2
2 )X

4

︸ ︷︷ ︸
̸=0

+ · · · ,

and inductively, we find fn has lots of nonzero coefficients for n ≥ 1.

Definition 1.70. Define
AJX,Y K = AJXKJY K,

and for d ≥ 2,
AJX1, . . . , XdK = AJX1, . . . , Xd−1KJXdK.

Fact 1.71. AJX1, . . . , XdK = {
∑
n∈Nd

0
anX

n | an ∈ A} for d ≥ 1, where Xn = Xn1
1 · · ·X

nd

d and

n = (n1, . . . , nd) ∈ Nd0.

Warning 1.72. The operations on AJX1, X2, X3, · · ·K are ambiguous.
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Zariski Topology

Let R be a nonzero commutative ring with identity.

Definition 2.1. For ϵ > 0 and x ∈ Rn, the open ball centered at x with radius ϵ is

Bϵ(x) = {y ∈ Rn
∣∣ |x− y| < ϵ}.

A subset U ⊆ Rn is open if for any x ∈ U , there exists ϵ > 0 such that Bϵ(x) ⊆ U , i.e., if U is
a union of (possible infinitely many) open balls. e.g., if n = 1, Bϵ(x) = (x − ϵ, x + ϵ) is an open
interval.

More generally, this works for any metric space.

Fact 2.2. Rn and ∅ are both open in Rn.
The set of open sets in Rn is closed under arbitrary union and finite intersection, i.e., if Uλ is

open for λ ∈ Λ, then
⋃
λ∈Λ Uλ is open, and if Ui open for i = 1, . . . , d, then

⋂d
i=1 Ui is open.

The set of open sets in Rn is (usually) not closed under infinite intersections. For example,⋂∞
i=1(−1/i, 1/i) = {0}, is not open in Rn.

Definition 2.3. A topology on a non-empty set X is a collection of sets T of subsets of X
(T ⊆ P(X)) such that

(a) ∅, X ∈ T ,

(b) for any {Uλ}λ∈Λ ⊆ T ,
⋃
λ∈Λ Uλ ∈ T and

(c) for n ≥ 1 and U1, . . . , Un ∈ T ,
⋂n
i=1 Uλ ∈ T .

The elements of T are the open subsets of X.
A topological space is a set X ̸= ∅ equipped with a topology T .

Example 2.4. The Euclidean topology on Rn is the topology on Rn from Definition 2.1. More
generally, this is the metric space topology.

Definition 2.5. The Zariski topology on Spec(R) = X has open sets

{Spec(R)∖V(S) | S ⊆ R} = {p ∈ Spec(R) | p ̸⊇ S ⊆ R}.

For example, Xf := Spec(R)∖V({f}) = {p ∈ Spec(R) | f ̸∈ p} is open in X for f ∈ R.

29



30 CHAPTER 2. ZARISKI TOPOLOGY

Proposition 2.6. If S ⊆ R, then V(S) = V(⟨S⟩) and so Spec(R)∖V(S) = Spec(R)∖V(⟨S⟩). In
other words, the open sets are exactly the sets {Spec(R)∖V(a) | a ≤ R}.

Notation. Denote the Zariski open sets

Z = {Spec(R)∖V(S) | S ⊆ R} = {Spec(R)∖V(a) | a ≤ R}.

Example 2.7. Compute Z of Spec(Z) = X. Since Z is a P.I.D., Z = {Spec(Z)∖V(m) | m ≥ 0}.
Since V(0) = Spec(Z), X0 = Spec(Z) ∖ V(0) = ∅, and since V(1) = ∅, X1 = Spec(Z) ∖ V(1) =
Spec(Z). For m ≥ 2, write m = pe11 · · · penn with p1, . . . , pn distinct primes and e1, . . . , en ≥ 1,
then V(m) = {⟨p1⟩, · · · , ⟨pn⟩} and so Xm = Spec(Z) ∖ V(m) = X ∖ {⟨p1⟩, . . . , ⟨pn⟩}. Note that
Z =

⋃∞
m=0Xm. In particular, p = {0} ∈

⋂∞
m=1Xm, i.e., p = {0} is in every non-empty open set

of X.

Fact 2.8. Let X = Spec(R). Then X0 = X ∖V(0) = ∅ and X1 = X ∖V(1) = X.

Proposition 2.9. Let X = Spec(R). Then
⋂n
i=1Xfi = Xf1···fn for f1, . . . , fn ∈ R.

Proof. Let p ∈ X. Then p ∈
⋂n
i=1Xfi if and only if p ∈ Xfi for i = 1, . . . , n if and only if fi ̸∈ p for

i = 1, . . . , n if and only if if and only if f1 · · · fn ̸∈ p if and only if p ∈ Xf1···fn .

Definition 2.10. If X is a topological space, then Y ⊆ X is closed if X ∖ Y open, i.e., if and only
if Y = X ∖ U for some open subset U ⊆ X.

Example 2.11. In X = Spec(R), the closed sets are {V(S) | S ⊆ R} = {V(a) | a ≤ R}.

Proposition 2.12. Let X be a non-empty set, Y ⊆ P(X) and V = {X ∖ Y | Y ∈ Y }. Then Y
is a topology on X if and if only V satisfies the followings.

(a) X, ∅ ∈ V ,

(b) closed under arbitrary intersections, i.e., for any {Vλ}λ∈Λ ⊆ V , then
⋂
λ∈Λ Vλ ∈ V ,

(c) closed under fintie unions, i.e., for n ≥ 1 and V1, . . . , Vn ∈ V ,
⋃n
i=1 Vi ∈ V .

Proof. It follows from X ∖ ∅ = ∅, X ∖X = ∅ and
⋂
λ∈Λ(X ∖ Uλ) = X ∖ (

⋃
λ∈Λ Uλ).

Theorem 2.13. The Zariski topology on Spec(R) = X is a topology.

Proof. Note that Z = {Spec(R)∖V(a) | a ≤ R}. Let V = {X ∖ Z | Z ∈ Z } = {V(a) | a ≤ R}.

(a) X = V(0) ∈ V and ∅ = V(1) ∈ V ,

(b) For aλ ≤ a for any λ ∈ Λ,
⋂
λ∈Λ V(aλ) = V(

∑
λ∈Λ aλ) ∈ V by Fact 1.36.

(c) For n ≥ 1 and a1, . . . , an ≤ R,
⋃n
i=1 V(ai) = V(

⋂n
i=1 ai) ∈ V by Proposition 1.39(a).

Hence by Proposition 2.12, the Zariski topology on Spec(R) = X is a topology.

Definition 2.14. A basis for the topology T on a topological space X is a subset B ⊆ T such
that for any open set U ⊆ X and any u ∈ U , there exists B ⊆ B such that u ∈ B ⊆ U .

Example 2.15. In the Euclidean topology, B = {Bϵ(x) | x ∈ Rn, ϵ > 0} is a basis.
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Theorem 2.16. In X = Spec(R), B = {Xf | f ∈ R} is a basis for the Zariski topology.

Proof. It suffices to show X ∖ V(S) =
⋃
s∈S Xs for S ⊆ R. Note that p ∈ X ∖ V(S) if and only if

S ̸⊆ p if and only if there exists s ∈ S such that s ̸∈ p if and only if there exists s ∈ S such that
p ∈ Xs if and only if p ∈

⋃
s∈S Xs.

Proposition 2.17. If R is noetherian, then for any open subset U ⊆ X = Spec(R), there exist
s1, . . . , sn ∈ R such that U = Xs1 ∪ · · · ∪Xsn , i.e., open sets are the finite union of the basis open
sets.

Proof. Write U = X ∖V(a) for some a ≤ R. Since R is noetherian, a = ⟨s1, . . . , sn⟩ for some n ≥ 1
and s1, . . . , sn ∈ a. Then

U = X ∖V(⟨s1, . . . , sn⟩) = X ∖V(s1, . . . , sn) =

n⋃
i=1

Xsi

by the proof of Theorem 2.16.

Definition 2.18. A topological space X is quasi-compact if “every open cover of X has a finite
sub-cover”, i.e., for any {Uλ}λ∈Λ ⊆ T , if X =

⋃
λ∈Λ Uλ, then there exist n ≥ 1 and λ1, . . . , λn ∈ Λ

such that X =
⋃n
i=1 Uλi

.

Theorem 2.19. Spec(R) is quasi-compact.

Proof. Since each open set Uλ can be written as a union of Xf ’s with f ∈ R, without loss of
generality, assmue X =

⋃
λ∈ΛXfλ = X ∖ V(

⋃
λ∈Λ fλ) by the proof of Theorem 2.16. Then ∅ =

V(
⋃
λ∈Λ fλ) = V(⟨

⋃
λ∈Λ fλ⟩). Hence by Proposition 1.32(b), ⟨

⋃
λ∈Λ fλ⟩ = R ∋ 1. Then 1 =

gλ1
fλ1

+· · ·+gλn
fλn

for some n ≥ 1, λ1, . . . , λn ∈ Λ and gλ1
, . . . , gλn

∈ R. Hence ⟨fλ1
, . . . , fλn

⟩ = R.
Then

V(fλ1 , . . . , fλn) = V(⟨fλ1 , . . . , fλn⟩) = V(R) = ∅.
Thus, X = X ∖ ∅ = X ∖V(fλ1 , . . . , fλn) = Xfλ1

∪ · · · ∪Xfλn
.

Question. What do the Xf look like? Answer: Spec(R).

Construction (Classical algebraic geometry). Geometry: Let k be a field, usually k = R or C.
Define d-dimensional affine space: Adk = Ad = kd.

Let a = (a1, . . . , ad) ∈ Ad and S ⊆ k[X] = k[X1, . . . , Xd]. Define

Z(S) := {a ∈ Ad | f(a) = 0,∀f ∈ S} =: “zero locus of S” ⊆ Ad.

e.g., Z(X2 + Y 2 + Z2 − 1) = “unit sphere” ⊆ A3
R = R3.

Zariski topology on Ad. Closed sets: Z(S) = Z(⟨S⟩) ⊆ Ad with S ⊆ k[X]. Open sets: Ad∖Z(S)
with S ⊆ k[X]. Basic open sets: Ad ∖ Z(f) with f ∈ k[X].

Let T ⊆ k[X] be fixed. Zariski topology on Z(T ). Closed sets: Z(S) ∩ Z(T ) with S ⊆ k[X].
Open sets: (Ad ∖ Z(S)︸ ︷︷ ︸

open in Ad

)∩Z(T ) with S ⊆ k[X]. Basic open sets: (Ad∖Z(f))∩Z(T ) with f ∈ k[X].

We have that

φ : Ad ↪−→ m-Spec(k[X]) ⊆ Spec(k[X])

a 7−→ (X1 − a1, . . . , Xd − ad),
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Hilbert’s Nullstellensatz: If k = k, then Z(b) ̸= ∅ for b ⪇ k[X].
Grothendieck: there exists more geometric data in Spec(k[X]).
Let V := Z(T ) = Z(b), where b = ⟨T ⟩ ≤ k[X]. Then

rad(b) ≤ I(V ) := {f ∈ k[X] | f(a) = 0,∀a ∈ V } = “vanishing ideal of V ” ≤ k[X].

Hilbert’s Nullstellensatz: If k = k, then I(Z(b)) = b.
Coordinate ring of V : Γ(V ) = k[X]/ I(V ).
We have that

φ : V ↪−→ m-Spec(k[V ]) ⊆ Spec(k[V ])

a 7−→ (X1 − a1, . . . , Xd − ad)
I(V )

= (x1 − a1, . . . , xd − ad).

Hilbert’s Nullstellensatz: If k = k, then similarly, φ is onto.
Grothenick: there exists more geometric data in Spec(k[V ]).

Set up: R ∋ f ,
X = Spec(R) ⊇ Xf = X ∖V(f) = {p ∈ Spec(R) | f ̸∈ p}.

Recall. Let S = {1, f, f2, · · · }. We have that

Rf = S−1R =

{
r

fn
| r ∈ R,n ≥ 0

}
= R[1/f ].

Proposition 2.20. Define φ : R → Rf by φ(g) = g
1 and φ∗ : Spec(Rf ) → Spec(R) = X by

φ∗(q) = φ−1(q).

(a) φ∗(q) ∈ Xf for q ∈ Spec(Rf ).

(b) Restrict codomain, the induced map φ∗
f : Spec(Rf )→ Xf is 1-1 and onto.

Slogan: Spec(Rf ) = Xf “open affine subsets”.

Proof. (a) Let q ∈ Spec(Rf ). Then φ
∗(q) = φ−1(q) ∈ Spec(R) by Fact 1.16. Note that f ̸∈ φ∗(q) =

φ−1(q), otherwise, R×
f ∋

f
1 = φ(f) ∈ φ(φ−1(q) ⊆ q ∈ Spec(Rf ), a contradiction.

(b) Let p ∈ Xf , then p ∈ Spec(R) and so

pf := pRf =

{
finite∑
i

φ(pi) · yi
∣∣∣∣ pi ∈ p, yi ∈ Rf ,∀ i

}
=

{
finite∑
i

pi
1
· ri
fni

∣∣∣∣ pi ∈ p, ri ∈ R,ni ≥ 0,∀ i

}

=

{∑finite
i=1 pi · ri · f

∑finite
j ̸=i nj

f
∑finite

i=1 ni

∣∣∣∣ pi ∈ p, ri ∈ R,ni ≥ 0,∀ i

}
=

{
p

fn

∣∣∣ p ∈ p, n ≥ 0

}
≤ Rf .

Since fn ̸∈ p for n ≥ 0, 1
1 ̸∈ pf . Hence pf ⪇ Rf . Let

x
fn ,

y
fm ∈ Rf with x, y ∈ R and n,m ≥ 0 such

that xy
fn+m = x

fn · y
fm ∈ pf and so xy ∈ p. Since p ∈ Spec(R), x ∈ p or y ∈ p. Hence x

fn ∈ pf or
y
fm ∈ pf . Hence pf ∈ Spec(Rf ).

On the other hand, by (a), φ∗(q) ∈ Xf for q ∈ Spec(Rf ). Thus, we have the 1-1 correspondence:

Xf = {p ∈ Spec(R) | f ̸∈ p} −−⇀↽−− Spec(Rf )

p 7−→ pf

φ∗(q) = φ−1(q) = “q ∩R”← [ q.
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Subspaces

Proposition 2.21. Let X be a topological space with a topology T and Y ⊆ X. Define TY =
{U ∩ Y | U ∈ T }. Then TY is a topology on Y , called the subspace topology.

Proof. Y = X ∩Y ∈ TY since X ∈ T . ∅ = ∅∩Y ∈ TY since ∅ ∈ T . Let {Uλ ∩Y | Uλ ∈ T }λ∈Λ ⊆
TY . Since T is a topology on X,

⋃
λ∈Λ Uλ ⊆ T . Hence

⋃
λ∈Λ(Uλ ∩ Y ) = (

⋃
λ∈Λ Uλ) ∩ Y ∈ TY .

Let U1 ∩ Y, . . . , Un ∩ Y ∈ TY . Similarly, we have that
⋂n
i=1(Uλ ∩ Y ) ∈ TY .

Remark. The closed subsets of Y are {V ∩ Y | V ⊆ X is closed} since

{Y ∖ (U ∩ Y ) | U ∈ T } = {Y ∩ (U ∩ Y )c | U ∈ T } = {(U c ∪ Y c) ∩ Y | U ∈ T }
= {(U c ∩ Y ) ∪ (Y c ∩ Y ) | U ∈ T } = {U c ∩ Y | U ∈ T }.

Proposition 2.22. If B is a basis for T , then BY = {B ∩ Y | B ∈ B} is a basis for TY .

Proof. Let U ∩Y ∈ TY with U ∈ T . Since B is a basis of T , U =
⋃
λ∈ΛU

Bλ for some {Bλ}λ∈ΛU
⊆

B. Hence U ∩ Y =
⋃
λ∈ΛU

(Bλ ∩ Y ).

Corollary 2.23. Let f ∈ R. Subspace topology on Xf ⊆ X = Spec(R) has

(a) closed sets: V(a) ∩Xf = {p ∈ Spec(R) | a ⊆ p ̸∋ f}, where a ≤ R;

(b) open sets: (X ∖V(a)) ∩Xf = {p ∈ Spec(R) | a ̸⊆ p ̸∋ f}, where a ≤ R;

(c) basic open sets: Xg ∩Xf = Xfg, where g ∈ R.

Remark. Let a ≤ R. Subspace topology on V(a) ⊆ X = Spec(R) has

(a) closed sets: V(b) ∩V(a) = {p ∈ Spec(R) | b+ a ⊆ p}, where b ≤ R;

(b) open sets: (X ∖V(b)) ∩V(a) = {p ∈ Spec(R) | b ̸⊆ p ⊇ a}, where b ≤ R;

(c) basic open sets: Xg ∩V(a), where g ∈ R.

Proposition 2.24. Let a ≤ R, φ : R→ Rf and φ∗
f : Spec(Rf ) =: Z → Xf as in Proposition 2.20.

(a) (φ∗
f )

−1(V(a) ∩Xf ) = V(af ).

(b) (φ∗
f )

−1((X ∖V(a)) ∩Xf ) = Spec(Rf )∖V(af ).

(c) (φ∗
f )

−1(Xg ∩Xf ) = Zg|1 for g ∈ R.

Proof. (a) Let p ∈ Spec(Rf ). p ∈ (φ∗
f )

−1(V(a) ∩Xf ) if and only if φ−1(p) = φ∗
f (p) ∈ V(a) ∩Xf

if and only if φ−1(p) ∈ V(a) if and only if a ⊆ φ−1(p) if and only if af = aRf ⊆ φ−1(p)Rf = p† if
and only if p ∈ V(af ).

†Method 1: Let φ∗
f (p) = φ−1(p) =: q ∈ Xf . By the proof of Proposition 2.20(a), φ∗

f (qf ) = q. Also, since φ∗
f is

1-1, φ−1(p)Rf = qRf = qf = p.
Method 2: We claim that φ−1(I)Rf = I for I ≤ Rf . “⊆”. By 1.63(a). “⊇”. Let i ∈ I. Then i = r

fn ∈ I for some

r ∈ R and n ≥ 0. Hence φ(r) = r
1
= fn

1
· r
fn ∈ I. Then r ∈ φ−1(I). Hence i = r

fn = φ(r) · 1
fn ∈ φ−1(I)Rf .
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(b) Let p ∈ Spec(Rf ). p ∈ (φ∗
f )

−1((X∖V(a))∩Xf ) if and only if φ−1(p) = φ∗
f (p) ∈ (X∖V(a))∩Xf

if and only if φ−1(p) ∈ X ∖V(a) if and only if p ∈ Spec(Rf )∖V(af ) by the proof of (a).

(c) Method 1. By (a), we have that

(φ∗
f )

−1(Xg ∩Xf ) = (φ∗
f )

−1((X ∖V(g)) ∩Xf ) = Spec(Rf )∖V((g)f )

= {pf | p ∈ Spec(R), pf ̸⊇ (g)f} = {pf | g ̸∈ p ∈ Spec(R)}
= {pf | p ∈ Xg}.

Method 2. Let p ∈ Spec(Rf ). Then p ∈ (φ∗
f )

−1(Xg ∩Xf ) if and only if φ∗
f (p) ∈ Xg ∩Xf if and

only if φ∗
f (p) ∈ Xg if and only if p ∈ {qf | q ∈ Xg}.

Continuous Functions and Homeomorphisms

Let X ̸= ∅ be a topological space.

Definition 2.25. Let f : X → Y be a function between topological spaces. Then f is continuous
if f−1(U) ∈ TX for U ∈ TY . “Inverse image of arbitrary open set in Y is open in X”.

Remark. Let Y ⊆ X. The subspace topology TY is the smallest topology on Y such that Y
⊆
↪−→ X

is continuous.

Fact 2.26. To show f is continuous, it is equivalent to showing f−1(arbitrary closed sets of Y ) is
closed in X, equivalent to showing f−1(basic open subsets of Y ) is open in X.

Theorem 2.27. Let φ : R → S be a ring homomorphism, then φ∗ : Spec(S) → Spec(R) is
continuous.

Proof. Let a ≤ R and p ∈ Spec(S). Then p ∈ (φ∗)−1(V(a)) if and only if φ∗(p) ∈ V(a) if and only
if φ−1(p) = φ∗(p) ⊇ a if and only if p ⊇ φ(φ−1(p)) ⊇ φ(a) if and only if p ∈ V(aS).

Theorem 2.28. Let f ∈ R, φ : R→ Rf and φ∗ : Spec(Rf )→ Spec(R). Then φ∗(Spec(Rf )) = Xf

“principal open set”. Restrict codomain, φ∗
f : Spec(Rf )→ Xf is 1-1 and onto. Moreover, give the

codomain subspace topology, φ∗
f and (φ∗

f )
−1 are continuous. “homeomorphism”.

Proof. By Proposition 2.24, we have that φ∗
f is continuous or by Theorem 2.27 and Lemma 2.30.

By Proposition 2.20, φ∗
f is 1-1.

Let I ≤ Rf . Then I = φ−1(I)Rf by the proof of Proposition 2.24(a). Since φ∗
f is a bijection,

((φ∗
f )

−1)−1(V(I)) = φ∗
f (V(I)) = φ∗

f (V(φ−1(I)Rf ) = V(φ−1(I)) ∩Xf by Proposition 2.24(a).

Example. Let k be a field and R = kJXK. We claim that Spec(R) = {0, ⟨X⟩}. Let 0 ̸= f ∈
JXK Then f =

∑∞
i=0 aiX

i for some ai ∈ k for i ≥ 0. Let m = min{i ≥ 0 | ai ̸= 0}. Then
f(X) = Xm(

∑∞
i=0 am+iX

i). Since am ∈ k×, we have that
∑∞
i=0 am+iX

i ∈ R×. Hence every
0 ̸= f ∈ R is of the form uX l for some l ≥ 0 and u ∈ R×. Hence if 0 ̸= I ≤ R, I = ⟨Xm⟩, where
m = min{j ≥ 0 | Xj ∈ I}. Thus, p = ⟨X⟩ for 0 ̸= p ∈ Spec(R).

Define φ : R → S = k × Q(R) by
∑finite
i=1 aiX

i 7→ (a0,
∑finite

i=1 aiX
i

1 ). Note that φ is a ring
homomorphism and Spec(S) = {k × 0, 0 ×Q(R)}. Hence the continuous function φ∗ : Spec(S) →
Spec(R) sending k × 0 to 0 and 0×Q(R) to ⟨X⟩ is 1-1 and onto.
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Closed sets of Spec(S) are V(1, 1) = ∅,V(0, 0) = Spec(S), V(0, 1) = {0×Q(R)} and V(1, 0) =
{k × 0}. Closed ses of Spec(R) are V(1) = ∅, V(0) = Spec(R) and V(X) = {⟨X⟩}. Since φ∗ is a
bijection, we have that ((φ∗)−1)−1({k × 0}) = φ∗({k × 0}) = {0} is not closed in Spec(R). Hence
(φ∗)−1 is not continuous.

Corollary 2.29. Xf is quasi-compact.

Proof. It follows from Xf is homeomorphic to Spec(Rf ) and Spec(Rf ) is quasi-compact.

Example. U ⊆ Spec(R) = X may not be quasi-compact. Let R = k[X1, X2, X3, · · · ]. Let

U = X ∖V(X1, X2, X3, · · · ) = X ∖
∞⋂
i=1

V(Xi) =

∞⋃
i=1

(X ∖V(Xi))

by Fact 1.36(a). Let n ≥ 1. We claim that V(X1, X2, X3, · · · ) ̸= V(X1, X2, . . . , Xn). “⊆”. It
is straightforward. “ ̸⊇”. Let p = ⟨X1, . . . , Xn⟩ ∈ V(X1, . . . , Xn). Then p ̸∈ V(X1, X2, · · · ) since
⟨X1, X2, · · · ⟩ ∋ Xn+1 ̸∈ p. Hence

U = X ∖V(X1, X2, X3, · · · ) ̸= X ∖V(X1, . . . , Xn) = X ∖
n⋂
i=1

V(Xi) =

n⋃
i=1

(X ∖V(Xi))

for n ≥ 1.

Fact. If R is noetherian and U ⊆ X = Spec(R) is open, then U is quasi-compact.

Proof. Let U =
⋃
λ∈Λ Uλ be an open cover with Uλ open in X for λ ∈ Λ. Use the fact that Xf ’s

form a basis to assume without losss of generality Uλ = Xfλ for some fλ ∈ R for λ ∈ Λ. Then

U =
⋃
λ∈Λ

Xfλ =
⋃
λ∈Λ

(X ∖V(fλ)) = X ∖V(⟨fλ | λ ∈ Λ⟩).

Since R is noetherian, there exist fλ1
, . . . , fλn

∈ R such that ⟨fλ | λ ∈ Λ⟩ = ⟨fλ1
, . . . , fλn

⟩. Hence
U = X ∖V(⟨fλ1

, . . . , fλn
⟩) =

⋃n
i=1Xfλi

.

Lemma 2.30. Let f : X → Y be a continuous function between two topological spaces. If
f(X) ⊆ Z ⊆ Y , then consider the natural map fZ : X → Z and give Z the subspace topology, we
have that fZ is continuous.

Proof. Let U ⊆ Z be open. Since Z has the subspace topology, U = Z ∩ Ũ for some Ũ ⊆ Y open.
Since f(X) ⊆ Z,

f−1
Z (U) = f−1(Z ∩ Ũ) = f−1(Z) ∩ f−1(U) = f−1(Ũ)

is open in X since f is continuous.

Theorem 2.31. Let b ≤ R, π : R→ R/b be the natural surjection and consider π∗ : Spec(R/b)→
Spec(R).

(a) π∗(Spec(R/b)) = V(b).

(b) Give the codomain subspace topology and restrict the codomain, then π∗
b : Spec(R/b)→ V(b) is

continuous, 1-1 and onto, and (π∗
b)

−1 is continuous. “homeomorphism”.
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Proof. By prime correspondence,

Spec(R/b) −−⇀↽−− V(b)

p/b←− [ p ⊇ b

p 7−→ π−1(p) = π∗(p).

Hence π∗(Spec(R/b)) = V(b), and π∗
b is 1-1 and onto. By Theorem 2.27 and Lemma 2.30, π∗

b is
continuous. Let b ⊆ a ≤ R. Then by prime correspondence,

((π∗
b)

−1)−1(V(a/b)) = π∗
b(V(a/b)) = V(a) ∩V(b) = V(a).

Hence (π∗
b)

−1 is continuous.

Corollary 2.32. V(b) is quasi-compact for b ≤ R.

Definition 2.33. X is irreducible if for ∅ ≠ U1, U2 ⊆ X open, U1 ∩ U2 ̸= ∅.
X is reducible if it is not irreducible, i.e., if and only if there exist ∅ ≠ U1, U2 ⊆ X open such

that U1 ∩ U2 = ∅.

Example 2.34. If R is an integral domain, then X = Spec(R) is irreducible.

Proof. Let ∅ ̸= U ⊆ X be open. Then ∅ ̸= U = X ∖ V(a) for some a ≤ R. Hence V(a) ̸= X =
Spec(R). Hence a ̸= ⟨0⟩ and so ⟨0⟩ ̸∈ V(a). Also, since R is an integral domain, ⟨0⟩ ∈ X. Hence
⟨0⟩ ∈ U .

Definition 2.33+. A subset ∅ ≠ Y ⊆ X with subspace topology is an irreducible subset if it is
irreducible as topological space. Equivalently, ∅ ̸= Y ⊆ X with subspace topology is irreducible if
Y = V ∪W for V,W ⊆ Y closed, then Y = V or Y =W .

Corollary 2.35. If q ∈ Spec(R), then V(q) ⊆ Spec(R) with subspace topology is irreducible.

Proof. Let q ∈ Spec(R). Then R/q is an integral domain. Hence Spec(R/q) is irreducible by
Example 2.34. Since V(q) is homeomorphic to Spec(R/q) by Theorem 2.31, we have that ∅ ≠ V(q)
is irreducible.

Definition 2.36. Let Y ⊆ X. The closure of Y in X is

Y =
⋂

Y⊆V⊆X
V closed

V.

Fact 2.37. If Y ⊆ X, then Y is the (unique) smallest closed subset of X containing Y .
If V ⊆ X is closed, then Y ⊆ V if and only if Y ⊆ V .

Example. In X = Spec(Z), Zariski topology is almost the “cofinite topology”, open sets are X, ∅
and {X ∖ {p1Z, . . . , pnZ} | n ≥ 1, 0 ̸= pi is prime,∀ i = 1, . . . , n}.

Lemma 2.38. The followings are equivalent.

(i) X is irreducible.

(ii) For V1, V2 ⊊ X closed, V1 ∪ U2 ⊊ X.
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(iii) For ∅ ≠ U ⊆ X open, U = X.

“Non-empty open sets are dense”.

Proof. (i)⇐⇒(ii) By Definition 2.33.
(ii)=⇒(iii) Assume (b). Let ∅ ̸= U ⊆ X be open. Suppose V1 := U ̸= X. Let V2 := X ∖ U .

Then V1, V2 ⊆ X are closed. Hence

X = U ∪ (X ∖ U) ⊆ U ∪ (X ∖ U) = V1 ∪ V2 ⊊ X

by assumption, a contradiction.
(iii)=⇒(i) By contrapositive. Assume X is reducible. Then there exist ∅ ̸= U1, U2 ⊆ X open

such that U1∩U2 = ∅. Hence U1 ⊆ X∖U2 ⊊ X. Also, since X∖U2 is closed, U1 ⊆ X∖U2 ⊊ X

Definition 2.33++. X is irreducible if and only if for V1, V2 ⊊ X closed, V1 ∪ V2 ̸= X.

Proposition 2.39. X = Spec(R) is irreducible if and only if Nil(R) ∈ Spec(R).

Proof. ⇐= Assume Nil(R) ∈ Spec(R). By Proposition 1.32(c), V(Nil(R)) = Spec(R). Then by
Corollary 2.35, Spec(R) = V(Nil(R)) is irreducible.

=⇒ Assume X = Spec(R) is irreducible. Since R ̸= 0, Nil(R) ̸= R by Proposition 1.26(b). Let
a, b ∈ R such that ab ∈ Nil(R). Then V(a)∪V(b) = V(ab) = Spec(R). Since Spec(R) is irreducible,
V(a) = Spec(R) or V(b) = Spec(R). Hence a ∈ Nil(R) or b ∈ Nil(R).

Proposition 2.40. We have the following.

(a) If Y ⊆ X is irreducible, then Y ⊆ X with subspace topology is irreducible.

(b) If C is a chain of irreducible subsets of X, then
⋃
Y ∈C Y with subspace topology is irreducible.

(c) For irreducible Y ⊆ X, there exists a maximal irreducible subset Z ⊆ X such that Y ⊆ Z.

(d) X is the union of its maximal irreducible subsets which are all closed.

Proof. (a) Assume Y ⊆ X is irreducible. Let Y = V1 ∪ V2 with V1, V2 ⊆ Y closed. Let i ∈ {1, 2}.
Since Vi is closed in Y and Y has subspace topology, there exists Ṽi ⊆ X closed in X such that
Vi = Ṽi ∩ Y . Set V ′

i = Ṽi ∩ Y = (Ṽi ∩ Y ) ∩ Y = Vi ∩ Y . Since Vi is closed in Y , V ′
i = Vi ∩ Y is

closed in Y †. Then

Y = V1 ∪ V2 = (Ṽ1 ∩ Y ) ∪ (Ṽ2 ∩ Y ) = (Ṽ1 ∪ Ṽ2) ∩ Y .

Hence Y ⊆ Y ⊆ Ṽ1 ∪ Ṽ2. Thus,

Y = (Ṽ1 ∪ Ṽ2) ∩ Y = (Ṽ1 ∩ Y ) ∪ (Ṽ2 ∩ Y ) = V ′
1 ∪ V ′

2 .

Since Y is irreducible, Y = V ′
1 or V ′

2 . Say Y = V ′
1 = V1 ∩ Y . Then Y ⊆ V1 ⊆ Ṽ1. Since Ṽ1 ⊆ X is

closed, Y ⊆ Ṽ1. Thus, Y = Ṽ1 ∩ Y = V1.

†Let Z ⊆ X have a subspace topology. If Y ⊆ Z, then the topology that Y inherits as a subspace of Z is the
same as the topology that Y inherits as a subspace of X
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(b) Let C be a chain of irreducible subsets of X and Z :=
⋃
Y ∈C Y . Let V1, V2 ⊊ Z be closed. Then

there exist x1 ∈ Z ∖ V1 and x2 ∈ Z ∖ V2. Hence there exist Y1, Y2 ∈ C such that x1 ∈ Y1 and
x2 ∈ Y2. Since C is a chain, Y1 ⊆ Y2 or Y2 ⊆ Y1. Say Y2 ⊆ Y1, then x1 ∈ Y1 ∖ V1 and x2 ∈ Y1 ∖ V2.
Hence V1 ∩ Y1 ⊊ Y1 and V2 ∩ Y1 ⊊ Y1. Since V1, V2 are closed in Z, V1 ∩ Y1 and V2 ∩ Y1 are closed
in Y1 similar to (a). Also, since Y1 is irreducible, we have that (V1 ∩ Y1) ∪ (V2 ∩ Y1) ⊊ Y1. Hence
Y1 ̸⊆ V1 ∪ V2. Also, since Y1 ⊆ Z, Z ̸⊆ V1 ∪ V2. Thus, V1 ∪ V2 ⊊ Z.

(c) Let Y ⊆ X be irreducible. Set Σ = {irreducible subsets Z ⊆ X | Y ⊆ Z}. Since Y ∈ Σ, Σ ̸= ∅.
From (b), Zorn’ lemma applies. Hence Σ has a maximal element.

(d) LetM be the union of the maximal irreducible subsets of X. We claim that X =M . “⊇”. It
is straightforward. “⊆”. Let x ∈ X, then {x} ⊆ X is irreducible. By (c), there exists a maximal
irreducible subset Z ⊆ X such that {x} ⊆ Z. By (a), Z is irreducible. Also, since Z ⊆ Z and Z is
maximal irreducible, we have that Z = Z, i.e., Z is closed.

Definition 2.41. The maximal irreducible subsets of X are the irreducible components of X.

Proposition 2.42. † Let X = Spec(R).

(a) V ⊆ X with subspace topology is closed and irreducible if and only if V = V(p) for some
p ∈ Spec(R).

(b) The irreducible components of X are V(p), where p ∈ Min(Spec(R)) = Min(R).

Proof. (a) ⇐= Let p ∈ Spec(R). Let V,W ⊆ V(p) be closed such that V(p) = V ∪ W . Then
V = V(a) ∩V(p) and W = V(b) ∩V(p) for some a, b ≤ R. Since p ∈ Spec(R),

p ∈ V(p) = V ∪W = (V(a) ∩V(p)) ∪ (V(b) ∩V(p)) = V(a+ p) ∪V(b+ p) = V(a+ p)(b+ p)).

Hence p ⊇ (a+ p)(b+ p). Since p ∈ Spec(R), p ⊇ a+ p ⊇ a or p ⊇ b+ p ⊇ b. Hence V(p) ⊆ V(a)
or V(p) ⊆ V(b). Hence V(p) = V(a) ∩V(p) = V or V(p) = V(b) ∩V(p) =W .

=⇒ Assume V ⊆ X is closed and irreducible. Then ∅ ≠ V = V(a) = V(rad(a)) for some a ≤ R.
Hence is suffices to show rad(a) ∈ Spec(R). Note that r := rad(a) ⪇ R.

Method 1. Let x, y ∈ R such that xy ∈ r. Then r2 ⊆ (xR + r)(yR + r) ⊆ r. Hence V(r) =
V(r2) ⊇ V((xR+ r)(yR+ r)) ⊇ V(r). Hence

V = V(r) = V((xR+ r)(yR+ r)) = (V(xR)∩V(r))∪ (V(yR)∩V(r)) = (V(xR)∩V )∪ (V(yR)∩V ).

Also, since V(xR) ∩ V and V(xR) ∩ V are closed in V and V is irreducible, we have that V(r) =
V(xR) ∩ V ⊆ V(xR) or V(r) = V(yR) ∩ V ⊆ V(yR). Then

x ∈ xR ⊆ rad(xR) =
⋂

p∈V(xR)

p ⊆
⋂

p∈V(r)

p = rad(r) = r

by Fact 1.58(c) and (g), or y ∈ r similarly. Hence rad(a) = r ∈ Spec(R).

Method 2. Assume rad(a) ⊇ IJ for some I, J ≤ R. Then V(I) ∪ V(J) = V(IJ) ⊇ V(rad(a)) =
V(a). Since V(a) = V is irreducible and

V(a) = (V(a) ∩V(I)) ∪ (V(a) ∩V(J)) = V(aI) ∪V(aJ),

†This proposition also holds for V(a) with subspace topology and with Min(V(a)).
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we have that V(I) ⊇ V(a) or V(J) ⊇ V(a). Hence by Proposition 1.32(d), rad(a) ⊇ rad(I) ⊇ I or
rad(a) ⊇ rad(J) ⊇ J .

(b) Let V be an irreducible component of X = Spec(R). Then V is closed by Proposition 2.40(c)
and maximal irreducible. Hence by (a), V = V(p) for some p ∈ Spec(R). Let q ∈ Spec(R) such that
q ⊆ p. Then V(q) ⊇ V(p) = V . By (a), V(q) is closed and irreducible. Hence by the maximality of
V , V(q) = V(p). Thus, q = p by Proposition 1.32(d).

Remark. Example 2.34, Corollary 2.35, and Proposition 2.39 follow from Proposition 2.42(a).

Example 2.43. Let R = k[X,Y,Z]
(XY,Y Z,XZ) , where k is a field. Then

⟨XY, Y Z,XZ⟩ = ⟨X,Y Z,XZ⟩ ∩ ⟨Y, Y Z,XZ⟩ = ⟨X,Y Z⟩ ∩ ⟨Y,XZ⟩
= ⟨X,Y ⟩ ∩ ⟨X,Z⟩ ∩ ⟨Y,X⟩ ∩ ⟨Y, Z⟩ = ⟨X,Y ⟩ ∩ ⟨X,Z⟩ ∩ ⟨Y,Z⟩.

Or let G be the following graph:

X

Z Y

Then the edge ideal of G is IG = ⟨XY, Y Z,XZ⟩. Let PV = ⟨X | X ∈ V ⟩ for V ⊆ V (G). Then we
have that

IG =
⋂

V min. v.cover

PV = P{X,Y } ∩ P{Y,Z} ∩ P{X,Z} = ⟨X,Y ⟩ ∩ ⟨Y, Z⟩ ∩ ⟨X,Z⟩.

Hence
Min(k[X,Y, Z]) = {PV | V min. v.cover} = {⟨X,Y ⟩, ⟨Y,Z⟩, ⟨X,Z⟩}.

By Fact 1.15, Min(R) = {⟨X,Y ⟩, ⟨Y ,Z⟩, ⟨X,Z⟩}. Hence the irreducible components of Spec(R)
are V(⟨X,Y ⟩), V(⟨X,Z⟩) and V(⟨Y ,Z⟩).

Corollary 2.44. (a) Min(R) ̸= ∅.

(b) For q ∈ Spec(R), there exists p ∈ Min(R) such that p ⊆ q.

Proof. (a) Since Spec(R) ̸= ∅, by Proposition 2.42(b), Min(R) ̸= ∅.

(b) Let q ∈ Spec(R). Then V(q) ⊆ Spec(R) are closed and irreducible by Proposition 2.42(a).
Hence there exists a (closed) maximal irreducible subset Z ⊆ Spec(R) such that V(q) ⊆ Z by
Proposition 2.40(c). Then V(q) ⊆ Z = V(p) for some p ∈ Min(R) by Proposition 2.42(b). Hence
p ⊆ q by Proposition 1.32(d).

Proposition 2.45. Let p ∈ Spec(R).

(a) {p} = V(p).

(b) {p} = {p} if and only if p ∈ m-Spec(R). “closed points are maximal”.

(c) If R is an integral domain, then {0} = V(0) = Spec(R). 0 is the “the generic point”.
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Proof. (a) One point set {p} is clearly irreducible. Then {p} is also irreducible by Proposition
2.40(a). Also, since {p} is closed, {p} = V(a) for some a ≤ R by Proposition 2.42(a). Hence a ⊆ p.
Hence V(p) ⊆ V(a) = {p}. Since {p} is the smallest closed subset containing p, we have that
{p} = V(p).

(b) =⇒ Assume {p} = {p}. Since p ̸= R, there exists m ∈ m-Spec(R) such that m ⊇ p. Then
m ⊆ V(m) ⊆ V(p) = {p} = {p} by (a). Hence by the maximality of m, we have that p = m.

⇐= Assume p ∈ m-Spec(R). Then by (a), {p} = V(p) = {p}.

(c) It follows from (a).



Chapter 3

Localization

Let R be a commutative ring with identity but not a field.

Recall 3.1. A subset U ⊆ R is multiplicatively closed if 1 ∈ U and for u, v ∈ U , uv ∈ U ,

Example 3.2. (a) {1, f, f2, · · · } ⊆ R is multiplicatively closed for f ∈ R.

(b) R× ⊆ R is multiplicatively closed.

(c) R∖ p ⊆ R is multiplicatively closed for p ∈ Spec(R).

(d) 1 + a ⊆ R is multiplicatively closed for a ≤ R.

Let U ⊆ R be multiplicatively closed.

Recall 3.3. U−1R = { ru | r ∈ R, u ∈ U}, where
r
u = r′

u′ if and only if there exists u′′ ∈ U such that

u′′(ru′− r′u) = 0, i.e., u
′′r
u′′u = r′

u′ , formally, ru is the equivalence class under an equivalence relation.
U−1R is a commutative ring with identity with r

u + s
v = rv+su

uv and r
u
s
v = rs

uv for r
u ,

s
v ∈ U

−1R.

0U−1R = 0R
1R

= 0
u and 1U−1R = 1R

1R
= u

u for all u ∈ U .
r
u = 0 if and only if there exists u′′ ∈ U such that u′′r = 0.
ψ : R → U−1R given by ψ(r) = r

1 is a well-defined ring homomorphism. ψ is 1-1 if and only if
U ⊆ NZD(R).

Notation 3.4. (a) If U = {1, f, f2, · · · }, write U−1R = Rf . (Rf = 0 for f ∈ Nil(R).

(b) If U = R∖ p for some p ∈ Spec(R), write U−1R = Rp.

(c) If U ⊆ R is multiplicatively closed, write U−1R = RU = R[U−1].

Let ψ : R→ U−1R be the natural ring homomorphism.

Recall 3.3+ϵ. ψ(U) ⊆ (U−1R)× since 1
u = (u1 )

−1 = (ψ(u))−1 for u ∈ U . Hence localization makes
more elements invertible.

Let φ : R→ S be a ring homomorphism.

Proposition 3.5 (UMP for ψ). Let φ(U) ⊆ S×. Then there exists a unique ring homomorphism
Φ : U−1R→ S such that Φ ◦ ψ = φ. In fact, Φ( ru ) = φ(r)φ(u)−1 for r

u ∈ U
−1R.

41
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R U−1R

S

ψ

φ
∃ ! Φ

R U−1R

S

ψ

φ
Λ

Proof. Let r
u = r′

u′ . Then there exists u′′ ∈ U such that u′′(ru′ − r′u) = 0. Since φ is a ring
homomorphism, we have that φ(u′′)(φ(r)φ(u′)− φ(r′)φ(u)) = 0. Also, since φ(u′′) ∈ S×, we have
that φ(r)φ(u′) = φ(r′)φ(u), i.e., φ(r)φ(u)−1 = φ(r′)φ(u′)−1 since φ(u), φ(u′) ∈ S×. Hence ϕ is
well-defined. Since

Φ
( r
u
+
s

v

)
= Φ

(
rv + su

uv

)
= φ(rv + su)φ(uv)−1 = (φ(r)φ(v) + φ(s)φ(u)))φ(u)−1φ(v)−1

= φ(r)φ(u)−1 + φ(s)φ(v)−1 = Φ
( r
u

)
+Φ

( s
v

)
and similarly, Φ( ru ·

s
v ) = Φ( ru )Φ(

s
v ) for

r
u ,

s
v ∈ U

−1R, we have that Φ is a ring homomorphism.
Suppose there is another ring homomorphism Λ : U−1R → S such that Λ ◦ ψ = φ. Then

φ(r) = Λ(ψ(r)) = Λ( r1 ) for r ∈ R. Hence

Λ
( r
u

)
= Λ

(
r

1

1

u

)
= Λ

(r
1

)
Λ(
u

1
)−1 = φ(r)φ(u)−1 = Φ

( r
u

)
for r

u ∈ U
−1R. Thus, Λ = Φ.

Proposition 3.6. We have the following.

(a) φ(U) ⊆ S is multiplicatively closed and φ(U)−1S =: U−1S.

(b) There is a unique ring homomorphism U−1φ : U−1R→ U−1S given by U−1φ(r/u) = φ(r)/φ(u).

R U−1R

r r
1

φ(r) φ(r)
1

S U−1S

ψ

φ U−1φ

ρ

(c) If φ is onto, U−1φ is onto.

(d) If φ is 1-1, U−1φ is 1-1.

(e) If α : S → T is a ring homomorphism, then U−1(α ◦ φ) = (φ(U)−1α) ◦ (U−1φ).

R U−1R

S U−1S

T φ(U)−1T := α(φ(U))−1T

ψ

α◦φ

φ U−1φ

α φ(U)−1α
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Proof. (b) Let r
u = r′

u′ ∈ U−1R. Then there exists u′′ ∈ U such that u′′(ru′−r′u) = 0. Hence there

exists φ(u′′) ∈ φ(U) such that φ(u′′)(φ(r)φ(u′) − φ(r′)φ(u)) = 0. Hence φ(r)
φ(u) = φ(r′)

φ(u′) ∈ U−1S.

Hence U−1φ is well-defined. Since

U−1φ
( r
u
+
s

v

)
= U−1φ

(
rv + su

uv

)
=
φ(rv + su)

φ(uv)
=
φ(r)φ(v) + φ(s)φ(u)

φ(u)φ(v)

=
φ(r)

φ(u)
+
φ(s)

φ(v)
= U−1φ

( r
u

)
+ U−1 (φ) (

s

v
)

and similarly, U−1(φ)( ru ·
s
v ) = U−1φ( ru )U

−1φ( sv ) for
r
u ,

s
v ∈ U

−1R.

Since φ(U) ⊆ S is multiplicatively closed, by Recall 3.3+ϵ, ρ(φ(U)) ⊆ ((φ(U))−1S)× =
(U−1S)×. Then the uniqueness follows from Proposition 3.5.

(c) Assume φ is onto. Let s
φ(u) ∈ U

−1S with s ∈ S and u ∈ U . Since φ : R → S is onto, there

exists r ∈ R such that φ(r) = s. Then U−1φ( ru ) =
φ(r)
φ(u) =

s
φ(u) .

(d) Assume φ is 1-1. Let r
u ∈ U

−1R with r ∈ R and u ∈ U . Then r
u ∈ Ker(U−1φ) if and only if

0 = U−1φ( ru ) =
φ(r)
φ(u) if and only if there exists u′′ ∈ U such that 0 = φ(u′′)φ(r) = φ(u′′r) if and

only if there exists u′′ ∈ U such that u′′r = 0 since φ is 1-1 if and only if r
u = 0 in U−1R.

(e) Since φ : R→ S and α : S → T are ring homomorphisms, α ◦φ is a ring homomorphism. Since
(α ◦φ)(U) = α(φ(U)) ⊆ T is multiplicatively closed by (a), we have that U−1(α ◦φ) and φ(U)−1α
are well-defined.

U−1R

r
u

φ(r)
φ(u) φ(U)−1S

(α◦φ)(r)
(α◦φ)(u)

α(φ(r))
α(φ(u))

(α ◦ φ)(U)−1T α(φ(U))−1T

Then by the commutative diagram, U−1(α ◦ φ) = (φ(U)−1α) ◦ (U−1φ).

Proposition 3.7. Let φ(U) ⊆ S be multiplicatively closed. Then Im(U−1φ) ∼= U−1 Im(φ) given

by φ(r)
φ(u) 7→

i(π(r))
i(π(u)) =

φ(r)
φ(u) .

Proof. We have that

R U−1R

Im(φ) U−1 Im(φ)

S U−1S

ψ

φ

π U−1π

i π(U)−1i

U−1φ
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By Proposition 3.6(e), Im(U−1φ) = Im(i ◦ π) = Im((π(U)−1i) ◦ U−1π). Since π is onto, U−1(π)
is onto by Proposition 3.6(c). Hence Im(U−1φ) = Im(π(U)−1i). Since i is 1-1, π(U)−1i is 1-1
by Proposition 3.6(d). Hence by the first isomorphism theorem, U−1 Im(φ) ∼= Im(π(U)−1i) =
Im(U−1φ).

Let a, b ≤ R.

Definition 3.8. Define a relation “∼” on U×a by (u, a) ∼ (u′, a′) if and only if there exists u′′ ∈ U
such that u′′(u′a− ua′) = 0.

Fact 3.9. This is an equivalence relation.

Notation 3.10. U−1a = {equivalence classes from U × a under ∼}, and a/u or a
u with a ∈ a and

u ∈ U are its elements, i.e., U−1a = {a/u | a ∈ a, u ∈ U}.

Proposition 3.11. We have the following.

(a) The map i : U−1a → U−1R given by i(a/u) = a/u is a well-defined ring monomorphism.
Identify U−1a with Im(i) ⊆ U−1R, so write U−1a ⊆ U−1R.

Warning. r
u ∈ U

−1R such that r
u ∈ U

−1a may have r ̸∈ a.

(b) If r
u ∈ U

−1R, then r
u ∈ U

−1a if and only if there exists v ∈ U such that vr ∈ a, in this case,
we have that r

u = vr
vu ∈ U

−1a with ur ∈ a and vu ∈ U .

(c) Let π : R → R
a be the natural surjection. Then U−1a = Ker(U−1π) ≤ U−1R and U−1R

U−1a
∼=

U−1R
a := π(U)−1R

a .

(d) More generally, if φ : R→ S is a ring homomorphism, then U−1 Ker(φ) = Ker(U−1φ) ≤ U−1R

such that Im(U−1φ) ∼= U−1R
U−1 Ker(φ) .

(e) U−1a = a · U−1R, extension of a along ψ : R→ U−1R.

Proof. (a) By the definition of “∼”, i is a well-defined ring monomorphism. Let a
u ∈ U

−1a with
a ∈ R and u ∈ U . Then a

u ∈ Ker(i) if and only if 0 = i( au ) =
a
u in U−1R if and only if there exists

v ∈ U such that va = 0 ∈ a ⊆ R if and only if a
u = va

vu = 0
vu = 0 in U−1a by (b). Also, since i is a

ring homomorphism, i is 1-1.

(b) Method 1. =⇒ Assume r
u ∈ U

−1a. Then r
u = a

u′ ∈ U−1R for some a ∈ a and u ∈ U . Hence
there exists u′′ ∈ U such that u′′u′r = u′′ua ∈ a since a ∈ a. Let v = u′′u′. Then vr = u′′u′r ∈ a.

⇐= Assume vr ∈ a for some v ∈ U . Then r
u = vr

vu ∈ U
−1a.

Method 2. Note that r
u ∈ U

−1a if and only if r
u = a

u′ for some a ∈ a and u′ ∈ U if and only if
u′′u′r − u′′ua = 0 for some a ∈ a and u′, u′′ ∈ U if and only if 1 · v · r − 1 · 1 · a = 0 for some a ∈ a
and v ∈ U if and only if there exists v ∈ U such that vr ∈ a.

(c) Note that by Proposition 3.7, Im(U−1π) ∼= U−1 Im(π) = U−1R
a given by r

u 7→
r
u . Then by (d),

U−1R
a
∼= U−1R

U−1 Ker(π) =
U−1R
U−1a given by r

u ←[ ru .
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(d) Let r
u ∈ U

−1R with r ∈ R and u ∈ U . Then r
u ∈ U

−1 Ker(φ) if and only if there exists v ∈ U
such that vr ∈ Ker(φ) by (b) if and only if there exists φ(v) ∈ φ(U) such that 0 = φ(vr) = φ(v)φ(r)

if and only if U−1φ( ru ) =
φ(r)
φ(u) = 0 in U−1S = φ(U)−1S if and only if r

u ∈ Ker(U−1φ).

By the first isomorphism theorem, Im(U−1φ) ∼= U−1R
Ker(U−1φ) =

U−1R
U−1 Ker(φ) given by φ(r)

φ(u) ←[ ru .

U−1R U−1R
Ker(U−1φ)

Im(U−1φ)

U−1φ

(e) ⊇ It follows from a · U−1R is generated by {ψ(a) = a
1 | a ∈ a} ⊆ U−1a.

⊆ Let a
u ∈ U

−1a with a ∈ a and u ∈ U . Then a
u = a

1 ·
1
u = ψ(a) 1u ∈ a · U−1R.

Proposition 3.12. We have the following.

(a) U−1(a+ b) = (U−1a) + (U−1b).

(b) U−1(a ∩ b) = (U−1a) ∩ (U−1b).

(c) U−1(ab) = (U−1a)(U−1b).

(d) U−1 rad(a) = rad(U−1a).

(e) U−1 Nil(R) = Nil(U−1R).

(f) U−1(b : a) = (U−1b : U−1a) if a is finitely generated.

Proof. (a) By Proposition 3.11(e) and 1.63(c), we have that

U−1(a+ b) = (a+ b) · U−1R = (a · U−1R) + (b · U−1R) = (U−1a) + (U−1b).

(b) ⊆ By Proposition 3.11(e) and 1.63(d),

U−1(a ∩ b) = (a ∩ b) · U−1R ⊆ (a · U−1R) ∩ (b · U−1R) = (U−1a) ∩ (U−1b).

“⊇”. Let r
u ∈ U−1R with r ∈ R, u ∈ U such that r

u ∈ (U−1a) ∩ (U−1b). Then there exist
v, w ∈ U such that vr ∈ a and wr ∈ b by Proposition 3.11(b). Hence (vw)r ∈ a ∩ b. Also, since
vw ∈ U , ru ∈ U

−1(a ∩ b) by Proposition 3.11(b).

(c) By Proposition 3.11(e) and 1.63(e), we have that

U−1(ab) = (ab) · U−1R = (a · U−1R)(b · U−1R) = (U−1a)(U−1b).

(d) ⊆ By Proposition 3.11(e) and 1.63(g),

U−1 rad(a) = rad(a) · U−1R ⊆ rad(a · U−1R) = rad(U−1a).

⊇ Let r
u ∈ rad(U−1a) with r ∈ R and u ∈ U . Then rn

un = ( ru )
n ∈ U−1a for some n ≥ 1. Hence

there exists v ∈ U such that vrn ∈ a by Proposition 3.11(b). Hence (vr)n = vn−1 · vrn ∈ a. Hence
vr ∈ rad(a). Thus, ru ∈ U

−1 rad(a) by Proposition 3.11(b).
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(e) Special case of (d) with a = 0.

(f) ⊆ By Proposition 3.11(e) and 1.63(f),

U−1(b : a) = (b : a) · U−1R ⊆ (b · U−1R : a · U−1R) = (U−1b : U−1a).

“⊇”. Let r
u ∈ U−1R with r ∈ R, u ∈ U such that r

u ∈ (U−1b : U−1a). Since a is finitely
generated, a = ⟨a1, . . . , an⟩R for some n ≥ 1 and a1, . . . , an ∈ R. Then U−1a = ⟨a11 , . . . ,

an
1 ⟩U

−1R.
Since r

u ∈ (U−1b : U−1a), raiu = r
u
ai
1 ∈ U

−1b for i = 1, . . . , n. Hence by Proposition 3.11(b), there
exists vi ∈ U such that virai ∈ b for i = 1, . . . , n. Let v = v1 · · · vn ∈ U . Then (vr)ai ∈ b for
i = 1, . . . , n. Hence vr ∈ (b : a). Thus, ru ∈ U

−1(b : a) by Proposition 3.11(b).

Proposition 3.13. We have the following.

(a) For I ≤ U−1R, there exists a ≤ R such that I = U−1a, i.e., every ideal of U−1R is an extension
of an ideal of R along ψ.

(b) If a ≤ R, then ψ−1(U−1a) = {r ∈ R | ∃v ∈ U s.t. vr ∈ a} =
⋃
v∈U (a : v).

(c) U−1R
a = 0 if and only if U

−1R
U−1a = 0 if and only if U−1a = U−1R if and only if U ∩ a ̸= ∅.

Proof. (a) Since I ≤ U−1R, we have that ψ−1(I) ≤ R. We claim that I = U−1(ψ−1(I)).

⊇ By Proposition 1.63(a), I ⊇ ψ−1(I) · U−1R = U−1(ψ−1(I)).

⊆ Let i ∈ I. Then i = r
u for some r ∈ R and u ∈ U . Also, since u

1 ∈ R, ψ(r) =
r
1 = r

u ·
u
1 ∈ I,

i.e., r ∈ ψ−1(I). Hence i = r
u ∈ U

−1(ψ−1(I)).

(b) Let r ∈ R. Then r ∈ ψ−1(U−1a) if and only if r1 = ψ(r) ∈ U−1a if and only if vr ∈ a for some
v ∈ U by Proposition 3.11(b) if and only if r ∈ (a : v) for some v ∈ U if and only if r ∈

⋃
v∈U (a : v).

(c) By Proposition 3.11(c), U−1R
a = 0 if and only if U−1R

U−1a = 0. Note that U−1a = U−1R if and
only if 1

1 ∈ U
−1a if and only if 1 ∈ ψ−1(U−1a) =

⋃
v∈U (a : v) if and only if U ∩ a ̸= ∅ by (b).

Corollary 3.14. Let p ∈ Spec(R) and Q(R/p) be the field of fraction. Then Rp = U−1R is local

with maximal ideal pp := pRp = U−1p and Q(R/p)
∼=←− Rp/pp given by r/u←[ r/u.

Proof. Note that I ⪇ U−1R if and only if there exists a ⪇ R with U ∩ a = ∅ such that I = U−1a
by Proposition 3.13(a) and (c). Since max{a ⪇ R | U ∩ a = ∅} = p, m-Spec(Rp) = {U−1p}.

Let τ : R → R/p be the natural projection. Then by Proposition 3.11(c), Rp/pp = U−1R
U−1p

∼=
U−1R

p
† := τ(U)−1R

p = Q(R/p).

Corollary 3.15. If m ∈ m-Spec(R), then Rm/mm
∼= R/m.

Proof. Since m ∈ m-Spec(R), R/m is a field. Hence by Corollary 3.14, Rm/mm
∼= Q(R/m) =

R/m.

Example. (a) Let p ∈ Z be prime. Then ⟨p⟩ ∈ m-Spec(Z). Hence Z(p)/(p)(p) ∼= Z/pZ = Fp.

†In this case, some textbook denotes it (R/p)p.
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(b) Let a1, . . . , ad ∈ k. Then, similarly,

k[X1, . . . , Xd](X1−a1,...,Xd−ad)

(X1 − a1, . . . , Xd − ad)(X1−a1,...,Xd−ad)
∼= Q

(
k[X1, . . . , Xd]

(X1 − a1, . . . , Xd − ad)

)
∼= Q(k) = k.

Let p ∈ Spec(R).

Question. U ∩ p = ∅ if and only if U−1p ∈ Spec(U−1R) by prime correspondence for localization.
What does (U−1R)U−1p look like?

Lemma 3.16. Let U ∩ p = ∅. Let r
u ∈ U

−1R. Then r
u ∈ U

−1p if and only if r ∈ p.

Proof. ⇐= follows from the definition.
=⇒ Assume r

u ∈ U
−1p. Then there exists v ∈ U such that vr ∈ p ∈ Spec(R). Hence v ∈ p or

r ∈ p. Since v ∈ U and U ∩ p = ∅, we have that v ̸∈ p. Hence r ∈ p.

Proposition 3.17. Let U ∩ p = ∅. Then U−1p ∈ Spec(U−1R) and

(U−1R)U−1p

∼=−−→ Rp

r/1

s/1
←− [ r/s s ∈ R∖ p

Proof. We have that

r r
1

R Rp

U−1R (U−1R)U−1p

r/1 r/1
1/1

ψ
β

∃φ

α

Let β = α◦ψ. By proposition 3.5, to show φ is a well-defined ring homomorphism, it suffices to show

β(R∖ p) ⊆ ((U−1R)U−1p)
× since U ⊆ R∖ p. Let x ∈ R∖ p. Then β(x) = x/1

1/1 . Since x/1 ∈ U
−1R

and x ̸∈ p, we have that x/1 ̸∈ U−1p by Lemma 3.16. Hence x
1 is an allowable denominator in

(U−1R)U−1p. Hence 1/1
x/1 ∈ (U−1R)U−1p. Thus,

x/1
1/1 ∈ ((U−1R)U−1p)

× with (x/11/1 )
−1 = 1/1

x/1 . Besides,

by Proposition 3.5, we have that φ(r/s) = β(r)/β(s) = r/1
s/1 for r

s ∈ Rp.

Let r
s ∈ Rp. Then

r
s ∈ Ker(φ) if and only if 0 = φ( rs ) =

r/1
s/1 ∈ (U−1R)U−1p if and only if there

exists t
v ∈ U

−1R ∖ U−1p with t ∈ R ∖ p such that tr
v = t

v ·
r
1 = 0 in U−1R by Proposition 3.11(b)

and Lemma 3.16 if and only if there exist t ∈ R∖ p and w ∈ U ⊆ R∖ p such that wtr = 0 in R by
Proposition 3.11(b) if and only if there exists v′ ∈ U ⊆ R∖ p such that v′r = 0 in R since R∖ p is
multiplicatively closed if and only if rs = 0 in Rp by Proposition 3.11(b). Hence φ is 1-1.

Let r/u
s/v ∈ (U−1R)U−1p with r ∈ R, u, v ∈ U ⊆ R∖p and s ∈ R∖p. Then us ∈ R∖p since R∖p

is multiplicatively closed. Hence vr
us ∈ Rp. Also, since φ( vrus ) =

β(vr)
β(us) = vr/1

us/1 = uv/1·r/u
uv/1·s/v = r/u

s/v , we

have that φ is onto.



48 CHAPTER 3. LOCALIZATION

Corollary 3.18. If q ∈ Spec(R) with p ⊆ q, then pq ∈ Spec(Rq) and (Rq)pq

∼=←− Rp given by
r/1
s/1 ← [ r/s.

Proof. Take U = R∖ q in Proposition 3.17.

Example. (a) Let 0 ̸= p ∈ Z be prime. Then (0) ⊆ (p) ⊊ Z and Z(p) = {mn ∈ Q | (n, p) = 1} is a
domain. Hence by Corollary 3.18, Q(Z(p)) = (Z(p))(0)(p)

∼= Z(0) = Q(Z) = Q.

(b) Let R be a domain and 0 ̸∈ U . Then U−1R is a domain and p := (0) ∈ Spec(R). Hence

Q(U−1R) = (U−1R)U−1(0)
∼= R(0) = Q(R) by Proposition 3.17. In fact, the map Q(U−1R)

∼=←−
Q(R) is given by r/1

s/1 ← [ r/s.

Proposition 3.19. Let R ̸= 0. Then NZD(R) ⊆ R is multiplicatively closed. Moreover, it is
saturated : if r, s ∈ R such that rs ∈ NZD(R), then r, s ∈ NZD(R).

Proof. Since R ̸= 0, 1 ∈ NZD. Let r, s ∈ NZD(R). Assume (rs)t = 0 for some t ∈ R. Then
r(st) = 0. Since r ∈ NZD(R), st = 0. Also, since s ∈ NZD(R), t = 0. Hence rs ∈ NZD(R).

Let x, y ∈ R such that xy ∈ NZD(R). By symmetry, we need to show x ∈ NZD(R). Assume
xz = 0 for some z ∈ R. Then (xy)z = y(xz) = 0. Since xy ∈ NZD(R), z = 0.

Definition 3.20. The total ring of fractions of R (or total quotient ring of R) is

Q(R) = NZD(R)−1R.

Example. (a) If R is an integral domain, then NZD(R) = R∖ {0} and Q(R) = NZD(R)−1(R) =
(R∖0)−1(R) = Q(R). Hence the total ring of fractions of a domain is equal to the field of fraction.

(b) Let R = k[X,Y,Z,W ]
⟨XY,Y Z,ZW,XW ⟩ , not an integral domain. Let x = X, y = Y , z = Z and w = W .

Since ⟨0⟩R = ⟨x, z⟩ ∩ ⟨y, w⟩ is a minimal primary decomposition, AssR(0) = {⟨x, z⟩, ⟨y, w⟩}. Hence
ZD(R) =

⋃
p∈AssR(0) p = ⟨x, z⟩∪⟨y, w⟩ by Corollary 4.34. Then U := NZD(R) = R∖{⟨x, z⟩∪⟨y, w⟩}.

By prime correspondence for localization, Spec(Q(R)) = {U−1p | p ∈ Spec(R), p ∩ U = ∅} =
{U−1⟨x, z⟩, U−1⟨y, w⟩}. Let p1 = U−1⟨x, z⟩ and p2 = U−1⟨y, w⟩. Then by Proposition 3.12(b),

p1 ∩ p2 = U−1(⟨x, z⟩ ∩ ⟨y, w⟩) = U−1⟨xy, yz, zw, xw⟩ = 0.

Hence m-Spec(U−1R) = {p1, p2}. Hence p1 + p2 = U−1R = Q(R). Let π1 : R → R/⟨x, z⟩ and
π2 : R → R/⟨y, w⟩ be natural surjections. Then by Chinese Remainder Theorem and Proposition
3.17 with 0 ̸∈ π1(R∖ ⟨x, z⟩ ∪ ⟨y, w⟩) = π1(U) and 0 ̸∈ π2(U),

Q(R) ∼=
U−1R

p1
× U−1R

p2
= Q

(
U−1R

p1

)
×Q

(
U−1R

p2

)
∼= Q

(
U−1 R

⟨x, z⟩

)
×Q

(
U−1 R

⟨y, w⟩

)
∼=
(
U−1 R

⟨x, z⟩

)
U−1(0)

×
(
U−1 R

⟨y, w⟩

)
U−1(0)

∼=
(

R

⟨x, z⟩

)
(0)

×
(

R

⟨y, w⟩

)
(0)

∼= Q

(
R

⟨x, z⟩

)
×Q

(
R

⟨y, w⟩

)
∼= Q(k[Y,W ])×Q(k[X,Z]) = k(Y,W )× k(X,Z).

Proposition 3.21. The natural ring homomorphism ψ : R → Q(R) is 1-1. Moreover, NZD(R) is
the unique largest multiplicatively closed subset of R with this property.
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Proof. Let r ∈ R. Then r ∈ Ker(ψ) if and only if ψ(r) = 0 = r
1 in Q(R) if and only if there exists

v ∈ NZD(R) such that vr = 0 by Proposition 3.11(b)(b) if and only if r = 0. Hence ψ is 1-1.
Assume U ⊆ R is multiplicatively closed such that the natural ring homomorphism ϕ : R →

U−1R is 1-1. Let u ∈ U . Let r ∈ R such that ur = 0. Then ϕ(r) = r
1 = ur

u = 0
u = 0. Also, since ϕ

is 1-1, r = 0. Hence u ∈ NZD(R).

Question 3.22. Let φ∗ : Spec(S)→ Spec(R).

(a) When is p ∈ Im(φ∗)?, i.e., when does there exist q ∈ Spec(S) such that p = φ−1(q).

(b) What does (φ∗)−1(p) = {q ∈ Spec(S) | φ∗(q) = p} look like? In general, if f : Y → X is a
(continuous) function and x ∈ X, then f−1(x) = {y ∈ Y | f(y) = x} = fibre over x w.r.t. f .

Construction 3.23. Let U = R∖ p.

R S

U−1R U−1S

Q(R/p) ∼= Rp

pp
= U−1R

U−1pU−1R
U−1S
p·U−1S := U−1S

pS·U−1S := U−1S
U−1p·U−1S

F(p) Sp

p·Sp
:= φ(U)−1S

φ(U)−1(pS)

φ

ψ ρ

U−1φ

τ π

π◦U−1φ

Note that p · U−1S is the extension of p along ρ ◦ φ, pS · U−1S is the extension of pS along ρ, and
U−1p · U−1S is the extension of U−1p along U−1φ. F(p) is fibre over p w.r.t. φ.

Let p
u ∈ U

−1p with p ∈ p and u ∈ U . Then π ◦ (U−1φ)( pu ) = π(φ(p)φ(u) ) = 0 in φ(U)−1S
φ(U)−1(pS) since

φ(p) ⊆ pS. Hence by Construction 1.13, π ◦ (U−1φ) is a well-defined ring homomorphism.

U−1R U−1R
U−1p

F(p) = φ(U)−1S
φ(U)−1(pS)

π◦(U−1φ)
π◦(U−1φ)

R S

U−1R U−1S

R
p

S
pS

U−1R
U−1p

φ(U)−1S
φ(U)−1(pS)

φ

ψ

ϵ
ρ

U−1φ

τ

π

ϵ◦φ
τ◦ψ

π◦ρ
π◦(U−1φ)

Let r ∈ R
p with r ∈ R. Then

π ◦ (U−1φ)◦(τ ◦ ψ)(r) = π ◦ (U−1φ)(τ◦ψ(r)) = π ◦ (U−1φ)

(
r

1

)
= π◦(U−1φ)

(r
1

)
=
φ(r)

φ(1)
=
φ(r)

1
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and

π ◦ ρ ◦ ϵ ◦ φ(r) = π ◦ ρ(ϵ ◦ ρ)(r) = π ◦ ρ(ϕ(r)) = π ◦ ρ(ϕ(r)) = φ(1)

1
.

Hence the diagram on the bottom also commutes.

Theorem 3.24. Let φ∗ : Spec(S)→ Spec(R) and U = R∖ p. Then the following are equivalent.

(i) p ∈ Im(φ∗), i.e., (φ∗)−1(p) ̸= ∅.

(ii) p = φ−1(pS), where pS is not necessarily prime.

(iii) p · U−1S ̸= U−1S, i.e., F(p) = U−1S
p·U−1S ̸= 0.

Moreover, the map θ : Spec(F(p)) → (φ∗)−1(p) ⊆ Spec(S) given by θ(Q) = ρ−1(π−1(Q)) is a
well-defined bijection, where (φ∗)−1(p) is the fibre over p w.r.t. φ∗ : Spec(S)→ Spec(R).

R S

U−1R U−1S

U−1R
p·U−1R

U−1S
p·U−1S

φ

ψ ρ

τ π

Proof. (i)=⇒(ii) Assume there is q ∈ Spec(S) such that p = φ−1(q). Then by Proposition 1.63(b),
p = φ−1(q) = φ−1(φ−1(q)S) = φ−1(pS).

(ii)=⇒(iii). Assume p = φ−1(pS). Note that

p · U−1S = pS · U−1S = pS · φ(U)−1S = φ(U)−1(pS).

To show that φ(U)−1(pS) ̸= φ(U)−1S, it is equivalent to show that pS ∩ φ(U) = ∅ by Proposition
3.13(c). Suppose φ(u) ∈ pS∩φ(U) for some u ∈ U . Then u ∈ φ−1(pS) = p = R∖U , a contradiction.

(iii)=⇒(i) and well-definedness of θ: It suffices to show that φ∗(θ(Q)) = p for Q ∈ Spec( U−1S
p·U−1S ),

i.e., φ−1(ρ−1(π−1(Q))) = p. Let q := π−1(Q) ∈ Spec(U−1S). Then by prime correspondence for
quotients, we have that p · U−1S ⊆ π−1(Q) = q and Q = q

p·U−1S . Since q ∈ Spec(U−1S), by

prime correspondence for localization Spec(U−1S)
ρ−1

−−→ Spec(S), for r := ρ−1(q) = ρ−1(π−1(Q)) ∈
Spec(S) with r ∩ φ(U) = ∅, we have that

q = r · U−1S = r · φ(U)−1S = φ(U)−1r.

Hence by Proposition 1.63(a),

p ⊆ φ−1 ◦ ρ−1(p · U−1S) ⊆ φ−1(ρ−1(π−1(Q))) = φ−1(r).

Suppose p ⊊ φ−1(r). Then there exists x ∈ φ−1(r) such that x ∈ R ∖ p = U . Hence φ(x) ∈
r ∩ φ(U) = ∅, a contradiction. Thus, p = φ−1(r) = φ−1(ρ−1(π−1(Q))).

By prime correspondence for quotients, π∗ is 1-1 and by prime correspondence for localization,
ρ∗ is 1-1. Since

θ : Spec(F(p)) π∗

−→ V(p · U−1S)
ρ∗|restriction−−−−−−−→ (φ∗)−1(p),
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we have that θ is the restriction of ρ∗ ◦ π∗. Hence θ is 1-1.
Let q ∈ (φ∗)−1(p). Then q ∈ Spec(S) such that φ−1(q) = p ∈ Spec(R). Since, p ∪ U = ∅,

q∩φ(U) = ∅. Hence q ·U−1S = q ·φ(U)−1S = φ(U)−1q ∈ Spec(U−1S) such that ρ−1(q ·U−1S) = q.
Since φ−1(q) = p, we have that pS = φ−1(q)S ⊆ q by Proposition 1.63(a). Hence p · U−1S =

pS · U−1S ⊆ q · U−1S. Hence by prime correspondence for quotients, q·U−1S
p·U−1S ∈ Spec( U−1S

p·U−1S ) such

that π−1( q·U
−1S

p·U−1S ) = q · U−1S. Hence

θ

(
q · U−1S

pU−1S

)
= ρ−1

(
π−1(

q · U−1S

pU−1S
)

)
= ρ−1(q · U−1S) = q.

Thus, θ is onto.

Proposition 3.25. If (R,m) is local, then F(m) ∼= S
m·S .

Proof. Since (R,m) is local, we have that U := R∖m = R× by Proposition 1.22. Hence U−1(−) ∼=
−, e.g., F(m) = U−1S

m·U−1S
∼= S

m·S .

Definition 3.26. (a) If (R,m) is local, then F(m) ∼= S/mS is the closed fibre of φ (fibre over
unique closed point of Spec(R)).

(b) If R is an integral domain, then F(0) is the generic fibre of φ (fibre over the generic point of
R).

Example 3.27. (a) Let φ : R
⊆
↪−→ R[X1, . . . , Rd].

(1) If (R,m) is local, then

F(m) ∼=
R[X1, . . . , Xd]

m ·R[X1, . . . , Xd]
=
R[X1, . . . , Xd]

m[X1, . . . , Xd]
∼=
R

m
[X1, . . . , Xd].

(2) If p ∈ Spec(R), then with U = R∖ p, we have that

F(p) = U−1(R[X1, . . . , Xd])

p · U−1(R[X1, . . . , Xd])
∼=

(U−1R)[X1, . . . , Xn]

(pU−1R)[X1, . . . , Xn]
∼=
Rp

pp
[X1, . . . , Xn] ∼= Q

(R
p

)
[X1, . . . , Xd]

since U−1(R[X]) ∼= (U−1R)[X] defined by
∑finite

i=1 rix
i

u 7→
∑finite
i=1

ri
u x

i.

(b) Let R
⊆
↪−→ RJX1, . . . , XdK.

(1) If (R,m) is local, then F(m) ∼= R
mJX1, . . . , XdK similarly.

(c) Let k be a field and φ : k[X1, . . . , Xd]
⊆
↪−→ kJX1, . . . , XdK.

(1) Let m = ⟨X1, . . . , Xd⟩ = k[X1, . . . , Xd] be maximal. Then m ·kJX1, . . . , XdK = ⟨X1, . . . , Xd⟩ ≤
kJX1, . . . , XdK. Hence with U = k[X1, . . . , Xd]∖m,

F(m) =
U−1(kJX1, . . . , XdK)

m · U−1(kJX1, . . . , XdK)
∼=

kJX1, . . . , XdK
m · kJX1, . . . , XdK

∼=
kJX1, . . . , XdK
⟨X1, . . . , Xd⟩

∼= k

since U−1(RJXK) ∼= (U−1R)JXK given by
∑∞

i=1 rix
i

u 7→
∑∞
i=1

ri
u x

i.

(2) F(0) is weired, which has chains of prime ideals of length d− 1.
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Chapter 4

Primary Decomposition

Let R be a nonzero commutative ring with identity.

Discussion 4.1. UFD’s have prime factorization. In fact, it is “if and only if”.
Aternative versions for non-UFD’s.

(a) Irreducible factorizations:

Pros Cons
familiar don’t necessarily exist

.

(b) Primary decompositions:

Pros Cons
exist, e.g., if R is noetherian, replace factorizations of elements
there exists more general form with intersections of nice ideals
than just for principal ideal

.

Theorem 4.2. Let R be a noetherian integral domain and a ∈ R∖ {R× ∪ 0}.

(a) a has an irreducible factor in R.

(b) There exist irreducible b1, . . . , bn ∈ R such that a = b1 · · · bn.

Proof. (a) Let Σ = {⟨b⟩ ≠ R : b | a}. Since ⟨a⟩ ∈ Σ, Σ ̸= ∅. Since R is noetherian, Σ has a maximal
element, say ⟨b⟩. We claim that ⟨b⟩ is irreducible. Since a ̸= 0 and b | a, we have that b ̸= 0. Since
⟨b⟩ ≠ R, b ̸∈ R×. Suppose b = cd for some c ∈ R ∖ R× and d ∈ R. Since c | b | a, we have that
c | a. Also, since c ̸∈ R×, ⟨c⟩ ∈ Σ. Since ⟨b⟩ ⊆ ⟨c⟩ ⊊ R and ⟨b⟩ is maximal in Σ, we have that
⟨cd⟩ = ⟨b⟩ = ⟨c⟩. Also, since R is an integral domain, d ∈ R×. Hence b is irreducible in R.

(b) If a is irreducible, then done. Else by (a) there exists b1 ∈ R irreducible such that b1 | a and
a = b1a1 for some a1 ∈ R. If a1 is irreducible, then done. Else by (a) there exists irreducible
b2 ∈ R such that b2 | a1 and a1 = b2a2 for some a2 ∈ R. If a2 is irreducible, then done and we have
that ⟨a⟩ ⊊ ⟨a1⟩ ⊊ ⟨a2⟩. Since R is noetherian, by the ascending chain condition, the process will
terminate in finite number of steps.

53
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Example 4.3. (a) Let k be a field and A = k[XR≥0 ] := {
∑finite
i∈R≥0

aiX
i | ai ∈ k}. Let m =

⟨XR>0⟩ ⪇ A. Then m ∈ m-Spec(R) and A/m ∼= k. Let R = Am. Then A ∖ m ⊆ R×. Since X
has no irreducible factors in R, X has no irreducible factorization. Let r ∈ R ∖ {R× ∪ 0}. Then
r = Xϵ · f for some ϵ > 0 and f ∈ R∖ {0}. Since Xϵ · f = X

ϵ
2 ·X ϵ

2 · f . Hence r is not irreducible
in R. Thus, R has no irreducible elements.

(b) In Z6, we have that 32 = 3, 22 = 4, 23 = 2.

Definition 4.4. If R satisfies the condition of Theorem 4.2(b), then R is atomic.

Lemma 4.5 (Nakayama’s Lemma). Let I, J ≤ R such that I ⊆ Jac(R) and J is finitely generated.
If J = IJ , then J = 0.

Proof. Let n be the minimum number of generators of J . Suppose n ≥ 2. Since J is finitely
generated, IJ = J = ⟨x1, . . . , xn⟩ for some x1, . . . , xn ∈ J . Hence xn ∈ IJ and then xn =

∑n
i=1 aixi

for some a1, . . . , an ∈ I, i.e., xn(1 − an) =
∑n−1
i=1 aixi. Since an ∈ I ⊆ Jac(R), 1 − an ∈ R× by

Proposition 1.29. Hence xn ∈ ⟨x1, . . . , xn−1⟩, contradicting minimality of n. Hence n = 1 or 0. If
n = 1, similarly, we have that x1(1 − a1) = 0 for some a1 ∈ I with 1 − a1 ∈ R×, so x1 = 0, a
contradiction. Thus, n = 0.

Lemma 4.6. Let (R,m) be local and 0 ̸= b = cd with b, c, d ∈ R such that ⟨b⟩ = ⟨c⟩. Then d ∈ R×.

Proof. Since b = cd and ⟨b⟩ = ⟨c⟩, we have that ⟨c⟩ = ⟨b⟩ = ⟨cd⟩ = ⟨d⟩⟨c⟩. Suppose d ̸∈ R×.
Then ⟨d⟩ ⊆ m = Jac(R). Hence by Lemma 4.5, c = 0. Hence b = cd = 0, a contradiction. Thus,
d ∈ R×.

Theorem 4.7. Let (R,m) be local and noetherian. Let a ∈ R∖ {R× ∪ 0}.

(a) a has an irreducible factor in R.

(b) a = b1 · · · bn for some irreducible elements b1, . . . , bn ∈ R.

Proof. It is similar to the proof of Theorem 4.2.

Discussion 4.8. Let R be noetherian and (local or a domain). Let a ∈ R ∖ {R× ∪ 0} with
irreducible factorization a = b1 · · · bn. Then V(a) = V(b1 · · · bn) = V(b1) ∪ · · ·V(bn), which are not
necessarily an irreducible decomposition.

Example 4.9. Let

R =
k[X,Y, Z](X,Y,Z)

(X2 − Y Z)
∼=

k[X,Y, Z](X,Y,Z)

(X2 − Y Z)(X,Y,Z)

∼=
(
k[X,Y, Z]

(X2 − Y Z)

)
(X,Y,Z)

or R = kJX,Y,ZK
(X2−Y Z) . Since X2 − Y Z ∈ k[Y,Z][X] and Y is prime (irreducible) in k[Y, Z][X], by

Eisenstein’s Criterion, X2 − Y Z is irreducible in k[X,Y, Z]. Since (kJX,Y, ZK, ⟨X,Y, Z⟩) is local,
kJX,Y,ZK
(X2−Y Z) is local. Hence R is a local, noetherian and integral domain. Let x = X ∈ R, which

is irreducible. Let y = Y , z = Z ∈ R. Since (x, z) ∈ V(x) ∖ V(y) and (x, y) ∈ V(x) ∖ V(z),
V(x) ̸= V(y) and V(x) ̸= V(z). Also, since V(x) = V(x2) = V(yz) = V(y) ∪ V(z), we have that
V(x) is not irreducible in Spec(R).
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Primary decomposition does the job.

Definition 4.10. An ideal q ⪇ R is primary if xy ∈ q with x, y ∈ R, then x ∈ q or y ∈ rad(q), i.e.,
if xy = 0 with x, y ∈ R/q, then x = 0 or y ∈ Nil(R/q), i.e., if xy ∈ q with x, y ∈ R, then x ∈ q or
y ∈ q or x, y ∈ rad(q), i.e., if Nil(R/q) = ZD(R/q).

Example 4.11. We have the following examples.

(a) If p ∈ Spec(R), then p is primary since rad(p) = p.

(b) If m ∈ Spec(R) and q ≤ R such that mn ⊆ q ⊆ m for some n ≥ 1, then q is primary. In
particular, mn is primary for n ≥ 1.

Proof. Let xy ∈ q ⊆ m with x, y ∈ R. Assume y ̸∈ rad(q). Since rad(m) = rad(mn) ⊆ rad(q) ⊆
rad(m), we have that rad(q) = rad(m) = m ∈ m-Spec(R). Hence ⟨y,m⟩ = R. As in Proposition
1.46(b), we can show ⟨y,mn⟩ = R by Proposition 1.39(a). Hence 1 = zy + α for some z ∈ R and
α ∈ mn ⊆ q. Also, since xy ∈ q, x = x(zy + α) = (xy)z + xα ∈ q.

(c) Proof of (b) shows that if q ⪇ R such that rad(q) = m ∈ m-Spec(R), then q is primary.

Alternating proof of (b). Let x, y ∈ R := R/q such that xy = 0. Let p/q ∈ Spec(R) with
p ∈ Spec(R) such that p ⊇ q ⊇ mn. Then

R ⊋ p = rad(p) ⊇ rad(q) ⊇ rad(mn) = m ∈ Spec(R).

Hence p = m. Hence Spec(R) = {m/q}. Hence (R,m/q) is local. If y ∈ m/q = Nil(R/q) by
Proposition 1.26(d), done. Assume now y ̸∈ Nil(R/q) = m/q. Then y ∈ R× by Proposition 1.22.
Also, since xy = 0 in R, x = 0.

(d) Let p ∈ Z be prime. Then ⟨p⟩ is maximal and so ⟨pn⟩ is primary by (b).

Example 4.12. We have the following examples.

(a) If R is a UFD and p ∈ R is prime, then ⟨pn⟩ is primary.

(b) Let R = kJX,Y,ZK
⟨X2−Y Z⟩ and x = X ∈ R. Then x is irreducible. Note that

R/⟨x⟩ = kJX,Y, ZK
⟨X2 − Y Z⟩

/⟨x⟩ ∼=
kJX,Y, ZK
⟨X,X2 − Y Z⟩

=
kJX,Y, ZK
⟨X,Y Z⟩

∼=
kJY,ZK
⟨Y Z⟩

.

Let y = Y , z = Z ∈ kJY,ZK
⟨Y Z⟩ . Then yz = 0 with y, z ̸= 0. Hence y, z ̸∈ (0) = rad(0) = Nil(R/⟨x⟩).

Thus, ⟨x⟩ is not primary.

(c) Let R = k[X1, . . . , Xd]. Then I = ⟨Xe1
i1
, · · · , Xen

in
⟩ with e1, . . . , en ≥ 1 is primary.

Let J = ⟨Xe1
1 , . . . , X

ed
d , f1, . . . , fn⟩ ⪇ R with e1, . . . , ed ≥ 1 and f1, . . . , fn ∈ R ∖ R×. Since

rad(J) = ⟨X1, . . . , Xd⟩ ∈ m-Spec(R), by Example 4.11(c), we have that J is primary.

(d) Let R = k[X,Y, Z] and I = ⟨X2, XY ⟩. Then rad(I) = ⟨X⟩. Since XY ∈ I with X ̸∈ I and
Y ̸∈ rad(I), I is not primary.

Let J = ⟨X,Y Z⟩. Then R/J = k[X,Y,Z]
⟨X,Y Z⟩

∼= k[Y,Z]
⟨Y Z⟩ . Hence similar to (b), we have that J is not

primary.
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Proof. (a) Let xy ∈ ⟨pn⟩ with x, y ∈ R. If y ∈ rad(⟨pn⟩) = ⟨p⟩, then done. Assume y ̸∈ ⟨p⟩. Then
p ∤ y. Since xy ∈ ⟨pn⟩, pn | xy. Since xy has a unique factorization and p ∤ y, pn | x, i.e., x ∈ ⟨pn⟩.

(c) Assume by symmetry I = ⟨Xe1
1 , . . . , X

en
n ⟩. Let f, g ∈ R such that fg ∈ I. If f ∈ I, then

done. Assume f ̸∈ I. Let f =
∑s
i=1 aifi for some s ≥ 1, ai ∈ R ∖ {0} and fi ∈ R monomial for

i = 1, . . . , s and g =
∑t
i=1 bigi for some t ≥ 1, bi ∈ R ∖ {0} and gi ∈ R monomial for i = 1, . . . , t.

Since f ̸∈ I, fi ̸∈ I for some i ∈ {1, . . . , s}. Let f = f̃ + f̂ , where f̂ are all monomials in I and f̃ are

all monomials not in I. Since f̃g + f̂g ∈ I = fg ∈ I and f̂g ∈ I, f̃g ∈ I. Use a monomial ordering,
e.g. lexicographical order, asssume fs is the largest monomial occuring in f̃ and gt is the largest
monomial occuring in g. Then fsgt is the largest monomial occuring in f̃g ∈ I. Hence fsgt ∈ I.
Since the monomial fs ̸∈ I, Xei

i ∤ fs for i = 1, . . . , n. Hence gt is not a constant in R and hence
Xj | gt for some j ∈ {1, . . . , n}. Then gt ∈ ⟨X1, . . . , Xn⟩ = rad(⟨Xe1

1 , . . . , X
en
n ⟩) = rad(I). Hence

g =
∑t−1
i=1 bigi + btgt with btgt ∈ rad(I). Induct on t, we have that bigi ∈ rad(I) for all i = 1, . . . , t.

Thus, g ∈ rad(I).

Let a ⪇ R for the rest of this section.

Definition 4.13. a is reducible if a = I ∩ J for some I, J ≤ R with I ̸= a and J ̸= a.

a is irreducible if it is not reducible, i.e., if a = I ∩ J for some I, J ≤ R, then I = a or J = a.

Example 4.14. (a) If p ∈ Spec(R), then p is irreducible.

(b) If a is primary in R, then q may not be irreducible.

Proof. (a) Assume p = I ∩ J for some I, J ≤ R. Then p = I ∩ J ⊇ IJ by Fact 1.38(f). Since
p ∈ Spec(R), p ⊇ I or p ⊇ J . Hence I ⊇ I ∩ J = p ⊇ I or J ⊇ I ∩ J = p ⊇ J . Hence p = I or
p = J .

(b) Counterexample. In R = k[X,Y ], let a = ⟨X2, XY, Y 2⟩, then by Example 4.11(c), a is primary
since rad(a) = ⟨X,Y ⟩ ∈ m-Spec(R), but a is not irreducible since a = ⟨X,Y 2⟩ ∩ ⟨X2, Y ⟩.

Proposition 4.15. Let R be noetherian. If a is irreducible, then a is primary.

Proof. Case 1. Assume a = 0. Let x, y ∈ R such that xy = 0. If x = 0, then done. Assume x ̸= 0.
Note that (0 : y) ⊆ (0 : y2) ⊆ (0 : y3) ⊆ · · · . Since R is noetherian, (0 : yn) = (0 : yn+1) for some
n ≥ 1. Let z ∈ ⟨x⟩ ∩ ⟨yn⟩. Then xs = z = ynt for some s ∈ R and t ∈ R. Hence yn+1t = xys = 0,
i.e., t ∈ (0 : yn+1) = (0 : yn). Hence z = ynt = 0. Hence ⟨x⟩ ∩ ⟨yn⟩ = 0 = a. Also, since a is
irreducible and ⟨x⟩ ≠ 0, we have that ⟨yn⟩ = 0, i.e., yn = 0. Hence y ∈ rad(0) = rad(a). Thus, a is
primary.

Case 2. Assume a is arbitrary. To show a is primary, by Case 1 it suffices to show (0) ⪇ R/a is

irreducible. Let I, J ≤ R/a such that 0 = I ∩ J = Ĩ
a ∩

J̃
a = Ĩ∩J̃

a for some a ≤ Ĩ , J̃ ≤ R (a ≤ Ĩ ∩ J̃).
Hence Ĩ ∩ J̃ = a. Also, since a is irreducible, Ĩ = a or J̃ = a. Hence I = Ĩ

a = 0 or J = J̃
a = 0.

Definition 4.16. A primary decomposition of a is a =
⋂n
i=1 Ji such that J1, . . . , Jn are primary.

Theorem 4.17 (Noether). Assume R is noetherian. Then a has a primary decomposition.
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Proof. It suffices to show a =
⋂n
i=1 Ji for some n ≥ 1 such that Ji is irreducible for i = 1, . . . , n.

Suppose not. Let Σ = {b ⪇ R | b does not have a irreducible decomposition}. Since a ∈ Σ, Σ ̸= ∅.
Since R is noetherian, Σ has a maximal element, say q. Then q = I∩J for some q ⊊ I, J ≤ R. Since
q is maximal, we have that I, J ̸∈ Σ. Hence there exists m ≥ n ≥ 1 and irreducible J1, . . . , Jm ⪇ R
such that I =

⋂n
i=1 Ji and J =

⋂m
i=n+1 Ji. Thus, q = I ∩ J =

⋂m
i=1 Ji, contradicting q ∈ Σ.

Example 4.18. We have the following examples.

(a) Let R be a UFD and a ∈ R∖ {R× ∪ 0} has a prime factorization a = upe11 · · · penn with u ∈ R×,
ei ≥ 1 and pi ∤ pj for 1 ≤ i, j ≤ n with i ̸= j. Then ⟨a⟩ =

⋂n
i=1⟨p

ei
i ⟩, a primary decomposition by

Example 4.12(a).

(b) Let R = k[X1, . . . , Xd] and a be an monomial ideal with an m-irreducible decomposition a =⋂n
i=1 Ji with J1, . . . , Jn generated by pure power of variables. Hence a =

⋂n
i=1 Ji is a primary

decomposition by Example 4.12(c). Moreover, it is an irreducible decomposition.

(c) Let R = k[X1, . . . , Xd] and a be an monomial ideal with an m-irreducible decomposition a =⋂n
i=1 Ji. Then a is primary if and only if rad(Ji) = rad(Jj) for 1 ≤ i, j ≤ n.

Proof. (c) ⇐= Assume that rad(Ji) = rad(Jj) for 1 ≤ i, j ≤ n. Let xy ∈ a with x, y ∈ R. If
y ∈ rad(a), done. Assume that

y ̸∈ rad(a)† = rad

(
n⋂
i=1

Ji

)
=

n⋂
i=1

rad(Ji) = rad(Ji)

for i = 1, . . . , n by Fact 1.58(d). Since R is noetherian and Ji is irreducible, Ji is primary for
i = 1, . . . , n. Also, since xy ∈ a ⊆ Ji for i = 1, . . . , n, we have that x ∈ Ji for i = 1, . . . , n. Hence
x ∈

⋂n
i=1 Ji = a.

=⇒ Assume that a is primary. Induct on n. The base case n = 2 is the important case. Suppose
rad(J1) ̸= rad(J2). Then we have that there exist a ∈ rad(J1)∖ rad(J2) and b ∈ rad(J2)∖ rad(J1).
Hence a, b ̸∈ rad(J1) ∩ rad(J2) = rad(J1 ∩ J2) = rad(a) and ab ∈ rad(J1) ∩ rad(J2) = rad(a),
contradicting rad(a) ∈ Spec(R) by Proposition 4.19.

Proposition 4.19. If q ⪇ R is primary, then rad(q) ∈ Spec(R). In particular, rad(q) is the unique
smallest prime ideal of R containing q.

Proof. Since q ≤ R, rad(q) ⪇ R. Let xy ∈ rad(q) with x, y ∈ R. Then xmym = (xy)m ∈ q for some
m ≥ 1. Since q is primary, xm ∈ q or ym ∈ rad(q). Hence x ∈ rad(q) or y ∈ rad(rad(q)) = rad(q)
by Fact 1.58(c). Hence rad(q) ∈ Spec(R). The minimality follows from the definition of prime ideal
and equivalent definition of primary ideal.

Definition 4.20. If q ⪇ R is primary and p = rad(q), then q is p-primary.

Example 4.21. (a) Let p ∈ Z be prime. Then q = ⟨pn⟩ is primary with rad(q) = ⟨p⟩ ∈ Spec(Z)
for n ≥ 1.

(b) Let m ∈ m-Spec(R) and q ≤ R such that mn ⊆ q ⊆ m for some n ≥ 1. Then q is primary with
rad(q) = m ∈ Spec(R) by the proof of Example 4.11(b).

†Not try to assume x ̸∈ a.
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(c) Let R = k[X1, . . . , Xd] and q = ⟨Xe1
i1
, . . . , Xen

in
⟩ with e1, · · · , en ≥ 1. Then q is primary with

rad(q) = ⟨Xi1 , . . . , Xin⟩ ∈ Spec(R).

Proposition 4.22. Let q1, . . . , qn ⪇ R be p-primary. Then
⋂n
i=1 qi is p-primary.

Proof. It is similar to the proof of Example 4.18(c).

Definition 4.23. A primary decomposition a =
⋂n
i=1 qi is minimal if

(a) rad(qi) ̸= rad(qj) for 1 ≤ i, j ≤ n with i ̸= j,

(b)
⋂n
i=1,i̸=j qi ̸⊆ qj , i.e., a ⊊

⋂n
i=1,i̸=j qi for j = 1, . . . , n.

Example 4.24. (a) Let n ∈ Z and n = pe11 · · · pemm such that p1, . . . , pm are distinct primes and
e1, . . . , em ≥ 1. Then the primary decomposition ⟨n⟩ =

⋂m
i=1⟨p

ei
i ⟩ is minimal.

(b) Let R = k[X,Y ]. Then

⟨X2, XY ⟩ = ⟨X2, Y ⟩ ∩ ⟨X⟩ = ⟨X2, XY, Y 2⟩ ∩ ⟨X⟩

are two minimal primary decompositions.

Notice: minimal primary decomposition is not necessarily unique up to re-ordering.

Definition 4.25. Let a =
⋂n
i=1 qi be a minimal primary decomposition such that rad(qi) = pi for

i = 1, . . . , n.

(a) The associated primes of a are p1, . . . , pn. Write it as

AssR(a) = {p1, . . . , pn}.

(b) The minimal (associated) primes of a are the minimal elements of {p1, . . . , pn} w.r.t. ⊆. Write
it as

Min(a) = min{AssR(a))} = min{p1, . . . , pn}.

(c) The embedded primes of a are the non-minimal associated primes of a, i.e., AssR(a)∖Min(a).

Example 4.26. Let R = k[X,Y ] and a = ⟨X2, XY ⟩. Then AssR(a) = {⟨X⟩, ⟨X,Y ⟩}, Min(a) =
{⟨X⟩} and the embedded prime(s) of a is {⟨X,Y ⟩}.

Goals: AssR(a) is independent of the minimal primary decomposition, so Min(a) is also indepen-
dent of the minimal primary decomposition. AssR(a) = AssR(R/a)

† if R is noetherian.

Proposition 4.27. If a has a primary decomposition, then a has a minimal primary decomposition.

Proof. Let a =
⋂n
i=1 qi be a primary decomposition. If rad(qi) = rad(qj) for some i, j ∈ {1, . . . , n}

with i ̸= j, then qi∩qj is p-primary where p := rad(qi) by Proposition 4.22, so combine qi and qj to
get a new shorter decomposition, this process terminates in at most n steps. Then without loss of
generality, assume that pi = rad(qi) ̸= rad(qj) = pj for 1 ≤ i, j ≤ n with i ̸= j. If

⋂n
i=1,i̸=j pi ⊆ qj

for some j ∈ {1, . . . , n}, then a =
⋂n
i=1 qi =

⋂n
i=1,i̸=j qi, so

⋂n
i=1,i̸=j qi is a shorter decomposition,

the process terminates in at most n steps.

†By definition of associated prime from module theory, AssR(R/a) = Spec(R) ∩ {AnnR(x) | x ∈ R/a}.
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Let a =
⋂n
i=1 qi be a minimal primary decomposition such that rad(qi) = pi for i = 1, . . . , n.

Proposition 4.28. Re-order the qi’s if necessary to assume without loss of generality, Min(a) =
{p1, . . . , pm}. Then the irreducible components of V(a) with subspace topology are V(p1), . . . ,V(pm).

Proof. We claim that Min(V(a)) = {p1, . . . , pm}. Then V(p1), . . . ,V(pm) are all maximal irre-
ducible subset of V(a) by Proposition 2.42.

“⊆”. Let p ∈ Min(V(a)). Then p ⊇ a =
⋂n
i=1 qi. Hence p ⊇ rad(a) = rad(

⋂n
i=1 qi) =⋂n

i=1 rad(qi) =
⋂n
i=1 pi =

⋂m
j=1 pj since there exists ji ∈ {1, . . . ,m} such that pji ⊆ pi for i =

m + 1, . . . , n. Since p ∈ Spec(R), p ⊇ pk ⊇
⋂m
j=1 pj = rad(a) ⊇ a for some k ∈ {1, . . . ,m}. Also,

since pk ∈ Spec(R) by Proposition 4.19 and p ∈ Min(V(a)), we have that p = pk.

“⊇”. Fix j ∈ {1, . . . ,m}. Suppose there exists p ∈ Spec(R) such that a ⊆ p ⊊ pj . Then
aRpj ⊆ pRpj ⊊ pjRpj by prime correspondence for localization. For i = 1, . . . ,m with i ̸= j, since
pi ̸⊆ pj , we have that pi ∩ (R ∖ pj) ̸= ∅ and then piRpj = Rpj by Proposition 3.13(c). Hence we
have that

aRpj = (R∖ pj)
−1a = (R∖ pj)

−1

(
m⋂
i=1

pi

)
=

m⋂
i=1

(R∖ pj)
−1pi

=

m⋂
i=1

piRpj
=

 m⋂
i=1,i̸=j

Rpj

⋂ pjRpj
= pjRpj

by Proposition 3.12(a), a contradiction. Thus, pj ∈ Min(V(a)).

Proposition 4.29. Let q ⪇ R be p-primary and x ∈ R. Then

(q : x) =

 R if x ∈ q
q if x ̸∈ p
p-primary if x ̸∈ q

.

Proof. If x ∈ q, then 1 ∈ (q : x), so (q : x) = R.

Assume x ̸∈ p = rad(q). Note that (q : x) ⊇ q by definition of colon ideal. Let y ∈ (q : x), then
yx ∈ q. Since q is primary, y ∈ q or x ∈ rad(q). By assumption, y ∈ q. Hence (q : x) ⊆ q.

Assume x ̸∈ q. Let y ∈ (q : x). Then xy ∈ q. Since q is primary, x ∈ q or y ∈ rad(q) = p. Hence
by assumption, y ∈ p. Then q ⊆ (q : x) ⊆ p. Hence p = rad(q) ⊆ rad(q : x) ⊆ rad(p) = p. Hence
rad(q : x) = p. Next, let ab ∈ (q : x) with a, b ∈ R. If b ∈ rad(q : x), then (q : x) is p-primary, done.
Assume b ̸∈ rad(q : x) = p = rad(q). Since ab ∈ (q : x), ax · b = abx ∈ q. Also, since q is primary
and b ̸∈ rad(q), ax ∈ q, i.e., a ∈ (q : x). Thus, (q : x) is p-primary.

Proposition 4.30.

AssR(a) := {p1, . . . , pn} = Spec(R) ∩ {rad(a : x) | x ∈ R}†.

Hence AssR(a) is independent of the minimal primary decomposition.

†AssR(a) = Spec(R) ∩ {rad(a : x) | x ̸∈ a}.
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Proof. Let x ∈ R. Then (a : x) = (
⋂n
i=1 qi : x) =

⋂n
i=1(qi : x) by Fact 1.54(i). Hence rad(a : x) =

rad(
⋂n
i=1(qi : x)) =

⋂n
i=1 rad(qi : x) =

⋂n
i=1,x ̸∈qi

pi by Proposition 4.29, where the intersection of
empty ideals is the R.

“⊇”. Let p ∈ Spec(R) ∩ {rad(a : x) | x ∈ R}. Then p ∈ Spec(R) and there exists x ∈ R
such that p = rad(a : x) =

⋂n
i=1,x ̸∈qi

pi which is not an empty intersection since p ̸= R. Hence by
Proposition 1.47(b), p = pi with x ̸∈ qi for some i ∈ {1, . . . , n}.

“⊆”. Let j ∈ {1, . . . , n}. Since a =
⋂n
i=1 qi is a minimal primary decomposition,

⋂n
i=1,i̸=j qi ̸⊆

qj . Hence there exists x ∈
⋂n
i=1,i̸=j qi such that x ̸∈ qj , i.e., x ∈ qi for 1 ≤ i ≤ n with i ̸= j and

x ̸∈ qj . Hence rad(a : x) =
⋂n
i=1,x ̸∈qi

pi = pj . Hence pj ∈ Spec(R) ∩ {rad(a : x) | x ∈ R}.

Theorem 4.31. If R is noetherian, then

AssR(a) := {p1, . . . , pn} = Spec(R) ∩ {(a : x) | x ∈ R}
= Spec(R) ∩ {AnnR(x) | x ∈ R/a} =: AssR(R/a).

Proof. Proof of the first equality. “⊇”. Let p ∈ Spec(R) such that p = (a : x) for some x ∈ R.
Then p = rad(p) = rad(a : x). Hence by Proposition 4.30, p = pi for some i ∈ {1, . . . , n}.
“⊆”. Let j ∈ {1, . . . , n}. Since a =

⋂n
i=1 qi is a minimal primary decomposition, a ⊊

⋂n
i=1,i̸=j qi.

Since R is noetherian, pj is finitely generated. Also, since rad(qj) = pj , there exists m ≥ 1
such that pmj ⊆ qj . Let aj :=

⋂n
i=1,i̸=j qi. Then ajp

m
j ⊆ aj ∩ pmj ⊆ aj ∩ qj =

⋂n
i=1 qi = a.

Let l = min{m ≥ 1 | ajpmj ⊆ a}. Note that ajp
0
j = aj ⊋ a. Since ajp

l−1
j ̸⊆ a, there exists

x ∈ ajp
l−1
j ∖ a ⊆ aj ∖ a = (

⋂n
i=1,i̸=j qi) ∖ qj , i.e., x ∈ qi for 1 ≤ i ≤ n with i ̸= j and x ̸∈ qj .

Hence by the proof of Proposition 4.30, (a : x) ⊆ rad(a : x) = pj . On the other hand, since
xpj ⊆ ajp

l−1
j pj = ajp

l
j ⊆ a, we have that pj ⊆ (a : x). Hence pj = (a : x).

Example 4.32. If R is not noetherian, then a ⪇ R may not have a primary decomposition. Let
R = C([0, 1]) = {continuous f : [0, 1] → R} with pointwise operations. We claim that 0 ≤ R does
not have a primary decomposition.

(a) For a ∈ [0, 1], define Φa : R→ R by Φa(f) = f(a). Then Φa is a well-defined ring epimorphism.
Hence R

Ker(Φa)
∼= R. Hence {f ∈ R | f(a) = 0} = Ker(Φa) ∈ m-Spec(R) ⊆ Spec(R).

(b) We claim that 0 ̸∈ Spec(R). For a ∈ (0, 1), there exist ga, ha ∈ R such that gaha = 0 but
ga, ha ̸= 0.

X

Y

a

ga

X

Y

a

ha

(c) We claim that Nil(R) = 0. Let f ∈ Nil(R). Then fm = 0 for some m ≥ 1, i.e., (f(a))m = 0 for
a ∈ [0, 1]. Since f([0, 1]) ⊆ R and R is an integral domain, f(a) = 0 for a ∈ [0, 1], i.e., f = 0.

(d) We claim that (0 : f) = rad(0 : f) for f ∈ R. “⊆”. Done. “⊇”. Let g ∈ rad(0 : f). Then
gm · f = 0 for some m ≥ 1. Hence gmfm = 0. Hence gf ∈ Nil(R) = 0 by (c), i.e., g ∈ (0 : f).
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(e) We claim that (0 : f) ̸∈ Spec(R) for f ∈ R. Suppose (0 : f) ∈ Spec(R). Then (0 : f) ̸= R, i.e.,
f ̸= 0. Hence there exists y ∈ [0, 1] such that f(y) ̸= 0. Since f is continuous, there exists y ∈ (0, 1)
such that f(y) ̸= 0. Let 0 < x < y. Then gxhx = 0 ∈ (0 : f) ∈ Spec(R).

X

Y

x

gx hx
f(y)

y

Hence gx ∈ (0 : f) or hx ∈ (0 : f), i.e., gxf = 0 or hxf = 0. Since hx(y)f(y) > 0, hxf ̸= 0. Hence
gxf = 0. Also, since gx(a) ̸= 0 for 0 < a < x < y, we have that f(a) = 0 for 0 < a < x < y. Since
x ∈ (0, y) is arbitrary, f(a) = 0 for 0 < a < y. Since f is continuous, f(y) = lima→y− f(a) = 0, a
contradiction.

Now suppose 0 =
⋂n
i=1 qi is a primary decomposition. Assume without loss of generality that

the decomposition is minimal by Proposition 4.27. By (d), (e) and Proposition 4.30, there exists
f1 ∈ R such that Spec(R) ̸∋ (0 : f1) = rad(0 : f1) = rad(q1) ∈ Spec(R), a contradiction.

(f) Note that

0 = {f ∈ R | f(a) = 0,∀a ∈ [0, 1]} =
⋂

a∈[0,1]

{f ∈ R | f(a) = 0}︸ ︷︷ ︸
∈Spec(R), ∴ primary

=
⋂

a∈[0,1]

Ker(Φa) =
⋂

a∈[0,1]∩Q

Ker(Φa) = · · ·

cannot be pruned to a minimal primary decomposition.

Proposition 4.33.

{x ∈ R | (a : x) ̸= a} =
n⋃
i=1

pi =
⋃

p∈AssR(a)

p.

Proof. We claim that {x ∈ R | (a : x) ̸= a} =
⋃
y ̸∈a rad(a : y). “⊆”. Then x ∈ R such that

(a : x) ̸= a. Hence (a : x) ⊋ a. Then there exists z ∈ (a : x) ∖ a, i.e., z ̸∈ a and xz ∈ a, i.e., z ̸∈ a
and x ∈ (a : z) ⊆ rad(a : z) ⊆

⋃
y ̸∈a rad(a : y). “⊇”. Let x ∈ rad(a : y) for some y ̸∈ a. Then

xmy ∈ a for some m ≥ 1. Let n = min{m ≥ 1 | xmy ∈ a}. Note that x0y = y ̸∈ a. Then xny ∈ a
but xn−1y ̸∈ a. Hence xn−1y ∈ (a : x). Hence (a : x) ̸= a.

We claim that
⋃
y ̸∈a rad(a : y) =

⋃n
i=1 pi. “⊆”. Let y ̸∈ a =

⋂n
i=1 qi. Then by the proof of

Proposition 4.30,

rad(a : y) =

n⋂
i=1,y ̸∈qi

pi =

n⋂
i=1

pi ⊆
n⋃
i=1

pi.

“⊇”. By Proposition 4.30, there exists yi ̸∈ a such that pi = rad(a : yi) for i = 1, . . . , i. Hence⋃
y ̸∈a rad(a : y) ⊇

⋃n
i=1 pi.
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Corollary 4.34. Set a = 0 in Proposition 4.33, we get

ZD(R) = {x ∈ R | (0 : x) ̸= 0} =
n⋃
i=1

pi =
⋃

p∈AssR(0)

p.

Summary 4.35. Let R be noetherian and a = 0. Then ZD(R) =
⋃n
i=1 pi =

⋃
p∈AssR(0) p. (Use

with prime avoidence to get useful information about ideals and NZD(R).)

Nil(R) = rad(0) = rad

( n⋂
i=1

qi

)
=

n⋂
i=1

pi =
⋂

p∈Min(0)

p.

Example. Let R = k[X,Y ]
⟨X2,XY ⟩ = k[X,Y ]

⟨X⟩∩⟨X2,Y ⟩ and x = X, y = Y ∈ R. Then ⟨0⟩R = ⟨x⟩ ∩ ⟨x2, y⟩ is
a minimal primary decomposition. Hence ZD(R) = ⟨x⟩ ∪ ⟨x, y⟩ = ⟨x, y⟩. For f ∈ R with constant
term 0, we have that f = xf1 + yf2 for some f1, f2 ∈ R, then xf = x2f1 + xyf2 = 0. Hence
f ∈ ZD(R).

Proposition 4.36. We have that

Min(a) = min{p1, . . . , pn} = Min(V(a)).

In particular,
Min(0) = Min(V(0)) = Min(Spec(R)) = Min(R).

Proof. It follows from the proof of Proposition 4.28.

Lemma 4.37. Let U ⊆ R be multiplicatively closed and q ⪇ R be p-primary. Let ψ : R→ U−1R
be the natural ring homomorphism.

(a) If U ∩ p ̸= ∅, then U−1q = U−1R.

(b) If U ∩ p = ∅, then U−1q ⪇ U−1R is U−1p-primary and ψ−1(U−1q) = q.

Proof. (a) Let u ∈ U ∩ p. Since p = rad(q) and U is multiplicatively closed, there exists n ≥ 1 such
that un ∈ q ∩ U . Hence by Proposition 3.13, U−1q = U−1R.

(b) Since q ⊆ p and U ∩ p = ∅, U−1q ⊆ U−1p ⊊ U−1R by Proposition 3.13. Let x
u ,

y
v ∈ U

−1R
x
u ·

y
v ∈ U

−1q. If yv ∈ rad(U−1q), then U−1q is primary. Assume y
v ̸∈ rad(U−1q). Since xy

uv ∈ U
−1q,

there exists w ∈ U such that x(wy) = wxy ∈ q. Since y
v ̸∈ rad(U−1q) = U−1 rad(q) = U−1p by

Proposition 3.12(d), wy ̸∈ p = rad(q). Also, since q is primary, x ∈ q. Hence x
u ∈ U

−1q. Hence
U−1q is primary.

Since q ⊆ p = rad(q) ∈ Spec(R), by Proposition 3.12(d), we have that rad(U−1q) ⊆ rad(U−1p) =
U−1 rad(p) = U−1p = U−1 rad(q) = rad(U−1q). Hence rad(U−1q) = U−1p.

We claim that ψ−1(U−1q) = q. “⊇”. By Proposition 1.63(a). “⊆”. Let x ∈ ψ−1(U−1q). Then
x
1 = ψ(x) ∈ U−1q. Hence there exists u ∈ U such that xu ∈ q. Since U ∩ p = ∅, u ̸∈ p = rad(q).
Also, since q is primary, x ∈ q.

Theorem 4.38 (Second uniqueness theorem). (a) Let q = qi be p-primary for some i ∈ {1, . . . , n}
with p ∈ Min(a). Then q = ψ−1(ap)

†, where ψ : R → Rp and U = R ∖ p, so q is independent of
choice of minimal primary decomposition.

†That is, q is the kernel of the ring homomorphism R→ (R/a)p.
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(b) If Λ = ⟨pi1 , . . . , pim⟩ is an “isolated” subset of AssR(a) = {p1, . . . , pn}, then
⋂m
j=1 qij =

Ψ−1(U−1a), where Ψ : R → U−1R and U = R ∖ {pi1 ∪ · · · ∪ pim}. Hence
⋂m
j=1 qij is independent

of choice of minimal primary decomposition.

Proof. (b) By Proposition 3.12(b) and Lemma 4.37, we have that Ψ−1(U−1a) = Ψ−1(U−1(
⋂n
i=1 qi)) =

Ψ−1(
⋂n
i=1 U

−1qi) =
⋂n
i=1 Ψ

−1(U−1qi) =
⋂n
i=1,pi∩U=∅ qi =

⋂m
j=1 qij since Λ is “isolated”.

(a) It follows from (b) since {p} is “isolated” for p ∈ Min(a).

Definition 4.39. Λ ⊆ AssR(a) is “isolated” if it is “closed under subsets”, i.e., if p, p′ ∈ AssR(a)
such that p′ ⊆ p and p ∈ Λ, then p′ ∈ Λ.

Discussion 4.40. Consider the following.

(a) If m ∈ m-Spec(R), then mn is m-primary for n ≥ 1 by Example 4.11(b).

(b) Let k be a field. If p = ⟨Xi1 , · · · , Xim⟩ ⪇ k[X1, . . . , Xd], then pn is p-primary for n ≥ 1.

Proof. (b) Note that ⟨Xa1
i1
, . . . , Xam

im
⟩ is p-primary for a1, . . . , am ≥ 1 by Example 4.12(c). Let

Λ = {a ∈ Nm | a1 + · · · + am = m + n − 1}. Set pa = ⟨Xa1
i1
, . . . , Xam

im
⟩ for a ∈ Λ. We claim that

pn =
⋂
a∈Λ pa, then by Proposition 4.22, pn is p-primary.

“⊆”. Let Λ0 = {e ∈ Zm≥0 | e1 + · · ·+ em = n}. For n ≥ 1,

pn = (⟨Xi1⟩+ · · ·+ ⟨Xim⟩)n =
∑
e∈Λ0

⟨Xe1
i1
· · ·Xem

im
⟩.

Suppose that X
e
(i) := Xe1

i1
· · ·Xem

im
∈ pn ∖ pa for some e ∈ Λ0 and a ∈ Λ. Then ai ≥ ei + 1 for

i = 1, . . . ,m. Hence m+n−1 =
∑m
i=1 ai ≥ m+

∑m
i=1 ei = m+n, a contradiction. Hence X

e
(i) ∈ pa

for all e ∈ Λ0 and a ∈ Λ. Hence pn ⊆
⋂
a∈Λ pa.

“⊇”. Let R′ := k[Xi1 , . . . , Xim ] ⊆ k[X1, . . . , Xd] and p′ = (Xi1 , . . . , Xim)R′. Set p′a =
⟨Xa1

i1
, . . . , Xam

im
⟩R′ for a ∈ Λ. We know p′n in R′ has an (irredundant) parametric decomposi-

tion p′n =
⋂
f ′∈CR′ (p′) PR(f

′) =
⋂
a∈Λ p′a. Let q = #Λ. Since

⋂
a∈Λ pa and

⋂
a∈Λ p′a have the same

generating set {lcm(f1, . . . , fq) | fj is a generator of paj with aj ∈ Λ for j = 1, . . . , q}, we have that
the generators of

⋂
a∈Λ pa are in

⋂
a∈Λ p′a = p′n ⊆ pn. Hence pn ⊇

⋂
a∈Λ pa.

Example 4.41. In general, pn is not p-primary for p ∈ Spec(R). For example, let R = k[X,Y,Z]
⟨XY−Z2⟩

and x = x, y = Y , z = Z ∈ R, then p := ⟨x, z⟩ ∈ Spec(R), but p2 is not p-primary since xy = z2 ∈ p2

but x ̸∈ p2 and y ̸∈ p = rad(p2).

Definition 4.42. Let p ∈ Spec(R) and ψ : R → Rp. Then for n ≥ 1, the nth symbolic power of p
is

p(n) = ψ−1((pn)p) = ψ−1 ((pp)
n) .

Note 4.43. pn ⊆ p(n) because by Proposition 1.63(a), pn ⊆ ψ−1((pn)p) = p(n).

Example 4.44. We have the following examples.

(a) Let m ∈ m-Spec(R) and ψ : R → Rm. Since mn is m-primary by Example 4.11(b) and
m ∩ (R∖m) = ∅, by Lemma 4.37(b), mn = ψ−1((mn)m) =: m(n) for n ≥ 1.
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(b) Let k be a field and p = ⟨Xi1 , · · · , Xim⟩ ⪇ k[X1, . . . , Xd]. Since pn is p-primary by Discussion
4.40(b) and p ∩ (R∖ p) = ∅, by Lemma 4.37(b), pn = ψ−1((pn)p) =: p(n) for n ≥ 1.

(c) Let R = k[X,Y,Z]
⟨XY−Z2⟩ and x = X, y = Y , z = Z ∈ R. Let p = ⟨x, z⟩. We claim that p(2) = ⟨x⟩. “⊇”.

Since y ̸∈ p and xy = z2 ∈ p2, we have that x = x
1 = xy

y ∈ (p2)p in Rp. Hence x ∈ ψ−1(p2)p) = p(2).

“⊆”. Let a ∈ p(2). Then a = a
1 = ψ(a) ∈ (p2)p. Hence there exists b ∈ R ∖ p such that

ab ∈ p2 = ⟨x2, xz, z2⟩ = ⟨x2, xz, xy⟩. Also, since b ̸∈ ⟨x⟩, a ∈ ⟨x⟩. Hence p(2) ⊆ ⟨x⟩. Thus,
p(2) = ⟨x⟩ ⊋ ⟨x2, xz, xy⟩ = p2.

Note that a basis for R over k is {xayb, xaybz | a, b ≥ 0}.

Proposition 4.45. If p ∈ Spec(R), then p(n) is the “p-primary component” of pn, i.e., if pn has a
minimal primary decomposition pn =

⋂m
i=1 qi such that pi = rad(qi) for i = 1, . . . ,m, then pj = p

and qj = p(n) for some j ∈ {1, . . . ,m}.

Proof. Since rad(pn) = p, Min(pn) = {p}. Hence p = rad(qj) = pj for some j ∈ {1, . . . ,m}. Then
by the second uniqueness theorem, qj = ψ−1((pnj )pj ) = ψ−1((pn)p) = p(n).

Example 4.46. Let R = k[X,Y,Z]
⟨XY−Z2⟩ and x = X, y = Y , z = Z ∈ R. Let p = ⟨x, z⟩ ∈ Spec(R). Then

by Example 4.44(c), p(2) = ⟨x⟩. Note that p2 = ⟨x⟩ ∩ ⟨x2, z, y⟩ with rad(⟨x⟩) = ⟨x, z⟩ = p since
z2 = xy, and with rad(⟨x2, z, y⟩) = ⟨x, y, z⟩ ∈ m-Spec(R) since

R/⟨x, y, z⟩ ∼=
k[X,Y,X]

⟨XY − Z2, X, Y, Z⟩
=
k[X,Y, Z]

⟨X,Y, Z⟩
∼= k.

Definition 4.47 (Calculus content). Let R = C[X1, . . . , Xd] and p ∈ Spec(R) (Zariski).

p(2) =

{
f ∈ p

∣∣∣ ∂f
∂xi
∈ p,∀ i = 1, . . . , d

}
,

p(n) =

{
f ∈ p

∣∣∣ ∂if
∂x
∈ p, all partials of order i = 1, . . . , n− 1

}
,∀n ≥ 3.



Chapter 5

Modules and Integral Dependence

Modules

Let R be a commutative ring with identity.

Definition 5.1. An R-module is an additive abelian groupM equipped with a scalar multiplication
R×M →M denoted (r,m) 7→ rm that is unital, associative and distributive.

• 1m = m for all m ∈M .

• r(sm) = (rs)m for all r, s ∈ R and m ∈M .

• (r + s)m = rm+ sm for all r, s ∈ R and m ∈M .

• r(m+ n) = rm+ rn for all r ∈ R and m,n ∈M .

(Closure) rm ∈M for all r ∈ R and m ∈M .

Example 5.2. (a) For n = 1, 2, 3, · · · , let Rn =


r1...
rn

 ∣∣∣∣∣ r1, . . . , rn ∈ R
 with s

r1...
rn

 =

sr1...
srn


for s ∈ R, then Rn is an R-module. e.g., R is an R-module.

(b) A Z-module is an additive abelian group.

(c) Let φ : R → S be a ring homomorphism. Then S is an R-module with r · s = φ(r)s for r ∈ R
and s ∈ S.

Let M be an R-module.

Definition 5.3. A submodule of M is a subset N ⊆ M such that N is an R-module using the
operations from M .

Example 5.4. (a) If I ≤ R, then I is a submodule of R.

(b) A submodule of an Z-module is a subgroup.

65
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(c) Submodule test. 0 ̸= N ⊆ M is a submodule of M if and only if n + n′ ∈ N for all n, n′ ∈ N
and rn ∈ N for all r ∈ R and n ∈ N if and only if n+ rn′ ∈ N for all r ∈ R and n, n′ ∈ N .

(d) IfMλ ⊆M is a submodule for λ ∈ Λ, then
⋂
λ∈ΛMλ ⊆M and

∑
λ∈ΛMλ ⊆M are submodules.

Definition 5.5. Let Y ⊆M . Define

⟨Y ⟩ = R⟨Y ⟩ = R(Y ) =
⋂

Y⊆N⊆M

N,

intersection of all submodules N ⊆ M such that Y ⊆ N . This is the (unique) smallest submodule
of M containing Y . e.g., for a submodule N ⊆M , ⟨Y ⟩ ⊆ N if and only if Y ⊆ N .

⟨Y ⟩ is the submodule of M generated by Y .

M is finitely generated if there exist y1, . . . , yn ∈M such that M = ⟨y1, . . . , yn⟩.

Fact 5.6. (a) Let Y ⊆M . Then

⟨Y ⟩ =
{finite∑
y∈Y

ryy
∣∣∣ ry ∈ R,∀y} =

∑
y∈Y
⟨y⟩.

(b) If y1, . . . , yn ∈M , then

⟨y1, . . . , yn⟩ =
{ n∑
i=1

riyi

∣∣∣ r1, . . . , rn ∈ R}.
Example 5.7. Submodules of a finitely generated R-module may not be finitely generated. Note
that R := k[X1, X2, · · · ] = ⟨1⟩ is a finitely generated R-module, but m = ⟨X1, X2, · · · ⟩ ⊆ R is not
finitely generated.

Integral Dependence

Let R be a nonzero commutative ring with identity. Let R ⊆ S be a subring.

Definition 5.8. An element s ∈ S is integral over R if there exists a monic f ∈ R[X] such that
f(s) = 0, i.e., there exists n ≥ 1 and r0, . . . , rn−1 ∈ R such that sn + rn−1s

n−1 + · · ·+ r0 = 0.

S is integral R if every s ∈ S is integral over R, (or R ⊆ S is an integral extension).

Example 5.9. (a) Let k ⊆ K be a field extension. Then K is integral over k if and only if k ⊆ K
is an algebraic extension.

(b) Every r ∈ R is integral over R since r satisfies X − r ∈ R[X].

(c) Z ⊆ Z[i] is an integral extension since a+ bi ∈ Z[i] satisfies X2 − 2aX + (a2 + b2) ∈ Z[X].

(d) Z ⊆ Q. The only r
s ∈ Q that are integral over Z are the elements of Z.
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Proof. (c) Let r
s ∈ Q be integral over Z, where s ̸= 0 and (r, s) = 1. Then ( rs )

n + cn−1(
r
s )
n−1 +

· · ·+ c1(
r
s ) + c0 = 0 for some n ≥ 1 and c0, . . . , cn−1 ∈ R. Hence rn+cn−1r

n−1s+···+c1rsn−1+c0s
n

sn = 0,
i.e.,

rn = −(cn−1r
n−1s+ · · ·+ c1rs

n−1 + c0s
n) = −s(cn−1r

n−1 + · · ·+ c1rs
n−2 + c0s

n−1).

Hence s | rn. Since (r, s) = 1, (rn, s) = 1. Hence s = ±1. Thus, rs = ±r ∈ Z.

Definition 5.10. An intermediate subring is a subring T ⊆ S such that R ⊆ T . (Notice if
R ⊆ T ⊆ S is an intermediate subring, then R ⊆ T is a subring.)

Let y1, . . . , yn ∈ S. Define the subring of S generated over R by y1, . . . , yn by

R[y1, . . . , yn] =
⋂

R⊆T⊆S,
y1,...,yn∈T

T,

where the intersection is taken over all intermediate subrings R ⊆ T ⊆ S such that y1, . . . , yn ∈ T .

Fact 5.11. Let y1, . . . , yn ∈ S.

(a) R[y1, . . . , yn] = {f(y1, . . . , yn) ∈ S | f ∈ R[Y1, . . . , Yn]}.

(b) ψ : R[Y1, . . . , Yn]→ S given by ψ(f) = f(y1, . . . , yn) is a well-defined ring homomorphism with
Im(ψ) = R[y1, . . . , yn] and Y1, . . . , Yn ∈ R[Y1, . . . , Yn]/Ker(ψ) ∼= R[y1, . . . , yn]. Hence if y1, . . . , yn
have no polynomial relations, then Ker(ψ) = 0 and hence R[Y1, . . . , Yn] ∼= R[y1, . . . , yn].

(c) Let T ⊆ S be a subring. Then R[y1, . . . , yn] ⊆ T if and only if R ⊆ T and y1, . . . , yn ∈ T .

Example 5.12. Z ⊆ Z[i] ⊆ C is an intermediate subring, where Z[i] ∼= Z[X]/⟨X2 + 1⟩.

Proposition 5.13. Let s ∈ S. Then the following are equivalent.

(i) s is integral over R.

(ii) R[s] is a finitely generated R-module.

(iii) There exists an intermediate subring R ⊆ T ⊆ S such that s ∈ T and T is a finitely generated
R-module.

Proof. (i)=⇒(ii). Method 1. Assume s is integral over R. Then sn + rn−1s
n−1 + · · · + r0 = 0 for

some n ≥ 1 and r0, . . . , rn−1 ∈ R. We claim that R[s] = R⟨1, s, . . . , sn−1⟩.
⊇ It is straightforward.
⊆ It suffices to show sm ∈ R⟨1, s, . . . , sn−1⟩ form = n, n+1, · · · . Use induction onm. Base case:

sn = −
∑n−1
i=0 ris

i ∈ R⟨1, s, . . . , sn−1⟩. Inductive step: assume m ≥ n+1 and sk ∈ R⟨1, s, . . . , sn−1⟩
for 0 ≤ k ≤ m− 1. Then

sm = snsm−n = −
n−1∑
i=0

ris
i+m−n ∈ R⟨sm−n, . . . , sm−1⟩ ⊆ R⟨1, s, . . . , sn−1⟩

by inductive hypothesis.
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Method 2. Assume s is integral over R. Then there exists f ∈ R[x] monic such that f(s) = 0.
Let g ∈ R[x]. Write g(x) = f(x)q(x)+ r(x) with q, r ∈ R[x], where r = 0 or deg(r) < deg(f). Then
g(s) = f(s)q(s) + r(s) = r(s). This implies R[s] is finitely generated by 1, s, . . . , sdeg(f)−1 as an
R-module.

(ii)=⇒(iii) Use T = R[s].

(iii)=⇒(i) (Determinant trick). Assume s ∈ T = R⟨y1, . . . , yn⟩ for some y1, . . . , yn ∈ S. Then for
j = 1, . . . , n, syj ∈ T and so there exist a1j , . . . , anj ∈ R such that

∑n
i=1 δijsyi = syj =

∑n
i=1 aijyi,

i.e.,
∑n
i=1(δijs− aij)yi = 0. Let B = (δijs− aij) ∈ Tn×n. Then By⃗ = 0⃗. Let (δij) ∈ Tn×n be the

identity matrix. Then (det(B)(δij))y⃗ = adj(B)By⃗ = 0⃗, † i.e., det(B)yj = 0 for j = 1, . . . , n. Since
1 ∈ T = R⟨y1, . . . , yn⟩, there exist c1, . . . , cn ∈ R such that 1 =

∑n
j=1 cjyj . Hence det(δijs− aij) =

det(B) · 1 = det(B)
∑n
j=1 cjyj =

∑n
j=1 cj det(B)yj = 0, i.e.,

0 = det(δijs− aij) =

∣∣∣∣∣∣∣∣∣
s− a11 −a12 · · · −a1n
−a21 s− a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · s− ann

∣∣∣∣∣∣∣∣∣ = sn + cn−1s
n−1 + · · ·+ c1s+ c0,

where c0, . . . , cn−1 ∈ R since they are built from aij ∈ R.

Theorem 5.14. s1, . . . , sn ∈ S are integral over R if and only if R[s1, . . . , sn] is a finitely generated
R-module.

Proof. =⇒ Assume B = A⟨b1, . . . , bm⟩ and C = B⟨c1, . . . , cn⟩ with A ⊆ B ⊆ C an intermediate
subring. We claim that C = A⟨bicj | i = 1, . . . ,m, j = 1, . . . , n⟩.
⊇ It is straightforward.

⊆ Let c ∈ C. Then c =
∑n
j=1 βjcj for some β1, . . . , βn ∈ B. Note that for j = 1, . . . , n,

βj =
∑m
i=1 αijbi for some α1j , . . . , αmj ∈ A. Hence c =

∑n
j=1(

∑m
i=1 αijbi)cj =

∑m
i=1

∑n
j=1 αijbicj .

Since s1 is integral over R, by Proposition 5.13, R[s1] is a finitely generated R-module. Since
s2 is integral over R, clearly s2 is integral over R[s1] and then R[s1, s2] = R[s1][s2] is a finitely
generated R[s1]-module. Hence R[s1, s2] is a finitely generated R-module by our result. Continuing
in this fashion, we have that R[s1, . . . , sn] is a finitely generated R-module.

⇐= follows from Proposition 5.13 by considering the intermediate subring R ⊆ R[s1, . . . , sn] ⊆
S.

Theorem 5.15. Let R := {s ∈ S | s is integral over R}. Then R ⊆ R ⊆ S is an intermediate
subring. Hence for s, s′ ∈ S integral over R, the elements s± s′ and ss′ are integral over R.

Proof. R ⊆ R is straightforward. Since s, s′ are integral over R, T := R[s, s′] is a finitely generated
R-module by Theorem 5.14. Hence s ± s′, ss′ are integral over R by Proposition 5.13(iii). Hence
s ± s′, ss′ ∈ R. Since R ⊆ S is a subring, 1S = 1R ∈ R. Hence by subring test, R ⊆ S is a
subring.

Note. Let s, s′ ∈ R be integral over R. Assume s, s′ satisfies a monic f, g ∈ R[X] of degree m,n,
respectively. Since s′ also satisfies the monic g ∈ R[s][X] of degree n, by the proof (i)=⇒(ii) of

†A adj(A) = adj(A)A = det(A)(δij) for A ∈ Matn(R). When A is invertible, adj(A) is unique.
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Proposition 5.13, we have that

R[s, s′] = R[s][s′] = R[s]⟨1, s′, . . . , s′n−1⟩ = R⟨1, s, . . . , sm−1⟩⟨1, s′, . . . , s′n−1⟩
= R⟨1, s′, . . . , s′n−1, s, ss′, . . . , ss′n−1, . . . , sm−1, sm−1s′, sm−1s′n−1⟩,

which has mn generators. Hence by the proof (iii)=⇒(i) of Proposition 5.13, we have that all
elements in R[s, s′], e.g., s± s, ss′ satisfy a monic polynomial of degree mn in R[X].

Definition 5.16. R = {s ∈ S | s is integral over R} is the integral closure of R in S.
If R = S, then S is integral over R. If R = R, then R is integrally closed in S.

Example 5.17. (a) Z[i] is integral over Z with Z = Z[i].

(b) Z is integrally closed in Q with Z = Z.

(c) Z = Z[i] in Q(i).

Definition 5.18. Let φ : R → S be a ring homomorphism. Then φ is integral if Im(φ) ⊆ S is an
integral extension.

Theorem 5.19. The following are equivalent.

(i) S is a finitely generated R-module.

(ii) S = R[s1, . . . , sn] for some s1, . . . , sn and is integral over R.

(iii) S = R[s1, . . . , sn] for some s1, . . . , sn integral over R.

Proof. (i)=⇒(ii) Assume S = R⟨s1, . . . , sn⟩. Then S = R⟨s1, . . . , sn⟩ ⊆ R[s1, . . . , sn] ⊆ S. Hence
S = R[s1, . . . , sn]. Note that there exists an intermediate subring R ⊆ R[s1, . . . , sn] := T ⊆ S such
that T is a finitely generated R-module. Then s1, . . . , sn ∈ S are integral over R by Proposition
5.13. Since R ⊆ S is a subring by Theorem 5.15, S = R[s1, . . . , sn] ⊆ R ⊆ S by Fact 5.11(c). Hence
R = S.

(ii)=⇒(iii) is trivial.
(iii)=⇒(i) follows from Theorem 5.14.

Corollary 5.20. If R ⊆ S and S ⊆ T are integral extensions, then R ⊆ T is an integral extension.

Proof. Let t ∈ T . Then t is integral over S. Hence tn + sn−1t
n−1 + · · · + s0 = 0 for some

n ≥ 1 and s0, . . . , sn−1 ∈ S. Hence t is integral over R[s0, . . . , sn−1]. Hence R[s0, . . . , sn−1, t] =
R[s0, . . . , sn−1][t] is a finitely generated R[s0, . . . , sn−1]-module by Proposition 5.13. Since S is
integral over R and s0, . . . , sn−1 ∈ S, s0, . . . , sn−1 are integral over R. Hence R[s0, . . . , sn−1] is
a finitely generated R-module by Theorem 5.14. Thus, R[s0, . . . , sn−1, t] is a finitely generated
R-module by the claim in the proof of Theorem 5.14. Therefore, t is integral over R by Proposition
5.13(iii).

Corollary 5.21. If R is an integral closure of R in S, then R is integrally closed in S, i.e., R = R.

Proof. Let s ∈ R. Then s ∈ S be integral over R. Hence R ⊆ R ⊆ R[s] are integral extensions by
Theorem 5.15. Hence R ⊆ R[s] is an integral extension by Corollary 5.20. Hence s is integral over
R, i.e., s ∈ R.
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Proposition 5.22. Let R ⊆ S be an integral extension.

(a) If b ≤ S and a = R ∩ b, then R/a→ S/b given by r + a 7→ r + b is 1-1 and integral.

(b) If U ⊆ R is multiplicatively closed, then U−1R ⊆ U−1S given by r
u 7→

r
u is an integral extension.

Proof. (a) Consider

R S

R/a S/b

r r

⊆
p

τ
ρ

π

∃ ! ρ

Since Ker(ρ) = Ker(π) ∩R = b ∩R = a, by the first isomorphism, R/a ∼= Im(ρ) ⊆ S/b.
Let s ∈ S/b. Then s is integral over R since S is integral over R. Hence s satisfies Xn +∑n−1
i=0 aiX

i for some a0, . . . , an−1 ∈ R. Hence s satisfies Xn +
∑n−1
i=0 aiX

i for some a0, . . . , an−1 ∈
R/a ∼= Im(ρ).

(b) Let s
u ∈ U

−1S with s ∈ S and u ∈ U . Then s is integral over R. Hence sn+an−1s
n−1+· · ·+a0 =

0 for some a0, . . . , an−1 ∈ R. Hence

0 =
sn + an−1s

n−1 + · · ·+ a1s+ a0
un

=
( s
u

)n
+
(an−1

u

)( s
u

)n−1

+ · · ·+
( a1
un−1

)( s
u

)
+
( a0
un

)
for some a0

un ,
a1
un−1 , . . . ,

an−1

u ∈ U−1R.

Discussion 5.23. Let p ∈ Spec(R). When does there exist q ∈ Spec(S) such that p = q ∩R? i.e.,
when is the induced map Spec(S)→ Spec(R) surjective?

By Cohen-Seidenberg, it is a surjection when S is integral over R.

Let R ⊆ S be an integral extension.

Proposition 5.24. Let S be an integral domain. Then R is a field if and only if S is a field.

Proof. =⇒ Assume R is a field. Let 0 ̸= s ∈ S. Then s is integral over R since S is integral over R.
Hence there exists n := min{deg(f) | s satisfies a monic f ∈ R[X]}. Then sn+an−1s

n−1+· · ·+a0 =
0 for some a0, . . . , an−1 ∈ R. Suppose a0 = 0. Then s(sn−1 + · · · + a1) = 0. Since s ̸= 0 and S is
an integral domain, sn−1 + · · ·+ a1 = 0, contradicting the minimality of n. Hence a0 ̸= 0. Since R
is a field, a0 ∈ R× ⊆ S×. Hence s(sn−1 + · · ·+ a1) = −a0 ∈ S×. Thus, s ∈ S×.
⇐= Assume S is a field. Let 0 ̸= r ∈ R ⊆ S. Then r−1 ∈ S. Note that r−1 is integral over R

since S is integral over R. Then rn−1[(r−1)n + an−1(r
−1)n−1 + · · · + a1(r

−1) + a0] = 0 for some
a0, a1, . . . , an−1 ∈ R. Hence r−1 + an−1 + · · ·+ a1r

n−2 + a0r
n−1

︸ ︷︷ ︸
∈R

= 0. Hence r−1 ∈ R.

Example. Conclusion of Proposition 5.24 fails if S is not an integral domain. Let k be a field .
Restrict the domain of the projection φ : k[X] → k[X]/(X2), we have an induced ring homomor-
phism φ|k : k → k[X]/(X2). Since φ|k(1) = 1 ̸= 0 in k[X]/(X2), φ|k ̸= 0. Also, since k is a field,
φ|k is 1-1. Hence we regard R := k as a subring of S := k[X]/(X2). Let x = X ∈ S. Then x is
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integral over k since x2 = 0. Hence S = k[x] is integral over k. However, R is a field but S is not a
field.

Let ϵ ̸= 0 and ϵ2 = 0 in a ring extension T ⊇ k, then φ : k[X] → k[ϵ] given by f 7→ f(ϵ) is a
ring epimorphism with Ker(φ) = (X2), so k[X]/(X2) ∼= k[ϵ] = kϵ+ k.

Corollary 5.25. Let q ∈ Spec(S) and p = q∩R. Then p ∈ m-Spec(R) if and only if q ∈ m-Spec(S).

Proof. Since S is integral over R, R/p ⊆ S/q is an integral extension by Proposition 5.22(a). Since
S/q is an integral domain, by Proposition 5.24, R/p is a field if and only if S/q is a field.

Theorem 5.26. Spec(S) → Spec(R) given by q 7→ q ∩ R is a surjection, i.e., for p ∈ Spec(R),
there exists q ∈ Spec(S) such that p = q ∩R.

Proof. Let U = R∖ p. Consider

p

R S

U−1R U−1S
pp = Rp ∩Q Q

⊆

ψ ρ

⊆

Since R ⊆ S is an integral extension, U−1R ⊆ U−1S is an integral extension by Proposition 5.22(b).
Since 0 ̸= R ⊆ S, 0 ̸= Rp = U−1R ⊆ U−1S. Hence there exists Q ∈ m-Spec(U−1S). By Corollary
5.25, Q∩Rp ∈ m-Spec(Rp) = {pp} by Corollary 3.14. Hence Q∩Rp = pp. Consider ψ : R→ U−1R.
Since U ∩ p = ∅, by Proposition 3.13, we have that

p · U−1(U−1R) = p · U−1R ̸= U−1R = U−1(U−1R).

Hence by Theorem 3.24,

p = ψ−1(p · U−1R) = ψ−1(pp) = ψ−1(Q ∩Rp) = ρ−1(Q) ∩R.

Let q := ρ−1(Q). Since Q ∈ Spec(U−1S), q ∈ Spec(S) by Fact 1.16.

Proposition 5.27. Let q, q′ ∈ Spec(S) such that q∩R = q′ ∩R. Then q ⊆ q′ if and only if q = q′.

Proof. Let p = q ∩ R = q′ ∩ R ∈ Spec(R) by Fact 1.16. Let U = R ∖ p. By prime correspondence
for localization,

Spec(U−1S)↔ {γ ∈ Spec(S) | γ ∩ (R∖ p) = ∅} = {γ ∈ Spec(S) | γ ∩R ⊆ p}

given by U−1γ ← [ γ. Hence U−1q, U−1q′ ∈ Spec(U−1S). Hence U−1q∩Rp, U
−1q′∩Rp ∈ Spec(Rp).

p q, q′

R S

U−1R U−1S

pp U−1q, U−1q′

⊆

ψ ρ

⊆
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Since U−1q, U−1q′ ⊇ U−1p = pp and Rp ⊇ pp,

Rp ⊋ U−1q ∩Rp, U
−1q′ ∩Rp ⊇ pp ∈ m-Spec(Rp).

Hence U−1q ∩ Rp = pp = U−1q′ ∩ Rp.
† Since R ⊆ S is an integral extension, U−1R ⊆ U−1S is an

integral extension by Proposition 5.22(b). Hence by Corollary 5.25, U−1q, U−1q′ ∈ m-Spec(U−1S).
Also, since U−1q ⊆ U−1q′, U−1q = U−1q′. Thus, q = q′ by the prime correspondence for localiza-
tion.

Theorem 5.28 (Going up theorem). Let p1 ⊆ · · · ⊆ pn be a chain in Spec(R) and q1 ⊆ · · · ⊆ qm
(m < n) be a chain in Spec(S) such that pi = qi ∩ R for i = 1, . . . ,m. Then there exists a chain
qm ⊆ · · · ⊆ qn in Spec(S) such that qi ∩R = pi for i = 1, . . . , n.

Proof. By induction on n − m. It suffices to consider the case n = 2 and m = 1. Need to find
q2 ∈ V(q1) ⊆ Spec(S) such that q2 ∩R = p2. Consider

p2 q2

R S

R/p1 S/q1

p2/p1 q2/q1

⊆
π τ

⊆

Since R ⊆ S is an integral extension and p1 = q1 ∩ R, by Proposition 5.22(a), R/p1 ⊆ S/q1 is an
integral extension. Also, since p2/p1 ∈ Spec(R/p1) by prime correspondence for quotients, there
exists q2/q1 ∈ Spec(S/q1) such that (q2/q1) ∩ (R/p1) = p2/p1 by Theorem 5.26.

Note that x + p1 ∈ (R ∩ q2)/p1 if and only if x ∈ R and x ∈ q2 if and only if x + q1 =
x+ p1 ∈ (q2/q1)∩ (R/p1) = p2/p1 since we can regard R/p1 ⊆ S/q1 by Proposition 5.22(a). Hence
(q2 ∩R)/p1 = p2/p1. Thus, q2 ∩R = p2 by prime correspondence for quotients.

Example 5.29. Integral assumption is crucial.

(a) Z ⊆ Q. Let 0 ⊆ 2Z be a chain in Spec(Z), Note that 0 is a (unique) chain in Spec(Q) = {0}.

(b) Z ⊆ Z[X]. Let 0 ⊆ 2Z be a chain in Spec(Z) and ⟨2X − 1⟩ be a chain in Spec(Z[X]) since
Z[X]

(2X−1)
∼= Z2

† = Z[ 12 ] ⊆ Q given by X 7→ 1
2 and Z[ 12 ] is an integral domain. Note that Z∩⟨2X−1⟩ =

0. Suppose there exists Q ∈ Spec(Z[X]) such that ⟨2X−1⟩ ⊆ Q and Z∩Q = 2Z. Then 2, 2x−1 ∈ Q.
Hence 1 ∈ Q, i.e., Q = Z[X], a contradiction.

This example also shows the need for integral assumption in Proposition 5.27 because

(1) 0, ⟨2X − 1⟩ ∈ Spec(Z[X]) and Z ∩ 0 = 0 = Z ∩ ⟨2X − 1⟩, but 0 ⊊ ⟨2X − 1⟩;
(2) ⟨2⟩, ⟨2, X⟩ ∈ Spec(Z[X]) and Z ∩ ⟨2⟩ = 2Z = Z ∩ ⟨2, X⟩, but ⟨2⟩ ⊊ ⟨2, X⟩.

Proposition 5.30. Let U ⊆ R be multiplicatively closed. Let R be the integral closure of R in S
and U−1R be the integral closure of U−1R in U−1S. Then U−1R = U−1R.

†U−1q∩Rp = U−1q∩U−1R = U−1(q∩R) = U−1p = pp = U−1p = U−1(q′∩R) = U−1q′∩U−1R = U−1q′∩Rp.
†Z2 is the localization of Z away from 2 while Z(2) is the localization of Z at 2.
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Proof. “⊇”. Since R ⊆ R ⊆ S with R ⊆ R integral, we have that U−1R ⊆ U−1R ⊆ U−1S with
U−1R ⊆ U−1R integral by Proposition 5.22(b). Hence U−1R ⊆ U−1R.

“⊆”. Let s
u ∈ U−1R ⊆ U−1S. Then

0 =
( s
u

)n
+

(
an−1

vn−1

)( s
u

)n−1

+ · · ·+
(
a1
v1

)( s
u

)
+

(
a0
v0

)
in U−1S for some a0, . . . , an−1 ∈ R and v0, . . . , vn−1 ∈ U . Let v := v0 · · · vn−1 ∈ U and multiply
the equation by (uv)n,

0 = (vs)n +

(
u

v

vn−1
an−1

)
︸ ︷︷ ︸

bn−1∈R

(vs)n−1 + · · ·+
(
un−1 v

n−1

v1
a1

)
︸ ︷︷ ︸

b1∈R

(vs) +

(
un
vn

v0
a0

)
︸ ︷︷ ︸

b0∈R

in U−1R. Hence there exists w ∈ U ⊆ R such that

0 = wn · 0 = (wvs)n + (wbn−1︸ ︷︷ ︸
∈R

)(wvs)n−1 + · · ·+ (wn−1b1︸ ︷︷ ︸
∈R

)(wvs) + (wnb0︸ ︷︷ ︸
∈R

).

Hence wvs ∈ R. Thus, su = wvs
wvu ∈ U

−1R.

Definition 5.31. If R is an integral domain, then R is integrally closed if it is integrally closed in
the field of fraction Q(R).

Example 5.32. (a) Z is integrally closed.

(b) Any UFD is integrally closed.

(c) Let R := k[X2, XY, Y 2] ⊆ k[X,Y ]. Then R is not a UFD since X2Y 2 = (XY )(XY ) with
X2, Y 2, XY irreducible in R.

Note that Q(R) = k(X,Y ) = Q(k[X,Y ]). Since X,Y satisfies Z2 − X2, Z2 − Y 2 ∈ R[Z],
respectively, we have that X,Y are integral over R. Also, since k is integral over R, R ⊆ k[X,Y ] is
integral. Since k[X,Y ] is a UFD, k[X,Y ] is integrally closed by (b). Hence R is integrally closed
by Corollary 5.20.

We claim that R ∼= k[U,V,W ]
⟨V 2−UW ⟩ . Let φ : k[U, V,W ] → k[X,Y ] be a ring homomorphism given by

U 7→ X2, V 7→ XY and W 7→ Y 2. Then Im(φ) = k[X2, XY, Y 2] and ⟨V 2 − UW ⟩ ⊆ Ker(φ). Let
f ∈ Ker(φ). Then by long division, f = (V 2−UW )q+ r for some q, r ∈ k[U,W ][V ] and deg(r) < 2
in k[U,W ][V ]. Since φ(f) = 0 and φ is a ring homomorphism, ((XY )2 −X2Y 2)φ(q) + φ(r) = 0,
i.e., φ(r) = 0. Note that r = aV + b for some a, b ∈ k[U,W ]. Hence a(X2, Y 2)XY + b(X2, Y 2) = 0.
Hence a = 0 = b, i.e., r = 0. Hence f ∈ ⟨V 2 − UW ⟩.

Example. If S is noetherian, then R is not necessarily noetherian. Let Q be the algebraic closure
of Q in C and R := Q+XQ[X] ⊆ Q[X] =: S. Note that R ⊆ S is an integral extension since Q is
algebraic over Q ⊆ R and X ∈ R, but R is not noetherian since [Q : Q] =∞.

Lemma 5.33. If R is an integral domain, then R =
⋂

m∈m-Spec(R)Rm ⊆ Q(R).
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Proof. “⊆”. Since R is an integral domain, we have that R∖m ⊆ NZD(R). Hence R ⊆ Rm ⊆ Q(R)
for m ∈ m-Spec(R). Hence R ⊆

⋂
m∈m-Spec(R)Rm ⊆ Q(R).

“⊇”. Let x ∈
⋂

m∈m-Spec(R)Rm. Let I = {r ∈ R | rx ∈ R} =: (R :R x) ≤ R. By Proposition

3.12(f), Im = (R :R x)m = (Rm :Rm
x) = Rm for m ∈ m-Spec(R). Hence I ∩ (R ∖ m) ̸= ∅, i.e.,

I ̸⊆ m for m ∈ m-Spec(R). Hence I = R, i.e., 1 ∈ I = (R :R x). Thus, x = 1 · x ∈ R.

Proposition 5.34 (being integrally closed is a “local condition”). Let R be an integral domain.
Then the following are equivalent.

(i) R is integrally closed.

(ii) U−1R is integrally closed for multiplicatively closed U ⊆ R with 0 ̸∈ U .

(iii) Rp is integrally closed for p ∈ Spec(R).

(iv) Rm is integrally closed for m ∈ m-Spec(R).

Proof. (i)=⇒(ii) Assume R is integrally closed. Let U ⊆ R be multiplicatively closed with 0 ̸∈ U .
Since R is an integral domain and 0 ̸∈ U , U ⊆ NZD(R). Hence R ⊆ U−1R ⊆ Q(R) =: S are
subrings. By Proposition 5.30, U−1R = U−1R = U−1R since R is integral closed in Q(R). Hence
U−1R is integrally closed in U−1S = Q(R). Also, since Q(U−1R) = Q(R)†, U−1R is integrally
closed.

(ii)=⇒(iii) and (iii)=⇒(iv) Done.
(iv)=⇒(i) Assume Rm is integrally closed for m ∈ m-Spec(R). Since R is an integral domain

and R ⊆ Rm ⊆ Q(R), Q(Rm) = Q(R) for m ∈ m-Spec(R). Let x ∈ R, where R is the integral
closure of R in Q(R). Then x ∈ Q(R) = Q(Rm) and x is integral over R ⊆ Rm for m ∈ m-Spec(R).
Hence x ∈ Rm = Rm for m ∈ m-Spec(R). Thus, by Lemma 5.33, x ∈

⋂
m∈m-Spec(R)Rm = R.

Let R ⊆ S be a subring.

Definition 5.35. Let a ≤ R. s ∈ S is integral over a if s satisfies f(X) = Xn+an−1X
n−1+ · · ·+a0

for some n ≥ 1 and a0, . . . , an−1 ∈ a.
The integral closure of a in S is

a = {s ∈ S | s is integral over a}.

Warning 5.36. There exists another notion of integral closure of an ideal.

Lemma 5.37. Let R be the integral closure of R in S and a ≤ R. Then a = rad(aR) ≤ R. Hence
a is closed under sums and products.

Proof. “⊆”. Let s ∈ a. Then sn + an−1s
n−1 + · · · + a0 = 0 for some n ≥ 1 and a0, . . . , an−1 ∈ a.

Hence sn = −(an−1s
n−1 + · · ·+ a0) ∈ aa ⊆ aR. Hence s ∈ rad(aR).

“⊇”. Let t ∈ rad(aR). Then tn ∈ aR for some n ≥ 1. Hence tn =
∑m
i=1 αisi for some m ≥ 1,

α1, . . . , αm ∈ a and s1, . . . , sm ∈ R. Let T := R[s1, . . . , sm] ⊆ R ⊆ S. Then tn ∈ aT . Hence
tnT ⊆ aT . Since s1, . . . , sm is integral over R, T is a finitely generated R-module by Theorem 5.19.
By determinant trick as in the proof of Proposition 5.13, we have that tn is integral over a. Hence
(tn)ℓ+ bℓ−1(t

n)ℓ−1+ · · ·+ b0 = 0 for some ℓ ≥ 1 and b0, . . . , bℓ−1 ∈ a. Hence t is integral over a.

†Fact: If R is an integral domain and R ⊆ S ⊆ Q(S), then Q(S) = Q(R).
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Proposition 5.38. Let R be integrally closed and a be the integral closure of a ≤ R in S. Let
s ∈ a and g(X) = Xm + cm−1X

m−1 + · · · + c0 ∈ Q(R)[X] be the minimal polynomial of s over
Q(R). Then c0, . . . , cm−1 ∈ rad(a).

Proof. Let s1 := s, s2, . . . , sm be the roots of g(X) in some algebraic closure of Q(R). Since s is
integral over a, s satisfies a monic f ∈ a[X] ⊆ Q(R)[X] = Q(R)[X]. Also, since g is the minimal
polynomial of s over Q(R), there exists h ∈ Q(R)[X] such that f = hg. Since f(si) = h(si)g(si) =
0, si ∈ a for i = 1, . . . ,m. Since g(X) = (X − s1) · · · (X − sm) and a ≤ R by Lemma 5.37,
c0, . . . , cm−1 ∈ a = rad(aR) = rad(aR) = rad(a).

Theorem 5.39 (Going down theorem). Let R be integrally closed and S be an integral domain.
Let p1 ⊇ · · · ⊇ pn be a chain in Spec(R) and q1 ⊇ · · · ⊇ qm (m < n) be a chain in Spec(S) such
that qi ∩ R = pi for i = 1, . . . ,m. Then there exists a chain qm ⊇ · · · ⊇ qn in Spec(S) such that
qi ∩R = pi for i = 1, . . . , n.

Proof. As in the going up theorem, assume without loss of generality that m = 1 and n = 2. Let
p ⊇ p′ be a chain in Spec(R) and q ∈ Spec(S) such that q ∩R = p. Since S is an integral domain,
S ∖ q ⊆ NZD(S). Hence Sq ⊇ S ⊇ R. We claim that (p′Sq) ∩ R = p′, then (if and only if)
there exists Q′ ∈ Spec(Sq) such that Q′ ∩ R = p′ by Theorem 3.24, so (if and only if) there exists
q ⊇ q′ ∈ Spec(S) such that q′ ∩R = p′† by prime correspondence for localization.

“⊇”. By 1.63(a).
“⊆”. Let 0 ̸= x ∈ (p′Sq)∩R. Then x ∈ p′Sq = p′(S∖ q)−1S = (S∖ q)−1(p′S). Hence x = s

v for

some s ∈ p′S and v ∈ S∖ q. Since R ⊆ S is integral, R = S, where R is the integral closure of R in
S. Hence s ∈ p′S ⊆ rad(p′S) = rad(p′R) = p′ by Lemma 5.37. Hence s ∈ S is integral over p′. Let
g(X) = Xr + ur−1X

r−1 + · · · + u0 ∈ Q(R)[X] be the minimal polynomial of s over Q(R). Then
by Proposition 5.38, u0, . . . , ur−1 ∈ rad(p′) = p′. Since 0 ̸= x = s

v and R is an integral domain,
v = sx−1 in Q(R). Note that v satisfies

Xr + (ur−1x
−1)︸ ︷︷ ︸

tr−1

Xr−1 + (ur−2x
−2)︸ ︷︷ ︸

tr−2

Xr−2 + · · ·+ (u0x
−r)︸ ︷︷ ︸

t0

∈ Q(R)[X],

which is a minimal polynomial for v over Q(R) since if v satisfies a smaller degree polynomial over
Q(R), then so does S. Also, since v ∈ S is integral over R, by Proposition 5.38, we have that
t0, . . . , tr−1 ∈ rad(⟨1⟩R) = R. Suppose x ̸∈ p′. Since ui = tix

r−i ∈ p′ ∈ Spec(R), ti ∈ p′ for
i = 0, . . . , r − 1. Hence vr = −(tr−1v

r−1 + tr−2v
r−2 + · · ·+ t0) ∈ p′S ⊆ pS = (q ∩R)S ⊆ qS = q ∈

Spec(S). Hence v ∈ q, a contradiction. Thus, x ∈ p′.

Theorem 5.40 (Noether normalization). Let k be a field and k ⊆ R := k[x1, . . . , xn] be a subring.

(a) There exist an intermediate subring k ⊆ S ⊆ R and y1, . . . , yd ∈ R such that S = k[y1, . . . , yd] ∼=
k[Y1, . . . , Yd], a polynomial ring, with d ≤ n and R integral over S. Hence R = S[x1, . . . , xn]
is a finitely generated S-module. Moreover, yi is a polynomial in xj’s with coefficients in k for
i = 1, . . . , d.

(b) If |k| = ∞, then we can take some d and yi =
∑n
j=1 aijxj for some ai1, . . . , ain ∈ k for

i = 1, . . . , d.

†For =⇒, take q′ = Q′ ∩ S, then q′ ∩ R = (Q′ ∩ S) ∩ R = Q′ ∩ R = p′. For ⇐=, take Q′ = q′Sq, then
Q′ ∩R = (q′Sq ∩ S) ∩R = q′ ∩R = p′ by prime correspondence for localization.
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(In fact, d is uniquely determined and is the Krull dimension of R.)

Proof. Definition. Let z1, . . . , zm ∈ R and k[Z1, . . . , Zm] be a polynomial ring. Consider the

ring homomorphism k[Z1, . . . , Zm]
n
↠ k[z1, . . . , zm] given by F 7→ F (z1, . . . , zm). z1, . . . , zm is

algebraically independent over k if n is 1-1, i.e., n is an isomorphism. (No polynomial relations
between the zi’s.)

Structure of proof: induct on n. Base case n = 0: R = k (S = k). Base case n = 1:

R = k[x]
n
↞ k[X]. If n is 1-1, then S = R. If n is not 1-1, then x satisfies some monic F ∈ k[X], so

x is integral over k, hence S = k ⊆ R = k[x] with d = 0 and S ⊆ R an integral extension.
Inductive step: Assume n > 1 and the result is true for rings of form k[z1, . . . , zn−1]. If

x1, . . . , xn are algebraically independent over k, then use S = R = k[x1, . . . , xn]
n←−∼= k[X1, . . . , Xn].

Assume now x1, . . . , xn are not algebraically independent over k. Re-order x1, . . . , xn such that
x1, . . . , xr (r < n) are algebraically independent and x1, . . . , xr, xs are algebraically dependent
for s = r + 1, . . . , n. Then by inductive hypothesis and Corollary 5.20, it suffices to show R is

integral over k[w1, . . . , wn−1] for some w1, . . . , wn−1 ∈ R. Consider k[X1, . . . , Xn]
n
↠ k[x1, . . . , xn].

Then there exists 0 ̸= F ∈ k[X1, . . . , Xn] such that n(F ) = 0. Let e = deg(F ) and write F =
F0 + F1 + · · ·+ Fe, where Fi is homogeneous of degree i for i = 0, . . . , e.

(b) Assume |k| = ∞. Since Fe ̸= 0, Fe(λ1, . . . , λn−1, 1) ̸= 0 for some λ1, . . . , λn−1 ∈ k. Look at
k[w1, . . . , wn−1, xn] ∈ R. For b = (b1, . . . , bn) ∈ Zn≥0, (w1 + λ1xn)

b1 · · · (wn−1 + λn−1xn)
bn−1 · xbnn =

λb11 · · ·λ
bn−1

n−1 x
|b|
n + lower degree terms in xn, where |b| = b1 + · · ·+ bn. Note that for i = 0, . . . , e,

Fi(w1 + λ1xn, . . . , wn−1 + λn−1xn, xn) =
∑
|b|=i

ab(λ
b1
1 · · ·λ

bn−1

n−1 )x
i
n + lower degree terms in xn

= Fi(λ1, . . . , λn−1, 1)x
i
n + lower degree terms in xn.

Let

G(w1, . . . , wn−1, xn) = F (w1 + λ1xn, . . . , wn−1 + λn−1xn, xn)

= Fe(λ1, . . . , λn−1, 1)x
e
n + lower degree terms in xn.

Let wi := xi − λixn for i = 1, . . . , n− 1. Then

G(w1, . . . , wn−1, xn) = F (x1 − λ1xn + λ1xn, . . . , xn−1 − λn−1xn + λn−1xn, xn)

= F (x1, . . . , xn−1, xn) = n(F ) = 0.

Since Fe(λ1, . . . , λn−1, 1) ̸= 0, xn satisfies a monic G(w1,...,wn−1,Xn)
Fe(λ1,...,λn−1,1)

∈ k[w1, . . . , wn−1][Xn]. Hence

xn is integral over k[w1, . . . , wn−1]. Hence

R = k[x1, . . . , xn−1, xn] = k[x1 − λxn, . . . , xn−1 − λn−1xn, xn] = k[w1, . . . , wn−1][xn]

is integral over k[w1, . . . , wn−1] by Theorem 5.19.

(a) Look at k[w1, . . . , wn−1, xn] ∈ R. Let en = 1. For b = (b1, . . . , bn) ∈ Zn≥0 and e1, . . . , en−1 ≫ 1,

(w1 + xe1n )b1 · · · (wn−1 + xen−1
n )bn−1 · xbnn = x

∑n
i=1 eibi

n + lower degree terms in xn.
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Write F =
∑m
j=1 ajx

bj for some m ≥ 1 and distinct xbj := x
bj1
1 · · ·x

bjn
n and aj ̸= 0 for j = 1, . . . ,m.

Let Ai = max{b1i , . . . , bmi
} −min{b1i , . . . , bmi

} for i = 1, . . . , n. Choose ei−1 > Aiei + · · ·+ Anen
for i = 2, . . . , n. Re-order a1x

b1 , . . . , amx
bm such that b1 ≽ · · · ≽ bm is in reverse lexicographical

order. Then
∑n
i=1 eib1i >

∑n
i=1 eib2i > · · · >

∑n
i=1 eibmi . Let

G(w1, . . . , wn−1, xn) = F (w1 + xe1n , . . . , wn−1 + xen−1
n , xn)

= a1x
∑n

i=1 eib1i
n + lower degree terms in xn.

Let wi := xi−xein for i = 1, . . . , n−1. Then G(w1, . . . , wn−1, xn) = F (x1, . . . , xn−1, xn) = n(F ) = 0.

Since a1 ̸= 0, xn satisfies a monic G(w1,...,wn−1,Xn)
a1

∈ k[w1, . . . , wn−1][Xn]. Hence xn is integral over
k[w1, . . . , wn−1]. Hence

R = k[x1, . . . , xn−1, xn] = k[x1 − xe1n , . . . , xn−1 − xen−1
n , xn] = k[w1, . . . , wn−1][xn]

is integral over k[w1, . . . , wn−1] by Theorem 5.19.

Theorem 5.41 (Hilbert Nullstellensatz, version 1). Let k ⊆ K := k[x1, . . . , xn] be a subfield.

(a) K is algebraic over k and [K : k] <∞.

(b) If k is algebraically closed, then K = k.

Proof. (a) Let k ⊆ S ⊆ K be a Noether normalization of k ⊆ K. Then there exists y1, . . . , yd ∈ K
such that S = k[y1, . . . , yd] = k[Y1, . . . , Yd] ⊆ K and K is integral over k[Y1, . . . , Yd]. Since K
is a field, by Proposition 5.24, k[Y1, . . . , Yd] is a field. Hence d = 0. Then S = k. Hence K =
k[x1, . . . , xn] is integral over k. Hence K is a finite-dimensional k-vector space by Theorem 5.19.

(b) Since k is algebraically closed, there is no proper algebraic extensions. Hence K = k.

Theorem 5.42 (Hilbert Nullstellensatz, version 2). Let k be an algebraically closed field, R =
k[X1, . . . , Xn] and m ∈ m-Spec(R). Then there exists a ∈ kn such that m = ⟨X1−a1, . . . , Xn−an⟩.

Proof. Set K = R/m = k[x1, . . . , xn] ←↩ k, where xi = Xi ∈ R/m for i = 1, . . . , n. Since k
is algebraically closed and k ↪→ K is a subfield, by Hilbert Nullstellensatz, version 1(b), k ↪→
k[x1, . . . , xn] = R/m is onto. Since xi ∈ R/m, there exists ai ∈ k such that ai 7→ xi for i = 1, . . . , n.
Hence xi − ai = 0 in R/m, i.e., Xi − ai ∈ m for i = 1, . . . , n. Then m ⊇ ⟨X1 − a1, . . . , Xn − an⟩.
Since m, ⟨X1 − a1, . . . , Xn − an⟩ ∈ m-Spec(R), m = ⟨X1 − a1, . . . , Xn − an⟩.

Theorem 5.43 (Hilbert Nullstellensatz, version 3). Let k be an algebraically closed field, a ⪇ R =
k[X1, . . . , Xn]. Then Z(a) := {a ∈ kn | F (a) = 0,∀F ∈ a} ≠ ∅.

Proof. Since a ̸= R, by Hilbert Nullstellensatz, version 2, a ⊆ m := ⟨X1 − a1, . . . , Xn − an⟩ for
some a ∈ kn. Let F ∈ a ⊆ m. Then F =

∑n
i=1 gi(Xi − ai) for some g1, . . . , gn ∈ R. Hence

F (a) =
∑n
i=1 gi(a)(ai − ai) = 0. Thus, a ∈ Z(a).

Theorem 5.44 (Hilbert Nullstellensatz, version 4). Let k be an algebraically closed field, a ⪇ R =
k[X1, . . . , Xn] and Z = Z(a). Let I = I(Z) = {F ∈ R | F (a) = 0,∀a ∈ Z} ≤ R. Then I = rad(a).
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Proof. “⊇”. Since

I = I(Z) = I(Z(a)) = {F ∈ R | F (a) = 0,∀a ∈ Z(a)} ⊇ a,

rad(a) ⊆ rad(I) = I.
“⊆”. Let F ∈ R ∖ rad(a). Then F ̸∈ rad(a) =

⋂
p∈V(a) p by Fact 1.58. Hence there exists

p ∈ V(a) such that F ̸∈ p. Set R = R/p = k[x1, . . . , xn], an integral domain, where xi = Xi ∈ R/p
for i = 1, . . . , n. Since F ̸∈ p, f := F ̸= 0 in R. Then 0 ̸= R ⊆ Rf = R[1/f ] = k[x1, . . . , xn, 1/f ].

Hence there exists m ∈ m-Spec(Rf ). Consider k ↪→ Rf/m = k[x1, . . . , xn, 1/f ], where 1/f ̸= 0
in Rf/m since 1/f ∈ R×

f . Since k is algebraically closed and k ↪→ Rf/m is a subfield, by Hilbert

Nullstellensatz, version 1(b), k ↪→ Rf/m is onto. Since xi ∈ Rf/m, there exists ai ∈ k such that
ai 7→ xi for i = 1, . . . , n. Since a ⊆ p, a ·R = 0. Hence a ·Rf/m = 0. Then G(a) = g(x1, . . . , xn) =
g = 0 in Rf/m for all G ∈ a. Hence a ∈ Z(a) = Z. Also, since F (a) = f(x1, . . . , xn) = f ̸= 0 in
Rf/m, we have that F ̸∈ I(Z) = I.
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