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Chapter 1

Open Problems

Many problems are easy to state but hard to prove.

(a) Given n € Zxo, is it always true that there exists x,y, z € N such that % = %—&— i + %? Vaughan

proved the number of n < N for which the above equality is insolvable is O(N -exp(—c(log N )%))
for some positive constant c.

(b) Modern: Twin Primes. There are infinitely many pairs of primes (p,p’) such that p — p’ = 2.
Zhang proved there are infinitely many pairs of prime numbers that differ by 70 million or less,
ie., lim, .o inf(p,y1 — pn) < N = 7 x 107, where p,, is the n'" prime. James Maynard prove it
holds for N = 252. According to the Polymath project wiki, N = 246. Assume another conjecture,
N =6.

(¢) Fermat’s Last Theorem: z™ 4+ ™ = z™ has no positive interger solutions (x,y, z) for n € Zss.
Almost all of modern algebra came from people trying to prove Fermat’s Last Theorem. Fermat’s
Last Theorem is a corollary to a theorem that every ellipic curve is a modular form.

(d) Is it true the equation " + y” = 2" + w with n > 57

Remark. All of these can be formulated as looking for solutions to equations f(x1,...,2,) =0
for f € Z[x1,...,x,] and solutions in R™ for some integrating set R. These are called Diophantine
equation-all the complicated machinery today was developed to solve them.
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Chapter 2

Introduction

Convention 2.1. Assume all varaibles in this book are integers.

2.1 Prerequisites

Definition 2.2. (a) Assume a # 0. We say a divides b and write a | b if there exists ¢ € Z such
that ac = b.

(b) Assume a # 0 and k > 0. Write a” || b “exactly divides” if a* | b but a**! {b.
Fact 2.3. We have the following facts.

a) a | a for any a # 0.

b) a |0, for any a # 0.

c) Ifalbandb|ec, then a]ec.

(
(
(
(d) If a|band a|c, then a| (bz + cy) for all z,y € Z.
(e) fa|bandb|a, then a ="b.

(f) fa|band a > 0 and b > 0, then a < b.

(g) If m # 0, then ma | mb.

Theorem 2.4 (Division Algorithm). Assume a # 0. There exist unique q,r € Z such that b = ag+r
and 0 < r < a. In particular, if atb, then 0 < r < a.

Proof. Let qo = argmaxgez{aq | ag < b}. Then a(go + 1) > b, i.e,, a > b —aqop. Let 79 := b — ago.
Then b = aqy + 19 with 0 < r9 < a. Suppose there exist another r1,q; € Z such that b = aq; + 1
and 0 < r; < a. Then agy +ro = aq1 + 71, i.e., a | (ry —rp). Since —a < r; —rg < a, 11 = ro. Also,
since a # 0, go = ¢1- O

Definition 2.5. Let a # 0.

(a) If a | b and a | ¢, we say a is a common divisor of b and c.

3
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(b) The largest common positive divisor of b and c is called the greatest common divisor of b and
¢, denoted by (b, ¢) or ged(b, c).
(¢) Analogously define ged(by, ..., by).
Theorem 2.6.
ged(b, ¢) = min{bx +cy > 0 | x,y € Z}.

Proof. Let D = {bu+cv > 0 | u,v € Z}, . Then D # (. Let d := bz + cy for some x,y € Z
such that d = min D. Suppose d t b. Since d > 0, we can write b = dg + r with 0 < r < d. Then
r=b—dg=>b— (bx + cy)qg = b(1 — qz) + ¢(—yq) € D, contradicted by 0 < r < d = min D. So
d | b. Similarly, d | ¢. Hence d < g = ged(b,¢). Note gB = b and gC = ¢ for some B,C € Z. Then
d=(gB)x+ (gC)y = g(Bx + Cy). So g | d. Since g,d > 0, we have g < d and then g = d. O

Corollary 2.7. If am + bn = 1, then
ged(a, b) = ged(a,n) = ged(m, b) = ged(m,n) = 1.
Theorem 2.8. Let m € N, then ged(mb, me) = mged(b, ¢).

Proof. Let d = ged(b,c¢). Then d | b and d | ¢. Since m # 0, md | mb and md | me. So
ged(mb, me) = md. Suppose there exists D > md such that D | mb and D | me. Then D = mx
for some € N. Then | b and x | ¢. So z < ged(b,¢) = d. Also, D = mz > md, ie., z > d, a
contradiction. O

Corollary 2.9. If d € N such that d | a and d | b, then ged(%, %) = w and so d | ged(a,b).
Proof. ged(a,b) = ged (d (2),d (%)) =d-ged (%,3). O
Theorem 2.10. If gcd(a,m) = 1 = ged(b, m), then ged(ab,m) = 1.

Proof. There exist x1,z2 and y1,y2 € Z such that ax; + my; = 1 and bz + mys = 1. Then axy =
1—my1, by = 1—mys and abzz2 = 1—my; —mys +m2y1ys, i.e., abzixs +m(y1 +y2—myry2) = 1.
By Corollary 2.7, ged(ab, m) = 1.

O

Fact 2.11.
ged(a, b) = ged(b, a) = ged(—a, b) = ged(a, b + ax).

Theorem 2.12. Ifc| ab and ged(b,c) = 1, then ¢ | a.

Proof. Since there exist m,n such that 1 = bm + ¢n, we have a = abm + acn. Since ¢ | ab and
¢ | ac, we have ¢ | a. O

Theorem 2.13 (Euclidean Algorithm). Let ¢ € N. Repeat applying the division algorithm, write
b=cq +m,0<r <g,
c=r1q2 +12,0 <12 <11,
<

1 =T2q3 + 13,0 <13 <712

Thn—2 = Tn—1qn + T'IMO S Tp < Tp-t,
Tn—1 = TnQdn+1-

Then r, = ged(b, ¢).
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Proof.

ged(b, ) = ged(b — cq1, ) = ged(r1, ¢) = ged(r1, ¢ — rigz) = ged(r1,2)
= =ged(rp_1,m) = ged(rp, 0) = 7y O

Remark. This allows us to solve the linear Diophantine equation bx 4 cy = ged(b, ¢) = rp,, i.e.,
Tn =Tpn-2—Tn-1¢n = (Tn—4 — Tn—3@n—2)qn—1 — (Th—3 — Tn—2qn—1)dn,

i.e., continue to let r; =r;_» —¢q;rj_1 for j =n,...,.3and ro =c—rigp and 1 = b — cqi.

Definition 2.14. (a) We say b € Z is a common multiple of ay, -+ ,ap if a; | bfori=1,--- n.

(b) The least common multiple is the smallest positive common multiples. Denote this by

[a1,...,a,] =lem(ay, ..., ap).
Fact 2.15. !
a
1 b)) = —————.
em(a,b) ged(a, b)

Definition 2.16. Let n € N. We say that a is congruent to b modulo n, and write a = b (mod n),
when m | (a — b). We say that a is not congruent to b modulo n, and write a # b (mod m), when
m+1(a—0).

Remark. = is an equivalence relation.

Theorem 2.17. Let n € N. Then ca = ¢b (mod n) if and only if a = b (mod m). In
particular, if ca = cb (mod n) and ged(e,n) =1, then a = b (mod n).

Proof. = Note there exists k such that c(a — b) = nk. Also ther exist r, s € Z with ged(r,s) =1
so that n = dr and ¢ = ds. Then drk = nk = c¢(a —b) = ds(a — b), i.e, rk = s(a — b). Since
ged(r,s) =1, r| (a—0b). So (n/d) | a—0b.

= Since ¢+ iy = lem(c,n) € N, ca = ¢b (mod lem(c,n)). So ca = ¢b (mod n). O

Theorem 2.18. Letn € N. Then there exists x such that ax = 1 (mod n) if and only if ged(a,n) =
1. If x1 and x2 are any two such integers, then x1 = xo (mod n).

Proof. = Suppose ged(a,n) > 1, then (az,n) > 1 for any z. But if one were to have ax =
1 (mod n), then write axz = 1 + nq for some g, so ged(az,n) = ged(1 + ng,n) = ged(l,n) =1, a
contradiction.

<= By Theorem 2.6. O

Definition 2.19. Let n € N.
(a) If x =y (mod n), then y is called a residue of z modulo n.

(b) We say that {x1,---,x,} is a complete residue system modulo n if for each y, there exists a
unique z; with y = x; (mod m).

(¢) The set of x with x = a (mod m) is called the residue class, or congruence classm of a modulo
m.



6 CHAPTER 2. INTRODUCTION

Definition 2.20. We say p > 2 is prime if whenever p | ab, then p | a or p | b.

Remark. Since Z is a Unique Factorization Domain, It is equivalent to say p is prime if the only
divisors of p is +1 and +p.

Lemma 2.21. Every n > 2 is a product of prime.

Proof. Proof by induction. Base case: 2 is straightforward. Inductive step: Assume every integer
2 < n < N is a product of prime. If N is a prime, then we are done. If N is not a prime, then it
has a proper divisor d, write N = dn, 1 < d,n < N. Apply inductive hypothesis to d and n, so
they have prime factorization. Hence N has a prime factorization. This gives the result. O

Definition 2.22. Let n € Z \ {£1,0}, write n = (£1) [}, p{*, with p; < --+ < p;, primes and
e1,.-.,em € N. This is the canonical factorization of n.

Theorem 2.23 (Fundamental Theorem of Arithemetic). The canonical factorization of n € 722
1S UNique.

Proof. Proof by induction. Suppose we have a unique factorization for all integer 2 < n < N.
Suppose we have two canonical factorizations N +1 =[]\, pf’ = Hle qif ‘. Since p; is prime and
D1 ’ H?Zl q{j, p1 | g; for some j € {1,...,k}. Since p; and ¢; are primes, we have p; = ¢;. Then
PO, S = qffl Hle’#j qui < N. Now apply the inductive hypothesis. O

Theorem 2.24 (Euclid). There are infinitely many primes.

Proof. Assume there are only finitely many primes, say p1,...,pn. Set N = p;---p, + 1. Since
N > 1, N has prime factorization and then there exists a prime p such that p | N. Then p = p; for
some j€{l,...,n}and p| (p1---pn). Sop| (N —p1---pyn), ie., p|1, a contradiction. O

Theorem 2.25. Let p,, be the n'® prime. Then p, < 22".

Proof. Proof by induction. Base case: p; = 2 < 22", Suppose this is true for all n < N. Since
pit(p1---py+1)fori=1,...,N, we have py4; | (p1---pn + 1) for some j > 1. So

N N j N
PN+t PN Sproopn +1< 222 112280 41 =227 4

2N+172 _ 2N+171

=22 222 2 <22 m
Definition 2.26. Let 2 € R>(. Define
m(x) = #{p prime | p < x}.
Theorem 2.27 (Prime Number Theorem).
x
m(@) ~ logz’
Proof. By Hadamard and de la Valle. O

Remark. Since it is asymptotic result, the log base can be any number that is greater than 1.

Corollary 2.28. mw(x) > log(log ), where the log base can be any 2 < o < 4.
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Proof. Let x > 2. Choose n such that 22" L x < 22" Then by theorem 2.25, we have w(x) >
n. Since our log is an increasing function, logz < log 22" = 2"+l log2 = 2"log4 < 2". So
log(log ) < nlog2 < n < w(x). O

Theorem 2.29. There are arbitrary large gaps between consecutive primes.

Proof. Let n be the gap size and consider the sequence n! + 2,...,n! +n. Since the i*» number
in the sequence is divisible by i + 1 for i = 1,...,n — 1, we have a sequence of n — 1 consecutive
composite numbers. So as n — oo, the gap between consecutive primes get arbitrary large. O

Lemma 2.30. If p is odd prime, then p = £1 (mod 4), i.e., p=1 (mod 4) or p = 3 (mod 4).
Fact 2.31. If p1,p; = 1 (mod 4), then p1ps =1 (mod 4).
Theorem 2.32 (Euclid). There are infinitely many primes of the form 4k + 3.

Proof. Assume p1,...,p, are all the prime of the form p = 3 (mod 4). Set N = 4p;---p, — 1.
Then N =3 (mod 4) and p; t N for i = 1,...,n. So there must be a prime other than py,...,p,
dividing N. Since N is odd, 2t N. Suppose N = ¢i'---¢¢" for some e, -+ ,e, € N and primes
q1, -+ ,¢r = 1 (mod 4). By Fact 2.31, we have N has the form N =1 (mod 4), a contradiction.
Hence, N has at least one prime factor p of the form 4k + 3. Since p; { N for i = 1,...,n, we have
p # p; fori=1,...,n, a contradiction. O

Lemma 2.33 (Dirichet’s theorem). Let ged(a,b) = 1, then there are infinitely many primes of the
form ak + b for k € N.

Lemma 2.34. There exists n > 1 and f € Z[zy,...,2,] whose positive values are precisely the
prime numbers.

(a) Matijasevic proved the smallest n is 10, the polynomial degree d ~ 1.6 x 10%.
(b) JSW proved the smallest degree is 5 and the number of variables is 42.
Theorem 2.35. If f € Z[t] with deg(f) > 1, then f cannot take just prime values for t € Z.

Proof. Suppose f(t) := axt® + - -+ ayt + ag is such a polynomial. Let ny € Z and p be prime such
that f(no) = p. Let s € Z. Then there exists Q € Z[t] such that

f(no + sp) = ar(no + sp)* + -+ a1(no + sp) + ao = f(no) + pQ(s) = p+ pQ(s) = p (1 + Q(s)).

So p | f(ng + sp). By assumption, f(ng + sp) is prime. So f(ng + sp) = p for s € Z, ie.,
f(ng + sp) —p =0 for s € Z, contradicted by deg(f —p) = k. O

2.2 Pythagorean Triple

Theorem 2.36 (Pythagorean theorem). We want all integer solution to the equation x?+1y? = 22.

If (a,b,¢) is a solution and (a,b,c) = 1, we say (a,b,c) is a primitive pythagorean triple.
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Proof. We only work with primitive solution. Note that a?,b% ¢ = 0,1 (mod 4). So ¢ must be
even. Without loss of generality, assume a is even and b odd . Then b? = ¢ — a? = (¢ — a)(c + a).

Claim. ged(c —a,c+a) = 1. Since ¢ — a is odd,
ged(e —a,c+a) =ged(c—a,c+a— (c—a)) = ged(c — a,2a) = ged(c — a,a) = ged(c, a).

Suppose there exists prime p such that p | ged(c,a), then p | @ and p | ¢. Then p | c® — a? = b? and
sop|b. Sop|ged(a,b,c) =1, a contradiction. Hence ged(c — a, ¢+ a) = ged(c,a) = 1. So there
exist m,n € Z such that ¢ + a = m? and ¢ — a = n?. Hence ¢ = ,b=mn and c = #
Thus, any odd m,n € Z with ged(m,n) = 1 satisfying 2 | m? — n? and 2 | m? + n? can form a

2 2 2
,b:mnandc:%. O

m?—n?

m27n

2

solution (a,b,c) with a =

Remark. Since m,n are odd, r := m;" € Z and s := "5 € Z. Then by Corollary 2.9,
ged(r,s) = 2 ged(m + n,m —n) = § ged(2m, 2n) = ged(m,n) = 1. Also, we can show r and s have
G : ; (rts)?—(r=s)% _ L) 2 2 (r48)°+(r=s)® _ 2, 2
oppositve parity. Since 5 =2rs, (r+s)(r—s) =r*—s* and 5 =r®+4s*, the
primitive pythagorean triples are given by {r? — s2,2rs,r% + s} for 7, s coprime of opposite parity.

Example 2.37. Let m = 1 and n = 3, we have {a,b,c} = {3,4,5}.
Theorem 2.38. If X* +Y* =22 for (X,Y,Z) € Z3, then XY Z = 0.

Proof. Let (x,y,z) be the solution with z,y,2 € N and smallest z. Then (22,32, 2) is a primitive

pythagorean triple. So there exist r, s coprime of opposite parity such that z? = 2rs, y? = r2 — 52

and z = r? + s2. Then r < 7?2 < z and s? + y? = r2. Since (r,5) = 1, (s,y,r) is a primitive
pythagorean triple. Then there are coprime m and n of opposite parity such that s = 2mn,
y=m?—n? and r = m? +n?. So 2% = 2rs = 2(m? +n?)(2mn) = 4mn(m? + n?). Since m, n and

m? 4+ n? are pairwise coprime, there exist a,b,c € N such that m = a2, n = b and m? +n? = 2.

Then a* +b* = 2. So (a, b, c) is a solution. But 0 < ¢ < ¢> = m?+n? =1 < 2, a contradiction. [J

Corollary 2.39. If X* +Y* = Z% for (X,Y,Z) € Z3, then XY Z = 0.

2.2.1 Algebraic Methods to Find Pythagorean Triple

Example 2.40. Let (a,b,c) be primitive pythagorean triple a? + b* = ¢*. Then (£)? + (%)2 =1,
which means (¢, g) is a rational points on the unit cycle. To study primitive pythagorean triple,
we can parametrize rational points on unit cycle.

y
y=m(z+1)

t t T
oy j 3

Let p be the intersection. Then p = (1_"’2 Im ) Let m = 2 with » # 0. Then p =

14+m2° 14+m?2
r2—s? 2rs
T’2+52’ ’r‘2+52 .

N
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Lemma 2.41. For coprime r, s,
ged (2,72 + 5?) = ged(2rs, r? + 52) = ged(r? — 5%, 7% + 5?).

Proof. Let p | ged(rs,r? + s2), then p | rs. Since p is prime, p | r or p | s. Without loss of
generality, assume p | r. Also, since p | 72 + s2. p | s2. Since p is prime, p | s, a contradiction. So
ged(rs, 72 + s2) = 1. Note ged(r? — 52,72 + 52) = ged(2r?, 72 + s%) = ged(2,72 + s2). O

Definition 2.42. For r, s coprime, define 6(r,s) = ged(2,7% + s?). Then

[ 1, ifr#s (mod 2)
8(r;s) _{ 2, ifr=s (mod 2)

2 2

2 2 === 2TS . . . . .

Then (5575, TQQ_T_S‘;Z) = <f§1; , ) By Lemma 2.41, this gives the primitive pythagorean
5(rs) 5(rs)

triple

r?—s2 2rs r?24s?
{a7 b, C} = ) s .
(r,s) " 6(r,s)" o(r,s)

Remark. If we require r and s of opposite parity, then §(r, s) = 1 and we recover the previous
result from our algebra computations.

Example 2.43. Consider the Pell’s equation 2 — Dy? = 1, for D a positive square-free integer.

. . . 2 . . .
It is easy to find given any rational number m, p = (}fgzz, 1_2,#) is a rational solution of

22— Dy? =1.

Remark. Note 72 +y? = 1 implies 22 +y? = 22. Analogously, 22— Dy? = 1 implies 22 — Dy? = 22.

2.3 Congruences
In this section, assume n € N and p is prime.
Definition 2.44. Defin Euler’s ¢-function by
¢(n) :=#{1<a<n|ged(a,n) =1}

Theorem 2.45.
o(n) = #(Z/nZ)*.
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Proof. a € (Z/nZ)* if and only if there exists b € (Z/nZ)* such that ab = 1 (mod n) if and only
if there exists k such that ab + nk = 1 if and only if ged(a,n) = 1. O

Theorem 2.46 (Euler’s theorem). If ged(a,n) = 1, then a®™ =1 (mod n).

Proof. Since ged(a,n) =1, a € (Z/nZ)*. So a®™ = a#Z/"D)" =1 (mod n). O
Corollary 2.47 (Fermat’s little theorem (FLT)). If p{ a, then a?~! =1 (mod p).

Proof. Since ged(a,p) =1 and ¢(p) = p — 1, take n = p in Euler’s theorem. O

Remark. If we want to solve az = b (mod n), we are asking if a has an inverse modulo n. If we
consider this as an equation over Z/nZ, can we solve ax = b? Yes, if a € (Z/nZ)* if and only if
ged(a,n) = 1.

Corollary 2.48.
a? = a (mod p),Va € Z.

Proof. By Fermat’s little theorem and 0P = 0 (mod p). O
Theorem 2.49 (Wilson’s theorem).
(p—1)!'= -1 (mod p).

Proof. If p = 2 or 3, we are done. For 1 < a < p, gcd( p) = 1. Then there ex1sts 1 < a < psuch
that @a = 1 (mod p). Pair them up. The issue is if a®> = 1 (mod p), then p | a®> —1 = (a—|— 1)(a—1),
ie, a=1 (mod p) or a = —1 (mod p). Soa=1or —1. Then {2,...,p — 2} can be grouped into
pairs whose product is 1 modulo p, i.e.,

(p—1'=1-2-3---(p—=2)(p—1) —1111— —1)-1 (mod p) = —1 (mod p). O

Theorem 2.50.

has a solution  if p=2 or p=1 (mod 4)

2 = —
7" = —1 (mod p) { has no solution if p=3 (mod 4)

Proof. If p = 2, this is straightforward. If p = 1 (mod 4), set 7 = 5. Then 2 | 7. Set x = £(r!).

Since ™72 EmT*p (mod p), we have
—1p—1 —1p—1 —1
2 _(p2—q... PP PP L
v =) 2 2 2 2 (=1
p—11-p p-1ll—-p p—-2-p
1. P Cy=1... d
5 3 (=1) BT 5 (mod p)
p—11+p p—2+p p—1p+1
=1.. dp)=1.--—2" " . (p—1 d
5 5 5 (mod p) 5 5 (p—1) (mod p)
= (p—1)! (mod p) = —1 (mod p).
Next, let p = 3 (mod 4) and assume there is some = such that 22 = —1 (mod p). Then p{ x, i.e.,
ged(z,p) = 1. Since 25 is odd, we have (xQ)p%l = (—1)10%1 = —1 (mod p). Also, by Fermat’s

little theorem, (22)*2" = 2P~1 =1 (mod p), a contradiction since p # 2. O



2.3. CONGRUENCES 11

Corollary 2.51. If p | a®> +b? and p = 3 (mod 4), then p | a and p | b.

Proof. Note a? = —b? (mod p). Suppose p { b. Since p is prime, there exists b such that bb =
1 (mod p). So b*h?> =1 (mod p) and then (ab)? = —1 (mod p), contradicted by p =3 (mod 4). O

Lemma 2.52. p = a? + b2 for some a, b if and only if p=2 or p =1 (mod 4).

Proof. p =2 is straightforward.

= Suppose p = 3 (mod 4). Since p is prime, a # 0 and b # 0. Since p = a? +b?, then p | a and
p | b by Corollary 2.51. So there exist ag, by € Z ~ {0} such that p = p?(ad + b2), i.e., 1 = a2 + b3,
a contradiction.

<= Define f(u,v) = u+vz,u,v € Z for some z € Z such that 2 = —1 (mod p). Set k = [/p].
Then k < /p < k+1. Let S = {(u,v) | 0 < w,v < k}. Then #S = (k+ 1)* > p. So there
is at least one residue class modulo p hit more than once by f when acting on S. Pick distinct
(w1, 01), (2, v5) € S such that f(us,v1) = f(uz,v5) (mod p). Then uy —up = (v5 — v1) (mod p),
ie., (up —uz)? = (v2 — v1)%2? = —(v2 — v1)? (mod p), i.e., (u; — u2)? + (v2 — v1)? = 0 (mod p).
Let a = uy —ug and b = vy — vq. Since 0 < uy,uo,v1,v9 < k, we have —k < a =wu; —us < k and
—k <b=wv; —vy < k. Since k < ,/p, we have a® + b% < 2k? < 2p. Since a,b cannot be 0 at the
same time, we have 0 < a? + b? < 2p. Also, since a? + b> = 0 (mod p), we have a2 + b = p. O

Theorem 2.53 (Fermat). Write

n = 2% H pﬂ H q"

p=1 (mod 4) g=3 (mod 4)
Then n is a sum of the 2 squares if and only if 2 | v for each ~.
Proof. Observe

(a® + %) (c* + d?) = (a + bi)(c + di)(a + bi)(c + di)
= |lac — bd + (ad + be)i|?
= (ac — bd)* + (ad + be)? = (ac + bd)? + (ad — be)?.

<= Done by previous lemma and observation.
= Assume n = a® + b%. Let ¢ | n with ¢ = 3 (mod 4). Then by Corollary 2.51, ¢ | a and ¢ | b

2 2
and so ¢? | n. Then we can consider q% = (%) + (2) . If vy =2k +1 for some k € N, given q% has

2 2
the similar form as n, by inductive argument, we see q% = (,Tk) + (—k) . O

Remark. The number of ways to write a n € N as a sum of two squares is given by s, =
1 m=1 (mod 4)

> djn X—4(d), where x_4(m) = ¢ =1 ~m =3 (mod 4)
0 m=0,2 (mod 4)

Remark. We don’t get every integer as a sum of 2 squares, what about the sum of r squares
for r > 2?7 r = 3: no and r = 4: yes, which can be proved by the theorem of Lagrange. Use
Hamiltonian quaternions to prove this: Z[i, j, k]. Note p = a® + b? = (a + bi)(a — bi), which factors
inZli]if p=2or p=1 (mod 4) and does not factor in Z[i] if p = 3 (mod 4).
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2.4 Chinese Remainder Theorem

In this section, assume p is prime. Let canonical factorization of n be n = p{* - - pér.

Remark. If we are given ax = b (mod n), we know this has a solution if gcd(a,n) = 1. Since there
exist z,y such that a(bz) + n(by) = b, we have x = bz.

Theorem 2.54 (Chinese remainder theorem (CRT)). Let myq,...,m, denote r positive integers
with ged(m;, m;) =1 for any i # j. Let ai, ..., am be in the system of congruence v = a; (mod m;)
fori=1,....r. Then it has a solution. Moreover, if xo is a solution, then any other solution

satisfies x = xg (mod my -+ -my,).

Proof. Let n = 2. Then there exists ky € Z such that x — a; = mik;. Then ay + mik; =
as (mod mg), ie., mik; = (a2 — a1) (mod ms). Since ged(mi,m2) = 1, there exists m; such
that mim; = 1 (mod mz). So k1 = (a2 — a1)my (mod my). Then there exists ko € Z such that
k1 = (CLQ — al)ﬁzl + koms. So x = a1 +mq (ag — al)ﬁn + komims and then z = a1 + ml(ag —
ay)my (mod myms). The rest follows from the induction. O

Example 2.55. Find the solutons if any of z = 1 (mod 15) and « = 2 (mod 35). By the first
congruence, we have x = 1 (mod 3) and z = 1 (mod 5). By the second congruence, we have
=2 (mod 5) and z =2 (mod 7). So z =1 (mod 5) and x = 2 (mod 5), a contradiction.

Definition 2.56. (a) f:N — C is called an arithmetic function.

(b) An arithmetic function f is multiplicative if for any m,n € N with ged(m,n) = 1, then f(mn) =

f(m)f(n).

(¢) An arithmetic function f is additive if for any m,n € Z>; with ged(m,n) = 1, then f(mn) =

f(m) + f(n).

(d) An arithmetic function f is totally (completely) multiplicative if f(mn) = f(m)f(n) for any
m,n € N.

(e) An arithmetic function f is totally (completely) additive if f(mn) = f(m) + f(n) for any
m,n € N.

Proposition 2.57. We have the followings.

(a) If f is completely multiplicative, then ¢(n) = ¢(p1)et - - d(p.)°".

(b) If f is multiplicative, then ¢(n) = ¢p(p7') - - d(per).

Definition 2.58. Any set R C Z is called a reduced residue system modulo n if
(a) ged(r,n) =1 for r € R;

(b) R contains ¢(n) elements;

(¢) no two elements of R are congruent modulo n.

Any set of n integers, no two of which are congruent modulo n, is called a complete reduced
residue system modulo n.
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Lemma 2.59.
(") =p*'(p—1),VkeN.

Proof. If gcd(p,d) > 1 and d < p¥, then d = p,2p, ..., p"~'p, which has p¥~1 of them. So ¢(p*)

Pk — i1,

0

Theorem 2.60. The arithmetic function ¢ is multiplicative. In particular,

r

Bl = ¢ <,Hp?> =lowt) =6t - =eIL (1- )

i=1

Proof. Tt is enough show ¢ is multiplicative. Let n,n’ € N with ged(n,n’) = 1. Let a and o’ run
through a reduced residue system modulo n and n’, respectively. The number of distinct pairs (a, a’)
is ¢(n)p(n'). Suppose d := ged(an’ + a’'n,nn’) 4 n. Then d # 1. Since d | nn/ and ged(n,n’) =1,
without loss of generality, assume d | n’ and d t n. Since d | (an’ + a'n), we have d | a’. Also, since
d | n' and ged(a’,n’) = 1, we have ged(a’,d) = 1, contradicted by d | a/. Hence d | n. Similarly,
d | n'. Then d | ged(n,n’) = 1 and so ged(an’ + a’n,nn’) = 1. Thus, an’ + a'n € (Z/nn'Z)*.
Assume there exist ay, ag, al, a) such that a1n’ + ajn = agn’ + ahn (mod nn’). Then (a1 —az)n’ =
(ay — a})n (mod nn’) and so there exists k such that (a1 — az)n’ = n((ah — a}) + kn'), ie.,
(a1 — a2)n’ =0 (mod n). Also, since ged(n,n’) =1, a1 = ay (mod n). Simiarly, af = a, (mod n').
Hence each an’ 4+ a’n is a distinct reduced residue. Thus, ¢p(nn’) = ¢(n)p(n').

Next, find b such that ged(b,nn’) = 1. Then ged(b,n) = 1 = ged(b,n’). Claim. there are a,a’
such that an’4+a’'n = b (mod n) with ged(a,n) = 1 = ged(a’,n’). Write ged(n,n’) =1 =nm'+n'm
for some m, m’. Then ged(m,n) =1 = ged(m’,n’). Also, b = b(nm’ + n'm) = n(bm’) + n'(bm) =:
na + n'a’. Since ged(m,n) = 1 and ged(b,n) = 1, ged(bm,n) = 1. Similarly, ged(bm/,n’) = 1.
Since every reduced residue modulo nn’ is of the form an’ 4+ bn’ with ged(a,n) = 1 = ged(a’,n’),
we have ¢(n)p(n') > ¢(nn'). O

Lemma 2.61. Let f be a multiplicative function. Define

g(n) =Y_ f(d).
d|

Then g is also multiplicative.

Proof. Let m,n € N with gcd(m,n) = 1. If d | mn, since gcd(m,n) = 1, we can write d = dydg,
where dy = ged(d, m) and dy = ged(d, n). Since ged(dy,ds) = 1, we have

glmn) =Y f(d)= > fld)f(d) =YD f(d)f(da) =Y f(dr) ) f(da) = g(m)g(n).
d|lmn didz|mn di|m da|n di|m da|n

O

Corollary 2.62.

> é(d) =n.

d|n
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Proof. Let n = p{*---pg be the canonical factorization. Since the possible factors of p;’ are
pY, -, p$t and (1) = 1, we have for i = 1,...,7,

> o(d) Zaﬁpz +1—1+Z Fepih =i

d|p;?

Then by Proposition 2.57(b),

> _éld) = Z o0 i) = S e S i) =Pl = 0

d|n d|p$? d|pit d|p7"

Definition 2.63. Given f(z) = a,z" + -+ ,a12 + ag, we say the degree of f modulo n is j if
a; #0 (mod n) and a;11,...,a, =0 (mod n).

Theorem 2.64. Let f € Z[z] and N¢(m) be the number of solution of f =0 (mod m). Then Ny
is a multiplicative function, i.e., Ny(n) = Ny([Tj=, pjj) =1l Nf(pj'j).

Proof. Let my,ma € N with ged(mq,ma) = 1. Assume f(a) = 0 (mod mims) for some a. Let
a; = a (mod my) for j = 1,2, then f(a;) = f(a) = 0 (mod m;) for j = 1,2. Given a, we get a
distinct pair (a1, a2). So Ny(mimsa) < Np(m1)Ny(ma).

Next, assume f(a1) = 0 (mod m;) and f(az2) = 0 (mod mg) for some ay, az. Since ged(my, ms)
1, by CRT there exist a such that a = a; (mod m;) and a = az (mod mz). Then f(a) = f(a1)
0 (mod my) and f(a) = f(az) =0 (mod ma). So my | f(a) and mq | f(a). Since ged(my, mso) =
mims | f(a), ie., f(a) =0 (mod mims). So N¢(m1)Ny¢(mae) < Ny(mims).

O l—‘ 1Tl

Example 2.65. 22 =0 (mod 4). Then z = 0 and = = 2 are both solutions though deg(2x) =1 .

Theorem 2.66. Let f € Z[x] have degree n modulo p with n > 1. Then the congruences f(x)
0 (mod p) has at most n solutions.

Proof. If n =1, then ax+b = 0 (mod p), so z = —ba~! (mod p). Proved by induction. Assume the
result is true for all polynomials of degree less than n. Let deg(f) = n. If f has no solutions, we are
done. Suppose f has a solution a. Then f(a) =0 (mod p). Then we can write f(x) = (z — a)g(z)
for some g € (Z/pZ)[x]. Then deg(g) < deg(f) = n, so induction hypothesis gives at most deg(g)
solutions to g(z) = 0 (mod p). So f(z) = (z—a)g(xz) = 0 (mod p) implies z = a or g(z) = 0 (mod p).
Hence f has at most 1 + deg(g) = deg(f) roots. O

Corollary 2.67. If d | p — 1, then the congruence ¢ = 1 (mod p) has precisely d solutions.

Example 2.68. (a) 2> = —1 (mod p) has 2 solutions if p = 1 (mod 4) and has 0 solutions if
p =3 (mod 4).

(b) 2P~ — 1 = 0 (mod p) has p — 1 solutions by Fermat’s little theorem. Then 2P~1 — 1 =
(x=1)-- (= (p—1)) =0 (mod p). Pluginz =0, -1 =(-1)--- (=(p—1)) = (p— 1)! (mod p),
which is Wilson’s theorem.
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2.5 Newton’s method

In this section, assume p is prime.

flzn)

Theorem 2.69. This method gives a sequence of real numbers x,, satisfying r,+1 = T, — )

You hope x,, — .

Example 2.70. Find a solution to the congruences f(z) = 2?2 +1 = 0 (Inod 5%).  Consider

2?2 +1 = 0 (mod 5), which has solutions 2,3. If zp = 2, then f/(zg) = 2z = 4 = —1 (mod 5).
Also, f(zg) =5=0 (mod 5). Then 1 = zg — ;,((9;(;)) =2— 2 =7 Then f(z )—xl +1=50=
0 (mod 5%) and f/(x1) = 2x; = 14 = —1 (mod 5). So z3 = 71 — ;c,((g;ll)) =7— 5% =57 Then

fwe) = 23 +1=13250 = 0 (mod 5%) and f’(25) = 229 = 114 = —1 (mod 5). So x3 = g — L2 =
, 5 f'(@2)
57 — 2250 = 182 (mod 5%). Then 23 + 1 =0 (mod 5%).

Lemma 2.71 (Hensel’s lemma). Let f € Z[z]. Suppose f(a) = 0 (mod p’), p' || f'(a) and
j = 2t+1. Then

(a) whenever b = a (mod p’~*), we have f(b) = f(a) (mod p?) and p* || f'(b);
(b) there exists a unique s (mod p) with the property that f(a + sp’~*) =0 (mod p*1).
Proof. (a) Write b—a = hp?~! for some h. Since 2(j —t) =j+j—2t > j+ 1> j and p' | f'(a),

f'la )(hp7 B2 4 ... = f(a) (mod p?).

FO) = fla+hp'™") = f(a) + f(@hp’~" +
Since j —t >t +1,
F'®) = f'a+hp™) = f'(a) + f"(a)hp’ ™" (mod p*=") = f(a) (mod p"*").
Thus, p || f'(b)-

(b) Write f’(a) = gp® for some g with ged(p, g) = 1. Note there exists § such that gg = 1 (mod p),
ie., 1 —gg = 0 (mod p). Since f(a) = 0 (mod p?), we have f(a)(1 — gg) = 0 (mod p’™1). Let
a' :==a—ptgf(a). Since f(a) =0 (mod p’), p~tf(a) =0 (mod p?~*). Since 2(j —t) > j +1,

fla") = fla—p~'gf(a ) = f(a) — (p~*gf(a)) f'(a) + @ (p™'5f(a))” (mod pU—")
= f(a) = (p~" f(a)g) f'(a) (mod p’™) = f(a) — f(a)gg (mod p’*')
Ef(@)(l—gg) ( od JH)_O (mod p?*1).

With g = p~f'(a), set s := —p~7 f(a)g = —p~ f(a)g~* (mod p) = —p~7 f(a) [p~*f'(a)] " (mod p).

Suppose we have two s’ and s such that f(a + sp’~t) = f(a + s'p’~%) (mod p’*!). Then
fla)+sp?~tf'(a) = f(a)+s'p" "t f'(a) (mod p’1), ie., sp’~tf'(a) = s'p? "t f'(a) (mod p’*1). Since
pt || f'(a), we have pj@(s —5') =0 (mod p’*1). So s = s’ (mod p). O

Remark. Let f(a;) = 0 (mod p’) with p’ || f/(a1) and j > 2t + 1. Then there exists s; such
that f(az2) := f(a1 +s1p7~%) =0 (mod p’1). So az —a; = s;p’ 7t = 0 (mod p'*t). Next, since
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f(ag) = f'(ar +s1p77") = f'(a1) + f"(a1)s1p’ " = f'(a1) (mod p**t) and p* || f'(ar), p* || f'(az2).
Also, since j + 1 > 2t + 1, there exists a unique so (mod p) such that f(a3) := f(ag + sop’ 171 =
0 (mod p’*™1). So a3 — as = sop? ™17t = 0 (mod pt*2). By inducitive process, we have from root a;
modulo p, we get a sequence (@, )m,>1 such that for any n < m, a, = a,, (mod p'™™).

Corollary 2.72. If f € Z[x] and there exists a such that f(a) = 0 (mod p?) and p { f'(a) and
j = 1. Then there exists a unique s (mod p) with the property that f(a + sp’) =0 (mod p’T1).
1

Example 2.73. Find a solution to the congruences f(z) = 22 + 1 = 0 (mod 5*). Consider
2?2 +1 = 0 (mod 5'), which has solution 2,3. Let a; = 2, then f/(a;) = 2a; = 4. Since 5° || 4,
t =0. Let

s1=—5"1f(2)5°f(2)]" (mod 5) = %5(4)*1 (mod 5) = —4 (mod 5) = 1 (mod 5).

Then consider 22+ 1 = 0 (mod 52) with root az = 2+1-517% = 7 (mod 52), we have f(as) =50 =
0 (mod 5?) and f'(az) = 2as = 14. Let

s9==52f(D)BF ()] (mod 5) = —2%50(14)—1 (mod 5) = —8 (mod 5) = 2 (mod 5).

Then consider 22 + 1 = 0 (mod 52) with root az = 7+ 2 - 5279 = 57 (mod 5%), we have f(a3) =
3250 = 0 (mod 53) and f’(az) = 2a3 = 114. Let

s3=—53f(57)[5°f/(57)] " (mod 5) = —%3250& (mod 5) = —26-(4)"" (mod 5) = 1 (mod 5).

Then a4 = 57+ 537 -1 = 182 (mod 5%) and f(ay) = 182? + 1 =0 (mod 5%).

2.6 p-adic numbers

In this section, assume p is prime.

Definition 2.74. Let K be a field. A real-valued function |-| : K — R* is a valuation if there is a
M € R* such that the following conditions hold: for any b,c € K,

(a) |b] =0 if and only if b =0,
(b) [be] = [bllc,
(c) if |b| <1, then |1+ 0] < M.

Example 2.75. (a) The trivial valuation, taking M =1, |z| = { (1)’ i ; 8 .
(b) The absolute value on R is a valuation, taking M = 2.
(¢) Usual absolute value on C, taking M = 2.

Definition 2.76. (a) Define the p-adic absolute value/norm by

In| { pve(m) ifn#0

P10 ifn=0 "7

where v,(n) is such that p*»(™) || n.
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(b) If r € Q \ {0}, write r = p'¢ with p { ab. Define the p-adic absolute value/norm by

vl = p~t o ifr#£0
P10 ifr=0

Theorem 2.77. (m)
_Iml, _ P : = pwem-rm) ¢ o
p ‘n|p p vp(n "

‘ m
n

Theorem 2.78. ||, is a valuation on Q.

Proof. (a) It is straightforward.

2

(b) Let r1 = ptI% with p ¥ a1by and ry = pt2‘;—§ with p { asby, then riry = plittz $52 with
pfaiazbiby. Then [rirg], =p(itt2) — r1l,|ral,-

(c) Let @ € @ \ {0} such that |a|, < 1. Write a = p'} with p{uv, so t > 0. Let s > 0 such that
. |v+17tu|

v+ptu
v

p P <, O

X
[v],, 1

p* || v+p'uand so [1 +af, =
Theorem 2.79.
|z +yl, < max{|z|,, [y|,},Vz,v,

which is ultrametric inequality that is stronger than triangle inequality.

Definition 2.80. Given ||, z € Q and € € R+, define an open ball by
B (z,6) ={y € Q: |z —yl, <e}.
Theorem 2.81. Any point is the center of the disk.
Proof. Let a,b € B).|(z,€), then
la—=bl, < |z —b+a—2z, <max{|z —b|,Ja - 2[} <e
Hence BHp(a,e) = BHp(x,e) = B\-Ip(bv €). O

Remark. In the p-adic integers, congruences are approximations: for a,b € Z, a = b (mod p") is
the same as |a —b[, < p%. Turning information modulo one power of p into similar information
modulo a higher power of p can be interpreted as improving an approximation.

Example 2.82. Define a sequence a; = 4, az = 34, a3 = 334, as = 3334, ---. Then a,, = [1$-] or

3a, = 10" + 2, i.e., 3a, —2 = 10". Then |3a, — 2|; =[10"|; =5"" — 0. So a, s, 2. Thus,

2
3= m ap =3+3-10+3-10°+3-10"+ ..
Definition 2.83. Let K be any field with valuation |-|. A sequence {(a,) C K converges to b if for
any € > 0, there exists N € N such that |a,, — b|] < € for any n > N.

Definition 2.84. We say a field K is complete if every Cauchy sequence in K converges to an
element of K.
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Remark. Recall that when one completes Q with respect to the usual absolute value, we arrive at
R. We will develop a completion of @ based upon the p-adic absolute value |-| p» leading us to the
complete metric space Q,, the field of p-adic numbers.

Remark. Given a valuation |-| on K, we get a topology on K with basis given by open balls.

Definition 2.85. Let K be a field with valuation |-|. We say F O K together with a valuation |-|
that extend |-| is a completion of KK w.r.t. || if

(a) F is complete.
(b) F is the closure of K.

Theorem 2.86. Given a field K with valuation |-|, there is a completion of K w.r.t. |-|. Moreover,
any two completions are canonically isomorphic.
Definition 2.87.

Q, = completion of Q w.r.t. ||,
Definition 2.88. A valuation |-| on K is called non-archimedean if it satisfies the ultrametric
inequality. Otherwise, we say it is archimedean.

Example 2.89. || is non-archimedean on Q. The absolute value || is archimedean on Q.

Theorem 2.90 (Ostrowski). Let K be a field. If K is complete w.r.t archmedean valution |-|, then
K is isomorphic to R or C.

Theorem 2.91. If we consider Q, the only valuation on Q are powers of ||, or ||p
Definition 2.92. Let K be a field with non-archmedean valuation |-|. Define
o={xek:|z| <1},
p={zek:|z| <1},
o*={zek:|z|=1}=0\p.

Theorem 2.93. (a) The set © is a ring, which is called the valuation ring. The set o is also
referred to as the (|-|)-adic integers, for example Zj, : p-adic integers.

(b) The set p is the mazimal ideal in the local Ting ©. 0/p is called residue class field.

(c) The set 0* is the units in .

= 1, but not a 3-adic integer

Example 2.94. Let % € Q. Then % is a 5-adic integer since ‘%’5

. 2 _
since ’3|3 =3.

Remark. If K = Q,, then 0 =: Z,, which is where our sequence of lifted solutions from Hensel’s
lemma.

Example 2.95. Let K = Q,,, then with @ € Z and b € Z \ {0},
a

p={7ecoipla},
OX:{%EQ:pTab}z{%EO:pJ[a}.
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Definition 2.96. Let K be the completion of K w.r.t. |-|. Let © be the valuation ring of K. Let p
be the maximal ideal in &. Let 6™ be the units in .

Lemma 2.97. The natural map o/p — &/p induced via © < & is an isomorphism.

K——K
0 <---2 0
||)C’1C = ||zc

Proof Let R <% S be a ring homomorphism and I < R and J < S be ideals with ¢(I) C J. Define

¢p:R/I—S/IJbyr+I—y(r)+J. Let i +1=ry+ 1€ R/I. Since 9 is a ring homomorphism,
Y(r) —(re) = ¢(r1 —r2) € (I) C J. So ¢(r1) +J = ¥(ra) + J. Hence ¢ is well-defined. Clearly,
it is also a ring homomorphism.

Consider ¢ : 0/p — 0/p by a+p — a+ p. Then ¢ is a well-defined ring homomorpism since
f:p 1N p is a ring homomorphism and f(p) = p C p. Let a +p € Ker(p) with a € 0. Then
a+p=p,ie,acp. Then |a = |a[g < 1. Soa € p and then a+p = p. Thus, it is 1-1. Let
a+p € o/p with a € 6. Since K is the closure of K, there exists a € K such that |a — alg < 1.
Also, since a € 0, |afg < 1. So \a|,C =lalg = la+ (a— a)|,C < max{|a|,€, la — oz|,<} <1. Soac€o.
Also, since |a—oz\,C <1l,a—a€p. Hence p(a+p)=a+p=a+p. Thus, ¢ is onto. O

Example 2.98 (Exercise). Let K = Q,. Show that o/p = TF,.
Remark. Our result gives K = Qp. 0=Z,and 0/p=o/p=F
Let |-| be nonarchmedean.

Definition 2.99. The set {|a| : a € K*} is a subgroup of (Rsq,-). This is called the valuation
group.

Example 2.100 (Exercise). The valuation groups of K and K coincides.

Definition 2.101. A valuation || : K — R* is discrete if there exists § > 0 such that when
1—-6<|a] <1+9, we have |a|] = 1.

Lemma 2.102. A valuation |-| : £ — R is discrete if and only if the max ideal p is principal.

Proof. <= Let p = (w)o for some w € K. If |a| < 1, then a € p and so a = wb for some b € o.
So |a| < |w|. If |a| > 1, then || < 1 and so £ € p. Then 1 = wc for some ¢ € 0. So |a| > ||~
This gives |-| is discrete since when |w| < |a| < |@| ™", then |a| = 1.

= Since |-| is discrete, the set S = {|a| i |a| < 1} attains an upper bound. Say this happens at
w. Let ¢ € p. Then |£| = |‘C‘ 1 and so £ € 0. Hence c = w< € (w)o and so p C (w). Clearly,
(w) Cp. Thus, p = (w). O

Example 2.103. p = max ideal of Z, = pZ, and Z,/pZ, =T,

Lemma 2.104. Let K be complete w.r.t. a non-archmedean valuation |-|. Then Y -, a,, converges
if and only if lim,, ., a, = 0.
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Proof. Assume lim, ., a, = 0. Then given € > 0, there exists N. € N such that whenever N > N,
N M N
lany| < €. Let N > M > N, then |>." ja; — > " a;| = ‘Zi:MH ai‘ < maxj+i<icn|ai| < e So

]i a; } is Cauchy and thus that L complete means it converges. O
=0

Lemma 2.105. Let K be complete w.r.t. non-archmedean discrete valuation |-|. Let w € o such
that p = (w). Let A C o be a set of representatives of o/p. Then every a € © has a unique
representation a = ZZOZO ap,w" with a, € A. Conversely, every such sum converges to an element
of o.

Proof. = Let a € 0. Then there is a unique element ay € A such that a € ag+p. So a = ag+wb;
for some b; € 0. Note there is a unique a; € A such that by = a1 + wbs for some by € ©. Then
a = ag+wai +w?by. Continue this and we get a unique sequence with a = ag+a1w+asw?+-- -+

. 1
ap@" + byt Since |bn+1w"+1’ < |wn+1| = |w|" = 0,a— S h—o ar@® = byt — 0.
Thus, >°.° , a;@7 — a.

“<" Tt follows from Lemma 2.104. O

Corollary 2.106. Given a element of Z,, since pZ, = (p), we can write it uniquely in the form
a= ZZOZO anp™ with a, € {0,...,p—1}.

Example 2.107. Suppose we want to find an element « in Z7 such that 5o =1, i.e., o = % Let
o= a,7" Then0 = —1+5a = —1+> " 5a, 7", i.e., —=1+5a9 = 0 (mod 7), so ag = 3. Hence
a=3+Y " a,7". Note 0 = —1+5a = 14+> > ba, 7", i.e.,, 7((24 5a1) + > 0o, 5a, 77 1) = 0.
Then 2 + 5a; = 0 (mod 7). Soa; = 1. Hence a =3+ 1-7" + 37, a,7". Actually, % =a =
34+1-7T4+4-7 45T+,

Proposition 2.108. Let {a,},en be a Cauchy sequence in Z,. If a, i o, then o € Z,,.

Proof. Since a,, & a in Qp, there is N € N such that |a, —«a|, < 1 when n > N. Also, since
an € Zyp, lan|, < 1. So |a|, = [a —an + an|, < max{|a —an]|,, lan[,} < 1. Thus, o € Zj,. O
Proposition 2.109. (a) Z is dense in Z,. Formally, that means that for every a € Z,, and every
€>0, B (o, €) NZ# 0.

(b) Q is dense in Q.

Proof. (a) Let € > 0. Then there exists n € N such that p™ < e. Let a € Z,. Then by
Corollary 2.106, a has the unique representation ZZ’;I arp® with aj, € Z,. Let 8 = Ez;l app”® € Z.
Then [a — B[, <p™ <e.

(b) Tt is similar.

O

Theorem 2.110 (A basic version of Hensel’s lemma). If f € Z,[z] and a € Z,, satisfies f(a)
0 (mod p) and f'(a) # 0 (mod p), then there is a unique o € Z, such that f(o) = 0 and «
a (mod p).

Proof. We prove this by induction on n € N, there exists an a,, € Z,, such that f(a,) =0 (mod p™)
and a, = a (mod p). The case n = 1 is trivial, using a; = a. Assume the inductive hypothesis
holds for n, we seek ani1 € Z, such that f(a,41) =0 (mod p" ') and a,+1 = a (mod p). Since
f(ans1) = 0 (mod p"*™1) implies f(ans1) = 0 (mod p"), any root of f(X) mod p™*! reduces to
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a root of f(X) mod p". By the inductive hypothesis there is a root a, mod p™, so we seek an
ant1 € Zy, such that a,41 = a, (mod p") and f(a,4+1) =0 (mod p" ™). Write ani1 = an + t,p".
The goal is to find ¢, € Z, such that f(ap+1) = 0 (mod p"*1). Assume deg(f) > 2. Claim.
J(X4Y)=f(X)+ f(X)Y + g(X,Y)Y? for some g € Z,[X,Y]. Write for some d > 2, f(X) =
>0 o ¢; X7 € Zy[z]. Then
d d )
FX ) =G4V =t alX+¥)+ 30 X7+ ({)207y + 007
§=0 =2
d d d
=ctaX+aY+) X+ XTIV 4+ eigi(XY)Y?
Jj=2 Jj=2 Jj=2
d d d
=3 XTI+ GiXTTY 4> eigi (X, Y)Y = f(X) + f(X)Y + g(X, Y)Y
§=0

§=0 j=2
Since 2n 2 n + 1 and % €7y,

fans1) = f(an +t,p") = 0 (mod p"*')
> f(an) + f'(an)tnp™ + g(an, tap™) (tnp™)? = 0 (mod p"*)
— f(an) + f/(an)tnpn =0 (mod pn+1)
— f’(an)tnp” = —f(an) (mod pn+1)

= flap)t, = _J(an) (mod p),

n

Since a,, = a (mod p), f'(an) = f'(a) # 0 (mod p). So there is a solution for ¢, in the congruence
mod p. Since ap4+1 = a, +t,p" and a,, = a (mod p), we have a,+1 = a (mod p). This completes the
induction. This also gives a sequence {a;} jen satisfying f(a;) = 0 (mod p?) and a;+1 = a; (mod p’),
for j € N. Note |aj41 — aj|p < p~ for j € N. So the sequence {a;};en is Cauchy, which converges
to some « € Z,. Also, note a,, = a, (mod p") for any m > n > 1. Letting m — oo, we have
a = ay, (mod p™) for n € N. In particular, & = a (mod p). Also, since f(«a) = f(a,) =0 (mod p™),
|f(a)], < p% for n € N. Thus, f(a) = 0. Suppose there exists § € Z, such that f(5) = 0 and
B = a (mod p). Claim. 8 = «. It is enough to show 8 = « (mod p") for all n € N. Proof by
induction. Since § = a = a (mod p), the case n = 1 is straightforward. Assume 8 = a (mod p™).
Then 8 = a+ p", with v, € Z,. We have f(B8) = f(a +p"y,) = f(a) + f'(@)p" v, (mod p"*).
Since f(a) =0 = f(B), 0 = f'(a)p" v, (mod p"*1) and then f’(a)y, =0 (mod p). Since f'(a) =
f'(a) # 0 (mod p), we have 7, = 0 (mod p). Thus, 3 = a (mod p"*1). O

Remark. In general, if f'(a) =0 (mod p), then sometimes there are no lifts and sometimes there
are multiple lifts.

Remark. A similar argument shows that for all n > 1, f has a unique root mod p™ that reduces
to a (mod p). So we can think about the uniqueness of the lifting of the mod p root in two ways:
it has a unique lifting to a root in Z, or it has a unique lifting to a root in Z/(p") for all n > 1.

Example 2.111. Let f(z) =52 — 1 € Z[z] and a = 3. Then f(3) =0 (mod 7) and f'(x) =5 #
0 (mod 7). So we have a unique « € Z7 such that 5a = 1 and @ = 3 (mod 7). In previous example,
we saw approximations to a.
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Example 2.112. Let f(z) = 2® — 2 € Zs[z]. Note f(3)
0 (mod 5). Then there exists unique o € Zjs such that o
a=3+2-524+2-534+3.54 ...,

0 (mod 5), f'(z) = 32% and f'(3) #
3 (mod 5) and o® = 2 in Zs. Note

Example 2.113. Let f(x) = 23 — 2 — 2 € Zs[z]. Then f(0) = 0 (mod 2), f(1) = 0 (mod 2),
f'(z) =32%—1=2%-1 (mod 2), f/(0) # 0 (mod 2) and f/(1) = 0 (mod 2). Hensel’s lemma says you
have a unique o € Zy such that f(a) = 0 and a = 0 (mod 2). Explicitly, @ = 0+2+22+24+4+27+. ...

Example 2.114. Let n € Z, p { n and u € Z, such that v = 1 (mod pZ,), ie., u =1+ a1p+
asp® + - for some ay,as- - € Z,. Then there exists 3 € Z,, such that 8" = u. Let f(z) = 2" — u.
Note f(1) =1" —u=1—u =0 (mod p), f'(x) =n2z" ! and f'(1) =n # 0 (mod p). By Hensel’s
lemma, there exists a unique € Z, such that f(8) =0 and § =1 (mod p).

Definition 2.115. In mathematics, a root of unity, occasionally called a de Moivre number, is any
complex number that gives 1 when raised to some positive integer power n. In field theory and ring
theory the notion of root of unity also applies to any ring with a multiplicative identity element.

Any algebraically closed field has exactly n n'® roots of unity if n is not divisible by the char-
acteristic of the field.

Example 2.116. Consider f(z) = 2 —x € Zy[z]. By Fermat’s little theorem, for £k =0,...,p—1,
f(k) =0 (mod p) and f’(z) = pz?P~'—1 = —1 # 0 (mod p). Hensel’s lemma says for k =0,...,p—1,
there exists a unique wy € Z, such that f(wy) =0 and wy, =k (mod p). For k=1,...,p—1, we
have wz_l = 1. The numbers {wy,0 < k < p — 1} are distinct since they are already distinct when
reduced modulo p. Thus, for each non-zero residue class modulo p, we get a unique (p — 1)** root
of unity. So 2P —x =z (xp’l — 1) splits completely over Z,[z]. Its roots in Z, are 0 and p-adic
(p— l)th roots of unitys. Note wy = 0, w; = 1 and w,—1 = —1. Other wy’s are more interesting. For
instance, when p = 5, wy, is aroot of 2° —z = z(2* —1) = x(x —1)(x +1)(2? +1). So w, and w3 are
square roots of —1in Zs: wy = 24+5+2-524+5%+3-5*+4-55+. .., wg = 3+3-54+2-5243-53 +54 4. . ..
Then ws, w3 € Zs such that w3 = —1 and w§ =—1.

Theorem 2.117 (A strong version of Hensel’ lemma). Let f(z) € Z,[z] and a € Z, such that

|f(a)l, < |f’(a)\12). There is a unique o € Zy, such that f(a) =0 and |a —al, < |f'(a)|,. Moreover,

Fea|, <17 @,

(0) [f(a)l, = [(a)l,-
Remark. In the basic version of Hensel” lemma, since f’(a) # 0 (mod p) if and only if [ f'(a)[, = 1,
we have |f(a)|, < |f’(a)\12] =1if and only if p | f(a).

(a) lo—al, =

2.6.1 Roots of unity in Q, via Hensel’s lemma

In this section, assume p is prime.

Remark. Hensel’s lemma is often considered to be a method of finding roots to polynomials, but
that is just the one aspect: the existence of a root. There is also a uniqueness part to Hensel’s
lemma: it tells us there is a unique root within a certain distance of an approximate root. We will
use the uniqueness to find all of the roots of unity in Q,.
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Theorem 2.118. The roots of units in Q, are the (p — 1)™ root of unity for p odd and %1 for
p=2.

Proof. Let x € Qp with 2™ = 1. Then |z|; = 1. So |z|, = 1. Hence z € Z)* C Z,. Therfore, we
work in Z, right from the start. Let’s consider roots of unity of order relatively prime to p. Let
&1 and & be roots of unity in Z, with order prime to p and let m be the product of their order.
Then both of & and & are roots of f(z) = 2™ — 1 and p{m. Since p1 1, we have p{&; and then
(&)1, = ’mfgnfl‘p =1¢; |;"_1 =1for j =1,2. Since f(§;) = 0, the uniqueness of Hensel’s lemma
says that the only root a of 2™ — 1 satisfying |a — §j|p < \f’(gj)|p =1is ¢ for j =1,2. So if
& = & (mod pZ,), then by the uniqueness, {2 = &;. These statements says distinct roots of unity
in Z, having order prime to p cannot be congruent modulo p. In Example 2.116, we have showed
in Z,, each wy, (congruence class) for k=1,...,p—1is a root of zP~! — 1 and p — 1 is prime to p.
So each congruence class mod pZ, contains a unique (p — 1)*™® root of unity. Hence the only roots
of unity of order prime to p in Q, are roots of zP~! — 1.

Claim. the only p*™ root of unity in Z; is 1 for odd p and the only 4*0 roots of unity in
Zy are £1. This implies the only p'" power roots of unity in Z; are 1 for odd p and +1 for
p = 2. First we consider roots of unity of p-power order. We first consider p odd and suppose
EeZy ={> " garp® € Zy, | ag # 0} such that £&¥ = 1. Then ged(¢,p) =1 and £ = 1 (mod pZy).
Consider f(z) = 2P — 1. Then f(§) = 0 and |f'(§)[, = |p§p*1|p = |p|p|§\§71 = |pl, = %. So the

uniqueness in Hensel’s lemma implies the ball
1
feeq k=g, <ir@,} ={rca:l-g,< 5} -c+rz,

contains no p*® root of unity other than ¢. Claim. £ =1 (mod p?Z,), so 1 is in that ball and thus
& =1. Write £ = 1+ py for some y € Z,. Then

1=¢"=1+py)” =1+plpy) + i (i) (py)* + (py)? = 1 + p(py) (mod p*),
k=2

i.e., p*y =0 (mod p?). So p | y. Thus, £ =1 (mod p?) which forces £ = 1. Now we turn to p = 2.
We want to show the only 4*® roots of unity in Z; are +£1. This won’t use Hensel’s lemma. Let
¢ € Z5 be a 4* root of unity and & # +1. Since z* —1 = (22 —1)(2?) +1, we have £2 = —1 and then
€% = —1 (mod 4). However, since £ € Z5', we have £ = 1 or 3 (mod 4) and then 2 = 1 (mod 4), a
contradiction. For any prime p, a root of unity is a (unique) product of a root of unity of p-power
order and a root of unity of order prime to p, so the only root of unity in Q,, are the roots of
XP~1 — 1 for p # 2 and +1 for p = 2. O

Lemma 2.119. pZ, is the unique ideal of Z,,.

Remark (Notation). Usually, write y,, for the n*® root unity. p,(C) C C where u,(C) is the set
of n*® root of unity in C. We showed p, (Q,) C Z,.

Example 2.120. For d € Z, the equation 23 + 2y3 + 523 + dw? = 0 has a nontrivial solution
(z,y,2,w) € Z,.

Proof. Note (1,2,0,0) satisfies 13 +2-23+5-034+d- 0% = 0 (mod 17). Fix (y,z,w) = (2,0,0)
and set f(z) = 2® + 16. Since |f(1)];; = [17];; = & < L and [f/(1)]> = |35, = 12 = 1, we
have |f(1)];; < |f’(1)|f7. So Hensel’s lemma applies to give a € Zj7 with f(a) = 0. Hence
42 (25)+5.-02+d-03=0, ie., (,2,0,0) € Z}; is a nontrivial solution. O
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2.6.2 Primitive roots
In this section, assume p is prime.

Definition 2.121. Let n € N and ged(a,n) = 1. Let ord,,(a) denote the (multiplicative) order of
a modulo n,

Lemma 2.122. Let n € N and ged(a,n) = 1. Then the order of a modulo n exists and divides
#(n). Moreover, if a* =1 (mod n), then the order of @ modulo n divides k.

Proof. By Euler’s theorem, a®™ =1 (mod n). Then the order exists and let d = ord,(a). Since
(a) < (Z/nZ)*, by Lagrange’ theorem, ord,,(a) | ¢(n). Suppose a* = 1 (mod n). Division algorithm
allows us to write k = de +r with r,d € Z and 0 < 7 < d. So a* = a®*" = (a?)¢-a” = a" (mod n).
Since a* =1 (mod n), " = 1 (mod n). Then by the minimality of d, = 0. Thus, d | k. O

Lemma 2.123. Suppose ord,,(a) = h. Then ord,,(a*) = m.

Proof. Since ord,,(a) = h, ged(a,m) = 1. So ged(a*, m) = 1 Assume (a*)? =1 (mod m), then h |
kj by Lemma 2.122. Note h | kj if and only if gcdélh 5] ‘ Zed( h k)j Since ged (m m) =1,

we have W | j. So W | ord,, (a*). Note (ak)gcd(h,k) — gEatm — (Clh)m =1 (modm).
A h
So ordym(a*) | geatim- D

Lemma 2.124. Let ord,,(a) = h and ord,, (b) = k. If ged(h, k) = 1, then ord,,(ab) = hk.

Proof. Let d = ord,,(ab). Since (ab)* = a"* . b"* = (a")k(b¥)" = 1% . 1" (mod m) = 1 (mod m),
d | hk. Since 1 = a" = (a")% (mod m), b? = (a”)4™ = [(ab)* ]” =1 (mod m). So k = ord,(b) |

dh. Since ged(h, k) =1, k | d. Similarly, h | d. This gives hk = m = lem(h, k) | d. O

Definition 2.125. Let m € N. We say g is a primitive root modulo m if ord,,(g) = ¢(m).
Theorem 2.126. g is a primitive root modulo m if and only if g is generator of (Z/mZ)*

Proof. = Since ord,,,(g) is defined, ged(g,m) = 1. So g € (Z/mZ)*. Note ord,,(g) = ¢(m) =
[(Z/mZ)%|.
<= It is straightforward. O

Theorem 2.127. There exists ¢p(p — 1) primitive roots modulo p.

Proof. Tf p = 2, this is straightforward. Assume p is odd prime. Then each element in {1,...,p—1}
has order (modulo p) dividing ¢(p) = p—1. Given d | p—1, let 1)(d) denotes the number of elements
in {1,...,p — 1} with order d modulo p. So > ;, ;¥(d) = p—1. Claim. ¢(d) = ¢(d) for any
d|p—1. Let d | p— 1. Suppose ord,(a) = d. Then a,...,a? are all inequivalent modulo p. These
are all solutions of ¢ — 1 =0 (mod p) and no other solutions. So anythings of order d must be in
this list. Alo, since ordp(ak) = dek) by Lemma 2.123, the elements of order d are precisely those

a* with ged(d, k) = 1. These are ¢(d) such powers. So in particular, ¥)(p — 1) = ¢(p — 1), which is
the number of elements in {1,...,p — 1} with order p — 1 = ¢(p). O

Theorem 2.128. Let g be a primitive root modulo p, then there exists x such that g + px is a
primitive root modulo p?>. Moreover, g + px is a primitive root modulo p* for k € N when p is odd.
(Thus, we have primitive roots modulo p*, i.c., (Z/p*Z)* is cyclic for k € N).
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Proof. Want to find an z such that ¢’ := g+pz is primitive modulo p?. Since ord,(g) = ¢(p) = p—1,
g°P~! =1+ py for some y. We have (¢')P~1 = (g + px)P~t = ¢*~! + (p — 1)g? 2px (mod p?). So
(¢")P~ 1t = 1+pz with z = gp;j_l +(p—1)g?~%x (mod p?). Since (p—1)gP~2 is prime to p and we can
choose x such that ged(z,p) = 1 (first choose such a z, and then solve for z). Since ¢’ = g (mod p),
g’ is primitive modulo p. Let k > 2 and d = ord,x(g’). Then d | #(p*) = p*~1(p — 1). We have
(g +px) =g =1 (mod p), ie., ¢ =1 (mod p). Sop—1]d. Since (¢)?~* = 1 + pz with
ged(p,z) = 1, (¢')P~1 £ 1 (mod p?). Sod # p—1 and then d > p — 1. Since ¢(p) = (p—1) | d |
pPip-1)forj>2 (p-1)|d|pp-1)

Let k= 2. Since d > p—1, ord,2(¢’) = d = p(p — 1) = ¢(p?). Thus, ¢’ is primitive modulo p?.

For higher power k > 3, assume p is odd. Suppose d = ord,x(g") < #(p*) = p*~1(p —1). Since
d(p) =p—1]d|p"p—1), we have d = p/(p — 1) for some 0 < j < k — 1. Since p is odd,

((g’)p’l)p] = (1+p2)¥ =1 + piTlz; for some z; with ged(z;,p) = 1 since ged(z,p) = 1. So if
(¢")P’»=1 =1 (mod p*), then j + 1 > k, a contradiction. Thus, we must have d = ¢(p*). O

Exercise 2.129. What does the proof fail for p = 27
Corollary 2.130. (a) The number of primitive root modulo p is ¢(p — 1).

(b) The number of primitive roots modulo p? is (p — 1)¢p(p — 1).
(c) The number of primitive roots modulo p* is p*~2(p — 1)¢(p — 1), where p is odd.

Proof. Let m be a modulus in each question. Then by Theorem 2.128, there exists a primitive root
g modulo m. O

Theorem 2.131. There exists primitive root modulo m if and only if m = 2,4, p* or 2p* for p odd
prime.

Proof. For 2,4, p* with p odd, we are done. Let p be odd and m = 2p*, By Theorem 2.128, there
is a primitive root modulo p* denoted by g. Since p* is odd, either g or g + p* is odd. Set g’ be
whichever is odd. Then ¢’ = g (mod p*). Suppose there exists b € N and b < ¢(p*) such that
g"® =1 (mod 2p*), then ¢’* =1 (mod p*), a contradiction. So the order of ¢’ modulo 2p* must be
at least ¢(p*) = #(2)p(p*) = ¢(2p*). Thus, ¢’ is a primitive root modulo 2p*.

Next, suppose m is none of these forms. Write m = ning with ged(ny,ng) = 1 and nq,ne > 2.
If ged(j,m) = 1, then ged(n — j,n) = 1. So for n > 2, all numbers relatively prime to n can be
matched up into pairs {j,n—j}. Hence ¢(n1) and ¢(nq) are even. Take a with ged(a, m) = 1. Then

ged(a,ny) = 1 = ged(a, ny). By Euler’s theorem, a?(™) = 1 (mod n4). Since ¢ is multiplicative,
#(n2)
2

az®(m) = qzo(m)d(n2) = (go(m)) = 1 (mod ny). Similarly, az?(™ = 1 (mod ns). Since

ged(ny,ne) = 1, we have a29(™) = 1 (mod n). Thus, every a with ged(a,m) = 1 has order
< 1¢(m) < ¢(m), so there is no primitive root modulo m.

At last, suppose m = 2" with r > 3. Then the numbers relatively prime to m is odd. Claim.
given an odd integer a > 3, we have a2 =1 (mod 27). So there is no primitive root modulo
m. Claim. for any r > 2, 27 || (52 ° — 1). Assume this is true for k. Then 2¥ || (52"~ +1). So
2k || (52" —1)(52" " +1) = 52" — 1. Hence the claim is proved. This gives 5 has order 272
modulo 27. So the residues 5* with k = 1,...,2"~2 are all distinct. Check the residues —5* for
k=1,...,2"2 are distinct and distinct from 5*’s, so this gives all residues since ¢(2") = 2" —2"~! =
2"~1. Hence all reduced residues modulo 2" can be written as (—1)!5* for | = 0,1, k=1,...,2" 2,

Note ((—1)'5%)2 = (5%)* " =1 (mod 2). 0
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Corollary 2.132.
(Z/p"Z)* = Cypry, p odd,
= Cl = 017

Theorem 2.133. Let m = 2°]] -\ 52" Then
(Z/mZ)* =G x ] Cown,

pT||m,p>2

where
Cl, e = 0,1
G CQ, e=2
Cy X Coe—2 e>2

Proof. By Corollary 2.132 and Chinese Remainder Theorem.



Chapter 3

Quadratic Reciprocity

Let p be prime.

3.1 Legendre symbol

Definition 3.1. Let gcd(a,m) = 1. If 2" = a (mod m) has a solution, we say a is an n** power
residue modulo m. If n = 2, we say a is quadratic residue if this has a solution and quadratic
non-residue, otherwise.

Definition 3.2. Let p be odd. We define the Legendre symbol (%) by

a 1, a is quadratic residue and pta
<) =< -1, ais not quadratic residue and p 1 a
b 0, pla

Theorem 3.3. Let p1a. Then the congruence ™ = a (mod p) is solvable if and only ifagcdg:;—l) =
1 (mod p).

p—1

—1

Proof. “=”. Since p { z, by Fermat’s little theorem, we have aFatnir D = (x™)eedlmp=1 =
(xP~1)&amr=0 =1 (mod p).

“<”. Let g be a primitive root modulo p. Then a = ¢" (mod p) for some r € N. We have

- r(p=1)
1= (gr)gcdﬁl;*l) = ggcd(flvz}ﬂ) (mod p). Then ord,(g) = (p — 1) | #;1_)1). So ged(n,p—1) | r.
Write » = knz + k(p — 1)y for some k,z,y. So a = g" = gFnetke=Dy = (ghz)n . (gp=1)ky

(g")" (mod p).

Example 3.4. Is 3 a 4" power modulo 17 ? Note 2% = 3 (mod 17) has a solution if and only if
16

3&d419 =1 (mod 17) if and only if 3* = 1 (mod 17), not true.

o

Assumption 3.5. Let p be odd.
Theorem 3.6 (Euler’ Criterion).

(g) =a"7 (mod p).

27
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Proof. If p | a, we are done. Assume p { a. Then by Fermat’s little theorem, (ap2;l)2 =gl =

p— p= __p-1 .
1 (mod p), i.e., a'T = +1 (mod p). By Theorem 3.3, a"T = qEEe D =1 (mod p) if and only if
(2) ~1 O

b
(b) If a = b (mod p), then (%) = (g)
(¢) If ged(a,p) =1, then (%) =1 and (%) = (%).
(d) (%) =1 and (—71) = (1),

Proof. (a) Since (%’) = (ab)p%1 =47 b = (%) (%) (mod p) and (%b) ) (%) , <%) €{0,1,-1}
and p > 3, we have (%’) = (%) (%). O

Theorem 3.8. The number of solutions of x> = a (mod p) is ezactly 1+ (%)
Proof. If zq is a solution, then —zq = p— 2z (mod p) is also a solution. If p | a, then 22 = a (mod p)
only has one solution. O

Definition 3.9. Let n € N. Define the numerically least residue of a modulo n to be a’ such that
@ =a (mod n) and —3n < d’ < in.

Lemma 3.10 (Gauss’s lemma). Let gcd(a,p) = 1. Write a; to be numerically least residue of aj

modulo p for j € N. Then (%) = (—1)!, where

—1
l:#{1<j<p2‘aj<o}.

Proof. Claim. The numbers {\aj\, 1<5< %} are the numbers 1,2,..., 732;1 in some order. By
definition of a;’s, it’s enough to show that |a,|’s are distinct. Suppose first a; = ai for some
ik e {1, ,pgl} with j # k. This gives aj = ak (mod p). Since ged(a,p) = 1, we have
j =k (mod p), a contradiction. Suppose a; = —ay, for some j # k. This gives aj = —ak (mod p),
ie, a(j + k) =0 (mod p). Similarly, g + kK = 0 (mod p), a contradiction. Write r = prl. Then
(-D!' =ay---a, = (la)--- (ra) (mod p), i.e., rla” = (—1)'r! (mod p). Since ged(r!,p) = 1, we

p—1

have (%) =a7 =a" = (-1)! (mod p). O

Example 3.11. Since 4> =5 (mod 11), we have () = 1. Note

Jjlaj| a;
115 | 5
2|10 | -1
3|15 | 4
4120 -2
5(125| 3
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Then [ =2. So (&) = (-1)? =1.

—1 .
Corollary 3.12. Let ged(a,2p) = 1, then (%) = (=1)!, where [ = Z;:Tl L%J Moreover, (%) =

(D5
Proof. Consider a,2a, ..., %a. Let r1,...,7, denote the residues of these ja’s modulo p that
exceed £, and s1,...,s; be the residues between 0 and £. Note n + k = % and ged(a,p) = 1.

Using ja =p {%J + remainder, we have

o Bt . n k
leazz:lp V;J—#erj—i—zlsj. (3.1)
i= j= = j=

Since § < r; < p, we have the numerically least residue of r; is r; —p for i = 1,...,n. By the proof
in Gauss’s lemma, we have the absolute value of numericlally residues, i.e., (p —7;)’s and s;’s are
all distinct and are the numbers 1, ..., % in some order.
Then

pTil n k n k

D= ) EY si=mw =y ity s (3.2)

j=1 j=1 j=1 j=1 j=1

p—1 p—1 .
Let (3.1) - (3.2), we have (a— 1) 3,7, j = .2, p Vﬂ —p 20 1y, e,
p=1
P’ -1 ~ | ja -
(a-1)=—=» ;{pJ—n +2;rj. (3.3)

p—1 | .
Since ged(a,2p) = 1, a is odd. So 0 = P(ZZ {%J —n) (mod 2). Since ged(p,2) = 1,

p—1 . pl ja
S22 {ﬂJ = n (mod 2). By Gauss’s lemma, we have (9) = (-1 = (—1)ZJ=21 L%]. More-

j=110p P
p=1 . p=1 2
over, if a = 2, we have .2, V—JJ =>;2, 0=0 and then prl = —np =n (mod 2) by 3.3. So by

P
2 4
Gauss’s lemma, we have (%) = (-1 =(-1)"=". O
p—1 . p—1
Remark. Takea = —1, since ), 2, {%J =22 (1)= —2-1 wehave 0 = p (—25* —n) (mod 2),
ie,n= —%71 = % (mod 2). Then

() = o=,

So if p=1 (mod 4), then —1 is a square root modulo p; if p =1 (mod 4), then not. Then

(5)-(5) () -co==
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Theorem 3.13 (Quadratic reciprocity (QR)). Let p and q be distinct odd primes. Then

(B))-c

Proof. Let S = {(z,9) e N? |1 <2< 2%, 1<y< G} Let S1 = {(z,y) € S | gz > py} and
Sy = {(z,y) € S| gz < py}. Let (z,y) € S. Suppose qr = py, then p | qz, i.e., p| qor p | x,
a contradiction. Hence S = S U S;. Also, 51 = {(z,9) € S |1 <z < Ell1<y< %} and

So={(z.y) €S| 1<y<Gh1<a <} So#S =Y., |2 and #S> = 307, 2] Since

x
P q
p=1 a-1
#S = #S1 +#S55, ’92;1% =>.2 {%J +2 202 {%J. Thus, since ged(p, 2¢) = 1 = ged(q, 2p), by
% pPY LEI I—ﬂj p—1qg—1
Corollary 3.12, (g) (g) = (-1)2A 7 (=S LT = (cyE O

Remark. p = 22 + y? if and only if p = 1 (mod 4) by Theorem 2.52 if and only if (’71) =1
p = 22 + 22 if and only if (_72) =1.

Example 3.14.

() ()R- (B (3)- () ()-coe s

Example 3.15. Since (%) =1 and (%) =(-1)"= =-1,

(D) =(F) () =v=co== ()= (2)={ 1) pZyimetd

3.1.1 Algebraic number theory proof of QR

2 pi-t

2 is a square modulo p if and only if p = 1,7 (mod 8), i.e., (5) = (—=1)"5 . We already proved

this, but we will give a new proof. Let &, = et be a primitive n*" root of unity in C.

Definition 3.16. Set
Zlgn] = {ao + a1€n + -+ an—1€7' ),
which is a ring.
Definition 3.17. Let K/Q be a finite field extention. We say « € K is an algebraic integer if there
exists a monic f € Z[z] such that f(a) = 0.
Fact 3.18. Show that the algebraic integer in Q are the ususal integers.
Notation 3.19. Denote the set of algebraic integers in I by ox. So 0og = Z.

Theorem 3.20. Every element of Z[&,] is an algebraic integer. Moreover, Z[&,] N Q = Z.

Proof. Let a € Z[£,]. Then we can write af!, = Z;L:_Ol a;;& fori =0,...,n—1. Define a matrix A =

(aij) € Mat,(Z) and P(t) = det(tl, — A) € Z[t], which is monic. Define V = *(1,¢&,,£2,...,&n71).
Then the set of equations can be re-written as AV = oV, which implies « is an eigenvalue of A.
So « is a root of the monic polynomial P € Z[t]. O
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Fact 3.21.
Q(&n) — [fn]

Notation 3.22. For z,y € Z[&,], write z = y (mod pZ[,]) to mean x — y € pZ[E,].

Fact 3.23. Since Z C Z[¢,], if z,y € Z, x = y (mod pZ[E,)) is the same as z = y (mod p).

5)-cr

Proof. Set ¢ = & and © = Z[¢g]. Then 0 = ¢ — 1 = (¢* — 1)(¢* + 1). Since ¢ is primitive 8*®
root of unity, we have £&* 4+ 1 =0, ie.,, &2+ 672 =0. Set 7 = £+ &7 Then 72 = (£ +¢71)?2

€242+ £72=2 So Q(v2) C Q(¢). By Euler’s criterion, 7P~1 = (72)"z =2"7 = (%) (mod p).
So Pl =2" = (2) (mod po), i.e., TP = (%) 7 (mod po).

p

Theorem 3.24 (New proof).

(a) Assume p=1(mod8). Then &P =¢and £ P =¢ L. SomP = (E+E NP =P HEP =¢4+E7 =

7 (mod po). Thus, T = %) 7 (mod po). Note po is not prime ideal, so we can’t just cancel 7.

Multiply by 7, we have 72 = (%) 72 (mod po), i.e., 2 = (%) 2 (mod po). So 2 = (%) 2 (mod p) by
Fact 3.23. Since ged(p,2) =1, 1= (%) (mod p). So (%) =1

(b) Assume p = —1 (mod 8). Then &P = £71, €77 = £, So everything else is the same and as a

result, we have % =1.
(c) Assume p = 3 (mod 8). Since £* = —1, we have

P et =8+t = e = 6= —(6+ ¢ = -7 (mod po).
So —1 = (%) 7 (mod po). Multiply by 7, we have —2 = ( ) (mod p). Similarly, (%) =—1.

(d) Assume p = —3 (mod 8). Then &P = £73 and 7P = £3. So everything else is the same and as

a result, we have (%) = -1 O

Remark. We calculate (%) using algebraic number theorem. Main input: 7= §, + &, L r2=2

and Q(v/2) € Q(&s). These are enough information to calculate (%)

Remark. To prove QR, we need to consider (%) and (%). Want to do the same type of argument

in Q(&s), so we want some 7 € Z[¢,] so that 72 = p. Unfortunately, this isn’t always possible. Since

fg =1 V=3 and /3=1— 2¢s, Q(&s) = Q(v/—3). So there can be no element 7 € Z[¢s] C Q(&s)
satisfying 72 = 3 since we would get Q(v/3) C Q(v/—3), a contradiction. Thus, we can find 7 such
that in general, the best we can hope for is to find 7 € Z[,] such that 72 = +p.

Proposition 3.25. There are the same number of quadratic residue as non-residue in Z/pZ.
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Proof. Let w be an primitive root modulo p. Then w, ..., w? ! are distinct. Let k € {1,--- ,p—1}
be odd. Suppose (w?)? = w” (mod p) for some j € {1 ..,p—1}. Since ged(w,p) = 1, w¥F =
1 (mod p). Also, since ord,(w) =p—1, wehave p—1|2j—k. Since 2j —k <2j—-1<2(p—1)—-1 <
2(p—1), we have 2j —k =p—1, contradicted by k is odd. Hence w” if a quadractic residue if and
only if k is even. O

Definition 3.26. Define a Gauss sum
¢ Pl
_ § : t_ Z t
! (p) §p <P> §p
te(Z/pZ)* t=1

Theorem 3.27.

= (-1)"7 p.
Proof. Define 7, = >4~ ( ) 9t for ¢ = 1,---,p — 1. Then by Proposition 3.25, 7o = 0. So
(%) Ty = Zf:_l (%) £ = thl (;) ¢, = 1 since {q,2q,---,(p — 1)q} is a complete reduced

2
residue system modulo p. Since p { ¢, we have (%) =1 and then 7, = (%) 7. Hence

—1 —1

ETQT_q - pz (_pq2> = pz <_p1) = 1071(*1)1]7_172 = (-1 (p—1)r2.

g=1 q=1 q=1

Moreover,

=l oy p—1 p—1p—1

w2 (e s (e -2 () ()9

t=1 s=1 t=1 s=1
Note for 1 <t,s<p—1,ift =s, thenX:p_1 a(t=s) — p;ift # s, thensince2 —p<t—s<p—2,
we have p{t — s and so Zp_o g(t s) = Z 5,, — 0. Hence
p—1 p—1 /p—1p—1 s p—1p—1
o EEE (o) BRI
q=0 t=1 s=1 p t=1 s=1 q=0
ThUS, p(p_l) = (_1)%_1(27_1)7'2 i.e., (—1)%_1[):72 |

Theorem 3.28 (QR: New Proof). Let p,q be distinct odd primes.

<§> <Z) = (-1

Proof. Set p* = (—1)p2;1p. Since Gauss sum 7 € Z[¢,] € Q(&,) and 7% = p*, Q(v/p*) C Q(&,). So

—1

()= (S25) ()= ()7 ()= ()7 (&) == (2),
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Hence <£) (2) = (—1)%_1%1. Thus, to show QR, it is equivalent to show (q> = (%). Note

a )\« P
Ti=t = (TQ)QT_I = (p*)q%1 = (%) (mod ¢) by Euler’s criterion. Then 79 = (%) 7 (mod ¢). Since

q1pis odd and by Freshmen’s dream, we have

. (Z (;) g;) T Z (;)g - Z (;) €8 (mod gZ[5,).

t=0 t=0 t=0

Let g for the inverse of ¢ modulo p. Let gt = k (mod p), then t = gk (mod p) and so

V== (3= (DT ()6 = () tmoramin
(=) = ():1,wehave<p€)—(2 o (Z)7 = (2)7 (mod ¢Zg,)).

Hence % = ( (mod ¢Z[&y)), i.e., * Ii ) (mod ¢). Since ged(p*,q) = 1,
(%) = (2) (mod q). Thus, (%) = (2). 0

3.2 Jacobi symbol

S

(v
Since (1) (gz

*

v SRS
T
\_/*d\»az

Definition 3.29. Let n € N be odd, the Jacobt symbol (%) is defined as the product of the
Legendre symbols corresponding to the prime factors of n, i.e.,

-G )

where n = pi',--- p¢ is the canonical factorization of n.

Theorem 3.30. Let QQ = p;y ---ps, where p;’s are odd primes and not necessarily distinct. Then
(a) (1) =

(b) If ged(a, Q) # 1, then (5) —0.

(c) If ged(a, Q) =1, then (5) = (i)

Q p1

(i)

Remark. This symbol does not tell you about quadratic residues.

Theorem 3.31. Let Q,Q’ € N be odd.

 (8)(6)- ()
o (5)(5)- (%)

(c) If ged(p, Q) =1, then (&) = (%) =1.
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(d) If ged(pp',QQ") = 1, then (%) — (%)
(e) If p=p’ (mod Q), then (%) = (%)

Proof. (a) Write Q = p1---ps and Q = pi,---,p; with p;’s and p;’s odd primes. Then we have

(ﬁ)...(ﬁ)(ﬁ)...(ﬁ);(i) O
P1 ps ) \ D1 P} Q)"

Remark. The Jacobi symbol does not determine if something is residue modulo Q). For example,

if 71 a, then (i) = (7%) = (9 (% = 1. But not every a is a QR modulo 49. On the other

hand, if (%) —1, then —1 = ( ) ( ) (i), which means at least one of these must be

2=gq

@\@

2 —

—1, say (?) = —1. Suppose x (mod @), then since p; | @, we have z a (mod pj), as

well, which is a contradiction since (pi) = —1. Soif (%) = —1, it means there is no solution for
J
2? = a (mod Q).

Theorem 3.32. Let Q € N be odd, then

()= ()

Proof. Write Q = p; - - ps with p;’s odd prime. Then

(;) _ (;11) <;sl> — () (L) = ()T st

Let n1 and ny be odd. Then

%(nl -1+ %(ng -1)= %(nlng -1 - %(nl —1D(na—1) =

(ning — 1) (mod 2).

DN | =

Hence by induction, (%) = (—1)z(rpa=1) = (—1)2(@=D) Note

Let ny and ny be odd. Since nf =1 =n3 (mod 4), §(n? —1)(nd — 1) =0 (mod 2). This gives
1 1 1 1 1
S =1+ (n3 — 1) = S(nin3 — 1) = ~(nf — 1)(n3 — 1) = 2 (nin3 — 1) (mod 2).
8 8 8 8 8
Hence by induction, (%) = (=1)§@i-Pi-1) = (—1)5(Q°-1), O

Theorem 3.33 (Jacobi). Let Q € N be odd and ged(p, Q) = 1. Then

(5)(@) -

Proof. Use the same techniques as Theorem 3.32. O
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Remark. We can use Jacobi to quickly calculate Legendre symbol.

Example 3.34.
2
1111 :(71)%8092_1110 8093 _ 316 _ 2 79 :(71)%78.1110 1111
8093 1111 1111 1111 1111 79
2
5 1 79 4 2
— (2 e (Y (2 () = .
(7)== (5)--(5)-- ()

So 1111 is not a quadratic residue modulo 8093.

Remark. Sum of squares: arithemetric in Z[i]. Quadratic reciprocity: arithemetric in Z[¢,]. Binary
quadratic: arithemetric in Q(v/d).
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Chapter 4

Binary Quadratic Residue

Definition 4.1. A binary quadratic form is a homogeneous polynomial
f:ax® 4+ bay + cy? € Zz, y].

We will sometimes denote this as [a, b, ¢]. Given n, we say f reresents n if there exists (zg,yo) € Z>
such that f(xg,y0) = n.

Remark. Classical motivation: Figure out which integers are represented by a given form. We
have an example already.

Theorem 4.2. Let f = 2? +y2. Then an integer n is represented by f if and only if n has a prime

factorization
e hi
n=2° H p;J H q;
p;=1 (mod 4) ¢;i=3 (mod 4)

where h; =0 (mod 2) for all ¢; | n and ¢; = 3 (mod 4).
Proof. By Theorem 2.53. O
Theorem 4.3. f =22+ 9% and g = z? + 2zy + 2y? represent the same integers.

Proof. If n = g(xo,y0) = 22 + 2xoyo + 2y2, then n = f(xo + yo,y0). I n = f(x1,91) = 23 + v3,
then n = g(x1 — y1,y1)- O

Corollary 4.4. Let f = 2?4 2zy + 2y?. Then an integer n is represented by f if and only if n has
a prime factorization
p;=1 (mod 4) ;=3 (mod 4)
where h; = 0 (mod 2) for all ¢; | n and ¢; = 3 (mod 4).
Remark. We should think of f and g above as equivalent binary quadratic forms (b.q.f.’s). Note

. 1 0 |=z| _ Tl o, 9 . 1 1) |z _ 9
flz.y) = (z,y) {0 J L/] = (2,9) L/] =2 +y° and g(2,y) = (2,9) {1 2} M = a” 42wy +2y°.
We could ask for the matrices to be similar: * {(1) _11} E ﬂ {(1) _11} = Ll) ﬂ by elementary

transformation. Maybe what we want is the matrices associated to f and g to be similar matrices.

37
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b
Definition 4.5. Given any f = ax? + bry + cy? = (x,v) [ i] [ﬂ, associate the matriz

o 3
bl
2

Assumption 4.6. Let f, g be binary quadratic forms.

o Q

Definition 4.7. We say f and g are equivalent if the associated matrices are SLo(Z)-similar.

Remark. We can define an action 7 of SL2(Z) on the set of binary quadratic forms f by

Fhes) = (F o y) = £ (1)) = f (7 [ﬂ) |

when regarding v as a matrix. For example, let v = B? ﬂ Then ~ [ﬂ = {]; i I zﬁﬂ and

f (’y [ﬂ) = f(px + qy, rx + sy). Check this gives a right group action.

Definition 4.8. We say f and g are similar, write f ~ g if there exists v € SLa(Z) such that
f=gon.

Exercise 4.9. Definitions 4.7 and 4.8 are equivalent.

Theorem 4.10. If f ~ g, then f and g represent the same set of integers.

Proof. Let v € SLo(Z) such that g = foy. Let 7 € SLy(Z) such that f = gor. Let (x9,v0) € Z2 such
that f(zo,y0) = n. Then g(v~'(z0,50)) = f(v(v~"(z0.%0))) = f(z0,%0) = n. Let (z1,51) € Z°
such that g(z1,y1) = m. Then f(r7 z1,11)) = g(7(77 (21, 11))) = g(z1,91) = m. O

Example 4.11. Counsider the binary quadratic form f = [458,214,25]. Note f(—1,—1) = 17 -
41, f(—1,0)=2-229, £(0,1) =52, f(1,1) =269, f(—1,2) =2-5-13, f(—1,3) = 41. Check: Let

1= 0y Ja| € 5Ta(@), then (F om)(e,y) = % + 42
—17 13
Definition 4.12. The discriminant of a binary quadratic form f = [a, b, c] is b* — 4ac. Write

disc(f) = b* — 4ac.

Remark. Note

o Nl

disc([a, b, ¢]) = —4

nlor Q

Theorem 4.13. If f ~ g, then disc(f) = disc(g).

Proof. Let g = foy. View the corresponding matrices, disc(g) = disc(foy) = det(~y) disc(f) det(y) =
disc(f). O

Remark. The converse is not true. =2 + 6y2 represents 1, 222 + 3y does not represent 1 but they
have same determinant —24.
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Theorem 4.14. The set of all discriminants of binary quadratic forms is exactly the set of integers
d such that d = 0,1 (mod 4).

Proof. Let f = [a,b,c]. Then d = b?> — 4ac. So d = b* (mod 4). Hence d = (mod 4). Next,
assume d = 0,1 (mod 4). Then d = b? for some b by Lemma 2.52. Set f(z) = O

Theorem 4.15. If disc(f) < 0, then f is a definite form. If disc(f) > 0, then f is an indefinite
form.

—d if d=0 (mod 4)
- 1 1 - d e .
Proof, Set ¢ = { dzl it d=1 (mod 4) ° When ¢ = —%, [1,0,¢] has disciminant d; when
¢ = —%2,[1,1,c] has disciminant d. The forms [1,0,—%] and [1,—1,——‘121] are the principal

binary quadratlc forms of disciminant d. Consider f = [a, b, c]. Then 4af = 4a(az? + bzy + cy?) =
4a%x? + 4abzy + dacy? = (2az + by)? + (4ac — b?)y? = (2ax + by)? — disc(f)y>.

(a) If disc(f) < 0, then 4ac = b? — disc(f) > 0, i.e., ac > 0. Also, f # 0 except (x,y) = (0,0). So
f is positive (negative) definite if @ > 0 (a < 0).

(b) If disc(f) > 0, then f(1,0) = a and f(b, —2a) = —a - disc(f), which have opposite sign unless
a = 0; similarly, f(0,1) = ¢ and f(—2¢,b) = —c - disc(f), which have opposite sign unless ¢ = 0.
When a = 0 = ¢, we have f(1,1) =b# 0 and f(1,—1) = —b # 0, which have opposite sign. Thus,
f is indefinite.

(¢) Assume disc(f) =0. If a # 0, since f(b,—2a) =0, f = % is semidefinite. If ¢ = 0, then
b= 0 and then f(x,y) = cy?, since f(1,0) =0, f is semidefinite. O

Assumption 4.16. Let D be a square-free integer.
Definition 4.17. Set the field

K=Q(D)={a+bVD|a,beQ}.
Definition 4.18. The ring of integer of K is
ox ={a € K |ais integral over Z} = {a € K | a is a root of f, f € Z[z] is monic}.
Fact 4.19. The map 7 : K — K given by a + bv/D — a — by/D is an isomorphism of fields.

Remark. Observe K as a 2-dimensional Q-vector space with a basis {1, \/T)} For example, let

8 =a+b/D € K with a,b € Q. Define 78 : K — K by z +— fz. Then 73 € Homg (K, K).

Note 75(1) = a + bv/D and 753(v'D) = (a + bv/D)VD = bD + av/D. So the matrix of 75 is
bD . =

ms = [Z a} Since 7(8) = B, det(mg) = o> — b*D = BB = B - 7(8) = Nxg(B). Also,

Tr(mg) = 2a = B+ B =: Trc)p(B). The characteristic polynomial of the action of 3 is

—a —bD

-b x—a

Cmfi( x) =det(w - I — mﬁ) = det [ ] = (x— a)Q — 2D
=22 —2ax +a® —b2D =22 — Tl“;c/@(ﬁ)x + NIC/Q(B)-

Since Cry(2) = (2 —a)? = b°D, Cpy(a £ bv/D) = 0.
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14+VD iy —
Theorem 4.20. Set o = 2 Z.fD =1 (mod 4).
vD if D# 1 (mod 4)

Then

ok =Zla] ={a+ba|abeZ}=(1,aZ.

Proof. “2”. Method 1: Let y = a + ba € Z[a]. Left to consider a = 1%5. Then 7,(1) =
o+ b2 = a+ b+ 3D and 7,(VD) = (a+b52) VD = B2 4 (a+ ) VD. Som, =

b b
[a;;2 2 b}. Note
3 ety
b\* D
C’my(:c):det(:c-lg—my):<x—a—2) -

1-D
=" = (a+b)z+a +ab+ — b =2 = Treoy) + Njg(y)-

Also, Cp, (a +2+ @) =Cpn, (a + b%) =0, 50 Cp,, (a + ba) = 0. Hence Z[a] C ok.
Method 2. Let y = a + ba € Z[a]. Use a theorem, to show y € oy, it suffices to show
Tric/o(y), Nijo(y) € Z. Note

1 if D=1 (mod 4) =L if D=1 (mod 4)

Tric/o(e) = { 0 ifD#£1 (mod4) €2 ad Nicsgla)= { D #D#1(mod4) €Z

So

TH(K/Q)(y) = Tr(K/Q) (@ + ba) = Tre/gla) + Tricjglba) = 20+ b{ ) D%l (medd) <P

and

Ni/o(y) = (a+ba)(a+ba) = a® + ab(a + @) + b*aa = a® + ab Tric g (a) + b Ny (e € Z.
Thus, Z[a] C ok.

“C”. Let 2 = a+ bVD € ox with a,b € Q. Then ¢, (t) = t> — 2at + (a®> — b*)D. Also,

’ ’ 2

2a = Tr(Kg)(z) € Z and a®>—b?D = Nk, (z) € Z. Soa = % for some a’ € Z. Then (%) -b’D € Z.
So a’? — (2b)2D € Z. Hence (2b)2D € Z. Since D € Z is square-free, the denominator of b is 1 or 2.
(a) If the denominator of b is 1, then the denominator of @ is 1 since a®> — b?>D € Z. So a,b € Z.

(a—b)+ 202 if D =1 (mod 4)

H ite x = .
ence we can write x { 0+ b/D i D #1 (mod 4)

(b) Similarly, if the denominator of b is 2, then the denominator of a is 2. So a — b € Z. Since
2b € Z is odd and (a’)? = (2b)2D (mod 4), D is a perfect square modulo 4. So D = 1 (mod 4).

Thus, z € Z[a], a = 1%5 ie., z=(a—b)+ (2b) 1+72@, O

Example 4.21. 0y~ = Z[i] and Ogy5 =1L {14_2\/5]
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Definition 4.22. Let K = Q(v/D). Define

. | D ifD=1 (mod4)
dise(K) := { AD i D #1 (mod 4).

Remark. We will see there is a bijection between certain equivalence classes of ideals in ox, K
discriminant d (positive definite) and equivalence classes of binary quadratic forms of discriminant

d.

Example 4.23. The minimal polynomial of Q(v/—1) is f = 2% + 1 = [1,0, 1]. Then disc(f) = —4.
Note disc(Q(v/—1)) = —4.

Definition 4.24. A positive definite binary quadratic form [a, b, ¢] is reduced if |b] < a < ¢ and if
|b| = a or a = ¢, then b > 0.

Remark. If [b| < a < ¢, then D = disc[a, b, ¢] = b? — 4ac < 0.
Example 4.25. 22 + 2 is reduced, but 222 + 32 is not reduced.

Remark. Let [a,b,c] be reduced. Set 7 = %. Then 7 is a root of ax? + bx + ¢, and has
positive imaginary part. So 7 € $ := {z € C | Im(z) > 0}.

Fact 4.26. We have a right action of SL2(Z) on binary quadratic forms. This corresponds to a left
action of SLy(Z) on $ by linear fractional transformation

a b| _az+b
c d Z_cz—i—d'

Definition 4.27. The fundamental domain for the group action of SLa(Z) on $) is

>;|z|>1or |z =1 and Re(z)<0}.

S:{zeﬁ‘Re(z)e [—;,;

This means everything in $) is equivalent under the group action of SLa(Z) to exactly one element
in the upper half plane § and no two elements in § are equivalent.

Theorem 4.28. [a,b,c] is reduced if and only if T € §.

Proof. “=". If [a,b,c] is reduced, then since |b] < a, Re(r) = —2 € [—4,1). Since 0 < a < ¢,
7| = %4-%:\/%:\/521. If |7| =1, then b > 0, so Re(7) < 0.
“«<". Reverse the argument. O

Theorem 4.29. There is exactly one reduced form in each equivalence class of positive definite
binary quadratic form (a > 0,D <0).

Proof. e Step 1: Claim. Each equivalence class contains a reduced form. Let ¢ be an equivalence
class of positive definite binary quadratic forms of discriminant D. Let [a, b, ¢] € ¢ with minimal

[0 =1 8170 -1 -2
a. Note " || Al ol = Ll o9 y) = fly(z,y) = fpr+ay,re+sy) =
f(—=y,z), where p = 0,g = —1,r = 1,s = 0. If ¢ > a, then [a,b,c] ~ [¢,—b,a] € (, a

Nl Q
SIS
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contradiction since a is the minimal. So a < ¢. Apply {é ﬂ € SLy(Z) with k = Lazjsz then

we have g(z,y) = ax? + (2ak + b)xy + (ak?® + bk + c)y?. Since k € (a;ab -1, “2—;1’] , we have
2ak +b € (—a,a). Note (two ways to see it) a < ak?® +ak +c. So |2ak +b| < a < ak + bk + c.
Hence [a,2ak + b, ak? + bk +c] € ( is a reduced form. When a = ak? + bk + ¢, but 2ak +b < 0,

10 ] to get a reduced form [ak + bk + ¢, —2ak — b, a] € (.

then we can apply v = [0
Step 2: Assume [a,b,c] € ¢ is a reduced form. Claim. There is only one reduced form in each
equivalence class. Suppose there exists another reduced form [a’,b’, /] € (. Then there exists
v = {f Z] € SLy(Z) such that [a, b, ] B? ﬂ = [a', V', ] with @’ = ap?® + bpr + cr?. Since
ps — gr =1, ged(p,r) = 1. Note

b b
a’ = ap® + bpr + cr’ :ap2(1—|— *C> + cor? :ap2+cr2(1—|— 7]3).
ap cr
Ifp=0,thenr#0and o’ =cr? > c > a.
Assume now p # 0.

r

(a) Assume |7

< L Thenl—f—g%}(). So a' > cr? > a.

(b) Assume > 1. Then 0 < || <1. So 1422 > 0. Since p #0, @’ > ap? > a.

r
P
Thus, @’ > a. Since
2 2 2 2 2 2
ax® +bxy + cy® > a(z® +y°) + bxy = a(x® + y°) — alzy| > alzyl,

the minimal nonzero positive integer [a,b,c] can represent is equal to or greater than a.
Actually, when (z,y) = (£1,0), [a, b, ¢] represent a. Similarly, the minimal nonzero (positive)
integer that [a/,V', /] can represent is a’. Since [a, b, c] ~ [a/, V', ¢'], we have they represent the
1 .
01 for some k. So b’ = b+ 2ak. Since a = da’
and [a/, V', ] is reduced, b,b" € (—a,a]. Then k =0and b="¥". Soc=¢. O

same set of integers. So a = a’. Then v =

Remark. How to find an equivalence reduced form.

(a) If ¢ < a, replace [a,b, ] by [c, —b, a] under {0 _1}

1 0

(b) If b > a, replace [a,b,c] by [a,b', '], where b’ = b+ 2a|%2| € (—a,a], and ¢’ is found from
(b')? — 4ac’ = D = disc ([a, b, c]), i.e., ¢ = V=D _ (k2 1 pk 4 c.

4a

(¢) Repeat until you have a reduced form.

Example 4.30. Let f = [458,214, 25].

(a) f~ [25,—214,458].

() |

b = |29 =4 and f ~ [25,-14,2].

2a
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2a’

(¢) f~[2.14,25], [ % | =[-8 = -3 and [ ~ [2,2,1].

(@) f~[L,-2,2 |52 ] = (3] =1, f ~ [1,0,1] =22 + 42

Theorem 4.31. Let D < 0 be a discriminant. There are only finitely many equivalence classes of
positive definite binary quadratic forms of discriminant D.

Proof. Tt is enough to show there are finitely many reduced forms of discriminant D. If [a, b, ¢] is
reduced, then |[b| < a < ¢. Since b? < a? < ac, D = b? —4dac < —3ac. So —D > 3ac. There are only
finitely many a, ¢ that satisfy this. O
Definition 4.32. A binary quadratic form [a, b, c] is primitive if ged(a,b,c) = 1.

Definition 4.33. The class number hp of discriminant D < 0 is the number of equivalence classes
of primitive positive definite binary quadratic forms of discriminant D.

Definition 4.34. D is a fundamental discriminant if and only if one of the following statements
holds:

(a) D=1 (mod 4) and is square-free.
(b) D =4m, where m = 2,3 (mod 4) and m is square free.

Theorem 4.35 (Heeger, Stark-Baker, Goldfeld-Gross-Zagier). Let D be a negative, fundamental
discriminant. Then

(a) hp =1 only for D = -3, —4,-7,—-8,—11,—19,—43, —67, —164.

(b) hp =2 only for —15, —20, —24, —35, —40, —51, —52, —88, —91, —115, —123, —148, —187, —232,
935, —267, —403, —427.

(¢c) hp =3 only for —23, —31, —59, —83, ~107, —139, —211, —283, —307, —331, —379, —499, —547,
—643, —883, —907.

Definition 4.36. The number of equivalence classes of binary quadratic forms of discriminant D
with positive leading coefficient is called the class number and denoted H (D).

Theorem 4.37.
2D, D>0

<
H(D) \{ D, D<0

Proof. Let f = [a,b, c] be reduced of discriminant D. If a and ¢ have the same sign, D = b —4ac =
b — 4lac| < a® — 4lac| < a® — 4a® = —3a® < 0.

(a) If D > 0, since [a,b,c] is reduced, we have a and ¢ have opposite signs, then D = b* —
dac = b% + 4|ac| > 4|ac| > 4a®. So 0 < |a| < 1V/D. Then (although the ratio cannot be —1)

—% D<b< %\/5 Note ¢ = b24;D. Hence H(D) < 2 (%\/5) (\/E-l- 1)(1) =D+ VD < 2D.

(b) If D < 0, then a and ¢ have same sign and then |D| = 4ac — b* > 4a® — b* > 4a® — a* = 3a.
1 1 1 1 1
So 0 < [a] < |2]?. Then —|2|* < b < |%|*. Hence H(D) < 2|2|? (2[%]2 +1) (1) = 4D +
1
2|27 < §ID|. O
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Example 4.38. Determine H(—4) and the prime numbers represented by positive definite bi-
nary quadratic forms of discriminant —4. Let f = [a,b,c] be a reduced binary quadratic form
of discriminant —4. Then % —4ac = —4 and —a < b < a < cor 0 < b < a = ¢ Then
4 = 4ac — b*> > 4ac — ac = 3ac. So 1 < ac < %, ie,ac=1ie,a=c=1 Sob=0. The
only reduced form of discriminant —4 is 22 + y?. Hence H(—4) = 1. The primes represented are
p=2, p=1 (mod 4).

Definition 4.39. We say n is properly represented by f = [a,b,c] if there exist zg,yo with
ged(zo, yo) = 1 such that f(zo,y0) = n.

Theorem 4.40. Let n # 0, then there exists a binary quadratic form of discriminant D that
represents m properly if and only if the congruence x> = D (mod 4|n|) has a solution.

Proof. “<”. Suppose b is a solution to the congruence. Write b*> — D = 4nc. The form f(z,y) =
nx? + bry + cy? has integer coefficient, has discriminant D, f(1,0) = n and ged(1,0) = 0.
“=". Suppose there exist xg, yo with gcd(xo,yo) = 1 and some f = [a, b, ¢] such that f(zo,yo) =

n. Let D = b?> — 4ac. Since ged(wg,yo) = 1, there exists my,ma such that myms = 4/n|,
ged(my,ma) = 1, ged(my,yo) = 1 and ged(ma,zg) = 1, since we can let m; be the prod-
uct of prime factors p® of 4n for which p | xg if such p exists, otherwise, let m; = 1, and

then let my = %. Recall 4af(z,y) = (2az + by)? — Dy?. So 4an = (2azo + byo)? — Dy3.
Then (2axg + byg)* = Dy3 (mod my). Since ged(my,yo) = 1, there exists o € Z such that
Yoo = 1 (mod mq). Then (2azo+byo)?y2 = D (mod m1). So the congruence 22 = D (mod m) has
a solution. Play the same game with 4cf (g, %0) to get a solution to 2 = D (mod my). Now use the
Chinese remainder theorem to get a solution to 22 = D (mod myms), i.e., 22 = D (mod 4|n|). O

Example 4.41. Determine the set of primes represented by f(x,y) = 22 +xy+3y%. Note disc(f) =
—11. Claim. f is the only reduced form of discriminant —11. Suppose g(z,y) = ax® +bxy+cy? is a
reduced binary quadratic form of discriminant —11. Then 3ac < dac—b? < dac, i.e., 3ac < 11 < 4ac,
ie, & <ac < 4. Soac=3 Sincea <c¢, a=1 c=3 Then b* = dac — 11 = 1, ie,
b=+1. If b = —1, then |b| = a, so b > 0, a contradiction. So b = 1. Thus, ¢ = f and
H(—11) = 1. We just need to determine for which p, we can solve 22 = —11 (mod 4p). If p = 2,
22 = —11 = 5 (mod 8) has no solution. So you cannot represent 2. Assume p > 2. Consider
2% =

= —11 (mod 4p). Since 72 = —11 =1 (mod 4), it has a solution. Consider 2 = —11 (mod p).

Want 1 = (S1) = (-3¢ D(=1)3e-D0D (2) = (§). Sop = 1,3,4,5,9 (mod 11). By

Chinese remainder theorem, when p = 1,3,4,5,9 (mod 11), 22 = —11 (mod 4p) has a solution.
Thus, these p’s are the primes represented by f.

4.1 Fractional Ideal

Definition 4.42. Let K = Q(v/D). A fractional ideal of o is a nonzero subgroup a C K such
that

(a) Ba Cafor 5 € ok;
(b) there exists v € ok \ {0} such that ya < ok is ideal.

Remark. Let @ € o ~ {0}. Then a™! = % € K. But in general it will no longer be
contained in ox. Nonetheless, it is very convenient to have the ability to divide two elements of
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ox. Fractional ideals are a generalization of ordinary ideals which do admit inverses. A fractional
ideal is to an ordinary ideal as Q is to Z. We will sometimes call ordinary ideals of ox integral
ideals.

Remark. Since va < 0k, we have any fractional ideal has the form a = ab for an integral ideal
b < 0k and an element o =y~ € K\ {0}.

Remark. Since 7 € ox and Nk q(7) € Z, Nx/g(v)a = vya € ox. Thus, for (b), you can always
find n, not just v € ox. We have any fractional ideal has the form a = ab with b < ox and an
element, i.e., fractional ideal looks like %b with b < ok.

Example 4.43. Let K = Q, then ox = 09 = Z and nZ < Z. Let m € Z, then a = %nZ is a
fractional ideal of Z. A fraction ideal has the form rA for r € Q* and A < Z. Since any ideal is
principal, we have A = (n) for some n € Z ~ {0}, and hence 74 = r(n) = (rn)Z. Since rn is an
arbitrary element of Q*, we have {fractional ideals in Q} = {rZ: r € Q*}.

Example 4.44. Let K = Q(i), then ox = Z][i], a PID. Fractional ideal looks like a(3) = (), where

vy=af € Q#)*, a € Qi) and 5 € Z[i] \ {0}. So {fractional ideals} = {«Z]i], where oo € Q(3)* }.
For example, we can draw a picture for a = (3 + 3i) Z[i] = (1 4 i)Z[d].
Example 4.45. Q(v/D) is not a fractional ideal as you cannot clear the denominator.

Definition 4.46. Let ay,...,a, € Q(\/ﬁ), not all 0, the fractional ideal generated by a1,...,a,
is

n
<a1,...,o¢n> = Zﬂj&j‘ﬂjé@){
j=1

Proof. Note there exist a;,b; € Q such that a; = a; + b;v/D for any i. Then just choose m to clear
the denominators of all the a;,b;". So m(aq,...,an) = (may,...,ma,) < 0. O

Definition 4.47. We say a fractional ideal a is a principal ideal if
a = (@) = aox for some o € Q(VD).

Remark. Every ideal I < ox C Q(v/D) gives a lattice in K. But a fractional ideal a is just a = %I.

So it is a lattice in K as well. Hence there exist a, 3 € Q(v/D) such that a = aZ + Z. You can
show this gives a = («, 8). In other words, any fractional ideal can be generated by two elements.

Definition 4.48. Let a be a fractional ideal. The product fractional ideal is
finite
ab = {Z a;fBi, 0 € a,5; € b} .
i=1
Remark. (a) This is a fractional ideal.

(b) If a = (ai,az), b= (B1,B2), then ab = (a1 51, a1 82, 21, a2 B2).

Theorem 4.49. The set of all fractional ideal of Q(v/D) is an abelian group under multiplication
if fractional ideals with the identity element Ox.
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Proof. Well-defined, abelian, associativity, all are essentially either for free or straightforward. Note
ox = (1) is easily seen to act as identity under multiplication. It remains to show we have inverses,
which can be seen from algebraic number theory. O

Definition 4.50. Let Z be the group of fractional ideals in Q(v/D). Let p C T be the subgroup of
principal fractional ideals. The class of group of Q(v/D) is the quotient Cl (Q(\/ﬁ)) =1/p.

Fact 4.51. Cl ((@(\/ﬁ)) is a finite abelian group.

Remark. The size of Cl ((@(\/ﬁ)) measures how far from a unique factorization domain ox is. If

Cl (Q(@)) is trival, we have unique factorization in ox.

Theorem 4.52. Let I < ox. There exist a,b,c with ¢ | a and 0 < b < a such that I = aZ+(b+cw)Z,
where w = Lﬁ. Note {1,w} is a basis of ox. Then {8
#(ox/I) = ac = N(I) is finite.

ﬂ is a smith norm form? One has

Remark. Given a fractional ideal a, we associate a binary quadratic form as follows. Take a Z-basis
{w1,wa} of a with w; € Qs¢. Then

(a) 2221182 5 0,

(b) W9 — Wy = \/E,
(C) w1 |UJ26T)2,

Ni /o(zwi —yw2) _ (zw1 —yws) (w1 —yw2)

(d) The binary quadratic form fq(x,y) = N(9) NE)

Fact 4.53. (a) f, is an integral binary quadratic form, i.e., usual binary quadratic form with
integral coefficients.

(b) fq is a primitive binary quadratic form.
Definition 4.54. Let D be a non-square congruent to 0,1 (mod 4). Let
F(D) = {set of equivalent class of primitive binary quadratic
of discriminant D module the action of PSLs(Z)},
where PSLo(Z) = SLo(Z)/{£12}. Set
F1(D) = {set of equivalent class of primitive b.q.f. [a,b,c| with a > 0
of discriminant D module the action of PSLy(Z)} .

Theorem 4.55. Let D < 0 be congruent to 0,1 (mod 4). Then the map ®([a,b,c]) = aZ+ %Z

and ¢(a) = W, where a = w17 + woZ with “’251;\/5‘“1“72 > 0 induces a bijection between

FH(D) and Cl (Q(\/ﬁ)).



Chapter 5

Continued Fraction

Given a real number 0, we can find a rational number as close to 6 as we like.

Theorem 5.1 (Dirichlet 1842). Let 6 € R and Q € Rx1, then there exist p,q with 1 < ¢ < Q such

that |¢0 — p| < %, i.e., ‘9— %‘ < é.

Proof. Let N = |Q]. Define {z} = z—|x] € [0,1). Consider the following N+1 unordered numbers
in[0,1]: 0,1, {0},{26},...,{(IN—1)6}. Partition the unit intervals into N disjoint intervals of length
+. Note 0 =00 — 0 and 1 = 00 — (—1) and {jé} = jO — |j6] € [0,1) for j =1,...,N — 1. Then
the difference between any two of these N + 1 numbers is of the form ¢'6 — p’ for some p’, ¢’ with
1 < ¢ < N. By PHP, at least 2 of the N + 1 numbers must lie in the same intervals. Thus, there

existp,qwith1<q<N<Qand|q9—p|<%<é. O

Corollary 5.2. Whenever 6 is irrational, there exists infinitely many distinct pairs (p, q) with
¢ € N such that ‘9— %‘ < q%.
Proof. Let @ > 2. Then there exist p,q with 1 < ¢ < @ such that 0 <

—1 ’
Q > 10— 23‘ . Then there exist p’, ¢’ with 1 < ¢’ < Q" such that 0 < ’9 - %
’075 . So & # B Moreover, p—: 1 1

_ P 1 1
0 q’éqQ<q2. Let
g_2P

q

_1 1
g q/Q/ < q/ <
7 p 60— 7 < 7o < 7= Continue and we will get infinitely many

distinct such pairs. O

Remark (Fact: Roth,1958). If ¢ is an algebraic number, then for € > 0, there exist C. > 0 such

that ‘9 — %‘ < q(;; has only finitely many solutions.

Remark. ¢ € Q has finitely continued fractional. p € R \ Q has infinitely continued fractional.
Theorem 5.3 (Algorithm). Let 8 € R. Define a; as follows.
(a) Let ag = |0]. If ap = 0, stop. If ag # 0, define 01 such that 0 = ag + 9%, ie., 0y = —— = ﬁ.

(9—(10

(b) Let ay = [61]. If a1 = 61, stop. If ay # 0, define 02 such that 01 = a1 + é, ie., 0y = —— =

91—(11
1 _ 1 _ 1
T Then 0 = ag + a. =ao + prEmsag

47



48 CHAPTER 5. CONTINUED FRACTION

(c) Continue this, if it stops at n'* step, then 0 is rational and write

1
0 =ag+ 1 :[a()aala"'aan}'
a1+a+ T
2t o T

L 1
a"*1+an

If 0 €e R\ Q, it never stops, then 0 is irrational and write 6 = [ag, a1, az,as, -]

Corollary 5.4. a, = |6,] and 0,, = [an, @ny1, -]

Example 5.5. Let 6 = % Then ag = L%J =1. Set 6, = ﬁ = % Then a; = L%J = 1. Set
0y = Glial = % Then ays = 3. Set 05 = ﬁ = %. Then a3 = 1. Set 04 = ﬁ = %. Then
ag = 1. Set 05 = 94ia4 =3=uas5. So
1
=1+ —— =1[1,1,3,1,1,3].
Tt g
1+1+%
3
Example 5.6. Let § = /3. Then ag = 1. Set 6, = ﬁ = \/5,1_1 = %(\/g—i— 1). Then a; = 1. Set
02 = g = V3+ 1 Then ap = 2. Set 05 = g~ = =~ =01 So
1
=1+ . =[1,1,2,1,2,1,2,---] = [1,1,2].
L re——
1+#

Example 5.7. e =[2,1,2,1,1,4,1,1,6,1,1,8,---].

Definition 5.8. The a;’s are known as the partial quotients of #. The 6;’s are the complete
quotients of 6. The rational numbers Z—Z = [ag, - - ., an] with ged(pp,g,) =1 and ¢, > 1 are called
the convergents to 6. The integers p,, and ¢, satisfy the following recursive relations.

Theorem 5.9. Let 0 € R. Let a,, be the partial quotients of 8, 0,, the complete quotients of 6.

Then the convergents o satisfy the recurrence relations po = ag, qo = 1, p1 = aga1 + 1, ¢ = aq,

Pn = AQnPn—1 +pn—2 and gn = AnQgn—1 + dn—2- Furthermore, Pndn — Pn—19n = (71)n+1 fOT neN
and lim,,_, oo g, = 00 and lim,, _, o % =4.

Proof. Since g—g = [ag] = ag, we have pg = ag, go = 1. Since % = [ap,a1] = ap + a% = %11“, we
have p; = aga; +1, ¢ = ay. Since
D2 1 ag az(apar + 1) +ap  asp1 +po
7:[0/07@17@2]:@04— 1 :a,o—|— — ( ) _ ,
q2 ar+ - ajaz +1 ajaz +1 azq1 + agp
we have ps = aspi + po, g2 = asq1 + qo. So the recurrence relation holds for n = 2. Since

ged(a,b) = ged(a + bn,b) for n € Z, we have 1 = ged(ao, 1), 1 = ged(1,a1) = ged(apar + 1,a1)
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and 1 = ged(1, a2) = ged(ag, araz + 1) = ged(aparasz + as + ag,ajas +1). So ged(p;,q;) = 1 for
1 =20,1,2. Assume the statement is true for any n < m. Then

Pm+1 1 (a 1 ) Pm—1+ Pm—2
—= =1a0,01, -, Qmy Apg1] = |60, A1y - vy Qp—1, Gy +
Gm+1 Am+1 (a amﬂ) Gm—1+ Gm—2
_ (a7n+1am + 1)pm—1 + Am+1Pm—2 _ a7n+1(ampm 1 +pm 2) + Pm—1 _ am+1pm + Pm—1
(aerlam + 1)Qm71 + Am+149m—2 Am+1 (aQO 1 + dm— 2) + dm-—1 Am+149m + dm—1

Claim. ppgn—1—Pn-1¢n = (=1)"**. When n = 1, p1go — poq1 = (apa1 + 1) —aga; = 1 = (1) 1.
Assume the result holds for ¥k = n — 1. Then

Pndn—-1 — Pn—-1qn = (anpnfl +pn72)Qn71 - pnfl(ananl + qn72)
= *(pn—lqn—Q 7pn—2qn—l) = 7(71)n = (71)n+1'

Similarly, pngn+1 — Pny1gn = (=1)"T1. Define {ao} = ao, {ao,a1} = apa; + 1 and {ao,...,a,} =
{ag,...,an—1}an + {ag,...,an—2}. Then by induction

{ag,...,an a1, .. an_1} —{ar,...,an}{ao, ..., an_1} = (=1)"TL.

So ged({ag, - .-, amy1},{a1, -, amy1}) = 1. Also, by induction, am410m + Pm—1 = {a0, -+, Gmy1}
and Am+19m + gm-1 = {ah .- -;am+1}- So ng(am+1pm + Pm—1;0m+1qm + mel) = 1. Thus,
ged(pi,q;) = 1 for i > 0. Since a; > 1 for ¢ € N, we have ¢, = angn—1+ qn—2 = gn—1 + gn—2 >
Gn—1- So {g,} form a strictly increasing sequence of integers and thus lim,,_,. ¢, = oo. Since

— 1 n Pn— _

PnGn-1— Pn-1Gn = (—1)"T1, we have f;—" - qnﬁ == lqn Also, 0 = [ag,a1,...,an-1,0,], where

1 _ 1 3 DPn—1 Pn Pn 1

1< = L, ‘ Pn1 Pn —Po . ‘
0 < 9. S 9 . ar So 0 lies between p— and o Hence ‘9 oS o 0. Thus,
lim,, o0 B o= 0.
Remark. Let 0 = § with ged(s,t) = 1. For any convergent 22, we have either 2> = 0 or
1 8qn—tpn s Pn i
o S|t T Tl S o Eventually, g,4+1 > t, so it must be that for some large n,
’;—" = 7. Thus, if 0 € Q, 0 has a finite continued fraction expression.

Corollary 5.10.
0npn—1 + Pn—2

enanl + qn—2 '

Definition 5.11. # € R is a quadratic irrational when there exist a, b, ¢ such that af? + b0 +c = 0
and b? — 4ac > 0 is not a perfect square.

Theorem 5.12. The continued fraction [ag, a1, -] represents a quadratic irrational if and only if
the sequence {a;} is ultimately periodic.

Proof. “<”. Suppose 0 = [ag,...,0k—1,0k, -, 0htm—1)- Write ¢ = [ag,---;ktm—1). Then

¢ = lak,...,0srm_1,0]. Let 27': be the convergents to ¢. Then zf\j = [ag,...,agsrr]. Then

PO = ak, o = 1, P = araps1 + 1, ¢ = ak, Py = aprmPhy_1 + Do for 2 < M <m —1 and

/ ’ ’
o ’ / Pyvo_ _ Ok+MPy_1+PM 2
qn —ak;+MqM,1+qM72 for 2 < Mém—l So ay [ak,...7ak+1\/[] = m Then
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PPrm—1 4P :
¢ = [ak, ., Aptm—1,9] = W- Hence ¢, 19 + (¢jy—2 — Pl—1)¢ — Pl = 0. Thus, ¢ is

a quadratic irrational. Let 2= be the convergents to ¢. Then 6 = [ao,...,ak—1,¢] = %.
Assume ¢ = @, a' b, € Z with D > 0 is not a perfect square. Plug it in, we also have 6
can be written as 6 = @.

“=”_ Let 6 be a quadratic irrational. Assume af? +b0 +c = 0,a,b,c € Z, with D = b — 4ac >
0 is not a perfect square. Let f(z,y) = ax? + bxy + cy®. Let % be convergents to 6. Set

T = [q" 5”?} Then det(r,) = Prgn-1 — Pn_1Gn = (—1)"*1. So 7, takes f to an “equivalent
n n—

form” f,(x,y) = an2® + byry + cpy?, which has the same discriminant as f. Then f(pn,qn) =

ap% + bpngn + Ci]ﬁ = Qn, Qp—-1 = f(pn—h Qn—l) = ap%—l +bpp—1Gn-1 + CQZL—l =cp. So f (%7 1) =

a§—§ + b2 4 ¢ = 2. Since f(6,1) = 0, we have

oo (2) () oo (29 ) )
dn dn dn dn dn

a(%—k@)—l—b‘

So |an| = g3

Pn __ 3 Dn < 1 < 1
= 0’. Since ™ 9’ S s S o we have
Pn

n

lan| <

a(‘zn+9>+b‘:|a| §"+0‘+b|<|a| (2|9|+

m

D 6] < Jal (210] + 1) + [B].

Hence there are finitely many choices for a,,. Since a,_1 = ¢,, we have there are finitely many
choices for ¢,. Since b2 —4a,c, = b*> — 4ac, we have there are finitely many choices for b,,. Let 0,,’s

. 3 _ Onp1Pntpa_a _ ¢ 0] n Pn—1| [Ont1
be the complete quotients to #. Then 0 = [T r— Let 0 = ok Then LS,] [qn an [ 1 }

Since f(aa 1) =0 and fn(xay) = f(pnx + Pn—1Y, @n® + Qn—ly)a we have
fn(9n+17 1) = f(pnen—l +pn—1a Qnan-l-l + Qn—l) = f(¢a ¢/) = a¢2 + b¢¢/ + C¢/2 = ¢/2f(9v 1) = 0.

Since there are finitely many choices ay,, by, ¢,,, there are finitely many f,. Since (6,,1)’s are roots
of f,, there are finitely many possible 6,,’s. So there exists m, [ such that 6;4,, = ;. Then

0 =lag,...,a1—1,0] = [ag, ..., a1—1,0a1, ..., Q14m—1,O14m]
=ag, ..., a1—1,a1, ..., QG4m—1,01] = [a0, ..., Q1—1,80, -~ Glgm—1)-
Thus, 6 has periodic continued fraction. O

Definition 5.13. We say 6 is purely periodic if
0= [ao,...,an].

Remark. Goal: Given d € N not a perfect square. Compute the continued fractional of v/d. We
first compute the continued fractional of v/d + {\/&J, which is purely periodic.

Theorem 5.14. The continued fraction expansion of the real quadratic irrational number 6 is
purely periodic if and only if 6 > 1 and —1 < 6 < 0.
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Proof. “<”. Assume § > 1 and —1 < 0 < 0. As usual, define ;. = # Then 6,1 = ﬁ

Note by assumption, —1 < 6y < 0. Assume —1 < 6,, < 0. Since a, > 1 for n € Zxo, we have

0., < —1. So -1 < 0,41 <0. Thus, -1 < 6; < 0 for i € ZZ°. Then —16; _az+7 < 0.

S0 0 < —a; — = < 1,ie, a; < —=— < a; + 1. Hence a; = Lf 1 J Since 6 is quadratic
9i+1 91,+1 9i+1

irrational, 6 is eventually periodic and so for some 0 < j < k, 6; 0k. Then §; = 0. So

a;— 1:{7%J:{7%J_ak 1. Then 6;_1 = a;_ 1+9 = ap_ 1+9 = Or—1. Thus, if 0; = 0,

then 6;_1 = 0;_1. Repeating this j times gives 6y = 0)_;. Then

9 = 00 = [ao, e ,ak,j,l,Qk,j] = [ao, ey ak,j,l,(%] = [ao, A1y eeny ak,j+1].
“=7”. Assume § is purely periodic, say 6 = [ag,..., G, with a; € N for j = 0,...,n. Then
0 > ap > 1. Since 6 = [ag,...,a,_1,0] = ZZ":%, 0 is a root of f(z) = qn_17> + (qn_2 —

Pn_1)? — pp_o = 0. Let 6 be another root of f. Then it remains to show —1 < § < 0. Note
f(0) = —ap—2 <0 and

f(_]-) =4qn—1 — Gn-2 +pn71 — Pn—2 = Gn—-1G4n—2 + dn—3 — gn—2 + Ap—1Pn—2 +pn73 — Pn—2
= (Qn—Z +pn—2)(an—l - 1) + Gn-3 +Pn-3 2 qn_3 + pn—3 > 0.

By intemediate zero theorem, —1 < 6 < 0. O

Lemma 5.15. Let p” be the nt" convergent of the continued fraction representation 8 € R ~ Q.
If a,b € Z with 1 < b < Gn+1, then |g,0 — p,| < |b8 — al.

o+ =a .
Pn Pr+1 . Since prni1—Prii1dn = (_1)n+17

Gno + Qn—&-lﬁ =b
we have a unique solution to equations above

a = (=1)""(agns1 — bpns1) € Z
B = (=1)""(bp, —aq,) €Z

Proof. Consider the system of equations {

If « = 0, then agp+1 = bppy1. Since ged(ppi1,qn+1) = 1, we have ¢,4+1 | b, contradicted by
b < gu+1- Soa # 0. If 8 =0, then bp, = ag, and a = p,a and b = g,a. So |bd —a| =
|a||gnf — pn| = |gnb — prn|. Hence we have the result if 5 = 0. Assume now 8 # 0. Claim. 5 and «
have opposite sign. If 8 < 0, then ¢, = b — @416 > 0. Since b > 1 and ¢; > 0 fori > 0, o > 0. If
B >0, since b < ¢pt1, b < Bgn+1. Then gra =b— Bgr+1 < 0. So a < 0. Recall 4 lies between p—:‘

and p"“ . Then (9 — %) (0 5:“) < 0. Since g; > 0 for i € Z>0, (¢n0 — Pn)(gn+10 — Pnt1) < 0.

So qn9 Pr, and ¢n410 — pry1 are of opposite sign. Thus, a(g,8 — p) and B(¢n4+160 — pnt1) have
the same sign. Since a # 0,

|b(9 - a| = |(Qna + Qn-i-lﬂ)e - (pna +pn+lﬁ)| = ‘a(Qna _pn) + ﬁ(qn+19 _pn+1)|
= |O‘(qn9 _pn)| + ‘5(qn+19 — Pny1)| = |Oz||qn9 — Pul = |gnt _pn" O

Theorem 5.16. If 1 < b < ¢, then ’0—

approximations.

< |9 — %|, i.e., Continued fractions give the best
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Proof. Suppose ’0 |9— | Then |g,0 — pn| = ¢n|0 — ’q’—: > |0— %| = |bf — a|, contra-
dicted by Lemma 5. 15 O

Lemma 5.17. Let § € R\ Q. If § € Q with b € N and ged(a,b) = 1 such that |9 — %‘ < ﬁ, then

% is a convergent 2= for some n.

Proof. Assume ¢ is not a convergent. We know ¢,,’s form an increasing sequence. So there exists

n > 0 such that 1 < b = ¢, < gny1. Then |g,0 — pn| < |b0 —a| = b|97 7| <bsz = 3. So
‘9 m . Since ¢ is not a convergent, bp, — ag, # 0. So 1 < |bp,, — agn|. Then
1 bpn —agn| _|pna| _|Pn ‘ 1
1 SR P N
an ’ an dn b dn - Zan i 2b2
So b < ¢y, a contradiction. O

Theorem 5.18. If (p,q) is a positive solution to x> — dy? = 1, then g is a convergent of the

continued fraction expresion of Vd.

Proof. Since 1 =p? —dg® = (p — ¢v/d)(p+ qVd) and p+ ¢V/d > 0, p > ¢V/d. Then

p p—qVd _ p? —dg? 1 Vd Vd 1
0<=—Vd= = = < = = .
q q qlp+qvVd)  qp+qVd) qlgVd+qVd)  2qVd  2q
Since ged(p, ¢) = 1, by Lemma 5.17, § is a convergent. O
Lemma 5.19. Let d > 0 not be a perfect square. Write Vd = [ag, a1, as,---]. Define sg and t

2
by sg = 0,tp = 1, g1 = apty, — Sk, and tp1 = d ::“ for k € Z>¢. Then si,t; € Z with t;, # 0,
tr | (d—s2) and Oy = % for k € Z>o.

Proof. k = 0 is clear. Assume the result holds for k. Since ay € Z, Sg+1 € Z. Suppose tg11 = 0.
Then d = siﬂ, which is a contradicted by d is not a perfect square. So tx4+1 # 0. Since tr11 =

d—s? _s2
% — dt% + (2axsg — aity) € Z, tyir | (d— sﬁﬂ). Note

Ot — 1 _ tr _ tr _ tk(8k+1 + \/ﬁ) _ Sk+1 + \/g 0
0 — (sk +Vd) —tra,  Vd—spi1 d—si4 ther

Theorem 5.20. Let d € N not be a perfect square. Then /d+ {\/ZZJ >1and —1 < —/d+ [\/&J <
0. So vd+ L\/QJ is purely periodic.

Proof. Since ag = |V + |d]| =2 | V|,
i = |V« (i [Va]) = - [ Va] + 2 V] o)
— - V| 2 |va| 4 o = VA + g = | [VA] a2 VA O

tufl stuff
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Theorem 5.21. Let 6y = L\/ﬁJ +V/d,, then t; = 1 if and only if i = jr for some j > 0.

Proof. Assume

0= \/&4— \‘\/EJ = [a07"'7a'?”71] = [a07a17"'7a'7“717a0] = [G’OaalaaQa"'7aT723a03a1] =y

where r is chosen to be the smallest integer such that we have this type of expression for §. Then

91' = [(IZ‘, Ait1,° } = [ai, ey ONpPp—1,00, - - - ,a,._l] = [ai,(N,l)T, ey Qp—_1,00,- .., a,,«_l}
= [a’if(Nfl)'ra sy Qp—2,0r—1,00, .- -, aT*?] = [aif(Nfl)T7 s 70'7;7(]\772)7’71]7
is purely periodic as well. Since § = 0y = 0, = 03, = -+ with 0; # 0g for i = 1,...,r — 1, we

have 0y = 6; if and only if ¢ = rm for some m > 0. Let so = L\/&J Lto=1,00 = Vd+ {\/&J,

. d—s? . .. ) .
Sit1 = a;t; — s; for i € N and t;41 = “it1 for 4 € N. So similarly, we have 6; = %‘/& for 7 > 0.

ti
Then fOI‘j €N, éﬂt%ﬂ = 9]‘T =0y = \/&—‘r \‘\/EJ SoZ > Sjr — tjr [\/EJ = (tjr — 1)\/& Hence
tj» = 1. Suppose t; = 1 for some other index 7. Then §; = s; + Vd. Since ; is purely periodic,

“1<s—Vd<0,ie,Vd—1<s; <Vd. Sos; = L\/EJ Hence 0; = {\/&J—F\/&:Hma

contradiction. Exercise: show t; # —1 for i > 0. O
Corollary 5.22. Let 6y = v/d,, then t; = 1 if and only if i = jr for some j > 0.

Example 5.23. Find the quadratic irrational given by 6 = L8, 1, 16J =8+ %, where z = [1, 16].
Since z = [1,16,2] = 1+ ﬁ, we have 272 + 16271 — 16 = 0. Solve this for 2! and take the
positive part, 7! = —8 +1/80. Then § = 8 + 27! = 8 + (=8 + v/80) = V/80.

Theorem 5.24. Let d > 0 not be a perfect square. Then x? — dy? = 1 has infinitely many integer
solution.

Proof. By Dirichlet (1842), for @ € R, there exist p,q € Z with 1 < ¢ < @ such that ’qx/& — p‘ <
é. Then

1
‘p—i—q\/(j‘ = ‘p—q\/g—i—qu/ﬁ‘ < ‘p—q\/g‘+2q\/(§< 5+2q\/g<3q\/g<362\/&.
So |p* — ¢%d| = ’p - qﬁ‘ ‘p + qx/a’ < éSQ\/& = 3v/d. We can show there are infinitely many pairs

(p, q) such that |p? — ¢?d| < 3v/d. Since 3v/d is finite, there exist N such that the Pell’s equation
22 — dy? = N has infinitely many solutions. Among these infinitely many solutions, there is a pair

“ . o s z =« (mod N)
of congruence class (a, 8) such that infinitely many (z,y)’s satisfy { y =5 (mod N) ° Let (p,q)
and (p’,q’) satisfy the Pell’s equation and p=p =a(mod N) The
nep,4q e quation an g=¢ = (mod N) ° n

(pp' = dgq')* = d(pd’ — ap')* = (pp')* + d*(aq')* — d(pg')* — d(ap')* = (0" — dg*)(p"* — dg"?) = N*.
Set ¥ = pp’ — dgq’ and y = pq’ — ¢p’. Then
T =pp —dqqd = p* —dg*> (mod N) =N (mod N) =0 (mod N),
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and
U=pd —qp' =pd' —1'd +p'¢ —qp' = (p—1")d' + (¢ — ¢)p" =0 (mod N).

So N |Z and N | g. Setx:%GZandy:% € Z. Since 2% — dy? = N2, we have 22 — dy? = 1.
So we have a solution. Exercise: show (x,y) # (£1,0). Then we get distinct solutions. Given
a nontrivial solution (u,v) to #? —dy? = 1. Then (u? + dv?)? — d(2uwv)? = (u? — dv?) = 1. So
(u? + dv?, 2uv) is another solution. Repeat to get infinitely many solution. O

Theorem 5.25. Let = be the k" convergents of @ = /d. Then p% — dq,% = (=1)** .1, where
tk+1 > 0 for k > 0.

: _ _ Oky1PktPE—1 : _ spp1tVd
Proof. Write vd = [ag,a1,... a5, 0k+1] and 6 = [ TwerTe—y Substitute 0y 1 = e we

spo1+vd

have vd = T PetPen e, Vd = SrpetVibittinpio g Vd(sk41ar + ter1qr—1 — pr) =
5k:;¢—1+‘/3qk+qk71’ Y Skr1qe+VdartHtriiqe—1 + k=

k41

Sk+1Pk + tkt1Pk—1 — dqr € Z. So

Sk+1qk + tk+19k—1 = Pk
Sp+1Pk +thr1Ph—1 = dqy

DP2k+1

q2k+1

pi—dgi <0,V2 |k

p: —dgi > 0,V21k -
p;—daqy : (=1)F . trt1 .

Then ﬁ < 0, ie., R < 0, i.e., > 0 for k > 0. Since tg = 1 > 0, we have
k—1 k—1

tr >0 for k > 0. ]

Then p? —dq? = tho1(Prqr—1—Pr—1qr) = (—1)¥ 11541, Facts: B2k converges to 6 from below.

converges to € from above. Since Z%’; <Vd< fl’z:ﬁ for k > 0, for k£ > 0, {

Example 5.26. We have /15 = [3,1,6]. The convergents are 2, §, 2,
32-15-12 = —6,p3 —dq} = 4>—15-12 = 1, p3—dq3 = 27> —15-7? = —6, p3

t1:t3:6andt2:t4:1.

,-++. Then p3 — dg2 =
dq3 = 312—15-82 =1,

31
8
Theorem 5.27. Let p—: be the convergents of the continued fractions expansions of V/d and let n
be the length of the expansion.

a) If 2 | n, then all possible solutions of x> — dy®> =1 are given by T Pt ,keN.
Y q
= dkn—-1

(b) If 21 n, then all possible solutions of x*> — dy? = 1 are given by { z i ‘Z%"*l JkeN.

= Q2kn—1
Proof. By previous theorem, p? - dq? = (=1)7*'¢;41 with t;1; > 0. To be a solution, we must have
2] j+1. Then we get a solution if ¢;41 = 1. Since n is the length of the expansion, ;41 = 1 if and
only if j + 1 = nk for some k € N, i.e., j =nk —1. If 24 n, since 2| j+ 1, we have 2 | k. If 2 | n,
no conclusion on k. O

Example 5.28. Consider 2> — 74> = 1. Note /7 = [2,1,1,1,4]. Since n = 4, solutions are
T = Pak—-1 il

{ Y = dis ,Vk € N. Note the 2's are 2 3 5 8 & 35 %2 L ... Thenpi—Txq}=

82 —Tx32=1,p2 —Taq2 = 1272 —T+482 =1, ---.
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Definition 5.29. The unique solution (zg,%0) of ¥ — dy? = 1 in which z,y have their smallest
positive value is called the fundamental solution, i.e., if (z’,y’) is another solution, then 0 < z¢ <
and 0 < yo < 9.

Theorem 5.30. The fundamental solution (x,y) exists. If 2 | n, { io Z?FI D If 2 4 n,
0 — Pn-1
To = Pan—1
Yo = DP2n-1 '

Theorem 5.31. Let (z9,y0) be fundamental solution of x? — dy? = 1. Then every pair of integers
(0, yn) defined by ,, + ynVd = (x0 + yovV/d)" is also a solution.

Proof. Exercise: z,, — yn\/g = (a0 — yox/g)”. Since xg,yo > 0, we have x,,y, > 0 for n € N. Since
xi - dyi = (mn +yn\/g)($n - yn\/g) = ($0 +y0\/§)n(x0 - yo\/g)" = (x(Z) - ygd)" =1"=1, (xm yn)
is a solution. O

o — 6
Yyo=1"
V35)% = 71 + 124/35, (71,12) is a solution. Since (6 + /35)% = 846 + 143+/35, (846,143) is a
solution.

Example 5.32. Consider 22 — 359> = 1. The fundamental solution is { Since (6 +

Theorem 5.33. Let (z1,y1) be fundamental solution of 2> —dy® = 1. Then every positive solution
is given by (zn,yn), where x,,y, are determined by , + yv'd = (x1 + y1Vd)".

Proof. Assume (u,v) is a positive solution that is not of this form. Since z; + y1v/d > 1, we have
Ty + yn\/a — 00. Then there exist n € N such that

(21 + VA" = &y + ynVd < u+0Vd < Tpi1 + Ynp1Vd = (20 + ynVd) (21 4+ y1Vd).
Then
(fn + yn\/a)(xn - yn\/;i) < (u—l— U\/;i)(l'n - yn\/g) < (xn + yn\/g)(xl + yl\/;i)(xn - yn\/g)

Since x2 —y2 = 1, we have 1 < (u 4+ vVd)(x, — y,Vd) < 1 +y1V/d. Define r,s by 1 < 7+ sv/d =
(u + v\/g)(xn - yn\/&) Then r = z,u — yovd and s = z,v — ypu. Then r? — ds®> = (22 —
dy?)(u? —dv?) = 1. Since 1 = (r+sVd)(r —sv/d) and 1 < r+sv/d, we have 0 < 7 —sv/d < 1. Then
2r = (r4svVd)+(r—svd) > 1+0 = 1. Sor > 0. Also, since 2sv/d = (r+vd)—(r—svd) > 1-1 =0,

s> 0. Since 1 <7+ svVd < z1 + yu/ﬁ and r > 0, we have s > 0, a contradiction. O]

5.0.1 Quadratic fields

Consider the quadratic number field X = Q(v/d) = {a +bVd | a,b € Q}. This is a Galois extension
of Q, i.e.,there are two automorphisms, the identity and the conjugation map o : K — K given by
a+bVd — a —bVd. Clearly 0> = 1 and Gal(K/Q) = {1,0}. Let a = a + bv/d. Note o(a) = «
if and only if b = 0, i.e., if and only if « € Q. We say that K is real or complex quadratic
according to d > 0 or d < 0. The element o = a + bv/d € K is a root of the quadratic polynomial
Pa(X) = X2 — 2aX + a® — db? € Q[X]. Its second root @ = a — bv/d is called the conjugate of a.
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Definition 5.34. Let d be square free. Let K = Q(v/d). Define
N: (K, x) = (Q, )
a+bVd— (a+bVd)(a—bVd) = d® - b*d
and
Tr: (K +) = (Q+)
a+bVd— (a+bVd) + (a —bVd) = 2a
and
disc: K — Q
a+bVd — 4db*.

Theorem 5.35. N is a multiplicative group homomorphism. Tr is an additive group homomor-
phism.

Definition 5.36. N|o. : o ~ {0} — Z ~ {0} with N(a8) = N(a)N(8). To ease notation, we
assume d = 2,3 (mod 4), such that ox = Z[/d].

Remark. Goal: understand Z[v/d]*.
Lemma 5.37. o € Z[V/d] is a unit if and only if N(a) = +1.

Proof. Suppose there exists 8 € Z[v/d] such that a8 = 1. Then 1 = N(1) = N(af) = N(a) N(B).
So N(a) | 1. Hence N(a) = #1. Suppose N(a) = +1. Let a = a + bv/d. Then +1 = N(a) = (a +
bVd)(a—bVd). If (a+bVd)(a—bvd) = 1, then (a+bVd)~' = a—bVd. If (a+bVd)(a—bVd) = —1,
then (a +bvVd)™' = —(a — bV/d). O

Theorem 5.38. The solutions to Pell’s equations are

N z
oa(ﬁ) ~ Gy x (7 —&—yn@) ,

where (x1,y1) is the fundamental solution. and Go = {£1} is an order 2 group. Note
1 n
x+y\/&"(> = (21 — 1 Vd)" =z, — y,Vd.
eVl = () = V) =

Example 5.39. Consider Q(v/7). Then ox = Z[V/7]. To find units in Z[/7], we want to study
22 —7y? = 1. Note V7 = [2, 1,1, 1,4, po =ap =2, qo = 1, p1 = arap+1 =3, ¢ = a; = 1,
p2=a2p1+po=3+2=05, g2=aq1+q =1+1=2,ps=agpa+p1 =5+3=38,g3 =asq2+q =

24+41=3,---. S0 (psa—1,94-1) = (p3,q3) = (8,3) is a solution.

Theorem 5.40. Let d > 0 be not square and o = a + bv/d € Q(Vd). If N(a) = 1, then is a Pell’s
equation. If N(a) = —1, then you want a solution to x*> — dy? = —1.

Fact 5.41.

O;é = G2 X (.131 +y1\/8)z

N : 0 — Gs. The solution to Pell’s equation is kernel of this. If d = 3 (mod 4), there are no units
of norm —1.
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Remark. We want to solve the fermat equation for n = 3. Equivalently, we can show there is no
nontrivial solution to a® + 8% + 4% = 0. We will show this how no solution is in Q(v/-3).

Remark. We say the units for Q(v/d), we actually say the units for Z(+v/d).

Theorem 5.42. Let d < 0 be square-free. The field (@(\/&) = K has units £1 and these are
the only units except d = —1,—3. The units for Q(i) are £1,4+i. The units for Q(v/—3) are
41, 1£v=3 1273

) 2 ’ 2 .

{1,v/d}  d#1 (mod 4)
1, 1+ﬁ} d=1 (mod 4) ~

Proof. Let a € ox with N(a) = 1. The integral basis is { {
2

(a) If d # 1 (mod 4), then o = z 4+ yv/d. Then N(a) = 22 — dy?. Since d < 0, we have N(a) > 0
and then N(a) # —1 in this case. For d < —1, 22 — dy? > —dy? > 2y®. The only solutions to
22 —dy? =1 are x = +1 and y = 0, i.e., the only units are « = £1. If d = —1, then 22 + y? = 1.
This only has solutions z = +1,y = 0 and z = 0,y = %1, i.e., the only units for Q(v/—1) are
a =+1,+v/-1.

(b) If d = 1 (mod 4), then o = 2’ + y/1+2\/& = (2$/+y/2)+y/\/8. If ¥ is even, then same case as
previous one and we get some units +1. If ¢/ is odd, then 2z’ + ¢’ is odd and write o =

z,y odd. So N(«a) = :r274dy2. Since d < 0, N(a) > 0, so N(«) # —1 in this case. If d < —3, since
22 —dy? > 1 —d > 4, there are no solution to ””2%4‘1‘”2 =1 with odd z,y. If d = -3, % =1 with
x,y odd, i.e., #2 + 3y? = 4 with z,y odd. The only solutions are (1,+1) and (—1,=+1), i.e., the only

units are o = H[T‘/j?’, %‘/773 Thus, we have units for Q(v/—3) are a = £1, %7 %\/53 O

sV ity

Remark. Let w = 71%‘/:3 Then the units of Q(y/—3) are +1, 4w, +w?. Note 1 +w + w? =0,
and w? = 1.

We aren’t actually working with quadratic fields to look at fermat big theorem, it just happens that
Q(&s) = Q(v=3). Over Q(&), 2¥ =2 +y* = (z +y)(z +&Y) -+ (z + & 'y).

Definition 5.43. An element o € Ok is a prime if it is not a unit and it is divisible only by units
and its associates.

Theorem 5.44. Let o € ox. If N(a) = £p for a rational prime, then « is prime.

Proof. Suppose a € oy satisfies N(a) = £p and o = . Then £p = N(a) = N(B7v) = N(B) N(v).
So N(8) = £1 and N(v) = £p, or N() = £p and N() = £1. So either § or v is a unit. Hence g
or 7y is associate of a. Thus, « is only divisible by units or associates. Therefore, « is prime. O

Theorem 5.45. Every element o € ox can be factored into primes.

Proof. Let @ € ox. If a is prime, we are done. If not, we can write o = (3182 with 51, 52 not
associate of a. If B182 are both prime, we are done. If not, factor the one that is not prime
(possibly both). Then a = Blﬁél)ﬁéz). Keeping doing this, write « = p1 -+, f,. Since B;’s are
not associates of «, they are not units, either. If there is no prime factorization, you get something
like this for any n. Then |N(a)| = |[Ti=; N(8:;)| = [T;=,IN(5:)|. So we can just choose n such that
IN(cr)| < 2™, a contradiction. O
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Definition 5.46. We say Q(\/ﬁ) has unique factorization if ox is a UFD, i.e., all elements in ox
that are not 0 or units can be factored uniquely into primes up to order and associates.

Definition 5.47. We say Q(\/&) is an Fuclidean Domain if ok is an Euclidean domain, i.e., given
a, B € ox with 8 # 0, there exist v, € ox such that @ = v+ 6 with v =0 or |N(J)| < [N(v)|.
Theorem 5.48. FEvery Fuclidean domain Q(\/E) has unique factorization.
Theorem 5.49. The field Q(\/d) for d = —1,—2,-3,-7,2,3 is Buclidean.
Proof. Let K = Q(v/m). Let «, 8 € o with 3 # 0. Write F=u+t vy/m with u,v € Q. Choose
x,y as close as possible to u,v, respectively. Then 0 < |u — z| < % and 0 < |v—y| < % Set
y=x+yym € ox and § = a — 7 € 0. Since

@
N(0) = N(a—Bv) = N(B 7)) N(B) = N(u—z+w—y)vm)N(B) = ((u — 2)* = m(v —y)*) N(B),
we have [N(8)| = |(u — 2)? — m(v — y)?||N(8)|. Observe

{ —F<—2)?—m—y)
0< (u—m)?

If m = 2,3,—1,—2, then |N(§)| < [N(5)|, which implies the corresponding Q(y/m) is Euclidean.
Let m = —3 or —7. Leave u,v as above. Choose s as close as possible to 2v and r such that

r = s (mod 2) and as close to 2u as possible. Then 0 < |2v —s| < L and 0 < |2u — r| < 1. Since

2
mzl(mod4),7:%€o;c. Set § = a — By € ok. Since

S

DN(B) = N(u=5+(v=2)Vm)N(B) = ((u=5)* =m(v—3)*) N(B),

N(8) = N(a - 87) =N(5 -3

E—W’
we have [N(8)| < |4 = [IN(8)| < IN(8)!. 0

Theorem 5.50. Let K = Q(y/m) have unique factorization. Then any prime 7 in Q(v/m) corre-
sponds to exactly one rational prime p such that 7 | p.

Proof. Since N(m) = 77 € Z, we have 7 | N(m). Let n be the smallest positive rational integer
divisible by 7. Claim. n is prime in Q(y/m). If not, write n = ning with ny,ne # +1. Then
7 | n = ning. Since ni,ny # 1, ™ | ny or 7 | ng, a contradiction since n; < n and ny < n. Hence,
n is our n. Let ¢ be a rational prime and p # ¢ such that 7 | ¢. Then 7 | 1 = px + qy for some z, y,
a contradiction since 1 is not a prime. O

Theorem 5.51. Let K = Q(y/m) have unique factorization.

(a) Any rational prime p is either a prime w in KC or the product of two prime w1, w3 not necessarily
distinct of K.

(b) The totality of primes w,m, 7o obtained in (a) from p, together with associates constitute all

the primes in Q(yv/m).

(¢) An odd rational prime p satisfying gcd(p, m) = 1 is a product wyme of two primes m,m of K if

and only if ? (% = 1. Furthermore, if p = mima, then m; and mo are not associate, but w, and 73

are associate (as are 71 and Ta).
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(d) If ged(2,m) = 1, then 2 is the associate of a square of a prime if m = 3 (mod 4), 2 is prime if
m =5 (mod 8), and 2 is a product of distinct primes if m =1 (mod 8).

(e) Any rational prime p that divides m is the associate of the square of a prime in Q(y/m).

Proof. (a) Suppose p is prime 7 in K, then we are done. Suppose p is not prime in . Then p = 78
for some 7 prime and 3 € ox with 8 # +1. So p? = N(p) = N(n3) = N(7m) N(3). Also, since
N(m) € Z ~ {1} and N(B) € Z ~ {1}, N(B) = £p. So B is prime. Thus, p is the product of two
primes.

(b) Given any prime 7, the previous theorem says it divides a unique rational prime p. Now apply

(a).

(c) Let p be a rational prime such that 2 { p, p t m and (%) = 1. Then there exists x such that

2?2 = m (mod p), i.e., p | 22 — m if and only if p | (x + v/m)(x — /m). Suppose p is prime in K,
then p | x — /m or p |  + /m. Without loss of generality, assume p | 2 + /m.

(1) If m # 1 (mod 4), then there exist a,b such that p(a + by/m) = x + v/m. Then pb =1, a
contradiction.

(2) If m =1 (mod 4), then there exist a,b such that p (a + b%) =x ++/m, i.e., pa +p% +
pg\/ﬁ =z ++/m. So pg = 1, which is a contradiction since p 1 2.

Hence, p is not a prime (in K). By the proof of part (a), p is the product of two prime 1, 7o with
7 = a+ by/m and a®> — mb? = N(m;) = +p. Then my = £ = ﬁ = +(a — by/m). So Ty =

U

*(a + by/m), which is an associate of 7. Since 7t = :I:Zi‘Z\/\/g . ((2a)2z;n(2b)z N Saiﬁ) ¢ ox
m

(Exercise), which means 71 is certainly not a unit. For example, 5 = (2 +i)(2 — ¢). But 2 is not
odd, 1+i=14(1—14) and 2 = (1 +)(1 —1).

—_ _ 2 _ om?— : :
(d) Assume m = 3 (mod 4). Then (m — /m)(m + y/m) = m* —m = 2272 If is a prime, then
2| m—+/mor2|m++/m. So m+2‘/m € oK or mfz‘/m € 0x. Since 24 m and m # 1 (mod 4), these
are actually not in ox. Hence, 2 is not prime. By the proof of part (a), there exist x,y such that

x4+ yy/m |2 and 22 — my? = N(x + y/m) = £2. So 2 = £(x — y/m)(x + y/m), where z — y/m
and x +y+/m are primes. We want x —y+/m and =+ y+/m to be associate and then 2 will be square
of a prime up to associate. Exercise: show the last part of the following

:cy\/ﬁix2+my22zy\/ﬁ_i(az2+my2 —a:y\/ﬁ) € ox

z+yy/m 2 — my? 2
Similarly, ;H_'z\/‘/g =+ (% —l—xy«/m) € 0x. So % and its inverse are in ox. Hence
% € og. Thus, z — yy/m and = + y\/m are associate. Assume m = 1 (mod 4). Suppose 2

. . . . r+y\/ﬁ
is not a prime. By the proof of part (a), there exist x,y of the same parity such that ==5-= | 2

)

and N (M) = £2. Then 22 — my? = £8. If 2,y are both even, write © = 229, y = 2yo. Then

23 — my3 = +2. Since m = 1 (mod 4), we have 22 — my3 is odd or multiple of 4, a contradiction.

So z and y are both odd. Hence 22 = y? = 1 (mod 8). Then 1 — m = 22 — my? = 0 (mod 8). So
m =1 (mod 8). Thus, if m =5 (mod 8), then 2 is a prime in . Assume m =1 (mod 8). Then
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175/5 1+5/E =1=m = 212m Since 2 ’ %, we have 2 is not a prime. By the proof of part (d),

there exist z,y both odd such that %% =N (M) = +2. Since z,y are both odd,

+

z+y/m 2 2
= z+y/m z°+my zy\/m . xz—yym z+yv/m . : .
= :l:xfy\/ﬁ =+ (78 + =5 ) € ox. Thus, == and =-5“— are not associates.

Therefore, 2 is a product of two non-associate primes.

(e) Let p be a rational prime divisor of m. If p = |m|, then p = ++/m+/m. Since the norm of m is
prime p, 4/m is prime. If p < |m|, then /my/m =m = p%. Since */TH ¢ Ok, we have p{+/m in K.
So p is not prime in K. By the proof of part (a), there exists some prime 7 with N(7) = £p such

that 7 | p. Since 7 | v/m+/m, we have 7 | \/m. So w2 | m. Since m is square-free, p || m. So 7 0

? Thus, 72 | p. O
Remark (Diophantine Equation). Let a € ox with N(a) = £p. Since N(a@) = =£p, we have
@ is prime. If m # 1 (mod 4), write « = x + yy/m. Then £p = N(a) = aa = 22 — my?.

If m =1 (mod 4), write « = % Then we get a solution to 2 — my? = Z4p. Suppose
Q(y/m) has unique factorization. Let p be a rational prime with ged(p,2m) = 1 and (%) =1

(By Theorem 5.51(c), since m is odd, use ged(p,2m) to make sure p is odd prime.) Then if
m % 1 (mod 4), we get a solution to one of the equation 22 — my? = £p; if m = 1 (mod 4), we get
a solution to one of the equation z? — my? = +4p.

5.0.2 The field Q(v/—3)
Example 5.52. Find primes in Q(v/—3). Factor 2,3,5,7,--- in Q(v/=3). Let m = —3. Then

2m = —6. Find p such that ged(p,2m) =1 or ged(p,6) = 6. Since (_?3) = { _11 ig z gz i? ,

we have rational primes of the form p = 3k + 2 are primes in Q(v/—3), and rational primes of the
form p = 3k + 1 factor in prime product w72 uniquely up to associates in Q(+/—3), where

- _ ap+b§\/j3

772 = 70‘7)_13)2\/?3

We can show 2 is not prime by contradiction. Consider p = 3. Since 3 = 3+\2/j3 3= 5 =33 =

v—3v/—3 and /—3 are prime, we have /—3 ~ 3*'#‘/_73, where ~ denote ”associate”. Or since
:H'T‘/??’ = —31_‘2/j3 and 1_‘2/j3 € og, we have v/—3 ~ % We have that 6 units in Q(v/—3)

are 1, %, %‘/jg Write from now on 8 = y/—3. Set w = 71%‘/773 Then 6 has 6 associates
+(1 —w), £(1 —w?), £(w—w?), +6.

Lemma 5.53. Every integer in K = Q(6) is congruent to 0 or —1,1 modulo 6.

Proof. Let ag—be € 0k. Then a,b are of the same parity. So % € ox. Since 62 = -3, we
have 40 — 24909 4 9¢ = 2q (mod ). Note 2a = 0,41 (mod 3). Since 6 | 3, 282 = 2¢ =
0,1 (mod 6). O

Lemma 5.54. Let K = Q(0). Let £, € o, not divisible by 6.
(a) If ¢ =1 (mod 6), then &3 =1 (mod 6%).



61

(b) If € = —1 (mod 6), then &3 = —1 (mod 6%).
(c) If €3 4+ 1> =0 (mod ), then &3 41> =0 (mod 6*).
(d) If €3 — 13 = 0 (mod 6), then €3 — 1 = 0 (mod 6%).
Proof. (a) If € = 1 (mod 6), we can write & = 14 36 for some 3 € 0. Since #2 = —3 and §* = 9,
we have

E=014+p0)3=1+380—-96%+p5%0°=1+380+ 30> =1+633>—B) (mod #*).
Since 8% — B =B(8 —1)(B + 1), we have 6 | 3(8 — 1)(8 + 1) by Lemma 5.53. So &3 =1 (mod 6*4).
(b) If € = —1 (mod #), then —¢ = 1 (mod ). Then by part (a), —€3 = (=€) = 1 (mod 6*). So
€3 = —1 (mod 6%).

(c) Since 0 | £(€ — 1)(€ + 1), we have €3 = £ (mod 6). Similarly, 73
0 (mod ), then £ +7n =0 (mod 0), i.e., £ = —n (mod 0). If £ = -1 (m
So €2 = —1 (mod #*) and 7® =1 (mod #*). Hence &3 + 73 = -1 +1
have the cases £ =0 (mod ) and £ =1 (mod 0)

n (mod 0). If & +n3 =
od 6), then n =1 (mod ).
0 (mod 6*). Similarly, we

(d) Play the same game to get the result. O

Lemma 5.55. Let K = Q(f). Let «, 3,7 € ok such that o + 32 +~3 = 0. If ged(a, 3,7) = 1,
then 6 divides one of them.

Proof. Suppose # divides none of them. Then «, 3,7 = 1 (mod 6). So 0 = a3 + 32 + 73 =
+1414+1 (mod #*). Then §* must divide 3, 1, —1 or —3. But §* = 9, which is a contradiction. [

Lemma 5.56. Let £ = Q(0). Let o, 8,7 € ox ~ {0} such that 6 f a8y. Let €1, €3 be units and
r € N such that o + €83 + €2(07v)® = 0. Then ¢; = +1 and r > 2.

Proof. Since «a, 8 € ox ~ {0}, we have a, = +1 (mod ). By previous Lemma 5.54(a) and
(b), a3,8% = £1 (mod 6*). Since r > 0, we have 0 = a3 + 8% = £1 4+ ¢; (mod 6%). Since €
is one of +1, 4w, +w?, we have 41 + ¢; is one of 2,0, -2, 4(1 + w), &(1 & w?) with all possible
sign combinations. Since 1 —w and 1 — w? are associates of § and #?> = —3 is prime, we have 63
cannot divide them. Also, 1+ w = —w? € o and 1+ w? = —w € 0, so 6* cannot divide them.
Since N(£2) = 4 and N(63) = 27, we have N(#%) { N(£2). So 63 { +2. Hence the only possibility is
+14& =0. Soe; = £1. Since 6 | 03 and o +€, 4% = 0 (mod 62), we have a®+ 32 = 0 (mod 6) and
a®— B3 =0 (mod 6). Since 0 | a(a—1)(a+1), we have a® = a (mod 6). Similarly, 33 = 3 (mod 6).
By Lemma 5.54(c), a® + €142 = 0 (mod 0*). Then e3(0"7)% = 0 (mod 6%). So 6* | €2(0"~)3. Thus,
r > 2. O
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