Commutative Algebra

Keri Ann Sather-Wagstaff (Notes by Shuai Wei)

September 28, 2023

Contents

In	troduction	1
1	Rings and Ideals	3
	Rings and Ring Homomorphisms	3
	Ideals and Generators	4
	Local Rings	7
	The Nilradical	8
	The Jacobson Radical	9
	Operations on Ideals	9
	Sum of Ideals	9
	Products of Ideals	11
	Prime Avoidence	15
	Colon Ideals	16
	Radicals of Ideals	17
	Extensions and Contractions	20
	Power Series Rings	23
2	Zariski Topology	29
	Subspaces	33
	Continuous Functions and Homeomorphisms	
3	Localization	41
4	Primary Decomposition	53
5	Modules and Integral Dependence	65
	Modules	

Introduction

The study and application of commutative rings with identity.

(a) Commutative algebra in calculus. We have that $\mathcal{C}(\mathbb{R}) = \{\text{continuous functions } \mathbb{R} \to \mathbb{R}\}$ and $\mathcal{D}(\mathbb{R}) = \{\text{differentiable functions } \mathbb{R} \to \mathbb{R}\}$ are both commutative rings with identity.

(b) Commutative algebra in graph theory. Let G be a finite simple graph with vertex set $V = \{v_1, \ldots, v_d\}$. The *edge ideal* of G is $I(G) = \langle v_i v_j | v_i v_j$ is an edge in $G \rangle \leq K[v_1, \ldots, v_d]$.

algebraic properties of $I(G) \longrightarrow$ combinatorial properties of G.

(c) Commutative algebra in combinatorics. A simplicial complex Δ on V. Stanley-Reisner ideal $J(\Delta) \leq K[v_1, \ldots, v_d]$.

algebraic properties of $J(\Delta) \rightleftharpoons$ combinatorics properties of Δ .

Let \mathcal{P} be a poset and $\Delta(\mathcal{P}) =$ "order complex of \mathcal{P} " = {chains in \mathcal{P} }. Study \mathcal{P} via $J(\Delta(\mathcal{P}))$.

(d) Commutative algebra in number theory. Number theory is the study of solutions of polynomial equations over \mathbb{Z} . Given an intermediate field $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$, let

$$R = \{ \alpha \in K \mid \exists an monic \ f \in \mathbb{Z}[x] \text{ s.t. } f(\alpha) = 0 \},\$$

then $\mathbb{Z} \subseteq R \subseteq K$ are subrings. (Chapter 5)

(e) Commutative algebra in algebraic geometry. Algebraic geometry is the study of solution sets for systems of polynomial equations over fields. Let k be a field, $f_1, \ldots, f_m \in k[X_1, \ldots, X_d]$,

$$V := \mathcal{V}(f_1, \dots, f_m) = \{ \underline{x} \in k^d \mid f_i(\underline{x}) = 0, \forall i = 1, \dots, m \},\$$

where V is for "variety", and

$$I(V) = \{ f \in k[X_1, \dots, X_d] \mid f(\underline{x}) = 0, \forall \underline{x} \in V \} \le k[X_1, \dots, X_d].$$

algebraic properties of $I(V) \xleftarrow{}$ geometric properties of V.

Why modules? Because in number theory, $R = \{ \alpha \in K \mid \exists \text{monic } f \in \mathbb{Z}[x] \text{ s.t. } f(\alpha) = 0 \}$ is a subring of K.

Challenge-exercise: prove this by definition. For $\alpha, \beta \in \mathbb{R}$, note there exist $f, g \in \mathbb{Z}[X]$ monic such that $f(\alpha) = 0 = f(\beta)$, then try to prove or construct monic polynomials $s, d, p \in \mathbb{Z}[X]$ such that $s(\alpha + \beta) = 0, d(\alpha - \beta) = 0$ and $p(\alpha\beta) = 0$.

Proof is a straightforward application of modules.

Why topology? To study geometry, need continuity. Let $V = V(f_1, \ldots, f_m)$, $W = V(g_1, \ldots, g_n)$ and $\phi: V \to W$. What does it mean for ϕ to be continuous if $k = \mathbb{F}_3$? Need a notion of open sets in V and W.

Chapter 1

Rings and Ideals

Let R be a commutative ring with identity.

Rings and Ring Homomorphisms

Fact 1.1. R = 0 if and only if $1_R = 0_R$.

Fact 1.2. (a) 1_R and 0_R are both unique.

(b) For any $r \in R$, -r is unique.

(c) If $r \in R$ is a unit, then there exists a unique $r^{-1} \in R$ such that $rr^{-1} = 1_R = r^{-1}r$.

Definition 1.3. A (unital) homomorphism of commutative rings with identity is a function ϕ : $R \to S$ with R and S commutative rings with identity, such that for all $r, r' \in R$,

- (a) $\phi(r+r') = \phi(r) + \phi(r'),$
- (b) $\phi(rr') = \phi(r)\phi(r'),$
- (c) $\phi(1_R) = 1_S$.

It is also known as "ring homomorphism".

Fact 1.4. Let $\phi : R \to S$ be a ring homomorphism.

- (a) $\phi(0_R) = 0_S$.
- (b) $\phi(-r) = -\phi(r)$ for $r \in R$.
- (c) $\phi(r-s) = \phi(r) \phi(s)$ for $r, s \in R$.
- (d) $\phi(\sum_{i=1}^{m} r_i s_i) = \sum_{i=1}^{m} \phi(r_i)\phi(s_i)$ for $r_1, \dots, r_m, s_1, \dots, s_m \in R$.
- (e) If r is a unit in R, then $\phi(r)$ is a unit in S and $\phi(r)^{-1} = \phi(r^{-1})$.
- (f) A composition of ring homomorphisms is a ring homomorphism.

Definition 1.5. A subring of R is a subset $S \subseteq R$ such that S is a commutative ring with identity under the operations for R and such that $1_S = 1_R$, i.e., $1_R \in S$.

Fact 1.6 (Subring test). A subset $S \subseteq R$ is a subring if and only if it is closed under $+, \cdot, -$ and $1_R \in S$.

Example 1.7. Subring test: need $\emptyset \neq S \subseteq R$, S is closed under $+, \cdot, -$ and $1_R \in S$.

If S is not closed under -, then fail. Let $\mathbb{N}_0 = \{0, 1, 2, \dots\} \subseteq \mathbb{Z}$ not a subring.

If $1_R \notin S$, then fail. Let $R = \mathbb{F}_3 \times \mathbb{F}_3 \supseteq \{(a, a) \mid a \in \mathbb{F}_3\} =: S$. Then S is a subring of R. Although $S_1 := \{(a, 0) \mid a \in \mathbb{F}_3\} \cong \mathbb{F}_3 \cong \{(0, a) \mid a \in \mathbb{F}_3\} =: S_2$ are rings but not subrings of R since $1_R = (1, 1) \notin S_1$ and $1_R = (1, 1) \notin S_2$.

Fact 1.8. If $S \subseteq R$ is a subring, then the inclusion map $\varepsilon : S \to R$ given by $\varepsilon(s) = s$ is a ring homomorphism.

Ideals and Generators

Definition 1.9. An *ideal* of R is a non-empty subset $\mathfrak{a} \subseteq R$, an additive subgroup such that for all $r \in R$ and $a \in \mathfrak{a}$, $ra \in \mathfrak{a}$, i.e., closed under scalar multiplication.

An ideal $\mathfrak{a} \leq R$ is *prime* if $\mathfrak{a} \neq R$ and for any $a, b \in R$, if $a, b \notin \mathfrak{a}$, then $ab \notin \mathfrak{a}$, i.e., if $ab \in \mathfrak{a}$, then $a \in \mathfrak{a}$ or $b \in \mathfrak{a}$.

An ideal $\mathfrak{a} \leq R$ is *maximal* if $\mathfrak{a} \neq R$ and for any ideal $\mathfrak{b} \leq R$, if $\mathfrak{a} \subseteq \mathfrak{b} \subseteq R$, then either $\mathfrak{a} = \mathfrak{b}$ or $\mathfrak{b} = R$.

Fact 1.10 (Ideal test). If $\mathfrak{a} \neq \emptyset$ and \mathfrak{a} is closed under scalar multiplication \cdot , then $-a = (-1_R)a \in \mathfrak{a}$ for $a \in \mathfrak{a}$, also, since \mathfrak{a} is closed under +, it is automatically closed under -.

Thus, A subset $\mathfrak{a} \subseteq R$ is an ideal if and only if $\mathfrak{a} \neq \emptyset$ and \mathfrak{a} is closed under + and scalar multiplication \cdot .

Example 1.11. (a) Let $R = \mathbb{Z}$, then ideals of R are of the form $n\mathbb{Z} = \{nm \mid m \in \mathbb{Z}\}$, where $n \in \mathbb{Z}$.

 $n\mathbb{Z}$ is prime if and only if n = 0 or |n| is prime.

 $n\mathbb{Z}$ is maximal if and only if |n| is prime.

- (b) If $I_{\lambda} \leq R$ for $\lambda \in \Lambda$, then $\bigcap_{\lambda \in \Lambda} I_{\lambda} \leq R$.
- (c) If $r_1, \ldots, r_m \in \mathbb{R}$, then

$$\langle r_1, \dots, r_m \rangle = \langle r_1, \dots, r_m \rangle R = (r_1, \dots, r_m) = (r_1, \dots, r_m) R = \bigcap_{\substack{r_1, \dots, r_m \in I \le R}} I$$
$$= \left\{ \sum_{i=1}^m a_i r_i \mid a_i \in R, \forall i = 1, \dots, m \right\} \le R.$$

In particular,

$$\langle r \rangle = \langle r \rangle R = (r) = (r)R = rR = Rr = \{ar \mid a \in R\} = \bigcap_{r \in I \le R} I, \forall r \in R.$$

(d) If $A \subseteq R$, then $\langle A \rangle = \bigcap_{A \subseteq I < R} I$ and

$$\langle A \rangle = RAR = AR = RA = \left\{ \sum_{a \in A}^{\text{finite}} r_a a \mid r_a \in R, \forall a \in \mathfrak{a} \right\}.$$

Fact 1.12. For any $r_1, \ldots, r_m \in R$, $\langle r_1, \ldots, r_m \rangle$ is the smallest ideal of R containing r_1, \ldots, r_m , i.e., for any $\mathfrak{a} \leq R$, $r_1, \ldots, r_m \in \mathfrak{a}$ if and only if $\langle r_1, \ldots, r_m \rangle \subseteq \mathfrak{a}$. Similarly, $A \subseteq \mathfrak{a}$ if and only if $\langle A \rangle \subseteq \mathfrak{a}$, e.g., if $A \leq R$, then $A = \langle A \rangle$.

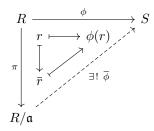
Construction 1.13. Let $\mathfrak{a} \leq R$. For any $r \in R$, $r + \mathfrak{a} = \{r + a \mid a \in \mathfrak{a}\} = \overline{r}$. Let

$$R/\mathfrak{a} := \{r + \mathfrak{a} \mid r \in R\}.$$

Then R/\mathfrak{a} is a commutative ring with identity with $\overline{r} \pm \overline{s} = \overline{r \pm s}$, $\overline{r}\overline{s} = \overline{rs}$, $0_{R/\mathfrak{a}} = \overline{0_R}$ and $1_{R/\mathfrak{a}} = \overline{1_R}$.

Let $\pi: R \to R/\mathfrak{a}$ be given by $\pi(r) = \overline{r}$. Then π is a well-defined ring epimorphism.

(UMP) For any $\phi : R \to S$ ring homomorphism, if $\phi(\mathfrak{a}) = 0$, then there exists a unique ring homomorphism $\overline{\phi} : R/\mathfrak{a} \to S$ making the following diagram commute.



Note that $\phi(\mathfrak{a}) = 0$ if and only if $\mathfrak{a} \subseteq \operatorname{Ker}(\phi)$. In particular, if $\mathfrak{a} = \langle A \rangle$, then $\mathfrak{a} \subseteq \operatorname{Ker}(\phi)$ if and only if $A \subseteq \operatorname{Ker}(\phi)$.

Fact 1.14. Let $\mathfrak{a} \leq R$.

(a) \mathfrak{a} is prime if and only if R/\mathfrak{a} is an integral domain.

- (b) \mathfrak{a} is maximal if and only if R/\mathfrak{a} is a field.
- (c) If R is a field, then it is an integral domain.

Hence if \mathfrak{a} is maximal, then \mathfrak{a} is prime.

Fact 1.15 (Ideal correspondence for quotients). Let $\mathfrak{a} \leq R$ and $\pi : R \to R/\mathfrak{a}$ be the canonical ring epimorphism.

$$\{ \text{ideals } I \leq R/\mathfrak{a} \} \iff \{ \text{ideals } J \leq R \mid \mathfrak{a} \subseteq J \}$$

$$I \longmapsto \pi^{-1}(I) = \{ r \in R \mid r + \mathfrak{a} \in I \} \supseteq \pi^{-1}(0) = \mathfrak{a}$$

$$J/\mathfrak{a} \longleftrightarrow J \supseteq \mathfrak{a}$$

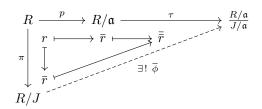
$$\{ \text{ideals } I \leq R/\mathfrak{a} \} \iff \{ \text{ideals } J \leq R \mid \mathfrak{a} \subseteq J \}$$

$$\{ \text{primes ideals of } R/\mathfrak{a} \} \iff \{ \text{prime ideals } \mathfrak{p} \leq R \mid \mathfrak{a} \subseteq \mathfrak{p} \}$$

$$\{ \text{maximal ideals of } R/\mathfrak{a} \} \iff \{ \text{maximal ideals } \mathfrak{m} \leq R \mid \mathfrak{a} \subseteq \mathfrak{m} \}.$$

In both R and R/\mathfrak{a} , maximal ideals are a subset of prime ideals and prime ideals are a subset of ideals.

We claim that $\frac{R/\mathfrak{a}}{J/\mathfrak{a}} \cong \frac{R}{J}$.

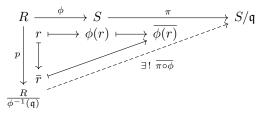


It is straightforward to show that $J = \text{Ker}(\tau \circ p)$. Then the first isomorphism theorem says the map $\overline{\phi}$ is a ring isomorphism.

Notation. Spec $(R) = \{$ primes ideals of $R\}$, called the *prime spectrum of* R. The variety determined by an ideal $\mathfrak{a} \leq R$ is $V(\mathfrak{a}) = \{\mathfrak{p} \in \text{Spec}(R) \mid \mathfrak{p} \supseteq \mathfrak{a}\}$. m-Spec $(R) = \{$ maximal ideals of $R\} \subseteq \text{Spec}(R)$.

Fact 1.16. Let $\phi : R \to S$ be a ring homomorphism. Then $\operatorname{Ker}(\phi) \leq R$, $\operatorname{Im}(\phi) \subseteq S$ is a subring and $\operatorname{Im}(\phi) \cong R/\operatorname{Ker}(\phi)$.

If S is an integral domain, then so is $\operatorname{Im}(\phi)$. Hence $\operatorname{Ker}(\phi)$ is prime. More generally, $\phi^{-1}(\mathfrak{b}) = \{x \in R \mid \phi(x) \in \mathfrak{b}\} \leq R$ for $\mathfrak{b} \leq S$.



Let $\mathbf{q} \in \operatorname{Spec}(S)$. Then S/\mathbf{q} is an integral domain. Also, since $R/\operatorname{Ker}(\pi \circ \phi) \cong \operatorname{Im}(\pi \circ \phi) \subseteq S/\mathbf{q}$, we have that $R/\operatorname{Ker}(\pi \circ \phi)$ is an integral domain and then $\operatorname{Ker}(\pi \circ \phi)$ is prime. Observe $\phi^{-1}(\mathbf{q}) = \operatorname{Ker}(\pi \circ \phi)$ is then prime, i.e., $\phi^{-1}(\mathbf{q}) \in \operatorname{Spec}(R)$. Thus, ϕ induces a well-defined map $\phi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ given by $\phi^*(\mathbf{q}) = \phi^{-1}(\mathbf{q})$.

Example. Let $\phi : \mathbb{Z} \to \mathbb{Q}$ be an inclusion map. Note that $\mathfrak{q} := (0)\mathbb{Q} \leq \mathbb{Q}$ is maximal, but $\phi^{-1}(\mathfrak{q}) = \phi^{-1}(0) = \operatorname{Ker}(\phi) = 0\mathbb{Z}$, which is not maximal in \mathbb{Z} . Hence the map ϕ^* does not take maximal ideals to maximal ideals in general.

Fact 1.17. We have the following.

(a) Let $R \neq 0$. Then R has a maximal ideal \mathfrak{m} and so R has a prime ideal. Moreover, for any $\mathfrak{a} \leq R$, there exists a maximal ideal $\mathfrak{m} \supseteq \mathfrak{a}$. In particular, $V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \supseteq \mathfrak{a}\} \neq \emptyset$.

One generally proves the second statement first, then derives the first statement as the special case a = 0. Next, we show how to derive the second statement from the first one.

(b) Let $\mathfrak{a} \leq R$. Then $0 \neq R/\mathfrak{a}$ is a commutative ring with identity. Hence R/\mathfrak{a} has a maximal ideal and by Fact 1.15, it is of the form $\mathfrak{m}/\mathfrak{a}$, where \mathfrak{m} is a maximal ideal of R containing \mathfrak{a} .

Local Rings

Definition 1.18. *R* is *local* if it has a unique maximal ideal \mathfrak{m} , also known as "quasi-local". The residue field of *R* is R/\mathfrak{m} .

"Assume (R, \mathfrak{m}, k) is local" or "assume (R, \mathfrak{m}) is local", shorthand, we mean \mathfrak{m} is the unique maximal ideal of R and $k = R/\mathfrak{m}$.

Example 1.19. (a) Any field is local with the maximal ideal (0).

(b) Let $n \geq 1$ and p be prime in \mathbb{Z} . Note that $0 \neq \mathbb{Z}/\langle p^n \rangle$ has a maximal ideal $\mathfrak{m} = \langle p \rangle / \langle p^n \rangle$, where $\langle p \rangle$ is a maximal ideal of R containing $\langle p^n \rangle$. Assume there is $\mathfrak{m}_1 \leq R$ maximal such that $\mathfrak{m}_1 \supseteq \langle p^n \rangle$. Then \mathfrak{m}_1 is prime, so $p \in \mathfrak{m}_1$ and hence $\langle p \rangle \subseteq \mathfrak{m}_1$. Since $\langle p \rangle$ is prime in \mathbb{Z} and \mathbb{Z} is a PID, $\langle p \rangle$ is maximal. Hence $\langle p \rangle = \mathfrak{m}_1$. Thus, $\langle p \rangle$ is the unique maximal ideal containing $\langle p^n \rangle$ and so $\mathbb{Z}/\langle p^n \rangle$ is local. Similarly, we can show $\langle p \rangle$ is the unique prime ideal containing $\langle p^n \rangle$, so $\operatorname{Spec}(\mathbb{Z}/\langle p^n \rangle) = \{\langle p \rangle / \langle p^n \rangle\}.$

(c) Let k be a field. As in part (b), we see that $R = k[X]/\langle X^n \rangle$ is local with $\mathfrak{m} = \langle X \rangle / \langle X^n \rangle$. In fact, $\operatorname{Spec}(R) = \{\langle X \rangle / \langle X^n \rangle\}$.

(d) Let k be a field and $R = k[X_1, \ldots, X_d] / \langle X_1^{a_1}, \cdots, X_d^{a_d} \rangle$, where $a_i \ge 1$ for $i = 1, \ldots, d$. Then R is local with $\mathfrak{m} = \langle X_1, \ldots, X_d \rangle / \langle X_1^{a_1}, \ldots, X_d^{a_d} \rangle$. In fact, $\operatorname{Spec}(R) = \{\langle X_1, \ldots, X_d \rangle / \langle X_1^{a_1}, \cdots, X_d^{a_d} \rangle\}$.

Fact 1.20. If (R, \mathfrak{m}) is local and $\mathfrak{a} \leq R$, then $(R/\mathfrak{a}, \mathfrak{m}/\mathfrak{a})$ is also local and $\frac{R/\mathfrak{a}}{\mathfrak{m}/\mathfrak{a}} \cong R/\mathfrak{m}$, so these rings have canonically isomorphic residue fields. The converse fails in general by Example 1.19.

Notation 1.21. Let $R^{\times} = R^* = \mathcal{U}(R) = \{\text{units of } R\}.$

Proposition 1.22. The following are equivalent.

- (i) R is local.
- (ii) $R \smallsetminus R^{\times} \leq R$.
- (iii) There exists $\mathfrak{a} \leq R$ such that $R \smallsetminus \mathfrak{a} \subseteq R^{\times}$.

When these are satisfied, $\mathfrak{m} = R \smallsetminus R^{\times} = \mathfrak{a}$.

Proof. (i) \Longrightarrow (ii) Assume (R, \mathfrak{m}) is local.

We claim that $\mathfrak{m} = R \smallsetminus R^{\times}$. It suffices to show $R \smallsetminus \mathfrak{m} = R^{\times}$. \supseteq Let $u \in R^{\times}$. Then $\langle u \rangle = R$ and so $u \notin \mathfrak{m} \lneq R$, i.e., $u \in R \smallsetminus \mathfrak{m}$. Hence $R^{\times} \subseteq R \smallsetminus \mathfrak{m}$. \subseteq Let $x \in R \smallsetminus R^{\times}$. Then $\langle x \rangle \lneq R$. Since \mathfrak{m} is the unique maximal ideal in R, $\langle x \rangle \subseteq \mathfrak{m}$, i.e., $x \in \mathfrak{m}$. Thus, $R \smallsetminus R^{\times} \subseteq \mathfrak{m}$, i.e., $R \smallsetminus \mathfrak{m} \subseteq R^{\times}$.

(ii) \Longrightarrow (iii) Assume $R \smallsetminus R^{\times} \lneq R$. Set $\mathfrak{a} = R \smallsetminus R^{\times}$. Then $R \smallsetminus \mathfrak{a} = R^{\times}$.

(iii) \Longrightarrow (i) Let $\mathfrak{a} \leq R$ such that $R \smallsetminus \mathfrak{a} \subseteq R^{\times}$.

We claim that $\mathfrak{a} = R \smallsetminus R^{\times}$. " \supseteq ". It is straightforward. " \subseteq ". Let $a \in \mathfrak{a} \lneq R$, then $a \notin R^{\times}$ since $\mathfrak{a} \lneq R$, so $a \in R \smallsetminus R^{\times}$ and hence $\mathfrak{a} \subseteq R \smallsetminus R^{\times}$. Thus, $\mathfrak{a} = R \smallsetminus R^{\times}$.

Let $\mathfrak{n} \leq R$ be maximal and $y \in \mathfrak{n}$. Then $y \notin R^{\times}$. Hence $y \in R \setminus R^{\times} = \mathfrak{a}$. Thus, $\mathfrak{n} \subseteq \mathfrak{a} \leq R$. Since \mathfrak{n} is maximal, $\mathfrak{n} = \mathfrak{a}$. Thus, \mathfrak{a} is the unique maximal ideal in R and so R is local.

Proposition 1.23. Let $\mathfrak{m} \leq R$ be maximal such that $1 + \mathfrak{m} \subseteq R^{\times}$. Then R is local.

Proof. By the previous proposition, it suffices to show $R \setminus \mathfrak{m} \subseteq R^{\times}$. Let $x \in R \setminus \mathfrak{m}$. Set $\langle x, \mathfrak{m} \rangle = \langle \{x\} \cup \mathfrak{m} \rangle = \{ax + m \mid a \in R, m \in \mathfrak{m}\}$. Since $x \notin \mathfrak{m}, \mathfrak{m} \subsetneq \langle x, \mathfrak{m} \rangle \leq R$. Also, since \mathfrak{m} is maximal, $\langle x, \mathfrak{m} \rangle = R$. Hence ax + m = 1 for some $a \in R$ and $m \in \mathfrak{m}$, i.e., $ax = 1 - m \in 1 + \mathfrak{m} \subseteq R^{\times}$. Thus, $a, x \in R^{\times}$.

The Nilradical

Definition 1.24. $x \in R$ is *nilpotent* if there exists $n \ge 1$ such that $x^n = 0$. The *nilpotent* of R is

 $\operatorname{Nil}(R) = \operatorname{N}(R) = \mathfrak{N}_R = \mathfrak{N} = \{ \text{nilpotent elements of } R \}^{\dagger}.$

Example 1.25. In the ring $\mathbb{Z}/\langle p^n \rangle$, we have that \bar{p} is nilpotent. It is similar in $k[X]/\langle X^n \rangle$ and $k[X_1, \ldots, X_n]/\langle X_1^{a_1}, \ldots, X_d^{a_d} \rangle$, where k is a field, $n \geq 1$ and $a_1 \cdots, a_d \geq 1$.

Proposition 1.26. We have the following.

- (a) $\operatorname{Nil}(R) \leq R$.
- (b) $Nil(R/Nil(R)) = \{0\}.$
- (c) Nil(R) = R if and only if R = 0.
- (d) Nil(R) = $\bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}$.

Proof. (a) Since $0 \in \operatorname{Nil}(R)$, $\operatorname{Nil}(R) \neq \emptyset$. Let $r \in R$ and $a, b \in \operatorname{Nil}(R)$. Then there exists $m, n \geq 1$ such that $a^m = 0 = b^n$. Then $(ra)^m = r^m a^m = 0$ and so $ra \in \operatorname{Nil}(R)$. By the binomial theorem, $(a+b)^{m+n} = \sum_{i=0}^{m+n} {m+n \choose i} a^i b^{m+n-i} = 0$. Since for $i = 0, \ldots, m+n$, either $i \geq m$ or i < m, i.e., $i \geq m$ or m+n-i > n, we have that $a^i = 0$ when $i \geq m$, and $b^{m+n-i} = 0$ when m+n-i > n. Hence $(a+b)^{m+n} = 0$ and thus $a+b \in \operatorname{Nil}(R)$.

(b) Let $\overline{x} \in \text{Nil}(R/\text{Nil}(R))$. Then there exists $n \ge 1$ such that $\overline{x^n} = \overline{x}^n = 0$, i.e., $x^n \in \text{Nil}(R)$. Hence there exists $m \ge 1$ such that $(x^n)^m = 0$, i.e., $x^{mn} = 0$. Thus, $x \in \text{Nil}(R)$, i.e., $\overline{x} = 0$.

(c) We have that $\operatorname{Nil}(R) = R$ if and only if $1 \in \operatorname{Nil}(R)$ if and only if there exists $n \ge 1$ such that $1 = 1^n = 0$ if and only if 1 = 0 if and only if R = 0.

(d) " \subseteq ". Let $x \in Nil(R)$. Then there exists $n \ge 1$ such that $x^n = 0 \in \mathfrak{p}$ for $\mathfrak{p} \in Spec(R)$. Hence $x \in \mathfrak{p}$ for $\mathfrak{p} \in Spec(R)$. Thus, $x \in \bigcap_{\mathfrak{p} \in Spec(R)} \mathfrak{p}$.

" \supseteq ". Let $x \in R \setminus \operatorname{Nil}(R)$. Need to show $x \notin \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)}$. It is equivalent to show there exists $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $x \notin \mathfrak{p}$. Let $\Sigma = \{\mathfrak{a} \leq R \mid x, x^2, x^3 \cdots \notin \mathfrak{a}\}$. Since $x \notin \operatorname{Nil}(R), x^k \neq 0$ for $k \geq 1$. Hence $(0) \in \Sigma$ and then $\Sigma \neq \emptyset$. Let $\mathscr{C} \subseteq \Sigma$ be chain. Then we have that $\mathfrak{q} := \bigcup_{\mathfrak{a} \in \mathscr{C}} \mathfrak{a} \leq R$. Suppose $x^n \in \mathfrak{q}$ for some $n \geq 1$. Then $x^n \in \mathfrak{a}$ for some $\mathfrak{a} \in \mathscr{C} \subseteq \Sigma$, contradicting $\mathfrak{a} \in \Sigma$. Hence $x^n \notin \mathfrak{q}$ for $n \geq 1$ and hence $\mathfrak{q} \in \Sigma$. Hence \mathfrak{q} is an upper bound for \mathscr{C} in Σ . Since the chain $\mathscr{C} \subseteq \Sigma$ is arbitrary, by Zorn's lemma, Σ has a maximal element I. We claim that $I \in \operatorname{Spec}(R)$. Suppose I = R. Then $x \in R = I$, contradicting $I \in \Sigma$. Hence $I \lneq R$. Let $r, s \in R \setminus I$. Then $I \subsetneq \langle r, I \rangle \leq R$ and $I \subsetneq \langle s, I \rangle \leq R$. By the maximality of I in Σ , we have that $\langle r, I \rangle, \langle s, I \rangle \notin \Sigma$. Hence there exists $m, n \geq 1$ such that $x^m \in \langle r, I \rangle$ and $x^n \in \langle s, I \rangle$. Then $x^m = ar + i$ for some $a \in R$ and $i \in I$, and $x^n = bs + j$ for some $b \in R$ and $j \in I$. Hence

$$x^{m+n} = x^m x^n = (ar+i)(bs+j) = abrs + (\underbrace{arj+bsi+ij}_{\in I}) \in \langle rs,I \rangle.$$

Hence $\langle rs, I \rangle \notin \Sigma$. Therefore, since $I \in \Sigma$, we have that $I \neq \langle rs, I \rangle$, so $rs \notin I$. Thus, $I \in \text{Spec}(R)$ such that $x \notin I$.

[†]Nil(R) \subseteq ZD(R), but not conversely.

Example. Let k be a field and $R = k[X_1, \ldots, X_d]/\langle X_1^{a_1}, \ldots, X_d^{a_d} \rangle \neq 0$, where $a_i \geq 1$ for $i = 1, \ldots, d$. Then $\operatorname{Nil}(R) = \langle X_1, \ldots, X_d \rangle / \langle X_1^{a_1}, \ldots, X_d^{a_d} \rangle$.

Proof. Method 1. Since Spec(R) = { $\langle X_1, \ldots, X_d \rangle / \langle X_1^{a_1}, \ldots, X_d^{a_d} \rangle$ }, Nil(R) = $\bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p} = \langle X_1, \ldots, X_d \rangle / \langle X_1^{a_1}, \ldots, X_d^{a_d} \rangle$.

Method 2. Since $\overline{X_i} \in \operatorname{Nil}(R) \leq R$ for $i = 1, \dots, d$, we have that $\overline{\langle X_1, \dots, X_d \rangle} = \langle \overline{X_1}, \dots, \overline{X_d} \rangle \subseteq$ Nil $(R) \subsetneq R$ since $R \neq 0$. Also, since $\overline{\langle X_1, \dots, X_d \rangle}$ is maximal, we have that Nil $(R) = \overline{\langle X_1, \dots, X_d \rangle}$.

Fact. If $\mathfrak{a} \leq R$ and $r_1, \ldots, r_n \in R$, then $R/\mathfrak{a} \supseteq \langle \bar{r}_1, \ldots, \bar{r}_n \rangle = \langle r_1, \ldots, r_n, \mathfrak{a} \rangle / \mathfrak{a}$. In particular, if $\langle r_1, \ldots, r_n \rangle \supseteq \mathfrak{a}$, then $\langle \bar{r}_1, \cdots, \bar{r}_n \rangle = \langle r_1, \ldots, r_n \rangle / \mathfrak{a}$.

The Jacobson Radical

Definition 1.27. The Jacobson radical of R is

$$\operatorname{Jac}(R) = \mathfrak{J}(R) = \bigcap_{\mathfrak{m} \leq R \text{ max'l}} \mathfrak{m}.$$

Fact 1.28.

$$\operatorname{Jac}(R) \supseteq \operatorname{Nil}(R) = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}.$$

Proposition 1.29.

$$\mathfrak{J}(R) = \{ x \in R \mid 1 - xy \in R^{\times}, \forall y \in R \}.$$

Proof. " \subseteq ". Let $x \in \mathfrak{J}(R)$. By way of contradiction, suppose there is $y \in R$ such that $1 - xy \notin R^{\times}$. Then there exists $\mathfrak{m} \leq R$ maximal such that $1 - xy \in \mathfrak{m}$. Since $x \in \mathfrak{J}(R) \subseteq \mathfrak{m}$, $xy \in \mathfrak{m}$. Hence $1 = (1 - xy) + xy \in \mathfrak{m}$, a contradiction.

" \supseteq ". Argue by contrapositive. Let $x \in R$ such that $1 - xy \in R^{\times}$ for any $y \in Y$. Suppose $x \notin \mathfrak{J}(R)$. Then there exists $\mathfrak{m} \leq R$ maximal such that $x \notin \mathfrak{m}$. Hence $\mathfrak{m} \subsetneq \langle \mathfrak{m}, x \rangle \subseteq R$. Hence $\langle x, \mathfrak{m} \rangle = R$. Then there exists $y \in R$ and $m \in \mathfrak{m}$ such that xy + m = 1, i.e., $1 - xy = m \in \mathfrak{m}$. Hence $1 - xy \notin R^{\times}$, a contradiction.

Operations on Ideals

Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \leq R, \mathfrak{a}_1, \ldots, \mathfrak{a}_n \leq R, S_{\lambda} \subseteq R$ and $\mathfrak{a}_{\lambda}, \mathfrak{b}_{\lambda} \leq R$ for $\lambda \in \Lambda$, where Λ is an index set.

Sums of Ideals

Definition 1.30.

$$\mathfrak{a} + \mathfrak{b} = \langle \mathfrak{a} \cup \mathfrak{b} \rangle = \bigcap_{\mathfrak{a} \cup \mathfrak{b} \subseteq I \leq R} I.$$

Fact 1.31. We have the following.

- (a) $\mathfrak{a} + \mathfrak{b} \subseteq \mathfrak{c}$ if and only if $\mathfrak{a} \cup \mathfrak{b} \subseteq \mathfrak{c}$.
- (b) $\mathfrak{a} + \mathfrak{b}$ is the (unique) smallest ideal of R that contains $\mathfrak{a} \cup \mathfrak{b}$.

- (c) $\mathfrak{a} + \mathfrak{b} = \{a + b \mid a \in \mathfrak{a}, b \in \mathfrak{b}\}.$
- (d) If $\mathfrak{a} = \langle S \rangle$ and $\mathfrak{b} = \langle T \rangle$, then $\mathfrak{a} + \mathfrak{b} = \langle S \cup T \rangle$.
- (e) If $\mathfrak{a} = \langle x_1, \ldots, x_m \rangle$ and $\mathfrak{b} = \langle y_1, \ldots, y_n \rangle$, then $\mathfrak{a} + \mathfrak{b} = \langle x_1, \ldots, x_m, y_1, \ldots, y_n \rangle$.
- (f) If $x \in R$, then $\langle x, \mathfrak{a} \rangle = \langle x \rangle + \mathfrak{a}$.
- (g) $\mathfrak{a} + (\mathfrak{b} + \mathfrak{c}) = (\mathfrak{a} + \mathfrak{b}) + \mathfrak{c}.$

Proof. (a) and (b) are by definition.

(c) Set $I = \{a + b \mid a \in \mathfrak{a}, b \in \mathfrak{b}\}$. Check I is an ideal of R. For $a \in \mathfrak{a}, a = a + 0 \in I$ and for $b \in \mathfrak{b}, b = 0 + b \in I$. Hence $\mathfrak{a} \cup \mathfrak{b} \subseteq I$. By (a), $\mathfrak{a} + \mathfrak{b} \subseteq I$. On the other hand, for $a + b \in I$ with $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$, we have that $a, b \in \mathfrak{a} \cup \mathfrak{b} \subseteq \mathfrak{a} + \mathfrak{b} \leq R$, so $a + b \in \mathfrak{a} + \mathfrak{b}$.

(d) Let $I \leq R$. Note that $I \supseteq \mathfrak{a} \cup \mathfrak{b}$ if and only if $I \supseteq \mathfrak{a}, \mathfrak{b}$ if and only if $I \supseteq \langle S \rangle, \langle T \rangle$ if and only if $I \supseteq S, T$ if and only if $I \supseteq S \cup T$. Hence

$$\mathfrak{a} + \mathfrak{b} = \bigcap_{\mathfrak{a} \cup \mathfrak{b} \subseteq I \le R} I = \bigcap_{S \cup T \subseteq I \le R} I = \langle S \cup T \rangle.$$

(e) By (d).

(f) By (c).

(g) The essential point is $\mathfrak{a} + (\mathfrak{b} + \mathfrak{c}) = \langle \mathfrak{a} \cup (\mathfrak{b} \cup \mathfrak{c}) \rangle = \langle (\mathfrak{a} \cup \mathfrak{b}) \cup \mathfrak{c} \rangle = (\mathfrak{a} + \mathfrak{b}) + \mathfrak{c}.$

Example. $m\mathbb{Z} + n\mathbb{Z} = \langle m, n \rangle \mathbb{Z} = \gcd(m, n)\mathbb{Z}$, where $m \neq 0$ or $n \neq 0$.

Recall. Spec $(R) = \{ \text{prime ideals of } R \}$. For $S \subseteq R$, $V(S) = \{ \mathfrak{p} \in \text{Spec}(R) \mid \mathfrak{p} \supseteq S \}$.

Proposition 1.32. Let $S \subseteq R$.

- (a) $V(S) = V(\langle S \rangle)$.
- (b) $\mathfrak{a} = R$ if and only if $V(\mathfrak{a}) = \emptyset$.
- (c) $\mathfrak{a} \subseteq \operatorname{Nil}(R)$ if and only if $V(\mathfrak{a}) = \operatorname{Spec}(R)$.

(d) If $\mathfrak{a} \subseteq \mathfrak{b}$, then $V(\mathfrak{a}) \supseteq V(\mathfrak{b})^{\dagger}$. If $S \subseteq T \subseteq R$, then $V(S) \supseteq V(T)$.

Proof. (d) Since $S \subseteq T \subseteq R$, we have that $V(S) \supseteq V(T)$ by definition.

(a) $\mathfrak{p} \in \mathcal{V}(S)$ if and only if $\mathfrak{p} \supseteq S$ if and only if $\mathfrak{p} \supseteq \langle S \rangle$ if and only if $\mathfrak{p} \supseteq \mathcal{V}(\langle S \rangle)$.

(b) We have that $\mathfrak{a} = R$ if and only if $\mathfrak{b} \not\supseteq \mathfrak{a}$ for any $\mathfrak{b} \lneq R$ if and only if $\mathfrak{m} \not\supseteq \mathfrak{a}$ for any $\mathfrak{m} \leq R$ maximal if and only if $\mathfrak{p} \not\supseteq \mathfrak{a}$ for any $\mathfrak{p} \in \operatorname{Spec}(R)$ by Fact 1.14 and Fact 1.17.

(c) $\mathfrak{a} \subseteq \operatorname{Nil}(R)$ if and only if $\mathfrak{p} \supseteq \mathfrak{a}$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ by Proposition 1.26(d) if and only if $V(\mathfrak{a}) = \operatorname{Spec}(R)$.

10

 $^{^{\}dagger}V(\mathfrak{a}) \subseteq V(\mathfrak{b})$ if and only if $rad(\mathfrak{a}) \supseteq rad(\mathfrak{b})$; $V(\mathfrak{a}) = V(\mathfrak{b})$ if and only if $rad(\mathfrak{a}) = rad(\mathfrak{b})$.

Proposition 1.33. We have the following.

- (a) $V(\mathfrak{a} + \mathfrak{b}) = V(\mathfrak{a} \cup \mathfrak{b}) = V(\mathfrak{a}) \cap V(\mathfrak{b}).$
- (b) $V(\mathfrak{a}) \cap V(\mathfrak{b}) = \emptyset$ if and only if $\mathfrak{a} + \mathfrak{b} = R$.

Proof. (a) Since $\mathfrak{a} + \mathfrak{b} = \langle \mathfrak{a} \cup \mathfrak{b} \rangle$, $V(\mathfrak{a} + \mathfrak{b}) = V(\langle \mathfrak{a} \cup \mathfrak{b} \rangle) = V(\mathfrak{a} \cup \mathfrak{b})$. Let $\mathfrak{p} \in \operatorname{Spec}(R)$. Note that $\mathfrak{p} \supseteq \mathfrak{a} \cup \mathfrak{b}$ if and only if $\mathfrak{p} \supseteq \mathfrak{a}$ and $\mathfrak{p} \supseteq \mathfrak{b}$. Hence $V(\mathfrak{a} \cup \mathfrak{b}) = V(\mathfrak{a}) \cap V(\mathfrak{b})$.

(b) $V(\mathfrak{a}) \cap V(\mathfrak{b}) = \emptyset$ if and only if $V(\mathfrak{a} + \mathfrak{b}) = \emptyset$ by part (a) if and only if $\mathfrak{a} + \mathfrak{b} = R$ by Proposition 1.32(b).

Remark. The sum $\mathfrak{a}_1 + \cdots + \mathfrak{a}_n$ is defined for $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ for all $n \in \mathbb{Z}_{\geq 3}$ and same properties as above hold for finite sums.

Definition 1.34.

$$\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} = \langle \bigcup_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} \rangle = \bigcap_{\bigcup_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} \subseteq I \leq R} I.$$

Fact 1.35. We have the following.

- (a) $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} \subseteq \mathfrak{c}$ if and only if $\bigcup_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} \subseteq \mathfrak{c}$.
- (b) $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$ is the (unique) smallest ideal of R containing $\bigcup_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$.
- (c) $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} = \{ \sum_{\lambda \in \Lambda}^{\text{finite}} a_{\lambda} \mid a_{\lambda} \in \mathfrak{a}_{\lambda}, \forall \lambda \in \Lambda \}.$
- (d) If $\mathfrak{a}_{\lambda} = \langle S_{\lambda} \rangle$ for $\lambda \in \Lambda$, then $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} = \langle \bigcup_{\lambda \in \Lambda} S_{\lambda} \rangle$.

Fact 1.36. We have the following.

(a)
$$V(\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}) = V(\bigcup_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}) = \bigcap_{\lambda \in \Lambda} V(\mathfrak{a}_{\lambda}).$$

(b) $\bigcap_{\lambda \in \Lambda} \mathcal{V}(\mathfrak{a}_{\lambda}) = \emptyset$ if and only if $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} = R$.

Products of Ideals

Definition 1.37.

$$\mathfrak{ab} = \langle N \rangle = \bigcap_{N \subseteq I \le R} R,$$

where $N = \{ab \mid a \in \mathfrak{a}, b \in \mathfrak{b}\}.$

Fact 1.38. Let $N = \{ab \mid a \in \mathfrak{a}, b \in \mathfrak{b}\}.$

- (a) $\mathfrak{ab} \subseteq \mathfrak{c}$ if and only if $N \subseteq \mathfrak{c}$.
- (b) \mathfrak{ab} is the (unique) smallest ideal of R containing N.

(c)
$$\mathfrak{ab} = \{\sum_{i=1}^{\text{finite}} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b}, \forall i\}.$$

- (d) If $\mathfrak{a} = \langle S \rangle$ and $\mathfrak{b} = \langle T \rangle$, then $\mathfrak{ab} = \langle st \mid s \in S, t \in T \rangle$.
- (e) If $\mathfrak{a} = \langle x_1, \ldots, x_m \rangle$ and $\mathfrak{b} = \langle y_1, \ldots, y_n \rangle$, then $\mathfrak{ab} = \langle x_i y_j \mid i = 1, \ldots, m, j = 1, \ldots, n \rangle$.

(f) $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$.

Proof. (c) Let $I = \{\sum_{i=1}^{\text{finite}} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b}\}$. Check $I \leq R$ through $I \subseteq \mathfrak{ab} \subseteq I$ like Fact 1.31(c).

(f) Method 1. For any $a \in \mathfrak{a} \leq R$, we have that $ab \in \mathfrak{a}$ for any $b \in \mathfrak{b}$. For any $b \in \mathfrak{b} \leq R$, we have that $ab \in \mathfrak{b}$ for any $a \in \mathfrak{a}$. Hence $ab \in \mathfrak{a} \cap \mathfrak{b}$ for any $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Hence $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$ by Fact 1.12.

Method 2. It follows from $\mathfrak{ab} \subseteq \mathfrak{a}R = \mathfrak{a}$ and $\mathfrak{ab} \subseteq R\mathfrak{b} = \mathfrak{b}$.

Proposition 1.39. We have the following.

(a) $V(\mathfrak{ab}) = V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b}).$

(b) $V(\mathfrak{a}) \cup V(\mathfrak{b}) = \operatorname{Spec}(R)$ if and only if $\mathfrak{ab} \subseteq \operatorname{Nil}(R)$ if and only if $\mathfrak{a} \cap \mathfrak{b} \subseteq \operatorname{Nil}(R)$.

Proof. (a) Let $\mathfrak{p} \in \operatorname{Spec}(R)$. We claim that $\mathfrak{p} \supseteq \mathfrak{ab}$ if and only if $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}^*$.

 \implies Let $\mathfrak{p} \supseteq \mathfrak{ab}$. Suppose $\mathfrak{p} \not\supseteq \mathfrak{a}$ and $\mathfrak{p} \not\supseteq \mathfrak{b}$. Then there exists $a \in \mathfrak{a} \smallsetminus \mathfrak{p}$ and exists $b \in \mathfrak{b} \smallsetminus \mathfrak{p}$. Since $\mathfrak{p} \in \operatorname{Spec}(R)$, $ab \notin \mathfrak{p}$, contradicting $ab \in \mathfrak{ab} \subseteq \mathfrak{p}$.

Hence $V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.

Since $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, $V(\mathfrak{ab}) \supseteq V(\mathfrak{a} \cap \mathfrak{b})$. Let $\mathfrak{p} \in V(\mathfrak{ab})$. Then $\mathfrak{p} \supseteq \mathfrak{ab}$. Hence $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$. Hence $\mathfrak{p} \supseteq \mathfrak{a} \cap \mathfrak{b}$ and then $\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$. Hence $V(\mathfrak{ab}) \subseteq V(\mathfrak{a} \cap \mathfrak{b})$. Thus, $V(\mathfrak{ab}) = V(\mathfrak{a} \cap \mathfrak{b})^{\dagger}$.

(b) $V(\mathfrak{a}) \cup V(\mathfrak{b}) = \operatorname{Spec}(R)$ if and only if $V(\mathfrak{a}\mathfrak{b}) = \operatorname{Spec}(R)$ by part (a) if and only if $\mathfrak{a}\mathfrak{b} \subseteq \operatorname{Nil}(R)$ by Proposition 1.32(c) and similarly for $\mathfrak{a} \cap \mathfrak{b}$.

Proposition 1.40. We have the following.

- (a) $\mathfrak{ab} = \mathfrak{ba}$ and $(\mathfrak{ab})\mathfrak{c} = \mathfrak{a}(\mathfrak{bc})$.
- (b) $\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{c}.$
- (c) $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$ if $\mathfrak{a} + \mathfrak{b} = R$, i.e., \mathfrak{a} and \mathfrak{b} are "coprime" or "comaximal". The converse holds if R is a PID and $\mathfrak{a}, \mathfrak{b} \neq 0$.

Proof. (a) and (b) are straightforward.

(c) " \supseteq ". We always have $\mathfrak{a} \cap \mathfrak{b} \supseteq \mathfrak{a}\mathfrak{b}$.

" \subseteq ". Assume $\mathfrak{a} + \mathfrak{b} = R$.

Method 1. Note that 1 = a + b for some $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Let $x \in \mathfrak{a} \cap \mathfrak{b}$. Then $x \in \mathfrak{b}$ and $x \in \mathfrak{a}$. Hence $x = 1 \cdot x = (a + b)x = ax + bx = ax + xb \in \mathfrak{ab}$. Hence $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{ab}$.

Method 2. Note that

$$\mathfrak{a} \cap \mathfrak{b} = R(\mathfrak{a} \cap \mathfrak{b}) = (\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) = \mathfrak{a}(\underbrace{\mathfrak{a} \cap \mathfrak{b}}_{\subseteq \mathfrak{b}}) + \mathfrak{b}(\underbrace{\mathfrak{a} \cap \mathfrak{b}}_{\subseteq \mathfrak{a}}) \subseteq \mathfrak{a}\mathfrak{b}$$

by (a) and (b).

^{*}In some texts, this is the definition of prime ideal.

[†]Let $\mathfrak{p} \in \operatorname{Spec}(R)$. Then by (f), $\mathfrak{p} \supseteq \mathfrak{a} \cap \mathfrak{b} \supseteq \mathfrak{a}\mathfrak{b}$ if and only if $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$, to get $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.

Conversely, assume R is a PID and $\mathfrak{a}, \mathfrak{b} \neq 0$. Then R is a UFD, so each reducible element has a unique factorization into multiple of irreducible elements, also, since R is a PID, every irreducible element is actually prime. Hence we can write $\mathfrak{a} = p_1^{e_1} \cdots p_n^{e_n} R$ and $\mathfrak{b} = p_1^{f_1} \cdots p_n^{f_n} R$ with $e_i, f_i \geq 0$ for $i = 1, \ldots, n$, and $p_1, \ldots, p_n \in R$ are non-associate prime elements. Assume $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$. Since $\mathfrak{a} = \langle p_1^{e_1} \cdots p_n^{e_n} \rangle$ and $\mathfrak{b} = \langle p_1^{f_1} \cdots p_n^{f_n} \rangle$, $\mathfrak{a} \cap \mathfrak{b} = \operatorname{lcm}(p_1^{e_1} \cdots p_n^{e_n}, p_1^{f_1} \cdots p_n^{f_n}) R =$ $p_1^{\max\{e_1, f_1\}} \cdots p_n^{\max\{e_n, f_n\}} R$. By Fact 1.38(e), $\mathfrak{a}\mathfrak{b} = p_1^{e_1+f_1} \cdots p_n^{e_n+f_n}$. Hence $\max\{e_i, f_i\} = e_i + f_i$, i.e. $e_i = 0$ or $f_i = 0$ for $i = 1, \ldots, n$. In other words, for $\mathfrak{p} \in \operatorname{Spec}(R)$, either $\mathfrak{a} \not\subseteq \mathfrak{p}$ or $\mathfrak{b} \not\subseteq \mathfrak{p}^{\dagger}$. Hence $V(\mathfrak{a}) \cap V(\mathfrak{b}) = \emptyset$ for $\mathfrak{p} \in \operatorname{Spec}(R)$. Thus, $\mathfrak{a} + \mathfrak{b} = R$ by Proposition 1.33(b).

Remark. The product $\mathfrak{a}_1 \cdots \mathfrak{a}_n$ is defined for $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ for all $n \in \mathbb{Z}_{>3}$.

Example 1.41. Let R = k[X, Y], $\mathfrak{a} = \langle X \rangle$ and $\mathfrak{b} = \langle Y \rangle$. Then $\mathfrak{a} \cap \mathfrak{b} = \langle XY \rangle = \mathfrak{a}\mathfrak{b}$ by Fact 1.38(e). But $\mathfrak{a} + \mathfrak{b} = \langle X, Y \rangle \subsetneq R$. Hence the converse in Proposition 1.40(c) fails in general.

Definition 1.42. Let $n \ge 1$. Let $\mathfrak{a}^n = \underbrace{\mathfrak{a} \cdots \mathfrak{a}}_{n \text{ times}}$ and $\mathfrak{a}^0 = R$.

Warning 1.43. \mathfrak{a}^n is **not** generated by $\{a^n \mid a \in \mathfrak{a}\}$. For example, if $R = \mathbb{F}_2[X, Y]$ and $\mathfrak{a} = \langle X, Y \rangle$, then $\mathfrak{a}^2 = \langle X^2, XY, Y^2 \rangle \neq \langle f^2 \mid f \in \mathfrak{a} \rangle \not\supseteq XY$.

Fact 1.44. Let $n \ge 1$ and $N = \{a_1 \cdots a_n \mid a_i \in \mathfrak{a}, \forall i = 1, \dots, n\}$.

(a) $\mathfrak{a}^n = \langle N \rangle$ and for any $\mathfrak{b} \leq R$, we have that $\mathfrak{a}^n \subseteq \mathfrak{b}$ if and only if $N \subseteq \mathfrak{b}$.

(b) \mathfrak{a}^n is the (unique) smallest ideal of R containing N.

- (c) $\mathfrak{a}^n = \{\sum_{i=1}^{\text{finite}} a_{i1} \cdots a_{in} \mid a_{ij} \in \mathfrak{a}, \forall i, \forall j = 1, \dots, n\}.$
- (d) If $\mathfrak{a} = \langle S \rangle$, then $\mathfrak{a}^n = \langle s_1 \cdots s_n \mid s_i \in S, \forall i = 1, \dots, n \rangle$.
- (e) If $\mathfrak{a} = \langle x_1, \ldots, x_m \rangle$, then $\mathfrak{a}^n = \langle x_{i_1} \cdots x_{i_n} \mid i_j \in \{1, \ldots, m\}, \forall j = 1, \ldots, n \rangle$.

Fact 1.45. $V(\mathfrak{a}^n) = V(\mathfrak{a}).$

Proof. By Proposition 1.39, $V(\mathfrak{a}^n) = \bigcup_{i=1}^n V(\mathfrak{a}) = V(\mathfrak{a}).$

Proposition 1.46 (Chinese Remainder Theorem). We have the following.

(a) The function $\phi : R \to (R/\mathfrak{a}_1) \times \cdots \times (R/\mathfrak{a}_n)$ given by $\phi(x) = (\overline{x}, \cdots, \overline{x}) = (x + \mathfrak{a}_1, \dots, x + \mathfrak{a}_n)$ is a well-defined ring homomorphism.

(b) If $\mathfrak{a}_i + \mathfrak{a}_j = R$ for $1 \leq i, j \leq n$ with $i \neq j$, i.e., $\{\mathfrak{a}_1, \ldots, \mathfrak{a}_n\}$ are pairwise coprime, then $\bigcap_{i=1}^n \mathfrak{a}_i = \mathfrak{a}_1 \cdots \mathfrak{a}_n$ and $\mathfrak{a}_i + (\bigcap_{j=1, j\neq i}^n \mathfrak{a}_j)R = R$ for $i = 1, \ldots, n$.

(c) ϕ is surjective if and only if $\mathfrak{a}_i + \mathfrak{a}_j = R$ for $1 \leq i, j \leq n$ with $i \neq j$.

(d)
$$\operatorname{Ker}(\phi) = \bigcap_{i=1}^{n} \mathfrak{a}_i.$$

(e) If $\mathfrak{a}_i + \mathfrak{a}_j = R$ for $1 \le i, j \le n$ with $i \ne j$ and $\bigcap_{i=1}^n \mathfrak{a}_i = 0$, then $R \cong (R/\mathfrak{a}_1) \times \cdots \times (R/\mathfrak{a}_n)$.

[†]Let $p \in R$ be prime and $a \in R$. Then $p \mid a$ if and only if $\langle p \rangle \supseteq \langle a \rangle$. Furthermore, if a has a prime factorization, then $p \mid a$ if and only if p occurs in the prime factorization of a.

Proof. (b) Let $i \in \{1, ..., n\}$. To show $\mathfrak{a}_i + (\bigcap_{j \neq i} \mathfrak{a}_j)R = R$, it suffices to show $V(\mathfrak{a}_i) \cap \left(\bigcup_{j \neq i} V(\mathfrak{a}_j)\right)$ = $V(\mathfrak{a}_i) \cap V\left(\bigcap_{j \neq i} \mathfrak{a}_j\right) = V(\mathfrak{a}_i + \bigcap_{j \neq i} \mathfrak{a}_j) = \emptyset$. Suppose $V(\mathfrak{a}_i) \cap \left(\bigcup_{j \neq i} V(\mathfrak{a}_j)\right) \neq \emptyset$. Then there exists $\mathfrak{p} \in V(\mathfrak{a}_i) \cap V(\mathfrak{a}_j) = V(\mathfrak{a}_i + \mathfrak{a}_j) = V(R) = \emptyset$ for some $j \neq i$, a contradiction.

Now for $\bigcap_{i=1}^{n} \mathfrak{a}_i = \mathfrak{a}_1 \cdots \mathfrak{a}_n$, prove by induction on n. Base case n = 1: trivial. Base case n = 2: by Proposition 1.40(c). Induction step: assume $n \in \mathbb{Z}_{\geq 3}$ and $\bigcap_{i=1}^{n-1} \mathfrak{a}_i = \mathfrak{a}_1 \cdots \mathfrak{a}_{n-1}$. Then $\mathfrak{a}_n + \mathfrak{a}_1 \cdots \mathfrak{a}_{n-1} = \mathfrak{a}_n + \bigcap_{j=1}^{n-1} \mathfrak{a}_j = R$. Hence by Proposition 1.40(c), we have that

$$\bigcap_{i=1}^{n} \mathfrak{a}_{i} = \left(\bigcap_{i=1}^{n-1} \mathfrak{a}_{i}\right) \bigcap \mathfrak{a}_{n} = (\mathfrak{a}_{1} \cdots \mathfrak{a}_{n-1}) \cap \mathfrak{a}_{n} = (\mathfrak{a}_{1} \cdots \mathfrak{a}_{n-1})\mathfrak{a}_{n} = \mathfrak{a}_{1} \cdots \mathfrak{a}_{n}.$$

(c) \Longrightarrow Assume ϕ is surjective. In particular, there exists $x \in R$ such that $(\overline{1}, \overline{0}, \dots, \overline{0}) = \phi(x) = (\overline{x}, \overline{x}, \dots, \overline{x})$. Hence $x + \mathfrak{a}_1 = 1 + \mathfrak{a}_1$ and $x + \mathfrak{a}_i = 0 + \mathfrak{a}_i$ for $i = 2, \dots, n$. Hence $1 - x \in \mathfrak{a}_1$ and $x \in \mathfrak{a}_i$ for $i = 2, \dots, n$. Also, since (x) + (1 - x) = 1, we have that $\mathfrak{a}_i + \mathfrak{a}_1 = R$ for $i = 2, \dots, n$.

Similarly, consider $(\bar{0}, \dots, \bar{0}, \bar{1}, \bar{0}, \dots, \bar{0}) \longrightarrow \mathfrak{a}_i + \mathfrak{a}_j = R$ for $1 \leq i, j \leq n$ with $i \neq j$.

$$\phi(y) = (\bar{y}, \bar{y}, \cdots, \bar{y}) = (y + \mathfrak{a}_1, y + \mathfrak{a}_2, \cdots, y + \mathfrak{a}_n) = (1 + \mathfrak{a}_1, 0 + \mathfrak{a}_2, \dots, 0 + \mathfrak{a}_n) = (\bar{1}, \bar{0}, \cdots, \bar{0})$$

Similarly, for j = 1, ..., n, there exists y_j such that $\phi(y_j) = (\bar{0}, ..., \bar{0}, \bar{1}, \bar{0}, ..., \bar{0})$. Then for any $(\bar{r}_1, ..., \bar{r}_n) \in \frac{R}{\mathfrak{a}_1} \times \cdots \times \frac{R}{\mathfrak{a}_n}$,

$$(\bar{r}_1, \dots, \bar{r}_n) = \sum_{j=1}^n r_j(\bar{0}, \dots, \bar{0}, \bar{1}, \bar{0}, \dots, \bar{0}) = \sum_{j=1}^n r_j \phi(y_j) = \phi\left(\sum_{j=1}^n r_j y_j\right).$$

Hence ϕ is surjective.

Proposition 1.47. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \leq R$ and $\mathfrak{p} \in \operatorname{Spec}(R)$.

- (a) If $\mathfrak{p} = \mathfrak{a}_1 \cdots \mathfrak{a}_n$, then $\mathfrak{p} = \mathfrak{a}_i$ for some $i \in \{1, \ldots, n\}$.
- (b) If $\mathfrak{p} \supseteq \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n$, then $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some $i \in \{1, \ldots, n\}$.
- (c) If $\mathfrak{p} = \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n$, then $\mathfrak{p} = \mathfrak{a}_i$ for some $i \in \{1, \ldots, n\}$.

Proof. (b) Assume $\mathfrak{p} \supseteq \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n \supseteq \mathfrak{a}_1 \cdots \mathfrak{a}_n$ by Fact 1.38(f). Since $\mathfrak{p} \in \operatorname{Spec}(R)$, there exists some $i \in \{1, \ldots, n\}$ such that $\mathfrak{p} \supseteq \mathfrak{a}_i$.

(c) By (b), there exists $i \in \{1, \ldots, n\}$ such that $\mathfrak{a}_i \subseteq \mathfrak{p} = \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n \subseteq \mathfrak{a}_i$. Hence $\mathfrak{p} = \mathfrak{a}_i$.

(a) Since $\mathfrak{p} \supseteq \mathfrak{a}_1 \cdots \mathfrak{a}_n$, we have that $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some $i \in \{1, \ldots, n\}$. Also, we have that $\mathfrak{p} = \mathfrak{a}_1 \cdots \mathfrak{a}_n \subseteq \mathfrak{a}_i$.

Example. The converses fail in general. Let R = k[X, Y], $\mathfrak{p} = \mathfrak{a}_1 = \langle X \rangle$ and $\mathfrak{a}_2 = \langle Y \rangle$. Then $\mathfrak{a}_1 \cap \mathfrak{a}_2 = \langle XY \rangle \neq \langle X \rangle = \mathfrak{p} = \langle X \rangle \neq \langle XY \rangle = \mathfrak{a}_1 \mathfrak{a}_2$.

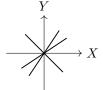
Prime Avoidence

Lemma 1.48. Let k be an infinite field, $0 \neq V$ a vector space over k, and $V_1, \ldots, V_n \leq V$. Then $\bigcup_{i=1}^n V_i \subseteq V$.

Proof. Induction on n. Base case n = 1: trivial.

Induction step: assume $n \geq 2$ and $\bigcup_{i \neq j} V_j \subsetneq V$ for j = 1, ..., n. Then there exists $0 \neq v_j \in V \setminus \{\bigcup_{i \neq j} V_j\}$ for j = 1, ..., n. By way of contradiction, suppose $\bigcup_{i=1}^n V_i = V$. Then $v_j \in \{\bigcup_{i=1}^n V_i\} \setminus \{\bigcup_{i \neq j} V_j\} \subseteq V_j$ for j = 1, ..., n. Let $1 \leq i, j \leq n$ with $i \neq j$. Since $v_j \neq 0$, we have that $v_i + \lambda v_j \neq v_i + \mu v_j$ for any $\lambda \neq \mu$ in k. Since k is infinite, there exists l such that V_l contains two distinct elements $v_i + \lambda v_j$ and $v_i + \mu v_j$ with $0 \neq \lambda, \mu \in k$. Then $(\lambda - \mu)v_j = (v_i + \lambda v_j) - (v_i + \mu v_j) \in V_l$. Since $\lambda \neq \mu$, we have that $v_j \in V_l$. Since $v_j \notin V_k$ for any $k \neq j$ and $v_j \in V_j$, we have that l = j. Also, since $(\lambda^{-1} - \mu^{-1})v_i = \lambda^{-1}(v_i + \lambda v_j) - \mu^{-1}(v_i + \mu v_j) \in V_l$, we have that l = i. Hence i = l = j, a contradiction.

Example 1.49. If $k = \mathbb{R}$ and $V = \mathbb{R}^2$, then the lemma says that \mathbb{R}^2 is not a finite union of lines through the origin, which is straightforward to show.



If $|k| < \infty$, then the lemma fails. For example, $V = k^2 = \bigcup_{v \in k^2} \{v\} = \bigcup_{0 \neq v \in k^2} \operatorname{span}\{v\}$ but $0 \neq \operatorname{span}(v) \leq k^2 = V$ for $0 \neq v \in k^2$.

The same technique shows that can't replace V_1, \ldots, V_n with V_1, V_2, \cdots over \mathbb{Q} .

Theorem 1.50 (Prime avoidence, general version). Let $\mathfrak{b}_1, \ldots, \mathfrak{b}_n, \mathfrak{a} \leq R$. Assume

(a) R contains an infinite field k as a subring, or

(b) $\mathfrak{b}_3,\ldots,\mathfrak{b}_n\in\operatorname{Spec}(R)$.

Then if $\mathfrak{a} \not\subseteq \mathfrak{b}_i$ for all $i = 1, \ldots, n$, then $\mathfrak{a} \not\subseteq \bigcup_{i=1}^n \mathfrak{b}_i$.

Proof. (a) For each i = 1, ..., n, since $\mathfrak{a} \not\subseteq \mathfrak{b}_i$, $\mathfrak{a} \cap \mathfrak{b}_i \leq \mathfrak{a}$. Also, since \mathfrak{a} is a k-vector space, by Lemma 1.48, $\mathfrak{a} \cap \bigcup_{i=1}^n \mathfrak{b}_i = \bigcup_{i=1}^n (\mathfrak{a} \cap \mathfrak{b}_i) \leq \mathfrak{a}$. Hence $\mathfrak{a} \not\subseteq \bigcup_{i=1}^n \mathfrak{b}_i$.

(b) Induct on *n*. Base case n = 1: done. Base case n = 2. Let $a_i \in \mathfrak{a} \setminus \mathfrak{b}_i$ for i = 1, 2. Then $a_1 + a_2 \in \mathfrak{a}$. Suppose $\mathfrak{a} \subseteq \mathfrak{b}_1 \cup \mathfrak{b}_2$. Then $a_1 + a_2 \in \mathfrak{b}_1 \cup \mathfrak{b}_2$, say $a_1 + a_2 \in \mathfrak{b}_2$. Since $a_1 \in \mathfrak{a} \subseteq \mathfrak{b}_1 \cup \mathfrak{b}_2$ and $a_1 \notin \mathfrak{b}_1$, $a_1 \in \mathfrak{b}_2$. Hence $a_2 = (a_1 + a_2) - a_1 \in \mathfrak{b}_2$, a contradiction.

Induction step $n \geq 3$. Let $\mathfrak{a} \not\subseteq \mathfrak{b}_i$ for $i = 1, \ldots, n$. Assume $\mathfrak{a} \not\subseteq \bigcup_{i \neq j} \mathfrak{b}_i$ for $j = 1, \ldots, n$. Then there exists $a_j \in \mathfrak{a} \setminus \{\bigcup_{i \neq j} \mathfrak{b}_i\}$ for $j = 1, \ldots, n$. By way of contradiction, suppose $\mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{b}_i$. Then $a_j \in \bigcup_{i=1}^n \mathfrak{b}_i \setminus \{\bigcup_{i \neq j} \mathfrak{b}_i\} \subseteq \mathfrak{b}_j$ for $j = 1, \ldots, n$. Note that $a_1 \cdots a_{n-1} + a_n \in \mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{b}_i$. Hence there exists $l \in \{1, \ldots, n\}$ such that $a_1 \cdots a_{n-1} + a_n \in \mathfrak{b}_l$. Suppose l = n. Since $a_n \in \mathfrak{b}_n$, $a_1 \cdots a_{n-1} \in \mathfrak{b}_n$. Since $n \geq 3$, we have that $\mathfrak{b}_n \in \operatorname{Spec}(R)$ and then $a_i \in \mathfrak{b}_n$ for some 1 < i < n, a contradiction. Hence we must have l < n. But since $a_1 \cdots a_l \cdots a_{n-1} \in \mathfrak{b}_l$, we have that $a_n \in \mathfrak{b}_l$, a **Theorem 1.51** (Prime avoidence). Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \in \operatorname{Spec}(R)$. If $\mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{p}_i$, then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some $i \in \{1, \ldots, n\}$, *i.e.*, if $\mathfrak{a} \not\subseteq \mathfrak{p}_i$ for $i = 1, \ldots, r$, then $\mathfrak{a} \not\subseteq \bigcup_{i=1}^n \mathfrak{p}_i$.

Fact (Avoidence for monomial ideals). Let A be a nonzero commutative ring with identity and $\mathfrak{a}, \mathfrak{b}_1, \ldots, \mathfrak{b}_n$ be monomial ideals of $A[X_1, \ldots, X_d]$. If $\mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{b}_i$, $\mathfrak{a} \subseteq \mathfrak{b}_i$ for some $i \in \{1, \ldots, n\}$.

Proof. By Dickson's lemma, $\mathfrak{a} = \langle f_1, \ldots, f_m \rangle$ for some monomials $f_1, \ldots, f_m \in A[X_1, \ldots, X_d]$. Then $f_1 + \cdots + f_m \in \mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{b}_i$. Hence $f_1 + \cdots + f_m \in \mathfrak{b}_i$ for some $i \in \{1, \ldots, n\}$. But \mathfrak{b}_i is a monomial ideal, so $f_1, \ldots, f_m \in \mathfrak{b}_i$. Thus, $\mathfrak{a} = \langle f_1, \ldots, f_m \rangle \subseteq \mathfrak{b}_i$. \Box

Colon Ideals

Definition 1.52. Let $S \subseteq R$.

(a) Define the *colon ideal* by

$$(\mathfrak{a}:S) := \{r \in R \mid rs \in \mathfrak{a}, \forall s \in S\} \le R.^{\dagger}$$

(b) Define the annihilator of S by

$$\operatorname{Ann}_{R}(S) := (0:S) = \{ r \in R \mid rs = 0, \forall s \in S \} \le R.$$

In this notation, the set of all zero divisors of R is

$$\operatorname{ZD}(R) = \bigcup_{x \neq 0} \operatorname{Ann}_R(x).$$

Example 1.53. Let R = k[X, Y]. (a) $(\langle XY \rangle : \{X, Y\}) = (\langle XY \rangle : \langle X, Y \rangle) = (\langle XY \rangle : \langle X \rangle) \bigcap (\langle XY \rangle : \langle Y \rangle) = \langle Y \rangle \bigcap \langle X \rangle = \langle XY \rangle$. (b)

$$\begin{aligned} (\langle X^2, XY \rangle : \{X, Y\}) &= (\langle X^2, XY \rangle : \langle X, Y \rangle) = ((\langle X^2 \rangle : \langle X \rangle) + (\langle X^2 \rangle : \langle Y \rangle)) \\ & \cap ((\langle XY \rangle : \langle X \rangle) + (\langle XY \rangle : \langle Y \rangle)) = (\langle X \rangle + \langle X^2 \rangle) \cap (\langle Y \rangle + \langle X \rangle) \\ &= \langle X \rangle \cap \langle X, Y \rangle = \langle X, XY \rangle = \langle X \rangle. \end{aligned}$$

Fact 1.54. Let $S, T \subseteq R$.

- (a) $\mathfrak{a} \subseteq (\mathfrak{a}: S) \leq R$.
- (b) $(\mathfrak{a}:\mathfrak{b})\mathfrak{b}\subseteq\mathfrak{a}.$
- (c) If $S \subseteq T$, then $(\mathfrak{a}: S) \supseteq (\mathfrak{a}: T)$.
- (d) If $\mathfrak{a} \subseteq \mathfrak{b}$, then $(\mathfrak{a} : S) \subseteq (\mathfrak{b} : S)$.
- (e) $(\mathfrak{a}:S) = (\mathfrak{a}:\langle S \rangle).$

[†]For instance, $(m\mathbb{Z}: n\mathbb{Z}) = (\frac{m}{(m,n)})\mathbb{Z}$ for $m, n \ge 1$.

- (f) $\mathfrak{b} \subseteq \mathfrak{a}$ if and only if $(\mathfrak{a} : \mathfrak{b}) = R$.
- (g) $(\mathfrak{a}: \bigcup_{\lambda \in \Lambda} S_{\lambda}) = \bigcap_{\lambda \in \Lambda} (\mathfrak{a}: S_{\lambda}).$
- (h) $(\mathfrak{a}: \sum_{\lambda \in \Lambda} \mathfrak{b}_{\lambda}) = (\mathfrak{a}: \bigcup_{\lambda \in \Lambda} \mathfrak{b}_{\lambda}) = \bigcap_{\lambda \in \Lambda} (\mathfrak{a}: \mathfrak{b}_{\lambda}).$
- (i) $(\bigcap_{\lambda} \mathfrak{a}_{\lambda} : S) = \bigcap_{\lambda \in \Lambda} (\mathfrak{a}_{\lambda} : S).$
- (j) $((\mathfrak{a}:\mathfrak{b}):\mathfrak{c}) = (\mathfrak{a}:\mathfrak{b}\mathfrak{c}) = ((\mathfrak{a}:\mathfrak{c}):\mathfrak{b}).$

Proof. (b) For each $r \in (\mathfrak{a} : \mathfrak{b})$ and each $b \in \mathfrak{b}$, we have that $br \in \mathfrak{a}$. It then follows from Fact 1.12.

(e) " \supseteq ". Since $S \subseteq \langle S \rangle$, by (c), $(\mathfrak{a} : S) \supseteq (\mathfrak{a} : \langle S \rangle)$. " \subseteq ". Let $r \in (\mathfrak{a} : S)$. Then $rs \in \mathfrak{a}$ for $s \in S$. Let $s \in \langle S \rangle$. Then $s = \sum_{i}^{\text{finite}} a_i s_i$ for some $a_i \in R$ and $s_i \in S$ for each i. Hence $rs = r(\sum_{i}^{\text{finite}} a_i s_i) = \sum_{i}^{\text{finite}} a_i (rs_i) \in R$. Hence $r \in (\mathfrak{a} : \langle S \rangle)$.

(h) This follows from (e) and (g).

(j) It is enough to prove the first equality since $\mathfrak{bc} = \mathfrak{cb}$. Note that $r \in ((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c})$ if and only if $rc \in (\mathfrak{a} : \mathfrak{b})$ for $c \in \mathfrak{c}$ if and only if $r(bc) = (rc)b \in \mathfrak{a}$ for any $b \in \mathfrak{b}$ and $c \in \mathfrak{c}$ if and only if $r \in (\mathfrak{a} : \mathfrak{bc})$ by (e).

Example 1.55. Let R = k[X, Y]. It is straightforward to show the following.

(a)

$$(\langle XY\rangle:\langle X,Y\rangle)=(\langle XY\rangle:\{X,Y\})=(\langle XY\rangle:X)\cap(\langle XY\rangle:Y)=\langle Y\rangle\cap\langle X\rangle=\langle XY\rangle.$$

(b)

$$\begin{split} (\langle X^2, XY \rangle : \langle X, Y \rangle) &= (\langle X^2, XY \rangle : \{X, Y\}) \\ &= (\langle X^2, XY \rangle : X) \cap (\langle X^2, XY \rangle : Y) \\ &= \langle X, Y \rangle \cap \langle X \rangle = \langle X \rangle. \end{split}$$

Radicals of Ideals

Definition 1.56. The *radical* of $\mathfrak{a} \leq R$ is

$$\operatorname{rad}(\mathfrak{a}) = \operatorname{r}(\mathfrak{a}) = \sqrt{\mathfrak{a}} = \{ x \in R \mid x^n \in \mathfrak{a}, \forall n \gg 0 \} = \{ x \in R \mid x^n \in \mathfrak{a} \text{ for some } n \ge 1 \}.$$

Remark. rad(0) = Nil(R).

Example 1.57. In R = k[X, Y], we have that

$$\operatorname{rad}(\langle X^2Y, XY^2 \rangle) = \operatorname{m-rad}(\langle X^2Y, XY^2 \rangle) = \operatorname{m-rad}(\langle X^2Y \rangle + \langle XY^2 \rangle)$$
$$= \operatorname{m-rad}(\langle X^2Y \rangle) + \operatorname{m-rad}(\langle XY^2 \rangle) = \langle XY \rangle + \langle XY \rangle = \langle XY \rangle.$$

Fact 1.58. Let $\pi : R \to R/\mathfrak{a}$ be the natural projection.

(a)
$$\operatorname{rad}(\mathfrak{a}) = \pi^{-1}(\operatorname{Nil}(R/\mathfrak{a})) \leq R.$$

- (b) If $\mathfrak{a} \subseteq \mathfrak{b}$, then rad $(\mathfrak{a}) \subseteq rad(\mathfrak{b})$.
- (c) $\mathfrak{a} \subseteq \operatorname{rad}(\mathfrak{a}) = \operatorname{rad}(\operatorname{rad}(\mathfrak{a})).$
- (d) $\operatorname{rad}(\mathfrak{ab}) = \operatorname{rad}(\mathfrak{a} \cap \mathfrak{b}) = \operatorname{rad}(\mathfrak{a}) \cap \operatorname{rad}(\mathfrak{b}).$
- (e) $\operatorname{rad}(\mathfrak{a}) = R$ if and only if $\mathfrak{a} = R$.
- (f) $rad(\mathfrak{a} + \mathfrak{b}) = rad(rad(\mathfrak{a}) + rad(\mathfrak{b})).$
- (g) $rad(\mathfrak{a}) = \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p}.$
- (h) rad $(\bigcap_{i=1}^{n} \mathfrak{p}_{i}^{e_{i}}) = \bigcap_{i=1}^{n} \mathfrak{p}_{i}$, where $\mathfrak{p}_{i} \in \operatorname{Spec}(R)$ and $e_{i} \geq 1$ for $i = 1, \ldots, n$.
- (i) $\mathfrak{a} + \mathfrak{b} = R$ if and only if $rad(\mathfrak{a}) + rad(\mathfrak{b}) = R$.

Proof. (a) Let $r \in R$. Then $r \in \pi^{-1}(\operatorname{Nil}(R/\mathfrak{a}))$ if and only if $\pi(r) \in \operatorname{Nil}(R/\mathfrak{a})$ if and only if $\overline{r}^n = 0$ in R/\mathfrak{a} for some $n \ge 1$ if and only if $r^n \in \mathfrak{a}$ for some $n \ge 1$ if and only if $r \in \operatorname{rad}(\mathfrak{a})$.

(b) It is straightforward.

(c) Since $a^1 = a \in \mathfrak{a}$ for any $a \in \mathfrak{a}$, we have that $a \in \operatorname{rad}(\mathfrak{a})$ for $a \in \mathfrak{a}$. Hence $\mathfrak{a} \subseteq \operatorname{rad}(\mathfrak{a})$. Then by (b), $\operatorname{rad}(\mathfrak{a}) \subseteq \operatorname{rad}(\operatorname{rad}(\mathfrak{a}))$. Let $r \in \operatorname{rad}(\operatorname{rad}(\mathfrak{a}))$. Then there exists $n \ge 1$ such that $r^n \in \operatorname{rad}(\mathfrak{a})$. Hence there exists $m \ge 1$ such that $r^{mn} = (r^n)^m \in \mathfrak{a}$. Hence $r \in \operatorname{rad}(I)$.

(d) Since $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{a}, \mathfrak{b}$, by (b), we have that $\operatorname{rad}(\mathfrak{ab}) \subseteq \operatorname{rad}(\mathfrak{a} \cap \mathfrak{b}) \subseteq \operatorname{rad}(\mathfrak{a}), \operatorname{rad}(\mathfrak{b})$ and then $\operatorname{rad}(\mathfrak{ab}) \subseteq \operatorname{rad}(\mathfrak{a} \cap \mathfrak{b}) \subseteq \operatorname{rad}(\mathfrak{a}) \cap \operatorname{rad}(\mathfrak{b})$. On the other hand, let $x \in \operatorname{rad}(\mathfrak{a}) \cap \operatorname{rad}(\mathfrak{b})$. Then there exist $m, n \geq 1$ such that $x^m \in \mathfrak{a}$ and $x^n \in \mathfrak{b}$. Hence $x^{m+n} = x^m \cdot x^n \in \mathfrak{ab}$. Hence $x \in \operatorname{rad}(\mathfrak{ab})$.

(e) $\mathfrak{a} = R$ if and only if $1 \in \mathfrak{a}$ if and only if $1^n \in \mathfrak{a}$ if and only if $rad(\mathfrak{a}) = R$.

(f) Since $\mathfrak{a} + \mathfrak{b} \subseteq \operatorname{rad}(\mathfrak{a}) + \operatorname{rad}(\mathfrak{b})$, we have that $\operatorname{rad}(\mathfrak{a} + \mathfrak{b}) \subseteq \operatorname{rad}(\operatorname{rad}(\mathfrak{a}) + \operatorname{rad}(\mathfrak{b}))$. Let $x \in \operatorname{rad}(\operatorname{rad}(\mathfrak{a}) + \operatorname{rad}(\mathfrak{b}))$. Then there exists $n \ge 1$ such that $x^n \in \operatorname{rad}(\mathfrak{a}) + \operatorname{rad}(\mathfrak{b})$. Hence there exist $a \in \operatorname{rad}(\mathfrak{a})$ and $b \in \operatorname{rad}(\mathfrak{b})$ such that $x^n = a + b$. Then there exist $j, k \ge 1$ such that $a^j \in \mathfrak{a}$ and $b^k \in \mathfrak{b}$. Hence

$$x^{n(j+k)} = (x^n)^{j+k} = (a+b)^{j+k} = \sum_{l=0}^{j+k} \binom{l}{j+k} a^l b^{j+k-l}.$$

Since for $0 \leq l \leq j + k$, either $l \geq j$ or l < j, i.e., $l \geq j$ or j + k - l > k, we have that $a^{l} \in \mathfrak{a}$ when $l \geq j$, and $b^{j+k-l} \in \mathfrak{b}$ when j + k - l > n. Hence $x^{n(j+k)} = 0$. Thus, $x \in rad(\mathfrak{a} + \mathfrak{b})$.

(g) By Fact 1.15, $\operatorname{Spec}(R/\mathfrak{a}) = \{\mathfrak{p}/\mathfrak{a} \mid \mathfrak{p} \in \operatorname{V}(\mathfrak{a})\}$. Hence $\operatorname{Nil}(R/\mathfrak{a}) = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R/\mathfrak{a})} \mathfrak{p} = \bigcap_{\mathfrak{p} \in \operatorname{V}(\mathfrak{a})} \mathfrak{p}/\mathfrak{a}$. Then by (a),

$$\operatorname{rad}(\mathfrak{a}) = \pi^{-1}(\operatorname{Nil}(R/\mathfrak{a})) = \pi^{-1}\left(\bigcap_{\mathfrak{p}\in \operatorname{V}(\mathfrak{a})}\mathfrak{p}/\mathfrak{a}\right) = \bigcap_{\mathfrak{p}\in\operatorname{V}(\mathfrak{a})}\pi^{-1}(\mathfrak{p}/\mathfrak{a}) = \bigcap_{\mathfrak{p}\in\operatorname{V}(\mathfrak{a})}\mathfrak{p}.$$

(h) Since $\mathfrak{p}_i \in \operatorname{Spec}(R)$, $\mathfrak{p}_i \in \operatorname{V}(\mathfrak{p}_i)$ and then $\mathfrak{p}_i \subseteq \operatorname{rad}(\mathfrak{p}_i) = \bigcap_{\mathfrak{p} \in \operatorname{V}(\mathfrak{p}_i)} \mathfrak{p} \subseteq \mathfrak{p}_i$, i.e., $\mathfrak{p}_i = \operatorname{rad}(\mathfrak{p}_i)$ for $i = 1, \ldots, n$. Then by (d),

$$\operatorname{rad}\left(\bigcap_{i=1}^{n}\mathfrak{p}_{i}^{e_{i}}\right)=\bigcap_{i=1}^{n}\operatorname{rad}(\mathfrak{p}_{i}^{e_{i}})=\bigcap_{i=1}^{n}\operatorname{rad}(\mathfrak{p}_{i})=\bigcap_{i=1}^{n}\mathfrak{p}_{i}.$$

(i) By (e) and (f), $\mathfrak{a} + \mathfrak{b} = R$ if and only if $rad(\mathfrak{a} + \mathfrak{b}) = R$ if and only if $rad(rad(\mathfrak{a}) + rad(\mathfrak{b})) = R$ if and only if $rad(\mathfrak{a}) + rad(\mathfrak{b}) = R$.

Example 1.59. (b) Example of $\mathfrak{a} \not\subseteq \mathfrak{b}$ when $\operatorname{rad}(\mathfrak{a}) \subseteq \operatorname{rad}(\mathfrak{b})$. Let $R = \mathbb{Z}$. Then $\operatorname{rad}(\langle 2 \rangle) = \langle 2 \rangle = \operatorname{rad}(\langle 4 \rangle)$, but $\langle 2 \rangle \not\subseteq \langle 4 \rangle$.

(c) Example of $\mathfrak{a} \subsetneq \operatorname{rad}(\mathfrak{a})$. Let $R = \mathbb{Z}$. Then $\langle 4 \rangle \subsetneq \langle 2 \rangle = \operatorname{rad}(\langle 4 \rangle)$.

(d) Example of $\operatorname{rad}(\bigcap_{i=1}^{\infty} \mathfrak{a}_i) \subsetneq \bigcap_{i=1}^{\infty} \operatorname{rad}(\mathfrak{a}_i)$. Let $R = k[X_1, X_2, \cdots]$, $\mathfrak{a}_1 = \langle X_1 \rangle$, $\mathfrak{a}_2 = \langle X_1^2, X_2^2 \rangle$, \cdots , $\mathfrak{a}_i = \langle X_1^i, \ldots, X_i^i \rangle$, \cdots . Since $\langle X_1, \ldots, X_i \rangle \in \operatorname{Spec}(R)$ for $i \ge 1$, by (f) and (g), we have that for $i \ge 1$,

$$\operatorname{rad}(\mathfrak{a}_i) = \operatorname{rad}(\langle X_1^i, \dots, X_i^i \rangle) = \operatorname{rad}(\langle X_1, \dots, X_i \rangle) = \langle X_1, \dots, X_i \rangle$$

Hence

$$\bigcap_{i=1}^{\infty} \operatorname{rad}(\mathfrak{a}_i) = \bigcap_{i=1}^{\infty} \langle X_1, \dots, X_i \rangle = \langle X_1 \rangle \supseteq 0 = \operatorname{rad}(0) = \operatorname{rad}\left(\bigcap_{i=1}^{\infty} \mathfrak{a}_i\right).$$

(f) Example of $\operatorname{rad}(\mathfrak{a} + \mathfrak{b}) \supseteq \operatorname{rad}(\mathfrak{a}) + \operatorname{rad}(\mathfrak{b})$. Let R = k[X, Y], $\mathfrak{a} = \langle X + Y^2 \rangle$ and $\mathfrak{b} = \langle X \rangle$. Then $\mathfrak{a}, \mathfrak{b} \in \operatorname{Spec}(R)$. Also, since $\langle X, Y \rangle \in \operatorname{Spec}(R)$,

$$\operatorname{rad}(\mathfrak{a}) + \operatorname{rad}(\mathfrak{b}) = \mathfrak{a} + \mathfrak{b} = \langle X + Y^2, X \rangle = \langle X, Y^2 \rangle \subsetneq \langle X, Y \rangle = \operatorname{rad}(\langle X, Y^2 \rangle) = \operatorname{rad}(\mathfrak{a} + \mathfrak{b}).$$

Example 1.60. (a) Let $R = \mathbb{F}_2[X, Y]$, $\mathfrak{a} = \langle X, Y \rangle$, $\mathfrak{b}_1 = \langle X, XY, Y^2 \rangle = \langle X, X^2, XY, Y^2 \rangle$, $\mathfrak{b}_2 = \langle X + Y, X^2, XY, Y^2 \rangle$ and $\mathfrak{b}_3 = \langle Y, X^2, XY \rangle = \langle Y, X^2, XY, Y^2 \rangle$. Then $\mathfrak{a} \not\subseteq \mathfrak{b}_i$ for i = 1, 2, 3. Let $f \in \mathfrak{a}$. Then f can be written as

$$\begin{split} f &= Xg(X) + X^2 \alpha(X,Y) + XY \gamma(X,Y) + +Y^2 \beta(X,Y) + Yh(Y) \\ &= X^2 \cdot \frac{g(X) - g(0)}{X} + (Xg(0) + Yh(0)) + Y^2 \cdot \frac{h(Y) - h(0)}{Y} \\ &+ X^2 \alpha(X,Y) + XY \gamma(X,Y) + Y^2 \beta(X,Y). \end{split}$$

for some $g \in \mathbb{F}_2[X]$, $h \in \mathbb{F}_2[Y]$ and $\alpha, \beta, \gamma \in \mathbb{F}_2[X, Y]$. Since $g(0), h(0) \in \{0, 1\}$, $f \in \mathfrak{b}_1 \cup \mathfrak{b}_2 \cup \mathfrak{b}_3$. Also, since $\mathfrak{b}_1 \cup \mathfrak{b}_2 \cup \mathfrak{b}_3 \subseteq \mathfrak{a}$, we have that $\mathfrak{a} = \mathfrak{b}_1 \cup \mathfrak{b}_2 \cup \mathfrak{b}_3$.

(b) Let $R = \frac{\mathbb{F}_2[X,Y]}{\langle X^2, XY, Y^2 \rangle}$ and $x = \overline{X}, y = \overline{Y} \in R$. Then $R \cong \mathbb{F}_2 \oplus \mathbb{F}_2 x \oplus \mathbb{F}_2 y$ and $\mathfrak{a} := \langle x, y \rangle \cong \mathbb{F}_2 x \oplus \mathbb{F}_2 y$ as \mathbb{F}_2 -vector space. Let $\mathfrak{b}_1 = \langle x \rangle$, $\mathfrak{b}_2 = \langle x + y \rangle$ and $\mathfrak{b}_3 = \langle y \rangle$. Then $\mathfrak{a} \not\subseteq \mathfrak{b}_i$ for i = 1, 2, 3, but $\mathfrak{a} = \mathfrak{b}_1 \cup \mathfrak{b}_2 \cup \mathfrak{b}_2$.

Extensions and Contractions

Let $f: R \to S$ be a ring homomorphism, $\mathfrak{a}, \mathfrak{a}_1, \mathfrak{a}_2 \leq R$ and $\mathfrak{b}, \mathfrak{b}_1, \mathfrak{b}_2 \leq S$.

Definition 1.61. The *extension* of \mathfrak{a} along f is

$$\mathfrak{a}^e = \mathfrak{a}S = \langle f(\mathfrak{a}) \rangle S = f(\mathfrak{a})S = \left\{ \sum_i^{\text{finite}} f(a_i)s_i \mid a_i \in \mathfrak{a}, \ s_i \in S, \forall i \right\} \le S.$$

The *contraction* of \mathfrak{b} along f is

$$\mathfrak{b}^c = f^{-1}(\mathfrak{b}) \le R.$$

Example 1.62. (a) Let R be an integral domain with the field of fraction Q(R). Then $R \subseteq Q(R)$ with the inclusion map $\epsilon : R \to Q(R)$ given by $\varepsilon(r) = r/1$. Note that 0Q(R) = 0 and $\mathfrak{a}Q(R) = Q(R)$ for $0 \neq \mathfrak{a} \leq R$.

- (b) Note that $\langle X \rangle k[X] \subseteq k[X] \subseteq k[X,Y]$, $(\langle X \rangle k[X]) k[X,Y] = \langle X \rangle k[X,Y]$.
- (c) Let $R \subseteq S$ be rings and $\varepsilon : R \xrightarrow{\subseteq} S$. If $\mathfrak{b} \leq S$, then $\varepsilon^{-1}(\mathfrak{b}) = \mathfrak{b} \cap R$.
- (d) Let $\varepsilon : k[X] \xrightarrow{\subseteq} k[X,Y]$. Since $\langle X,Y \rangle k[X,Y] \leq k[X,Y]$, we have that $\varepsilon^{-1}(\langle X,Y \rangle k[X,Y]) = \langle X,Y \rangle k[X,Y] \cap k[X] = \langle X \rangle k[X]$.

Proposition 1.63. We have the following.

(a) $\mathfrak{a} \subseteq f^{-1}(\mathfrak{a}S)$ and $f^{-1}(\mathfrak{b})S \subseteq \mathfrak{b}$. If $\mathfrak{a}_1 \subseteq \mathfrak{a}_2$, then $\mathfrak{a}_1S \subseteq \mathfrak{a}_2S$. If $\mathfrak{b}_1 \subseteq \mathfrak{b}_2$, then $f^{-1}(\mathfrak{b}_1) \subseteq f^{-1}(\mathfrak{b}_2)$. If $T \subseteq R$, then $(\langle T \rangle R)S = \langle f(T) \rangle S$.

Example of $\mathfrak{a} \subsetneq f^{-1}(\mathfrak{a}S)$. Let $f: R = \mathbb{Z} \xrightarrow{\subseteq} S = \mathbb{Q}$ and $\mathfrak{a} = \langle 2 \rangle R$. Then $f^{-1}(\mathfrak{a}S) = f^{-1}(S) = R \supsetneq \langle 2 \rangle R = \mathfrak{a}$.

Example of $f^{-1}(\mathfrak{b})S \subsetneq \mathfrak{b}$. Let $f: R = k[X] \xrightarrow{\subseteq} S = k[X,Y]$. Let $\mathfrak{b} = \langle Y \rangle S$. Then $f^{-1}(\mathfrak{b}) = 0$ and so $f^{-1}(\mathfrak{b})S = 0 \subsetneq \langle Y \rangle S = \mathfrak{b}$.

(b)
$$\mathfrak{a}S = f^{-1}(\mathfrak{a}S)S$$
 and $f^{-1}(\mathfrak{b}) = f^{-1}(f^{-1}(\mathfrak{b})S)$, i.e., $\mathfrak{a}^e = \mathfrak{a}^{ece}$ and $\mathfrak{b}^c = \mathfrak{b}^{cec}$.[†]

(c) $(\mathfrak{a}_1 + \mathfrak{a}_2)S = \mathfrak{a}_1S + \mathfrak{a}_2S$ and $f^{-1}(\mathfrak{b}_1 + \mathfrak{b}_2) \supseteq f^{-1}(\mathfrak{b}_1) + f^{-1}(\mathfrak{b}_2)$.

Example of $f^{-1}(\mathfrak{b}_1 + \mathfrak{b}_2) \supseteq f^{-1}(\mathfrak{b}_1) + f^{-1}(\mathfrak{b}_2)$. Let $f : R = k \xrightarrow{\subseteq} S = k[X], \mathfrak{b}_1 = \langle X \rangle S$ and $\mathfrak{b}_2 = \langle X + 1 \rangle S$. Then $f^{-1}(\mathfrak{b}_1) = 0 = f^{-1}(\mathfrak{b}_2)$. Hence

$$f^{-1}(\mathfrak{b}_1 + \mathfrak{b}_2) = f^{-1}(S) = R \supseteq 0 = f^{-1}(\mathfrak{b}_1) + f^{-1}(\mathfrak{b}_2).$$

(d) $(\mathfrak{a}_1 \cap \mathfrak{a}_2)S \subseteq \mathfrak{a}_1S \cap \mathfrak{a}_2S$ and $f^{-1}(\mathfrak{b}_1 \cap \mathfrak{b}_2) = f^{-1}(\mathfrak{b}_1) \cap f^{-1}(\mathfrak{b}_2)$.

Example of $(\mathfrak{a}_1 \cap \mathfrak{a}_2)S \subsetneq \mathfrak{a}_1S \cap \mathfrak{a}_2S$. Let $f: R = k[X,Y] \to S = k[X,Y]/\langle X,Y \rangle^2$, $\mathfrak{a}_1 = \langle X \rangle R$ and $\mathfrak{a}_2 = \langle X + Y^2 \rangle R$. Then $\mathfrak{a}_1 \cap \mathfrak{a}_2 = \langle X(X + Y^2) \rangle R = \langle X^2 + XY^2 \rangle R$, $\mathfrak{a}_1S = \langle \overline{X} \rangle S$ and $\mathfrak{a}_2S = \langle \overline{X + Y^2} \rangle S = \langle \overline{X} \rangle S$. Hence

$$(\mathfrak{a}_1 \cap \mathfrak{a}_2)S = \langle \overline{X^2} + \overline{XY^2} \rangle S = 0 \subsetneq \langle \overline{X} \rangle S = \mathfrak{a}_1 S \cap \mathfrak{a}_2 S.$$

[†]We have a bijection $\{\mathfrak{a} \leq R \mid \mathfrak{a}^{ec} = \mathfrak{a}\} \rightleftharpoons \{\mathfrak{b} \leq S \mid \mathfrak{b}^{ce} = \mathfrak{b}\}$ given by $\mathfrak{a} \mapsto \mathfrak{a}^e$ and $\mathfrak{b}^c \leftrightarrow \mathfrak{b}$.

(e) $(\mathfrak{a}_1\mathfrak{a}_2)S = (\mathfrak{a}_1S)(\mathfrak{a}_2S)$ and $f^{-1}(\mathfrak{b}_1\mathfrak{b}_2) \supseteq f^{-1}(\mathfrak{b}_1)f^{-1}(\mathfrak{b}_2)$.

Example of $f^{-1}(\mathfrak{b}_1) \cap f^{-1}(\mathfrak{b}_2) = f^{-1}(\mathfrak{b}_1 \cap \mathfrak{b}_2) \supseteq f^{-1}(\mathfrak{b}_1 \mathfrak{b}_2) \supseteq f^{-1}(\mathfrak{b}_1)f^{-1}(\mathfrak{b}_2)$. Let $f : R = k[X] \to S$, where

$$S = k[X]/(X(X-1)) = k[X]/(X^2 - X) \cong k[X]/\langle X \rangle \times k[X]/\langle X - 1 \rangle \cong k \times k$$

by Chinese Remainder Theorem. Note that in $k \times k$, $(1,0) = (1,0)^2$. Let $\mathfrak{b}_1 = \langle \overline{X} \rangle S = \mathfrak{b}_2$. Then $\mathfrak{b}_1 \mathfrak{b}_2 = \langle \overline{X}^2 \rangle S = \langle \overline{X} \rangle S = \mathfrak{b}_1$. Hence

$$f^{-1}(\mathfrak{b}_1\mathfrak{b}_2) = f^{-1}(\mathfrak{b}_1) = f^{-1}(\langle \overline{X} \rangle S) = \langle X \rangle R \supsetneq \langle X^2 \rangle R = f^{-1}(\mathfrak{b}_1)f^{-1}(\mathfrak{b}_2).$$

(f) $(\mathfrak{a}_1:\mathfrak{a}_2)S \subseteq (\mathfrak{a}_1S:\mathfrak{a}_2S)$ and $f^{-1}(\mathfrak{b}_1:\mathfrak{b}_2) \subseteq (f^{-1}(\mathfrak{b}_1):f^{-1}(\mathfrak{b}_2)).$

Example of $(\mathfrak{a}_1 : \mathfrak{a}_2)S \subsetneq (\mathfrak{a}_1S : \mathfrak{a}_2S)$. Let $f : R = k[X] \to S = k[X]/\langle X \rangle \cong k$, $\mathfrak{a}_1 = \langle X^2 \rangle R$ and $\mathfrak{a}_2 = \langle X \rangle R$. Then $\mathfrak{a}_1S = 0 = \mathfrak{a}_2S$ and so

$$(\mathfrak{a}_1 S : \mathfrak{a}_2 S) = (0:0) = S \supseteq 0 = \langle X \rangle S = (\langle X^2 \rangle : \langle X \rangle) S = (\mathfrak{a}_1 : \mathfrak{a}_2) S.$$

Example of $f^{-1}(\mathfrak{b}_1:\mathfrak{b}_2) \subsetneq (f^{-1}(\mathfrak{b}_1):f^{-1}(\mathfrak{b}_2))$. Let $f: R = k \xrightarrow{\subseteq} S = k[X], \mathfrak{b}_1 = \langle X \rangle S$ and $\mathfrak{b}_2 = \langle X - 1 \rangle S$. Then $(\mathfrak{b}_1:\mathfrak{b}_2) = (\langle X \rangle : \langle X - 1 \rangle) = \langle X \rangle$ and $f^{-1}(\mathfrak{b}_1) = 0 = f^{-1}(\mathfrak{b}_2)$. Hence

$$f^{-1}(\mathfrak{b}_1:\mathfrak{b}_2) = f^{-1}(\langle X \rangle) = 0 \subsetneq R = (0:0) = (f^{-1}(\mathfrak{b}_1):f^{-1}(\mathfrak{b}_2))$$

(g) $\operatorname{rad}(\mathfrak{a})S \subseteq \operatorname{rad}(\mathfrak{a}S)$ and $f^{-1}(\operatorname{rad}(\mathfrak{b})) = \operatorname{rad}(f^{-1}(\mathfrak{b}))$.

Example of rad(\mathfrak{a}) $S \subsetneq \operatorname{rad}(\mathfrak{a} S)$. Let $f: R = k[X] \to S = k[X]/\langle X^2 \rangle$ and $\mathfrak{a} = 0R$. Then

 $\operatorname{rad}(\mathfrak{a})S=\operatorname{rad}(0R)S=0S=0\subsetneq \langle \overline{X}\rangle S=\operatorname{rad}(0S)=\operatorname{rad}(\mathfrak{a}S).$

Proof. (a) Note that $\mathfrak{a} \subseteq f^{-1}(f(\mathfrak{a})) \subseteq f^{-1}(f(\mathfrak{a})S) = f^{-1}(\mathfrak{a}S)$.

To show $\langle f(f^{-1}(\mathfrak{b}))\rangle S = f^{-1}(\mathfrak{b})S \subseteq \mathfrak{b}$, it suffices to show $\langle f(f^{-1}(\mathfrak{b}))\rangle \subseteq \mathfrak{b}$, then it is equivalent to show $f(f^{-1}(\mathfrak{b})) \subseteq \mathfrak{b}$, which is true.

A set of generators of $(\langle T \rangle R)S$ over S is

$$\left\{ f\left(\sum_{i}^{\text{finite}} t_i r_i\right) = \sum_{i}^{\text{finite}} f(t_i) f(r_i) \mid t_i \in T, \ r_i \in S, \forall i \right\} \subseteq \langle f(T) \rangle S.$$

A set of generators of $\langle f(T) \rangle S$ over S is $\{f(t) \mid t \in T\} = \{f(t \cdot 1) \mid t \in T\}$ which is a subset of the generators of $(\langle T \rangle R)S$.

(b) \subseteq By (a), $\mathfrak{a} \subseteq f^{-1}(\mathfrak{a}S)$, so $\mathfrak{a}S \subseteq f^{-1}(\mathfrak{a}S)S$. \supseteq A set of generators of $f^{-1}(\mathfrak{a}S)S$ over S is $\{f(x) \mid x \in f^{-1}(\mathfrak{a}S)\} = f(f^{-1}(\mathfrak{a}S)) \subseteq \mathfrak{a}S$.

 $\subseteq \text{ By (a), } \mathfrak{b} \supseteq f^{-1}(\mathfrak{b})S, \text{ hence } f^{-1}(\mathfrak{b}) \supseteq f^{-1}(f^{-1}(\mathfrak{b})S). \subseteq \text{Let } x \in f^{-1}(\mathfrak{b}). \text{ Then } f(x) = f(x) \cdot 1 \in \langle f(f^{-1}\mathfrak{b}) \rangle S = f^{-1}(\mathfrak{b})S. \text{ Hence } x \in f^{-1}(f^{-1}(\mathfrak{b})S).$

(c) \supseteq Since $\mathfrak{a}_1 + \mathfrak{a}_2 \supseteq \mathfrak{a}_1, \mathfrak{a}_2$, we have that $(\mathfrak{a}_1 + \mathfrak{a}_2)S \supseteq \mathfrak{a}_1S, \mathfrak{a}_2S$. Hence $(\mathfrak{a}_1 + \mathfrak{a}_2)S \supseteq \mathfrak{a}_1S + \mathfrak{a}_2S$. \subseteq A set of generators of $(\mathfrak{a}_1 + \mathfrak{a}_2)S$ over S is

$$\{f(a_1+a_2)=f(a_1)+f(a_2)\mid a_1\in\mathfrak{a}_1,a_2\in\mathfrak{a}_2\}\subseteq\mathfrak{a}_1S+\mathfrak{a}_2S.$$

(d) Since $\mathfrak{a}_1 \cap \mathfrak{a}_2 \subseteq \mathfrak{a}_1, \mathfrak{a}_2, (\mathfrak{a}_1 \cap \mathfrak{a}_2)S \subseteq \mathfrak{a}_1S, \mathfrak{a}_2S$. Hence $(\mathfrak{a}_1 \cap \mathfrak{a}_2)S \subseteq \mathfrak{a}_1S \cap \mathfrak{a}_2S$.

Note that $x \in f^{-1}(\mathfrak{b}_1 \cap \mathfrak{b}_2)$ if and only if $f(x) \in \mathfrak{b}_1 \cap \mathfrak{b}_2$ if and only if $f(x) \in \mathfrak{b}_1, \mathfrak{b}_2$ if and only if $x \in f^{-1}(\mathfrak{b}_1), f^{-1}(\mathfrak{b}_2)$ if and only if $x \in f^{-1}(\mathfrak{b}_1) \cap f^{-1}(\mathfrak{b}_2)$.

(e) \subseteq A set of generators of $(\mathfrak{a}_1\mathfrak{a}_2)S$ over S is

$$\left\{ f\left(\sum_{i}^{\text{finite}} \alpha_{i}\beta_{i}\right) = \sum_{i}^{\text{finite}} f(\alpha_{i})f(\beta_{i}) \mid \alpha_{i} \in \mathfrak{a}_{1}, \ \beta_{i} \in \mathfrak{a}_{2}, \forall i \right\} \subseteq (\mathfrak{a}_{1}S)(\mathfrak{a}_{2}S).$$

 \supseteq Note that

$$\begin{aligned} (\mathfrak{a}_1 S)(\mathfrak{a}_2 S) &= (f(\mathfrak{a}_1)S)(f(\mathfrak{a}_2)S) = (f(\mathfrak{a}_1)f(\mathfrak{a}_2))S = \langle f(a_1)f(a_2) \mid a_1 \in \mathfrak{a}_1, a_2 \in \mathfrak{a}_2 \rangle S \\ &= \langle f(a_1a_2) \mid a_1 \in \mathfrak{a}_1, a_2 \in \mathfrak{a}_2 \rangle S \subseteq \langle f(\mathfrak{a}_1\mathfrak{a}_2) \rangle S = (\mathfrak{a}_1\mathfrak{a}_2)S. \end{aligned}$$

Moreover, let $\sum_{i=1}^{n} a_{1i}a_{2i} \in f^{-1}(\mathfrak{b}_1)f^{-1}(\mathfrak{b}_2)$ for some $n \ge 1$, $a_{1i} \in f^{-1}(\mathfrak{b}_1)$ and $a_{2i} \in f^{-1}(\mathfrak{b}_2)$ for $i = 1, \ldots, n$. Then $f(a_{1i}) \in \mathfrak{b}_1$ and $f(a_{2i}) \in \mathfrak{b}_2$ for $i = 1, \ldots, n$. Since f is a ring homomorphism, $f(\sum_{i=1}^{n} a_{1i}a_{2i}) = \sum_{i=1}^{n} f(a_{1i})f(a_{2i}) \in \mathfrak{b}_1\mathfrak{b}_2$. Hence $\sum_{i=1}^{n} a_{1i}a_{2i} \in f^{-1}(\mathfrak{b}_1\mathfrak{b}_2)$.

(f) A set of generators of $(\mathfrak{a}_1 : \mathfrak{a}_2)S$ over S is

$$\begin{aligned} \{f(r) \mid r \in (\mathfrak{a}_1 : \mathfrak{a}_2)\} &= \{f(r) \mid r\mathfrak{a}_2 \subseteq \mathfrak{a}_1\} \subseteq \{f(r) \mid rf(\mathfrak{a}_2) \subseteq f(\mathfrak{a}_1)\} \subseteq \{s \in S \mid sf(\mathfrak{a}_2) \subseteq f(\mathfrak{a}_1)\} \\ &= \{s \in S \mid sf(\mathfrak{a}_2)S \subseteq f(\mathfrak{a}_1)S\} = \{s \in S \mid s\mathfrak{a}_2S \subseteq \mathfrak{a}_1S\} = (\mathfrak{a}_1S : \mathfrak{a}_2S). \end{aligned}$$

Note that

$$\begin{split} f^{-1}(\mathfrak{b}_{1}:\mathfrak{b}_{2}) &= \{f^{-1}(s) \mid s \in (\mathfrak{b}_{1}:\mathfrak{b}_{2})\} = \{f^{-1}(s) \mid s\mathfrak{b}_{2} \subseteq \mathfrak{b}_{1}\} \subseteq \{f^{-1}(s) \mid sf^{-1}(\mathfrak{b}_{2}) \\ &\subseteq f^{-1}(\mathfrak{b}_{1})\} \subseteq \{r \in R \mid rf^{-1}(\mathfrak{b}_{2}) \subseteq f^{-1}(\mathfrak{b}_{1})\} = (f^{-1}(\mathfrak{b}_{1}):f^{-1}(\mathfrak{b}_{2})). \end{split}$$

(g) Let $s \in \operatorname{rad}(\mathfrak{a})S$. Then there exist $m \geq 1$, $a_i \in \operatorname{rad}(\mathfrak{a})$ and $s_i \in S$ for $i = 1, \ldots, m$ such that $s = \sum_{i=1}^m f(a_i)s_i$. Since $a_i \in \operatorname{rad}(\mathfrak{a})$, there exists $n_i \geq 1$ such that $a_i^{n_i} \in \mathfrak{a}$ for $i = 1, \ldots, m$. Let $n = n_1 + \cdots + n_m$. Note that if $k_1 + \cdots + k_m = n$ with $k_1, \ldots, k_m \geq 0$, then there exists some $i \in \{1, \ldots, m\}$ such that $k_i \geq n_i$ and so $a_i^{k_i} \in \mathfrak{a}$. Hence

$$s^{n} = \left(\sum_{i=1}^{m} f(a_{i})s_{i}\right)^{n} = \sum_{k_{1}+\dots+k_{m}=n} \frac{n!}{k_{1}!\cdots k_{m}!} f(a_{1}^{k_{1}}\cdots a_{m}^{k_{m}})s_{1}^{k_{1}}\cdots s_{m}^{k_{m}} \subseteq f(\mathfrak{a})S = \mathfrak{a}S.$$

Thus, $s \in \operatorname{rad}(\mathfrak{a}S)$.

Note that $x \in f^{-1}(\operatorname{rad}(\mathfrak{b}))$ if and only if $f(x) \in \operatorname{rad}(\mathfrak{b})$ if and only if $f(x^n) = f(x)^n \in \mathfrak{b}$ for some $n \ge 1$ if and only if $x^n \in f^{-1}(\mathfrak{b})$ for some $n \ge 1$ if and only if $x \in \operatorname{rad}(f^{-1}(\mathfrak{b}))$.

Proposition 1.64. $R^{\times} + \operatorname{Nil}(R) \subseteq R^{\times}$. For any $u \in R^{\times}$ and $x \in \operatorname{Nil}(R)$, we have that $u + x \in R^{\times}$. For example, $1 + x \in R^{\times}$.

Proof. For any $y \in Nil(R)$, there is a $n \ge 1$ such that $y^n = 0$, so

$$(1 - y + y^2 - \dots + (-1)^{n-1}y^{n-1})(1 + y) = 1 - y^n = 1,$$

hence $1 + y \in \mathbb{R}^{\times}$.

Let $u \in R^{\times}$ and $x \in \operatorname{Nil}(R)$. Then $u^{-1}x \in \operatorname{Nil}(R)$. Hence $1 + u^{-1}x \in R^{\times}$. Thus, $u + x = u(1 + (u^{-1}x)) \in R^{\times}$.

Power Series Rings

Let A be a nonzero commutative ring with identity.

Definition 1.65.

$$\mathbb{A}[\![X]\!] = \{f = \sum_{i=0}^{\infty} a_i X^i \mid a_i \in A, \forall i \ge 0\} \cong \prod_{i=0}^{\infty} A$$

with addition and multiplication defined by $(\sum_{i=0}^{\infty} a_i X^i) + (\sum_{i=0}^{\infty} b_i X^i) = \sum_{i=0}^{\infty} (a_i + b_i) X^i$ and $(\sum_{i=0}^{\infty} a_i X^i) (\sum_{i=0}^{\infty} b_i X^i) = \sum_{i=0}^{\infty} c_i X^i$, where $c_i = \sum_{j=0}^{i} a_j b_{i-j} = \sum_{p+q=i} a_p b_q$ for $i \ge 0$. Then $A[\![X]\!]$ is called a *power series ring* with $0_{A[\![X]\!]} = 0_A = \sum_{i=0}^{\infty} 0_A X^i$ and $1_{A[\![X]\!]} = 1_A = 1_A + \sum_{i=0}^{\infty} 0_A X^i$. More generally, $\mathfrak{a}[\![X]\!] = \{\sum_{i=0}^{\infty} a_i X^i \mid a_i \in \mathfrak{a}, \forall i \ge 0\}$ for $\mathfrak{a} \le A$.

Example 1.66. $e^X = \sum_{i=0}^{\infty} \frac{1}{i!} X^i \in \mathbb{R}[\![X]\!].$

Theorem 1.67. A[X] is a commutative ring with identity 1_A and $A \subseteq A[X] \subseteq A[X]$ are subrings.

Proposition 1.68. Let $f(X) = \sum_{i=0}^{\infty} a_i X^i$ with $a_i \in A$ for $i \ge 0$.

(a) $f \in A[\![X]\!]^{\times}$ if and only if $a_0 \in A^{\times}$.

(b) If $\varphi : A \to B$ is a ring homomorphism, then there exists a well-defined ring homomorphism $\varphi[\![X]\!] : A[\![X]\!] \to B[\![X]\!]$ taking $\sum_{i=0}^{\infty} \alpha_i X^i$ to $\sum_{i=0}^{\infty} \varphi(\alpha_i) X^i$ and $A[\![X]\!] \ge \operatorname{Ker}(\varphi[\![X]\!]) = \operatorname{Ker}(\varphi)[\![X]\!]$.

(c) For any $\mathfrak{a} \leq A$, $\mathfrak{a} \cdot A[\![X]\!] \subseteq \mathfrak{a}[\![X]\!] \leq A[\![X]\!]$ and $A[\![X]\!]/\mathfrak{a}[\![X]\!] \cong \frac{A}{\mathfrak{a}}[\![X]\!]$. In addition, if $\mathfrak{a} \leq A$ is finitely generated, $\mathfrak{a} \cdot A[\![X]\!] = \mathfrak{a}[\![X]\!]$.

(d) Let $\mathfrak{a} \leq A$. Then

$$\langle X, \mathfrak{a} \rangle A[\![X]\!] = X \cdot A[\![X]\!] + \mathfrak{a} \cdot A[\![X]\!] = XA[\![X]\!] + \mathfrak{a}[\![X]\!] = \left\{ \sum_{i=0}^{\infty} b_i X^i \mid b_0 \in \mathfrak{a}, \ b_i \in A, \forall i \ge 1 \right\} \le A[\![X]\!]$$

and $A[X]/\langle X, \mathfrak{a} \rangle A[X] \cong A/\mathfrak{a}$. In particular, $\langle X \rangle A[X] = \{\sum_{i=1}^{\infty} b_i X^i \mid b_i \in A, \forall i \ge 1\} \le A[X]$ and $A[X]/\langle X \rangle A[X] \cong A$.

(e) If $f \in \operatorname{Nil}(A[\![X]\!])$, then $a_i \in \operatorname{Nil}(A)$ for $i \geq 0$. The converse holds if $\langle a_0, a_1, a_2, \cdots \rangle$ is finitely generated. Also, $\operatorname{Nil}(A) \cdot A[\![X]\!] \subseteq \operatorname{Nil}(A[\![X]\!]) \subseteq \operatorname{Nil}(A)[\![X]\!]$.

- (f) $f \in \operatorname{Jac}(A[\![X]\!])$ if and only if $a_0 \in \operatorname{Jac}(A)$. Also, $\operatorname{Jac}(A[\![X]\!]) = \langle \operatorname{Jac}(A), X \rangle A[\![X]\!]$.
- (g) $A[\![X]\!]$ is an integral domain if and only if A is an integral domain. Also, $A[\![X]\!]$ is never a field.
- (h) $\mathfrak{a} \leq A$ is prime if and only if $\mathfrak{a}[X] \leq A[X]$ is prime if and only if $\langle \mathfrak{a}, X \rangle A[X] \leq A[X]$ is prime.

Let $\epsilon : A \xrightarrow{\subseteq} A[\![X]\!]$. Then $\epsilon^* : \operatorname{Spec}(A[\![X]\!]) \to \operatorname{Spec}(A)$ taking $\mathfrak{p}[\![X]\!]$ to $\epsilon^{-1}(\mathfrak{p}[\![X]\!])$ is always onto and never 1-1.

(i) $\mathfrak{a} \leq A$ is maximal if and only if $\langle \mathfrak{a}, X \rangle A[\![X]\!] \leq A[\![X]\!]$ is maximal. Also, $\mathfrak{a}[\![X]\!] \leq A[\![X]\!]$ is never maximal.

(j) Let $\mathfrak{m} \in \operatorname{m-Spec}(A[\![X]\!])$. Then

(1) $\mathfrak{m} \cap A \in \operatorname{m-Spec}(A)$,

 $(2) \ X \in \mathfrak{m},$

(3) $\mathfrak{m} = \langle \mathfrak{m} \cap A, X \rangle A[\![X]\!].$

Therefore,

$$\begin{array}{c} \operatorname{m-Spec}(A) \xleftarrow{\epsilon^*}{\Lambda} \operatorname{m-Spec}(A[\![X]\!]) \\ \mathfrak{n} \longmapsto \langle \mathfrak{n}, X \rangle A[\![X]\!] \\ \mathfrak{m} \cap A \longleftrightarrow \mathfrak{m} \end{array}$$

Proof. (a) \Longrightarrow Let $f \in A[\![X]\!]^{\times}$ with the multiplicative inverse $f^{-1}(X) = \sum_{i=0}^{\infty} b_i X^i \in A[\![X]\!]$ with $b_i \in A$ for $i \ge 0$. Then

$$1_A = f \cdot f^{-1} = \left(\sum_{i=0}^{\infty} a_i X^i\right) \left(\sum_{j=0}^{\infty} b_j X^j\right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + \cdots$$

Hence $a_0b_0 = 1_A$ and hence $a_0 \in A^{\times}$.

$$f = \sum_{i=0}^{\infty} a_i X^i = \sum_{i=0}^{\infty} a_0 (a_0^{-1} a_i) X^i = a_0 \underbrace{\left(1 + \sum_{i=1}^{\infty} (a_0^{-1} a_i) X^i\right)}_{\in A[\![X]\!]^{\times}} \in A[\![X]\!]^{\times}.$$

(b) It is straightforward to show $\varphi[X]$ is a well-defined ring homomorphism with

$$\operatorname{Ker}(\varphi[\![X]\!]) = \left\{ \sum_{i=0}^{\infty} \alpha_i X^i \mid \sum_{i=0}^{\infty} \varphi(\alpha_i) X^i = 0 \right\} = \left\{ \sum_{i=0}^{\infty} \alpha_i X^i \mid \varphi(\alpha_i) = 0, \forall i \ge 0 \right\}$$
$$= \left\{ \sum_{i=0}^{\infty} \alpha_i X^i \mid \alpha_i \in \operatorname{Ker}(\varphi), \forall i \ge 0 \right\} = \operatorname{Ker}(\varphi)[\![X]\!].$$

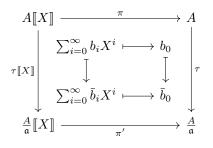
(c) Let $\tau : A \to A/\mathfrak{a}$ be the natural projection. Then by (b), $\tau[\![X]\!] : A[\![X]\!] \to \frac{A}{\mathfrak{a}}[\![X]\!]$ is a well-defined ring homomorphism with $A[\![X]\!] \ge \operatorname{Ker}(\tau[\![X]\!]) = \operatorname{Ker}(\tau)[\![X]\!] = \mathfrak{a}[\![X]\!]$. Since τ is onto, by the first isomorphism theorem, $A[\![X]\!]/\mathfrak{a}[\![X]\!] \cong \frac{A}{\mathfrak{a}}[\![X]\!]$. Since $\mathfrak{a} \subseteq \operatorname{Ker}(\tau[\![X]\!])$, we have that $\langle \mathfrak{a} \rangle A[\![X]\!] \subseteq \operatorname{Ker}(\tau[\![X]\!]) = \mathfrak{a}[\![X]\!]$.

In addition, assume $\mathfrak{a} = (\alpha_1, \ldots, \alpha_n)A$ for some $\alpha_1, \ldots, \alpha_n \in \mathfrak{a}$. Let $f \in \mathfrak{a}\llbracket X \rrbracket$. Then $a_i \in \mathfrak{a} = (\alpha_1, \ldots, \alpha_n)A$ for $i \ge 0$. Hence for $i \ge 0$, we have that $a_i = \sum_{j=1}^n b_{ij}\alpha_j$ for some $b_{i1}, \ldots, b_{in} \in A$. Hence by the definition of addition and multiplication in $A\llbracket X \rrbracket$,

$$f = \sum_{i=0}^{\infty} a_i X^i = \sum_{i=0}^{\infty} \left(\sum_{j=1}^n b_{ij} \alpha_j \right) X^i = \sum_{j=1}^n \left(\sum_{i=0}^{\infty} \alpha_j b_{ij} X^i \right) = \sum_{j=1}^n \alpha_j \left(\sum_{i=0}^{\infty} b_{ij} X^i \right) \in \langle \mathfrak{a} \rangle A[\![X]\!].$$

24

(d) Note that



It is straightforward to show π and π^{-1} are well-defined ring epimorphisms and the diagram commutes.

Note that

$$\operatorname{Ker}(\pi) = \left\{ \sum_{i=1}^{\infty} b_i X^i \mid b_i \in A, \forall i \ge 1 \right\} = X \left\{ \sum_{i=0}^{\infty} b_{i+1} X^i \mid b_{i+1} \in A, \forall i \ge 0 \right\} = X \cdot A[\![X]\!].$$

In general,

$$A\llbracket X \rrbracket \ge \operatorname{Ker}(\tau \circ \pi) = \left\{ \sum_{i=0}^{\infty} b_i X^i \mid b_0 \in \mathfrak{a}, \ b_i \in A, \forall i \ge 1 \right\} =: I.$$

Let $\sum_{i=0}^{\infty} b_i X^i \in I$ with $b_0 \in \mathfrak{a}$ and $b_i \in A$ for $i \ge 1$. Then $\sum_{i=0}^{\infty} b_i X^i = b_0 + X \sum_{i=0}^{\infty} b_{i+1} X^i \in \mathfrak{a} + XA[X]] \subseteq \langle X, \mathfrak{a} \rangle A[X]$. Hence $I \subseteq \langle X, \mathfrak{a} \rangle A[X]$.

Since $X = 0 + 1 \cdot X$ and $0 \in \mathfrak{a}$ and $1 \in A$, we have that $X \in I \leq A[X]$. Also, for $\sum_{i=0}^{\infty} b_i X^i \in \mathfrak{a}[X]$ $\leq A[X]$ with $b_i \in \mathfrak{a}$ and $b_i \in \mathfrak{a} \subseteq A$ for $i \geq 1$, we have that $\sum_{i=0}^{\infty} b_i X^i \in I$ and so $\mathfrak{a}[X] \subseteq I$. Hence

 $\leq A[X]$ with $b_0 \in \mathfrak{a}$ and $b_i \in \mathfrak{a} \subseteq A$ for $i \geq 1$, we have that $\sum_{i=0}^{\infty} b_i X^i \in I$ and so $\mathfrak{a}[X] \subseteq I$. Hence $\langle X \rangle A[X] + \mathfrak{a}[X] \subseteq I$.

Thus, by (c),

$$\langle X, \mathfrak{a} \rangle A[\![X]\!] \supseteq I \supseteq \langle X \rangle A[\![X]\!] + \mathfrak{a}[\![X]\!] \supseteq \langle X \rangle A[\![X]\!] + \langle \mathfrak{a} \rangle A[\![X]\!] = \langle X, \mathfrak{a} \rangle A[\![X]\!].$$

Hence $\langle X, \mathfrak{a} \rangle A[\![X]\!] = \langle X \rangle A[\![X]\!] + \langle \mathfrak{a} \rangle A[\![X]\!] = \langle X \rangle A[\![X]\!] + \mathfrak{a}[\![X]\!] = I = \operatorname{Ker}(\tau \circ \pi)$. By the first isomorphism theorem, $A[\![X]\!]/\langle X, \mathfrak{a} \rangle A[\![X]\!] \cong A/\mathfrak{a}$.

(e) Assume $f \in \operatorname{Nil}(A[\![X]\!])$. Then $0 = f^n = a_0^n + Xg(X)$ for some $n \ge 1$ and $g \in A[\![X]\!]$. Hence $a_0^n = 0$ and then $a_0 \in \operatorname{Nil}(A) \subseteq \operatorname{Nil}(A[\![X]\!])$. Hence $\sum_{i=1}^{\infty} a_i X^i = f - a_0 \in \operatorname{Nil}(A[\![X]\!])$. Similarly, we have that $a_1 \in \operatorname{Nil}(A[\![X]\!])$. By induction, $a_i \in \operatorname{Nil}(A)$ for $i \ge 0$.

Hence we can conclude Nil $(A[\![X]\!]) \subseteq$ Nil $(A)[\![X]\!]$. Furthermore, since Nil $(A) \subseteq$ Nil $(A[\![X]\!]) \leq A[\![X]\!]$, we have that Nil(A) = Nil(Nil $(A)) \subseteq$ Nil $(A[\![X]\!]) \leq A[\![X]\!]$ and then Nil $(A) \cdot A[\![X]\!] \subseteq$ Nil $(A[\![X]\!])$. Thus, Nil $(A) \cdot A[\![X]\!] \subseteq$ Nil $(A[\![X]\!]) \subseteq$ Nil $(A[\![X]\!])$.

Assume $a_i \in \operatorname{Nil}(A)$ for $i \geq 0$ and $\langle a_0, a_1, \cdots \rangle$ is finitely generated. Then $\langle a_0, a_1, \cdots \rangle = \langle a_0, a_1, \dots, a_t \rangle$ for some $t \geq 1$. Hence $f = \sum_{i=0}^{\infty} a_i X^i = \sum_{j=0}^t a_j f_j$, where $f_j \in \operatorname{Nil}(A) \cdot A[\![X]\!] \subseteq \operatorname{Nil}(A[\![X]\!]) \leq A[\![X]\!]$ for $j = 0, \dots, t$. Thus, $f \in \operatorname{Nil}(A[\![X]\!])$.

(f) \implies Assume $f \in \text{Jac}(A[X])$. Then by Proposition 1.29, $1 - fg \in A[X]^{\times}$ for $g \in A[X]$. Hence $(1 - a_0 a) + a_1 ax + a_2 ax^2 + \dots = 1 - fa \in A[X]^{\times}$ for $a \in A$. Then by (a), $1 - a_0 a \in A^{\times}$ for $a \in A$. Hence $a_0 \in \text{Jac}(A)$ by Proposition 1.29.

$$1 - fg = 1 - \left(\sum_{i=0}^{\infty} a_i X^i\right) \left(\sum_{i=0}^{\infty} b_i X^i\right) = \underbrace{(1 - a_0 b_0)}_{\in A^{\times}} + \cdots$$

Thus,

$$\operatorname{Jac}(A[\![X]\!]) = \left\{ \sum_{i=0}^{\infty} a_i X^i \mid a_0 \in \operatorname{Jac}(A) \right\} = \langle \operatorname{Jac}(A), X \rangle A[\![X]\!]$$

by (d).

(g) Define $\operatorname{ord}(f) = \inf\{i \ge 0 \mid a_i \ne 0\}$. Then $\operatorname{ord}(fg) \ge \operatorname{ord}(f) + \operatorname{ord}(g)$ with equality if, e.g., A is an integral domain.

 \leftarrow Let A be an integral domain and $f, g \neq 0$ in A[X]. Then $\operatorname{ord}(f), \operatorname{ord}(g) \neq \infty$. Hence $\operatorname{ord}(fg) = \operatorname{ord}(f) \operatorname{ord}(g) \neq \infty$. Hence $fg \neq 0$.

 \implies Let A[X] be an integral domain. Since $0 \neq A$ is a subring of A[X], A is also an integral domain.

Since $X \in A[\![X]\!]$ and the constant term of X is 0, which is not in A^{\times} , by (a), $X \notin A[\![X]\!]^{\times}$. Hence $A[\![X]\!]$ is not a field.

(h) Note that $\mathfrak{a} \leq A$ is prime if and only if A/\mathfrak{a} is an integral domain if and only if $\frac{A}{\mathfrak{a}}[\![X]\!]$ is an integral domain by (g) if and only if $A[\![X]\!]/\mathfrak{a}[\![X]\!]$ is an integral domain by (c) if and only if $\mathfrak{a}[\![X]\!] \leq A[\![X]\!] \leq A[\![X]\!]$ is prime.

Note that $\mathfrak{a} \leq A$ is prime if and only if A/\mathfrak{a} is an integral domain if and only $\frac{A[\![X]\!]}{\langle X,\mathfrak{a}\rangle A[\![X]\!]}$ is an integral domain by (d) if and only if $\langle \mathfrak{a}, X \rangle A[\![X]\!] \leq A[\![X]\!]$ is prime.

Let $\mathfrak{p} \in \operatorname{Spec}(A)$. Then $\mathfrak{p}[\![X]\!], \langle \mathfrak{p}, X \rangle A[\![X]\!] \in \operatorname{Spec}(A[\![X]\!])$.

By the proof of (c) and (d), we have that $\mathfrak{p}[X] \cap A = \mathfrak{p}$ and $\langle \mathfrak{p}, A \rangle A[X] \cap A = \mathfrak{p}$. Hence by Fact 1.16,

$$\epsilon^*(\mathfrak{p}[\![X]\!]) = \epsilon^{-1}(\mathfrak{p}[\![X]\!]) = \mathfrak{p}[\![X]\!] \cap A = \mathfrak{p} = (\langle \mathfrak{p}, A \rangle A[\![X]\!]) \cap A = \epsilon^{-1}(\langle \mathfrak{p}, X \rangle A[\![X]\!]) = \epsilon^*(\langle \mathfrak{p}, X \rangle A[\![X]\!]).$$

Thus, ϵ^* is onto. Also, since $X \notin \mathfrak{p}[\![X]\!]$, but $X \in \langle \mathfrak{p}, X \rangle [\![X]\!]$, we have that $\mathfrak{p}[\![X]\!] \neq \langle \mathfrak{p}, X \rangle A[\![X]\!]$ and then ϵ^* is not 1-1.

(i) Note that $\mathfrak{a} \leq A$ is maximal if and only if A/\mathfrak{a} is a field if and only $A[X]/\langle X, \mathfrak{a} \rangle A[X]$ is a field by (d) if and only if $\langle \mathfrak{a}, X \rangle A[X] \leq A[X]$ is maximal.

Since $\frac{A}{\mathfrak{a}}[\![X]\!]$ is not a field by (g), $A[\![X]\!]/\mathfrak{a}[\![X]\!]$ is not a field by (c), then $\mathfrak{a}[\![X]\!] \leq A[\![X]\!]$ is not maximal.

(j) (2) Since $X \in \text{Jac}(A[X])$ by (f), and $\mathfrak{m} \in \text{m-Spec}(A[X])$, we have that $X \in \mathfrak{m}$.

$$\begin{array}{ccc} A[\![X]\!] \xrightarrow{\pi} A[\![X]\!]/\langle X \rangle A[\![X]\!] \xrightarrow{\cong} A \\ \mathfrak{m} \rightsquigarrow \mathfrak{m}/\langle X \rangle A[\![X]\!] & \leadsto \mathfrak{n} \end{array}$$

Define $\tau : A[\![X]\!] \to A$ by $\tau(f) = f(0)$. Then we can find $\mathfrak{n} \in \text{m-Spec}(A)$ such that $\mathfrak{m} = \tau^{-1}(\mathfrak{n})$. Hence

$$\mathfrak{m} \cap A = \epsilon^{-1}(\mathfrak{m}) = \epsilon^{-1}(\tau^{-1}(\mathfrak{n})) = (\tau \circ \epsilon)^{-1}(\mathfrak{n}) = \mathrm{id}_A^{-1}(\mathfrak{n}) = \mathfrak{n} \in \mathrm{m-Spec}(A).$$

(3) Since $\mathfrak{m} \cap A, \langle X \rangle \subseteq \mathfrak{m}$, we have $\langle \mathfrak{m} \cap A, X \rangle \subseteq \mathfrak{m}$. Since $\mathfrak{m} \leq A[\![X]\!]$ is maximal, and by (i) and (1), $\langle \mathfrak{m} \cap A, X \rangle \leq A[\![X]\!]$ are maximal, we have that $\langle \mathfrak{m} \cap A, X \rangle = \mathfrak{m}$.

Note that $\epsilon^*(\text{m-Spec}(A[X]) \subseteq \text{m-Spec}(A)$ since by the proof of (1), $\epsilon^*(\mathfrak{m}) = \epsilon^{-1}(\mathfrak{m}) \in \text{m-Spec}(A)$.

Note that $\Lambda(\text{m-Spec}(A)) \subseteq \text{m-Spec}(A[X])$ since by (i), $\Lambda(\mathfrak{n}) = \langle \mathfrak{n}, X \rangle A[X] \in \text{Spec}(A[X])$ for any $\mathfrak{n} \in \text{Spec}(A)$.

Note that

$$\Lambda(\epsilon^*(\mathfrak{m})) = \Lambda(\epsilon^{-1}(\mathfrak{m})) = \Lambda(\mathfrak{m} \cap A) = \langle \mathfrak{m} \cap A, X \rangle A[\![X]\!] = \mathfrak{m}$$

by (3).

Note that

$$\epsilon^*(\Lambda(\mathfrak{n})) = \epsilon^*(\langle \mathfrak{n}, X \rangle A[\![X]\!]) = \epsilon^{-1}(\langle \mathfrak{n}, X \rangle A[\![X]\!]) = \langle \mathfrak{n}, X \rangle \cap A = \mathfrak{n}$$

by the proof of (c) for any $\mathfrak{n} \leq \text{m-Spec}(A)$.

Therefore, we have a 1-1 correspondence between m-Spec(A[X]) and m-Spec(A).

Example 1.69. (c) Example of $\langle \mathfrak{a} \rangle A[\![X]\!] \subseteq \mathfrak{a}[\![X]\!]$ for some $\mathfrak{a} \leq A$. Let $A = k[Y_1, Y_2, Y_3, \cdots]$ and $\mathfrak{a} = \langle Y_1, Y_2, Y_3, \cdots \rangle A$. Let $f = \sum_{i=1}^{\infty} Y_i X^i \in \mathfrak{a}[\![X]\!]$. We claim that $f \notin \langle \mathfrak{a} \rangle A[\![X]\!] = \langle Y_1, Y_2, \cdots \rangle A[\![X]\!]$. Suppose that $f \in \langle Y_1, Y_2, \cdots \rangle A[\![X]\!]$. Then there exists $m \geq 1$ and $\sum_{j=0}^{\infty} b_{ij} X^j = g_i \in A[\![X]\!]$ for $i = 1, \ldots, m$ such that

$$\sum_{j=1}^{\infty} Y_j X^j = f = \sum_{i=1}^{m} g_i Y_i = \sum_{i=1}^{m} \sum_{j=0}^{\infty} b_{ij} X^j Y_i = \sum_{j=0}^{\infty} \sum_{i=1}^{m} b_{ij} Y_i X^j.$$

Hence for $j \ge 1$, we have that $Y_j = \sum_{i=1}^m b_{ij} Y_i \in \langle Y_1, \ldots, Y_m \rangle A$. Then $Y_{m+1} \in \langle Y_1, \ldots, Y_m \rangle A$, a contradiction.

(e) Example of $f \notin \operatorname{Nil}(A[\![X]\!])$ when $a_i \in \operatorname{Nil}(A)$ for $i \ge 0$. Let $A = \frac{\mathbb{Q}[Y_1, Y_2, Y_3, \cdots]}{\langle Y_1^2, Y_2^3, Y_3^4, \dots, Y_i^{i+1}, \cdots \rangle}$ and $a_0 = 0 \in \operatorname{Nil}(A)$ and $a_i = \overline{Y}_i$ for $i \ge 1$. Then $a_i^{i+1} = \overline{Y_i^{i+1}} = 0$ and so $a_i \in \operatorname{Nil}(A)$ for $i \ge 1$.

We claim that $f \notin \operatorname{Nil}(A[\![X]\!])$. Note that

$$f^{2} = \left(\sum_{i=1}^{\infty} \overline{Y}_{i} X^{i}\right)^{2} = \underbrace{\overline{Y}_{1}^{2} X^{2}}_{=0} + \underbrace{(2\overline{Y}_{1} \overline{Y}_{2}) X^{3}}_{\neq 0} + \cdots,$$

and

$$f^{3} = \left(\sum_{i=1}^{\infty} \overline{Y}_{i} X^{i}\right)^{3} = \underbrace{\overline{Y}_{1}^{3} X^{3}}_{=0} + \underbrace{(2\overline{Y}_{1} \overline{Y}_{3} + \overline{Y}_{2}^{2}) X^{4}}_{\neq 0} + \cdots,$$

and inductively, we find f^n has lots of nonzero coefficients for $n \ge 1$.

Definition 1.70. Define

$$A[\![X,Y]\!] = A[\![X]\!][\![Y]\!],$$

and for $d \geq 2$,

$$A[\![X_1,\ldots,X_d]\!] = A[\![X_1,\ldots,X_{d-1}]\!][\![X_d]\!].$$

Fact 1.71. $A[\![X_1,\ldots,X_d]\!] = \{\sum_{\underline{n}\in\mathbb{N}_0^d} a_{\underline{n}}\underline{X}^{\underline{n}} \mid a_{\underline{n}}\in A\}$ for $d \ge 1$, where $\underline{X}^{\underline{n}} = X_1^{n_1}\cdots X_d^{n_d}$ and $\underline{n} = (n_1,\ldots,n_d)\in\mathbb{N}_0^d$.

Warning 1.72. The operations on $A[\![X_1, X_2, X_3, \cdots]\!]$ are ambiguous.

28

Chapter 2

Zariski Topology

Let R be a nonzero commutative ring with identity.

Definition 2.1. For $\epsilon > 0$ and $x \in \mathbb{R}^n$, the *open ball* centered at x with radius ϵ is

$$B_{\epsilon}(x) = \{ y \in \mathbb{R}^n \mid |x - y| < \epsilon \}.$$

A subset $U \subseteq \mathbb{R}^n$ is open if for any $x \in U$, there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$, i.e., if U is a union of (possible infinitely many) open balls. e.g., if n = 1, $B_{\epsilon}(x) = (x - \epsilon, x + \epsilon)$ is an open interval.

More generally, this works for any metric space.

Fact 2.2. \mathbb{R}^n and \emptyset are both open in \mathbb{R}^n .

The set of open sets in \mathbb{R}^n is closed under arbitrary union and finite intersection, i.e., if U_{λ} is open for $\lambda \in \Lambda$, then $\bigcup_{\lambda \in \Lambda} U_{\lambda}$ is open, and if U_i open for $i = 1, \ldots, d$, then $\bigcap_{i=1}^d U_i$ is open.

The set of open sets in \mathbb{R}^n is (usually) not closed under infinite intersections. For example, $\bigcap_{i=1}^{\infty} (-1/i, 1/i) = \{0\}$, is not open in \mathbb{R}^n .

Definition 2.3. A *topology* on a non-empty set X is a collection of sets \mathscr{T} of subsets of X $(\mathscr{T} \subseteq \mathcal{P}(X))$ such that

(a)
$$\emptyset, X \in \mathscr{T},$$

- (b) for any $\{U_{\lambda}\}_{\lambda \in \Lambda} \subseteq \mathscr{T}, \bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathscr{T}$ and
- (c) for $n \geq 1$ and $U_1, \ldots, U_n \in \mathscr{T}, \bigcap_{i=1}^n U_\lambda \in \mathscr{T}$.

The elements of \mathscr{T} are the *open subsets* of X. A *topological space* is a set $X \neq \emptyset$ equipped with a topology \mathscr{T} .

Example 2.4. The *Euclidean topology* on \mathbb{R}^n is the topology on \mathbb{R}^n from Definition 2.1. More generally, this is the metric space topology.

Definition 2.5. The Zariski topology on Spec(R) = X has open sets

$$\{\operatorname{Spec}(R) \smallsetminus \operatorname{V}(S) \mid S \subseteq R\} = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \not\supseteq S \subseteq R\}.$$

For example, $X_f := \operatorname{Spec}(R) \setminus V(\{f\}) = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid f \notin \mathfrak{p}\}$ is open in X for $f \in R$.

Proposition 2.6. If $S \subseteq R$, then $V(S) = V(\langle S \rangle)$ and so $\operatorname{Spec}(R) \smallsetminus V(S) = \operatorname{Spec}(R) \smallsetminus V(\langle S \rangle)$. In other words, the open sets are exactly the sets {Spec $(R) \smallsetminus V(\mathfrak{a}) | \mathfrak{a} \leq R$ }.

Notation. Denote the Zariski open sets

$$\mathscr{Z} = \{ \operatorname{Spec}(R) \smallsetminus \operatorname{V}(S) \mid S \subseteq R \} = \{ \operatorname{Spec}(R) \smallsetminus \operatorname{V}(\mathfrak{a}) \mid \mathfrak{a} \le R \}.$$

Example 2.7. Compute \mathscr{Z} of $\operatorname{Spec}(\mathbb{Z}) = X$. Since \mathbb{Z} is a P.I.D., $\mathscr{Z} = \{\operatorname{Spec}(\mathbb{Z}) \setminus V(m) \mid m \ge 0\}$. Since $V(0) = \operatorname{Spec}(\mathbb{Z})$, $X_0 = \operatorname{Spec}(\mathbb{Z}) \setminus V(0) = \emptyset$, and since $V(1) = \emptyset$, $X_1 = \operatorname{Spec}(\mathbb{Z}) \setminus V(1) = \operatorname{Spec}(\mathbb{Z})$. For $m \ge 2$, write $m = p_1^{e_1} \cdots p_n^{e_n}$ with p_1, \ldots, p_n distinct primes and $e_1, \ldots, e_n \ge 1$, then $V(m) = \{\langle p_1 \rangle, \cdots, \langle p_n \rangle\}$ and so $X_m = \operatorname{Spec}(\mathbb{Z}) \setminus V(m) = X \setminus \{\langle p_1 \rangle, \ldots, \langle p_n \rangle\}$. Note that $\mathscr{Z} = \bigcup_{m=0}^{\infty} X_m$. In particular, $\mathfrak{p} = \{0\} \in \bigcap_{m=1}^{\infty} X_m$, i.e., $\mathfrak{p} = \{0\}$ is in every non-empty open set of X.

Fact 2.8. Let $X = \operatorname{Spec}(R)$. Then $X_0 = X \setminus V(0) = \emptyset$ and $X_1 = X \setminus V(1) = X$.

Proposition 2.9. Let $X = \operatorname{Spec}(R)$. Then $\bigcap_{i=1}^{n} X_{f_i} = X_{f_1 \cdots f_n}$ for $f_1, \ldots, f_n \in R$.

Proof. Let $\mathfrak{p} \in X$. Then $\mathfrak{p} \in \bigcap_{i=1}^{n} X_{f_i}$ if and only if $\mathfrak{p} \in X_{f_i}$ for $i = 1, \ldots, n$ if and only if $f_i \notin \mathfrak{p}$ for $i = 1, \ldots, n$ if and only if if and only if $f_1 \cdots f_n \notin \mathfrak{p}$ if and only if $\mathfrak{p} \in X_{f_1 \cdots f_n}$. \Box

Definition 2.10. If X is a topological space, then $Y \subseteq X$ is *closed* if $X \setminus Y$ open, i.e., if and only if $Y = X \setminus U$ for some open subset $U \subseteq X$.

Example 2.11. In X = Spec(R), the closed sets are $\{V(S) \mid S \subseteq R\} = \{V(\mathfrak{a}) \mid \mathfrak{a} \leq R\}$.

Proposition 2.12. Let X be a non-empty set, $\mathscr{Y} \subseteq \mathcal{P}(X)$ and $\mathscr{V} = \{X \setminus Y \mid Y \in \mathscr{Y}\}$. Then \mathscr{Y} is a topology on X if and if only \mathscr{V} satisfies the followings.

- (a) $X, \emptyset \in \mathscr{V}$,
- (b) closed under arbitrary intersections, i.e., for any $\{V_{\lambda}\}_{\lambda \in \Lambda} \subseteq \mathscr{V}$, then $\bigcap_{\lambda \in \Lambda} V_{\lambda} \in \mathscr{V}$,
- (c) closed under finite unions, i.e., for $n \ge 1$ and $V_1, \ldots, V_n \in \mathscr{V}, \bigcup_{i=1}^n V_i \in \mathscr{V}$.

Proof. It follows from $X \setminus \emptyset = \emptyset$, $X \setminus X = \emptyset$ and $\bigcap_{\lambda \in \Lambda} (X \setminus U_{\lambda}) = X \setminus (\bigcup_{\lambda \in \Lambda} U_{\lambda})$.

Theorem 2.13. The Zariski topology on Spec(R) = X is a topology.

Proof. Note that $\mathscr{Z} = \{ \operatorname{Spec}(R) \setminus \operatorname{V}(\mathfrak{a}) \mid \mathfrak{a} \leq R \}$. Let $\mathscr{V} = \{ X \setminus Z \mid Z \in \mathscr{Z} \} = \{ \operatorname{V}(\mathfrak{a}) \mid \mathfrak{a} \leq R \}.$

(a) $X = V(0) \in \mathscr{V}$ and $\emptyset = V(1) \in \mathscr{V}$,

(b) For $\mathfrak{a}_{\lambda} \leq \mathfrak{a}$ for any $\lambda \in \Lambda$, $\bigcap_{\lambda \in \Lambda} V(\mathfrak{a}_{\lambda}) = V(\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}) \in \mathscr{V}$ by Fact 1.36.

(c) For $n \ge 1$ and $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \le R$, $\bigcup_{i=1}^n V(\mathfrak{a}_i) = V(\bigcap_{i=1}^n \mathfrak{a}_i) \in \mathscr{V}$ by Proposition 1.39(a).

Hence by Proposition 2.12, the Zariski topology on Spec(R) = X is a topology.

Definition 2.14. A *basis* for the topology \mathscr{T} on a topological space X is a subset $\mathcal{B} \subseteq \mathscr{T}$ such that for any open set $U \subseteq X$ and any $u \in U$, there exists $B \subseteq \mathcal{B}$ such that $u \in B \subseteq U$.

Example 2.15. In the Euclidean topology, $\mathcal{B} = \{B_{\epsilon}(x) \mid x \in \mathbb{R}^n, \epsilon > 0\}$ is a basis.

Theorem 2.16. In X = Spec(R), $\mathcal{B} = \{X_f \mid f \in R\}$ is a basis for the Zariski topology.

Proof. It suffices to show $X \smallsetminus V(S) = \bigcup_{s \in S} X_s$ for $S \subseteq R$. Note that $\mathfrak{p} \in X \smallsetminus V(S)$ if and only if $S \not\subseteq \mathfrak{p}$ if and only if there exists $s \in S$ such that $s \notin \mathfrak{p}$ if and only if there exists $s \in S$ such that $\mathfrak{p} \in X_s$ if and only if $\mathfrak{p} \in \bigcup_{s \in S} X_s$.

Proposition 2.17. If R is noetherian, then for any open subset $U \subseteq X = \text{Spec}(R)$, there exist $s_1, \ldots, s_n \in R$ such that $U = X_{s_1} \cup \cdots \cup X_{s_n}$, i.e., open sets are the finite union of the basis open sets.

Proof. Write $U = X \setminus V(\mathfrak{a})$ for some $\mathfrak{a} \leq R$. Since R is noetherian, $\mathfrak{a} = \langle s_1, \ldots, s_n \rangle$ for some $n \geq 1$ and $s_1, \ldots, s_n \in \mathfrak{a}$. Then

$$U = X \setminus \mathcal{V}(\langle s_1, \dots, s_n \rangle) = X \setminus \mathcal{V}(s_1, \dots, s_n) = \bigcup_{i=1}^n X_{s_i}$$

by the proof of Theorem 2.16.

Definition 2.18. A topological space X is quasi-compact if "every open cover of X has a finite sub-cover", i.e., for any $\{U_{\lambda}\}_{\lambda \in \Lambda} \subseteq \mathscr{T}$, if $X = \bigcup_{\lambda \in \Lambda} U_{\lambda}$, then there exist $n \geq 1$ and $\lambda_1, \ldots, \lambda_n \in \Lambda$ such that $X = \bigcup_{i=1}^{n} U_{\lambda_i}$.

Theorem 2.19. Spec(R) is quasi-compact.

Proof. Since each open set U_{λ} can be written as a union of X_f 's with $f \in R$, without loss of generality, assume $X = \bigcup_{\lambda \in \Lambda} X_{f_{\lambda}} = X \setminus V(\bigcup_{\lambda \in \Lambda} f_{\lambda})$ by the proof of Theorem 2.16. Then $\emptyset =$ $V(\bigcup_{\lambda \in \Lambda} f_{\lambda}) = V(\langle \bigcup_{\lambda \in \Lambda} f_{\lambda} \rangle)$. Hence by Proposition 1.32(b), $\langle \bigcup_{\lambda \in \Lambda} f_{\lambda} \rangle = R \ni 1$. Then 1 = $g_{\lambda_1}f_{\lambda_1} + \dots + g_{\lambda_n}f_{\lambda_n}$ for some $n \ge 1, \lambda_1, \dots, \lambda_n \in \Lambda$ and $g_{\lambda_1}, \dots, g_{\lambda_n} \in R$. Hence $\langle f_{\lambda_1}, \dots, f_{\lambda_n} \rangle = R$. Then

$$V(f_{\lambda_1},\ldots,f_{\lambda_n}) = V(\langle f_{\lambda_1},\ldots,f_{\lambda_n} \rangle) = V(R) = \emptyset.$$

Thus, $X = X \setminus \emptyset = X \setminus V(f_{\lambda_1}, \dots, f_{\lambda_n}) = X_{f_{\lambda_1}} \cup \dots \cup X_{f_{\lambda_n}}$.

Question. What do the X_f look like? Answer: Spec(R).

Construction (Classical algebraic geometry). Geometry: Let k be a field, usually $k = \mathbb{R}$ or \mathbb{C} . Define d-dimensional affine space: $\mathbb{A}_k^d = \mathbb{A}^d = k^d$.

Let $\underline{a} = (a_1, \ldots, a_d) \in \mathbb{A}^d$ and $S \subseteq k[\underline{X}] = k[X_1, \ldots, X_d]$. Define

$$Z(S) := \{ \underline{a} \in \mathbb{A}^d \mid f(\underline{a}) = 0, \forall f \in S \} =: \text{"zero locus of } S^{"} \subseteq \mathbb{A}^d.$$

e.g., $Z(X^2 + Y^2 + Z^2 - 1) =$ "unit sphere" $\subseteq \mathbb{A}^3_{\mathbb{R}} = \mathbb{R}^3$. Zariski topology on \mathbb{A}^d . Closed sets: $Z(S) = Z(\langle S \rangle) \subseteq \mathbb{A}^d$ with $S \subseteq k[\underline{X}]$. Open sets: $\mathbb{A}^d \smallsetminus Z(S)$ with $S \subseteq k[\underline{X}]$. Basic open sets: $\mathbb{A}^d \setminus \mathbb{Z}(f)$ with $f \in k[X]$.

Let $T \subseteq k[\underline{X}]$ be fixed. Zariski topology on Z(T). Closed sets: $Z(S) \cap Z(T)$ with $S \subseteq k[\underline{X}]$. Open sets: $(\mathbb{A}^d \setminus Z(S)) \cap Z(T)$ with $S \subseteq k[\underline{X}]$. Basic open sets: $(\mathbb{A}^d \setminus Z(f)) \cap Z(T)$ with $f \in k[\underline{X}]$.

open in \mathbb{A}^d We have that

> $\varphi : \mathbb{A}^d \longrightarrow \mathrm{m-Spec}(k[\underline{X}]) \subseteq \mathrm{Spec}(k[\underline{X}])$ $\underline{a}\longmapsto (X_1-a_1,\ldots,X_d-a_d),$

Hilbert's Nullstellensatz: If $k = \overline{k}$, then $Z(\mathfrak{b}) \neq \emptyset$ for $\mathfrak{b} \leq k[\underline{X}]$. Grothendieck: there exists more geometric data in $\operatorname{Spec}(k[\underline{X}])$. Let $V := Z(T) = Z(\mathfrak{b})$, where $\mathfrak{b} = \langle T \rangle \leq k[\underline{X}]$. Then

$$\operatorname{rad}(\mathfrak{b}) \leq \operatorname{I}(V) := \{ f \in k[\underline{X}] \mid f(\underline{a}) = 0, \forall \underline{a} \in V \} = \text{``vanishing ideal of } V^{"} \leq k[\underline{X}].$$

Hilbert's Nullstellensatz: If $k = \overline{k}$, then $I(Z(\mathfrak{b})) = \mathfrak{b}$. Coordinate ring of V: $\Gamma(V) = k[\underline{X}]/I(V)$. We have that

$$\overline{\varphi}: V \longrightarrow \text{m-Spec}(k[V]) \subseteq \text{Spec}(k[V])$$
$$\underline{a} \longmapsto \frac{(X_1 - a_1, \dots, X_d - a_d)}{I(V)} = (x_1 - a_1, \dots, x_d - a_d).$$

Hilbert's Nullstellensatz: If $k = \bar{k}$, then similarly, $\bar{\varphi}$ is onto. Crothenick: there exists more geometric data in $\operatorname{Spec}(k[V])$

Grothenick: there exists more geometric data in $\operatorname{Spec}(k[V])$.

Set up: $R \ni f$,

$$X = \operatorname{Spec}(R) \supseteq X_f = X \smallsetminus \operatorname{V}(f) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid f \notin \mathfrak{p} \}$$

Recall. Let $S = \{1, f, f^2, \dots\}$. We have that

$$R_f = S^{-1}R = \left\{\frac{r}{f^n} \mid r \in R, n \ge 0\right\} = R[1/f]$$

Proposition 2.20. Define $\varphi : R \to R_f$ by $\varphi(g) = \frac{g}{1}$ and $\varphi^* : \operatorname{Spec}(R_f) \to \operatorname{Spec}(R) = X$ by $\varphi^*(\mathfrak{q}) = \varphi^{-1}(\mathfrak{q}).$

(a) $\varphi^*(\mathfrak{q}) \in X_f$ for $\mathfrak{q} \in \operatorname{Spec}(R_f)$.

(b) Restrict codomain, the induced map $\varphi_f^* : \operatorname{Spec}(R_f) \to X_f$ is 1-1 and onto.

Slogan: $\operatorname{Spec}(R_f) = X_f$ "open affine subsets".

Proof. (a) Let $\mathfrak{q} \in \operatorname{Spec}(R_f)$. Then $\varphi^*(\mathfrak{q}) = \varphi^{-1}(\mathfrak{q}) \in \operatorname{Spec}(R)$ by Fact 1.16. Note that $f \notin \varphi^*(\mathfrak{q}) = \varphi^{-1}(\mathfrak{q})$, otherwise, $R_f^{\times} \ni \frac{f}{1} = \varphi(f) \in \varphi(\varphi^{-1}(\mathfrak{q}) \subseteq \mathfrak{q} \in \operatorname{Spec}(R_f)$, a contradiction.

(b) Let $\mathfrak{p} \in X_f$, then $\mathfrak{p} \in \operatorname{Spec}(R)$ and so

$$\mathfrak{p}_{f} := \mathfrak{p}R_{f} = \left\{ \sum_{i}^{\text{finite}} \varphi(p_{i}) \cdot y_{i} \middle| p_{i} \in \mathfrak{p}, y_{i} \in R_{f}, \forall i \right\} = \left\{ \sum_{i}^{\text{finite}} \frac{p_{i}}{1} \cdot \frac{r_{i}}{f^{n_{i}}} \middle| p_{i} \in \mathfrak{p}, r_{i} \in R, n_{i} \ge 0, \forall i \right\}$$
$$= \left\{ \frac{\sum_{i=1}^{\text{finite}} p_{i} \cdot r_{i} \cdot f^{\sum_{j \neq i}^{\text{finite}} n_{j}}}{f^{\sum_{i=1}^{\text{finite}} n_{i}}} \middle| p_{i} \in \mathfrak{p}, r_{i} \in R, n_{i} \ge 0, \forall i \right\} = \left\{ \frac{p}{f^{n}} \middle| p \in \mathfrak{p}, n \ge 0 \right\} \le R_{f}.$$

Since $f^n \notin \mathfrak{p}$ for $n \ge 0$, $\frac{1}{1} \notin \mathfrak{p}_f$. Hence $\mathfrak{p}_f \lneq R_f$. Let $\frac{x}{f^n}, \frac{y}{f^m} \in R_f$ with $x, y \in R$ and $n, m \ge 0$ such that $\frac{xy}{f^{n+m}} = \frac{x}{f^n} \cdot \frac{y}{f^m} \in \mathfrak{p}_f$ and so $xy \in \mathfrak{p}$. Since $\mathfrak{p} \in \operatorname{Spec}(R), x \in \mathfrak{p}$ or $y \in \mathfrak{p}$. Hence $\frac{x}{f^n} \in \mathfrak{p}_f$ or $\frac{y}{f^m} \in \mathfrak{p}_f$. Hence $\mathfrak{p}_f \in \operatorname{Spec}(R_f)$.

On the other hand, by (a), $\varphi^*(\mathfrak{q}) \in X_f$ for $\mathfrak{q} \in \operatorname{Spec}(R_f)$. Thus, we have the 1-1 correspondence:

$$X_f = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid f \notin \mathfrak{p} \} \Longrightarrow \operatorname{Spec}(R_f)$$
$$\mathfrak{p} \longmapsto \mathfrak{p}_f$$

$$\varphi^*(\mathfrak{q}) = \varphi^{-1}(\mathfrak{q}) = "\mathfrak{q} \cap R" \leftrightarrow \mathfrak{q}.$$

Subspaces

Proposition 2.21. Let X be a topological space with a topology \mathscr{T} and $Y \subseteq X$. Define $\mathscr{T}_Y =$ $\{U \cap Y \mid U \in \mathscr{T}\}$. Then \mathscr{T}_Y is a topology on Y, called the subspace topology.

Proof. $Y = X \cap Y \in \mathscr{T}_Y$ since $X \in \mathscr{T}$. $\emptyset = \emptyset \cap Y \in \mathscr{T}_Y$ since $\emptyset \in \mathscr{T}$. Let $\{U_\lambda \cap Y \mid U_\lambda \in \mathscr{T}\}_{\lambda \in \Lambda} \subseteq \mathbb{T}$ \mathscr{T}_Y . Since \mathscr{T} is a topology on X, $\bigcup_{\lambda \in \Lambda} U_\lambda \subseteq \mathscr{T}$. Hence $\bigcup_{\lambda \in \Lambda} (U_\lambda \cap Y) = (\bigcup_{\lambda \in \Lambda} U_\lambda) \cap Y \in \mathscr{T}_Y$. Let $U_1 \cap Y, \ldots, U_n \cap Y \in \mathscr{T}_Y$. Similarly, we have that $\bigcap_{i=1}^n (U_\lambda \cap Y) \in \mathscr{T}_Y$.

Remark. The closed subsets of Y are $\{V \cap Y \mid V \subseteq X \text{ is closed}\}$ since

$$\{Y \smallsetminus (U \cap Y) \mid U \in \mathscr{T}\} = \{Y \cap (U \cap Y)^c \mid U \in \mathscr{T}\} = \{(U^c \cup Y^c) \cap Y \mid U \in \mathscr{T}\}$$
$$= \{(U^c \cap Y) \cup (Y^c \cap Y) \mid U \in \mathscr{T}\} = \{U^c \cap Y \mid U \in \mathscr{T}\}.$$

Proposition 2.22. If \mathcal{B} is a basis for \mathscr{T} , then $\mathcal{B}_Y = \{\mathcal{B} \cap Y \mid \mathcal{B} \in \mathcal{B}\}$ is a basis for \mathscr{T}_Y .

Proof. Let $U \cap Y \in \mathscr{T}_Y$ with $U \in \mathscr{T}$. Since \mathcal{B} is a basis of $\mathscr{T}, U = \bigcup_{\lambda \in \Lambda_U} B_\lambda$ for some $\{B_\lambda\}_{\lambda \in \Lambda_U} \subseteq$ \mathcal{B} . Hence $U \cap Y = \bigcup_{\lambda \in \Lambda_U} (B_\lambda \cap Y)$.

Corollary 2.23. Let $f \in R$. Subspace topology on $X_f \subseteq X = \operatorname{Spec}(R)$ has

- (a) closed sets: $V(\mathfrak{a}) \cap X_f = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{a} \subseteq \mathfrak{p} \not\supseteq f\}$, where $\mathfrak{a} \leq R$;
- (b) open sets: $(X \setminus V(\mathfrak{a})) \cap X_f = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{a} \not\subseteq \mathfrak{p} \not\supseteq f\}$, where $\mathfrak{a} \leq R$;
- (c) basic open sets: $X_q \cap X_f = X_{fq}$, where $g \in R$.

Remark. Let $\mathfrak{a} \leq R$. Subspace topology on $V(\mathfrak{a}) \subseteq X = \operatorname{Spec}(R)$ has

(a) closed sets: $V(\mathfrak{b}) \cap V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{b} + \mathfrak{a} \subseteq \mathfrak{p}\}, \text{ where } \mathfrak{b} \leq R;$

- (b) open sets: $(X \setminus V(\mathfrak{b})) \cap V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{b} \not\subseteq \mathfrak{p} \supseteq \mathfrak{a}\}, \text{ where } \mathfrak{b} \leq R;$
- (c) basic open sets: $X_q \cap V(\mathfrak{a})$, where $g \in R$.

Proposition 2.24. Let $\mathfrak{a} \leq R$, $\varphi: R \to R_f$ and $\varphi_f^*: \operatorname{Spec}(R_f) =: Z \to X_f$ as in Proposition 2.20.

- (a) $(\varphi_f^*)^{-1}(\mathcal{V}(\mathfrak{a}) \cap X_f) = \mathcal{V}(\mathfrak{a}_f).$
- (b) $(\varphi_f^*)^{-1}((X \smallsetminus V(\mathfrak{a})) \cap X_f) = \operatorname{Spec}(R_f) \smallsetminus V(\mathfrak{a}_f).$
- (c) $(\varphi_f^*)^{-1}(X_q \cap X_f) = Z_{q|1}$ for $g \in R$.

Proof. (a) Let $\mathfrak{p} \in \operatorname{Spec}(R_f)$. $\mathfrak{p} \in (\varphi_f^*)^{-1}(\operatorname{V}(\mathfrak{a}) \cap X_f)$ if and only if $\varphi^{-1}(\mathfrak{p}) = \varphi_f^*(\mathfrak{p}) \in \operatorname{V}(\mathfrak{a}) \cap X_f$ if and only if $\varphi^{-1}(\mathfrak{p}) \in V(\mathfrak{a})$ if and only if $\mathfrak{a} \subseteq \varphi^{-1}(\mathfrak{p})$ if and only if $\mathfrak{a}_f = \mathfrak{a}R_f \subseteq \varphi^{-1}(\mathfrak{p})R_f = \mathfrak{p}^{\dagger}$ if and only if $\mathfrak{p} \in V(\mathfrak{a}_f)$.

[†]Method 1: Let $\varphi_f^*(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p}) =: \mathfrak{q} \in X_f$. By the proof of Proposition 2.20(a), $\varphi_f^*(\mathfrak{q}_f) = \mathfrak{q}$. Also, since φ_f^* is 1-1, $\varphi^{-1}(\mathfrak{p})R_f = \mathfrak{q}R_f = \mathfrak{q}_f = \mathfrak{p}$. Method 2: We claim that $\varphi^{-1}(I)R_f = I$ for $I \leq R_f$. " \subseteq ". By 1.63(a). " \supseteq ". Let $i \in I$. Then $i = \frac{r}{f^n} \in I$ for some

 $r \in R$ and $n \ge 0$. Hence $\varphi(r) = \frac{r}{1} = \frac{f^n}{1} \cdot \frac{r}{f^n} \in I$. Then $r \in \varphi^{-1}(I)$. Hence $i = \frac{r}{f^n} = \varphi(r) \cdot \frac{1}{f^n} \in \varphi^{-1}(I)R_f$.

(b) Let $\mathfrak{p} \in \operatorname{Spec}(R_f)$. $\mathfrak{p} \in (\varphi_f^*)^{-1}((X \setminus V(\mathfrak{a})) \cap X_f)$ if and only if $\varphi^{-1}(\mathfrak{p}) = \varphi_f^*(\mathfrak{p}) \in (X \setminus V(\mathfrak{a})) \cap X_f$ if and only if $\varphi^{-1}(\mathfrak{p}) \in X \setminus V(\mathfrak{a})$ if and only if $\mathfrak{p} \in \operatorname{Spec}(R_f) \setminus V(\mathfrak{a}_f)$ by the proof of (a).

(c) Method 1. By (a), we have that

$$(\varphi_f^*)^{-1}(X_g \cap X_f) = (\varphi_f^*)^{-1}((X \smallsetminus V(g)) \cap X_f) = \operatorname{Spec}(R_f) \smallsetminus V((g)_f)$$
$$= \{\mathfrak{p}_f \mid \mathfrak{p} \in \operatorname{Spec}(R), \mathfrak{p}_f \not\supseteq (g)_f\} = \{\mathfrak{p}_f \mid g \notin \mathfrak{p} \in \operatorname{Spec}(R)\}$$
$$= \{\mathfrak{p}_f \mid \mathfrak{p} \in X_g\}.$$

Method 2. Let $\mathfrak{p} \in \operatorname{Spec}(R_f)$. Then $\mathfrak{p} \in (\varphi_f^*)^{-1}(X_g \cap X_f)$ if and only if $\varphi_f^*(\mathfrak{p}) \in X_g \cap X_f$ if and only if $\varphi_f^*(\mathfrak{p}) \in X_g$ if and only if $\mathfrak{p} \in \{\mathfrak{q}_f \mid \mathfrak{q} \in X_g\}$.

Continuous Functions and Homeomorphisms

Let $X \neq \emptyset$ be a topological space.

Definition 2.25. Let $f: X \to Y$ be a function between topological spaces. Then f is *continuous* if $f^{-1}(U) \in \mathscr{T}_X$ for $U \in \mathscr{T}_Y$. "Inverse image of arbitrary open set in Y is open in X".

Remark. Let $Y \subseteq X$. The subspace topology \mathscr{T}_Y is the smallest topology on Y such that $Y \stackrel{\subseteq}{\hookrightarrow} X$ is continuous.

Fact 2.26. To show f is continuous, it is equivalent to showing f^{-1} (arbitrary closed sets of Y) is closed in X, equivalent to showing f^{-1} (basic open subsets of Y) is open in X.

Theorem 2.27. Let $\varphi : R \to S$ be a ring homomorphism, then $\varphi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ is continuous.

Proof. Let $\mathfrak{a} \leq R$ and $\mathfrak{p} \in \operatorname{Spec}(S)$. Then $\mathfrak{p} \in (\varphi^*)^{-1}(V(\mathfrak{a}))$ if and only if $\varphi^*(\mathfrak{p}) \in V(\mathfrak{a})$ if and only if $\varphi^{-1}(\mathfrak{p}) = \varphi^*(\mathfrak{p}) \supseteq \mathfrak{a}$ if and only if $\mathfrak{p} \supseteq \varphi(\varphi^{-1}(\mathfrak{p})) \supseteq \varphi(\mathfrak{a})$ if and only if $\mathfrak{p} \in V(\mathfrak{a}S)$. \Box

Theorem 2.28. Let $f \in R$, $\varphi : R \to R_f$ and $\varphi^* : \operatorname{Spec}(R_f) \to \operatorname{Spec}(R)$. Then $\varphi^*(\operatorname{Spec}(R_f)) = X_f$ "principal open set". Restrict codomain, $\varphi_f^* : \operatorname{Spec}(R_f) \to X_f$ is 1-1 and onto. Moreover, give the codomain subspace topology, φ_f^* and $(\varphi_f^*)^{-1}$ are continuous. "homeomorphism".

Proof. By Proposition 2.24, we have that φ_f^* is continuous or by Theorem 2.27 and Lemma 2.30. By Proposition 2.20, φ_f^* is 1-1.

Let $I \leq R_f$. Then $I = \varphi^{-1}(I)R_f$ by the proof of Proposition 2.24(a). Since φ_f^* is a bijection, $((\varphi_f^*)^{-1})^{-1}(\mathcal{V}(I)) = \varphi_f^*(\mathcal{V}(I)) = \varphi_f^*(\mathcal{V}(\varphi^{-1}(I)R_f)) = \mathcal{V}(\varphi^{-1}(I)) \cap X_f$ by Proposition 2.24(a). \Box

Example. Let k be a field and R = k[X]. We claim that $\operatorname{Spec}(R) = \{0, \langle X \rangle\}$. Let $0 \neq f \in [X]$ Then $f = \sum_{i=0}^{\infty} a_i X^i$ for some $a_i \in k$ for $i \geq 0$. Let $m = \min\{i \geq 0 \mid a_i \neq 0\}$. Then $f(X) = X^m(\sum_{i=0}^{\infty} a_{m+i}X^i)$. Since $a_m \in k^{\times}$, we have that $\sum_{i=0}^{\infty} a_{m+i}X^i \in R^{\times}$. Hence every $0 \neq f \in R$ is of the form uX^l for some $l \geq 0$ and $u \in R^{\times}$. Hence if $0 \neq I \leq R$, $I = \langle X^m \rangle$, where $m = \min\{j \geq 0 \mid X^j \in I\}$. Thus, $\mathfrak{p} = \langle X \rangle$ for $0 \neq \mathfrak{p} \in \operatorname{Spec}(R)$.

$$\begin{split} m &= \min\{j \geq 0 \mid X^j \in I\}. \text{ Thus, } \mathfrak{p} = \langle X \rangle \text{ for } 0 \neq \mathfrak{p} \in \operatorname{Spec}(R). \\ \text{Define } \varphi \,:\, R \,\to\, S \,=\, k \times Q(R) \text{ by } \sum_{i=1}^{\text{finite}} a_i X^i \,\mapsto\, (a_0, \frac{\sum_{i=1}^{\text{finite}} a_i X^i}{1}). \text{ Note that } \varphi \text{ is a ring homomorphism and } \operatorname{Spec}(S) = \{k \times 0, 0 \times Q(R)\}. \text{ Hence the continuous function } \varphi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R) \text{ sending } k \times 0 \text{ to } 0 \text{ and } 0 \times Q(R) \text{ to } \langle X \rangle \text{ is 1-1 and onto.} \end{split}$$

Closed sets of Spec(S) are V(1, 1) = \emptyset , V(0, 0) = Spec(S), V(0, 1) = $\{0 \times Q(R)\}$ and V(1, 0) = $\{k \times 0\}$. Closed sets of Spec(R) are V(1) = \emptyset , V(0) = Spec(R) and V(X) = $\{\langle X \rangle\}$. Since φ^* is a bijection, we have that $((\varphi^*)^{-1})^{-1}(\{k \times 0\}) = \varphi^*(\{k \times 0\}) = \{0\}$ is not closed in Spec(R). Hence $(\varphi^*)^{-1}$ is not continuous.

Corollary 2.29. X_f is quasi-compact.

Proof. It follows from X_f is homeomorphic to $\operatorname{Spec}(R_f)$ and $\operatorname{Spec}(R_f)$ is quasi-compact.

Example. $U \subseteq \text{Spec}(R) = X$ may not be quasi-compact. Let $R = k[X_1, X_2, X_3, \cdots]$. Let

$$U = X \smallsetminus \mathcal{V}(X_1, X_2, X_3, \cdots) = X \smallsetminus \bigcap_{i=1}^{\infty} \mathcal{V}(X_i) = \bigcup_{i=1}^{\infty} (X \smallsetminus \mathcal{V}(X_i))$$

by Fact 1.36(a). Let $n \geq 1$. We claim that $V(X_1, X_2, X_3, \dots) \neq V(X_1, X_2, \dots, X_n)$. " \subseteq ". It is straightforward. " $\not\supseteq$ ". Let $\mathfrak{p} = \langle X_1, \dots, X_n \rangle \in V(X_1, \dots, X_n)$. Then $\mathfrak{p} \notin V(X_1, X_2, \dots)$ since $\langle X_1, X_2, \dots \rangle \ni X_{n+1} \notin \mathfrak{p}$. Hence

$$U = X \setminus \mathcal{V}(X_1, X_2, X_3, \cdots) \neq X \setminus \mathcal{V}(X_1, \dots, X_n) = X \setminus \bigcap_{i=1}^n \mathcal{V}(X_i) = \bigcup_{i=1}^n (X \setminus \mathcal{V}(X_i))$$

for $n \geq 1$.

Fact. If R is noetherian and $U \subseteq X = \operatorname{Spec}(R)$ is open, then U is quasi-compact.

Proof. Let $U = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ be an open cover with U_{λ} open in X for $\lambda \in \Lambda$. Use the fact that X_f 's form a basis to assume without losss of generality $U_{\lambda} = X_{f_{\lambda}}$ for some $f_{\lambda} \in R$ for $\lambda \in \Lambda$. Then

$$U = \bigcup_{\lambda \in \Lambda} X_{f_{\lambda}} = \bigcup_{\lambda \in \Lambda} (X \smallsetminus \mathcal{V}(f_{\lambda})) = X \smallsetminus \mathcal{V}(\langle f_{\lambda} \mid \lambda \in \Lambda \rangle).$$

Since R is noetherian, there exist $f_{\lambda_1}, \ldots, f_{\lambda_n} \in R$ such that $\langle f_\lambda \mid \lambda \in \Lambda \rangle = \langle f_{\lambda_1}, \ldots, f_{\lambda_n} \rangle$. Hence $U = X \smallsetminus V(\langle f_{\lambda_1}, \ldots, f_{\lambda_n} \rangle) = \bigcup_{i=1}^n X_{f_{\lambda_i}}$.

Lemma 2.30. Let $f : X \to Y$ be a continuous function between two topological spaces. If $f(X) \subseteq Z \subseteq Y$, then consider the natural map $f_Z : X \to Z$ and give Z the subspace topology, we have that f_Z is continuous.

Proof. Let $U \subseteq Z$ be open. Since Z has the subspace topology, $U = Z \cap \widetilde{U}$ for some $\widetilde{U} \subseteq Y$ open. Since $f(X) \subseteq Z$,

$$f_Z^{-1}(U) = f^{-1}(Z \cap \widetilde{U}) = f^{-1}(Z) \cap f^{-1}(U) = f^{-1}(\widetilde{U})$$

is open in X since f is continuous.

Theorem 2.31. Let $\mathfrak{b} \leq R$, $\pi : R \to R/\mathfrak{b}$ be the natural surjection and consider $\pi^* : \operatorname{Spec}(R/\mathfrak{b}) \to \operatorname{Spec}(R)$.

(a) $\pi^*(\operatorname{Spec}(R/\mathfrak{b})) = \operatorname{V}(\mathfrak{b}).$

(b) Give the codomain subspace topology and restrict the codomain, then $\pi_{\mathfrak{b}}^* : \operatorname{Spec}(R/\mathfrak{b}) \to \operatorname{V}(\mathfrak{b})$ is continuous, 1-1 and onto, and $(\pi_{\mathfrak{b}}^*)^{-1}$ is continuous. "homeomorphism".

Proof. By prime correspondence,

$$\begin{aligned} \operatorname{Spec}(R/\mathfrak{b}) & \Longrightarrow & \operatorname{V}(\mathfrak{b}) \\ \mathfrak{p}/\mathfrak{b} & \longleftrightarrow \mathfrak{p} \supseteq \mathfrak{b} \\ \mathfrak{p} & \longmapsto \pi^{-1}(\mathfrak{p}) = \pi^*(\mathfrak{p}) \end{aligned}$$

Hence $\pi^*(\operatorname{Spec}(R/\mathfrak{b})) = V(\mathfrak{b})$, and $\pi^*_{\mathfrak{b}}$ is 1-1 and onto. By Theorem 2.27 and Lemma 2.30, $\pi^*_{\mathfrak{b}}$ is continuous. Let $\mathfrak{b} \subseteq \mathfrak{a} \leq R$. Then by prime correspondence,

$$((\pi_{\mathfrak{b}}^*)^{-1})^{-1}(\mathcal{V}(\mathfrak{a}/\mathfrak{b})) = \pi_{\mathfrak{b}}^*(\mathcal{V}(\mathfrak{a}/\mathfrak{b})) = \mathcal{V}(\mathfrak{a}) \cap \mathcal{V}(\mathfrak{b}) = \mathcal{V}(\mathfrak{a})$$

Hence $(\pi_{\mathfrak{h}}^*)^{-1}$ is continuous.

Corollary 2.32. V(\mathfrak{b}) is quasi-compact for $\mathfrak{b} \leq R$.

Definition 2.33. X is *irreducible* if for $\emptyset \neq U_1, U_2 \subseteq X$ open, $U_1 \cap U_2 \neq \emptyset$.

X is reducible if it is not irreducible, i.e., if and only if there exist $\emptyset \neq U_1, U_2 \subseteq X$ open such that $U_1 \cap U_2 = \emptyset$.

Example 2.34. If R is an integral domain, then X = Spec(R) is irreducible.

Proof. Let $\emptyset \neq U \subseteq X$ be open. Then $\emptyset \neq U = X \setminus V(\mathfrak{a})$ for some $\mathfrak{a} \leq R$. Hence $V(\mathfrak{a}) \neq X =$ Spec(R). Hence $\mathfrak{a} \neq \langle 0 \rangle$ and so $\langle 0 \rangle \notin V(\mathfrak{a})$. Also, since R is an integral domain, $\langle 0 \rangle \in X$. Hence $\langle 0 \rangle \in U$.

Definition 2.33+. A subset $\emptyset \neq Y \subseteq X$ with subspace topology is an *irreducible subset* if it is irreducible as topological space. Equivalently, $\emptyset \neq Y \subseteq X$ with subspace topology is *irreducible* if $Y = V \cup W$ for $V, W \subseteq Y$ closed, then Y = V or Y = W.

Corollary 2.35. If $q \in \operatorname{Spec}(R)$, then $V(q) \subseteq \operatorname{Spec}(R)$ with subspace topology is irreducible.

Proof. Let $\mathfrak{q} \in \operatorname{Spec}(R)$. Then R/\mathfrak{q} is an integral domain. Hence $\operatorname{Spec}(R/\mathfrak{q})$ is irreducible by Example 2.34. Since $V(\mathfrak{q})$ is homeomorphic to $\operatorname{Spec}(R/\mathfrak{q})$ by Theorem 2.31, we have that $\emptyset \neq V(\mathfrak{q})$ is irreducible.

Definition 2.36. Let $Y \subseteq X$. The *closure* of Y in X is

$$\overline{Y} = \bigcap_{\substack{Y \subseteq V \subseteq X\\ V \text{ closed}}} V.$$

Fact 2.37. If $Y \subseteq X$, then \overline{Y} is the (unique) smallest closed subset of X containing Y. If $V \subseteq X$ is closed, then $\overline{Y} \subseteq V$ if and only if $Y \subseteq V$.

Example. In $X = \text{Spec}(\mathbb{Z})$, Zariski topology is almost the "cofinite topology", open sets are X, \emptyset and $\{X \setminus \{p_1\mathbb{Z}, \ldots, p_n\mathbb{Z}\} \mid n \ge 1, 0 \neq p_i \text{ is prime}, \forall i = 1, \ldots, n\}.$

Lemma 2.38. The followings are equivalent.

(i) X is irreducible.

(ii) For $V_1, V_2 \subsetneq X$ closed, $V_1 \cup U_2 \subsetneq X$.

(iii) For $\emptyset \neq U \subseteq X$ open, $\overline{U} = X$.

"Non-empty open sets are dense".

Proof. (i) \iff (ii) By Definition 2.33.

(ii) \Longrightarrow (iii) Assume (b). Let $\emptyset \neq U \subseteq X$ be open. Suppose $V_1 := \overline{U} \neq X$. Let $V_2 := X \setminus U$. Then $V_1, V_2 \subseteq X$ are closed. Hence

$$X = U \cup (X \smallsetminus U) \subseteq \overline{U} \cup (X \smallsetminus U) = V_1 \cup V_2 \subsetneq X$$

by assumption, a contradiction.

(iii) \Longrightarrow (i) By contrapositive. Assume X is reducible. Then there exist $\emptyset \neq U_1, U_2 \subseteq X$ open such that $U_1 \cap U_2 = \emptyset$. Hence $U_1 \subseteq X \setminus U_2 \subsetneq X$. Also, since $X \setminus U_2$ is closed, $\overline{U}_1 \subseteq X \setminus U_2 \subsetneq X$.

Definition 2.33++. X is *irreducible* if and only if for $V_1, V_2 \subsetneq X$ closed, $V_1 \cup V_2 \neq X$.

Proposition 2.39. X = Spec(R) is irreducible if and only if $\text{Nil}(R) \in \text{Spec}(R)$.

Proof. \Leftarrow Assume Nil(R) \in Spec(R). By Proposition 1.32(c), V(Nil(R)) = Spec(R). Then by Corollary 2.35, Spec(R) = V(Nil(R)) is irreducible.

⇒ Assume $X = \operatorname{Spec}(R)$ is irreducible. Since $R \neq 0$, Nil $(R) \neq R$ by Proposition 1.26(b). Let $a, b \in R$ such that $ab \in \operatorname{Nil}(R)$. Then $\operatorname{V}(a) \cup \operatorname{V}(b) = \operatorname{V}(ab) = \operatorname{Spec}(R)$. Since $\operatorname{Spec}(R)$ is irreducible, $\operatorname{V}(a) = \operatorname{Spec}(R)$ or $\operatorname{V}(b) = \operatorname{Spec}(R)$. Hence $a \in \operatorname{Nil}(R)$ or $b \in \operatorname{Nil}(R)$. □

Proposition 2.40. We have the following.

(a) If $Y \subseteq X$ is irreducible, then $\overline{Y} \subseteq X$ with subspace topology is irreducible.

- (b) If \mathscr{C} is a chain of irreducible subsets of X, then $\bigcup_{Y \in \mathscr{C}} Y$ with subspace topology is irreducible.
- (c) For irreducible $Y \subseteq X$, there exists a maximal irreducible subset $Z \subseteq X$ such that $Y \subseteq Z$.
- (d) X is the union of its maximal irreducible subsets which are all closed.

Proof. (a) Assume $Y \subseteq X$ is irreducible. Let $\overline{Y} = V_1 \cup V_2$ with $V_1, V_2 \subseteq \overline{Y}$ closed. Let $i \in \{1, 2\}$. Since V_i is closed in \overline{Y} and \overline{Y} has subspace topology, there exists $\widetilde{V}_i \subseteq X$ closed in X such that $V_i = \widetilde{V}_i \cap \overline{Y}$. Set $V'_i = \widetilde{V}_i \cap Y = (\widetilde{V}_i \cap \overline{Y}) \cap Y = V_i \cap Y$. Since V_i is closed in $\overline{Y}, V'_i = V_i \cap Y$ is closed in Y^{\dagger} . Then

$$\overline{Y} = V_1 \cup V_2 = (\widetilde{V}_1 \cap \overline{Y}) \cup (\widetilde{V}_2 \cap \overline{Y}) = (\widetilde{V}_1 \cup \widetilde{V}_2) \cap \overline{Y}.$$

Hence $Y \subseteq \overline{Y} \subseteq \widetilde{V}_1 \cup \widetilde{V}_2$. Thus,

$$Y = (\widetilde{V}_1 \cup \widetilde{V}_2) \cap Y = (\widetilde{V}_1 \cap Y) \cup (\widetilde{V}_2 \cap Y) = V'_1 \cup V'_2.$$

Since Y is irreducible, $Y = V'_1$ or V'_2 . Say $Y = V'_1 = V_1 \cap Y$. Then $Y \subseteq V_1 \subseteq \widetilde{V}_1$. Since $\widetilde{V}_1 \subseteq X$ is closed, $\overline{Y} \subseteq \widetilde{V}_1$. Thus, $\overline{Y} = \widetilde{V}_1 \cap \overline{Y} = V_1$.

[†]Let $Z \subseteq X$ have a subspace topology. If $Y \subseteq Z$, then the topology that Y inherits as a subspace of Z is the same as the topology that Y inherits as a subspace of X

(b) Let \mathcal{C} be a chain of irreducible subsets of X and $Z := \bigcup_{Y \in \mathcal{C}} Y$. Let $V_1, V_2 \subsetneq Z$ be closed. Then there exist $x_1 \in Z \smallsetminus V_1$ and $x_2 \in Z \smallsetminus V_2$. Hence there exist $Y_1, Y_2 \in \mathcal{C}$ such that $x_1 \in Y_1$ and $x_2 \in Y_2$. Since \mathcal{C} is a chain, $Y_1 \subseteq Y_2$ or $Y_2 \subseteq Y_1$. Say $Y_2 \subseteq Y_1$, then $x_1 \in Y_1 \smallsetminus V_1$ and $x_2 \in Y_1 \smallsetminus V_2$. Hence $V_1 \cap Y_1 \subsetneq Y_1$ and $V_2 \cap Y_1 \subsetneq Y_1$. Since V_1, V_2 are closed in $Z, V_1 \cap Y_1$ and $V_2 \cap Y_1$ are closed in Y_1 similar to (a). Also, since Y_1 is irreducible, we have that $(V_1 \cap Y_1) \cup (V_2 \cap Y_1) \subsetneq Y_1$. Hence $Y_1 \not\subseteq V_1 \cup V_2$. Also, since $Y_1 \subseteq Z, Z \not\subseteq V_1 \cup V_2$. Thus, $V_1 \cup V_2 \subsetneq Z$.

(c) Let $Y \subseteq X$ be irreducible. Set $\Sigma = \{$ irreducible subsets $Z \subseteq X \mid Y \subseteq Z \}$. Since $Y \in \Sigma, \Sigma \neq \emptyset$. From (b), Zorn' lemma applies. Hence Σ has a maximal element.

(d) Let \mathcal{M} be the union of the maximal irreducible subsets of X. We claim that X = M. " \supseteq ". It is straightforward. " \subseteq ". Let $x \in X$, then $\{x\} \subseteq X$ is irreducible. By (c), there exists a maximal irreducible subset $Z \subseteq X$ such that $\{x\} \subseteq Z$. By (a), \overline{Z} is irreducible. Also, since $Z \subseteq \overline{Z}$ and Z is maximal irreducible, we have that $Z = \overline{Z}$, i.e., Z is closed.

Definition 2.41. The maximal irreducible subsets of X are the *irreducible components* of X.

Proposition 2.42. [†] Let X = Spec(R).

(a) $V \subseteq X$ with subspace topology is closed and irreducible if and only if $V = V(\mathfrak{p})$ for some $\mathfrak{p} \in \operatorname{Spec}(R)$.

(b) The irreducible components of X are $V(\mathfrak{p})$, where $\mathfrak{p} \in Min(Spec(R)) = Min(R)$.

Proof. (a) \leftarrow Let $\mathfrak{p} \in \operatorname{Spec}(R)$. Let $V, W \subseteq V(\mathfrak{p})$ be closed such that $V(\mathfrak{p}) = V \cup W$. Then $V = V(\mathfrak{a}) \cap V(\mathfrak{p})$ and $W = V(\mathfrak{b}) \cap V(\mathfrak{p})$ for some $\mathfrak{a}, \mathfrak{b} \leq R$. Since $\mathfrak{p} \in \operatorname{Spec}(R)$,

$$\mathfrak{p} \in \mathcal{V}(\mathfrak{p}) = V \cup W = (\mathcal{V}(\mathfrak{a}) \cap \mathcal{V}(\mathfrak{p})) \cup (\mathcal{V}(\mathfrak{b}) \cap \mathcal{V}(\mathfrak{p})) = \mathcal{V}(\mathfrak{a} + \mathfrak{p}) \cup \mathcal{V}(\mathfrak{b} + \mathfrak{p}) = \mathcal{V}(\mathfrak{a} + \mathfrak{p})(\mathfrak{b} + \mathfrak{p})).$$

Hence $\mathfrak{p} \supseteq (\mathfrak{a} + \mathfrak{p})(\mathfrak{b} + \mathfrak{p})$. Since $\mathfrak{p} \in \operatorname{Spec}(R)$, $\mathfrak{p} \supseteq \mathfrak{a} + \mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b} + \mathfrak{p} \supseteq \mathfrak{b}$. Hence $V(\mathfrak{p}) \subseteq V(\mathfrak{a})$ or $V(\mathfrak{p}) \subseteq V(\mathfrak{b})$. Hence $V(\mathfrak{p}) = V(\mathfrak{a}) \cap V(\mathfrak{p}) = V$ or $V(\mathfrak{p}) = V(\mathfrak{b}) \cap V(\mathfrak{p}) = W$.

 \implies Assume $V \subseteq X$ is closed and irreducible. Then $\emptyset \neq V = V(\mathfrak{a}) = V(rad(\mathfrak{a}))$ for some $\mathfrak{a} \leq R$. Hence is suffices to show $rad(\mathfrak{a}) \in \operatorname{Spec}(R)$. Note that $\mathfrak{r} := rad(\mathfrak{a}) \leq R$.

Method 1. Let $x, y \in R$ such that $xy \in \mathfrak{r}$. Then $\mathfrak{r}^2 \subseteq (xR + \mathfrak{r})(yR + \mathfrak{r}) \subseteq \mathfrak{r}$. Hence $V(\mathfrak{r}) = V(\mathfrak{r}^2) \supseteq V((xR + \mathfrak{r})(yR + \mathfrak{r})) \supseteq V(\mathfrak{r})$. Hence

$$V = \mathcal{V}(\mathfrak{r}) = \mathcal{V}((xR + \mathfrak{r})(yR + \mathfrak{r})) = (\mathcal{V}(xR) \cap \mathcal{V}(\mathfrak{r})) \cup (\mathcal{V}(yR) \cap \mathcal{V}(\mathfrak{r})) = (\mathcal{V}(xR) \cap \mathcal{V}) \cup (\mathcal{V}(yR) \cap \mathcal{V}).$$

Also, since $V(xR) \cap V$ and $V(xR) \cap V$ are closed in V and V is irreducible, we have that $V(\mathfrak{r}) = V(xR) \cap V \subseteq V(xR)$ or $V(\mathfrak{r}) = V(yR) \cap V \subseteq V(yR)$. Then

$$x \in xR \subseteq \operatorname{rad}(xR) = \bigcap_{\mathfrak{p} \in \operatorname{V}(xR)} \mathfrak{p} \subseteq \bigcap_{\mathfrak{p} \in \operatorname{V}(\mathfrak{r})} \mathfrak{p} = \operatorname{rad}(\mathfrak{r}) = \mathfrak{r}$$

by Fact 1.58(c) and (g), or $y \in \mathfrak{r}$ similarly. Hence $rad(\mathfrak{a}) = \mathfrak{r} \in Spec(R)$.

Method 2. Assume $\operatorname{rad}(\mathfrak{a}) \supseteq IJ$ for some $I, J \leq R$. Then $V(I) \cup V(J) = V(IJ) \supseteq V(\operatorname{rad}(\mathfrak{a})) = V(\mathfrak{a})$. Since $V(\mathfrak{a}) = V$ is irreducible and

$$V(\mathfrak{a}) = (V(\mathfrak{a}) \cap V(I)) \cup (V(\mathfrak{a}) \cap V(J)) = V(\mathfrak{a}I) \cup V(\mathfrak{a}J),$$

[†]This proposition also holds for $V(\mathfrak{a})$ with subspace topology and with $Min(V(\mathfrak{a}))$.

we have that $V(I) \supseteq V(\mathfrak{a})$ or $V(J) \supseteq V(\mathfrak{a})$. Hence by Proposition 1.32(d), $rad(\mathfrak{a}) \supseteq rad(I) \supseteq I$ or $rad(\mathfrak{a}) \supseteq rad(J) \supseteq J$.

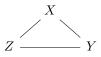
(b) Let V be an irreducible component of $X = \operatorname{Spec}(R)$. Then V is closed by Proposition 2.40(c) and maximal irreducible. Hence by (a), $V = V(\mathfrak{p})$ for some $\mathfrak{p} \in \operatorname{Spec}(R)$. Let $\mathfrak{q} \in \operatorname{Spec}(R)$ such that $\mathfrak{q} \subseteq \mathfrak{p}$. Then $V(\mathfrak{q}) \supseteq V(\mathfrak{p}) = V$. By (a), $V(\mathfrak{q})$ is closed and irreducible. Hence by the maximality of $V, V(\mathfrak{q}) = V(\mathfrak{p})$. Thus, $\mathfrak{q} = \mathfrak{p}$ by Proposition 1.32(d).

Remark. Example 2.34, Corollary 2.35, and Proposition 2.39 follow from Proposition 2.42(a).

Example 2.43. Let $R = \frac{k[X,Y,Z]}{(XY,YZ,XZ)}$, where k is a field. Then

$$\begin{split} \langle XY, YZ, XZ \rangle &= \langle X, YZ, XZ \rangle \cap \langle Y, YZ, XZ \rangle = \langle X, YZ \rangle \cap \langle Y, XZ \rangle \\ &= \langle X, Y \rangle \cap \langle X, Z \rangle \cap \langle Y, X \rangle \cap \langle Y, Z \rangle = \langle X, Y \rangle \cap \langle X, Z \rangle \cap \langle Y, Z \rangle. \end{split}$$

Or let G be the following graph:



Then the edge ideal of G is $I_G = \langle XY, YZ, XZ \rangle$. Let $P_V = \langle X \mid X \in V \rangle$ for $V \subseteq V(G)$. Then we have that

$$I_G = \bigcap_{V \text{ min. v.cover}} P_V = P_{\{X,Y\}} \cap P_{\{Y,Z\}} \cap P_{\{X,Z\}} = \langle X,Y \rangle \cap \langle Y,Z \rangle \cap \langle X,Z \rangle.$$

Hence

$$\operatorname{Min}(k[X,Y,Z]) = \{P_V \mid V \text{ min. v.cover}\} = \{\langle X,Y \rangle, \langle Y,Z \rangle, \langle X,Z \rangle\}.$$

By Fact 1.15, $\operatorname{Min}(R) = \{\langle \overline{X}, \overline{Y} \rangle, \langle \overline{Y}, \overline{Z} \rangle, \langle \overline{X}, \overline{Z} \rangle\}$. Hence the irreducible components of $\operatorname{Spec}(R)$ are $\operatorname{V}(\langle \overline{X}, \overline{Y} \rangle)$, $\operatorname{V}(\langle \overline{X}, \overline{Z} \rangle)$ and $\operatorname{V}(\langle \overline{Y}, \overline{Z} \rangle)$.

Corollary 2.44. (a) $Min(R) \neq \emptyset$.

(b) For $q \in \operatorname{Spec}(R)$, there exists $\mathfrak{p} \in \operatorname{Min}(R)$ such that $\mathfrak{p} \subseteq \mathfrak{q}$.

Proof. (a) Since $\text{Spec}(R) \neq \emptyset$, by Proposition 2.42(b), $\text{Min}(R) \neq \emptyset$.

(b) Let $\mathfrak{q} \in \operatorname{Spec}(R)$. Then $V(\mathfrak{q}) \subseteq \operatorname{Spec}(R)$ are closed and irreducible by Proposition 2.42(a). Hence there exists a (closed) maximal irreducible subset $Z \subseteq \operatorname{Spec}(R)$ such that $V(\mathfrak{q}) \subseteq Z$ by Proposition 2.40(c). Then $V(\mathfrak{q}) \subseteq Z = V(\mathfrak{p})$ for some $\mathfrak{p} \in \operatorname{Min}(R)$ by Proposition 2.42(b). Hence $\mathfrak{p} \subseteq \mathfrak{q}$ by Proposition 1.32(d).

Proposition 2.45. Let $\mathfrak{p} \in \operatorname{Spec}(R)$.

(a)
$$\{\mathfrak{p}\} = V(\mathfrak{p}).$$

- (b) $\overline{\{\mathfrak{p}\}} = \{\mathfrak{p}\}$ if and only if $\mathfrak{p} \in \text{m-Spec}(R)$. "closed points are maximal".
- (c) If R is an integral domain, then $\overline{\{0\}} = V(0) = \operatorname{Spec}(R)$. 0 is the "the generic point".

Proof. (a) One point set $\{\mathfrak{p}\}$ is clearly irreducible. Then $\overline{\{\mathfrak{p}\}}$ is also irreducible by Proposition 2.40(a). Also, since $\overline{\{\mathfrak{p}\}}$ is closed, $\overline{\{\mathfrak{p}\}} = V(\mathfrak{a})$ for some $\mathfrak{a} \leq R$ by Proposition 2.42(a). Hence $\mathfrak{a} \subseteq \mathfrak{p}$. Hence $V(\mathfrak{p}) \subseteq V(\mathfrak{a}) = \overline{\{\mathfrak{p}\}}$. Since $\overline{\{\mathfrak{p}\}}$ is the smallest closed subset containing \mathfrak{p} , we have that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$.

(b) \implies Assume $\overline{\{\mathfrak{p}\}} = \{\mathfrak{p}\}$. Since $\mathfrak{p} \neq R$, there exists $\mathfrak{m} \in \text{m-Spec}(R)$ such that $\mathfrak{m} \supseteq \mathfrak{p}$. Then $\mathfrak{m} \subseteq V(\mathfrak{m}) \subseteq V(\mathfrak{p}) = \overline{\{\mathfrak{p}\}} = \{\mathfrak{p}\}$ by (a). Hence by the maximality of \mathfrak{m} , we have that $\mathfrak{p} = \mathfrak{m}$. \Leftarrow Assume $\mathfrak{p} \in \text{m-Spec}(R)$. Then by (a), $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p}) = \{\mathfrak{p}\}$.

(c) It follows from (a).

Chapter 3

Localization

Let R be a commutative ring with identity but not a field.

Recall 3.1. A subset $U \subseteq R$ is multiplicatively closed if $1 \in U$ and for $u, v \in U$, $uv \in U$,

Example 3.2. (a) $\{1, f, f^2, \dots\} \subseteq R$ is multiplicatively closed for $f \in R$.

- (b) $R^{\times} \subseteq R$ is multiplicatively closed.
- (c) $R \setminus \mathfrak{p} \subseteq R$ is multiplicatively closed for $\mathfrak{p} \in \operatorname{Spec}(R)$.
- (d) $1 + \mathfrak{a} \subseteq R$ is multiplicatively closed for $\mathfrak{a} \leq R$.
- Let $U \subseteq R$ be multiplicatively closed.

Recall 3.3. $U^{-1}R = \{\frac{r}{u} \mid r \in R, u \in U\}$, where $\frac{r}{u} = \frac{r'}{u'}$ if and only if there exists $u'' \in U$ such that u''(ru' - r'u) = 0, i.e., $\frac{u''r}{u''u} = \frac{r'}{u'}$, formally, $\frac{r}{u}$ is the equivalence class under an equivalence relation. $U^{-1}R$ is a commutative ring with identity with $\frac{r}{u} + \frac{s}{v} = \frac{rv + su}{uv}$ and $\frac{r}{u} \frac{s}{v} = \frac{rs}{uv}$ for $\frac{r}{u}, \frac{s}{v} \in U^{-1}R$. $\begin{array}{l} 0_{U^{-1}R} = \frac{0_R}{1_R} = \frac{0}{u} \text{ and } 1_{U^{-1}R} = \frac{1_R}{1_R} = \frac{u}{u} \text{ for all } u \in U. \\ \frac{r}{u} = 0 \text{ if and only if there exists } u'' \in U \text{ such that } u''r = 0. \\ \psi : R \to U^{-1}R \text{ given by } \psi(r) = \frac{r}{1} \text{ is a well-defined ring homomorphism. } \psi \text{ is 1-1 if and only if } \end{array}$

 $U \subseteq \mathrm{NZD}(R).$

Notation 3.4. (a) If $U = \{1, f, f^2, \dots\}$, write $U^{-1}R = R_f$. $(R_f = 0 \text{ for } f \in \text{Nil}(R))$.

- (b) If $U = R \setminus \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Spec}(R)$, write $U^{-1}R = R_{\mathfrak{p}}$.
- (c) If $U \subseteq R$ is multiplicatively closed, write $U^{-1}R = R_U = R[U^{-1}]$.

Let $\psi: R \to U^{-1}R$ be the natural ring homomorphism.

Recall 3.3+ ϵ . $\psi(U) \subseteq (U^{-1}R)^{\times}$ since $\frac{1}{u} = (\frac{u}{1})^{-1} = (\psi(u))^{-1}$ for $u \in U$. Hence localization makes more elements invertible.

Let $\varphi : R \to S$ be a ring homomorphism.

Proposition 3.5 (UMP for ψ). Let $\varphi(U) \subseteq S^{\times}$. Then there exists a unique ring homomorphism $\Phi: U^{-1}R \to S$ such that $\Phi \circ \psi = \varphi$. In fact, $\Phi(\frac{r}{u}) = \varphi(r)\varphi(u)^{-1}$ for $\frac{r}{u} \in U^{-1}R$.

Proof. Let $\frac{r}{u} = \frac{r'}{u'}$. Then there exists $u'' \in U$ such that u''(ru' - r'u) = 0. Since φ is a ring homomorphism, we have that $\varphi(u'')(\varphi(r)\varphi(u') - \varphi(r')\varphi(u)) = 0$. Also, since $\varphi(u'') \in S^{\times}$, we have that $\varphi(r)\varphi(u') = \varphi(r')\varphi(u)$, i.e., $\varphi(r)\varphi(u)^{-1} = \varphi(r')\varphi(u')^{-1}$ since $\varphi(u), \varphi(u') \in S^{\times}$. Hence ϕ is well-defined. Since

$$\begin{split} \Phi\left(\frac{r}{u} + \frac{s}{v}\right) &= \Phi\left(\frac{rv + su}{uv}\right) = \varphi(rv + su)\varphi(uv)^{-1} = (\varphi(r)\varphi(v) + \varphi(s)\varphi(u)))\varphi(u)^{-1}\varphi(v)^{-1} \\ &= \varphi(r)\varphi(u)^{-1} + \varphi(s)\varphi(v)^{-1} = \Phi\left(\frac{r}{u}\right) + \Phi\left(\frac{s}{v}\right) \end{split}$$

and similarly, $\Phi(\frac{r}{u} \cdot \frac{s}{v}) = \Phi(\frac{r}{u})\Phi(\frac{s}{v})$ for $\frac{r}{u}, \frac{s}{v} \in U^{-1}R$, we have that Φ is a ring homomorphism. Suppose there is another ring homomorphism $\Lambda : U^{-1}R \to S$ such that $\Lambda \circ \psi = \varphi$. Then

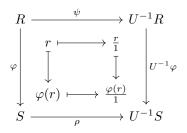
Suppose there is another ring homomorphism $\Lambda : U^{-1}R \to S$ such that $\Lambda \circ \psi = \varphi$. Then $\varphi(r) = \Lambda(\psi(r)) = \Lambda(\frac{r}{1})$ for $r \in R$. Hence

$$\Lambda\left(\frac{r}{u}\right) = \Lambda\left(\frac{r}{1}\frac{1}{u}\right) = \Lambda\left(\frac{r}{1}\right)\Lambda(\frac{u}{1})^{-1} = \varphi(r)\varphi(u)^{-1} = \Phi\left(\frac{r}{u}\right)$$

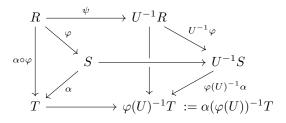
for $\frac{r}{u} \in U^{-1}R$. Thus, $\Lambda = \Phi$.

Proposition 3.6. We have the following.

- (a) $\varphi(U) \subseteq S$ is multiplicatively closed and $\varphi(U)^{-1}S =: U^{-1}S$.
- (b) There is a unique ring homomorphism $U^{-1}\varphi: U^{-1}R \to U^{-1}S$ given by $U^{-1}\varphi(r/u) = \varphi(r)/\varphi(u)$.



- (c) If φ is onto, $U^{-1}\varphi$ is onto.
- (d) If φ is 1-1, $U^{-1}\varphi$ is 1-1.
- (e) If $\alpha: S \to T$ is a ring homomorphism, then $U^{-1}(\alpha \circ \varphi) = (\varphi(U)^{-1}\alpha) \circ (U^{-1}\varphi)$.



Proof. (b) Let $\frac{r}{u} = \frac{r'}{u'} \in U^{-1}R$. Then there exists $u'' \in U$ such that u''(ru' - r'u) = 0. Hence there exists $\varphi(u'') \in \varphi(U)$ such that $\varphi(u'')(\varphi(r)\varphi(u') - \varphi(r')\varphi(u)) = 0$. Hence $\frac{\varphi(r)}{\varphi(u)} = \frac{\varphi(r')}{\varphi(u')} \in U^{-1}S$. Hence $U^{-1}\varphi$ is well-defined. Since

$$\begin{split} U^{-1}\varphi\left(\frac{r}{u} + \frac{s}{v}\right) &= U^{-1}\varphi\left(\frac{rv + su}{uv}\right) = \frac{\varphi(rv + su)}{\varphi(uv)} = \frac{\varphi(r)\varphi(v) + \varphi(s)\varphi(u)}{\varphi(u)\varphi(v)} \\ &= \frac{\varphi(r)}{\varphi(u)} + \frac{\varphi(s)}{\varphi(v)} = U^{-1}\varphi\left(\frac{r}{u}\right) + U^{-1}\left(\varphi\right)\left(\frac{s}{v}\right) \end{split}$$

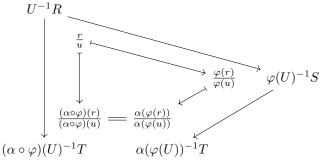
and similarly, $U^{-1}(\varphi)(\frac{r}{u} \cdot \frac{s}{v}) = U^{-1}\varphi(\frac{r}{u})U^{-1}\varphi(\frac{s}{v})$ for $\frac{r}{u}, \frac{s}{v} \in U^{-1}R$.

Since $\varphi(U) \subseteq S$ is multiplicatively closed, by Recall $3.3 + \epsilon$, $\rho(\varphi(U)) \subseteq ((\varphi(U))^{-1}S)^{\times} = (U^{-1}S)^{\times}$. Then the uniqueness follows from Proposition 3.5.

(c) Assume φ is onto. Let $\frac{s}{\varphi(u)} \in U^{-1}S$ with $s \in S$ and $u \in U$. Since $\varphi : R \to S$ is onto, there exists $r \in R$ such that $\varphi(r) = s$. Then $U^{-1}\varphi(\frac{r}{u}) = \frac{\varphi(r)}{\varphi(u)} = \frac{s}{\varphi(u)}$.

(d) Assume φ is 1-1. Let $\frac{r}{u} \in U^{-1}R$ with $r \in R$ and $u \in U$. Then $\frac{r}{u} \in \operatorname{Ker}(U^{-1}\varphi)$ if and only if $0 = U^{-1}\varphi(\frac{r}{u}) = \frac{\varphi(r)}{\varphi(u)}$ if and only if there exists $u'' \in U$ such that $0 = \varphi(u'')\varphi(r) = \varphi(u''r)$ if and only if there exists $u'' \in U$ such that u''r = 0 since φ is 1-1 if and only if $\frac{r}{u} = 0$ in $U^{-1}R$.

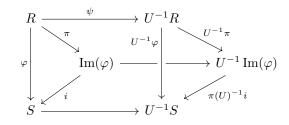
(e) Since $\varphi : R \to S$ and $\alpha : S \to T$ are ring homomorphisms, $\alpha \circ \varphi$ is a ring homomorphism. Since $(\alpha \circ \varphi)(U) = \alpha(\varphi(U)) \subseteq T$ is multiplicatively closed by (a), we have that $U^{-1}(\alpha \circ \varphi)$ and $\varphi(U)^{-1}\alpha$ are well-defined.



Then by the commutative diagram, $U^{-1}(\alpha \circ \varphi) = (\varphi(U)^{-1}\alpha) \circ (U^{-1}\varphi).$

Proposition 3.7. Let $\varphi(U) \subseteq S$ be multiplicatively closed. Then $\operatorname{Im}(U^{-1}\varphi) \cong U^{-1}\operatorname{Im}(\varphi)$ given by $\frac{\varphi(r)}{\varphi(u)} \mapsto \frac{i(\pi(r))}{i(\pi(u))} = \frac{\varphi(r)}{\varphi(u)}$.

Proof. We have that



By Proposition 3.6(e), $\operatorname{Im}(U^{-1}\varphi) = \operatorname{Im}(i \circ \pi) = \operatorname{Im}((\pi(U)^{-1}i) \circ U^{-1}\pi)$. Since π is onto, $U^{-1}(\pi)$ is onto by Proposition 3.6(c). Hence $\operatorname{Im}(U^{-1}\varphi) = \operatorname{Im}(\pi(U)^{-1}i)$. Since i is 1-1, $\pi(U)^{-1}i$ is 1-1 by Proposition 3.6(d). Hence by the first isomorphism theorem, $U^{-1}\operatorname{Im}(\varphi) \cong \operatorname{Im}(\pi(U)^{-1}i) = \operatorname{Im}(U^{-1}\varphi)$.

Let $\mathfrak{a}, \mathfrak{b} \leq R$.

Definition 3.8. Define a relation "~" on $U \times \mathfrak{a}$ by $(u, a) \sim (u', a')$ if and only if there exists $u'' \in U$ such that u''(u'a - ua') = 0.

Fact 3.9. This is an equivalence relation.

Notation 3.10. $U^{-1}\mathfrak{a} = \{$ equivalence classes from $U \times \mathfrak{a}$ under $\sim \}$, and a/u or $\frac{a}{u}$ with $a \in \mathfrak{a}$ and $u \in U$ are its elements, i.e., $U^{-1}\mathfrak{a} = \{a/u \mid a \in \mathfrak{a}, u \in U\}$.

Proposition 3.11. We have the following.

(a) The map $i: U^{-1}\mathfrak{a} \to U^{-1}R$ given by i(a/u) = a/u is a well-defined ring monomorphism. Identify $U^{-1}\mathfrak{a}$ with $\operatorname{Im}(i) \subseteq U^{-1}R$, so write $U^{-1}\mathfrak{a} \subseteq U^{-1}R$.

Warning. $\frac{r}{u} \in U^{-1}R$ such that $\frac{r}{u} \in U^{-1}\mathfrak{a}$ may have $r \notin \mathfrak{a}$.

(b) If $\frac{r}{u} \in U^{-1}R$, then $\frac{r}{u} \in U^{-1}\mathfrak{a}$ if and only if there exists $v \in U$ such that $vr \in \mathfrak{a}$, in this case, we have that $\frac{r}{u} = \frac{vr}{vu} \in U^{-1}\mathfrak{a}$ with $ur \in \mathfrak{a}$ and $vu \in U$.

(c) Let $\pi : R \to \frac{R}{\mathfrak{a}}$ be the natural surjection. Then $U^{-1}\mathfrak{a} = \operatorname{Ker}(U^{-1}\pi) \leq U^{-1}R$ and $\frac{U^{-1}R}{U^{-1}\mathfrak{a}} \cong U^{-1}\frac{R}{\mathfrak{a}} := \pi(U)^{-1}\frac{R}{\mathfrak{a}}$.

(d) More generally, if $\varphi : R \to S$ is a ring homomorphism, then $U^{-1} \operatorname{Ker}(\varphi) = \operatorname{Ker}(U^{-1}\varphi) \leq U^{-1}R$ such that $\operatorname{Im}(U^{-1}\varphi) \cong \frac{U^{-1}R}{U^{-1}\operatorname{Ker}(\varphi)}$.

(e) $U^{-1}\mathfrak{a} = \mathfrak{a} \cdot U^{-1}R$, extension of \mathfrak{a} along $\psi : R \to U^{-1}R$.

Proof. (a) By the definition of "~", i is a well-defined ring monomorphism. Let $\frac{a}{u} \in U^{-1}\mathfrak{a}$ with $a \in R$ and $u \in U$. Then $\frac{a}{u} \in \operatorname{Ker}(i)$ if and only if $0 = i(\frac{a}{u}) = \frac{a}{u}$ in $U^{-1}R$ if and only if there exists $v \in U$ such that $va = 0 \in \mathfrak{a} \subseteq R$ if and only if $\frac{a}{u} = \frac{va}{vu} = \frac{0}{vu} = 0$ in $U^{-1}\mathfrak{a}$ by (b). Also, since i is a ring homomorphism, i is 1-1.

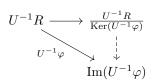
(b) Method 1. \implies Assume $\frac{r}{u} \in U^{-1}\mathfrak{a}$. Then $\frac{r}{u} = \frac{a}{u'} \in U^{-1}R$ for some $a \in \mathfrak{a}$ and $u \in U$. Hence there exists $u'' \in U$ such that $u''u'r = u''ua \in \mathfrak{a}$ since $a \in \mathfrak{a}$. Let v = u''u'. Then $vr = u''u'r \in \mathfrak{a}$.

Method 2. Note that $\frac{r}{u} \in U^{-1}\mathfrak{a}$ if and only if $\frac{r}{u} = \frac{a}{u'}$ for some $a \in \mathfrak{a}$ and $u' \in U$ if and only if u''u'r - u''ua = 0 for some $a \in \mathfrak{a}$ and $u', u'' \in U$ if and only if $1 \cdot v \cdot r - 1 \cdot 1 \cdot a = 0$ for some $a \in \mathfrak{a}$ and $v \in U$ if and only if there exists $v \in U$ such that $vr \in \mathfrak{a}$.

(c) Note that by Proposition 3.7, $\operatorname{Im}(U^{-1}\pi) \cong U^{-1}\operatorname{Im}(\pi) = U^{-1}\frac{R}{\mathfrak{a}}$ given by $\frac{\overline{r}}{\overline{u}} \mapsto \frac{\overline{r}}{\overline{u}}$. Then by (d), $U^{-1}\frac{R}{\mathfrak{a}} \cong \frac{U^{-1}R}{U^{-1}\operatorname{Ker}(\pi)} = \frac{U^{-1}R}{U^{-1}\mathfrak{a}}$ given by $\frac{\overline{r}}{\overline{u}} \leftrightarrow \overline{\frac{r}{u}}$.

(d) Let $\frac{r}{u} \in U^{-1}R$ with $r \in R$ and $u \in U$. Then $\frac{r}{u} \in U^{-1} \operatorname{Ker}(\varphi)$ if and only if there exists $v \in U$ such that $vr \in \operatorname{Ker}(\varphi)$ by (b) if and only if there exists $\varphi(v) \in \varphi(U)$ such that $0 = \varphi(vr) = \varphi(v)\varphi(r)$ if and only if $U^{-1}\varphi(\frac{r}{u}) = \frac{\varphi(r)}{\varphi(u)} = 0$ in $U^{-1}S = \varphi(U)^{-1}S$ if and only if $\frac{r}{u} \in \operatorname{Ker}(U^{-1}\varphi)$.

By the first isomorphism theorem, $\operatorname{Im}(U^{-1}\varphi) \cong \frac{U^{-1}R}{\operatorname{Ker}(U^{-1}\varphi)} = \frac{U^{-1}R}{U^{-1}\operatorname{Ker}(\varphi)}$ given by $\frac{\varphi(r)}{\varphi(u)} \leftrightarrow \overline{\frac{r}{u}}$.



(e) \supseteq It follows from $\mathfrak{a} \cdot U^{-1}R$ is generated by $\{\psi(a) = \frac{a}{1} \mid a \in \mathfrak{a}\} \subseteq U^{-1}\mathfrak{a}$. \subseteq Let $\frac{a}{u} \in U^{-1}\mathfrak{a}$ with $a \in \mathfrak{a}$ and $u \in U$. Then $\frac{a}{u} = \frac{a}{1} \cdot \frac{1}{u} = \psi(a)\frac{1}{u} \in \mathfrak{a} \cdot U^{-1}R$.

Proposition 3.12. We have the following.

(a)
$$U^{-1}(\mathfrak{a} + \mathfrak{b}) = (U^{-1}\mathfrak{a}) + (U^{-1}\mathfrak{b}).$$

- (b) $U^{-1}(\mathfrak{a} \cap \mathfrak{b}) = (U^{-1}\mathfrak{a}) \cap (U^{-1}\mathfrak{b}).$
- (c) $U^{-1}(\mathfrak{ab}) = (U^{-1}\mathfrak{a})(U^{-1}\mathfrak{b}).$
- (d) $U^{-1} \operatorname{rad}(\mathfrak{a}) = \operatorname{rad}(U^{-1}\mathfrak{a}).$
- (e) $U^{-1} \operatorname{Nil}(R) = \operatorname{Nil}(U^{-1}R).$
- (f) $U^{-1}(\mathfrak{b}:\mathfrak{a}) = (U^{-1}\mathfrak{b}:U^{-1}\mathfrak{a})$ if \mathfrak{a} is finitely generated.

Proof. (a) By Proposition 3.11(e) and 1.63(c), we have that

$$U^{-1}(\mathfrak{a} + \mathfrak{b}) = (\mathfrak{a} + \mathfrak{b}) \cdot U^{-1}R = (\mathfrak{a} \cdot U^{-1}R) + (\mathfrak{b} \cdot U^{-1}R) = (U^{-1}\mathfrak{a}) + (U^{-1}\mathfrak{b}).$$

(b) \subseteq By Proposition 3.11(e) and 1.63(d),

$$U^{-1}(\mathfrak{a} \cap \mathfrak{b}) = (\mathfrak{a} \cap \mathfrak{b}) \cdot U^{-1}R \subseteq (\mathfrak{a} \cdot U^{-1}R) \cap (\mathfrak{b} \cdot U^{-1}R) = (U^{-1}\mathfrak{a}) \cap (U^{-1}\mathfrak{b}).$$

"⊇". Let $\frac{r}{u} \in U^{-1}R$ with $r \in R, u \in U$ such that $\frac{r}{u} \in (U^{-1}\mathfrak{a}) \cap (U^{-1}\mathfrak{b})$. Then there exist $v, w \in U$ such that $vr \in \mathfrak{a}$ and $wr \in \mathfrak{b}$ by Proposition 3.11(b). Hence $(vw)r \in \mathfrak{a} \cap \mathfrak{b}$. Also, since $vw \in U, \frac{r}{u} \in U^{-1}(\mathfrak{a} \cap \mathfrak{b})$ by Proposition 3.11(b).

(c) By Proposition 3.11(e) and 1.63(e), we have that

$$U^{-1}(\mathfrak{ab}) = (\mathfrak{ab}) \cdot U^{-1}R = (\mathfrak{a} \cdot U^{-1}R)(\mathfrak{b} \cdot U^{-1}R) = (U^{-1}\mathfrak{a})(U^{-1}\mathfrak{b}).$$

(d) \subseteq By Proposition 3.11(e) and 1.63(g),

$$U^{-1} \operatorname{rad}(\mathfrak{a}) = \operatorname{rad}(\mathfrak{a}) \cdot U^{-1} R \subseteq \operatorname{rad}(\mathfrak{a} \cdot U^{-1} R) = \operatorname{rad}(U^{-1}\mathfrak{a}).$$

 \supseteq Let $\frac{r}{u} \in \operatorname{rad}(U^{-1}\mathfrak{a})$ with $r \in R$ and $u \in U$. Then $\frac{r^n}{u^n} = (\frac{r}{u})^n \in U^{-1}\mathfrak{a}$ for some $n \ge 1$. Hence there exists $v \in U$ such that $vr^n \in \mathfrak{a}$ by Proposition 3.11(b). Hence $(vr)^n = v^{n-1} \cdot vr^n \in \mathfrak{a}$. Hence $vr \in \operatorname{rad}(\mathfrak{a})$. Thus, $\frac{r}{u} \in U^{-1} \operatorname{rad}(\mathfrak{a})$ by Proposition 3.11(b).

- (e) Special case of (d) with $\mathfrak{a} = 0$.
- (f) \subseteq By Proposition 3.11(e) and 1.63(f),

$$U^{-1}(\mathfrak{b}:\mathfrak{a}) = (\mathfrak{b}:\mathfrak{a}) \cdot U^{-1}R \subseteq (\mathfrak{b} \cdot U^{-1}R : \mathfrak{a} \cdot U^{-1}R) = (U^{-1}\mathfrak{b} : U^{-1}\mathfrak{a}).$$

" \supseteq ". Let $\frac{r}{u} \in U^{-1}R$ with $r \in R, u \in U$ such that $\frac{r}{u} \in (U^{-1}\mathfrak{b} : U^{-1}\mathfrak{a})$. Since \mathfrak{a} is finitely generated, $\mathfrak{a} = \langle a_1, \ldots, a_n \rangle R$ for some $n \ge 1$ and $a_1, \ldots, a_n \in R$. Then $U^{-1}\mathfrak{a} = \langle \frac{a_1}{1}, \ldots, \frac{a_n}{1} \rangle U^{-1}R$. Since $\frac{r}{u} \in (U^{-1}\mathfrak{b} : U^{-1}\mathfrak{a}), \frac{ra_i}{u} = \frac{r}{u}\frac{a_i}{1} \in U^{-1}\mathfrak{b}$ for $i = 1, \ldots, n$. Hence by Proposition 3.11(b), there exists $v_i \in U$ such that $v_i ra_i \in \mathfrak{b}$ for $i = 1, \ldots, n$. Let $v = v_1 \cdots v_n \in U$. Then $(vr)a_i \in \mathfrak{b}$ for $i = 1, \ldots, n$. Hence $vr \in (\mathfrak{b} : \mathfrak{a})$. Thus, $\frac{r}{u} \in U^{-1}(\mathfrak{b} : \mathfrak{a})$ by Proposition 3.11(b).

Proposition 3.13. We have the following.

(a) For $I \leq U^{-1}R$, there exists $\mathfrak{a} \leq R$ such that $I = U^{-1}\mathfrak{a}$, i.e., every ideal of $U^{-1}R$ is an extension of an ideal of R along ψ .

(b) If $\mathfrak{a} \leq R$, then $\psi^{-1}(U^{-1}\mathfrak{a}) = \{r \in R \mid \exists v \in U \text{ s.t. } vr \in \mathfrak{a}\} = \bigcup_{v \in U} (\mathfrak{a}: v).$

(c) $U^{-1}\frac{R}{\mathfrak{a}} = 0$ if and only if $\frac{U^{-1}R}{U^{-1}\mathfrak{a}} = 0$ if and only if $U^{-1}\mathfrak{a} = U^{-1}R$ if and only if $U \cap \mathfrak{a} \neq \emptyset$.

Proof. (a) Since $I \leq U^{-1}R$, we have that $\psi^{-1}(I) \leq R$. We claim that $I = U^{-1}(\psi^{-1}(I))$.

 \supseteq By Proposition 1.63(a), $I \supseteq \psi^{-1}(I) \cdot U^{-1}R = U^{-1}(\psi^{-1}(I)).$

 $\subseteq \text{Let } i \in I. \text{ Then } i = \frac{r}{u} \text{ for some } r \in R \text{ and } u \in U. \text{ Also, since } \frac{u}{1} \in R, \ \psi(r) = \frac{r}{1} = \frac{r}{u} \cdot \frac{u}{1} \in I, \text{ i.e., } r \in \psi^{-1}(I). \text{ Hence } i = \frac{r}{u} \in U^{-1}(\psi^{-1}(I)).$

(b) Let $r \in R$. Then $r \in \psi^{-1}(U^{-1}\mathfrak{a})$ if and only if $\frac{r}{1} = \psi(r) \in U^{-1}\mathfrak{a}$ if and only if $vr \in \mathfrak{a}$ for some $v \in U$ by Proposition 3.11(b) if and only if $r \in (\mathfrak{a} : v)$ for some $v \in U$ if and only if $r \in \bigcup_{v \in U} (\mathfrak{a} : v)$.

(c) By Proposition 3.11(c), $U^{-1}\frac{R}{\mathfrak{a}} = 0$ if and only if $\frac{U^{-1}R}{U^{-1}\mathfrak{a}} = 0$. Note that $U^{-1}\mathfrak{a} = U^{-1}R$ if and only if $\frac{1}{1} \in U^{-1}\mathfrak{a}$ if and only if $1 \in \psi^{-1}(U^{-1}\mathfrak{a}) = \bigcup_{v \in U}(\mathfrak{a}:v)$ if and only if $U \cap \mathfrak{a} \neq \emptyset$ by (b). \Box

Corollary 3.14. Let $\mathfrak{p} \in \operatorname{Spec}(R)$ and $Q(R/\mathfrak{p})$ be the field of fraction. Then $R_{\mathfrak{p}} = U^{-1}R$ is local with maximal ideal $\mathfrak{p}_{\mathfrak{p}} := \mathfrak{p}R_{\mathfrak{p}} = U^{-1}\mathfrak{p}$ and $Q(R/\mathfrak{p}) \xleftarrow{\simeq} R_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$ given by $\overline{r}/\overline{u} \leftrightarrow \overline{r/u}$.

Proof. Note that $I \leq U^{-1}R$ if and only if there exists $\mathfrak{a} \leq R$ with $U \cap \mathfrak{a} = \emptyset$ such that $I = U^{-1}\mathfrak{a}$ by Proposition 3.13(a) and (c). Since $\max{\mathfrak{a} \leq R \mid U \cap \mathfrak{a} = \emptyset} = \mathfrak{p}$, m-Spec $(R_{\mathfrak{p}}) = {U^{-1}\mathfrak{p}}$.

Let $\tau : R \to R/\mathfrak{p}$ be the natural projection. Then by Proposition 3.11(c), $R_\mathfrak{p}/\mathfrak{p}_\mathfrak{p} = \frac{U^{-1}R}{U^{-1}\mathfrak{p}} \cong U^{-1}\frac{R}{\mathfrak{p}}^\dagger := \tau(U)^{-1}\frac{R}{\mathfrak{p}} = Q(R/\mathfrak{p}).$

Corollary 3.15. If $\mathfrak{m} \in \operatorname{m-Spec}(R)$, then $R_{\mathfrak{m}}/\mathfrak{m}_{\mathfrak{m}} \cong R/\mathfrak{m}$.

Proof. Since $\mathfrak{m} \in \mathrm{m-Spec}(R)$, R/\mathfrak{m} is a field. Hence by Corollary 3.14, $R_\mathfrak{m}/\mathfrak{m}_\mathfrak{m} \cong Q(R/\mathfrak{m}) = R/\mathfrak{m}$.

Example. (a) Let $p \in \mathbb{Z}$ be prime. Then $\langle p \rangle \in \text{m-Spec}(\mathbb{Z})$. Hence $\mathbb{Z}_{(p)}/(p)_{(p)} \cong \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$.

[†]In this case, some textbook denotes it $(R/\mathfrak{p})_{\mathfrak{p}}$.

(b) Let $a_1, \ldots, a_d \in k$. Then, similarly,

$$\frac{k[X_1, \dots, X_d]_{(X_1 - a_1, \dots, X_d - a_d)}}{(X_1 - a_1, \dots, X_d - a_d)_{(X_1 - a_1, \dots, X_d - a_d)}} \cong Q\left(\frac{k[X_1, \dots, X_d]}{(X_1 - a_1, \dots, X_d - a_d)}\right) \cong Q(k) = k$$

Let $\mathfrak{p} \in \operatorname{Spec}(R)$.

Question. $U \cap \mathfrak{p} = \emptyset$ if and only if $U^{-1}\mathfrak{p} \in \operatorname{Spec}(U^{-1}R)$ by prime correspondence for localization. What does $(U^{-1}R)_{U^{-1}\mathfrak{p}}$ look like?

Lemma 3.16. Let $U \cap \mathfrak{p} = \emptyset$. Let $\frac{r}{u} \in U^{-1}R$. Then $\frac{r}{u} \in U^{-1}\mathfrak{p}$ if and only if $r \in \mathfrak{p}$.

Proof. \Leftarrow follows from the definition.

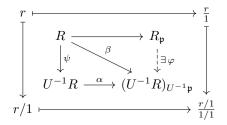
 \Rightarrow Assume $\frac{r}{u} \in U^{-1}\mathfrak{p}$. Then there exists $v \in U$ such that $vr \in \mathfrak{p} \in \operatorname{Spec}(R)$. Hence $v \in \mathfrak{p}$ or $r \in \mathfrak{p}$. Since $v \in U$ and $U \cap \mathfrak{p} = \emptyset$, we have that $v \notin \mathfrak{p}$. Hence $r \in \mathfrak{p}$.

Proposition 3.17. Let $U \cap \mathfrak{p} = \emptyset$. Then $U^{-1}\mathfrak{p} \in \operatorname{Spec}(U^{-1}R)$ and

$$(U^{-1}R)_{U^{-1}\mathfrak{p}} \xrightarrow{\cong} R_{\mathfrak{p}}$$

 $\frac{r/1}{s/1} \longleftrightarrow r/s \ s \in R \smallsetminus \mathfrak{p}$

Proof. We have that



Let $\beta = \alpha \circ \psi$. By proposition 3.5, to show φ is a well-defined ring homomorphism, it suffices to show $\beta(R \smallsetminus \mathfrak{p}) \subseteq ((U^{-1}R)_{U^{-1}\mathfrak{p}})^{\times}$ since $U \subseteq R \smallsetminus \mathfrak{p}$. Let $x \in R \backsim \mathfrak{p}$. Then $\beta(x) = \frac{x/1}{1/1}$. Since $x/1 \in U^{-1}R$ and $x \notin \mathfrak{p}$, we have that $x/1 \notin U^{-1}\mathfrak{p}$ by Lemma 3.16. Hence $\frac{x}{1}$ is an allowable denominator in $(U^{-1}R)_{U^{-1}\mathfrak{p}}$. Hence $\frac{1/1}{x/1} \in (U^{-1}R)_{U^{-1}\mathfrak{p}}$. Thus, $\frac{x/1}{1/1} \in ((U^{-1}R)_{U^{-1}\mathfrak{p}})^{\times}$ with $(\frac{x/1}{1/1})^{-1} = \frac{1/1}{x/1}$. Besides, by Proposition 3.5, we have that $\varphi(r/s) = \beta(r)/\beta(s) = \frac{r/1}{s/1}$ for $\frac{r}{s} \in R_{\mathfrak{p}}$.

Let $\frac{r}{s} \in R_{\mathfrak{p}}$. Then $\frac{r}{s} \in \operatorname{Ker}(\varphi)$ if and only if $0 = \varphi(\frac{r}{s}) = \frac{r/1}{s/1} \in (U^{-1}R)_{U^{-1}\mathfrak{p}}$ if and only if there exists $\frac{t}{v} \in U^{-1}R \setminus U^{-1}\mathfrak{p}$ with $t \in R \setminus \mathfrak{p}$ such that $\frac{tr}{v} = \frac{t}{v} \cdot \frac{r}{1} = 0$ in $U^{-1}R$ by Proposition 3.11(b) and Lemma 3.16 if and only if there exist $t \in R \setminus \mathfrak{p}$ and $w \in U \subseteq R \setminus \mathfrak{p}$ such that wtr = 0 in R by Proposition 3.11(b) if and only if there exists $v' \in U \subseteq R \setminus \mathfrak{p}$ such that v'r = 0 in R since $R \setminus \mathfrak{p}$ is multiplicatively closed if and only if $\frac{r}{s} = 0$ in $R_{\mathfrak{p}}$ by Proposition 3.11(b). Hence φ is 1-1.

Let $\frac{r/u}{s/v} \in (U^{-1}R)_{U^{-1}\mathfrak{p}}$ with $r \in R$, $u, v \in U \subseteq R \setminus \mathfrak{p}$ and $s \in R \setminus \mathfrak{p}$. Then $us \in R \setminus \mathfrak{p}$ since $R \setminus \mathfrak{p}$ is multiplicatively closed. Hence $\frac{vr}{us} \in R_{\mathfrak{p}}$. Also, since $\varphi(\frac{vr}{us}) = \frac{\beta(vr)}{\beta(us)} = \frac{vr/1}{us/1} = \frac{uv/1 \cdot r/u}{uv/1 \cdot s/v} = \frac{r/u}{s/v}$, we have that φ is onto.

Corollary 3.18. If $\mathfrak{q} \in \operatorname{Spec}(R)$ with $\mathfrak{p} \subseteq \mathfrak{q}$, then $\mathfrak{p}_{\mathfrak{q}} \in \operatorname{Spec}(R_{\mathfrak{q}})$ and $(R_{\mathfrak{q}})_{\mathfrak{p}_{\mathfrak{q}}} \stackrel{\cong}{\leftarrow} R_{\mathfrak{p}}$ given by $\frac{r/1}{s/1} \leftarrow r/s$.

Proof. Take $U = R \smallsetminus \mathfrak{q}$ in Proposition 3.17.

Example. (a) Let $0 \neq p \in \mathbb{Z}$ be prime. Then $(0) \subseteq (p) \subsetneq \mathbb{Z}$ and $\mathbb{Z}_{(p)} = \{\frac{m}{n} \in \mathbb{Q} \mid (n,p) = 1\}$ is a domain. Hence by Corollary 3.18, $Q(\mathbb{Z}_{(p)}) = (\mathbb{Z}_{(p)})_{(0)_{(p)}} \cong \mathbb{Z}_{(0)} = Q(\mathbb{Z}) = \mathbb{Q}$.

(b) Let R be a domain and $0 \notin U$. Then $U^{-1}R$ is a domain and $\mathfrak{p} := (0) \in \operatorname{Spec}(R)$. Hence $Q(U^{-1}R) = (U^{-1}R)_{U^{-1}(0)} \cong R_{(0)} = Q(R)$ by Proposition 3.17. In fact, the map $Q(U^{-1}R) \xleftarrow{\cong} Q(R)$ is given by $\frac{r/1}{s/1} \leftrightarrow r/s$.

Proposition 3.19. Let $R \neq 0$. Then $\text{NZD}(R) \subseteq R$ is multiplicatively closed. Moreover, it is *saturated*: if $r, s \in R$ such that $rs \in \text{NZD}(R)$, then $r, s \in \text{NZD}(R)$.

Proof. Since $R \neq 0, 1 \in \text{NZD}$. Let $r, s \in \text{NZD}(R)$. Assume (rs)t = 0 for some $t \in R$. Then r(st) = 0. Since $r \in \text{NZD}(R)$, st = 0. Also, since $s \in \text{NZD}(R)$, t = 0. Hence $rs \in \text{NZD}(R)$.

Let $x, y \in R$ such that $xy \in NZD(R)$. By symmetry, we need to show $x \in NZD(R)$. Assume xz = 0 for some $z \in R$. Then (xy)z = y(xz) = 0. Since $xy \in NZD(R)$, z = 0.

Definition 3.20. The total ring of fractions of R (or total quotient ring of R) is

$$Q(R) = NZD(R)^{-1}R$$

Example. (a) If R is an integral domain, then $NZD(R) = R \setminus \{0\}$ and $Q(R) = NZD(R)^{-1}(R) = (R \setminus 0)^{-1}(R) = Q(R)$. Hence the total ring of fractions of a domain is equal to the field of fraction.

(b) Let $R = \frac{k[X,Y,Z,W]}{\langle XY,YZ,ZW,XW \rangle}$, not an integral domain. Let $x = \overline{X}$, $y = \overline{Y}$, $z = \overline{Z}$ and $w = \overline{W}$. Since $\langle 0 \rangle R = \langle x, z \rangle \cap \langle y, w \rangle$ is a minimal primary decomposition, $\operatorname{Ass}_R(0) = \{\langle x, z \rangle, \langle y, w \rangle\}$. Hence $\operatorname{ZD}(R) = \bigcup_{\mathfrak{p} \in \operatorname{Ass}_R(0)} \mathfrak{p} = \langle x, z \rangle \cup \langle y, w \rangle$ by Corollary 4.34. Then $U := \operatorname{NZD}(R) = R \setminus \{\langle x, z \rangle \cup \langle y, w \rangle\}$.

By prime correspondence for localization, $\operatorname{Spec}(\operatorname{Q}(R)) = \{U^{-1}\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Spec}(R), \mathfrak{p} \cap U = \emptyset\} = \{U^{-1}\langle x, z \rangle, U^{-1}\langle y, w \rangle\}$. Let $\mathfrak{p}_1 = U^{-1}\langle x, z \rangle$ and $\mathfrak{p}_2 = U^{-1}\langle y, w \rangle$. Then by Proposition 3.12(b),

$$\mathfrak{p}_1 \cap \mathfrak{p}_2 = U^{-1}(\langle x, z \rangle \cap \langle y, w \rangle) = U^{-1}\langle xy, yz, zw, xw \rangle = 0.$$

Hence m-Spec $(U^{-1}R) = \{\mathfrak{p}_1, \mathfrak{p}_2\}$. Hence $\mathfrak{p}_1 + \mathfrak{p}_2 = U^{-1}R = \mathbb{Q}(R)$. Let $\pi_1 : R \to R/\langle x, z \rangle$ and $\pi_2 : R \to R/\langle y, w \rangle$ be natural surjections. Then by Chinese Remainder Theorem and Proposition 3.17 with $0 \notin \pi_1(R \smallsetminus \langle x, z \rangle \cup \langle y, w \rangle) = \pi_1(U)$ and $0 \notin \pi_2(U)$,

$$\begin{split} \mathbf{Q}(R) &\cong \frac{U^{-1}R}{\mathfrak{p}_1} \times \frac{U^{-1}R}{\mathfrak{p}_2} = Q\left(\frac{U^{-1}R}{\mathfrak{p}_1}\right) \times Q\left(\frac{U^{-1}R}{\mathfrak{p}_2}\right) \cong Q\left(U^{-1}\frac{R}{\langle x, z \rangle}\right) \times Q\left(U^{-1}\frac{R}{\langle y, w \rangle}\right) \\ &\cong \left(U^{-1}\frac{R}{\langle x, z \rangle}\right)_{U^{-1}(0)} \times \left(U^{-1}\frac{R}{\langle y, w \rangle}\right)_{U^{-1}(0)} \cong \left(\frac{R}{\langle x, z \rangle}\right)_{(0)} \times \left(\frac{R}{\langle y, w \rangle}\right)_{(0)} \\ &\cong Q\left(\frac{R}{\langle x, z \rangle}\right) \times Q\left(\frac{R}{\langle y, w \rangle}\right) \cong Q(k[Y, W]) \times Q(k[X, Z]) = k(Y, W) \times k(X, Z). \end{split}$$

Proposition 3.21. The natural ring homomorphism $\psi : R \to Q(R)$ is 1-1. Moreover, NZD(R) is the unique largest multiplicatively closed subset of R with this property.

Proof. Let $r \in R$. Then $r \in \text{Ker}(\psi)$ if and only if $\psi(r) = 0 = \frac{r}{1}$ in Q(R) if and only if there exists $v \in \text{NZD}(R)$ such that vr = 0 by Proposition 3.11(b)(b) if and only if r = 0. Hence ψ is 1-1.

Assume $U \subseteq R$ is multiplicatively closed such that the natural ring homomorphism $\phi : R \to U^{-1}R$ is 1-1. Let $u \in U$. Let $r \in R$ such that ur = 0. Then $\phi(r) = \frac{r}{1} = \frac{ur}{u} = \frac{0}{u} = 0$. Also, since ϕ is 1-1, r = 0. Hence $u \in \text{NZD}(R)$.

Question 3.22. Let $\varphi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$.

(a) When is $\mathfrak{p} \in \mathrm{Im}(\varphi^*)$?, i.e., when does there exist $\mathfrak{q} \in \mathrm{Spec}(S)$ such that $\mathfrak{p} = \varphi^{-1}(\mathfrak{q})$.

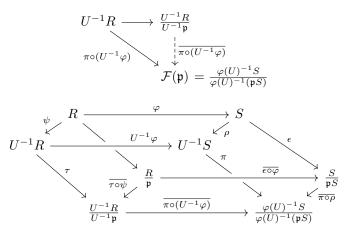
(b) What does $(\varphi^*)^{-1}(\mathfrak{p}) = \{\mathfrak{q} \in \operatorname{Spec}(S) \mid \varphi^*(\mathfrak{q}) = \mathfrak{p}\}$ look like? In general, if $f: Y \to X$ is a (continuous) function and $x \in X$, then $f^{-1}(x) = \{y \in Y \mid f(y) = x\}$ = fibre over x w.r.t. f.

Construction 3.23. Let $U = R \setminus \mathfrak{p}$.

$$\begin{split} R & \xrightarrow{\varphi} S \\ & \downarrow^{\psi} & \downarrow^{\rho} \\ U^{-1}R & \xrightarrow{U^{-1}\varphi} U^{-1}S \\ & \downarrow^{\tau} & \downarrow^{\pi} \\ Q(R/\mathfrak{p}) &\cong \frac{R_{\mathfrak{p}}}{\mathfrak{p}_{\mathfrak{p}}} = \frac{U^{-1}R}{U^{-1}\mathfrak{p}U^{-1}R} \xrightarrow{\overline{\pi \circ U^{-1}\varphi}} \frac{U^{-1}S}{\mathfrak{p} \cdot U^{-1}S} \coloneqq \frac{U^{-1}S}{\mathfrak{p} \cdot U^{-1}S} \coloneqq \frac{U^{-1}S}{U^{-1}\mathfrak{p} \cdot U^{-1}S} \\ & & \parallel \\ & \mathcal{F}(\mathfrak{p}) & \Longrightarrow \frac{S_{\mathfrak{p}}}{\mathfrak{p} \cdot S_{\mathfrak{p}}} \coloneqq \frac{\varphi(U)^{-1}S}{\varphi(U)^{-1}(\mathfrak{p}S)} \end{split}$$

Note that $\mathfrak{p} \cdot U^{-1}S$ is the extension of \mathfrak{p} along $\rho \circ \varphi$, $\mathfrak{p}S \cdot U^{-1}S$ is the extension of $\mathfrak{p}S$ along ρ , and $U^{-1}\mathfrak{p} \cdot U^{-1}S$ is the extension of $U^{-1}\mathfrak{p}$ along $U^{-1}\varphi$. $\mathcal{F}(\mathfrak{p})$ is fibre over \mathfrak{p} w.r.t. φ .

Let $\frac{p}{u} \in U^{-1}\mathfrak{p}$ with $p \in \mathfrak{p}$ and $u \in U$. Then $\pi \circ (U^{-1}\varphi)(\frac{p}{u}) = \pi(\frac{\varphi(p)}{\varphi(u)}) = 0$ in $\frac{\varphi(U)^{-1}S}{\varphi(U)^{-1}(\mathfrak{p}S)}$ since $\varphi(p) \subseteq \mathfrak{p}S$. Hence by Construction 1.13, $\overline{\pi \circ (U^{-1}\varphi)}$ is a well-defined ring homomorphism.



Let $\bar{r} \in \frac{R}{\mathfrak{p}}$ with $r \in R$. Then

$$\overline{\pi \circ (U^{-1}\varphi)} \circ (\overline{\tau \circ \psi})(\overline{r}) = \overline{\pi \circ (U^{-1}\varphi)}(\tau \circ \psi(r)) = \overline{\pi \circ (U^{-1}\varphi)}\left(\frac{\overline{r}}{1}\right) = \pi \circ (U^{-1}\varphi)\left(\frac{r}{1}\right) = \frac{\overline{\varphi(r)}}{\overline{\varphi(1)}} = \frac{\overline{\varphi(r)}}{1}$$

and

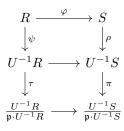
$$\overline{\pi \circ \rho} \circ \overline{\epsilon \circ \varphi}(\overline{r}) = \overline{\pi \circ \rho}(\epsilon \circ \rho)(r) = \overline{\pi \circ \rho}(\overline{\phi(r)}) = \pi \circ \rho(\phi(r)) = \frac{\varphi(1)}{1}$$

Hence the diagram on the bottom also commutes.

Theorem 3.24. Let φ^* : Spec $(S) \to$ Spec(R) and $U = R \setminus \mathfrak{p}$. Then the following are equivalent. (i) $\mathfrak{p} \in \text{Im}(\varphi^*)$, i.e., $(\varphi^*)^{-1}(\mathfrak{p}) \neq \emptyset$.

- (ii) $\mathfrak{p} = \varphi^{-1}(\mathfrak{p}S)$, where $\mathfrak{p}S$ is not necessarily prime.
- (iii) $\mathfrak{p} \cdot U^{-1}S \neq U^{-1}S$, i.e., $\mathcal{F}(\mathfrak{p}) = \frac{U^{-1}S}{\mathfrak{p} \cdot U^{-1}S} \neq 0$.

Moreover, the map θ : Spec $(\mathcal{F}(\mathfrak{p})) \to (\varphi^*)^{-1}(\mathfrak{p}) \subseteq$ Spec(S) given by $\theta(Q) = \rho^{-1}(\pi^{-1}(Q))$ is a well-defined bijection, where $(\varphi^*)^{-1}(\mathfrak{p})$ is the fibre over \mathfrak{p} w.r.t. φ^* : Spec $(S) \to$ Spec(R).



Proof. (i) \Longrightarrow (ii) Assume there is $\mathfrak{q} \in \operatorname{Spec}(S)$ such that $\mathfrak{p} = \varphi^{-1}(\mathfrak{q})$. Then by Proposition 1.63(b), $\mathfrak{p} = \varphi^{-1}(\mathfrak{q}) = \varphi^{-1}(\varphi^{-1}(\mathfrak{q})S) = \varphi^{-1}(\mathfrak{p}S)$.

(ii) \Longrightarrow (iii). Assume $\mathfrak{p} = \varphi^{-1}(\mathfrak{p}S)$. Note that

$$\mathfrak{p} \cdot U^{-1}S = \mathfrak{p}S \cdot U^{-1}S = \mathfrak{p}S \cdot \varphi(U)^{-1}S = \varphi(U)^{-1}(\mathfrak{p}S).$$

To show that $\varphi(U)^{-1}(\mathfrak{p}S) \neq \varphi(U)^{-1}S$, it is equivalent to show that $\mathfrak{p}S \cap \varphi(U) = \emptyset$ by Proposition 3.13(c). Suppose $\varphi(u) \in \mathfrak{p}S \cap \varphi(U)$ for some $u \in U$. Then $u \in \varphi^{-1}(\mathfrak{p}S) = \mathfrak{p} = R \setminus U$, a contradiction.

(iii) \Longrightarrow (i) and well-definedness of θ : It suffices to show that $\varphi^*(\theta(Q)) = \mathfrak{p}$ for $Q \in \operatorname{Spec}(\frac{U^{-1}S}{\mathfrak{p}\cdot U^{-1}S})$, i.e., $\varphi^{-1}(\rho^{-1}(\pi^{-1}(Q))) = \mathfrak{p}$. Let $\mathfrak{q} := \pi^{-1}(Q) \in \operatorname{Spec}(U^{-1}S)$. Then by prime correspondence for quotients, we have that $\mathfrak{p} \cdot U^{-1}S \subseteq \pi^{-1}(Q) = \mathfrak{q}$ and $Q = \frac{\mathfrak{q}}{\mathfrak{p}\cdot U^{-1}S}$. Since $\mathfrak{q} \in \operatorname{Spec}(U^{-1}S)$, by prime correspondence for localization $\operatorname{Spec}(U^{-1}S) \xrightarrow{\rho^{-1}} \operatorname{Spec}(S)$, for $\mathfrak{r} := \rho^{-1}(\mathfrak{q}) = \rho^{-1}(\pi^{-1}(Q)) \in \operatorname{Spec}(S)$ with $\mathfrak{r} \cap \varphi(U) = \emptyset$, we have that

$$\mathfrak{q} = \mathfrak{r} \cdot U^{-1}S = \mathfrak{r} \cdot \varphi(U)^{-1}S = \varphi(U)^{-1}\mathfrak{r}.$$

Hence by Proposition 1.63(a),

$$\mathfrak{p} \subseteq \varphi^{-1} \circ \rho^{-1}(\mathfrak{p} \cdot U^{-1}S) \subseteq \varphi^{-1}(\rho^{-1}(\pi^{-1}(Q))) = \varphi^{-1}(\mathfrak{r}).$$

Suppose $\mathfrak{p} \subsetneq \varphi^{-1}(\mathfrak{r})$. Then there exists $x \in \varphi^{-1}(\mathfrak{r})$ such that $x \in R \smallsetminus \mathfrak{p} = U$. Hence $\varphi(x) \in \mathfrak{r} \cap \varphi(U) = \emptyset$, a contradiction. Thus, $\mathfrak{p} = \varphi^{-1}(\mathfrak{r}) = \varphi^{-1}(\rho^{-1}(\pi^{-1}(Q)))$.

By prime correspondence for quotients, π^* is 1-1 and by prime correspondence for localization, ρ^* is 1-1. Since

$$\theta: \operatorname{Spec}(\mathcal{F}(\mathfrak{p})) \xrightarrow{\pi^*} \operatorname{V}(\mathfrak{p} \cdot U^{-1}S) \xrightarrow{\rho^*|_{\operatorname{restriction}}} (\varphi^*)^{-1}(\mathfrak{p}),$$

Let $\mathbf{q} \in (\varphi^*)^{-1}(\mathbf{p})$. Then $\mathbf{q} \in \operatorname{Spec}(S)$ such that $\varphi^{-1}(\mathbf{q}) = \mathbf{p} \in \operatorname{Spec}(R)$. Since, $\mathbf{p} \cup U = \emptyset$, $\mathbf{q} \cap \varphi(U) = \emptyset$. Hence $\mathbf{q} \cdot U^{-1}S = \mathbf{q} \cdot \varphi(U)^{-1}S = \varphi(U)^{-1}\mathbf{q} \in \operatorname{Spec}(U^{-1}S)$ such that $\rho^{-1}(\mathbf{q} \cdot U^{-1}S) = \mathbf{q}$. Since $\varphi^{-1}(\mathbf{q}) = \mathbf{p}$, we have that $\mathbf{p}S = \varphi^{-1}(\mathbf{q})S \subseteq \mathbf{q}$ by Proposition 1.63(a). Hence $\mathbf{p} \cdot U^{-1}S = \mathbf{p}S \cdot U^{-1}S \subseteq \mathbf{q} \cdot U^{-1}S$. Hence by prime correspondence for quotients, $\frac{\mathbf{q} \cdot U^{-1}S}{\mathbf{p} \cdot U^{-1}S} \in \operatorname{Spec}(\frac{U^{-1}S}{\mathbf{p} \cdot U^{-1}S})$ such that $\pi^{-1}(\frac{\mathbf{q} \cdot U^{-1}S}{\mathbf{p} \cdot U^{-1}S}) = \mathbf{q} \cdot U^{-1}S$. Hence

$$\theta\left(\frac{\mathfrak{q}\cdot U^{-1}S}{\mathfrak{p}U^{-1}S}\right) = \rho^{-1}\left(\pi^{-1}\left(\frac{\mathfrak{q}\cdot U^{-1}S}{\mathfrak{p}U^{-1}S}\right)\right) = \rho^{-1}(\mathfrak{q}\cdot U^{-1}S) = \mathfrak{q}.$$

Thus, θ is onto.

Proposition 3.25. If (R, \mathfrak{m}) is local, then $\mathcal{F}(\mathfrak{m}) \cong \frac{S}{\mathfrak{m} \cdot S}$.

Proof. Since (R, \mathfrak{m}) is local, we have that $U := R \setminus \mathfrak{m} = R^{\times}$ by Proposition 1.22. Hence $U^{-1}(-) \cong -$, e.g., $\mathcal{F}(\mathfrak{m}) = \frac{U^{-1}S}{\mathfrak{m} \cdot U^{-1}S} \cong \frac{S}{\mathfrak{m} \cdot S}$.

Definition 3.26. (a) If (R, \mathfrak{m}) is local, then $\mathcal{F}(\mathfrak{m}) \cong S/\mathfrak{m}S$ is the *closed fibre* of φ (fibre over unique closed point of Spec(R)).

(b) If R is an integral domain, then $\mathcal{F}(0)$ is the *generic fibre* of φ (fibre over the generic point of R).

Example 3.27. (a) Let $\varphi : R \stackrel{\subseteq}{\hookrightarrow} R[X_1, \ldots, R_d].$

(1) If (R, \mathfrak{m}) is local, then

$$\mathcal{F}(\mathfrak{m}) \cong \frac{R[X_1, \dots, X_d]}{\mathfrak{m} \cdot R[X_1, \dots, X_d]} = \frac{R[X_1, \dots, X_d]}{\mathfrak{m}[X_1, \dots, X_d]} \cong \frac{R}{\mathfrak{m}}[X_1, \dots, X_d].$$

(2) If $\mathfrak{p} \in \operatorname{Spec}(R)$, then with $U = R \setminus \mathfrak{p}$, we have that

$$\mathcal{F}(\mathfrak{p}) = \frac{U^{-1}(R[X_1, \dots, X_d])}{\mathfrak{p} \cdot U^{-1}(R[X_1, \dots, X_d])} \cong \frac{(U^{-1}R)[X_1, \dots, X_n]}{(\mathfrak{p}U^{-1}R)[X_1, \dots, X_n]} \cong \frac{R_\mathfrak{p}}{\mathfrak{p}}[X_1, \dots, X_n] \cong Q\Big(\frac{R}{\mathfrak{p}}\Big)[X_1, \dots, X_d]$$

since $U^{-1}(R[X]) \cong (U^{-1}R)[X]$ defined by $\frac{\sum_{i=1}^{\text{finite}} r_i x^i}{u} \mapsto \sum_{i=1}^{\text{finite}} \frac{r_i}{u} x^i$.

(b) Let $R \stackrel{\subseteq}{\hookrightarrow} R[\![X_1, \dots, X_d]\!].$

(1) If (R, \mathfrak{m}) is local, then $\mathcal{F}(\mathfrak{m}) \cong \frac{R}{\mathfrak{m}} \llbracket X_1, \dots, X_d \rrbracket$ similarly.

(c) Let k be a field and $\varphi: k[X_1, \ldots, X_d] \stackrel{\subseteq}{\hookrightarrow} k[\![X_1, \ldots, X_d]\!].$

(1) Let $\mathfrak{m} = \langle X_1, \dots, X_d \rangle = k[X_1, \dots, X_d]$ be maximal. Then $\mathfrak{m} \cdot k[\![X_1, \dots, X_d]\!] = \langle X_1, \dots, X_d \rangle \leq k[\![X_1, \dots, X_d]\!]$. Hence with $U = k[X_1, \dots, X_d] \smallsetminus \mathfrak{m}$,

$$\mathcal{F}(\mathfrak{m}) = \frac{U^{-1}(k[\![X_1, \dots, X_d]\!])}{\mathfrak{m} \cdot U^{-1}(k[\![X_1, \dots, X_d]\!])} \cong \frac{k[\![X_1, \dots, X_d]\!]}{\mathfrak{m} \cdot k[\![X_1, \dots, X_d]\!]} \cong \frac{k[\![X_1, \dots, X_d]\!]}{\langle X_1, \dots, X_d \rangle} \cong k$$

since $U^{-1}(R[X]) \cong (U^{-1}R)[X]$ given by $\frac{\sum_{i=1}^{\infty} r_i x^i}{u} \mapsto \sum_{i=1}^{\infty} \frac{r_i}{u} x^i$. (2) $\mathcal{F}(0)$ is weired, which has chains of prime ideals of length d-1.

Chapter 4

Primary Decomposition

Let R be a nonzero commutative ring with identity.

Discussion 4.1. UFD's have prime factorization. In fact, it is "if and only if". Aternative versions for non-UFD's.

(a) Irreducible factorizations:

Pros	Cons
familiar	don't necessarily exist

(b) Primary decompositions:

<u>Pros</u> exist, e.g., if R is noetherian, there exists more general form than just for principal ideal <u>Cons</u> replace factorizations of elements with intersections of nice ideals

Theorem 4.2. Let R be a noetherian integral domain and $a \in R \setminus \{R^{\times} \cup 0\}$.

(a) a has an irreducible factor in R.

(b) There exist irreducible $b_1, \ldots, b_n \in R$ such that $a = b_1 \cdots b_n$.

Proof. (a) Let $\Sigma = \{ \langle b \rangle \neq R : b \mid a \}$. Since $\langle a \rangle \in \Sigma, \Sigma \neq \emptyset$. Since R is noetherian, Σ has a maximal element, say $\langle b \rangle$. We claim that $\langle b \rangle$ is irreducible. Since $a \neq 0$ and $b \mid a$, we have that $b \neq 0$. Since $\langle b \rangle \neq R$, $b \notin R^{\times}$. Suppose b = cd for some $c \in R \setminus R^{\times}$ and $d \in R$. Since $c \mid b \mid a$, we have that $c \mid a$. Also, since $c \notin R^{\times}, \langle c \rangle \in \Sigma$. Since $\langle b \rangle \subseteq \langle c \rangle \subsetneq R$ and $\langle b \rangle$ is maximal in Σ , we have that $\langle cd \rangle = \langle b \rangle = \langle c \rangle$. Also, since R is an integral domain, $d \in R^{\times}$. Hence b is irreducible in R.

(b) If a is irreducible, then done. Else by (a) there exists $b_1 \in R$ irreducible such that $b_1 \mid a$ and $a = b_1a_1$ for some $a_1 \in R$. If a_1 is irreducible, then done. Else by (a) there exists irreducible $b_2 \in R$ such that $b_2 \mid a_1$ and $a_1 = b_2a_2$ for some $a_2 \in R$. If a_2 is irreducible, then done and we have that $\langle a \rangle \subsetneq \langle a_1 \rangle \subsetneq \langle a_2 \rangle$. Since R is noetherian, by the ascending chain condition, the process will terminate in finite number of steps.

Example 4.3. (a) Let k be a field and $A = k[X^{\mathbb{R}_{\geq 0}}] := \{\sum_{i \in \mathbb{R}_{\geq 0}}^{\text{finite}} a_i X^i \mid a_i \in k\}$. Let $\mathfrak{m} = \langle X^{\mathbb{R}_{\geq 0}} \rangle \leq A$. Then $\mathfrak{m} \in \text{m-Spec}(R)$ and $A/\mathfrak{m} \cong k$. Let $R = A_\mathfrak{m}$. Then $A \setminus \mathfrak{m} \subseteq R^{\times}$. Since X has no irreducible factors in R, X has no irreducible factorization. Let $r \in R \setminus \{R^{\times} \cup 0\}$. Then $r = X^{\epsilon} \cdot f$ for some $\epsilon > 0$ and $f \in R \setminus \{0\}$. Since $X^{\epsilon} \cdot f = X^{\frac{\epsilon}{2}} \cdot X^{\frac{\epsilon}{2}} \cdot f$. Hence r is not irreducible in R. Thus, R has no irreducible elements.

(b) In \mathbb{Z}_6 , we have that $3^2 = 3$, $2^2 = 4$, $2^3 = 2$.

Definition 4.4. If R satisfies the condition of Theorem 4.2(b), then R is *atomic*.

Lemma 4.5 (Nakayama's Lemma). Let $I, J \leq R$ such that $I \subseteq \text{Jac}(R)$ and J is finitely generated. If J = IJ, then J = 0.

Proof. Let n be the minimum number of generators of J. Suppose $n \ge 2$. Since J is finitely generated, $IJ = J = \langle x_1, \ldots, x_n \rangle$ for some $x_1, \ldots, x_n \in J$. Hence $x_n \in IJ$ and then $x_n = \sum_{i=1}^n a_i x_i$ for some $a_1, \ldots, a_n \in I$, i.e., $x_n(1 - a_n) = \sum_{i=1}^{n-1} a_i x_i$. Since $a_n \in I \subseteq \text{Jac}(R)$, $1 - a_n \in R^{\times}$ by Proposition 1.29. Hence $x_n \in \langle x_1, \ldots, x_{n-1} \rangle$, contradicting minimality of n. Hence n = 1 or 0. If n = 1, similarly, we have that $x_1(1 - a_1) = 0$ for some $a_1 \in I$ with $1 - a_1 \in R^{\times}$, so $x_1 = 0$, a contradiction. Thus, n = 0.

Lemma 4.6. Let (R, \mathfrak{m}) be local and $0 \neq b = cd$ with $b, c, d \in R$ such that $\langle b \rangle = \langle c \rangle$. Then $d \in R^{\times}$.

Proof. Since b = cd and $\langle b \rangle = \langle c \rangle$, we have that $\langle c \rangle = \langle b \rangle = \langle cd \rangle = \langle d \rangle \langle c \rangle$. Suppose $d \notin R^{\times}$. Then $\langle d \rangle \subseteq \mathfrak{m} = \operatorname{Jac}(R)$. Hence by Lemma 4.5, c = 0. Hence b = cd = 0, a contradiction. Thus, $d \in R^{\times}$.

Theorem 4.7. Let (R, \mathfrak{m}) be local and noetherian. Let $a \in R \setminus \{R^{\times} \cup 0\}$.

- (a) a has an irreducible factor in R.
- (b) $a = b_1 \cdots b_n$ for some irreducible elements $b_1, \ldots, b_n \in R$.

Proof. It is similar to the proof of Theorem 4.2.

Discussion 4.8. Let R be noetherian and (local or a domain). Let $a \in R \setminus \{R^{\times} \cup 0\}$ with irreducible factorization $a = b_1 \cdots b_n$. Then $V(a) = V(b_1 \cdots b_n) = V(b_1) \cup \cdots V(b_n)$, which are not necessarily an irreducible decomposition.

Example 4.9. Let

$$R = \frac{k[X, Y, Z]_{(X,Y,Z)}}{(X^2 - YZ)} \cong \frac{k[X, Y, Z]_{(X,Y,Z)}}{(X^2 - YZ)_{(X,Y,Z)}} \cong \left(\frac{k[X, Y, Z]}{(X^2 - YZ)}\right)_{(X,Y,Z)}$$

or $R = \frac{k[\![X,Y,Z]\!]}{(X^2-YZ)}$. Since $X^2 - YZ \in k[Y,Z][X]$ and Y is prime (irreducible) in k[Y,Z][X], by Eisenstein's Criterion, $X^2 - YZ$ is irreducible in k[X,Y,Z]. Since $(k[\![X,Y,Z]\!], \langle X,Y,Z \rangle)$ is local, $\frac{k[\![X,Y,Z]\!]}{(X^2-YZ)}$ is local. Hence R is a local, noetherian and integral domain. Let $x = \overline{X} \in R$, which is irreducible. Let $y = \overline{Y}, z = \overline{Z} \in R$. Since $(x,z) \in V(x) \smallsetminus V(y)$ and $(x,y) \in V(x) \smallsetminus V(z)$, $V(x) \neq V(y)$ and $V(x) \neq V(z)$. Also, since $V(x) = V(x^2) = V(yz) = V(y) \cup V(z)$, we have that V(x) is not irreducible in Spec(R).

Primary decomposition does the job.

Definition 4.10. An ideal $q \leq R$ is *primary* if $xy \in q$ with $x, y \in R$, then $x \in q$ or $y \in rad(q)$, i.e., if $\overline{x}\overline{y} = 0$ with $\overline{x}, \overline{y} \in R/q$, then $\overline{x} = 0$ or $\overline{y} \in Nil(R/q)$, i.e., if $xy \in q$ with $x, y \in R$, then $x \in q$ or $y \in q$ or $x, y \in rad(q)$, i.e., if Nil(R/q) = ZD(R/q).

Example 4.11. We have the following examples.

(a) If $\mathfrak{p} \in \operatorname{Spec}(R)$, then \mathfrak{p} is primary since $\operatorname{rad}(\mathfrak{p}) = \mathfrak{p}$.

(b) If $\mathfrak{m} \in \operatorname{Spec}(R)$ and $\mathfrak{q} \leq R$ such that $\mathfrak{m}^n \subseteq \mathfrak{q} \subseteq \mathfrak{m}$ for some $n \geq 1$, then \mathfrak{q} is primary. In particular, \mathfrak{m}^n is primary for $n \geq 1$.

Proof. Let $xy \in \mathfrak{q} \subseteq \mathfrak{m}$ with $x, y \in R$. Assume $y \notin \operatorname{rad}(\mathfrak{q})$. Since $\operatorname{rad}(\mathfrak{m}) = \operatorname{rad}(\mathfrak{m}^n) \subseteq \operatorname{rad}(\mathfrak{q}) \subseteq \operatorname{rad}(\mathfrak{m})$, we have that $\operatorname{rad}(\mathfrak{q}) = \operatorname{rad}(\mathfrak{m}) = \mathfrak{m} \in \operatorname{m-Spec}(R)$. Hence $\langle y, \mathfrak{m} \rangle = R$. As in Proposition 1.46(b), we can show $\langle y, \mathfrak{m}^n \rangle = R$ by Proposition 1.39(a). Hence $1 = zy + \alpha$ for some $z \in R$ and $\alpha \in \mathfrak{m}^n \subseteq \mathfrak{q}$. Also, since $xy \in \mathfrak{q}, x = x(zy + \alpha) = (xy)z + x\alpha \in \mathfrak{q}$.

(c) Proof of (b) shows that if $\mathfrak{q} \leq R$ such that $\operatorname{rad}(\mathfrak{q}) = \mathfrak{m} \in \operatorname{m-Spec}(R)$, then \mathfrak{q} is primary.

Alternating proof of (b). Let $\bar{x}, \bar{y} \in \overline{R} := R/\mathfrak{q}$ such that $\bar{x}\bar{y} = 0$. Let $\mathfrak{p}/\mathfrak{q} \in \operatorname{Spec}(\overline{R})$ with $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\mathfrak{p} \supseteq \mathfrak{q} \supseteq \mathfrak{m}^n$. Then

$$R \supseteq \mathfrak{p} = \operatorname{rad}(\mathfrak{p}) \supseteq \operatorname{rad}(\mathfrak{q}) \supseteq \operatorname{rad}(\mathfrak{m}^n) = \mathfrak{m} \in \operatorname{Spec}(R).$$

Hence $\mathfrak{p} = \mathfrak{m}$. Hence $\text{Spec}(\overline{R}) = {\mathfrak{m}/\mathfrak{q}}$. Hence $(\overline{R}, \mathfrak{m}/\mathfrak{q})$ is local. If $\overline{y} \in \mathfrak{m}/\mathfrak{q} = \text{Nil}(R/\mathfrak{q})$ by Proposition 1.26(d), done. Assume now $\overline{y} \notin \text{Nil}(R/\mathfrak{q}) = \mathfrak{m}/\mathfrak{q}$. Then $\overline{y} \in \overline{R}^{\times}$ by Proposition 1.22. Also, since $\overline{xy} = 0$ in $\overline{R}, \overline{x} = 0$.

(d) Let $p \in \mathbb{Z}$ be prime. Then $\langle p \rangle$ is maximal and so $\langle p^n \rangle$ is primary by (b).

Example 4.12. We have the following examples.

(a) If R is a UFD and $p \in R$ is prime, then $\langle p^n \rangle$ is primary.

(b) Let $R = \frac{k \llbracket X, Y, Z \rrbracket}{\langle X^2 - YZ \rangle}$ and $x = \overline{X} \in R$. Then x is irreducible. Note that

$$R/\langle x\rangle = \frac{k[\![X,Y,Z]\!]}{\langle X^2 - YZ \rangle}/\langle x\rangle \cong \frac{k[\![X,Y,Z]\!]}{\langle X,X^2 - YZ \rangle} = \frac{k[\![X,Y,Z]\!]}{\langle X,YZ \rangle} \cong \frac{k[\![Y,Z]\!]}{\langle YZ \rangle}.$$

Let $y = \overline{Y}, z = \overline{Z} \in \frac{k[Y,Z]}{\langle YZ \rangle}$. Then yz = 0 with $y, z \neq 0$. Hence $y, z \notin (0) = \operatorname{rad}(0) = \operatorname{Nil}(R/\langle x \rangle)$. Thus, $\langle x \rangle$ is not primary.

(c) Let $R = k[X_1, \ldots, X_d]$. Then $I = \langle X_{i_1}^{e_1}, \cdots, X_{i_n}^{e_n} \rangle$ with $e_1, \ldots, e_n \ge 1$ is primary.

Let $J = \langle X_1^{e_1}, \ldots, X_d^{e_d}, f_1, \ldots, f_n \rangle \leq R$ with $e_1, \ldots, e_d \geq 1$ and $f_1, \ldots, f_n \in R \setminus R^{\times}$. Since $\operatorname{rad}(J) = \langle X_1, \ldots, X_d \rangle \in \operatorname{m-Spec}(R)$, by Example 4.11(c), we have that J is primary.

(d) Let R = k[X, Y, Z] and $I = \langle X^2, XY \rangle$. Then $rad(I) = \langle X \rangle$. Since $XY \in I$ with $X \notin I$ and $Y \notin rad(I)$, I is not primary.

Let $J = \langle X, YZ \rangle$. Then $R/J = \frac{k[X,Y,Z]}{\langle X,YZ \rangle} \cong \frac{k[Y,Z]}{\langle YZ \rangle}$. Hence similar to (b), we have that J is not primary.

Proof. (a) Let $xy \in \langle p^n \rangle$ with $x, y \in R$. If $y \in \operatorname{rad}(\langle p^n \rangle) = \langle p \rangle$, then done. Assume $y \notin \langle p \rangle$. Then $p \nmid y$. Since $xy \in \langle p^n \rangle$, $p^n \mid xy$. Since xy has a unique factorization and $p \nmid y$, $p^n \mid x$, i.e., $x \in \langle p^n \rangle$.

(c) Assume by symmetry $I = \langle X_1^{e_1}, \ldots, X_n^{e_n} \rangle$. Let $f, g \in R$ such that $fg \in I$. If $f \in I$, then done. Assume $f \notin I$. Let $f = \sum_{i=1}^s a_i f_i$ for some $s \ge 1$, $a_i \in R \smallsetminus \{0\}$ and $f_i \in R$ monomial for $i = 1, \ldots, s$ and $g = \sum_{i=1}^t b_i g_i$ for some $t \ge 1$, $b_i \in R \smallsetminus \{0\}$ and $g_i \in R$ monomial for $i = 1, \ldots, t$. Since $f \notin I$, $f_i \notin I$ for some $i \in \{1, \ldots, s\}$. Let $f = \tilde{f} + \hat{f}$, where \hat{f} are all monomials in I and \tilde{f} are all monomials not in I. Since $\tilde{f}g + \hat{f}g \in I = fg \in I$ and $\hat{f}g \in I$, $\tilde{f}g \in I$. Use a monomial ordering, e.g. lexicographical order, assume f_s is the largest monomial occuring in \tilde{f} and g_t is the largest monomial occuring in g. Then $f_s g_t$ is the largest monomial occuring in $\tilde{f}g \in I$. Hence $f_s g_t \in I$. Since the monomial $f_s \notin I$, $X_i^{e_i} \nmid f_s$ for $i = 1, \ldots, n$. Hence g_t is not a constant in R and hence $X_j \mid g_t$ for some $j \in \{1, \ldots, n\}$. Then $g_t \in \langle X_1, \ldots, X_n \rangle = \operatorname{rad}(\langle X_1^{e_1}, \ldots, X_n^{e_n} \rangle) = \operatorname{rad}(I)$. Hence $g = \sum_{i=1}^{t-1} b_i g_i + b_t g_t$ with $b_t g_t \in \operatorname{rad}(I)$. Induct on t, we have that $b_i g_i \in \operatorname{rad}(I)$ for all $i = 1, \ldots, t$. Thus, $g \in \operatorname{rad}(I)$.

Let $\mathfrak{a} \leq R$ for the rest of this section.

Definition 4.13. \mathfrak{a} is *reducible* if $\mathfrak{a} = I \cap J$ for some $I, J \leq R$ with $I \neq \mathfrak{a}$ and $J \neq \mathfrak{a}$. \mathfrak{a} is *irreducible* if it is not reducible, i.e., if $\mathfrak{a} = I \cap J$ for some $I, J \leq R$, then $I = \mathfrak{a}$ or $J = \mathfrak{a}$.

Example 4.14. (a) If $\mathfrak{p} \in \operatorname{Spec}(R)$, then \mathfrak{p} is irreducible.

(b) If \mathfrak{a} is primary in R, then \mathfrak{q} may not be irreducible.

Proof. (a) Assume $\mathfrak{p} = I \cap J$ for some $I, J \leq R$. Then $\mathfrak{p} = I \cap J \supseteq IJ$ by Fact 1.38(f). Since $\mathfrak{p} \in \operatorname{Spec}(R), \mathfrak{p} \supseteq I$ or $\mathfrak{p} \supseteq J$. Hence $I \supseteq I \cap J = \mathfrak{p} \supseteq I$ or $J \supseteq I \cap J = \mathfrak{p} \supseteq J$. Hence $\mathfrak{p} = I$ or $\mathfrak{p} = J$.

(b) Counterexample. In R = k[X, Y], let $\mathfrak{a} = \langle X^2, XY, Y^2 \rangle$, then by Example 4.11(c), \mathfrak{a} is primary since rad(\mathfrak{a}) = $\langle X, Y \rangle \in \text{m-Spec}(R)$, but \mathfrak{a} is not irreducible since $\mathfrak{a} = \langle X, Y^2 \rangle \cap \langle X^2, Y \rangle$.

Proposition 4.15. Let R be notherian. If \mathfrak{a} is irreducible, then \mathfrak{a} is primary.

Proof. Case 1. Assume $\mathfrak{a} = 0$. Let $x, y \in R$ such that xy = 0. If x = 0, then done. Assume $x \neq 0$. Note that $(0:y) \subseteq (0:y^2) \subseteq (0:y^3) \subseteq \cdots$. Since R is noetherian, $(0:y^n) = (0:y^{n+1})$ for some $n \geq 1$. Let $z \in \langle x \rangle \cap \langle y^n \rangle$. Then $xs = z = y^n t$ for some $s \in R$ and $t \in R$. Hence $y^{n+1}t = xys = 0$, i.e., $t \in (0:y^{n+1}) = (0:y^n)$. Hence $z = y^n t = 0$. Hence $\langle x \rangle \cap \langle y^n \rangle = 0 = \mathfrak{a}$. Also, since \mathfrak{a} is irreducible and $\langle x \rangle \neq 0$, we have that $\langle y^n \rangle = 0$, i.e., $y^n = 0$. Hence $y \in \operatorname{rad}(0) = \operatorname{rad}(\mathfrak{a})$. Thus, \mathfrak{a} is primary.

Case 2. Assume \mathfrak{a} is arbitrary. To show \mathfrak{a} is primary, by Case 1 it suffices to show $(0) \lneq R/\mathfrak{a}$ is irreducible. Let $I, J \leq R/\mathfrak{a}$ such that $0 = I \cap J = \frac{\tilde{I}}{\mathfrak{a}} \cap \frac{\tilde{J}}{\mathfrak{a}} = \frac{\tilde{I} \cap \tilde{J}}{\mathfrak{a}}$ for some $\mathfrak{a} \leq \tilde{I}, \tilde{J} \leq R$ ($\mathfrak{a} \leq \tilde{I} \cap \tilde{J}$). Hence $\tilde{I} \cap \tilde{J} = \mathfrak{a}$. Also, since \mathfrak{a} is irreducible, $\tilde{I} = \mathfrak{a}$ or $\tilde{J} = \mathfrak{a}$. Hence $I = \frac{\tilde{I}}{\mathfrak{a}} = 0$ or $J = \frac{\tilde{J}}{\mathfrak{a}} = 0$. \Box

Definition 4.16. A primary decomposition of \mathfrak{a} is $\mathfrak{a} = \bigcap_{i=1}^{n} J_i$ such that J_1, \ldots, J_n are primary.

Theorem 4.17 (Noether). Assume R is noetherian. Then \mathfrak{a} has a primary decomposition.

Proof. It suffices to show $\mathfrak{a} = \bigcap_{i=1}^{n} J_i$ for some $n \ge 1$ such that J_i is irreducible for $i = 1, \ldots, n$. Suppose not. Let $\Sigma = \{\mathfrak{b} \le R \mid \mathfrak{b} \text{ does not have a irreducible decomposition}\}$. Since $\mathfrak{a} \in \Sigma, \Sigma \ne \emptyset$. Since R is noetherian, Σ has a maximal element, say \mathfrak{q} . Then $\mathfrak{q} = I \cap J$ for some $\mathfrak{q} \subsetneq I, J \le R$. Since \mathfrak{q} is maximal, we have that $I, J \notin \Sigma$. Hence there exists $m \ge n \ge 1$ and irreducible $J_1, \ldots, J_m \le R$ such that $I = \bigcap_{i=1}^n J_i$ and $J = \bigcap_{i=n+1}^m J_i$. Thus, $\mathfrak{q} = I \cap J = \bigcap_{i=1}^m J_i$, contradicting $\mathfrak{q} \in \Sigma$.

Example 4.18. We have the following examples.

(a) Let R be a UFD and $a \in R \setminus \{R^{\times} \cup 0\}$ has a prime factorization $a = up_1^{e_1} \cdots p_n^{e_n}$ with $u \in R^{\times}$, $e_i \ge 1$ and $p_i \nmid p_j$ for $1 \le i, j \le n$ with $i \ne j$. Then $\langle a \rangle = \bigcap_{i=1}^n \langle p_i^{e_i} \rangle$, a primary decomposition by Example 4.12(a).

(b) Let $R = k[X_1, \ldots, X_d]$ and \mathfrak{a} be an monomial ideal with an m-irreducible decomposition $\mathfrak{a} = \bigcap_{i=1}^n J_i$ with J_1, \ldots, J_n generated by pure power of variables. Hence $\mathfrak{a} = \bigcap_{i=1}^n J_i$ is a primary decomposition by Example 4.12(c). Moreover, it is an irreducible decomposition.

(c) Let $R = k[X_1, \ldots, X_d]$ and \mathfrak{a} be an monomial ideal with an m-irreducible decomposition $\mathfrak{a} = \bigcap_{i=1}^n J_i$. Then \mathfrak{a} is primary if and only if $\operatorname{rad}(J_i) = \operatorname{rad}(J_j)$ for $1 \le i, j \le n$.

Proof. (c) \Leftarrow Assume that $\operatorname{rad}(J_i) = \operatorname{rad}(J_j)$ for $1 \leq i, j \leq n$. Let $xy \in \mathfrak{a}$ with $x, y \in R$. If $y \in \operatorname{rad}(\mathfrak{a})$, done. Assume that

$$y \notin \operatorname{rad}(\mathfrak{a})^{\dagger} = \operatorname{rad}\left(\bigcap_{i=1}^{n} J_{i}\right) = \bigcap_{i=1}^{n} \operatorname{rad}(J_{i}) = \operatorname{rad}(J_{i})$$

for i = 1, ..., n by Fact 1.58(d). Since R is noetherian and J_i is irreducible, J_i is primary for i = 1, ..., n. Also, since $xy \in \mathfrak{a} \subseteq J_i$ for i = 1, ..., n, we have that $x \in J_i$ for i = 1, ..., n. Hence $x \in \bigcap_{i=1}^n J_i = \mathfrak{a}$.

⇒ Assume that \mathfrak{a} is primary. Induct on n. The base case n = 2 is the important case. Suppose $\operatorname{rad}(J_1) \neq \operatorname{rad}(J_2)$. Then we have that there exist $a \in \operatorname{rad}(J_1) \setminus \operatorname{rad}(J_2)$ and $b \in \operatorname{rad}(J_2) \setminus \operatorname{rad}(J_1)$. Hence $a, b \notin \operatorname{rad}(J_1) \cap \operatorname{rad}(J_2) = \operatorname{rad}(J_1 \cap J_2) = \operatorname{rad}(\mathfrak{a})$ and $ab \in \operatorname{rad}(J_1) \cap \operatorname{rad}(J_2) = \operatorname{rad}(\mathfrak{a})$, contradicting $\operatorname{rad}(\mathfrak{a}) \in \operatorname{Spec}(R)$ by Proposition 4.19.

Proposition 4.19. If $\mathfrak{q} \leq R$ is primary, then $\operatorname{rad}(\mathfrak{q}) \in \operatorname{Spec}(R)$. In particular, $\operatorname{rad}(\mathfrak{q})$ is the unique smallest prime ideal of R containing \mathfrak{q} .

Proof. Since $q \leq R$, $\operatorname{rad}(q) \leq R$. Let $xy \in \operatorname{rad}(q)$ with $x, y \in R$. Then $x^m y^m = (xy)^m \in q$ for some $m \geq 1$. Since q is primary, $x^m \in q$ or $y^m \in \operatorname{rad}(q)$. Hence $x \in \operatorname{rad}(q)$ or $y \in \operatorname{rad}(\operatorname{rad}(q)) = \operatorname{rad}(q)$ by Fact 1.58(c). Hence $\operatorname{rad}(q) \in \operatorname{Spec}(R)$. The minimality follows from the definition of prime ideal and equivalent definition of primary ideal.

Definition 4.20. If $q \leq R$ is primary and $\mathfrak{p} = \operatorname{rad}(\mathfrak{q})$, then \mathfrak{q} is \mathfrak{p} -primary.

Example 4.21. (a) Let $p \in \mathbb{Z}$ be prime. Then $\mathfrak{q} = \langle p^n \rangle$ is primary with $\operatorname{rad}(\mathfrak{q}) = \langle p \rangle \in \operatorname{Spec}(\mathbb{Z})$ for $n \geq 1$.

(b) Let $\mathfrak{m} \in \operatorname{m-Spec}(R)$ and $\mathfrak{q} \leq R$ such that $\mathfrak{m}^n \subseteq \mathfrak{q} \subseteq \mathfrak{m}$ for some $n \geq 1$. Then \mathfrak{q} is primary with $\operatorname{rad}(\mathfrak{q}) = \mathfrak{m} \in \operatorname{Spec}(R)$ by the proof of Example 4.11(b).

[†]Not try to assume $x \notin \mathfrak{a}$.

(c) Let $R = k[X_1, \ldots, X_d]$ and $\mathfrak{q} = \langle X_{i_1}^{e_1}, \ldots, X_{i_n}^{e_n} \rangle$ with $e_1, \cdots, e_n \geq 1$. Then \mathfrak{q} is primary with $\operatorname{rad}(\mathfrak{q}) = \langle X_{i_1}, \ldots, X_{i_n} \rangle \in \operatorname{Spec}(R)$.

Proposition 4.22. Let $\mathfrak{q}_1, \ldots, \mathfrak{q}_n \leq R$ be \mathfrak{p} -primary. Then $\bigcap_{i=1}^n \mathfrak{q}_i$ is \mathfrak{p} -primary.

Proof. It is similar to the proof of Example 4.18(c).

Definition 4.23. A primary decomposition $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$ is minimal if

- (a) $\operatorname{rad}(\mathfrak{q}_i) \neq \operatorname{rad}(\mathfrak{q}_j)$ for $1 \leq i, j \leq n$ with $i \neq j$,
- (b) $\bigcap_{i=1, i\neq j}^{n} \mathfrak{q}_i \not\subseteq \mathfrak{q}_j$, i.e., $\mathfrak{a} \subseteq \bigcap_{i=1, i\neq j}^{n} \mathfrak{q}_i$ for $j = 1, \ldots, n$.

Example 4.24. (a) Let $n \in \mathbb{Z}$ and $n = p_1^{e_1} \cdots p_m^{e_m}$ such that p_1, \ldots, p_m are distinct primes and $e_1, \ldots, e_m \ge 1$. Then the primary decomposition $\langle n \rangle = \bigcap_{i=1}^m \langle p_i^{e_i} \rangle$ is minimal.

(b) Let R = k[X, Y]. Then

$$\langle X^2, XY \rangle = \langle X^2, Y \rangle \cap \langle X \rangle = \langle X^2, XY, Y^2 \rangle \cap \langle X \rangle$$

are two minimal primary decompositions.

Notice: minimal primary decomposition is not necessarily unique up to re-ordering.

Definition 4.25. Let $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$ be a minimal primary decomposition such that $rad(\mathfrak{q}_i) = \mathfrak{p}_i$ for i = 1, ..., n.

(a) The associated primes of \mathfrak{a} are $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. Write it as

$$\operatorname{Ass}_R(\mathfrak{a}) = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}.$$

(b) The minimal (associated) primes of \mathfrak{a} are the minimal elements of $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ w.r.t. \subseteq . Write it as

$$Min(\mathfrak{a}) = min\{Ass_R(\mathfrak{a})\} = min\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}.$$

(c) The embedded primes of \mathfrak{a} are the non-minimal associated primes of \mathfrak{a} , i.e., $\operatorname{Ass}_R(\mathfrak{a}) \smallsetminus \operatorname{Min}(\mathfrak{a})$.

Example 4.26. Let R = k[X, Y] and $\mathfrak{a} = \langle X^2, XY \rangle$. Then $\operatorname{Ass}_R(\mathfrak{a}) = \{\langle X \rangle, \langle X, Y \rangle\}$, $\operatorname{Min}(\mathfrak{a}) = \{\langle X \rangle\}$ and the embedded prime(s) of \mathfrak{a} is $\{\langle X, Y \rangle\}$.

Goals: Ass_R(\mathfrak{a}) is independent of the minimal primary decomposition, so Min(\mathfrak{a}) is also independent of the minimal primary decomposition. Ass_R(\mathfrak{a}) = Ass_R(R/\mathfrak{a})[†] if R is noetherian.

Proposition 4.27. If a has a primary decomposition, then a has a minimal primary decomposition.

Proof. Let $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$ be a primary decomposition. If $\operatorname{rad}(\mathfrak{q}_i) = \operatorname{rad}(\mathfrak{q}_j)$ for some $i, j \in \{1, \ldots, n\}$ with $i \neq j$, then $\mathfrak{q}_i \cap \mathfrak{q}_j$ is \mathfrak{p} -primary where $\mathfrak{p} := \operatorname{rad}(\mathfrak{q}_i)$ by Proposition 4.22, so combine \mathfrak{q}_i and \mathfrak{q}_j to get a new shorter decomposition, this process terminates in at most n steps. Then without loss of generality, assume that $\mathfrak{p}_i = \operatorname{rad}(\mathfrak{q}_i) \neq \operatorname{rad}(\mathfrak{q}_j) = \mathfrak{p}_j$ for $1 \leq i, j \leq n$ with $i \neq j$. If $\bigcap_{i=1, i\neq j}^n \mathfrak{p}_i \subseteq \mathfrak{q}_j$ for some $j \in \{1, \ldots, n\}$, then $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i = \bigcap_{i=1, i\neq j}^n \mathfrak{q}_i$, so $\bigcap_{i=1, i\neq j}^n \mathfrak{q}_i$ is a shorter decomposition, the process terminates in at most n steps.

[†]By definition of associated prime from module theory, $\operatorname{Ass}_R(R/\mathfrak{a}) = \operatorname{Spec}(R) \cap \{\operatorname{Ann}_R(\bar{x}) \mid \bar{x} \in R/\mathfrak{a}\}.$

Let $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$ be a minimal primary decomposition such that $\operatorname{rad}(\mathfrak{q}_i) = \mathfrak{p}_i$ for $i = 1, \ldots, n$.

Proposition 4.28. Re-order the \mathfrak{q}_i 's if necessary to assume without loss of generality, $\operatorname{Min}(\mathfrak{a}) = {\mathfrak{p}_1, \ldots, \mathfrak{p}_m}$. Then the irreducible components of $V(\mathfrak{a})$ with subspace topology are $V(\mathfrak{p}_1), \ldots, V(\mathfrak{p}_m)$.

Proof. We claim that $Min(V(\mathfrak{a})) = {\mathfrak{p}_1, \ldots, \mathfrak{p}_m}$. Then $V(\mathfrak{p}_1), \ldots, V(\mathfrak{p}_m)$ are all maximal irreducible subset of $V(\mathfrak{a})$ by Proposition 2.42.

" \subseteq ". Let $\mathfrak{p} \in \operatorname{Min}(\operatorname{V}(\mathfrak{a}))$. Then $\mathfrak{p} \supseteq \mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$. Hence $\mathfrak{p} \supseteq \operatorname{rad}(\mathfrak{a}) = \operatorname{rad}(\bigcap_{i=1}^{n} \mathfrak{q}_i) = \bigcap_{i=1}^{n} \operatorname{rad}(\mathfrak{q}_i) = \bigcap_{i=1}^{n} \mathfrak{p}_i = \bigcap_{j=1}^{m} \mathfrak{p}_j$ since there exists $j_i \in \{1, \ldots, m\}$ such that $\mathfrak{p}_{j_i} \subseteq \mathfrak{p}_i$ for $i = m+1, \ldots, n$. Since $\mathfrak{p} \in \operatorname{Spec}(R)$, $\mathfrak{p} \supseteq \mathfrak{p}_k \supseteq \bigcap_{j=1}^{m} \mathfrak{p}_j = \operatorname{rad}(\mathfrak{a}) \supseteq \mathfrak{a}$ for some $k \in \{1, \ldots, m\}$. Also, since $\mathfrak{p}_k \in \operatorname{Spec}(R)$ by Proposition 4.19 and $\mathfrak{p} \in \operatorname{Min}(\operatorname{V}(\mathfrak{a}))$, we have that $\mathfrak{p} = \mathfrak{p}_k$.

" \supseteq ". Fix $j \in \{1, \ldots, m\}$. Suppose there exists $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\mathfrak{a} \subseteq \mathfrak{p} \subsetneq \mathfrak{p}_j$. Then $\mathfrak{a}R_{\mathfrak{p}_j} \subseteq \mathfrak{p}R_{\mathfrak{p}_j} \subsetneq \mathfrak{p}_j R_{\mathfrak{p}_j}$ by prime correspondence for localization. For $i = 1, \ldots, m$ with $i \neq j$, since $\mathfrak{p}_i \not\subseteq \mathfrak{p}_j$, we have that $\mathfrak{p}_i \cap (R \setminus \mathfrak{p}_j) \neq \emptyset$ and then $\mathfrak{p}_i R_{\mathfrak{p}_j} = R_{\mathfrak{p}_j}$ by Proposition 3.13(c). Hence we have that

$$\mathfrak{a}R_{\mathfrak{p}_{j}} = (R \smallsetminus \mathfrak{p}_{j})^{-1}\mathfrak{a} = (R \smallsetminus \mathfrak{p}_{j})^{-1} \left(\bigcap_{i=1}^{m} \mathfrak{p}_{i}\right) = \bigcap_{i=1}^{m} (R \smallsetminus \mathfrak{p}_{j})^{-1}\mathfrak{p}_{i}$$
$$= \bigcap_{i=1}^{m} \mathfrak{p}_{i}R_{\mathfrak{p}_{j}} = \left(\bigcap_{i=1, i \neq j}^{m} R_{\mathfrak{p}_{j}}\right) \bigcap \mathfrak{p}_{j}R_{\mathfrak{p}_{j}} = \mathfrak{p}_{j}R_{\mathfrak{p}_{j}}$$

by Proposition 3.12(a), a contradiction. Thus, $\mathfrak{p}_i \in Min(V(\mathfrak{a}))$.

Proposition 4.29. Let $\mathfrak{q} \leq R$ be \mathfrak{p} -primary and $x \in R$. Then

$$(\mathbf{q}:x) = \begin{cases} R & \text{if } x \in \mathbf{q} \\ \mathbf{q} & \text{if } x \notin \mathbf{p} \\ \mathbf{p}\text{-primary} & \text{if } x \notin \mathbf{q} \end{cases}.$$

Proof. If $x \in \mathfrak{q}$, then $1 \in (\mathfrak{q} : x)$, so $(\mathfrak{q} : x) = R$.

Assume $x \notin \mathfrak{p} = \operatorname{rad}(\mathfrak{q})$. Note that $(\mathfrak{q}: x) \supseteq \mathfrak{q}$ by definition of colon ideal. Let $y \in (\mathfrak{q}: x)$, then $yx \in \mathfrak{q}$. Since \mathfrak{q} is primary, $y \in \mathfrak{q}$ or $x \in \operatorname{rad}(\mathfrak{q})$. By assumption, $y \in \mathfrak{q}$. Hence $(\mathfrak{q}: x) \subseteq \mathfrak{q}$.

Assume $x \notin \mathfrak{q}$. Let $y \in (\mathfrak{q}: x)$. Then $xy \in \mathfrak{q}$. Since \mathfrak{q} is primary, $x \in \mathfrak{q}$ or $y \in \operatorname{rad}(\mathfrak{q}) = \mathfrak{p}$. Hence by assumption, $y \in \mathfrak{p}$. Then $\mathfrak{q} \subseteq (\mathfrak{q}: x) \subseteq \mathfrak{p}$. Hence $\mathfrak{p} = \operatorname{rad}(\mathfrak{q}) \subseteq \operatorname{rad}(\mathfrak{q}: x) \subseteq \operatorname{rad}(\mathfrak{p}) = \mathfrak{p}$. Hence $\operatorname{rad}(\mathfrak{q}: x) = \mathfrak{p}$. Next, let $ab \in (\mathfrak{q}: x)$ with $a, b \in R$. If $b \in \operatorname{rad}(\mathfrak{q}: x)$, then $(\mathfrak{q}: x)$ is \mathfrak{p} -primary, done. Assume $b \notin \operatorname{rad}(\mathfrak{q}: x) = \mathfrak{p} = \operatorname{rad}(\mathfrak{q})$. Since $ab \in (\mathfrak{q}: x)$, $ax \cdot b = abx \in \mathfrak{q}$. Also, since \mathfrak{q} is primary and $b \notin \operatorname{rad}(\mathfrak{q})$, $ax \in \mathfrak{q}$, i.e., $a \in (\mathfrak{q}: x)$. Thus, $(\mathfrak{q}: x)$ is \mathfrak{p} -primary.

Proposition 4.30.

$$\operatorname{Ass}_R(\mathfrak{a}) := \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\} = \operatorname{Spec}(R) \cap \{\operatorname{rad}(\mathfrak{a}: x) \mid x \in R\}^{\dagger}.$$

Hence $\operatorname{Ass}_R(\mathfrak{a})$ is independent of the minimal primary decomposition.

[†]Ass_R(\mathfrak{a}) = Spec(R) \cap {rad(\mathfrak{a} : x) | x \notin \mathfrak{a}}.

Proof. Let $x \in R$. Then $(\mathfrak{a}:x) = (\bigcap_{i=1}^{n} \mathfrak{q}_i:x) = \bigcap_{i=1}^{n} (\mathfrak{q}_i:x)$ by Fact 1.54(i). Hence $\operatorname{rad}(\mathfrak{a}:x) = \operatorname{rad}(\bigcap_{i=1}^{n} (\mathfrak{q}_i:x)) = \bigcap_{i=1}^{n} \operatorname{rad}(\mathfrak{q}_i:x) = \bigcap_{i=1,x\notin\mathfrak{q}_i}^{n} \mathfrak{p}_i$ by Proposition 4.29, where the intersection of empty ideals is the R.

"⊇". Let $\mathfrak{p} \in \operatorname{Spec}(R) \cap \{\operatorname{rad}(\mathfrak{a}:x) \mid x \in R\}$. Then $\mathfrak{p} \in \operatorname{Spec}(R)$ and there exists $x \in R$ such that $\mathfrak{p} = \operatorname{rad}(\mathfrak{a}:x) = \bigcap_{i=1,x \notin \mathfrak{q}_i}^n \mathfrak{p}_i$ which is not an empty intersection since $\mathfrak{p} \neq R$. Hence by Proposition 1.47(b), $\mathfrak{p} = \mathfrak{p}_i$ with $x \notin \mathfrak{q}_i$ for some $i \in \{1, \ldots, n\}$.

" \subseteq ". Let $j \in \{1, \ldots, n\}$. Since $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$ is a minimal primary decomposition, $\bigcap_{i=1, i\neq j}^{n} \mathfrak{q}_i \not\subseteq \mathfrak{q}_j$. Hence there exists $x \in \bigcap_{i=1, i\neq j}^{n} \mathfrak{q}_i$ such that $x \notin \mathfrak{q}_j$, i.e., $x \in \mathfrak{q}_i$ for $1 \leq i \leq n$ with $i \neq j$ and $x \notin \mathfrak{q}_j$. Hence $\operatorname{rad}(\mathfrak{a}:x) = \bigcap_{i=1, x\notin \mathfrak{q}_i}^{n} \mathfrak{p}_i = \mathfrak{p}_j$. Hence $\mathfrak{p}_j \in \operatorname{Spec}(R) \cap \{\operatorname{rad}(\mathfrak{a}:x) \mid x \in R\}$.

Theorem 4.31. If R is noetherian, then

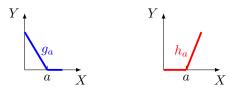
$$Ass_R(\mathfrak{a}) := \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\} = Spec(R) \cap \{(\mathfrak{a} : x) \mid x \in R\}$$
$$= Spec(R) \cap \{Ann_R(\overline{x}) \mid \overline{x} \in R/\mathfrak{a}\} =: Ass_R(R/\mathfrak{a}).$$

Proof. Proof of the first equality. "⊇". Let $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\mathfrak{p} = (\mathfrak{a} : x)$ for some $x \in R$. Then $\mathfrak{p} = \operatorname{rad}(\mathfrak{p}) = \operatorname{rad}(\mathfrak{a} : x)$. Hence by Proposition 4.30, $\mathfrak{p} = \mathfrak{p}_i$ for some $i \in \{1, \ldots, n\}$. "⊆". Let $j \in \{1, \ldots, n\}$. Since $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$ is a minimal primary decomposition, $\mathfrak{a} \subsetneq \bigcap_{i=1, i \neq j}^n \mathfrak{q}_i$. Since R is noetherian, \mathfrak{p}_j is finitely generated. Also, since $\operatorname{rad}(\mathfrak{q}_j) = \mathfrak{p}_j$, there exists $m \ge 1$ such that $\mathfrak{p}_j^m \subseteq \mathfrak{q}_j$. Let $\mathfrak{a}_j := \bigcap_{i=1, i \neq j}^n \mathfrak{q}_i$. Then $\mathfrak{a}_j \mathfrak{p}_j^m \subseteq \mathfrak{a}_j \cap \mathfrak{p}_j^m \subseteq \mathfrak{a}_j \cap \mathfrak{q}_j = \bigcap_{i=1}^n \mathfrak{q}_i = \mathfrak{a}$. Let $l = \min\{m \ge 1 \mid \mathfrak{a}_j \mathfrak{p}_j^m \subseteq \mathfrak{a}\}$. Note that $\mathfrak{a}_j \mathfrak{p}_j^0 = \mathfrak{a}_j \supsetneq \mathfrak{a}$. Since $\mathfrak{a}_j \mathfrak{p}_j^{l-1} \nsubseteq \mathfrak{a}$, there exists $x \in \mathfrak{a}_j \mathfrak{p}_j^{l-1} \setminus \mathfrak{a} \subseteq \mathfrak{a}_j \setminus \mathfrak{a} = (\bigcap_{i=1, i \neq j}^n \mathfrak{q}_i) \setminus \mathfrak{q}_j$, i.e., $x \in \mathfrak{q}_i$ for $1 \le i \le n$ with $i \neq j$ and $x \notin \mathfrak{q}_j$. Hence by the proof of Proposition 4.30, $(\mathfrak{a} : x) \subseteq \operatorname{rad}(\mathfrak{a} : x) = \mathfrak{p}_j$. On the other hand, since $x\mathfrak{p}_j \subseteq \mathfrak{a}_j \mathfrak{p}_j^{l-1}\mathfrak{p}_j = \mathfrak{a}_j \mathfrak{p}_j^l \subseteq \mathfrak{a}$, we have that $\mathfrak{p}_j \subseteq (\mathfrak{a} : x)$. Hence $\mathfrak{p}_j = (\mathfrak{a} : x)$.

Example 4.32. If R is not noetherian, then $\mathfrak{a} \leq R$ may not have a primary decomposition. Let $R = \mathcal{C}([0,1]) = \{\text{continuous } f : [0,1] \to \mathbb{R}\}$ with pointwise operations. We claim that $0 \leq R$ does not have a primary decomposition.

(a) For $a \in [0, 1]$, define $\Phi_a : R \to \mathbb{R}$ by $\Phi_a(f) = f(a)$. Then Φ_a is a well-defined ring epimorphism. Hence $\frac{R}{\operatorname{Ker}(\Phi_a)} \cong \mathbb{R}$. Hence $\{f \in R \mid f(a) = 0\} = \operatorname{Ker}(\Phi_a) \in \operatorname{m-Spec}(R) \subseteq \operatorname{Spec}(R)$.

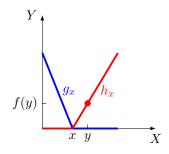
(b) We claim that $0 \notin \operatorname{Spec}(R)$. For $a \in (0,1)$, there exist $g_a, h_a \in R$ such that $g_a h_a = 0$ but $g_a, h_a \neq 0$.



(c) We claim that $\operatorname{Nil}(R) = 0$. Let $f \in \operatorname{Nil}(R)$. Then $f^m = 0$ for some $m \ge 1$, i.e., $(f(a))^m = 0$ for $a \in [0, 1]$. Since $f([0, 1]) \subseteq \mathbb{R}$ and \mathbb{R} is an integral domain, f(a) = 0 for $a \in [0, 1]$, i.e., f = 0.

(d) We claim that $(0:f) = \operatorname{rad}(0:f)$ for $f \in R$. " \subseteq ". Done. " \supseteq ". Let $g \in \operatorname{rad}(0:f)$. Then $g^m \cdot f = 0$ for some $m \ge 1$. Hence $g^m f^m = 0$. Hence $gf \in \operatorname{Nil}(R) = 0$ by (c), i.e., $g \in (0:f)$.

(e) We claim that $(0:f) \notin \operatorname{Spec}(R)$ for $f \in R$. Suppose $(0:f) \in \operatorname{Spec}(R)$. Then $(0:f) \neq R$, i.e., $f \neq 0$. Hence there exists $y \in [0,1]$ such that $f(y) \neq 0$. Since f is continuous, there exists $y \in (0,1]$ such that $f(y) \neq 0$. Let 0 < x < y. Then $g_x h_x = 0 \in (0:f) \in \operatorname{Spec}(R)$.



Hence $g_x \in (0:f)$ or $h_x \in (0:f)$, i.e., $g_x f = 0$ or $h_x f = 0$. Since $h_x(y)f(y) > 0$, $h_x f \neq 0$. Hence $g_x f = 0$. Also, since $g_x(a) \neq 0$ for 0 < a < x < y, we have that f(a) = 0 for 0 < a < x < y. Since $x \in (0, y)$ is arbitrary, f(a) = 0 for 0 < a < y. Since f is continuous, $f(y) = \lim_{a \to y^-} f(a) = 0$, a contradiction.

Now suppose $0 = \bigcap_{i=1}^{n} \mathfrak{q}_i$ is a primary decomposition. Assume without loss of generality that the decomposition is minimal by Proposition 4.27. By (d), (e) and Proposition 4.30, there exists $f_1 \in R$ such that $\operatorname{Spec}(R) \not\supseteq (0: f_1) = \operatorname{rad}(0: f_1) = \operatorname{rad}(\mathfrak{q}_1) \in \operatorname{Spec}(R)$, a contradiction.

(f) Note that

$$0 = \{ f \in R \mid f(a) = 0, \forall a \in [0, 1] \} = \bigcap_{a \in [0, 1]} \underbrace{\{ f \in R \mid f(a) = 0\}}_{\in \operatorname{Spec}(R), \ \therefore \ \operatorname{primary}}$$
$$= \bigcap_{a \in [0, 1]} \operatorname{Ker}(\Phi_a) = \bigcap_{a \in [0, 1] \cap \mathbb{Q}} \operatorname{Ker}(\Phi_a) = \cdots$$

cannot be pruned to a minimal primary decomposition.

Proposition 4.33.

$$\{x \in R \mid (\mathfrak{a}: x) \neq \mathfrak{a}\} = \bigcup_{i=1}^{n} \mathfrak{p}_{i} = \bigcup_{\mathfrak{p} \in \operatorname{Ass}_{R}(\mathfrak{a})} \mathfrak{p}.$$

Proof. We claim that $\{x \in R \mid (\mathfrak{a} : x) \neq \mathfrak{a}\} = \bigcup_{y \notin \mathfrak{a}} \operatorname{rad}(\mathfrak{a} : y)$. " \subseteq ". Then $x \in R$ such that $(\mathfrak{a} : x) \neq \mathfrak{a}$. Hence $(\mathfrak{a} : x) \supsetneq \mathfrak{a}$. Then there exists $z \in (\mathfrak{a} : x) \smallsetminus \mathfrak{a}$, i.e., $z \notin \mathfrak{a}$ and $xz \in \mathfrak{a}$, i.e., $z \notin \mathfrak{a}$ and $x \in (\mathfrak{a} : z) \subseteq \operatorname{rad}(\mathfrak{a} : z) \subseteq \bigcup_{y \notin \mathfrak{a}} \operatorname{rad}(\mathfrak{a} : y)$. " \supseteq ". Let $x \in \operatorname{rad}(\mathfrak{a} : y)$ for some $y \notin \mathfrak{a}$. Then $x^m y \in \mathfrak{a}$ for some $m \ge 1$. Let $n = \min\{m \ge 1 \mid x^m y \in \mathfrak{a}\}$. Note that $x^0 y = y \notin \mathfrak{a}$. Then $x^n y \in \mathfrak{a}$ but $x^{n-1}y \notin \mathfrak{a}$. Hence $(\mathfrak{a} : x)$. Hence $(\mathfrak{a} : x) \neq \mathfrak{a}$.

We claim that $\bigcup_{y \notin \mathfrak{a}} \operatorname{rad}(\mathfrak{a} : y) = \bigcup_{i=1}^{n} \mathfrak{p}_i$. " \subseteq ". Let $y \notin \mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$. Then by the proof of Proposition 4.30,

$$\operatorname{rad}(\mathfrak{a}:y) = \bigcap_{i=1, y \notin \mathfrak{q}_i}^n \mathfrak{p}_i = \bigcap_{i=1}^n \mathfrak{p}_i \subseteq \bigcup_{i=1}^n \mathfrak{p}_i.$$

"⊇". By Proposition 4.30, there exists $y_i \notin \mathfrak{a}$ such that $\mathfrak{p}_i = \operatorname{rad}(\mathfrak{a} : y_i)$ for $i = 1, \ldots, i$. Hence $\bigcup_{y \notin \mathfrak{a}} \operatorname{rad}(\mathfrak{a} : y) \supseteq \bigcup_{i=1}^n \mathfrak{p}_i$. \Box

Corollary 4.34. Set a = 0 in Proposition 4.33, we get

$$\operatorname{ZD}(R) = \{ x \in R \mid (0:x) \neq 0 \} = \bigcup_{i=1}^{n} \mathfrak{p}_{i} = \bigcup_{\mathfrak{p} \in \operatorname{Ass}_{R}(0)} \mathfrak{p}$$

Summary 4.35. Let R be noetherian and $\mathfrak{a} = 0$. Then $ZD(R) = \bigcup_{i=1}^{n} \mathfrak{p}_i = \bigcup_{\mathfrak{p} \in Ass_R(0)} \mathfrak{p}$. (Use with prime avoidence to get useful information about ideals and NZD(R).)

$$\operatorname{Nil}(R) = \operatorname{rad}(0) = \operatorname{rad}\left(\bigcap_{i=1}^{n} \mathfrak{q}_{i}\right) = \bigcap_{i=1}^{n} \mathfrak{p}_{i} = \bigcap_{\mathfrak{p} \in \operatorname{Min}(0)} \mathfrak{p}$$

Example. Let $R = \frac{k[X,Y]}{\langle X^2, XY \rangle} = \frac{k[X,Y]}{\langle X \rangle \cap \langle X^2, Y \rangle}$ and $x = \overline{X}, y = \overline{Y} \in R$. Then $\langle 0 \rangle R = \langle x \rangle \cap \langle x^2, y \rangle$ is a minimal primary decomposition. Hence $\operatorname{ZD}(R) = \langle x \rangle \cup \langle x, y \rangle = \langle x, y \rangle$. For $f \in R$ with constant term 0, we have that $f = xf_1 + yf_2$ for some $f_1, f_2 \in R$, then $xf = x^2f_1 + xyf_2 = 0$. Hence $f \in \operatorname{ZD}(R)$.

Proposition 4.36. We have that

$$Min(\mathfrak{a}) = min\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\} = Min(V(\mathfrak{a})).$$

In particular,

$$\operatorname{Min}(0) = \operatorname{Min}(\operatorname{V}(0)) = \operatorname{Min}(\operatorname{Spec}(R)) = \operatorname{Min}(R)$$

Proof. It follows from the proof of Proposition 4.28.

Lemma 4.37. Let $U \subseteq R$ be multiplicatively closed and $\mathfrak{q} \leq R$ be \mathfrak{p} -primary. Let $\psi : R \to U^{-1}R$ be the natural ring homomorphism.

(a) If $U \cap \mathfrak{p} \neq \emptyset$, then $U^{-1}\mathfrak{q} = U^{-1}R$.

(b) If $U \cap \mathfrak{p} = \emptyset$, then $U^{-1}\mathfrak{q} \leq U^{-1}R$ is $U^{-1}\mathfrak{p}$ -primary and $\psi^{-1}(U^{-1}\mathfrak{q}) = \mathfrak{q}$.

Proof. (a) Let $u \in U \cap \mathfrak{p}$. Since $\mathfrak{p} = \operatorname{rad}(\mathfrak{q})$ and U is multiplicatively closed, there exists $n \ge 1$ such that $u^n \in \mathfrak{q} \cap U$. Hence by Proposition 3.13, $U^{-1}\mathfrak{q} = U^{-1}R$.

(b) Since $\mathbf{q} \subseteq \mathbf{p}$ and $U \cap \mathbf{p} = \emptyset$, $U^{-1}\mathbf{q} \subseteq U^{-1}\mathbf{p} \subsetneq U^{-1}R$ by Proposition 3.13. Let $\frac{x}{u}, \frac{y}{v} \in U^{-1}R$ $\frac{x}{u} \cdot \frac{y}{v} \in U^{-1}\mathbf{q}$. If $\frac{y}{v} \in \operatorname{rad}(U^{-1}\mathbf{q})$, then $U^{-1}\mathbf{q}$ is primary. Assume $\frac{y}{v} \notin \operatorname{rad}(U^{-1}\mathbf{q})$. Since $\frac{xy}{uv} \in U^{-1}\mathbf{q}$, there exists $w \in U$ such that $x(wy) = wxy \in \mathbf{q}$. Since $\frac{y}{v} \notin \operatorname{rad}(U^{-1}\mathbf{q}) = U^{-1}\operatorname{rad}(\mathbf{q}) = U^{-1}\mathbf{p}$ by Proposition 3.12(d), $wy \notin \mathbf{p} = \operatorname{rad}(\mathbf{q})$. Also, since \mathbf{q} is primary, $x \in \mathbf{q}$. Hence $\frac{x}{u} \in U^{-1}\mathbf{q}$. Hence $U^{-1}\mathbf{q}$ is primary.

Since $\mathfrak{q} \subseteq \mathfrak{p} = \operatorname{rad}(\mathfrak{q}) \in \operatorname{Spec}(R)$, by Proposition 3.12(d), we have that $\operatorname{rad}(U^{-1}\mathfrak{q}) \subseteq \operatorname{rad}(U^{-1}\mathfrak{p}) = U^{-1}\operatorname{rad}(\mathfrak{p}) = U^{-1}\mathfrak{p} = U^{-1}\operatorname{rad}(\mathfrak{q}) = \operatorname{rad}(U^{-1}\mathfrak{q})$. Hence $\operatorname{rad}(U^{-1}\mathfrak{q}) = U^{-1}\mathfrak{p}$.

We claim that $\psi^{-1}(U^{-1}\mathfrak{q}) = \mathfrak{q}$. " \supseteq ". By Proposition 1.63(a). " \subseteq ". Let $x \in \psi^{-1}(U^{-1}\mathfrak{q})$. Then $\frac{x}{1} = \psi(x) \in U^{-1}\mathfrak{q}$. Hence there exists $u \in U$ such that $xu \in \mathfrak{q}$. Since $U \cap \mathfrak{p} = \emptyset$, $u \notin \mathfrak{p} = \operatorname{rad}(\mathfrak{q})$. Also, since \mathfrak{q} is primary, $x \in \mathfrak{q}$.

Theorem 4.38 (Second uniqueness theorem). (a) Let $\mathfrak{q} = \mathfrak{q}_i$ be \mathfrak{p} -primary for some $i \in \{1, \ldots, n\}$ with $\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})$. Then $\mathfrak{q} = \psi^{-1}(\mathfrak{a}_{\mathfrak{p}})^{\dagger}$, where $\psi : R \to R_{\mathfrak{p}}$ and $U = R \setminus \mathfrak{p}$, so \mathfrak{q} is independent of choice of minimal primary decomposition.

[†]That is, \mathfrak{q} is the kernel of the ring homomorphism $R \to (R/\mathfrak{a})_{\mathfrak{p}}$.

(b) If $\Lambda = \langle \mathfrak{p}_{i_1}, \ldots, \mathfrak{p}_{i_m} \rangle$ is an "isolated" subset of $\operatorname{Ass}_R(\mathfrak{a}) = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$, then $\bigcap_{j=1}^m \mathfrak{q}_{i_j} = \Psi^{-1}(U^{-1}\mathfrak{a})$, where $\Psi : R \to U^{-1}R$ and $U = R \setminus \{\mathfrak{p}_{i_1} \cup \cdots \cup \mathfrak{p}_{i_m}\}$. Hence $\bigcap_{j=1}^m \mathfrak{q}_{i_j}$ is independent of choice of minimal primary decomposition.

Proof. (b) By Proposition 3.12(b) and Lemma 4.37, we have that $\Psi^{-1}(U^{-1}\mathfrak{a}) = \Psi^{-1}(U^{-1}(\bigcap_{i=1}^{n}\mathfrak{q}_i)) = \Psi^{-1}(\bigcap_{i=1}^{n}\Psi^{-1}(U^{-1}\mathfrak{q}_i) = \bigcap_{i=1}^{n}\Psi^{-1}(U^{-1}\mathfrak{q}_i) = \bigcap_{i=1}^{n}\mathfrak{q}_i = \bigcap_{i=1}^{n}\mathfrak{q}_i$ since Λ is "isolated".

(a) It follows from (b) since $\{\mathfrak{p}\}$ is "isolated" for $\mathfrak{p} \in Min(\mathfrak{a})$.

Definition 4.39. $\Lambda \subseteq \operatorname{Ass}_R(\mathfrak{a})$ is "isolated" if it is "closed under subsets", i.e., if $\mathfrak{p}, \mathfrak{p}' \in \operatorname{Ass}_R(\mathfrak{a})$ such that $\mathfrak{p}' \subseteq \mathfrak{p}$ and $\mathfrak{p} \in \Lambda$, then $\mathfrak{p}' \in \Lambda$.

Discussion 4.40. Consider the following.

(a) If $\mathfrak{m} \in \text{m-Spec}(R)$, then \mathfrak{m}^n is \mathfrak{m} -primary for $n \ge 1$ by Example 4.11(b).

(b) Let k be a field. If $\mathfrak{p} = \langle X_{i_1}, \cdots, X_{i_m} \rangle \leq k[X_1, \dots, X_d]$, then \mathfrak{p}^n is \mathfrak{p} -primary for $n \geq 1$.

Proof. (b) Note that $\langle X_{i_1}^{a_1}, \ldots, X_{i_m}^{a_m} \rangle$ is \mathfrak{p} -primary for $a_1, \ldots, a_m \geq 1$ by Example 4.12(c). Let $\Lambda = \{\underline{a} \in \mathbb{N}^m \mid a_1 + \cdots + a_m = m + n - 1\}$. Set $\mathfrak{p}_{\underline{a}} = \langle X_{i_1}^{a_1}, \ldots, X_{i_m}^{a_m} \rangle$ for $\underline{a} \in \Lambda$. We claim that $\mathfrak{p}^n = \bigcap_{a \in \Lambda} \mathfrak{p}_{\underline{a}}$, then by Proposition 4.22, \mathfrak{p}^n is \mathfrak{p} -primary.

" \subseteq ". Let $\Lambda_0 = \{ \underline{e} \in \mathbb{Z}_{\geq 0}^m \mid e_1 + \dots + e_m = n \}$. For $n \geq 1$,

$$\mathfrak{p}^n = (\langle X_{i_1} \rangle + \dots + \langle X_{i_m} \rangle)^n = \sum_{\underline{e} \in \Lambda_0} \langle X_{i_1}^{e_1} \cdots X_{i_m}^{e_m} \rangle.$$

Suppose that $X_{(i)}^{\underline{e}} := X_{i_1}^{e_1} \cdots X_{i_m}^{e_m} \in \mathfrak{p}^n \setminus \mathfrak{p}_{\underline{a}}$ for some $\underline{e} \in \Lambda_0$ and $\underline{a} \in \Lambda$. Then $a_i \geq e_i + 1$ for $i = 1, \ldots, m$. Hence $m + n - 1 = \sum_{i=1}^m a_i \geq m + \sum_{i=1}^m e_i = m + n$, a contradiction. Hence $X_{(i)}^{\underline{e}} \in \mathfrak{p}_{\underline{a}}$ for all $\underline{e} \in \Lambda_0$ and $\underline{a} \in \Lambda$. Hence $\mathfrak{p}^n \subseteq \bigcap_{\underline{a} \in \Lambda} \mathfrak{p}_{\underline{a}}$.

" \supseteq ". Let $R' := k[X_{i_1}, \ldots, X_{i_m}] \subseteq k[X_1, \ldots, X_d]$ and $\mathfrak{p}' = (X_{i_1}, \ldots, X_{i_m})R'$. Set $\mathfrak{p}'_{\underline{a}} = \langle X^{a_1}_{i_1}, \ldots, X^{a_m}_{i_m} \rangle R'$ for $\underline{a} \in \Lambda$. We know \mathfrak{p}'^n in R' has an (irredundant) parametric decomposition $\mathfrak{p}'^n = \bigcap_{f' \in C_{R'}(\mathfrak{p}')} P_R(f') = \bigcap_{\underline{a} \in \Lambda} \mathfrak{p}'_{\underline{a}}$. Let $q = \#\Lambda$. Since $\bigcap_{\underline{a} \in \Lambda} \mathfrak{p}_{\underline{a}}$ and $\bigcap_{\underline{a} \in \Lambda} \mathfrak{p}'_{\underline{a}}$ have the same generating set $\{\operatorname{lcm}(f_1, \ldots, f_q) \mid f_j \text{ is a generator of } \mathfrak{p}_{\underline{a}_j} \text{ with } \underline{a}_j \in \Lambda \text{ for } j = 1, \ldots, q\}$, we have that the generators of $\bigcap_{\underline{a} \in \Lambda} \mathfrak{p}_{\underline{a}}$ are in $\bigcap_{\underline{a} \in \Lambda} \mathfrak{p}'_{\underline{a}} = \mathfrak{p}'^n \subseteq \mathfrak{p}^n$. Hence $\mathfrak{p}^n \supseteq \bigcap_{\underline{a} \in \Lambda} \mathfrak{p}_{\underline{a}}$.

Example 4.41. In general, \mathfrak{p}^n is not \mathfrak{p} -primary for $\mathfrak{p} \in \operatorname{Spec}(R)$. For example, let $R = \frac{k[X,Y,Z]}{\langle XY-Z^2 \rangle}$ and $x = \overline{x}, y = \overline{Y}, z = \overline{Z} \in R$, then $\mathfrak{p} := \langle x, z \rangle \in \operatorname{Spec}(R)$, but \mathfrak{p}^2 is not \mathfrak{p} -primary since $xy = z^2 \in \mathfrak{p}^2$ but $x \notin \mathfrak{p}^2$ and $y \notin \mathfrak{p} = \operatorname{rad}(\mathfrak{p}^2)$.

Definition 4.42. Let $\mathfrak{p} \in \operatorname{Spec}(R)$ and $\psi : R \to R_{\mathfrak{p}}$. Then for $n \ge 1$, the n^{th} symbolic power of \mathfrak{p} is

$$\mathfrak{p}^{(n)} = \psi^{-1}((\mathfrak{p}^n)_{\mathfrak{p}}) = \psi^{-1}\left((\mathfrak{p}_{\mathfrak{p}})^n\right).$$

Note 4.43. $\mathfrak{p}^n \subseteq \mathfrak{p}^{(n)}$ because by Proposition 1.63(a), $\mathfrak{p}^n \subseteq \psi^{-1}((\mathfrak{p}^n)_{\mathfrak{p}}) = \mathfrak{p}^{(n)}$.

Example 4.44. We have the following examples.

(a) Let $\mathfrak{m} \in \text{m-Spec}(R)$ and $\psi : R \to R_{\mathfrak{m}}$. Since \mathfrak{m}^n is \mathfrak{m} -primary by Example 4.11(b) and $\mathfrak{m} \cap (R \smallsetminus \mathfrak{m}) = \emptyset$, by Lemma 4.37(b), $\mathfrak{m}^n = \psi^{-1}((\mathfrak{m}^n)_{\mathfrak{m}}) =: \mathfrak{m}^{(n)}$ for $n \ge 1$.

(b) Let k be a field and $\mathfrak{p} = \langle X_{i_1}, \cdots, X_{i_m} \rangle \leq k[X_1, \dots, X_d]$. Since \mathfrak{p}^n is \mathfrak{p} -primary by Discussion 4.40(b) and $\mathfrak{p} \cap (R \smallsetminus \mathfrak{p}) = \emptyset$, by Lemma 4.37(b), $\mathfrak{p}^n = \psi^{-1}((\mathfrak{p}^n)_{\mathfrak{p}}) =: \mathfrak{p}^{(n)}$ for $n \geq 1$.

(c) Let $R = \frac{k[X,Y,Z]}{\langle XY-Z^2 \rangle}$ and $x = \overline{X}, y = \overline{Y}, z = \overline{Z} \in R$. Let $\mathfrak{p} = \langle x, z \rangle$. We claim that $\mathfrak{p}^{(2)} = \langle x \rangle$. " \supseteq ". Since $y \notin \mathfrak{p}$ and $xy = z^2 \in \mathfrak{p}^2$, we have that $x = \frac{x}{1} = \frac{xy}{y} \in (\mathfrak{p}^2)_{\mathfrak{p}}$ in $R_{\mathfrak{p}}$. Hence $x \in \psi^{-1}(\mathfrak{p}^2)_{\mathfrak{p}}) = \mathfrak{p}^{(2)}$. " \subseteq ". Let $a \in \mathfrak{p}^{(2)}$. Then $a = \frac{a}{1} = \psi(a) \in (\mathfrak{p}^2)_{\mathfrak{p}}$. Hence there exists $b \in R \smallsetminus \mathfrak{p}$ such that $ab \in \mathfrak{p}^2 = \langle x^2, xz, z^2 \rangle = \langle x^2, xz, xy \rangle$. Also, since $b \notin \langle x \rangle$, $a \in \langle x \rangle$. Hence $\mathfrak{p}^{(2)} \subseteq \langle x \rangle$. Thus, $\mathfrak{p}^{(2)} = \langle x \rangle \supseteq \langle x^2, xz, xy \rangle = \mathfrak{p}^2$.

Note that a basis for R over k is $\{x^a y^b, x^a y^b z \mid a, b \ge 0\}$.

Proposition 4.45. If $\mathfrak{p} \in \text{Spec}(R)$, then $\mathfrak{p}^{(n)}$ is the " \mathfrak{p} -primary component" of \mathfrak{p}^n , i.e., if \mathfrak{p}^n has a minimal primary decomposition $\mathfrak{p}^n = \bigcap_{i=1}^m \mathfrak{q}_i$ such that $\mathfrak{p}_i = \text{rad}(\mathfrak{q}_i)$ for $i = 1, \ldots, m$, then $\mathfrak{p}_j = \mathfrak{p}$ and $\mathfrak{q}_j = \mathfrak{p}^{(n)}$ for some $j \in \{1, \ldots, m\}$.

Proof. Since $\operatorname{rad}(\mathfrak{p}^n) = \mathfrak{p}$, $\operatorname{Min}(\mathfrak{p}^n) = \{\mathfrak{p}\}$. Hence $\mathfrak{p} = \operatorname{rad}(\mathfrak{q}_j) = \mathfrak{p}_j$ for some $j \in \{1, \ldots, m\}$. Then by the second uniqueness theorem, $\mathfrak{q}_j = \psi^{-1}((\mathfrak{p}^n_j)_{\mathfrak{p}_j}) = \psi^{-1}((\mathfrak{p}^n)_{\mathfrak{p}}) = \mathfrak{p}^{(n)}$.

Example 4.46. Let $R = \frac{k[X,Y,Z]}{\langle XY-Z^2 \rangle}$ and $x = \overline{X}, y = \overline{Y}, z = \overline{Z} \in R$. Let $\mathfrak{p} = \langle x, z \rangle \in \operatorname{Spec}(R)$. Then by Example 4.44(c), $\mathfrak{p}^{(2)} = \langle x \rangle$. Note that $\mathfrak{p}^2 = \langle x \rangle \cap \langle x^2, z, y \rangle$ with $\operatorname{rad}(\langle x \rangle) = \langle x, z \rangle = \mathfrak{p}$ since $z^2 = xy$, and with $\operatorname{rad}(\langle x^2, z, y \rangle) = \langle x, y, z \rangle \in \operatorname{m-Spec}(R)$ since

$$R/\langle x, y, z \rangle \cong \frac{k[X, Y, X]}{\langle XY - Z^2, X, Y, Z \rangle} = \frac{k[X, Y, Z]}{\langle X, Y, Z \rangle} \cong k.$$

Definition 4.47 (Calculus content). Let $R = \mathbb{C}[X_1, \ldots, X_d]$ and $\mathfrak{p} \in \text{Spec}(R)$ (Zariski).

$$\mathfrak{p}^{(2)} = \left\{ f \in \mathfrak{p} \mid \frac{\partial f}{\partial x_i} \in \mathfrak{p}, \forall i = 1, \dots, d \right\},$$
$$\mathfrak{p}^{(n)} = \left\{ f \in \mathfrak{p} \mid \frac{\partial^i f}{\partial \underline{x}} \in \mathfrak{p}, \text{ all partials of order } i = 1, \dots, n-1 \right\}, \forall n \ge 3.$$

Chapter 5

Modules and Integral Dependence

Modules

Let R be a commutative ring with identity.

Definition 5.1. An *R*-module is an additive abelian group M equipped with a scalar multiplication $R \times M \to M$ denoted $(r, m) \mapsto rm$ that is unital, associative and distributive.

- 1m = m for all $m \in M$.
- r(sm) = (rs)m for all $r, s \in R$ and $m \in M$.
- (r+s)m = rm + sm for all $r, s \in R$ and $m \in M$.
- r(m+n) = rm + rn for all $r \in R$ and $m, n \in M$.

(Closure) $rm \in M$ for all $r \in R$ and $m \in M$.

Example 5.2. (a) For
$$n = 1, 2, 3, \dots$$
, let $R^n = \left\{ \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix} \middle| r_1, \dots, r_n \in R \right\}$ with $s \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} sr_1 \\ \vdots \\ sr_n \end{bmatrix}$ for $s \in R$, then R^n is an R -module. e.g., R is an R -module.

for $s \in n$, then n is an n-module. e.g., n is an n-mod

(b) A $\mathbb Z\text{-module}$ is an additive abelian group.

(c) Let $\varphi: R \to S$ be a ring homomorphism. Then S is an R-module with $r \cdot s = \varphi(r)s$ for $r \in R$ and $s \in S$.

Let M be an R-module.

Definition 5.3. A submodule of M is a subset $N \subseteq M$ such that N is an R-module using the operations from M.

Example 5.4. (a) If $I \leq R$, then I is a submodule of R.

(b) A submodule of an Z-module is a subgroup.

(c) Submodule test. $0 \neq N \subseteq M$ is a submodule of M if and only if $n + n' \in N$ for all $n, n' \in N$ and $rn \in N$ for all $r \in R$ and $n \in N$ if and only if $n + rn' \in N$ for all $r \in R$ and $n, n' \in N$.

(d) If $M_{\lambda} \subseteq M$ is a submodule for $\lambda \in \Lambda$, then $\bigcap_{\lambda \in \Lambda} M_{\lambda} \subseteq M$ and $\sum_{\lambda \in \Lambda} M_{\lambda} \subseteq M$ are submodules.

Definition 5.5. Let $Y \subseteq M$. Define

$$\langle Y \rangle = R \langle Y \rangle = R(Y) = \bigcap_{Y \subseteq N \subseteq M} N,$$

intersection of all submodules $N \subseteq M$ such that $Y \subseteq N$. This is the (unique) smallest submodule of M containing Y. e.g., for a submodule $N \subseteq M$, $\langle Y \rangle \subseteq N$ if and only if $Y \subseteq N$.

 $\langle Y \rangle$ is the *submodule* of M generated by Y.

M is finitely generated if there exist $y_1, \ldots, y_n \in M$ such that $M = \langle y_1, \ldots, y_n \rangle$.

Fact 5.6. (a) Let $Y \subseteq M$. Then

$$\langle Y \rangle = \left\{ \sum_{y \in Y}^{\text{finite}} r_y y \mid r_y \in R, \forall y \right\} = \sum_{y \in Y} \langle y \rangle.$$

(b) If $y_1, \ldots, y_n \in M$, then

$$\langle y_1,\ldots,y_n\rangle = \left\{\sum_{i=1}^n r_i y_i \mid r_1,\ldots,r_n \in R\right\}.$$

Example 5.7. Submodules of a finitely generated *R*-module may not be finitely generated. Note that $R := k[X_1, X_2, \cdots] = \langle 1 \rangle$ is a finitely generated *R*-module, but $\mathfrak{m} = \langle X_1, X_2, \cdots \rangle \subseteq R$ is not finitely generated.

Integral Dependence

Let R be a nonzero commutative ring with identity. Let $R \subseteq S$ be a subring.

Definition 5.8. An element $s \in S$ is *integral* over R if there exists a monic $f \in R[X]$ such that f(s) = 0, i.e., there exists $n \ge 1$ and $r_0, \ldots, r_{n-1} \in R$ such that $s^n + r_{n-1}s^{n-1} + \cdots + r_0 = 0$. S is *integral* R if every $s \in S$ is integral over R, (or $R \subseteq S$ is an *integral extension*).

Example 5.9. (a) Let $k \subseteq K$ be a field extension. Then K is integral over k if and only if $k \subseteq K$ is an algebraic extension.

- (b) Every $r \in R$ is integral over R since r satisfies $X r \in R[X]$.
- (c) $\mathbb{Z} \subseteq \mathbb{Z}[i]$ is an integral extension since $a + bi \in \mathbb{Z}[i]$ satisfies $X^2 2aX + (a^2 + b^2) \in \mathbb{Z}[X]$.
- (d) $\mathbb{Z} \subseteq \mathbb{Q}$. The only $\frac{r}{s} \in \mathbb{Q}$ that are integral over \mathbb{Z} are the elements of \mathbb{Z} .

Proof. (c) Let $\frac{r}{s} \in \mathbb{Q}$ be integral over \mathbb{Z} , where $s \neq 0$ and (r,s) = 1. Then $(\frac{r}{s})^n + c_{n-1}(\frac{r}{s})^{n-1} + \cdots + c_1(\frac{r}{s}) + c_0 = 0$ for some $n \geq 1$ and $c_0, \ldots, c_{n-1} \in R$. Hence $\frac{r^n + c_{n-1}r^{n-1}s + \cdots + c_1rs^{n-1} + c_0s^n}{s^n} = 0$, i.e.,

$$r^{n} = -(c_{n-1}r^{n-1}s + \dots + c_{1}rs^{n-1} + c_{0}s^{n}) = -s(c_{n-1}r^{n-1} + \dots + c_{1}rs^{n-2} + c_{0}s^{n-1}).$$

Hence $s \mid r^n$. Since (r, s) = 1, $(r^n, s) = 1$. Hence $s = \pm 1$. Thus, $\frac{r}{s} = \pm r \in \mathbb{Z}$.

Definition 5.10. An *intermediate subring* is a subring $T \subseteq S$ such that $R \subseteq T$. (Notice if $R \subseteq T \subseteq S$ is an intermediate subring, then $R \subseteq T$ is a subring.)

Let $y_1, \ldots, y_n \in S$. Define the subring of S generated over R by y_1, \ldots, y_n by

$$R[y_1, \dots, y_n] = \bigcap_{\substack{R \subseteq T \subseteq S, \\ y_1, \dots, y_n \in T}} T,$$

where the intersection is taken over all intermediate subrings $R \subseteq T \subseteq S$ such that $y_1, \ldots, y_n \in T$.

Fact 5.11. Let $y_1, ..., y_n \in S$.

(a) $R[y_1, \ldots, y_n] = \{f(y_1, \ldots, y_n) \in S \mid f \in R[Y_1, \ldots, Y_n]\}.$

(b) $\psi: R[Y_1, \ldots, Y_n] \to S$ given by $\psi(f) = f(y_1, \ldots, y_n)$ is a well-defined ring homomorphism with $\operatorname{Im}(\psi) = R[y_1, \ldots, y_n]$ and $\overline{Y_1}, \ldots, \overline{Y_n} \in R[Y_1, \ldots, Y_n] / \operatorname{Ker}(\psi) \cong R[y_1, \ldots, y_n]$. Hence if y_1, \ldots, y_n have no polynomial relations, then $\operatorname{Ker}(\psi) = 0$ and hence $R[Y_1, \ldots, Y_n] \cong R[y_1, \ldots, y_n]$.

(c) Let $T \subseteq S$ be a subring. Then $R[y_1, \ldots, y_n] \subseteq T$ if and only if $R \subseteq T$ and $y_1, \ldots, y_n \in T$.

Example 5.12. $\mathbb{Z} \subseteq \mathbb{Z}[i] \subseteq \mathbb{C}$ is an intermediate subring, where $\mathbb{Z}[i] \cong \mathbb{Z}[X]/\langle X^2 + 1 \rangle$.

Proposition 5.13. Let $s \in S$. Then the following are equivalent.

- (i) s is integral over R.
- (ii) R[s] is a finitely generated *R*-module.

(iii) There exists an intermediate subring $R \subseteq T \subseteq S$ such that $s \in T$ and T is a finitely generated R-module.

Proof. (i) \Longrightarrow (ii). Method 1. Assume s is integral over R. Then $s^n + r_{n-1}s^{n-1} + \cdots + r_0 = 0$ for some $n \ge 1$ and $r_0, \ldots, r_{n-1} \in R$. We claim that $R[s] = R\langle 1, s, \ldots, s^{n-1} \rangle$.

 \supseteq It is straightforward.

 \subseteq It suffices to show $s^m \in R\langle 1, s, \dots, s^{n-1} \rangle$ for $m = n, n+1, \dots$. Use induction on m. Base case: $s^n = -\sum_{i=0}^{n-1} r_i s^i \in R\langle 1, s, \dots, s^{n-1} \rangle$. Inductive step: assume $m \ge n+1$ and $s^k \in R\langle 1, s, \dots, s^{n-1} \rangle$ for $0 \le k \le m-1$. Then

$$s^m = s^n s^{m-n} = -\sum_{i=0}^{n-1} r_i s^{i+m-n} \in R\langle s^{m-n}, \dots, s^{m-1} \rangle \subseteq R\langle 1, s, \dots, s^{n-1} \rangle$$

by inductive hypothesis.

Method 2. Assume s is integral over R. Then there exists $f \in R[x]$ monic such that f(s) = 0. Let $g \in R[x]$. Write g(x) = f(x)q(x) + r(x) with $q, r \in R[x]$, where r = 0 or deg(r) < deg(f). Then g(s) = f(s)q(s) + r(s) = r(s). This implies R[s] is finitely generated by $1, s, \ldots, s^{\text{deg}(f)-1}$ as an R-module.

(ii) \Longrightarrow (iii) Use T = R[s].

(iii) \Longrightarrow (i) (Determinant trick). Assume $s \in T = R\langle y_1, \ldots, y_n \rangle$ for some $y_1, \ldots, y_n \in S$. Then for $j = 1, \ldots, n, sy_j \in T$ and so there exist $a_{1j}, \ldots, a_{nj} \in R$ such that $\sum_{i=1}^n \delta_{ij} sy_i = sy_j = \sum_{i=1}^n a_{ij}y_i$, i.e., $\sum_{i=1}^n (\delta_{ij}s - a_{ij})y_i = 0$. Let $B = (\delta_{ij}s - a_{ij}) \in T^{n \times n}$. Then $B\vec{y} = \vec{0}$. Let $(\delta_{ij}) \in T^{n \times n}$ be the identity matrix. Then $(\det(B)(\delta_{ij}))\vec{y} = \operatorname{adj}(B)B\vec{y} = \vec{0}$, † i.e., $\det(B)y_j = 0$ for $j = 1, \ldots, n$. Since $1 \in T = R\langle y_1, \ldots, y_n \rangle$, there exist $c_1, \ldots, c_n \in R$ such that $1 = \sum_{j=1}^n c_j y_j$. Hence $\det(\delta_{ij}s - a_{ij}) = \det(B) \cdot 1 = \det(B) \sum_{j=1}^n c_j y_j = \sum_{j=1}^n c_j \det(B)y_j = 0$, i.e.,

$$0 = \det(\delta_{ij}s - a_{ij}) = \begin{vmatrix} s - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & s - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots \vdots \\ -a_{n1} & -a_{n2} & \cdots & s - a_{nn} \end{vmatrix} = s^n + c_{n-1}s^{n-1} + \cdots + c_1s + c_0,$$

where $c_0, \ldots, c_{n-1} \in R$ since they are built from $a_{ij} \in R$.

Theorem 5.14. $s_1, \ldots, s_n \in S$ are integral over R if and only if $R[s_1, \ldots, s_n]$ is a finitely generated R-module.

Proof. \implies Assume $B = A\langle b_1, \ldots, b_m \rangle$ and $C = B\langle c_1, \ldots, c_n \rangle$ with $A \subseteq B \subseteq C$ an intermediate subring. We claim that $C = A\langle b_i c_j \mid i = 1, \ldots, m, j = 1, \ldots, n \rangle$.

 \supseteq It is straightforward.

 $\subseteq \text{Let } c \in C. \text{ Then } c = \sum_{j=1}^{n} \beta_j c_j \text{ for some } \beta_1, \dots, \beta_n \in B. \text{ Note that for } j = 1, \dots, n,$ $\beta_j = \sum_{i=1}^{m} \alpha_{ij} b_i \text{ for some } \alpha_{1j}, \dots, \alpha_{mj} \in A. \text{ Hence } c = \sum_{j=1}^{n} (\sum_{i=1}^{m} \alpha_{ij} b_i) c_j = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{ij} b_i c_j.$ Since s_1 is integral over R, by Proposition 5.13, $R[s_1]$ is a finitely generated R-module. Since

Since s_1 is integral over R, by Proposition 5.13, $R[s_1]$ is a finitely generated R-module. Since s_2 is integral over R, clearly s_2 is integral over $R[s_1]$ and then $R[s_1, s_2] = R[s_1][s_2]$ is a finitely generated $R[s_1]$ -module. Hence $R[s_1, s_2]$ is a finitely generated R-module by our result. Continuing in this fashion, we have that $R[s_1, \ldots, s_n]$ is a finitely generated R-module.

Theorem 5.15. Let $\overline{R} := \{s \in S \mid s \text{ is integral over } R\}$. Then $R \subseteq \overline{R} \subseteq S$ is an intermediate subring. Hence for $s, s' \in S$ integral over R, the elements $s \pm s'$ and ss' are integral over R.

Proof. $R \subseteq \overline{R}$ is straightforward. Since s, s' are integral over R, T := R[s, s'] is a finitely generated R-module by Theorem 5.14. Hence $s \pm s', ss'$ are integral over R by Proposition 5.13(iii). Hence $s \pm s', ss' \in \overline{R}$. Since $R \subseteq S$ is a subring, $1_S = 1_R \in \overline{R}$. Hence by subring test, $\overline{R} \subseteq S$ is a subring.

Note. Let $s, s' \in R$ be integral over R. Assume s, s' satisfies a monic $f, g \in R[X]$ of degree m, n, respectively. Since s' also satisfies the monic $g \in R[s][X]$ of degree n, by the proof (i) \Longrightarrow (ii) of

[†] $A \operatorname{adj}(A) = \operatorname{adj}(A)A = \operatorname{det}(A)(\delta_{ij})$ for $A \in \operatorname{Mat}_n(R)$. When A is invertible, $\operatorname{adj}(A)$ is unique.

Proposition 5.13, we have that

$$\begin{aligned} R[s,s'] &= R[s][s'] = R[s]\langle 1,s',\dots,s'^{n-1} \rangle = R\langle 1,s,\dots,s^{m-1} \rangle \langle 1,s',\dots,s'^{n-1} \rangle \\ &= R\langle 1,s',\dots,s'^{n-1},s,ss',\dots,ss'^{n-1},\dots,s^{m-1},s^{m-1}s',s^{m-1}s'^{n-1} \rangle, \end{aligned}$$

which has mn generators. Hence by the proof (iii) \Longrightarrow (i) of Proposition 5.13, we have that all elements in R[s, s'], e.g., $s \pm s, ss'$ satisfy a monic polynomial of degree mn in R[X].

Definition 5.16. $\overline{R} = \{s \in S \mid s \text{ is integral over } R\}$ is the *integral closure* of R in S. If $\overline{R} = S$, then S is *integral* over R. If $\overline{R} = R$, then R is *integrally closed* in S.

Example 5.17. (a) $\mathbb{Z}[i]$ is integral over \mathbb{Z} with $\overline{\mathbb{Z}} = \mathbb{Z}[i]$.

- (b) \mathbb{Z} is integrally closed in \mathbb{Q} with $\overline{\mathbb{Z}} = \mathbb{Z}$.
- (c) $\overline{\mathbb{Z}} = \mathbb{Z}[i]$ in $\mathbb{Q}(i)$.

Definition 5.18. Let $\varphi : R \to S$ be a ring homomorphism. Then φ is *integral* if $\operatorname{Im}(\varphi) \subseteq S$ is an integral extension.

Theorem 5.19. The following are equivalent.

- (i) S is a finitely generated R-module.
- (ii) $S = R[s_1, \ldots, s_n]$ for some s_1, \ldots, s_n and is integral over R.
- (iii) $S = R[s_1, \ldots, s_n]$ for some s_1, \ldots, s_n integral over R.

Proof. (i) \Longrightarrow (ii) Assume $S = R\langle s_1, \ldots, s_n \rangle$. Then $S = R\langle s_1, \ldots, s_n \rangle \subseteq R[s_1, \ldots, s_n] \subseteq S$. Hence $S = R[s_1, \ldots, s_n]$. Note that there exists an intermediate subring $R \subseteq R[s_1, \ldots, s_n] := T \subseteq S$ such that T is a finitely generated R-module. Then $s_1, \ldots, s_n \in S$ are integral over R by Proposition 5.13. Since $\overline{R} \subseteq S$ is a subring by Theorem 5.15, $S = R[s_1, \ldots, s_n] \subseteq \overline{R} \subseteq S$ by Fact 5.11(c). Hence $\overline{R} = S$.

 $(ii) \Longrightarrow (iii)$ is trivial.

(iii) \Longrightarrow (i) follows from Theorem 5.14.

Corollary 5.20. If $R \subseteq S$ and $S \subseteq T$ are integral extensions, then $R \subseteq T$ is an integral extension.

Proof. Let $t \in T$. Then t is integral over S. Hence $t^n + s_{n-1}t^{n-1} + \cdots + s_0 = 0$ for some $n \geq 1$ and $s_0, \ldots, s_{n-1} \in S$. Hence t is integral over $R[s_0, \ldots, s_{n-1}]$. Hence $R[s_0, \ldots, s_{n-1}, t] = R[s_0, \ldots, s_{n-1}][t]$ is a finitely generated $R[s_0, \ldots, s_{n-1}]$ -module by Proposition 5.13. Since S is integral over R and $s_0, \ldots, s_{n-1} \in S$, s_0, \ldots, s_{n-1} are integral over R. Hence $R[s_0, \ldots, s_{n-1}]$ is a finitely generated R-module by Theorem 5.14. Thus, $R[s_0, \ldots, s_{n-1}, t]$ is a finitely generated R-module by the claim in the proof of Theorem 5.14. Therefore, t is integral over R by Proposition 5.13(iii).

Corollary 5.21. If \overline{R} is an integral closure of R in S, then \overline{R} is integrally closed in S, i.e., $\overline{\overline{R}} = \overline{R}$.

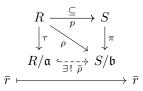
Proof. Let $s \in \overline{R}$. Then $s \in S$ be integral over \overline{R} . Hence $R \subseteq \overline{R} \subseteq \overline{R}[s]$ are integral extensions by Theorem 5.15. Hence $R \subseteq \overline{R}[s]$ is an integral extension by Corollary 5.20. Hence s is integral over R, i.e., $s \in \overline{R}$.

Proposition 5.22. Let $R \subseteq S$ be an integral extension.

(a) If $\mathfrak{b} \leq S$ and $\mathfrak{a} = R \cap \mathfrak{b}$, then $R/\mathfrak{a} \to S/\mathfrak{b}$ given by $r + \mathfrak{a} \mapsto r + \mathfrak{b}$ is 1-1 and integral.

(b) If $U \subseteq R$ is multiplicatively closed, then $U^{-1}R \subseteq U^{-1}S$ given by $\frac{r}{u} \mapsto \frac{r}{u}$ is an integral extension.

Proof. (a) Consider



Since $\operatorname{Ker}(\rho) = \operatorname{Ker}(\pi) \cap R = \mathfrak{b} \cap R = \mathfrak{a}$, by the first isomorphism, $R/\mathfrak{a} \cong \operatorname{Im}(\bar{\rho}) \subseteq S/\mathfrak{b}$.

Let $\bar{s} \in S/\mathfrak{b}$. Then s is integral over R since S is integral over R. Hence s satisfies $X^n + S$ $\sum_{i=0}^{n-1} a_i X^i$ for some $a_0, \ldots, a_{n-1} \in R$. Hence \bar{s} satisfies $X^n + \sum_{i=0}^{n-1} \bar{a}_i X^i$ for some $\bar{a}_0, \ldots, \bar{a}_{n-1} \in R$. $R/\mathfrak{a} \cong \operatorname{Im}(\overline{\rho}).$

(b) Let $\frac{s}{u} \in U^{-1}S$ with $s \in S$ and $u \in U$. Then s is integral over R. Hence $s^n + a_{n-1}s^{n-1} + \cdots + a_0 = a_{n-1}s^{n-1} + \cdots + a_n = a_{n-1}s^{n-1} + \cdots + a_n$ 0 for some $a_0, \ldots, a_{n-1} \in R$. Hence

$$0 = \frac{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}{u^n} = \left(\frac{s}{u}\right)^n + \left(\frac{a_{n-1}}{u}\right)\left(\frac{s}{u}\right)^{n-1} + \dots + \left(\frac{a_1}{u^{n-1}}\right)\left(\frac{s}{u}\right) + \left(\frac{a_0}{u^n}\right)$$

r some $\frac{a_0}{u} = \frac{a_1}{u} = \frac{a_{n-1}}{u} \in U^{-1}R$

for some $\frac{a_0}{u^n}, \frac{a_1}{u^{n-1}}, \dots, \frac{a_{n-1}}{u} \in U^{-1}R.$

Discussion 5.23. Let $\mathfrak{p} \in \operatorname{Spec}(R)$. When does there exist $\mathfrak{q} \in \operatorname{Spec}(S)$ such that $\mathfrak{p} = \mathfrak{q} \cap R$? i.e., when is the induced map $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ surjective?

By Cohen-Seidenberg, it is a surjection when S is integral over R.

Let $R \subseteq S$ be an integral extension.

Proposition 5.24. Let S be an integral domain. Then R is a field if and only if S is a field.

Proof. \implies Assume R is a field. Let $0 \neq s \in S$. Then s is integral over R since S is integral over R. Hence there exists $n := \min\{\deg(f) \mid s \text{ satisfies a monic } f \in R[X]\}$. Then $s^n + a_{n-1}s^{n-1} + \dots + a_0 =$ 0 for some $a_0, \ldots, a_{n-1} \in R$. Suppose $a_0 = 0$. Then $s(s^{n-1} + \cdots + a_1) = 0$. Since $s \neq 0$ and S is an integral domain, $s^{n-1} + \cdots + a_1 = 0$, contradicting the minimality of n. Hence $a_0 \neq 0$. Since R is a field, $a_0 \in R^{\times} \subseteq S^{\times}$. Hence $s(s^{n-1} + \dots + a_1) = -a_0 \in S^{\times}$. Thus, $s \in S^{\times}$.

 \Leftarrow Assume S is a field. Let $0 \neq r \in R \subseteq S$. Then $r^{-1} \in S$. Note that r^{-1} is integral over R since S is integral over R. Then $r^{n-1}[(r^{-1})^n + a_{n-1}(r^{-1})^{n-1} + \dots + a_1(r^{-1}) + a_0] = 0$ for some $a_0, a_1, \dots, a_{n-1} \in R$. Hence $r^{-1} + a_{n-1} + \dots + a_1 r^{n-2} + a_0 r^{n-1} = 0$. Hence $r^{-1} \in R$. $\in R$

Example. Conclusion of Proposition 5.24 fails if S is not an integral domain. Let k be a field. Restrict the domain of the projection $\varphi: k[X] \to k[X]/(X^2)$, we have an induced ring homomorphism $\varphi|_k : k \to k[X]/(X^2)$. Since $\varphi|_k(1) = \overline{1} \neq 0$ in $k[X]/(X^2)$, $\varphi|_k \neq 0$. Also, since k is a field, $\varphi|_k$ is 1-1. Hence we regard R := k as a subring of $S := k[X]/(X^2)$. Let $x = \overline{X} \in S$. Then x is integral over k since $x^2 = 0$. Hence S = k[x] is integral over k. However, R is a field but S is not a field.

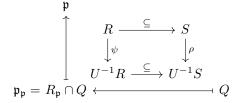
Let $\epsilon \neq 0$ and $\epsilon^2 = 0$ in a ring extension $T \supseteq k$, then $\varphi : k[X] \to k[\epsilon]$ given by $f \mapsto f(\epsilon)$ is a ring epimorphism with $\operatorname{Ker}(\varphi) = (X^2)$, so $k[X]/(X^2) \cong k[\epsilon] = k\epsilon + k$.

Corollary 5.25. Let $\mathfrak{q} \in \operatorname{Spec}(S)$ and $\mathfrak{p} = \mathfrak{q} \cap R$. Then $\mathfrak{p} \in \operatorname{m-Spec}(R)$ if and only if $\mathfrak{q} \in \operatorname{m-Spec}(S)$.

Proof. Since S is integral over $R, R/\mathfrak{p} \subseteq S/\mathfrak{q}$ is an integral extension by Proposition 5.22(a). Since S/\mathfrak{q} is an integral domain, by Proposition 5.24, R/\mathfrak{p} is a field if and only if S/\mathfrak{q} is a field.

Theorem 5.26. Spec(S) \rightarrow Spec(R) given by $\mathfrak{q} \mapsto \mathfrak{q} \cap R$ is a surjection, i.e., for $\mathfrak{p} \in$ Spec(R), there exists $\mathfrak{q} \in$ Spec(S) such that $\mathfrak{p} = \mathfrak{q} \cap R$.

Proof. Let $U = R \setminus \mathfrak{p}$. Consider



Since $R \subseteq S$ is an integral extension, $U^{-1}R \subseteq U^{-1}S$ is an integral extension by Proposition 5.22(b). Since $0 \neq R \subseteq S$, $0 \neq R_{\mathfrak{p}} = U^{-1}R \subseteq U^{-1}S$. Hence there exists $Q \in \text{m-Spec}(U^{-1}S)$. By Corollary 5.25, $Q \cap R_{\mathfrak{p}} \in \text{m-Spec}(R_{\mathfrak{p}}) = {\mathfrak{p}}$ by Corollary 3.14. Hence $Q \cap R_{\mathfrak{p}} = \mathfrak{p}_{\mathfrak{p}}$. Consider $\psi : R \to U^{-1}R$. Since $U \cap \mathfrak{p} = \emptyset$, by Proposition 3.13, we have that

$$\mathfrak{p} \cdot U^{-1}(U^{-1}R) = \mathfrak{p} \cdot U^{-1}R \neq U^{-1}R = U^{-1}(U^{-1}R).$$

Hence by Theorem 3.24,

$$\mathfrak{p} = \psi^{-1}(\mathfrak{p} \cdot U^{-1}R) = \psi^{-1}(\mathfrak{p}_{\mathfrak{p}}) = \psi^{-1}(Q \cap R_{\mathfrak{p}}) = \rho^{-1}(Q) \cap R.$$

Let $\mathfrak{q} := \rho^{-1}(Q)$. Since $Q \in \operatorname{Spec}(U^{-1}S)$, $\mathfrak{q} \in \operatorname{Spec}(S)$ by Fact 1.16.

Proposition 5.27. Let $\mathfrak{q}, \mathfrak{q}' \in \operatorname{Spec}(S)$ such that $\mathfrak{q} \cap R = \mathfrak{q}' \cap R$. Then $\mathfrak{q} \subseteq \mathfrak{q}'$ if and only if $\mathfrak{q} = \mathfrak{q}'$. *Proof.* Let $\mathfrak{p} = \mathfrak{q} \cap R = \mathfrak{q}' \cap R \in \operatorname{Spec}(R)$ by Fact 1.16. Let $U = R \smallsetminus \mathfrak{p}$. By prime correspondence

Proof. Let $\mathfrak{p} = \mathfrak{q} \cap R = \mathfrak{q} \cap R \in \operatorname{Spec}(R)$ by Fact 1.10. Let $U = R \setminus \mathfrak{p}$. By prime correspondence for localization,

$$\operatorname{Spec}(U^{-1}S) \leftrightarrow \{\gamma \in \operatorname{Spec}(S) \mid \gamma \cap (R \smallsetminus \mathfrak{p}) = \emptyset\} = \{\gamma \in \operatorname{Spec}(S) \mid \gamma \cap R \subseteq \mathfrak{p}\}$$

given by $U^{-1}\gamma \leftrightarrow \gamma$. Hence $U^{-1}\mathfrak{q}, U^{-1}\mathfrak{q}' \in \operatorname{Spec}(U^{-1}S)$. Hence $U^{-1}\mathfrak{q} \cap R_{\mathfrak{p}}, U^{-1}\mathfrak{q}' \cap R_{\mathfrak{p}} \in \operatorname{Spec}(R_{\mathfrak{p}})$.

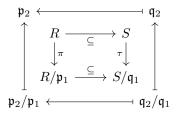
Since $U^{-1}\mathfrak{q}, U^{-1}\mathfrak{q}' \supseteq U^{-1}\mathfrak{p} = \mathfrak{p}_{\mathfrak{p}}$ and $R_{\mathfrak{p}} \supseteq \mathfrak{p}_{\mathfrak{p}}$,

 $R_{\mathfrak{p}} \supseteq U^{-1}\mathfrak{q} \cap R_{\mathfrak{p}}, U^{-1}\mathfrak{q}' \cap R_{\mathfrak{p}} \supseteq \mathfrak{p}_{\mathfrak{p}} \in \mathrm{m-Spec}(R_{\mathfrak{p}}).$

Hence $U^{-1}\mathfrak{q} \cap R_{\mathfrak{p}} = \mathfrak{p}_{\mathfrak{p}} = U^{-1}\mathfrak{q}' \cap R_{\mathfrak{p}}$.[†] Since $R \subseteq S$ is an integral extension, $U^{-1}R \subseteq U^{-1}S$ is an integral extension by Proposition 5.22(b). Hence by Corollary 5.25, $U^{-1}\mathfrak{q}, U^{-1}\mathfrak{q}' \in \mathrm{m-Spec}(U^{-1}S)$. Also, since $U^{-1}\mathfrak{q} \subseteq U^{-1}\mathfrak{q}', U^{-1}\mathfrak{q} = U^{-1}\mathfrak{q}'$. Thus, $\mathfrak{q} = \mathfrak{q}'$ by the prime correspondence for localization.

Theorem 5.28 (Going up theorem). Let $\mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_n$ be a chain in $\operatorname{Spec}(R)$ and $\mathfrak{q}_1 \subseteq \cdots \subseteq \mathfrak{q}_m$ (m < n) be a chain in $\operatorname{Spec}(S)$ such that $\mathfrak{p}_i = \mathfrak{q}_i \cap R$ for $i = 1, \ldots, m$. Then there exists a chain $\mathfrak{q}_m \subseteq \cdots \subseteq \mathfrak{q}_n$ in $\operatorname{Spec}(S)$ such that $\mathfrak{q}_i \cap R = \mathfrak{p}_i$ for $i = 1, \ldots, n$.

Proof. By induction on n - m. It suffices to consider the case n = 2 and m = 1. Need to find $\mathfrak{q}_2 \in \mathcal{V}(\mathfrak{q}_1) \subseteq \operatorname{Spec}(S)$ such that $\mathfrak{q}_2 \cap R = \mathfrak{p}_2$. Consider



Since $R \subseteq S$ is an integral extension and $\mathfrak{p}_1 = \mathfrak{q}_1 \cap R$, by Proposition 5.22(a), $R/\mathfrak{p}_1 \subseteq S/\mathfrak{q}_1$ is an integral extension. Also, since $\mathfrak{p}_2/\mathfrak{p}_1 \in \operatorname{Spec}(R/\mathfrak{p}_1)$ by prime correspondence for quotients, there exists $\mathfrak{q}_2/\mathfrak{q}_1 \in \operatorname{Spec}(S/\mathfrak{q}_1)$ such that $(\mathfrak{q}_2/\mathfrak{q}_1) \cap (R/\mathfrak{p}_1) = \mathfrak{p}_2/\mathfrak{p}_1$ by Theorem 5.26.

Note that $x + \mathfrak{p}_1 \in (R \cap \mathfrak{q}_2)/\mathfrak{p}_1$ if and only if $x \in R$ and $x \in \mathfrak{q}_2$ if and only if $x + \mathfrak{q}_1 = x + \mathfrak{p}_1 \in (\mathfrak{q}_2/\mathfrak{q}_1) \cap (R/\mathfrak{p}_1) = \mathfrak{p}_2/\mathfrak{p}_1$ since we can regard $R/\mathfrak{p}_1 \subseteq S/\mathfrak{q}_1$ by Proposition 5.22(a). Hence $(\mathfrak{q}_2 \cap R)/\mathfrak{p}_1 = \mathfrak{p}_2/\mathfrak{p}_1$. Thus, $\mathfrak{q}_2 \cap R = \mathfrak{p}_2$ by prime correspondence for quotients.

Example 5.29. Integral assumption is crucial.

(a) $\mathbb{Z} \subseteq \mathbb{Q}$. Let $0 \subseteq 2\mathbb{Z}$ be a chain in $\operatorname{Spec}(\mathbb{Z})$, Note that 0 is a (unique) chain in $\operatorname{Spec}(\mathbb{Q}) = \{0\}$.

(b) $\mathbb{Z} \subseteq \mathbb{Z}[X]$. Let $0 \subseteq 2\mathbb{Z}$ be a chain in Spec(\mathbb{Z}) and $\langle 2X - 1 \rangle$ be a chain in Spec($\mathbb{Z}[X]$) since $\frac{\mathbb{Z}[X]}{(2X-1)} \cong \mathbb{Z}_2^{\dagger} = \mathbb{Z}[\frac{1}{2}] \subseteq \mathbb{Q}$ given by $\overline{X} \mapsto \frac{1}{2}$ and $\mathbb{Z}[\frac{1}{2}]$ is an integral domain. Note that $\mathbb{Z} \cap \langle 2X - 1 \rangle = 0$. Suppose there exists $Q \in \text{Spec}(\mathbb{Z}[X])$ such that $\langle 2X - 1 \rangle \subseteq Q$ and $\mathbb{Z} \cap Q = 2\mathbb{Z}$. Then $2, 2x-1 \in Q$. Hence $1 \in Q$, i.e., $Q = \mathbb{Z}[X]$, a contradiction.

This example also shows the need for integral assumption in Proposition 5.27 because

- (1) $0, \langle 2X 1 \rangle \in \text{Spec}(\mathbb{Z}[X]) \text{ and } \mathbb{Z} \cap 0 = 0 = \mathbb{Z} \cap \langle 2X 1 \rangle, \text{ but } 0 \subsetneq \langle 2X 1 \rangle;$
- (2) $\langle 2 \rangle, \langle 2, X \rangle \in \text{Spec}(\mathbb{Z}[X]) \text{ and } \mathbb{Z} \cap \langle 2 \rangle = 2\mathbb{Z} = \mathbb{Z} \cap \langle 2, X \rangle, \text{ but } \langle 2 \rangle \subsetneq \langle 2, X \rangle.$

Proposition 5.30. Let $U \subseteq R$ be multiplicatively closed. Let \overline{R} be the integral closure of R in S and $\overline{U^{-1}R}$ be the integral closure of $U^{-1}R$ in $U^{-1}S$. Then $\overline{U^{-1}R} = U^{-1}\overline{R}$.

 $^{{}^{\}dagger}U^{-1}\mathfrak{q}\cap R_{\mathfrak{p}} = U^{-1}\mathfrak{q}\cap U^{-1}R = U^{-1}(\mathfrak{q}\cap R) = U^{-1}\mathfrak{p} = \mathfrak{p}_{\mathfrak{p}} = U^{-1}\mathfrak{p} = U^{-1}(\mathfrak{q}'\cap R) = U^{-1}\mathfrak{q}'\cap U^{-1}R = U^{-1}\mathfrak{q}'\cap R_{\mathfrak{p}}.$ ${}^{\dagger}\mathbb{Z}_{2} \text{ is the localization of } \mathbb{Z} \text{ away from } 2 \text{ while } \mathbb{Z}_{(2)} \text{ is the localization of } \mathbb{Z} \text{ at } 2.$

Proof. "⊇". Since $R \subseteq \overline{R} \subseteq S$ with $R \subseteq \overline{R}$ integral, we have that $U^{-1}R \subseteq U^{-1}\overline{R} \subseteq U^{-1}S$ with $U^{-1}R \subseteq U^{-1}\overline{R}$ integral by Proposition 5.22(b). Hence $U^{-1}\overline{R} \subseteq \overline{U^{-1}R}$. "⊆". Let $\frac{s}{u} \in \overline{U^{-1}R} \subseteq U^{-1}S$. Then

$$0 = \left(\frac{s}{u}\right)^n + \left(\frac{a_{n-1}}{v_{n-1}}\right) \left(\frac{s}{u}\right)^{n-1} + \dots + \left(\frac{a_1}{v_1}\right) \left(\frac{s}{u}\right) + \left(\frac{a_0}{v_0}\right)$$

in $U^{-1}S$ for some $a_0, \ldots, a_{n-1} \in R$ and $v_0, \ldots, v_{n-1} \in U$. Let $v := v_0 \cdots v_{n-1} \in U$ and multiply the equation by $(uv)^n$,

$$0 = (vs)^{n} + \underbrace{\left(u\frac{v}{v_{n-1}}a_{n-1}\right)}_{b_{n-1}\in R}(vs)^{n-1} + \dots + \underbrace{\left(u^{n-1}\frac{v^{n-1}}{v_{1}}a_{1}\right)}_{b_{1}\in R}(vs) + \underbrace{\left(u^{n}\frac{v^{n}}{v_{0}}a_{0}\right)}_{b_{0}\in R}$$

in $U^{-1}R$. Hence there exists $w \in U \subseteq R$ such that

$$0 = w^n \cdot 0 = (wvs)^n + (\underbrace{wb_{n-1}}_{\in R})(wvs)^{n-1} + \dots + (\underbrace{w^{n-1}b_1}_{\in R})(wvs) + (\underbrace{w^nb_0}_{\in R}).$$

Hence $wvs \in \overline{R}$. Thus, $\frac{s}{u} = \frac{wvs}{wvu} \in U^{-1}\overline{R}$.

Definition 5.31. If R is an integral domain, then R is *integrally closed* if it is integrally closed in the field of fraction Q(R).

Example 5.32. (a) \mathbb{Z} is integrally closed.

(b) Any UFD is integrally closed.

(c) Let $R := k[X^2, XY, Y^2] \subseteq k[X, Y]$. Then R is not a UFD since $X^2Y^2 = (XY)(XY)$ with X^2, Y^2, XY irreducible in R.

Note that Q(R) = k(X, Y) = Q(k[X, Y]). Since X, Y satisfies $Z^2 - X^2, Z^2 - Y^2 \in R[Z]$, respectively, we have that X, Y are integral over R. Also, since k is integral over $R, R \subseteq k[X, Y]$ is integral. Since k[X, Y] is a UFD, k[X, Y] is integrally closed by (b). Hence R is integrally closed by Corollary 5.20.

We claim that $R \cong \frac{k[U,V,W]}{\langle V^2 - UW \rangle}$. Let $\varphi : k[U,V,W] \to k[X,Y]$ be a ring homomorphism given by $U \mapsto X^2, V \mapsto XY$ and $W \mapsto Y^2$. Then $\operatorname{Im}(\varphi) = k[X^2, XY, Y^2]$ and $\langle V^2 - UW \rangle \subseteq \operatorname{Ker}(\varphi)$. Let $f \in \operatorname{Ker}(\varphi)$. Then by long division, $f = (V^2 - UW)q + r$ for some $q, r \in k[U,W][V]$ and $\deg(r) < 2$ in k[U,W][V]. Since $\varphi(f) = 0$ and φ is a ring homomorphism, $((XY)^2 - X^2Y^2)\varphi(q) + \varphi(r) = 0$, i.e., $\varphi(r) = 0$. Note that r = aV + b for some $a, b \in k[U,W]$. Hence $a(X^2, Y^2)XY + b(X^2, Y^2) = 0$. Hence a = 0 = b, i.e., r = 0. Hence $f \in \langle V^2 - UW \rangle$.

Example. If S is noetherian, then R is not necessarily noetherian. Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} in \mathbb{C} and $R := \mathbb{Q} + X\overline{\mathbb{Q}}[X] \subseteq \overline{\mathbb{Q}}[X] =: S$. Note that $R \subseteq S$ is an integral extension since $\overline{\mathbb{Q}}$ is algebraic over $\mathbb{Q} \subseteq R$ and $X \in R$, but R is not noetherian since $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$.

Lemma 5.33. If R is an integral domain, then $R = \bigcap_{\mathfrak{m} \in \mathrm{m-Spec}(R)} R_{\mathfrak{m}} \subseteq Q(R)$.

Proof. " \subseteq ". Since R is an integral domain, we have that $R \setminus \mathfrak{m} \subseteq \mathrm{NZD}(R)$. Hence $R \subseteq R_{\mathfrak{m}} \subseteq Q(R)$ for $\mathfrak{m} \in \mathrm{m-Spec}(R)$. Hence $R \subseteq \bigcap_{\mathfrak{m} \in \mathrm{m-Spec}(R)} R_{\mathfrak{m}} \subseteq Q(R)$.

"⊇". Let $x \in \bigcap_{\mathfrak{m}\in m-\operatorname{Spec}(R)} R_{\mathfrak{m}}$. Let $I = \{r \in R \mid rx \in R\} =: (R :_R x) \leq R$. By Proposition 3.12(f), $I_{\mathfrak{m}} = (R :_R x)_{\mathfrak{m}} = (R_{\mathfrak{m}} :_{R_{\mathfrak{m}}} x) = R_{\mathfrak{m}}$ for $\mathfrak{m} \in m\operatorname{Spec}(R)$. Hence $I \cap (R \setminus \mathfrak{m}) \neq \emptyset$, i.e., $I \not\subseteq \mathfrak{m}$ for $\mathfrak{m} \in m\operatorname{Spec}(R)$. Hence I = R, i.e., $1 \in I = (R :_R x)$. Thus, $x = 1 \cdot x \in R$. \Box

Proposition 5.34 (being integrally closed is a "local condition"). Let R be an integral domain. Then the following are equivalent.

- (i) R is integrally closed.
- (ii) $U^{-1}R$ is integrally closed for multiplicatively closed $U \subseteq R$ with $0 \notin U$.
- (iii) $R_{\mathfrak{p}}$ is integrally closed for $\mathfrak{p} \in \operatorname{Spec}(R)$.
- (iv) $R_{\mathfrak{m}}$ is integrally closed for $\mathfrak{m} \in \operatorname{m-Spec}(R)$.

Proof. (i) \Longrightarrow (ii) Assume R is integrally closed. Let $U \subseteq R$ be multiplicatively closed with $0 \notin U$. Since R is an integral domain and $0 \notin U$, $U \subseteq \text{NZD}(R)$. Hence $R \subseteq U^{-1}R \subseteq Q(R) =: S$ are subrings. By Proposition 5.30, $\overline{U^{-1}R} = U^{-1}\overline{R} = U^{-1}R$ since R is integral closed in Q(R). Hence $U^{-1}R$ is integrally closed in $U^{-1}S = Q(R)$. Also, since $Q(U^{-1}R) = Q(R)^{\dagger}$, $U^{-1}R$ is integrally closed.

 $(ii) \Longrightarrow (iii)$ and $(iii) \Longrightarrow (iv)$ Done.

(iv) \Longrightarrow (i) Assume $R_{\mathfrak{m}}$ is integrally closed for $\mathfrak{m} \in \mathrm{m-Spec}(R)$. Since R is an integral domain and $R \subseteq R_{\mathfrak{m}} \subseteq Q(R), Q(R_{\mathfrak{m}}) = Q(R)$ for $\mathfrak{m} \in \mathrm{m-Spec}(R)$. Let $x \in \overline{R}$, where \overline{R} is the integral closure of R in Q(R). Then $x \in Q(R) = Q(R_{\mathfrak{m}})$ and x is integral over $R \subseteq R_{\mathfrak{m}}$ for $\mathfrak{m} \in \mathrm{m-Spec}(R)$. Hence $x \in \overline{R_{\mathfrak{m}}} = R_{\mathfrak{m}}$ for $\mathfrak{m} \in \mathrm{m-Spec}(R)$. Thus, by Lemma 5.33, $x \in \bigcap_{\mathfrak{m} \in \mathrm{m-Spec}(R)} R_{\mathfrak{m}} = R$.

Let $R \subseteq S$ be a subring.

Definition 5.35. Let $\mathfrak{a} \leq R$. $s \in S$ is integral over \mathfrak{a} if s satisfies $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ for some $n \geq 1$ and $a_0, \ldots, a_{n-1} \in \mathfrak{a}$.

The *integral closure* of \mathfrak{a} in S is

$$\bar{\mathfrak{a}} = \{s \in S \mid s \text{ is integral over } \mathfrak{a}\}.$$

Warning 5.36. There exists another notion of integral closure of an ideal.

Lemma 5.37. Let \overline{R} be the integral closure of R in S and $\mathfrak{a} \leq R$. Then $\overline{\mathfrak{a}} = \operatorname{rad}(\mathfrak{a}\overline{R}) \leq \overline{R}$. Hence $\overline{\mathfrak{a}}$ is closed under sums and products.

Proof. " \subseteq ". Let $s \in \bar{\mathfrak{a}}$. Then $s^n + a_{n-1}s^{n-1} + \cdots + a_0 = 0$ for some $n \ge 1$ and $a_0, \ldots, a_{n-1} \in \mathfrak{a}$. Hence $s^n = -(a_{n-1}s^{n-1} + \cdots + a_0) \in \mathfrak{a}\bar{\mathfrak{a}} \subseteq \mathfrak{a}\overline{R}$. Hence $s \in \operatorname{rad}(\mathfrak{a}\overline{R})$.

" \supseteq ". Let $t \in \operatorname{rad}(\mathfrak{a}\overline{R})$. Then $t^n \in \mathfrak{a}\overline{R}$ for some $n \ge 1$. Hence $t^n = \sum_{i=1}^m \alpha_i s_i$ for some $m \ge 1$, $\alpha_1, \ldots, \alpha_m \in \mathfrak{a}$ and $s_1, \ldots, s_m \in \overline{R}$. Let $T := R[s_1, \ldots, s_m] \subseteq \overline{R} \subseteq S$. Then $t^n \in \mathfrak{a}T$. Hence $t^n T \subseteq \mathfrak{a}T$. Since s_1, \ldots, s_m is integral over R, T is a finitely generated R-module by Theorem 5.19. By determinant trick as in the proof of Proposition 5.13, we have that t^n is integral over \mathfrak{a} . Hence $(t^n)^\ell + b_{\ell-1}(t^n)^{\ell-1} + \cdots + b_0 = 0$ for some $\ell \ge 1$ and $b_0, \ldots, b_{\ell-1} \in \mathfrak{a}$. Hence t is integral over \mathfrak{a} .

[†]Fact: If R is an integral domain and $R \subseteq S \subseteq Q(S)$, then Q(S) = Q(R).

Proposition 5.38. Let R be integrally closed and $\bar{\mathfrak{a}}$ be the integral closure of $\mathfrak{a} \leq R$ in S. Let $s \in \bar{\mathfrak{a}}$ and $g(X) = X^m + c_{m-1}X^{m-1} + \cdots + c_0 \in Q(R)[X]$ be the minimal polynomial of s over Q(R). Then $c_0, \ldots, c_{m-1} \in \operatorname{rad}(\mathfrak{a})$.

Proof. Let $s_1 := s, s_2, \ldots, s_m$ be the roots of g(X) in some algebraic closure of Q(R). Since s is integral over \mathfrak{a}, s satisfies a monic $f \in \mathfrak{a}[X] \subseteq Q(R)[X] = Q(R)[X]$. Also, since g is the minimal polynomial of s over Q(R), there exists $h \in Q(R)[X]$ such that f = hg. Since $f(s_i) = h(s_i)g(s_i) = 0$, $s_i \in \bar{\mathfrak{a}}$ for $i = 1, \ldots, m$. Since $g(X) = (X - s_1) \cdots (X - s_m)$ and $\bar{\mathfrak{a}} \leq \overline{R}$ by Lemma 5.37, $c_0, \ldots, c_{m-1} \in \bar{\mathfrak{a}} = \operatorname{rad}(\mathfrak{a}\overline{R}) = \operatorname{rad}(\mathfrak{a}$.

Theorem 5.39 (Going down theorem). Let R be integrally closed and S be an integral domain. Let $\mathfrak{p}_1 \supseteq \cdots \supseteq \mathfrak{p}_n$ be a chain in $\operatorname{Spec}(R)$ and $\mathfrak{q}_1 \supseteq \cdots \supseteq \mathfrak{q}_m$ (m < n) be a chain in $\operatorname{Spec}(S)$ such that $\mathfrak{q}_i \cap R = \mathfrak{p}_i$ for $i = 1, \ldots, m$. Then there exists a chain $\mathfrak{q}_m \supseteq \cdots \supseteq \mathfrak{q}_n$ in $\operatorname{Spec}(S)$ such that $\mathfrak{q}_i \cap R = \mathfrak{p}_i$ for $i = 1, \ldots, n$.

Proof. As in the going up theorem, assume without loss of generality that m = 1 and n = 2. Let $\mathfrak{p} \supseteq \mathfrak{p}'$ be a chain in $\operatorname{Spec}(R)$ and $\mathfrak{q} \in \operatorname{Spec}(S)$ such that $\mathfrak{q} \cap R = \mathfrak{p}$. Since S is an integral domain, $S \setminus \mathfrak{q} \subseteq \operatorname{NZD}(S)$. Hence $S_{\mathfrak{q}} \supseteq S \supseteq R$. We claim that $(\mathfrak{p}'S_{\mathfrak{q}}) \cap R = \mathfrak{p}'$, then (if and only if) there exists $Q' \in \operatorname{Spec}(S_{\mathfrak{q}})$ such that $Q' \cap R = \mathfrak{p}'$ by Theorem 3.24, so (if and only if) there exists $\mathfrak{q} \supseteq \mathfrak{q}' \in \operatorname{Spec}(S)$ such that $\mathfrak{q}' \cap R = \mathfrak{p}'^{\dagger}$ by prime correspondence for localization.

"⊇". By 1.63(a).

"\sum "\sum ". Let $0 \neq x \in (\mathfrak{p}'S_{\mathfrak{q}}) \cap R$. Then $x \in \mathfrak{p}'S_{\mathfrak{q}} = \mathfrak{p}'(S \smallsetminus \mathfrak{q})^{-1}S = (S \smallsetminus \mathfrak{q})^{-1}(\mathfrak{p}'S)$. Hence $x = \frac{s}{v}$ for some $s \in \mathfrak{p}'S$ and $v \in S \smallsetminus \mathfrak{q}$. Since $R \subseteq S$ is integral, $\overline{R} = S$, where \overline{R} is the integral closure of R in S. Hence $s \in \mathfrak{p}'S \subseteq \operatorname{rad}(\mathfrak{p}'S) = \operatorname{rad}(\mathfrak{p}'\overline{R}) = \overline{\mathfrak{p}'}$ by Lemma 5.37. Hence $s \in S$ is integral over \mathfrak{p}' . Let $g(X) = X^r + u_{r-1}X^{r-1} + \cdots + u_0 \in Q(R)[X]$ be the minimal polynomial of s over Q(R). Then by Proposition 5.38, $u_0, \ldots, u_{r-1} \in \operatorname{rad}(\mathfrak{p}') = \mathfrak{p}'$. Since $0 \neq x = \frac{s}{v}$ and R is an integral domain, $v = sx^{-1}$ in Q(R). Note that v satisfies

$$X^{r} + \underbrace{(u_{r-1}x^{-1})}_{t_{r-1}}X^{r-1} + \underbrace{(u_{r-2}x^{-2})}_{t_{r-2}}X^{r-2} + \dots + \underbrace{(u_{0}x^{-r})}_{t_{0}} \in Q(R)[X],$$

which is a minimal polynomial for v over Q(R) since if v satisfies a smaller degree polynomial over Q(R), then so does S. Also, since $v \in S$ is integral over R, by Proposition 5.38, we have that $t_0, \ldots, t_{r-1} \in \operatorname{rad}(\langle 1 \rangle R) = R$. Suppose $x \notin \mathfrak{p}'$. Since $u_i = t_i x^{r-i} \in \mathfrak{p}' \in \operatorname{Spec}(R)$, $t_i \in \mathfrak{p}'$ for $i = 0, \ldots, r-1$. Hence $v^r = -(t_{r-1}v^{r-1} + t_{r-2}v^{r-2} + \cdots + t_0) \in \mathfrak{p}'S \subseteq \mathfrak{p}S = (\mathfrak{q} \cap R)S \subseteq \mathfrak{q}S = \mathfrak{q} \in \operatorname{Spec}(S)$. Hence $v \in \mathfrak{q}$, a contradiction. Thus, $x \in \mathfrak{p}'$.

Theorem 5.40 (Noether normalization). Let k be a field and $k \subseteq R := k[x_1, \ldots, x_n]$ be a subring.

(a) There exist an intermediate subring $k \subseteq S \subseteq R$ and $y_1, \ldots, y_d \in R$ such that $S = k[y_1, \ldots, y_d] \cong k[Y_1, \ldots, Y_d]$, a polynomial ring, with $d \leq n$ and R integral over S. Hence $R = S[x_1, \ldots, x_n]$ is a finitely generated S-module. Moreover, y_i is a polynomial in x_j 's with coefficients in k for $i = 1, \ldots, d$.

(b) If $|k| = \infty$, then we can take some d and $y_i = \sum_{j=1}^n a_{ij}x_j$ for some $a_{i1}, \ldots, a_{in} \in k$ for $i = 1, \ldots, d$.

[†]For \Longrightarrow , take $\mathfrak{q}' = Q' \cap S$, then $\mathfrak{q}' \cap R = (Q' \cap S) \cap R = Q' \cap R = \mathfrak{p}'$. For \Leftarrow , take $Q' = \mathfrak{q}'S_{\mathfrak{q}}$, then $Q' \cap R = (\mathfrak{q}'S_{\mathfrak{q}} \cap S) \cap R = \mathfrak{q}' \cap R = \mathfrak{p}' \cap R = \mathfrak{p}'$ by prime correspondence for localization.

(In fact, d is uniquely determined and is the Krull dimension of R.)

Proof. Definition. Let $z_1, \ldots, z_m \in R$ and $k[Z_1, \ldots, Z_m]$ be a polynomial ring. Consider the ring homomorphism $k[Z_1, \ldots, Z_m] \xrightarrow{n} k[z_1, \ldots, z_m]$ given by $F \mapsto F(z_1, \ldots, z_m)$. z_1, \ldots, z_m is algebraically independent over k if n is 1-1, i.e., n is an isomorphism. (No polynomial relations between the z_i 's.)

Structure of proof: induct on n. Base case n = 0: R = k (S = k). Base case n = 1: $R = k[x] \stackrel{n}{\leftarrow} k[X]$. If n is 1-1, then S = R. If n is not 1-1, then x satisfies some monic $F \in k[X]$, so x is integral over k, hence $S = k \subseteq R = k[x]$ with d = 0 and $S \subseteq R$ an integral extension.

Inductive step: Assume n > 1 and the result is true for rings of form $k[z_1, \ldots, z_{n-1}]$. If x_1, \ldots, x_n are algebraically independent over k, then use $S = R = k[x_1, \ldots, x_n] \stackrel{n}{\hookrightarrow} k[X_1, \ldots, X_n]$. Assume now x_1, \ldots, x_n are not algebraically independent over k. Re-order x_1, \ldots, x_n such that x_1, \ldots, x_r (r < n) are algebraically independent and x_1, \ldots, x_r, x_s are algebraically dependent for $s = r + 1, \ldots, n$. Then by inductive hypothesis and Corollary 5.20, it suffices to show R is integral over $k[w_1, \ldots, w_{n-1}]$ for some $w_1, \ldots, w_{n-1} \in R$. Consider $k[X_1, \ldots, X_n] \stackrel{n}{\twoheadrightarrow} k[x_1, \ldots, x_n]$. Then there exists $0 \neq F \in k[X_1, \ldots, X_n]$ such that n(F) = 0. Let $e = \deg(F)$ and write $F = F_0 + F_1 + \cdots + F_e$, where F_i is homogeneous of degree i for $i = 0, \ldots, e$.

(b) Assume $|k| = \infty$. Since $F_e \neq 0$, $F_e(\lambda_1, \ldots, \lambda_{n-1}, 1) \neq 0$ for some $\lambda_1, \ldots, \lambda_{n-1} \in k$. Look at $k[w_1, \ldots, w_{n-1}, x_n] \in R$. For $\underline{b} = (b_1, \ldots, b_n) \in \mathbb{Z}_{\geq 0}^n$, $(w_1 + \lambda_1 x_n)^{b_1} \cdots (w_{n-1} + \lambda_{n-1} x_n)^{b_{n-1}} \cdot x_n^{b_n} = \lambda_1^{b_1} \cdots \lambda_{n-1}^{b_{n-1}} x_n^{|\underline{b}|}$ + lower degree terms in x_n , where $|\underline{b}| = b_1 + \cdots + b_n$. Note that for $i = 0, \ldots, e$,

$$F_i(w_1 + \lambda_1 x_n, \dots, w_{n-1} + \lambda_{n-1} x_n, x_n) = \sum_{|\underline{b}|=i} a_{\underline{b}} (\lambda_1^{b_1} \cdots \lambda_{n-1}^{b_{n-1}}) x_n^i + \text{lower degree terms in } x_n$$
$$= F_i(\lambda_1, \dots, \lambda_{n-1}, 1) x_n^i + \text{lower degree terms in } x_n.$$

Let

$$G(w_1, \dots, w_{n-1}, x_n) = F(w_1 + \lambda_1 x_n, \dots, w_{n-1} + \lambda_{n-1} x_n, x_n)$$

= $F_e(\lambda_1, \dots, \lambda_{n-1}, 1) x_n^e$ + lower degree terms in x_n

Let $w_i := x_i - \lambda_i x_n$ for $i = 1, \ldots, n-1$. Then

$$G(w_1, \dots, w_{n-1}, x_n) = F(x_1 - \lambda_1 x_n + \lambda_1 x_n, \dots, x_{n-1} - \lambda_{n-1} x_n + \lambda_{n-1} x_n, x_n)$$

= $F(x_1, \dots, x_{n-1}, x_n) = n(F) = 0.$

Since $F_e(\lambda_1, \ldots, \lambda_{n-1}, 1) \neq 0$, x_n satisfies a monic $\frac{G(w_1, \ldots, w_{n-1}, X_n)}{F_e(\lambda_1, \ldots, \lambda_{n-1}, 1)} \in k[w_1, \ldots, w_{n-1}][X_n]$. Hence x_n is integral over $k[w_1, \ldots, w_{n-1}]$. Hence

$$R = k[x_1, \dots, x_{n-1}, x_n] = k[x_1 - \lambda x_n, \dots, x_{n-1} - \lambda_{n-1} x_n, x_n] = k[w_1, \dots, w_{n-1}][x_n]$$

is integral over $k[w_1, \ldots, w_{n-1}]$ by Theorem 5.19.

(a) Look at $k[w_1, ..., w_{n-1}, x_n] \in R$. Let $e_n = 1$. For $\underline{b} = (b_1, ..., b_n) \in \mathbb{Z}_{>0}^n$ and $e_1, ..., e_{n-1} \gg 1$,

$$(w_1 + x_n^{e_1})^{b_1} \cdots (w_{n-1} + x_n^{e_{n-1}})^{b_{n-1}} \cdot x_n^{b_n} = x_n^{\sum_{i=1}^n e_i b_i} + \text{lower degree terms in } x_n$$

Write $F = \sum_{j=1}^{m} a_j \underline{x}^{\underline{b}_j}$ for some $m \ge 1$ and distinct $\underline{x}^{\underline{b}_j} := x_1^{\underline{b}_{j_1}} \cdots x_n^{\underline{b}_{j_n}}$ and $a_j \ne 0$ for $j = 1, \dots, m$. Let $A_i = \max\{b_{1_i}, \dots, b_{m_i}\} - \min\{b_{1_i}, \dots, b_{m_i}\}$ for $i = 1, \dots, n$. Choose $e_{i-1} > A_i e_i + \dots + A_n e_n$ for $i = 2, \dots, n$. Re-order $a_1 \underline{x}^{\underline{b}_1}, \dots, a_m \underline{x}^{\underline{b}_m}$ such that $\underline{b}_1 \succcurlyeq \dots \succcurlyeq \underline{b}_m$ is in reverse lexicographical order. Then $\sum_{i=1}^{n} e_i b_{1_i} > \sum_{i=1}^{n} e_i b_{2_i} > \dots > \sum_{i=1}^{n} e_i b_{m_i}$. Let

$$G(w_1, \dots, w_{n-1}, x_n) = F(w_1 + x_n^{e_1}, \dots, w_{n-1} + x_n^{e_{n-1}}, x_n)$$

= $a_1 x_n^{\sum_{i=1}^n e_i b_{1_i}}$ + lower degree terms in x_n .

Let $w_i := x_i - x_n^{e_i}$ for $i = 1, \ldots, n-1$. Then $G(w_1, \ldots, w_{n-1}, x_n) = F(x_1, \ldots, x_{n-1}, x_n) = n(F) = 0$. Since $a_1 \neq 0$, x_n satisfies a monic $\frac{G(w_1, \ldots, w_{n-1}, X_n)}{a_1} \in k[w_1, \ldots, w_{n-1}][X_n]$. Hence x_n is integral over $k[w_1, \ldots, w_{n-1}]$. Hence

$$R = k[x_1, \dots, x_{n-1}, x_n] = k[x_1 - x_n^{e_1}, \dots, x_{n-1} - x_n^{e_{n-1}}, x_n] = k[w_1, \dots, w_{n-1}][x_n]$$

is integral over $k[w_1, \ldots, w_{n-1}]$ by Theorem 5.19.

Theorem 5.41 (Hilbert Nullstellensatz, version 1). Let $k \subseteq K := k[x_1, \ldots, x_n]$ be a subfield.

- (a) K is algebraic over k and $[K:k] < \infty$.
- (b) If k is algebraically closed, then K = k.

Proof. (a) Let $k \subseteq S \subseteq K$ be a Noether normalization of $k \subseteq K$. Then there exists $y_1, \ldots, y_d \in K$ such that $S = k[y_1, \ldots, y_d] = k[Y_1, \ldots, Y_d] \subseteq K$ and K is integral over $k[Y_1, \ldots, Y_d]$. Since K is a field, by Proposition 5.24, $k[Y_1, \ldots, Y_d]$ is a field. Hence d = 0. Then S = k. Hence $K = k[x_1, \ldots, x_n]$ is integral over k. Hence K is a finite-dimensional k-vector space by Theorem 5.19.

(b) Since k is algebraically closed, there is no proper algebraic extensions. Hence K = k.

Theorem 5.42 (Hilbert Nullstellensatz, version 2). Let k be an algebraically closed field, $R = k[X_1, \ldots, X_n]$ and $\mathfrak{m} \in \text{m-Spec}(R)$. Then there exists $\underline{a} \in k^n$ such that $\mathfrak{m} = \langle X_1 - a_1, \ldots, X_n - a_n \rangle$.

Proof. Set $K = R/\mathfrak{m} = k[x_1, \ldots, x_n] \leftrightarrow k$, where $x_i = \overline{X_i} \in R/\mathfrak{m}$ for $i = 1, \ldots, n$. Since k is algebraically closed and $k \hookrightarrow K$ is a subfield, by Hilbert Nullstellensatz, version 1(b), $k \hookrightarrow k[x_1, \ldots, x_n] = R/\mathfrak{m}$ is onto. Since $x_i \in R/\mathfrak{m}$, there exists $a_i \in k$ such that $a_i \mapsto x_i$ for $i = 1, \ldots, n$. Hence $x_i - a_i = 0$ in R/\mathfrak{m} , i.e., $X_i - a_i \in \mathfrak{m}$ for $i = 1, \ldots, n$. Then $\mathfrak{m} \supseteq \langle X_1 - a_1, \ldots, X_n - a_n \rangle$. Since $\mathfrak{m}, \langle X_1 - a_1, \ldots, X_n - a_n \rangle$.

Theorem 5.43 (Hilbert Nullstellensatz, version 3). Let k be an algebraically closed field, $\mathfrak{a} \leq R = k[X_1, \ldots, X_n]$. Then $Z(\mathfrak{a}) := \{\underline{a} \in k^n \mid F(\underline{a}) = 0, \forall F \in \mathfrak{a}\} \neq \emptyset$.

Proof. Since $\mathfrak{a} \neq R$, by Hilbert Nullstellensatz, version 2, $\mathfrak{a} \subseteq \mathfrak{m} := \langle X_1 - a_1, \dots, X_n - a_n \rangle$ for some $\underline{a} \in k^n$. Let $F \in \mathfrak{a} \subseteq \mathfrak{m}$. Then $F = \sum_{i=1}^n g_i(X_i - a_i)$ for some $g_1, \dots, g_n \in R$. Hence $F(\underline{a}) = \sum_{i=1}^n g_i(\underline{a})(a_i - a_i) = 0$. Thus, $\underline{a} \in Z(\mathfrak{a})$.

Theorem 5.44 (Hilbert Nullstellensatz, version 4). Let k be an algebraically closed field, $\mathfrak{a} \leq R = k[X_1, \ldots, X_n]$ and $Z = Z(\mathfrak{a})$. Let $I = I(Z) = \{F \in R \mid F(\underline{a}) = 0, \forall \underline{a} \in Z\} \leq R$. Then $I = rad(\mathfrak{a})$.

Proof. " \supseteq ". Since

$$I = \mathrm{I}(Z) = \mathrm{I}(\mathrm{Z}(\mathfrak{a})) = \{F \in R \mid F(\underline{a}) = 0, \forall \underline{a} \in \mathrm{Z}(\mathfrak{a})\} \supseteq \mathfrak{a},$$

 $\operatorname{rad}(\mathfrak{a}) \subseteq \operatorname{rad}(I) = I.$

"C". Let $F \in R \setminus \operatorname{rad}(\mathfrak{a})$. Then $F \notin \operatorname{rad}(\mathfrak{a}) = \bigcap_{\mathfrak{p} \in \operatorname{V}(\mathfrak{a})} \mathfrak{p}$ by Fact 1.58. Hence there exists $\mathfrak{p} \in \operatorname{V}(\mathfrak{a})$ such that $F \notin \mathfrak{p}$. Set $\overline{R} = R/\mathfrak{p} = k[x_1, \ldots, x_n]$, an integral domain, where $x_i = \overline{X_i} \in R/\mathfrak{p}$ for $i = 1, \ldots, n$. Since $F \notin \mathfrak{p}$, $f := \overline{F} \neq 0$ in \overline{R} . Then $0 \neq \overline{R} \subseteq \overline{R_f} = \overline{R}[1/f] = k[x_1, \ldots, x_n, 1/f]$. Hence there exists $\mathfrak{m} \in \operatorname{m-Spec}(\overline{R_f})$. Consider $k \hookrightarrow \overline{R_f}/\mathfrak{m} = k[\overline{x_1}, \ldots, \overline{x_n}, \overline{1/f}]$, where $\overline{1/f} \neq 0$ in $\overline{R_f}/\mathfrak{m}$ since $1/f \in \overline{R_f^{\times}}$. Since k is algebraically closed and $k \hookrightarrow \overline{R_f}/\mathfrak{m}$ is a subfield, by Hilbert Nullstellensatz, version 1(b), $k \hookrightarrow \overline{R_f}/\mathfrak{m}$ is onto. Since $\overline{x_i} \in \overline{R_f}/\mathfrak{m}$, there exists $a_i \in k$ such that $a_i \mapsto \overline{x_i}$ for $i = 1, \ldots, n$. Since $\mathfrak{a} \subseteq \mathfrak{p}$, $\mathfrak{a} \cdot \overline{R} = 0$. Hence $\mathfrak{a} \cdot \overline{R_f}/\mathfrak{m} = 0$. Then $G(\underline{a}) = \overline{g}(\overline{x_1}, \ldots, \overline{x_n}) = \overline{g} = 0$ in $\overline{R_f}/\mathfrak{m}$ for all $G \in \mathfrak{a}$. Hence $\underline{a} \in Z(\mathfrak{a}) = Z$. Also, since $F(\underline{a}) = \overline{f}(\overline{x_1}, \ldots, \overline{x_n}) = \overline{f} \neq 0$ in $\overline{R_f}/\mathfrak{m}$, we have that $F \notin I(Z) = I$.