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Chapter 1

Open Problems

Many problems are easy to state but hard to prove.

(a) Given n ∈ Z⩾2, is it always true that there exists x, y, z ∈ N such that 4
n = 1

x+
1
y +

1
z ? Vaughan

proved the number of n ⩽ N for which the above equality is insolvable is O
(
N · exp(−c(logN)

2
3 )
)

for some positive constant c.

(b) Modern: Twin Primes. There are infinitely many pairs of primes (p, p′) such that p − p′ = 2.
Zhang proved there are infinitely many pairs of prime numbers that differ by 70 million or less,
i.e., limn!∞ inf(pn+1 − pn) < N = 7 × 107, where pn is the nth prime. James Maynard prove it
holds for N = 252. According to the Polymath project wiki, N = 246. Assume another conjecture,
N = 6.

(c) Fermat’s Last Theorem: xn + yn = zn has no positive interger solutions (x, y, z) for n ∈ Z>2.
Almost all of modern algebra came from people trying to prove Fermat’s Last Theorem. Fermat’s
Last Theorem is a corollary to a theorem that every ellipic curve is a modular form.

(d) Is it true the equation xn + yn = zn + w with n ⩾ 5?

Remark. All of these can be formulated as looking for solutions to equations f(x1, . . . , xn) = 0
for f ∈ Z[x1, . . . , xn] and solutions in Rn for some integrating set R. These are called Diophantine
equation-all the complicated machinery today was developed to solve them.
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Chapter 2

Introduction

Convention 2.1. Assume all varaibles in this book are integers.

2.1 Prerequisites

Definition 2.2. (a) Assume a ̸= 0. We say a divides b and write a | b if there exists c ∈ Z such
that ac = b.

(b) Assume a ̸= 0 and k ⩾ 0. Write ak || b “exactly divides” if ak | b but ak+1 ∤ b.

Fact 2.3. We have the following facts.

(a) a | a for any a ̸= 0.

(b) a | 0, for any a ̸= 0.

(c) If a | b and b | c, then a | c.

(d) If a | b and a | c, then a | (bx+ cy) for all x, y ∈ Z.

(e) If a | b and b | a, then a = b.

(f) If a | b and a > 0 and b > 0, then a ⩽ b.

(g) If m ̸= 0, then ma | mb.

Theorem 2.4 (Division Algorithm). Assume a ̸= 0. There exist unique q, r ∈ Z such that b = aq+r
and 0 ⩽ r < a. In particular, if a ∤ b, then 0 < r < a.

Proof. Let q0 = argmaxq∈Z{aq | aq ⩽ b}. Then a(q0 + 1) > b, i.e., a > b− aq0. Let r0 := b− aq0.
Then b = aq0 + r0 with 0 ⩽ r0 < a. Suppose there exist another r1, q1 ∈ Z such that b = aq1 + r1
and 0 ⩽ r1 < a. Then aq0 + r0 = aq1 + r1, i.e., a | (r1 − r0). Since −a < r1 − r0 < a, r1 = r0. Also,
since a ̸= 0, q0 = q1.

Definition 2.5. Let a ̸= 0.

(a) If a | b and a | c, we say a is a common divisor of b and c.

3



4 CHAPTER 2. INTRODUCTION

(b) The largest common positive divisor of b and c is called the greatest common divisor of b and
c, denoted by (b, c) or gcd(b, c).

(c) Analogously define gcd(b1, . . . , bn).

Theorem 2.6.
gcd(b, c) = min{bx+ cy > 0 | x, y ∈ Z}.

Proof. Let D = {bu + cv > 0 | u, v ∈ Z}, . Then D ̸= ∅. Let d := bx + cy for some x, y ∈ Z
such that d = minD. Suppose d ∤ b. Since d > 0, we can write b = dq + r with 0 < r < d. Then
r = b − dq = b − (bx + cy)q = b(1 − qx) + c(−yq) ∈ D, contradicted by 0 < r < d = minD. So
d | b. Similarly, d | c. Hence d ⩽ g = gcd(b, c). Note gB = b and gC = c for some B,C ∈ Z. Then
d = (gB)x+ (gC)y = g(Bx+ Cy). So g | d. Since g, d > 0, we have g ⩽ d and then g = d.

Corollary 2.7. If am+ bn = 1, then

gcd(a, b) = gcd(a, n) = gcd(m, b) = gcd(m,n) = 1.

Theorem 2.8. Let m ∈ N, then gcd(mb,mc) = m gcd(b, c).

Proof. Let d = gcd(b, c). Then d | b and d | c. Since m ̸= 0, md | mb and md | mc. So
gcd(mb,mc) ⩾ md. Suppose there exists D > md such that D | mb and D | mc. Then D = mx
for some x ∈ N. Then x | b and x | c. So x ⩽ gcd(b, c) = d. Also, D = mx > md, i.e., x > d, a
contradiction.

Corollary 2.9. If d ∈ N such that d | a and d | b, then gcd(ad ,
b
d ) =

gcd(a,b)
d and so d | gcd(a, b).

Proof. gcd(a, b) = gcd
(
d
(
a
d

)
, d
(
b
d

))
= d · gcd

(
a
d ,

b
d

)
.

Theorem 2.10. If gcd(a,m) = 1 = gcd(b,m), then gcd(ab,m) = 1.

Proof. There exist x1, x2 and y1, y2 ∈ Z such that ax1 +my1 = 1 and bx1 +my2 = 1. Then ax1 =
1−my1, bx1 = 1−my2 and abx1x2 = 1−my1−my2+m2y1y2, i.e., abx1x2+m(y1+y2−my1y2) = 1.
By Corollary 2.7, gcd(ab,m) = 1.

Fact 2.11.
gcd(a, b) = gcd(b, a) = gcd(−a, b) = gcd(a, b+ ax).

Theorem 2.12. If c | ab and gcd(b, c) = 1, then c | a.
Proof. Since there exist m,n such that 1 = bm + cn, we have a = abm + acn. Since c | ab and
c | ac, we have c | a.

Theorem 2.13 (Euclidean Algorithm). Let c ∈ N. Repeat applying the division algorithm, write

b = cq1 + r1, 0 ⩽ r1 < c,

c = r1q2 + r2, 0 ⩽ r2 < r1,

r1 = r2q3 + r3, 0 ⩽ r3 < r2,

...

rn−2 = rn−1qn + rn, 0 ⩽ rn < rn−1,

rn−1 = rnqn+1.

Then rn = gcd(b, c).
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Proof.

gcd(b, c) = gcd(b− cq1, c) = gcd(r1, c) = gcd(r1, c− r1q2) = gcd(r1, r2)

= · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn.

Remark. This allows us to solve the linear Diophantine equation bx+ cy = gcd(b, c) = rn, i.e.,

rn = rn−2 − rn−1qn = (rn−4 − rn−3qn−2)qn−1 − (rn−3 − rn−2qn−1)qn,

i.e., continue to let rj = rj−2 − qjrj−1 for j = n, . . . , 3 and r2 = c− r1q2 and r1 = b− cq1.

Definition 2.14. (a) We say b ∈ Z is a common multiple of a1, · · · , an if ai | b for i = 1, · · · , n.

(b) The least common multiple is the smallest positive common multiples. Denote this by

[a1, . . . , an] = lcm(a1, . . . , an).

Fact 2.15.

lcm(a, b) =
ab

gcd(a, b)
.

Definition 2.16. Let n ∈ N. We say that a is congruent to b modulo n, and write a ≡ b (mod n),
when m | (a− b). We say that a is not congruent to b modulo n, and write a ̸≡ b (mod m), when
m ∤ (a− b).

Remark. ≡ is an equivalence relation.

Theorem 2.17. Let n ∈ N. Then ca ≡ cb (mod n) if and only if a ≡ b (mod n
gcd(c,n) ). In

particular, if ca ≡ cb (mod n) and gcd(c, n) = 1, then a ≡ b (mod n).

Proof. =⇒ Note there exists k such that c(a− b) = nk. Also ther exist r, s ∈ Z with gcd(r, s) = 1
so that n = dr and c = ds. Then drk = nk = c(a − b) = ds(a − b), i.e., rk = s(a − b). Since
gcd(r, s) = 1, r | (a− b). So (n/d) | a− b.

⇐= Since c · n
gcd(c,n) = lcm(c, n) ∈ N, ca ≡ cb (mod lcm(c, n)). So ca ≡ cb (mod n).

Theorem 2.18. Let n ∈ N. Then there exists x such that ax ≡ 1 (mod n) if and only if gcd(a, n) =
1. If x1 and x2 are any two such integers, then x1 ≡ x2 (mod n).

Proof. =⇒ Suppose gcd(a, n) > 1, then (ax, n) > 1 for any x. But if one were to have ax ≡
1 (mod n), then write ax = 1 + nq for some q, so gcd(ax, n) = gcd(1 + nq, n) = gcd(1, n) = 1, a
contradiction.

⇐= By Theorem 2.6.

Definition 2.19. Let n ∈ N.

(a) If x ≡ y (mod n), then y is called a residue of x modulo n.

(b) We say that {x1, · · · , xn} is a complete residue system modulo n if for each y, there exists a
unique xi with y ≡ xi (mod m).

(c) The set of x with x ≡ a (mod m) is called the residue class, or congruence classm of a modulo
m.
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Definition 2.20. We say p ⩾ 2 is prime if whenever p | ab, then p | a or p | b.

Remark. Since Z is a Unique Factorization Domain, It is equivalent to say p is prime if the only
divisors of p is ±1 and ±p.

Lemma 2.21. Every n ⩾ 2 is a product of prime.

Proof. Proof by induction. Base case: 2 is straightforward. Inductive step: Assume every integer
2 < n < N is a product of prime. If N is a prime, then we are done. If N is not a prime, then it
has a proper divisor d, write N = dn, 1 < d, n < N . Apply inductive hypothesis to d and n, so
they have prime factorization. Hence N has a prime factorization. This gives the result.

Definition 2.22. Let n ∈ Z ∖ {±1, 0}, write n = (±1)
∏m
i=1 p

ei
i , with p1 < · · · < pm primes and

e1, . . . , em ∈ N. This is the canonical factorization of n.

Theorem 2.23 (Fundamental Theorem of Arithemetic). The canonical factorization of n ∈ Z⩾2

is unique.

Proof. Proof by induction. Suppose we have a unique factorization for all integer 2 ⩽ n ⩽ N .
Suppose we have two canonical factorizations N + 1 =

∏m
i=1 p

ei
i =

∏k
j=1 q

fi
i . Since p1 is prime and

p1
∣∣ ∏k

j=1 q
fj
j , p1 | qj for some j ∈ {1, . . . , k}. Since p1 and qj are primes, we have p1 = qj . Then

pe1−1
1

∏m
i=2 p

ei
i = q

fj−1
j

∏k
i=1,i̸=j q

fi
i ⩽ N . Now apply the inductive hypothesis.

Theorem 2.24 (Euclid). There are infinitely many primes.

Proof. Assume there are only finitely many primes, say p1, . . . , pn. Set N = p1 · · · pn + 1. Since
N > 1, N has prime factorization and then there exists a prime p such that p | N . Then p = pj for
some j ∈ {1, . . . , n} and p | (p1 · · · pn). So p | (N − p1 · · · pn), i.e., p | 1, a contradiction.

Theorem 2.25. Let pn be the nth prime. Then pn < 22
n

.

Proof. Proof by induction. Base case: p1 = 2 < 22
1

. Suppose this is true for all n ⩽ N . Since
pi ∤ (p1 · · · pN + 1) for i = 1, . . . , N , we have pN+j | (p1 · · · pN + 1) for some j ⩾ 1. So

pN+1 ⩽ pN+j ⩽ p1 · · · pN + 1 < 22
1

· · · 22
N

+ 1 = 2
∑N

j=1 2j + 1 = 22(2
N−1) + 1

= 22
N+1−2 + 1 < 22

N+1−2 + 22
N+1−2 = 22

N+1−1 < 22
N+1

.

Definition 2.26. Let x ∈ R⩾0. Define

π(x) = #{p prime | p ⩽ x}.

Theorem 2.27 (Prime Number Theorem).

π(x) ∼ x

log x
.

Proof. By Hadamard and de la Valle.

Remark. Since it is asymptotic result, the log base can be any number that is greater than 1.

Corollary 2.28. π(x) > log(log x), where the log base can be any 2 < α < 4.
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Proof. Let x ⩾ 2. Choose n such that 22
n

⩽ x < 22
n+1

. Then by theorem 2.25, we have π(x) ⩾
n. Since our log is an increasing function, log x < log 22

n+1

= 2n+1 log 2 = 2n log 4 < 2n. So
log(log x) < n log 2 < n ⩽ π(x).

Theorem 2.29. There are arbitrary large gaps between consecutive primes.

Proof. Let n be the gap size and consider the sequence n! + 2, . . . , n! + n. Since the ith number
in the sequence is divisible by i + 1 for i = 1, . . . , n − 1, we have a sequence of n − 1 consecutive
composite numbers. So as n! ∞, the gap between consecutive primes get arbitrary large.

Lemma 2.30. If p is odd prime, then p ≡ ±1 (mod 4), i.e., p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

Fact 2.31. If p1, p2 ≡ 1 (mod 4), then p1p2 ≡ 1 (mod 4).

Theorem 2.32 (Euclid). There are infinitely many primes of the form 4k + 3.

Proof. Assume p1, . . . , pn are all the prime of the form p ≡ 3 (mod 4). Set N = 4p1 · · · pn − 1.
Then N ≡ 3 (mod 4) and pi ∤ N for i = 1, . . . , n. So there must be a prime other than p1, . . . , pn
dividing N . Since N is odd, 2 ∤ N . Suppose N = qe11 · · · qerr for some e1, · · · , er ∈ N and primes
q1, · · · , qr ≡ 1 (mod 4). By Fact 2.31, we have N has the form N ≡ 1 (mod 4), a contradiction.
Hence, N has at least one prime factor p of the form 4k + 3. Since pi ∤ N for i = 1, . . . , n, we have
p ̸= pi for i = 1, . . . , n, a contradiction.

Lemma 2.33 (Dirichet’s theorem). Let gcd(a, b) = 1, then there are infinitely many primes of the
form ak + b for k ∈ N.

Lemma 2.34. There exists n ⩾ 1 and f ∈ Z[x1, . . . , xn] whose positive values are precisely the
prime numbers.

(a) Matijasevic proved the smallest n is 10, the polynomial degree d ∼ 1.6× 1045.

(b) JSW proved the smallest degree is 5 and the number of variables is 42.

Theorem 2.35. If f ∈ Z[t] with deg(f) > 1, then f cannot take just prime values for t ∈ Z.

Proof. Suppose f(t) := akt
k + · · ·+ a1t+ a0 is such a polynomial. Let n0 ∈ Z and p be prime such

that f(n0) = p. Let s ∈ Z. Then there exists Q ∈ Z[t] such that

f(n0 + sp) = ak(n0 + sp)k + · · ·+ a1(n0 + sp) + a0 = f(n0) + pQ(s) = p+ pQ(s) = p (1 +Q(s)) .

So p | f(n0 + sp). By assumption, f(n0 + sp) is prime. So f(n0 + sp) = p for s ∈ Z, i.e.,
f(n0 + sp)− p = 0 for s ∈ Z, contradicted by deg(f − p) = k.

2.2 Pythagorean Triple

Theorem 2.36 (Pythagorean theorem). We want all integer solution to the equation x2+y2 = z2.
If (a, b, c) is a solution and ( a, b, c) = 1, we say (a, b, c) is a primitive pythagorean triple.
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Proof. We only work with primitive solution. Note that a2, b2, c2 ≡ 0, 1 (mod 4). So c must be
even. Without loss of generality, assume a is even and b odd . Then b2 = c2 − a2 = (c− a)(c+ a).
Claim. gcd(c− a, c+ a) = 1. Since c− a is odd,

gcd(c− a, c+ a) = gcd (c− a, c+ a− (c− a)) = gcd(c− a, 2a) = gcd(c− a, a) = gcd(c, a).

Suppose there exists prime p such that p | gcd(c, a), then p | a and p | c. Then p | c2 − a2 = b2 and
so p | b. So p | gcd(a, b, c) = 1, a contradiction. Hence gcd(c − a, c + a) = gcd(c, a) = 1. So there

exist m,n ∈ Z such that c + a = m2 and c − a = n2. Hence a = m2−n2

2 , b = mn and c = m2+n2

2 .
Thus, any odd m,n ∈ Z with gcd(m,n) = 1 satisfying 2 | m2 − n2 and 2 | m2 + n2 can form a

solution (a, b, c) with a = m2−n2

2 , b = mn and c = m2+n2

2 .

Remark. Since m,n are odd, r := m+n
2 ∈ Z and s := m−n

2 ∈ Z. Then by Corollary 2.9,
gcd(r, s) = 1

2 gcd(m+ n,m− n) = 1
2 gcd(2m, 2n) = gcd(m,n) = 1. Also, we can show r and s have

oppositve parity. Since (r+s)2−(r−s)2
2 = 2rs, (r+s)(r−s) = r2−s2 and (r+s)2+(r−s)2

2 = r2+s2, the
primitive pythagorean triples are given by {r2 − s2, 2rs, r2 + s2} for r, s coprime of opposite parity.

Example 2.37. Let m = 1 and n = 3, we have {a, b, c} = {3, 4, 5}.

Theorem 2.38. If X4 + Y 4 = Z2 for (X,Y, Z) ∈ Z3, then XY Z = 0.

Proof. Let (x, y, z) be the solution with x, y, z ∈ N and smallest z. Then (x2, y2, z) is a primitive
pythagorean triple. So there exist r, s coprime of opposite parity such that x2 = 2rs, y2 = r2 − s2

and z = r2 + s2. Then r ⩽ r2 < z and s2 + y2 = r2. Since (r, s) = 1, (s, y, r) is a primitive
pythagorean triple. Then there are coprime m and n of opposite parity such that s = 2mn,
y = m2 − n2, and r = m2 + n2. So x2 = 2rs = 2(m2 + n2)(2mn) = 4mn(m2 + n2). Since m, n and
m2 + n2 are pairwise coprime, there exist a, b, c ∈ N such that m = a2, n = b2 and m2 + n2 = c2.
Then a4+ b4 = c2. So (a, b, c) is a solution. But 0 < c ⩽ c2 = m2+n2 = r < z, a contradiction.

Corollary 2.39. If X4 + Y 4 = Z4 for (X,Y, Z) ∈ Z3, then XY Z = 0.

2.2.1 Algebraic Methods to Find Pythagorean Triple

Example 2.40. Let (a, b, c) be primitive pythagorean triple a2 + b2 = c2. Then (ac )
2 + ( bc )

2 = 1,

which means (ac ,
b
c ) is a rational points on the unit cycle. To study primitive pythagorean triple,

we can parametrize rational points on unit cycle.

−2 −1 1 2 3

−1

1

y = m(x+ 1)•
p

x

y

Let p be the intersection. Then p =
(

1−m2

1+m2 ,
2m

1+m2

)
. Let m = s

r with r ̸= 0. Then p =(
r2−s2
r2+s2 ,

2rs
r2+s2

)
.
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Lemma 2.41. For coprime r, s,

gcd(2, r2 + s2) = gcd(2rs, r2 + s2) = gcd(r2 − s2, r2 + s2).

Proof. Let p | gcd(rs, r2 + s2), then p | rs. Since p is prime, p | r or p | s. Without loss of
generality, assume p | r. Also, since p | r2 + s2. p | s2. Since p is prime, p | s, a contradiction. So
gcd(rs, r2 + s2) = 1. Note gcd(r2 − s2, r2 + s2) = gcd(2r2, r2 + s2) = gcd(2, r2 + s2).

Definition 2.42. For r, s coprime, define δ(r, s) = gcd(2, r2 + s2). Then

δ(r, s) =

{
1, if r ̸≡ s (mod 2)
2, if r ≡ s (mod 2)

.

Then ( r
2−s2
r2+s2 ,

2rs
r2+s2 ) =

(
r2−s2

δ(r,s)

r2+s2

δ(r,s)

,
2rs

δ(r,s)

r2+s2

δ(r,s)

)
. By Lemma 2.41, this gives the primitive pythagorean

triple

{a, b, c} =

{
r2 − s2

δ(r, s)
,

2rs

δ(r, s)
,
r2 + s2

δ(r, s)

}
.

Remark. If we require r and s of opposite parity, then δ(r, s) = 1 and we recover the previous
result from our algebra computations.

Example 2.43. Consider the Pell’s equation x2 −Dy2 = 1, for D a positive square-free integer.

−2 0 2

y = m(x+ 1) •
p = (x0, y0)

x

It is easy to find given any rational number m, p =
(

1+Dm2

1−Dm2 ,
2m

1−Dm2

)
is a rational solution of

x2 −Dy2 = 1.

Remark. Note x2+y2 = 1 implies x2+y2 = z2. Analogously, x2−Dy2 = 1 implies x2−Dy2 = z2.

2.3 Congruences

In this section, assume n ∈ N and p is prime.

Definition 2.44. Defin Euler’s ϕ-function by

ϕ(n) := #{1 ⩽ a ⩽ n | gcd(a, n) = 1}.

Theorem 2.45.
ϕ(n) = #(Z/nZ)×.
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Proof. a ∈ (Z/nZ)× if and only if there exists b ∈ (Z/nZ)× such that ab ≡ 1 (mod n) if and only
if there exists k such that ab+ nk = 1 if and only if gcd(a, n) = 1.

Theorem 2.46 (Euler’s theorem). If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).

Proof. Since gcd(a, n) = 1, a ∈ (Z/nZ)×. So aϕ(n) = a#(Z/nZ)× ≡ 1 (mod n).

Corollary 2.47 (Fermat’s little theorem (FLT)). If p ∤ a, then ap−1 ≡ 1 (mod p).

Proof. Since gcd(a, p) = 1 and ϕ(p) = p− 1, take n = p in Euler’s theorem.

Remark. If we want to solve ax ≡ b (mod n), we are asking if a has an inverse modulo n. If we
consider this as an equation over Z/nZ, can we solve ax = b? Yes, if a ∈ (Z/nZ)× if and only if
gcd(a, n) = 1.

Corollary 2.48.
ap ≡ a (mod p),∀a ∈ Z.

Proof. By Fermat’s little theorem and 0p ≡ 0 (mod p).

Theorem 2.49 (Wilson’s theorem).

(p− 1)! ≡ −1 (mod p).

Proof. If p = 2 or 3, we are done. For 1 ⩽ a < p, gcd(a, p) = 1. Then there exists 1 ⩽ ã < p such
that ãa ≡ 1 (mod p). Pair them up. The issue is if a2 ≡ 1 (mod p), then p | a2− 1 = (a+1)(a− 1),
i.e., a ≡ 1 (mod p) or a ≡ −1 (mod p). So a = 1 or −1. Then {2, . . . , p − 2} can be grouped into
pairs whose product is 1 modulo p, i.e.,

(p− 1)! = 1 · 2 · 3 · · · (p− 2)(p− 1) = 1 · (p− 1)

n−2∏
j=2

j ≡ (p− 1) · 1 (mod p) ≡ −1 (mod p).

Theorem 2.50.

x2 ≡ −1 (mod p)

{
has a solution if p = 2 or p ≡ 1 (mod 4)
has no solution if p ≡ 3 (mod 4)

.

Proof. If p = 2, this is straightforward. If p ≡ 1 (mod 4), set r = p−1
2 . Then 2 | r. Set x = ±(r!).

Since m−p
2 ≡ m+p

2 (mod p), we have

x2 = (r!)2 = 1 · · · p− 1

2

p− 1

2
· · · 1 = 1 · · · p− 1

2

p− 1

2
· · · 1 · (−1)

p−1
2

= 1 · · · p− 1

2

1− p

2
· · · (−1) ≡ 1 · · · p− 1

2

1− p

2
· · · p− 2− p

2
(mod p)

≡ 1 · · · p− 1

2

1 + p

2
· · · p− 2 + p

2
(mod p) ≡ 1 · · · p− 1

2

p+ 1

2
· · · (p− 1) (mod p)

≡ (p− 1)! (mod p) ≡ −1 (mod p).

Next, let p ≡ 3 (mod 4) and assume there is some x such that x2 ≡ −1 (mod p). Then p ∤ x, i.e.,
gcd(x, p) = 1. Since p−1

2 is odd, we have (x2)
p−1
2 ≡ (−1)

p−1
2 ≡ −1 (mod p). Also, by Fermat’s

little theorem, (x2)
p−1
2 = xp−1 ≡ 1 (mod p), a contradiction since p ̸= 2.



2.3. CONGRUENCES 11

Corollary 2.51. If p | a2 + b2 and p ≡ 3 (mod 4), then p | a and p | b.

Proof. Note a2 ≡ −b2 (mod p). Suppose p ∤ b. Since p is prime, there exists b̃ such that bb̃ ≡
1 (mod p). So b2b̃2 ≡ 1 (mod p) and then (ab)2 ≡ −1 (mod p), contradicted by p ≡ 3 (mod 4).

Lemma 2.52. p = a2 + b2 for some a, b if and only if p = 2 or p ≡ 1 (mod 4).

Proof. p = 2 is straightforward.
=⇒ Suppose p ≡ 3 (mod 4). Since p is prime, a ̸= 0 and b ̸= 0. Since p = a2+ b2, then p | a and

p | b by Corollary 2.51. So there exist a0, b0 ∈ Z ∖ {0} such that p = p2(a20 + b20), i.e., 1 = a20 + b20,
a contradiction.

⇐= Define f(u, v) = u+ vx, u, v ∈ Z for some x ∈ Z such that x2 ≡ −1 (mod p). Set k = ⌊√p⌋.
Then k <

√
p < k + 1. Let S = {(u, v) | 0 ⩽ u, v ⩽ k}. Then #S = (k + 1)2 > p. So there

is at least one residue class modulo p hit more than once by f when acting on S. Pick distinct
(u1, v1), (u2, v2) ∈ S such that f(u1, v1) ≡ f(u2, v2) (mod p). Then u1 − u2 ≡ (v2 − v1)x (mod p),
i.e., (u1 − u2)

2 ≡ (v2 − v1)
2x2 ≡ −(v2 − v1)

2 (mod p), i.e., (u1 − u2)
2 + (v2 − v1)

2 ≡ 0 (mod p).
Let a = u1 − u2 and b = v2 − v1. Since 0 ⩽ u1, u2, v1, v2 ⩽ k, we have −k ⩽ a = u1 − u2 ⩽ k and
−k ⩽ b = v1 − v2 ⩽ k. Since k <

√
p, we have a2 + b2 ⩽ 2k2 < 2p. Since a, b cannot be 0 at the

same time, we have 0 < a2 + b2 < 2p. Also, since a2 + b2 ≡ 0 (mod p), we have a2 + b2 = p.

Theorem 2.53 (Fermat). Write

n = 2α

 ∏
p≡1 (mod 4)

pβ

 ∏
q≡3 (mod 4)

qγ

 .

Then n is a sum of the 2 squares if and only if 2 | γ for each γ.

Proof. Observe

(a2 + b2)(c2 + d2) = (a+ bi)(c+ di)(a+ bi)(c+ di)

= ∥ac− bd+ (ad+ bc)i∥2

= (ac− bd)2 + (ad+ bc)2 = (ac+ bd)2 + (ad− bc)2.

⇐= Done by previous lemma and observation.
=⇒ Assume n = a2 + b2. Let q | n with q ≡ 3 (mod 4). Then by Corollary 2.51, q | a and q | b

and so q2 | n. Then we can consider n
q2 =

(
a
q

)2
+
(
b
q

)2
. If γ = 2k+1 for some k ∈ N, given n

q2 has

the similar form as n, by inductive argument, we see n
q2k

=
(
a
qk

)2
+
(
b
qk

)2
.

Remark. The number of ways to write a n ∈ N as a sum of two squares is given by sn =∑
d|n χ−4(d), where χ−4(m) =

 1 m ≡ 1 (mod 4)
−1 m ≡ 3 (mod 4)
0 m ≡ 0, 2 (mod 4)

.

Remark. We don’t get every integer as a sum of 2 squares, what about the sum of r squares
for r > 2? r = 3: no and r = 4: yes, which can be proved by the theorem of Lagrange. Use
Hamiltonian quaternions to prove this: Z[i, j, k]. Note p = a2 + b2 = (a+ bi)(a− bi), which factors
in Z[i] if p = 2 or p ≡ 1 (mod 4) and does not factor in Z[i] if p ≡ 3 (mod 4).
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2.4 Chinese Remainder Theorem

In this section, assume p is prime. Let canonical factorization of n be n = pe11 · · · penr .

Remark. If we are given ax ≡ b (mod n), we know this has a solution if gcd(a, n) = 1. Since there
exist z, y such that a(bz) + n(by) = b, we have x = bz.

Theorem 2.54 (Chinese remainder theorem (CRT)). Let m1, . . . ,mr denote r positive integers
with gcd(mi,mj) = 1 for any i ̸= j. Let a1, . . . , am be in the system of congruence x ≡ ai (mod mi)
for i = 1, . . . , r. Then it has a solution. Moreover, if x0 is a solution, then any other solution
satisfies x ≡ x0 (mod m1 · · ·mn).

Proof. Let n = 2. Then there exists k1 ∈ Z such that x − a1 = m1k1. Then a1 + m1k1 ≡
a2 (mod m2), i.e., m1k1 ≡ (a2 − a1) (mod m2). Since gcd(m1,m2) = 1, there exists m̃1 such
that m1m̃1 ≡ 1 (mod m2). So k1 ≡ (a2 − a1)m̃1 (mod m2). Then there exists k2 ∈ Z such that
k1 = (a2 − a1)m̃1 + k2m2. So x = a1 + m1(a2 − a1)m̃1 + k2m1m2 and then x ≡ a1 + m1(a2 −
a1)m̃1 (mod m1m2). The rest follows from the induction.

Example 2.55. Find the solutons if any of x ≡ 1 (mod 15) and x ≡ 2 (mod 35). By the first
congruence, we have x ≡ 1 (mod 3) and x ≡ 1 (mod 5). By the second congruence, we have
x ≡ 2 (mod 5) and x ≡ 2 (mod 7). So x ≡ 1 (mod 5) and x ≡ 2 (mod 5), a contradiction.

Definition 2.56. (a) f : N ! C is called an arithmetic function.

(b) An arithmetic function f is multiplicative if for anym,n ∈ N with gcd(m,n) = 1, then f(mn) =
f(m)f(n).

(c) An arithmetic function f is additive if for any m,n ∈ Z⩾1 with gcd(m,n) = 1, then f(mn) =
f(m) + f(n).

(d) An arithmetic function f is totally (completely) multiplicative if f(mn) = f(m)f(n) for any
m,n ∈ N.

(e) An arithmetic function f is totally (completely) additive if f(mn) = f(m) + f(n) for any
m,n ∈ N.

Proposition 2.57. We have the followings.

(a) If f is completely multiplicative, then ϕ(n) = ϕ(p1)
e1 · · ·ϕ(pr)er .

(b) If f is multiplicative, then ϕ(n) = ϕ(pe11 ) · · ·ϕ(perr ).

Definition 2.58. Any set R ⊆ Z is called a reduced residue system modulo n if

(a) gcd(r, n) = 1 for r ∈ R;

(b) R contains ϕ(n) elements;

(c) no two elements of R are congruent modulo n.

Any set of n integers, no two of which are congruent modulo n, is called a complete reduced
residue system modulo n.
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Lemma 2.59.

ϕ(pk) = pk−1(p− 1),∀k ∈ N.

Proof. If gcd(p, d) > 1 and d ⩽ pk, then d = p, 2p, . . . , pk−1p, which has pk−1 of them. So ϕ(pk) =
pk − pk−1.

Theorem 2.60. The arithmetic function ϕ is multiplicative. In particular,

ϕ(n) = ϕ

(
r∏
i=1

peii

)
=

r∏
i=1

ϕ(peii ) =

r∏
i=1

(
peii − pei−1

i

)
= n

r∏
i=1

(
1− 1

pi

)
.

Proof. It is enough show ϕ is multiplicative. Let n, n′ ∈ N with gcd(n, n′) = 1. Let a and a′ run
through a reduced residue system modulo n and n′, respectively. The number of distinct pairs (a, a′)
is ϕ(n)ϕ(n′). Suppose d := gcd(an′ + a′n, nn′) ∤ n. Then d ̸= 1. Since d | nn′ and gcd(n, n′) = 1,
without loss of generality, assume d | n′ and d ∤ n. Since d | (an′ + a′n), we have d | a′. Also, since
d | n′ and gcd(a′, n′) = 1, we have gcd(a′, d) = 1, contradicted by d | a′. Hence d | n. Similarly,
d | n′. Then d | gcd(n, n′) = 1 and so gcd(an′ + a′n, nn′) = 1. Thus, an′ + a′n ∈ (Z/nn′Z)×.
Assume there exist a1, a2, a

′
1, a

′
2 such that a1n

′ + a′1n ≡ a2n
′ + a′2n (mod nn′). Then (a1 − a2)n

′ ≡
(a′2 − a′1)n (mod nn′) and so there exists k such that (a1 − a2)n

′ = n
(
(a′2 − a′1) + kn′), i.e.,

(a1 − a2)n
′ ≡ 0 (mod n). Also, since gcd(n, n′) = 1, a1 ≡ a2 (mod n). Simiarly, a′1 ≡ a′2 (mod n′).

Hence each an′ + a′n is a distinct reduced residue. Thus, ϕ(nn′) ⩾ ϕ(n)ϕ(n′).

Next, find b such that gcd(b, nn′) = 1. Then gcd(b, n) = 1 = gcd(b, n′). Claim. there are a, a′

such that an′+a′n ≡ b (mod n) with gcd(a, n) = 1 = gcd(a′, n′). Write gcd(n, n′) = 1 = nm′+n′m
for some m,m′. Then gcd(m,n) = 1 = gcd(m′, n′). Also, b = b(nm′ + n′m) = n(bm′) + n′(bm) =:
na + n′a′. Since gcd(m,n) = 1 and gcd(b, n) = 1, gcd(bm, n) = 1. Similarly, gcd(bm′, n′) = 1.
Since every reduced residue modulo nn′ is of the form an′ + bn′ with gcd(a, n) = 1 = gcd(a′, n′),
we have ϕ(n)ϕ(n′) ⩾ ϕ(nn′).

Lemma 2.61. Let f be a multiplicative function. Define

g(n) =
∑
d|n

f(d).

Then g is also multiplicative.

Proof. Let m,n ∈ N with gcd(m,n) = 1. If d | mn, since gcd(m,n) = 1, we can write d = d1d2,
where d1 = gcd(d,m) and d2 = gcd(d, n). Since gcd(d1, d2) = 1, we have

g(mn) =
∑
d|mn

f(d) =
∑

d1d2|mn

f(d1)f(d2) =
∑
d1|m

∑
d2|n

f(d1)f(d2) =
∑
d1|m

f(d1)
∑
d2|n

f(d2) = g(m)g(n).

Corollary 2.62. ∑
d|n

ϕ(d) = n.
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Proof. Let n = pe11 · · · perr be the canonical factorization. Since the possible factors of peii are
p0i , · · · , p

ei
i and ϕ(1) = 1, we have for i = 1, . . . , r,

∑
d|peii

ϕ(d) =

ei∑
k=1

ϕ(pki ) + 1 = 1 +

ei∑
k=1

(pki − pk−1
i ) = peii .

Then by Proposition 2.57(b),∑
d|n

ϕ(d) =
∑

d|pe11 ···perr

ϕ (pe11 · · · perr ) =
∑
d|pe11

ϕ (pe11 ) · · ·
∑
d|perr

ϕ (perr ) = pe11 · · · perr = n.

Definition 2.63. Given f(x) = arx
r + · · · , a1x + a0, we say the degree of f modulo n is j if

aj ̸≡ 0 (mod n) and aj+1, . . . , ar ≡ 0 (mod n).

Theorem 2.64. Let f ∈ Z[x] and Nf (m) be the number of solution of f ≡ 0 (mod m). Then Nf
is a multiplicative function, i.e., Nf (n) = Nf (

∏r
j=1 p

ej
j ) =

∏r
j=1Nf (p

ej
j ).

Proof. Let m1,m2 ∈ N with gcd(m1,m2) = 1. Assume f(a) ≡ 0 (mod m1m2) for some a. Let
aj ≡ a (mod mj) for j = 1, 2, then f(aj) ≡ f(a) ≡ 0 (mod mj) for j = 1, 2. Given a, we get a
distinct pair (a1, a2). So Nf (m1m2) ⩽ Nf (m1)Nf (m2).

Next, assume f(a1) ≡ 0 (modm1) and f(a2) ≡ 0 (modm2) for some a1, a2. Since gcd(m1,m2) =
1, by CRT, there exist a such that a ≡ a1 (mod m1) and a ≡ a2 (mod m2). Then f(a) ≡ f(a1) ≡
0 (mod m1) and f(a) ≡ f(a2) ≡ 0 (mod m2). So m1 | f(a) and m2 | f(a). Since gcd(m1,m2) = 1,
m1m2 | f(a), i.e., f(a) ≡ 0 (mod m1m2). So Nf (m1)Nf (m2) ⩽ Nf (m1m2).

Example 2.65. 2x ≡ 0 (mod 4). Then x = 0 and x = 2 are both solutions though deg(2x) = 1 .

Theorem 2.66. Let f ∈ Z[x] have degree n modulo p with n ⩾ 1. Then the congruences f(x) ≡
0 (mod p) has at most n solutions.

Proof. If n = 1, then ax+ b ≡ 0 (mod p), so x ≡ −ba−1 (mod p). Proved by induction. Assume the
result is true for all polynomials of degree less than n. Let deg(f) = n. If f has no solutions, we are
done. Suppose f has a solution a. Then f(a) ≡ 0 (mod p). Then we can write f(x) = (x− a)g(x)
for some g ∈ (Z/pZ)[x]. Then deg(g) < deg(f) = n, so induction hypothesis gives at most deg(g)
solutions to g(x) ≡ 0 (mod p). So f(x) ≡ (x−a)g(x) ≡ 0 (mod p) implies x = a or g(x) ≡ 0 (mod p).
Hence f has at most 1 + deg(g) = deg(f) roots.

Corollary 2.67. If d | p− 1, then the congruence xd ≡ 1 (mod p) has precisely d solutions.

Example 2.68. (a) x2 ≡ −1 (mod p) has 2 solutions if p ≡ 1 (mod 4) and has 0 solutions if
p ≡ 3 (mod 4).

(b) xp−1 − 1 ≡ 0 (mod p) has p − 1 solutions by Fermat’s little theorem. Then xp−1 − 1 ≡
(x− 1) · · · (x− (p− 1)) ≡ 0 (mod p). Plug in x = 0, −1 ≡ (−1) · · ·

(
−(p− 1)

)
≡ (p− 1)! (mod p),

which is Wilson’s theorem.
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2.5 Newton’s method

In this section, assume p is prime.

Theorem 2.69. This method gives a sequence of real numbers xn satisfying xn+1 = xn − f(xn)
f ′(xn)

.

You hope xn ! x.

Example 2.70. Find a solution to the congruences f(x) = x2 + 1 ≡ 0 (mod 54). Consider
x2 + 1 ≡ 0 (mod 5), which has solutions 2, 3. If x0 = 2, then f ′(x0) = 2x0 ≡ 4 ≡ −1 (mod 5).

Also, f(x0) = 5 ≡ 0 (mod 5). Then x1 = x0 − f(x0)
f ′(x0)

= 2 − 5
−1 = 7. Then f(x1) = x21 + 1 = 50 ≡

0 (mod 52) and f ′(x1) = 2x1 ≡ 14 ≡ −1 (mod 5). So x2 = x1 − f(x1)
f ′(x1)

= 7 − 50
−1 = 57. Then

f(x2) = x22 +1 = 3250 ≡ 0 (mod 53) and f ′(x2) = 2x2 = 114 ≡ −1 (mod 5). So x3 = x2 − f(x2)
f ′(x2)

=

57− 3250
−1 ≡ 182 (mod 54). Then x23 + 1 ≡ 0 (mod 54).

Lemma 2.71 (Hensel’s lemma). Let f ∈ Z[x]. Suppose f(a) ≡ 0 (mod pj), pt || f ′(a) and
j ⩾ 2t+ 1. Then

(a) whenever b ≡ a (mod pj−t), we have f(b) ≡ f(a) (mod pj) and pt || f ′(b);

(b) there exists a unique s (mod p) with the property that f(a+ spj−t) ≡ 0 (mod pj+1).

Proof. (a) Write b− a = hpj−t for some h. Since 2(j − t) = j + j − 2t ⩾ j + 1 > j and pt | f ′(a),

f(b) = f(a+ hpj−t) = f(a) + f ′(a)hpj−t +
f ′′(a)

2
(hpj−t)2 + · · · ≡ f(a) (mod pj).

Since j − t ⩾ t+ 1,

f ′(b) = f ′(a+ hpj−t) = f ′(a) + f ′′(a)hpj−t (mod p2(j−t)) ≡ f ′(a) (mod pt+1).

Thus, pt || f ′(b).

(b) Write f ′(a) = gpt for some g with gcd(p, g) = 1. Note there exists g such that gg ≡ 1 (mod p),
i.e., 1 − gg ≡ 0 (mod p). Since f(a) ≡ 0 (mod pj), we have f(a)(1 − gg) ≡ 0 (mod pj+1). Let
a′ := a− p−tgf(a). Since f(a) ≡ 0 (mod pj), p−tf(a) ≡ 0 (mod pj−t). Since 2(j − t) ⩾ j + 1,

f(a′) = f
(
a− p−tgf(a)

)
≡ f(a)−

(
p−tgf(a)

)
f ′(a) +

f ′′(a)

2

(
p−tgf(a)

)2
(mod p3(j−t))

≡ f(a)−
(
p−tf(a)g

)
f ′(a) (mod pj+1) = f(a)− f(a)gg (mod pj+1)

≡ f(a)(1− gg) (mod pj+1) ≡ 0 (mod pj+1).

With g = p−tf ′(a), set s := −p−jf(a)g ≡ −p−jf(a)g−1 (mod p) = −p−jf(a) [p−tf ′(a)]−1
(mod p).

Suppose we have two s′ and s such that f(a + spj−t) ≡ f(a + s′pj−t) (mod pj+1). Then
f(a)+spj−tf ′(a) ≡ f(a)+s′pj−tf ′(a) (mod pj+1), i.e., spj−tf ′(a) ≡ s′pj−tf ′(a) (mod pj+1). Since

pt || f ′(a), we have pj f
′(a)
pt (s− s′) ≡ 0 (mod pj+1). So s ≡ s′ (mod p).

Remark. Let f(a1) ≡ 0 (mod pj) with pt || f ′(a1) and j ⩾ 2t + 1. Then there exists s1 such
that f(a2) := f(a1 + s1p

j−t) ≡ 0 (mod pj+1). So a2 − a1 = s1p
j−t ≡ 0 (mod pt+1). Next, since
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f ′(a2) = f ′(a1 + s1p
j−t) = f ′(a1) + f ′′(a1)s1p

j−t ≡ f ′(a1) (mod pt+1) and pt || f ′(a1), pt || f ′(a2).
Also, since j + 1 ⩾ 2t+ 1, there exists a unique s2 (mod p) such that f(a3) := f(a2 + s2p

j+1−t) ≡
0 (mod pj+1). So a3 − a2 = s2p

j+1−t ≡ 0 (mod pt+2). By inducitive process, we have from root a1
modulo p, we get a sequence (am)m⩾1 such that for any n ⩽ m, am ≡ an (mod pt+n).

Corollary 2.72. If f ∈ Z[x] and there exists a such that f(a) ≡ 0 (mod pj) and p ∤ f ′(a) and
j ⩾ 1. Then there exists a unique s (mod p) with the property that f(a+ spj) ≡ 0 (mod pj+1).

Example 2.73. Find a solution to the congruences f(x) = x2 + 1 ≡ 0 (mod 54). Consider
x2 + 1 ≡ 0 (mod 51), which has solution 2, 3. Let a1 = 2, then f ′(a1) = 2a1 = 4. Since 50 || 4,
t = 0. Let

s1 = −5−1f(2)[5−0f ′(2)]−1 (mod 5) = −1

5
5(4)−1 (mod 5) = −4 (mod 5) ≡ 1 (mod 5).

Then consider x2 +1 ≡ 0 (mod 52) with root a2 = 2+1 · 51−0 ≡ 7 (mod 52), we have f(a2) ≡ 50 ≡
0 (mod 52) and f ′(a2) = 2a2 = 14. Let

s2 = −5−2f(7)[5−0f ′(7)]−1 (mod 5) = − 1

25
50(14)−1 (mod 5) = −8 (mod 5) ≡ 2 (mod 5).

Then consider x2 + 1 ≡ 0 (mod 52) with root a3 = 7 + 2 · 52−0 = 57 (mod 53), we have f(a3) ≡
3250 ≡ 0 (mod 53) and f ′(a3) = 2a3 = 114. Let

s3 = −5−3f(57)[5−0f ′(57)]−1 (mod 5) = − 1

125
3250

1

114
(mod 5) = −26·(4)−1 (mod 5) ≡ 1 (mod 5).

Then a4 = 57 + 53−0 · 1 ≡ 182 (mod 54) and f(a4) ≡ 1822 + 1 ≡ 0 (mod 54).

2.6 p-adic numbers

In this section, assume p is prime.

Definition 2.74. Let K be a field. A real-valued function |·| : K ! R+ is a valuation if there is a
M ∈ R+ such that the following conditions hold: for any b, c ∈ K,

(a) |b| = 0 if and only if b = 0,

(b) |bc| = |b||c|,

(c) if |b| ⩽ 1, then |1 + b| ⩽M .

Example 2.75. (a) The trivial valuation, taking M = 1, |x| =
{

0, x = 0
1, x ̸= 0

.

(b) The absolute value on R is a valuation, taking M = 2.

(c) Usual absolute value on C, taking M = 2.

Definition 2.76. (a) Define the p-adic absolute value/norm by

|n|p =
{
p−νp(n) if n ̸= 0
0 if n = 0

,

where νp(n) is such that pνp(n) || n.
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(b) If r ∈ Q∖ {0}, write r = pt ab with p ∤ ab. Define the p-adic absolute value/norm by

|r|p =
{
p−t if r ̸= 0
0 if r = 0

.

Theorem 2.77. ∣∣∣m
n

∣∣∣
p
=

|m|p
|n|p

=
p−νp(m)

p−νp(n)
= p−(νp(m)−νp(n)),∀m

n
∈ Q.

Theorem 2.78. |·|p is a valuation on Q.

Proof. (a) It is straightforward.

(b) Let r1 = pt1 a1b1 with p ∤ a1b1 and r2 = pt2 a2b2 with p ∤ a2b2, then r1r2 = pt1+t2 a1a2b1b2
with

p ∤ a1a2b1b2. Then |r1r2|p = p−(t1+t2) = |r1|p|r2|p.

(c) Let α ∈ Q∖ {0} such that |α|p ⩽ 1. Write α = pt uv with p ∤ uv, so t ⩾ 0. Let s ⩾ 0 such that

ps || v + ptu and so |1 + α|p =
∣∣∣ v+ptuv

∣∣∣
p
=

|v+ptu|
p

|v|p
= p−s

1 ⩽ 1.

Theorem 2.79.
|x+ y|p ⩽ max

{
|x|p, |y|p

}
,∀x, y,

which is ultrametric inequality that is stronger than triangle inequality.

Definition 2.80. Given |·|, x ∈ Q and ϵ ∈ R>0, define an open ball by

B|·|p(x, ϵ) = {y ∈ Q : |x− y|p < ϵ}.

Theorem 2.81. Any point is the center of the disk.

Proof. Let a, b ∈ B|·|(x, ϵ), then

|a− b|p ⩽ |x− b+ a− x|p ⩽ max{|x− b|, |a− x|} < ϵ.

Hence B|·|p(a, ϵ) = B|·|p(x, ϵ) = B|·|p(b, ϵ).

Remark. In the p-adic integers, congruences are approximations: for a, b ∈ Z, a ≡ b (mod pn) is
the same as |a− b|p ⩽ 1

pn . Turning information modulo one power of p into similar information
modulo a higher power of p can be interpreted as improving an approximation.

Example 2.82. Define a sequence a1 = 4, a2 = 34, a3 = 334, a4 = 3334, · · · . Then an =
⌈
10n

3

⌉
or

3an = 10n + 2, i.e., 3an − 2 = 10n. Then |3an − 2|5 = |10n|5 = 5−n ! 0. So an
|·|5−! 2

3 . Thus,

2

3
= lim
n!∞

an = 3 + 3 · 10 + 3 · 102 + 3 · 103 + · · · .

Definition 2.83. Let K be any field with valuation |·|. A sequence ⟨an⟩ ⊆ K converges to b if for
any ϵ > 0, there exists N ∈ N such that |an − b| < ϵ for any n ⩾ N .

Definition 2.84. We say a field K is complete if every Cauchy sequence in K converges to an
element of K.
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Remark. Recall that when one completes Q with respect to the usual absolute value, we arrive at
R. We will develop a completion of Q based upon the p-adic absolute value |·|p, leading us to the
complete metric space Qp, the field of p-adic numbers.

Remark. Given a valuation |·| on K, we get a topology on K with basis given by open balls.

Definition 2.85. Let K be a field with valuation |·|. We say F ⊇ K together with a valuation |·|F
that extend |·| is a completion of K w.r.t. |·| if

(a) F is complete.

(b) F is the closure of K.

Theorem 2.86. Given a field K with valuation |·|, there is a completion of K w.r.t. |·|. Moreover,
any two completions are canonically isomorphic.

Definition 2.87.
Qp = completion of Q w.r.t. |·|p.

Definition 2.88. A valuation |·| on K is called non-archimedean if it satisfies the ultrametric
inequality. Otherwise, we say it is archimedean.

Example 2.89. |·|p is non-archimedean on Q. The absolute value |·| is archimedean on Q.

Theorem 2.90 (Ostrowski). Let K be a field. If K is complete w.r.t archmedean valution |·|, then
K is isomorphic to R or C.

Theorem 2.91. If we consider Q, the only valuation on Q are powers of |·|, or |·|p.

Definition 2.92. Let K be a field with non-archmedean valuation |·|. Define

O = {x ∈ K : |x| ⩽ 1},

p = {x ∈ K : |x| < 1},
O× = {x ∈ K : |x| = 1} = O ∖ p.

Theorem 2.93. (a) The set O is a ring, which is called the valuation ring. The set O is also
referred to as the (|·|)-adic integers, for example Zp : p-adic integers.

(b) The set p is the maximal ideal in the local ring O. O/p is called residue class field.

(c) The set O× is the units in O.

Example 2.94. Let 2
3 ∈ Q. Then 2

3 is a 5-adic integer since
∣∣ 2
3

∣∣
5
= 1, but not a 3-adic integer

since
∣∣ 2
3

∣∣
3
= 3.

Remark. If K = Qp, then O =: Zp, which is where our sequence of lifted solutions from Hensel’s
lemma.

Example 2.95. Let K = Qp, then with a ∈ Z and b ∈ Z ∖ {0},

O =
{a
b
: p ∤ b

}
,

p =
{a
b
∈ O : p | a

}
,

O× =
{a
b
∈ Q : p ∤ ab

}
=
{a
b
∈ O : p ∤ a

}
.
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Definition 2.96. Let K̂ be the completion of K w.r.t. |·|. Let Ô be the valuation ring of K̂. Let p̂
be the maximal ideal in Ô. Let Ô

× be the units in Ô.

Lemma 2.97. The natural map O/p ! Ô/p̂ induced via O ↪! Ô is an isomorphism.

K K̂

O Ô

|·|K̂
∣∣
K = |·|K.

Proof. Let R
ψ
↪! S be a ring homomorphism and I ⩽ R and J ⩽ S be ideals with ψ(I) ⊆ J . Define

ϕ : R/I ! S/J by r+ I 7! ψ(r) + J . Let r1 + I = r2 + I ∈ R/I. Since ψ is a ring homomorphism,
ψ(r1)−ψ(r2) = ψ(r1− r2) ∈ ψ(I) ⊆ J . So ψ(r1)+J = ψ(r2)+J . Hence ϕ is well-defined. Clearly,
it is also a ring homomorphism.

Consider φ : O/p ! Ô/p̂ by a + p 7! a + p̂. Then φ is a well-defined ring homomorpism since

f : p
⊆
−! p̂ is a ring homomorphism and f(p) = p ⊆ p̂. Let a + p ∈ Ker(φ) with a ∈ O. Then

a + p̂ = p̂, i.e., a ∈ p̂. Then |a|K = |a|K̂ < 1. So a ∈ p and then a + p = p. Thus, it is 1-1. Let

α + p̂ ∈ Ô/p̂ with α ∈ Ô. Since K̂ is the closure of K, there exists a ∈ K such that |a− α|K̂ < 1.
Also, since α ∈ Ô, |α|K̂ ⩽ 1. So |a|K = |a|K̂ = |α+ (a− α)|K̂ ⩽ max{|α|K̂, |a− α|K̂} ⩽ 1. So a ∈ O.
Also, since |a− α|K̂ < 1, a− α ∈ p̂. Hence φ(a+ p) = a+ p̂ = α+ p̂. Thus, φ is onto.

Example 2.98 (Exercise). Let K = Qp. Show that O/p ∼= Fp.

Remark. Our result gives K̂ = Qp, Ô = Zp and Ô/p̂ ∼= O/p ∼= Fp.

Let |·| be nonarchmedean.

Definition 2.99. The set {|a| : a ∈ K×} is a subgroup of (R>0, ·). This is called the valuation
group.

Example 2.100 (Exercise). The valuation groups of K and K̂ coincides.

Definition 2.101. A valuation |·| : K ! R+ is discrete if there exists δ > 0 such that when
1− δ ⩽ |a| ⩽ 1 + δ, we have |a| = 1.

Lemma 2.102. A valuation |·| : K ! R+ is discrete if and only if the max ideal p is principal.

Proof. ⇐= Let p = ⟨ϖ⟩O for some ϖ ∈ K. If |a| < 1, then a ∈ p and so a = ϖb for some b ∈ O.

So |a| ⩽ |ϖ|. If |a| > 1, then
∣∣ 1
a

∣∣ < 1 and so 1
a ∈ p. Then 1

a = ϖc for some c ∈ O. So |a| ⩾ |ϖ|−1
.

This gives |·| is discrete since when |ϖ| < |a| < |ϖ|−1
, then |a| = 1.

=⇒ Since |·| is discrete, the set S = {|a| : |a| < 1} attains an upper bound. Say this happens at

ϖ. Let c ∈ p. Then
∣∣ c
ϖ

∣∣ = |c|
|ϖ| ⩽ 1 and so c

ϖ ∈ O. Hence c = ϖ c
ϖ ∈ ⟨ϖ⟩O and so p ⊆ ⟨ϖ⟩. Clearly,

⟨ϖ⟩ ⊆ p. Thus, p = ⟨ϖ⟩.

Example 2.103. p = max ideal of Zp = pZp and Zp/pZp ∼= Fp.

Lemma 2.104. Let K be complete w.r.t. a non-archmedean valuation |·|. Then
∑∞
n=0 an converges

if and only if limn!∞ an = 0.
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Proof. Assume limn!∞ an = 0. Then given ϵ > 0, there exists Nϵ ∈ N such that whenever N > Nϵ,

|aN | < ϵ. Let N ⩾ M > Nϵ, then
∣∣∣∑N

i=0 ai −
∑M
i=0 ai

∣∣∣ = ∣∣∣∑N
i=M+1 ai

∣∣∣ ⩽ maxM+1⩽i⩽N |ai| < ϵ. So

{
∑N
i=0 ai} is Cauchy and thus that K complete means it converges.

Lemma 2.105. Let K be complete w.r.t. non-archmedean discrete valuation |·|. Let ϖ ∈ O such
that p = (ϖ). Let A ⊆ O be a set of representatives of O/p. Then every a ∈ O has a unique
representation a =

∑∞
n=0 anϖ

n with an ∈ A. Conversely, every such sum converges to an element
of O.

Proof. =⇒ Let a ∈ O. Then there is a unique element a0 ∈ A such that a ∈ a0+p. So a = a0+ϖb1
for some b1 ∈ O. Note there is a unique a1 ∈ A such that b1 = a1 + ϖb2 for some b2 ∈ O. Then
a = a0+ϖa1+ϖ

2b2. Continue this and we get a unique sequence with a = a0+a1ϖ+a2ϖ
2+ · · ·+

anϖ
n + bn+1ϖ

n+1. Since
∣∣bn+1ϖ

n+1
∣∣ ⩽ ∣∣ϖn+1

∣∣ = |ϖ|n+1 ! 0, a−
∑n
k=0 akϖ

k = bn+1ϖ
n+1 ! 0.

Thus,
∑∞
n=0 ajϖ

j ! a.
“⇐” It follows from Lemma 2.104.

Corollary 2.106. Given a element of Zp, since pZp = ⟨p⟩, we can write it uniquely in the form
α =

∑∞
n=0 anp

n with an ∈ {0, . . . , p− 1}.

Example 2.107. Suppose we want to find an element α in Z7 such that 5α = 1, i.e., α = 1
5 . Let

α =
∑∞
n=0 an7

n. Then 0 = −1+5α = −1+
∑∞
n=0 5an7

n, i.e., −1+5a0 ≡ 0 (mod 7), so a0 = 3. Hence
α = 3+

∑∞
n=1 an7

n. Note 0 = −1+5α = 14+
∑∞
n=1 5an7

n, i.e., 7
(
(2 + 5a1) +

∑∞
n=2 5an7

n−1
)
= 0.

Then 2 + 5a1 ≡ 0 (mod 7). So a1 = 1. Hence α = 3 + 1 · 71 +
∑∞
n=2 an7

n. Actually, 1
5 = α =

3 + 1 · 7 + 4 · 72 + 5 · 73 + · · · .

Proposition 2.108. Let {an}n∈N be a Cauchy sequence in Zp. If an
|·|p
−−! α, then α ∈ Zp.

Proof. Since an
|·|p
−−! α in Qp, there is N ∈ N such that |an − α|p < 1 when n ⩾ N . Also, since

aN ∈ Zp, |aN |p ⩽ 1. So |α|p = |α− aN + aN |p ⩽ max{|α− aN |p, |aN |p} ⩽ 1. Thus, α ∈ Zp.

Proposition 2.109. (a) Z is dense in Zp. Formally, that means that for every α ∈ Zp and every
ϵ > 0, B|·|p(α, ϵ) ∩ Z ̸= ∅.

(b) Q is dense in Qp.

Proof. (a) Let ϵ > 0. Then there exists n ∈ N such that p−n < ϵ. Let α ∈ Zp. Then by

Corollary 2.106, α has the unique representation
∑∞
k=1 akp

k with ak ∈ Zp. Let β =
∑n−1
k=1 akp

k ∈ Z.
Then |α− β|p ⩽ p−n < ϵ.

(b) It is similar.

Theorem 2.110 (A basic version of Hensel’s lemma). If f ∈ Zp[x] and a ∈ Zp satisfies f(a) ≡
0 (mod p) and f ′(a) ̸≡ 0 (mod p), then there is a unique α ∈ Zp such that f(α) = 0 and α ≡
a (mod p).

Proof. We prove this by induction on n ∈ N, there exists an an ∈ Zp such that f(an) ≡ 0 (mod pn)
and an ≡ a (mod p). The case n = 1 is trivial, using a1 = a. Assume the inductive hypothesis
holds for n, we seek an+1 ∈ Zp such that f(an+1) ≡ 0 (mod pn+1) and an+1 ≡ a (mod p). Since
f(an+1) ≡ 0 (mod pn+1) implies f(an+1) ≡ 0 (mod pn), any root of f(X) mod pn+1 reduces to
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a root of f(X) mod pn. By the inductive hypothesis there is a root an mod pn, so we seek an
an+1 ∈ Zp such that an+1 ≡ an (mod pn) and f(an+1) ≡ 0 (mod pn+1). Write an+1 = an + tnp

n.
The goal is to find tn ∈ Zp such that f(an+1) ≡ 0 (mod pn+1). Assume deg(f) ⩾ 2. Claim.
f(X + Y ) = f(X) + f ′(X)Y + g(X,Y )Y 2 for some g ∈ Zp[X,Y ]. Write for some d ⩾ 2, f(X) =∑d
j=0 cjX

j ∈ Zp[x]. Then

f(X + Y ) =

d∑
j=0

cj(X + Y )j = c0 + c1(X + Y ) +

d∑
j=2

cj

[
Xj +

(
j

1

)
Xj−1Y + gj(X,Y )Y 2

]

= c0 + c1X + c1Y +

d∑
j=2

cjX
j +

d∑
j=2

cjjX
j−1Y +

d∑
j=2

cjgj(X,Y )Y 2

=

d∑
j=0

cjX
j +

d∑
j=0

cjjX
j−1Y +

d∑
j=2

cjgj(X,Y )Y 2 = f(X) + f ′(X)Y + g(X,Y )Y 2.

Since 2n ⩾ n+ 1 and f(an)
pn ∈ Zp,

f(an+1) = f(an + tnp
n) ≡ 0 (mod pn+1)

⇐⇒ f(an) + f ′(an)tnp
n + g(an, tnp

n)(tnp
n)2 ≡ 0 (mod pn+1)

⇐⇒ f(an) + f ′(an)tnp
n ≡ 0 (mod pn+1)

⇐⇒ f ′(an)tnp
n ≡ −f(an) (mod pn+1)

⇐⇒ f ′(an)tn ≡ −f(an)
pn

(mod p),

Since an ≡ a (mod p), f ′(an) ≡ f ′(a) ̸≡ 0 (mod p). So there is a solution for tn in the congruence
mod p. Since an+1 = an+tnp

n and an ≡ a (mod p), we have an+1 ≡ a (mod p). This completes the
induction. This also gives a sequence {aj}j∈N satisfying f(aj) ≡ 0 (mod pj) and aj+1 ≡ aj (mod pj),
for j ∈ N. Note |aj+1 − aj |p ⩽ p−j for j ∈ N. So the sequence {aj}j∈N is Cauchy, which converges

to some α ∈ Zp. Also, note am ≡ an (mod pn) for any m > n ⩾ 1. Letting m ! ∞, we have
α ≡ an (mod pn) for n ∈ N. In particular, α ≡ a (mod p). Also, since f(α) ≡ f(an) ≡ 0 (mod pn),
|f(α)|p ⩽ 1

pn for n ∈ N. Thus, f(α) = 0. Suppose there exists β ∈ Zp such that f(β) = 0 and

β ≡ a (mod p). Claim. β = α. It is enough to show β ≡ α (mod pn) for all n ∈ N. Proof by
induction. Since β ≡ a ≡ α (mod p), the case n = 1 is straightforward. Assume β ≡ α (mod pn).
Then β = α+ pnγn with γn ∈ Zp. We have f(β) = f(α+ pnγn) ≡ f(α) + f ′(α)pnγn (mod pn+1).
Since f(α) = 0 = f(β), 0 ≡ f ′(α)pnγn (mod pn+1) and then f ′(α)γn ≡ 0 (mod p). Since f ′(α) ≡
f ′(a) ̸≡ 0 (mod p), we have γn ≡ 0 (mod p). Thus, β ≡ α (mod pn+1).

Remark. In general, if f ′(a) ≡ 0 (mod p), then sometimes there are no lifts and sometimes there
are multiple lifts.

Remark. A similar argument shows that for all n ⩾ 1, f has a unique root mod pn that reduces
to a (mod p). So we can think about the uniqueness of the lifting of the mod p root in two ways:
it has a unique lifting to a root in Zp or it has a unique lifting to a root in Z/(pn) for all n ⩾ 1.

Example 2.111. Let f(x) = 5x− 1 ∈ Z7[x] and a = 3. Then f(3) ≡ 0 (mod 7) and f ′(x) = 5 ̸≡
0 (mod 7). So we have a unique α ∈ Z7 such that 5α = 1 and α ≡ 3 (mod 7). In previous example,
we saw approximations to α.
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Example 2.112. Let f(x) = x3 − 2 ∈ Z5[x]. Note f(3) ≡ 0 (mod 5), f ′(x) = 3x2 and f ′(3) ̸≡
0 (mod 5). Then there exists unique α ∈ Z5 such that α ≡ 3 (mod 5) and α3 = 2 in Z5. Note
α = 3 + 2 · 52 + 2 · 53 + 3 · 54 + · · · .

Example 2.113. Let f(x) = x3 − x − 2 ∈ Z2[x]. Then f(0) ≡ 0 (mod 2), f(1) ≡ 0 (mod 2),
f ′(x) ≡ 3x2−1 ≡ x2−1 (mod 2), f ′(0) ̸≡ 0 (mod 2) and f ′(1) ≡ 0 (mod 2). Hensel’s lemma says you
have a unique α ∈ Z2 such that f(α) = 0 and α ≡ 0 (mod 2). Explicitly, α = 0+2+22+24+27+· · · .

Example 2.114. Let n ∈ Z, p ∤ n and u ∈ Zp such that u ≡ 1 (mod pZp), i.e., u = 1 + a1p +
a2p

2 + · · · for some a1, a2 · · · ∈ Zp. Then there exists β ∈ Zp such that βn = u. Let f(x) = xn− u.
Note f(1) = 1n − u = 1− u ≡ 0 (mod p), f ′(x) = nxn−1 and f ′(1) = n ̸≡ 0 (mod p). By Hensel’s
lemma, there exists a unique β ∈ Zp such that f(β) = 0 and β ≡ 1 (mod p).

Definition 2.115. In mathematics, a root of unity, occasionally called a de Moivre number, is any
complex number that gives 1 when raised to some positive integer power n. In field theory and ring
theory the notion of root of unity also applies to any ring with a multiplicative identity element.

Any algebraically closed field has exactly n nth roots of unity if n is not divisible by the char-
acteristic of the field.

Example 2.116. Consider f(x) = xp−x ∈ Zp[x]. By Fermat’s little theorem, for k = 0, . . . , p−1,
f(k) ≡ 0 (mod p) and f ′(x) = pxp−1−1 ≡ −1 ̸≡ 0 (mod p). Hensel’s lemma says for k = 0, . . . , p−1,
there exists a unique wk ∈ Zp such that f(wk) = 0 and wk ≡ k (mod p). For k = 1, . . . , p− 1, we

have wp−1
k = 1. The numbers {wk, 0 ⩽ k ⩽ p− 1} are distinct since they are already distinct when

reduced modulo p. Thus, for each non-zero residue class modulo p, we get a unique (p− 1)th root
of unity. So xp − x = x

(
xp−1 − 1

)
splits completely over Zp[x]. Its roots in Zp are 0 and p-adic

(p−1)th roots of unitys. Note w0 = 0, w1 = 1 and wp−1 = −1. Other wk’s are more interesting. For
instance, when p = 5, wk is a root of x5−x = x(x4−1) = x(x−1)(x+1)(x2+1). So w2 and w3 are
square roots of −1 in Z5: w2 = 2+5+2·52+53+3·54+4·55+· · · , w3 = 3+3·5+2·52+3·53+54+· · · .
Then w2, w3 ∈ Z5 such that w2

2 = −1 and w2
3 = −1.

Theorem 2.117 (A strong version of Hensel’ lemma). Let f(x) ∈ Zp[x] and a ∈ Zp such that

|f(a)|p < |f ′(a)|2p. There is a unique α ∈ Zp such that f(α) = 0 and |α− a|p < |f ′(a)|p. Moreover,

(a) |α− a|p =
∣∣∣ f(a)f ′(a)

∣∣∣
p
< |f ′(a)|p,

(b) |f ′(α)|p = |f ′(a)|p.

Remark. In the basic version of Hensel’ lemma, since f ′(a) ̸≡ 0 (mod p) if and only if |f ′(a)|p = 1,

we have |f(a)|p < |f ′(a)|2p = 1 if and only if p | f(a).

2.6.1 Roots of unity in Qp via Hensel’s lemma

In this section, assume p is prime.

Remark. Hensel’s lemma is often considered to be a method of finding roots to polynomials, but
that is just the one aspect: the existence of a root. There is also a uniqueness part to Hensel’s
lemma: it tells us there is a unique root within a certain distance of an approximate root. We will
use the uniqueness to find all of the roots of unity in Qp.
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Theorem 2.118. The roots of units in Qp are the (p − 1)th root of unity for p odd and ±1 for
p = 2.

Proof. Let x ∈ Qp with xn = 1. Then |x|np = 1. So |x|p = 1. Hence x ∈ Z×
p ⊆ Zp. Therfore, we

work in Zp right from the start. Let’s consider roots of unity of order relatively prime to p. Let
ξ1 and ξ2 be roots of unity in Zp with order prime to p and let m be the product of their order.
Then both of ξ1 and ξ2 are roots of f(x) = xm − 1 and p ∤ m. Since p ∤ 1, we have p ∤ ξj and then

|f ′(ξj)|p =
∣∣mξm−1

j

∣∣
p
= |ξj |m−1

p = 1 for j = 1, 2. Since f(ξj) = 0, the uniqueness of Hensel’s lemma

says that the only root α of xm − 1 satisfying |α− ξj |p < |f ′(ξj)|p = 1 is ξj for j = 1, 2. So if

ξ2 ≡ ξ1 (mod pZp), then by the uniqueness, ξ2 = ξ1. These statements says distinct roots of unity
in Zp having order prime to p cannot be congruent modulo p. In Example 2.116, we have showed
in Zp, each wk (congruence class) for k = 1, . . . , p− 1 is a root of xp−1 − 1 and p− 1 is prime to p.
So each congruence class mod pZp contains a unique (p− 1)th root of unity. Hence the only roots
of unity of order prime to p in Qp are roots of xp−1 − 1.

Claim. the only pth root of unity in Z×
p is 1 for odd p and the only 4th roots of unity in

Z×
2 are ±1. This implies the only pth power roots of unity in Z×

p are 1 for odd p and ±1 for
p = 2. First we consider roots of unity of p-power order. We first consider p odd and suppose
ξ ∈ Z×

p = {
∑∞
k=0 akp

k ∈ Zp | a0 ̸= 0} such that ξp = 1. Then gcd(ξ, p) = 1 and ξ ≡ 1 (mod pZp).

Consider f(x) = xp − 1. Then f(ξ) = 0 and |f ′(ξ)|p =
∣∣pξp−1

∣∣
p
= |p|p|ξ|

p−1
p = |p|p = 1

p . So the

uniqueness in Hensel’s lemma implies the ball{
x ∈ Qp : |x− ξ|p < |f ′(ξ)|p

}
=

{
x ∈ Qp : |x− ξ|p ⩽

1

p2

}
= ξ + p2Zp

contains no pth root of unity other than ξ. Claim. ξ ≡ 1 (mod p2Zp), so 1 is in that ball and thus
ξ = 1. Write ξ = 1 + py for some y ∈ Zp. Then

1 = ξp = (1 + py)p = 1 + p(py) +

p−1∑
k=2

(
p

k

)
(py)k + (py)p ≡ 1 + p(py) (mod p3),

i.e., p2y ≡ 0 (mod p3). So p | y. Thus, ξ ≡ 1 (mod p2) which forces ξ = 1. Now we turn to p = 2.
We want to show the only 4th roots of unity in Z×

2 are ±1. This won’t use Hensel’s lemma. Let
ξ ∈ Z×

2 be a 4th root of unity and ξ ̸= ±1. Since x4−1 = (x2−1)(x2)+1, we have ξ2 = −1 and then
ξ2 ≡ −1 (mod 4). However, since ξ ∈ Z×

2 , we have ξ ≡ 1 or 3 (mod 4) and then ξ2 ≡ 1 (mod 4), a
contradiction. For any prime p, a root of unity is a (unique) product of a root of unity of p-power
order and a root of unity of order prime to p, so the only root of unity in Qp, are the roots of
Xp−1 − 1 for p ̸= 2 and ±1 for p = 2.

Lemma 2.119. pZp is the unique ideal of Zp.

Remark (Notation). Usually, write µn for the nth root unity. µn(C) ⊆ C where µn(C) is the set
of nth root of unity in C. We showed µp (Qp) ⊆ Zp.

Example 2.120. For d ∈ Z, the equation x3 + 2y3 + 5z3 + dw2 = 0 has a nontrivial solution
(x, y, z, w) ∈ Z4

17.

Proof. Note (1, 2, 0, 0) satisfies 13 + 2 · 23 + 5 · 03 + d · 03 ≡ 0 (mod 17). Fix (y, z, w) = (2, 0, 0)

and set f(x) = x3 + 16. Since |f(1)|17 = |17|17 = 1
17 < 1 and |f ′(1)|2 = |3|217 = 12 = 1, we

have |f(1)|17 < |f ′(1)|217. So Hensel’s lemma applies to give α ∈ Z17 with f(α) = 0. Hence
α3 + 2 · (23) + 5 · 03 + d · 03 = 0, i.e., (α, 2, 0, 0) ∈ Z4

17 is a nontrivial solution.
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2.6.2 Primitive roots

In this section, assume p is prime.

Definition 2.121. Let n ∈ N and gcd(a, n) = 1. Let ordn(a) denote the (multiplicative) order of
a modulo n,

Lemma 2.122. Let n ∈ N and gcd(a, n) = 1. Then the order of a modulo n exists and divides
ϕ(n). Moreover, if ak ≡ 1 (mod n), then the order of a modulo n divides k.

Proof. By Euler’s theorem, aϕ(n) ≡ 1 (mod n). Then the order exists and let d = ordn(a). Since
⟨a⟩ ⩽ (Z/nZ)×, by Lagrange’ theorem, ordn(a) | ϕ(n). Suppose ak ≡ 1 (mod n). Division algorithm
allows us to write k = dϵ+ r with r, d ∈ Z and 0 ⩽ r < d. So ak = adϵ+r = (ad)ϵ · ar ≡ ar (mod n).
Since ak ≡ 1 (mod n), ar ≡ 1 (mod n). Then by the minimality of d, r = 0. Thus, d | k.

Lemma 2.123. Suppose ordm(a) = h. Then ordm(ak) = h
gcd(h,k) .

Proof. Since ordm(a) = h, gcd(a,m) = 1. So gcd(ak,m) = 1. Assume (ak)j ≡ 1 (mod m), then h |
kj by Lemma 2.122. Note h | kj if and only if h

gcd(h,k)

∣∣ k
gcd(h,k)j. Since gcd

(
h

gcd(h,k) ,
k

gcd(k,h)

)
= 1,

we have h
gcd(h,k)

∣∣ j. So h
gcd(h,k)

∣∣ ordm(ak). Note (ak)
h

gcd(h,k) = a
kh

gcd(h,k) = (ah)
k

gcd(h,k) ≡ 1 (modm).

So ordm(ak)
∣∣ h

gcd(h,k) .

Lemma 2.124. Let ordm(a) = h and ordm(b) = k. If gcd(h, k) = 1, then ordm(ab) = hk.

Proof. Let d = ordm(ab). Since (ab)hk = ahk · bhk = (ah)k(bk)h ≡ 1k · 1h (mod m) ≡ 1 (mod m),

d | hk. Since 1 ≡ ah ≡ (ah)d (mod m), bdh ≡ (ah)dbdh ≡
[
(ab)d

]h ≡ 1 (mod m). So k = ordm(b) |
dh. Since gcd(h, k) = 1, k | d. Similarly, h | d. This gives hk = hk

gcd(h,k) = lcm(h, k) | d.

Definition 2.125. Let m ∈ N. We say g is a primitive root modulo m if ordm(g) = ϕ(m).

Theorem 2.126. g is a primitive root modulo m if and only if g is generator of (Z/mZ)×.

Proof. =⇒ Since ordm(g) is defined, gcd(g,m) = 1. So g ∈ (Z/mZ)×. Note ordm(g) = ϕ(m) =
|(Z/mZ)×|.

⇐= It is straightforward.

Theorem 2.127. There exists ϕ(p− 1) primitive roots modulo p.

Proof. If p = 2, this is straightforward. Assume p is odd prime. Then each element in {1, . . . , p−1}
has order (modulo p) dividing ϕ(p) = p−1. Given d | p−1, let ψ(d) denotes the number of elements
in {1, . . . , p − 1} with order d modulo p. So

∑
d|p−1 ψ(d) = p − 1. Claim. ψ(d) = ϕ(d) for any

d | p− 1. Let d | p− 1. Suppose ordp(a) = d. Then a, . . . , ad are all inequivalent modulo p. These
are all solutions of xd − 1 ≡ 0 (mod p) and no other solutions. So anythings of order d must be in
this list. Alo, since ordp(a

k) = d
gcd(d,k) by Lemma 2.123, the elements of order d are precisely those

ak with gcd(d, k) = 1. These are ϕ(d) such powers. So in particular, ψ(p− 1) = ϕ(p− 1), which is
the number of elements in {1, . . . , p− 1} with order p− 1 = ϕ(p).

Theorem 2.128. Let g be a primitive root modulo p, then there exists x such that g + px is a
primitive root modulo p2. Moreover, g + px is a primitive root modulo pk for k ∈ N when p is odd.
(Thus, we have primitive roots modulo pk, i.e., (Z/pkZ)× is cyclic for k ∈ N).
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Proof. Want to find an x such that g′ := g+px is primitive modulo p2. Since ordp(g) = ϕ(p) = p−1,
gp−1 = 1 + py for some y. We have (g′)p−1 = (g + px)p−1 ≡ gp−1 + (p − 1)gp−2px (mod p2). So

(g′)p−1 = 1+pz with z ≡ gp−1−1
p +(p−1)gp−2x (mod p2). Since (p−1)gp−2 is prime to p and we can

choose x such that gcd(z, p) = 1 (first choose such a z, and then solve for x). Since g′ ≡ g (mod p),
g′ is primitive modulo p. Let k ⩾ 2 and d = ordpk(g

′). Then d | ϕ(pk) = pk−1(p − 1). We have
(g + px)d = g′d ≡ 1 (mod p), i.e., gd ≡ 1 (mod p). So p − 1 | d. Since (g′)p−1 = 1 + pz with
gcd(p, z) = 1, (g′)p−1 ̸≡ 1 (mod p2). So d ̸= p − 1 and then d > p − 1. Since ϕ(p) = (p − 1) | d |
pj−1(p− 1) for j ⩾ 2, (p− 1) | d | p(p− 1).

Let k = 2. Since d > p− 1, ordp2(g
′) = d = p(p− 1) = ϕ(p2). Thus, g′ is primitive modulo p2.

For higher power k ⩾ 3, assume p is odd. Suppose d = ordpk(g
′) < ϕ(pk) = pk−1(p− 1). Since

ϕ(p) = p − 1 | d | pk−1(p − 1), we have d = pj(p − 1) for some 0 ⩽ j ⩽ k − 1. Since p is odd,(
(g′)p−1

)pj
= (1 + pz)p

j

= 1 + pj+1zj for some zj with gcd(zj , p) = 1 since gcd(z, p) = 1. So if

(g′)p
j(p−1) ≡ 1 (mod pk), then j + 1 ⩾ k, a contradiction. Thus, we must have d = ϕ(pk).

Exercise 2.129. What does the proof fail for p = 2?

Corollary 2.130. (a) The number of primitive root modulo p is ϕ(p− 1).

(b) The number of primitive roots modulo p2 is (p− 1)ϕ(p− 1).

(c) The number of primitive roots modulo pk is pk−2(p− 1)ϕ(p− 1), where p is odd.

Proof. Let m be a modulus in each question. Then by Theorem 2.128, there exists a primitive root
g modulo m.

Theorem 2.131. There exists primitive root modulo m if and only if m = 2, 4, pk or 2pk for p odd
prime.

Proof. For 2, 4, pk with p odd, we are done. Let p be odd and m = 2pk, By Theorem 2.128, there
is a primitive root modulo pk denoted by g. Since pk is odd, either g or g + pk is odd. Set g′ be
whichever is odd. Then g′ ≡ g (mod pk). Suppose there exists b ∈ N and b < ϕ(pk) such that
g′b ≡ 1 (mod 2pk), then g′b ≡ 1 (mod pk), a contradiction. So the order of g′ modulo 2pk must be
at least ϕ(pk) = ϕ(2)ϕ(pk) = ϕ(2pk). Thus, g′ is a primitive root modulo 2pk.

Next, suppose m is none of these forms. Write m = n1n2 with gcd(n1, n2) = 1 and n1, n2 > 2.
If gcd(j, n) = 1, then gcd(n − j, n) = 1. So for n > 2, all numbers relatively prime to n can be
matched up into pairs {j, n−j}. Hence ϕ(n1) and ϕ(n2) are even. Take a with gcd(a,m) = 1. Then
gcd(a, n1) = 1 = gcd(a, n2). By Euler’s theorem, aϕ(n1) ≡ 1 (mod n1). Since ϕ is multiplicative,

a
1
2ϕ(m) = a

1
2ϕ(n1)ϕ(n2) ≡

(
aϕ(n1)

)ϕ(n2)
2 ≡ 1 (mod n1). Similarly, a

1
2ϕ(m) ≡ 1 (mod n2). Since

gcd(n1, n2) = 1, we have a
1
2ϕ(m) ≡ 1 (mod n). Thus, every a with gcd(a,m) = 1 has order

⩽ 1
2ϕ(m) < ϕ(m), so there is no primitive root modulo m.
At last, suppose m = 2r with r ⩾ 3. Then the numbers relatively prime to m is odd. Claim.

given an odd integer a ⩾ 3, we have a2
r−2 ≡ 1 (mod 2r). So there is no primitive root modulo

m. Claim. for any r > 2, 2r || (52r−2 − 1). Assume this is true for k. Then 2k || (52k−2

+ 1). So

2k+1 || (52k−2 − 1)(52
k−2

+ 1) = 52
k−1 − 1. Hence the claim is proved. This gives 5 has order 2r−2

modulo 2r. So the residues 5k with k = 1, . . . , 2r−2 are all distinct. Check the residues −5k for
k = 1, . . . , 2r−2 are distinct and distinct from 5k’s, so this gives all residues since ϕ(2r) = 2r−2r−1 =
2r−1. Hence all reduced residues modulo 2r can be written as (−1)l5k for l = 0, 1, k = 1, . . . , 2r−2.

Note
(
(−1)l5k

)2r−2

= (5k)2
r−2 ≡ 1 (mod 2r).
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Corollary 2.132.

(Z/prZ)× ∼= Cϕ(pr), p odd,

(Z/2Z)× ∼= C1 = C1,

(Z/4Z)× ∼= C2 = Z/2Z,
(Z/2rZ)× ∼= C2 × C2r−2 = Z/2Z× Z/2e−2Z, r ⩾ 3.

Theorem 2.133. Let m = 2e
∏
pr||m,p>2 p

r. Then

(Z/mZ)× ∼= G×
∏

pr||m,p>2

Cϕ(pr),

where

G ∼=

 C1, e = 0, 1
C2, e = 2

C2 × C2e−2 e > 2
.

Proof. By Corollary 2.132 and Chinese Remainder Theorem.



Chapter 3

Quadratic Reciprocity

Let p be prime.

3.1 Legendre symbol

Definition 3.1. Let gcd(a,m) = 1. If xn ≡ a (mod m) has a solution, we say a is an nth power
residue modulo m. If n = 2, we say a is quadratic residue if this has a solution and quadratic
non-residue, otherwise.

Definition 3.2. Let p be odd. We define the Legendre symbol
(
a
p

)
by

(
a

p

)
=

 1, a is quadratic residue and p ∤ a
−1, a is not quadratic residue and p ∤ a
0, p | a

.

Theorem 3.3. Let p ∤ a. Then the congruence xn ≡ a (mod p) is solvable if and only if a
p−1

gcd(n,p−1) ≡
1 (mod p).

Proof. “⇒”. Since p ∤ x, by Fermat’s little theorem, we have a
p−1

gcd(n,p−1) ≡ (xn)
p−1

gcd(n,p−1) ≡
(xp−1)

n
gcd(n,p−1) ≡ 1 (mod p).

“⇐”. Let g be a primitive root modulo p. Then a ≡ gr (mod p) for some r ∈ N. We have

1 ≡ (gr)
p−1

gcd(n,p−1) ≡ g
r(p−1)

gcd(n,p−1) (mod p). Then ordp(g) = (p − 1)
∣∣ r(p−1)

gcd(n,p−1) . So gcd(n, p − 1) | r.
Write r = knx + k(p − 1)y for some k, x, y. So a ≡ gr ≡ gknx+k(p−1)y ≡ (gkx)n · (gp−1)ky ≡
(gkx)n (mod p).

Example 3.4. Is 3 a 4th power modulo 17 ? Note x4 ≡ 3 (mod 17) has a solution if and only if

3
16

gcd(4,16) ≡ 1 (mod 17) if and only if 34 ≡ 1 (mod 17), not true.

Assumption 3.5. Let p be odd.

Theorem 3.6 (Euler’ Criterion). (
a

p

)
≡ a

p−1
2 (mod p).

27
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Proof. If p | a, we are done. Assume p ∤ a. Then by Fermat’s little theorem, (a
p−1
2 )2 = ap−1 ≡

1 (mod p), i.e., a
p−1
2 ≡ ±1 (mod p). By Theorem 3.3, a

p−1
2 = a

p−1
gcd(2,p−1) ≡ 1 (mod p) if and only if(

a
p

)
= 1.

Theorem 3.7. (a)
(
ab
p

)
=
(
a
p

)(
b
p

)
.

(b) If a ≡ b (mod p), then
(
a
p

)
=
(
b
p

)
.

(c) If gcd(a, p) = 1, then
(
a2

p

)
= 1 and

(
a2b
p

)
=
(
b
p

)
.

(d)
(

1
p

)
= 1 and

(
−1
p

)
= (−1)

p−1
2 .

Proof. (a) Since
(
ab
p

)
≡ (ab)

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a
p

)(
b
p

)
(mod p) and

(
ab
p

)
,
(
a
p

)
,
(
b
p

)
∈ {0, 1,−1}

and p ⩾ 3, we have
(
ab
p

)
=
(
a
p

)(
b
p

)
.

Theorem 3.8. The number of solutions of x2 ≡ a (mod p) is exactly 1 +
(
a
p

)
.

Proof. If x0 is a solution, then −x0 ≡ p−x0 (mod p) is also a solution. If p | a, then x2 ≡ a (mod p)
only has one solution.

Definition 3.9. Let n ∈ N. Define the numerically least residue of a modulo n to be a′ such that
a′ ≡ a (mod n) and − 1

2n < a′ ⩽ 1
2n.

Lemma 3.10 (Gauss’s lemma). Let gcd(a, p) = 1. Write aj to be numerically least residue of aj

modulo p for j ∈ N. Then
(
a
p

)
= (−1)l, where

l = #

{
1 ⩽ j ⩽

p− 1

2

∣∣∣ aj < 0

}
.

Proof. Claim. The numbers
{
|aj |, 1 ⩽ j ⩽ p−1

2

}
are the numbers 1, 2, . . . , p−1

2 in some order. By
definition of aj ’s, it’s enough to show that |aj |’s are distinct. Suppose first aj = ak for some
j, k ∈ {1, · · · , p−1

2 } with j ̸= k. This gives aj ≡ ak (mod p). Since gcd(a, p) = 1, we have
j ≡ k (mod p), a contradiction. Suppose aj = −ak for some j ̸= k. This gives aj ≡ −ak (mod p),
i.e., a(j + k) ≡ 0 (mod p). Similarly, g + k ≡ 0 (mod p), a contradiction. Write r = p−1

2 . Then
(−1)lr! = a1 · · · ar ≡ (1a) · · · (ra) (mod p), i.e., r!ar ≡ (−1)lr! (mod p). Since gcd(r!, p) = 1, we

have
(
a
p

)
≡ a

p−1
2 = ar ≡ (−1)l (mod p).

Example 3.11. Since 42 ≡ 5 (mod 11), we have
(

5
11

)
= 1. Note

j aj aj
1 5 5
2 10 −1
3 15 4
4 20 −2
5 25 3
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Then l = 2. So
(

5
11

)
= (−1)2 = 1.

Corollary 3.12. Let gcd(a, 2p) = 1, then
(
a
p

)
= (−1)l, where l =

∑ p−1
2

j=1

⌊
ja
p

⌋
. Moreover,

(
2
p

)
=

(−1)
p2−1

8 .

Proof. Consider a, 2a, . . . , p−1
2 a. Let r1, . . . , rn denote the residues of these ja’s modulo p that

exceed p
2 , and s1, . . . , sk be the residues between 0 and p

2 . Note n + k = p−1
2 and gcd(a, p) = 1.

Using ja = p
⌊
ja
p

⌋
+ remainder, we have

p−1
2∑
j=1

ja =

p−1
2∑
j=1

p

⌊
ja

p

⌋
+

n∑
j=1

rj +

k∑
j=1

sj . (3.1)

Since p
2 < ri < p, we have the numerically least residue of ri is ri− p for i = 1, . . . , n. By the proof

in Gauss’s lemma, we have the absolute value of numericlally residues, i.e., (p − ri)’s and sj ’s are
all distinct and are the numbers 1, . . . , p−1

2 in some order.
Then

p−1
2∑
j=1

j =

n∑
j=1

(p− rj) +

k∑
j=1

sj = np−
n∑
j=1

rj +

k∑
j=1

sj . (3.2)

Let (3.1) - (3.2), we have (a− 1)
∑ p−1

2
j=1 j =

∑ p−1
2

j=1 p
⌊
ja
p

⌋
− np+ 2

∑n
j=1 rj , i.e.,

(a− 1)
p2 − 1

8
= p

 p−1
2∑
j=1

⌊
ja

p

⌋
− n

+ 2

n∑
j=1

rj . (3.3)

Since gcd(a, 2p) = 1, a is odd. So 0 ≡ p
(∑ p−1

2
j=1

⌊
ja
p

⌋
− n

)
(mod 2). Since gcd(p, 2) = 1,∑ p−1

2
j=1

⌊
ja
p

⌋
≡ n (mod 2). By Gauss’s lemma, we have

(
a
p

)
= (−1)n = (−1)

∑ p−1
2

j=1 ⌊ ja
p ⌋. More-

over, if a = 2, we have
∑ p−1

2
j=1

⌊
2j
p

⌋
=
∑ p−1

2
j=1 0 = 0 and then p2−1

8 ≡ −np ≡ n (mod 2) by 3.3. So by

Gauss’s lemma, we have
(

2
p

)
= (−1)n = (−1)

p2−1
8 .

Remark. Take a = −1, since
∑ p−1

2
j=1

⌊
−j
p

⌋
=
∑ p−1

2
j=1 (−1) = −p−1

2 , we have 0 ≡ p
(
−p−1

2 − n
)
(mod 2),

i.e., n ≡ −p−1
2 ≡ p−1

2 (mod 2). Then(
−1

p

)
= (−1)n = (−1)

p−1
2 .

So if p ≡ 1 (mod 4), then −1 is a square root modulo p; if p ≡ 1 (mod 4), then not. Then(
−2

p

)
=

(
−1

p

)(
2

p

)
= (−1)

p−1
2 + p2−1

8 .
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Theorem 3.13 (Quadratic reciprocity (QR)). Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof. Let S =
{
(x, y) ∈ N2 | 1 ⩽ x ⩽ p−1

2 , 1 ⩽ y ⩽ q−1
2

}
. Let S1 = {(x, y) ∈ S | qx > py} and

S2 = {(x, y) ∈ S | qx < py}. Let (x, y) ∈ S. Suppose qx = py, then p | qx, i.e., p | q or p | x,
a contradiction. Hence S = S1 ⊔ S2. Also, S1 =

{
(x, y) ∈ S

∣∣ 1 ⩽ x ⩽ p−1
2 , 1 ⩽ y < qx

p

}
and

S2 =
{
(x, y) ∈ S

∣∣ 1 ⩽ y ⩽ q−1
2 , 1 ⩽ x < py

q

}
. So #S1 =

∑ p−1
2

x=1

⌊
qx
p

⌋
and #S2 =

∑ q−1
2

y=1

⌊
py
q

⌋
. Since

#S = #S1+#S2,
p−1
2

q−1
2 =

∑ p−1
2

x=1

⌊
qx
p

⌋
+
∑ q−1

2
y=1

⌊
py
q

⌋
. Thus, since gcd(p, 2q) = 1 = gcd(q, 2p), by

Corollary 3.12,
(
p
q

)(
q
p

)
= (−1)

∑ p−1
2

y=1 ⌊ py
q ⌋ · (−1)

∑ q−1
2

x=1 ⌊ qx
p ⌋ = (−1)

p−1
2

q−1
2 .

Remark. p = x2 + y2 if and only if p ≡ 1 (mod 4) by Theorem 2.52 if and only if
(

−1
p

)
= 1;

p = x2 + 2y2 if and only if
(

−2
p

)
= 1.

Example 3.14.(
21

71

)
=

(
3

71

)(
7

71

)
= (−1)

3−1
2

71−1
2

(
71

3

)
(−1)

7−1
2

71−1
2

(
71

7

)
=

(
2

3

)(
1

7

)
= (−1)

32−1
8 · 1 = 1.

Example 3.15. Since
(
1
3

)
= 1 and

(
2
3

)
= (−1)

32−1
8 = −1,(

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2 · (−1)

p−1
2

3−1
2

(p
3

)
=
(p
3

)
=

{
1 p ≡ 1 (mod 3)
−1 p ≡ 2 (mod 3)

.

3.1.1 Algebraic number theory proof of QR

2 is a square modulo p if and only if p ≡ 1, 7 (mod 8), i.e.,
(

2
p

)
= (−1)

p2−1
8 . We already proved

this, but we will give a new proof. Let ξn = e
2πi
n be a primitive nth root of unity in C.

Definition 3.16. Set
Z[ξn] = {a0 + a1ξn + · · ·+ an−1ξ

n−1
n },

which is a ring.

Definition 3.17. Let K/Q be a finite field extention. We say α ∈ K is an algebraic integer if there
exists a monic f ∈ Z[x] such that f(α) = 0.

Fact 3.18. Show that the algebraic integer in Q are the ususal integers.

Notation 3.19. Denote the set of algebraic integers in K by OK. So OQ = Z.

Theorem 3.20. Every element of Z[ξn] is an algebraic integer. Moreover, Z[ξn] ∩Q = Z.

Proof. Let α ∈ Z[ξn]. Then we can write αξin =
∑n−1
j=0 aijξ

j
n for i = 0, . . . , n−1. Define a matrix A =

(aij) ∈ Matn(Z) and P (t) = det(tIn −A) ∈ Z[t], which is monic. Define V = t(1, ξn, ξ
2
n, . . . , ξ

n−1
n ).

Then the set of equations can be re-written as AV = αV , which implies α is an eigenvalue of A.
So α is a root of the monic polynomial P ∈ Z[t].
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Fact 3.21.

OQ(ξn) = Z[ξn].

Notation 3.22. For x, y ∈ Z[ξn], write x ≡ y (mod pZ[ξn]) to mean x− y ∈ pZ[ξn].

Fact 3.23. Since Z ⊆ Z[ξn], if x, y ∈ Z, x ≡ y (mod pZ[ξn]) is the same as x ≡ y (mod p).

Theorem 3.24 (New proof). (
2

p

)
= (−1)

p2−1
8 .

Proof. Set ξ = ξ8 and O = Z[ξ8]. Then 0 = ξ8 − 1 = (ξ4 − 1)(ξ4 + 1). Since ξ is primitive 8th

root of unity, we have ξ4 + 1 = 0, i.e., ξ2 + ξ−2 = 0. Set τ = ξ + ξ−1. Then τ2 = (ξ + ξ−1)2 =

ξ2 + 2+ ξ−2 = 2. So Q(
√
2) ⊆ Q(ξ). By Euler’s criterion, τp−1 = (τ2)

p−1
2 = 2

p−1
2 ≡

(
2
p

)
(mod p).

So τp−1 = 2
p−1
2 ≡

(
2
p

)
(mod pO), i.e., τp ≡

(
2
p

)
τ (mod pO).

(a) Assume p ≡ 1 (mod 8). Then ξp = ξ and ξ−p = ξ−1. So τp = (ξ+ξ−1)p ≡ ξp+ξ−p = ξ+ξ−1 =

τ (mod pO). Thus, τ ≡
(

2
p

)
τ (mod pO). Note pO is not prime ideal, so we can’t just cancel τ .

Multiply by τ , we have τ2 ≡
(

2
p

)
τ2 (mod pO), i.e., 2 ≡

(
2
p

)
2 (mod pO). So 2 ≡

(
2
p

)
2 (mod p) by

Fact 3.23. Since gcd(p, 2) = 1, 1 ≡
(

2
p

)
(mod p). So

(
2
p

)
= 1.

(b) Assume p ≡ −1 (mod 8). Then ξp = ξ−1, ξ−p = ξ. So everything else is the same and as a

result, we have
(

2
p

)
= 1.

(c) Assume p ≡ 3 (mod 8). Since ξ4 = −1, we have

τp ≡ ξp + ξ−p ≡ ξ3 + ξ−3 ≡ ξ4ξ−1 + ξ−4ξ ≡ −ξ−1 − ξ = −(ξ + ξ−1) ≡ −τ (mod pO).

So −τ ≡
(

2
p

)
τ (mod pO). Multiply by τ , we have −2 ≡

(
2
p

)
2 (mod p). Similarly,

(
2
p

)
= −1.

(d) Assume p ≡ −3 (mod 8). Then ξp = ξ−3 and ξ−p = ξ3. So everything else is the same and as

a result, we have
(

2
p

)
= −1.

Remark. We calculate
(

2
p

)
using algebraic number theorem. Main input: τ = ξp + ξ−1

p , τ2 = 2

and Q(
√
2) ⊆ Q(ξ8). These are enough information to calculate

(
2
p

)
.

Remark. To prove QR, we need to consider
(
q
p

)
and

(
p
q

)
. Want to do the same type of argument

in Q(ξ8), so we want some τ ∈ Z[ξp] so that τ2 = p. Unfortunately, this isn’t always possible. Since

ξ8 = 1−
√
−3

2 and
√
−3 = 1− 2ξ8, Q(ξ8) = Q(

√
−3). So there can be no element τ ∈ Z[ξ8] ⊆ Q(ξ8)

satisfying τ2 = 3 since we would get Q(
√
3) ⊆ Q(

√
−3), a contradiction. Thus, we can find τ such

that in general, the best we can hope for is to find τ ∈ Z[ξp] such that τ2 = ±p.

Proposition 3.25. There are the same number of quadratic residue as non-residue in Z/pZ.
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Proof. Let ϖ be an primitive root modulo p. Then ϖ, . . . ,ϖp−1 are distinct. Let k ∈ {1, · · · , p−1}
be odd. Suppose (ϖj)2 ≡ ϖk (mod p) for some j ∈ {1, . . . , p − 1}. Since gcd(ϖ, p) = 1, ϖ2j−k ≡
1 (mod p). Also, since ordp(ϖ) = p−1, we have p−1 | 2j−k. Since 2j−k ⩽ 2j−1 ⩽ 2(p−1)−1 <
2(p− 1), we have 2j − k = p− 1, contradicted by k is odd. Hence ϖk if a quadractic residue if and
only if k is even.

Definition 3.26. Define a Gauss sum

τ =
∑

t∈(Z/pZ)×

(
t

p

)
ξtp =

p−1∑
t=1

(
t

p

)
ξtp.

Theorem 3.27.

τ2 = (−1)
p−1
2 p.

Proof. Define τq =
∑p−1
t=1

(
t
p

)
ξqtp for q = 1, · · · , p − 1. Then by Proposition 3.25, τ0 = 0. So(

q
p

)
τq =

∑p−1
t=1

(
qt
p

)
ξqtp =

∑p−1
t=1

(
t
p

)
ξtp = τ since {q, 2q, · · · , (p − 1)q} is a complete reduced

residue system modulo p. Since p ∤ q, we have
(
q
p

)2
= 1 and then τq =

(
q
p

)
τ . Hence

p−1∑
q=1

τqτ−q =

p−1∑
q=1

(
−q2

p

)
τ2 =

p−1∑
q=1

(
−1

p

)
τ2 =

p−1∑
q=1

(−1)
p−1
2 τ2 = (−1)

p−1
2 (p− 1)τ2.

Moreover,

τqτ−q =

p−1∑
t=1

(
t

p

)
ξqtp

p−1∑
s=1

(
s

p

)
ξ−qsp =

p−1∑
t=1

p−1∑
s=1

(
t

p

)(
s

p

)
ξq(t−s)p .

Note for 1 ⩽ t, s ⩽ p− 1, if t = s, then
∑p−1
q=0 ξ

q(t−s)
p = p; if t ̸= s, then since 2− p ⩽ t− s ⩽ p− 2,

we have p ∤ t− s and so
∑p−1
q=0 ξ

q(t−s)
p =

∑p−1
q=0 ξ

q
p =

1−ξpp
1−ξp = 0. Hence

p−1∑
q=0

τqτ−q =

p−1∑
q=0

(
p−1∑
t=1

p−1∑
s=1

(
t

p

)(
s

p

)
ξq(t−s)p

)
=

p−1∑
t=1

p−1∑
s=1

(
t

p

)(
s

p

) p−1∑
q=0

ξq(t−s)p =

p−1∑
t=1

1 · p = p(p− 1).

Thus, p(p− 1) = (−1)
p−1
2 (p− 1)τ2. i.e., (−1)

p−1
2 p = τ2.

Theorem 3.28 (QR: New Proof). Let p, q be distinct odd primes.(
p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 .

Proof. Set p∗ = (−1)
p−1
2 p. Since Gauss sum τ ∈ Z[ξp] ⊆ Q(ξp) and τ

2 = p∗, Q(
√
p∗) ⊆ Q(ξp). So(

p∗

q

)
=

(
(−1)

p−1
2

q

)(
p

q

)
=

(
−1

q

) p−1
2
(
p

q

)
=
(
(−1)

q−1
2

) p−1
2

(
p

q

)
= (−1)

p−1
2

q−1
2

(
p

q

)
.



3.2. JACOBI SYMBOL 33

Hence
(
p∗

q

)(
p
q

)
= (−1)

p−1
2

q−1
2 . Thus, to show QR, it is equivalent to show

(
q
p

)
=
(
p∗

q

)
. Note

τ q−1 = (τ2)
q−1
2 = (p∗)

q−1
2 ≡

(
p∗

q

)
(mod q) by Euler’s criterion. Then τ q ≡

(
p∗

q

)
τ (mod q). Since

q ∤ p is odd and by Freshmen’s dream, we have

τ q =

(
p−1∑
t=0

(
t

p

)
ξtp

)q
≡

p−1∑
t=0

(
t

p

)q
ξqtp =

p−1∑
t=0

(
t

p

)
ξqtp (mod qZ[ξp]).

Let q̃ for the inverse of q modulo p. Let qt ≡ k (mod p), then t ≡ q̃k (mod p) and so(
p∗

q

)
τ ≡ τ q =

p−1∑
k=0

(
q̃k

p

)
ξkp =

(
q̃

p

) p−1∑
k=0

(
k

p

)
ξkp ≡

(
q̃

p

)
τ (mod qZ[ξp]).

Since
(
q̃
p

)(
q
p

)
=
(
q̃q
p

)
=
(

1
p

)
= 1, we have

(
q̃
p

)
=
(
q
p

)
. So

(
p∗

q

)
τ ≡

(
q
p

)
τ (mod qZ[ξp]).

Hence
(
p∗

q

)
τ2 ≡

(
q
p

)
τ2 (mod qZ[ξp]), i.e.,

(
p∗

q

)
p∗ ≡

(
q
p

)
p∗ (mod q). Since gcd(p∗, q) = 1,(

p∗

q

)
≡
(
q
p

)
(mod q). Thus,

(
p∗

q

)
=
(
q
p

)
.

3.2 Jacobi symbol

Definition 3.29. Let n ∈ N be odd, the Jacobi symbol
(
a
n

)
is defined as the product of the

Legendre symbols corresponding to the prime factors of n, i.e.,(a
n

)
=

(
a

p1

)e1
· · ·
(
a

pr

)er
,

where n = pe11 , · · · perr is the canonical factorization of n.

Theorem 3.30. Let Q = p1 · · · ps, where pi’s are odd primes and not necessarily distinct. Then

(a)
(
a
1

)
= 1.

(b) If gcd(a,Q) ̸= 1, then
(
a
Q

)
= 0.

(c) If gcd(a,Q) = 1, then
(
a
Q

)
=
(
a
p1

)
· · ·
(
a
ps

)
.

Remark. This symbol does not tell you about quadratic residues.

Theorem 3.31. Let Q,Q′ ∈ N be odd.

(a)
(
p
Q

)(
p
Q′

)
=
(

p
QQ′

)
.

(b)
(
p
Q

)(
p′

Q

)
=
(
pp′

Q

)
.

(c) If gcd(p,Q) = 1, then
(
p
Q2

)
=
(
p2

Q

)
= 1.
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(d) If gcd(pp′, QQ′) = 1, then
(
p′p2

Q′Q2

)
=
(
p′

Q′

)
.

(e) If p ≡ p′ (mod Q), then
(
p
Q

)
=
(
p′

Q

)
.

Proof. (a) Write Q = p1 · · · ps and Q = p′1, · · · , p′t with pi’s and pi’s odd primes. Then we have(
p
p1

)
· · ·
(
p
ps

)(
p
p′1

)
· · ·
(
p
p′t

)
=
(

p
QQ′

)
.

Remark. The Jacobi symbol does not determine if something is residue modulo Q. For example,
if 7 ∤ a, then

(
a
49

)
=
(
a
72

)
=
(
a
7

) (
a
7

)
= 1. But not every a is a QR modulo 49. On the other

hand, if
(
a
Q

)
= −1, then −1 =

(
a
Q

)
=
(
a
p1

)
· · ·
(
a
ps

)
, which means at least one of these must be

−1, say
(
a
pj

)
= −1. Suppose x2 ≡ a (mod Q), then since pj | Q, we have x2 ≡ a (mod pj), as

well, which is a contradiction since
(
a
pj

)
= −1. So if

(
a
Q

)
= −1, it means there is no solution for

x2 ≡ a (mod Q).

Theorem 3.32. Let Q ∈ N be odd, then(
−1

Q

)
= (−1)

Q−1
2 and

(
2

Q

)
= (−1)

Q2−1
8 .

Proof. Write Q = p1 · · · ps with pi’s odd prime. Then(
−1

Q

)
=

(
−1

p1

)
· · ·
(
−1

ps

)
= (−1)

p1−1
2 · · · (−1)

ps−1
2 = (−1)

∑s
j=1

pj−1

2 .

Let n1 and n2 be odd. Then

1

2
(n1 − 1) +

1

2
(n2 − 1) =

1

2
(n1n2 − 1)− 1

2
(n1 − 1)(n2 − 1) ≡ 1

2
(n1n2 − 1) (mod 2).

Hence by induction,
(

−1
Q

)
= (−1)

1
2 (p1···ps−1) = (−1)

1
2 (Q−1). Note(

2

Q

)
=

(
2

p1

)
· · ·
(

2

ps

)
= (−1)

p21−1

8 · · · (−1)
p2s−1

8 = (−1)
∑s

j=1

p2j−1

8 .

Let n1 and n2 be odd. Since n21 ≡ 1 ≡ n22 (mod 4), 1
8 (n

2
1 − 1)(n22 − 1) ≡ 0 (mod 2). This gives

1

8
(n21 − 1) +

1

8
(n22 − 1) =

1

8
(n21n

2
2 − 1)− 1

8
(n21 − 1)(n22 − 1) ≡ 1

8
(n21n

2
2 − 1) (mod 2).

Hence by induction,
(

2
Q

)
= (−1)

1
8 (p

2
1···p

2
s−1) = (−1)

1
8 (Q

2−1).

Theorem 3.33 (Jacobi). Let Q ∈ N be odd and gcd(p,Q) = 1. Then(
p

Q

)(
Q

p

)
= (−1)

p−1
2

Q−1
2 .

Proof. Use the same techniques as Theorem 3.32.
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Remark. We can use Jacobi to quickly calculate Legendre symbol.

Example 3.34.(
1111

8093

)
= (−1)

1
4 8092·1110

(
8093

1111

)
=

(
316

1111

)
=

(
2

1111

)2(
79

1111

)
= (−1)

1
4 78·1110

(
1111

79

)
= −

(
5

79

)
= −(−1)

1
4 4·78

(
79

5

)
= −

(
4

5

)
= −

(
2

5

)2

= −1.

So 1111 is not a quadratic residue modulo 8093.

Remark. Sum of squares: arithemetric in Z[i]. Quadratic reciprocity: arithemetric in Z[ξp]. Binary
quadratic: arithemetric in Q(

√
d).
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Chapter 4

Binary Quadratic Residue

Definition 4.1. A binary quadratic form is a homogeneous polynomial

f : ax2 + bxy + cy2 ∈ Z[x, y].

We will sometimes denote this as [a, b, c]. Given n, we say f reresents n if there exists (x0, y0) ∈ Z2

such that f(x0, y0) = n.

Remark. Classical motivation: Figure out which integers are represented by a given form. We
have an example already.

Theorem 4.2. Let f = x2+y2. Then an integer n is represented by f if and only if n has a prime
factorization

n = 2e
∏

pj≡1 (mod 4)

p
ej
j

∏
qi≡3 (mod 4)

qhi
i ,

where hi ≡ 0 (mod 2) for all qi | n and qi ≡ 3 (mod 4).

Proof. By Theorem 2.53.

Theorem 4.3. f = x2 + y2 and g = x2 + 2xy + 2y2 represent the same integers.

Proof. If n = g(x0, y0) = x20 + 2x0y0 + 2y20 , then n = f(x0 + y0, y0). If n = f(x1, y1) = x21 + y21 ,
then n = g(x1 − y1, y1).

Corollary 4.4. Let f = x2 +2xy+2y2. Then an integer n is represented by f if and only if n has
a prime factorization

n = 2e
∏

pj≡1 (mod 4)

p
ej
j

∏
qi≡3 (mod 4)

qhi
i ,

where hi ≡ 0 (mod 2) for all qi | n and qi ≡ 3 (mod 4).

Remark. We should think of f and g above as equivalent binary quadratic forms (b.q.f.’s). Note

f(x, y) = (x, y)

[
1 0
0 1

] [
x
y

]
= (x, y)

[
x
y

]
= x2+ y2 and g(x, y) = (x, y)

[
1 1
1 2

] [
x
y

]
= x2+2xy+2y2.

We could ask for the matrices to be similar: t

[
1 −1
0 1

] [
1 1
1 2

] [
1 −1
0 1

]
=

[
1 0
0 1

]
by elementary

transformation. Maybe what we want is the matrices associated to f and g to be similar matrices.

37
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Definition 4.5. Given any f = ax2 + bxy + cy2 = (x, y)

[
a b

2
b
2 c

] [
x
y

]
, associate the matrix

[
a b

2
b
2 c

]
.

Assumption 4.6. Let f, g be binary quadratic forms.

Definition 4.7. We say f and g are equivalent if the associated matrices are SL2(Z)-similar.

Remark. We can define an action γ of SL2(Z) on the set of binary quadratic forms f by

f |γ(x, y) = (f ◦ γ)(x, y) = f (γ(x, y)) = f

(
γ

[
x
y

])
,

when regarding γ as a matrix. For example, let γ =

[
p q
r s

]
. Then γ

[
x
y

]
=

[
px+ qy
rx+ sy

]
and

f

(
γ

[
x
y

])
= f(px+ qy, rx+ sy). Check this gives a right group action.

Definition 4.8. We say f and g are similar, write f ∼ g if there exists γ ∈ SL2(Z) such that
f = g ◦ γ.

Exercise 4.9. Definitions 4.7 and 4.8 are equivalent.

Theorem 4.10. If f ∼ g, then f and g represent the same set of integers.

Proof. Let γ ∈ SL2(Z) such that g = f◦γ. Let τ ∈ SL2(Z) such that f = g◦τ . Let (x0, y0) ∈ Z2 such
that f(x0, y0) = n. Then g

(
γ−1(x0, y0)

)
= f

(
γ(γ−1(x0, y0))

)
= f(x0, y0) = n. Let (x1, y1) ∈ Z2

such that g(x1, y1) = m. Then f
(
τ−1(x1, y1)

)
= g
(
τ(τ−1(x1, y1))

)
= g(x1, y1) = m.

Example 4.11. Consider the binary quadratic form f = [458, 214, 25]. Note f(−1,−1) = 17 ·
41, f(−1, 0) = 2 · 229, f(0, 1) = 52, f(1, 1) = 269, f(−1, 2) = 2 · 5 · 13, f(−1, 3) = 41. Check: Let

γ =

[
4 −3

−17 13

]
∈ SL2(Z), then (f ◦ γ)(x, y) = x2 + y2.

Definition 4.12. The discriminant of a binary quadratic form f = [a, b, c] is b2 − 4ac. Write

disc(f) = b2 − 4ac.

Remark. Note

disc([a, b, c]) = −4

∣∣∣∣a b
2

b
2 c

∣∣∣∣ .
Theorem 4.13. If f ∼ g, then disc(f) = disc(g).

Proof. Let g = f◦γ. View the corresponding matrices, disc(g) = disc(f◦γ) = det(γ) disc(f) det(γ) =
disc(f).

Remark. The converse is not true. x2 +6y2 represents 1, 2x2 +3y2 does not represent 1 but they
have same determinant −24.
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Theorem 4.14. The set of all discriminants of binary quadratic forms is exactly the set of integers
d such that d ≡ 0, 1 (mod 4).

Proof. Let f = [a, b, c]. Then d = b2 − 4ac. So d ≡ b2 (mod 4). Hence d ≡ 0, 1 (mod 4). Next,
assume d ≡ 0, 1 (mod 4). Then d = b2 for some b by Lemma 2.52. Set f(x) = bxy.

Theorem 4.15. If disc(f) < 0, then f is a definite form. If disc(f) > 0, then f is an indefinite
form.

Proof. Set c =

{
−d

4 if d ≡ 0 (mod 4)
−d−1

4 if d ≡ 1 (mod 4)
. When c = −d

4 , [1, 0, c] has disciminant d; when

c = −d−1
4 , [1, 1, c] has disciminant d. The forms

[
1, 0,−d

4

]
and

[
1,−1,−d−1

4

]
are the principal

binary quadratic forms of disciminant d. Consider f = [a, b, c]. Then 4af = 4a(ax2 + bxy + cy2) =
4a2x2 + 4abxy + 4acy2 = (2ax+ by)2 + (4ac− b2)y2 = (2ax+ by)2 − disc(f)y2.

(a) If disc(f) < 0, then 4ac = b2 − disc(f) > 0, i.e., ac > 0. Also, f ̸= 0 except (x, y) = (0, 0). So
f is positive (negative) definite if a > 0 (a < 0).

(b) If disc(f) > 0, then f(1, 0) = a and f(b,−2a) = −a · disc(f), which have opposite sign unless
a = 0; similarly, f(0, 1) = c and f(−2c, b) = −c · disc(f), which have opposite sign unless c = 0.
When a = 0 = c, we have f(1, 1) = b ̸= 0 and f(1,−1) = −b ̸= 0, which have opposite sign. Thus,
f is indefinite.

(c) Assume disc(f) = 0. If a ̸= 0, since f(b,−2a) = 0, f = (2ax+by)2

4a is semidefinite. If a = 0, then
b = 0 and then f(x, y) = cy2, since f(1, 0) = 0, f is semidefinite.

Assumption 4.16. Let D be a square-free integer.

Definition 4.17. Set the field

K = Q(
√
D) = {a+ b

√
D | a, b ∈ Q}.

Definition 4.18. The ring of integer of K is

OK = {a ∈ K | a is integral over Z} = {a ∈ K | a is a root of f, f ∈ Z[x] is monic}.

Fact 4.19. The map τ : K ! K given by a+ b
√
D 7! a− b

√
D is an isomorphism of fields.

Remark. Observe K as a 2-dimensional Q-vector space with a basis {1,
√
D}. For example, let

β = a + b
√
D ∈ K with a, b ∈ Q. Define τβ : K ! K by x 7! βx. Then τβ ∈ HomQ(K,K).

Note τβ(1) = a + b
√
D and τβ(

√
D) = (a + b

√
D)

√
D = bD + a

√
D. So the matrix of τβ is

mβ =

[
a bD
b a

]
. Since τ(β) = β, det(mβ) = a2 − b2D = ββ = β · τ(β) =: NK/Q(β). Also,

Tr(mβ) = 2a = β + β =: TrK/Q(β). The characteristic polynomial of the action of β is

Cmβ
(x) = det(x · I2 −mβ) = det

[
x− a −bD
−b x− a

]
= (x− a)2 − b2D

= x2 − 2ax+ a2 − b2D = x2 − TrK/Q(β)x+NK/Q(β).

Since Cmβ
(x) = (x− a)2 − b2D, Cmβ

(a± b
√
D) = 0.
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Theorem 4.20. Set α =

{
1+

√
D

2 if D ≡ 1 (mod 4)√
D if D ̸≡ 1 (mod 4)

. Then

OK = Z[α] := {a+ bα | a, b ∈ Z} = (1, α)Z.

Proof. “⊇”. Method 1: Let y = a + bα ∈ Z[α]. Left to consider α = 1+
√
D

2 . Then τy(1) =

a + b 1+
√
D

2 = a + b
2 + b

2

√
D and τy(

√
D) =

(
a+ b 1+

√
D

2

)√
D = bD

2 +
(
a+ b

2

)√
D. So my =[

a+ b
2

b
2

bD
2 a+ b

2

]
. Note

Cmy (x) = det(x · I2 −my) =

(
x− a− b

2

)2

− b2D

4

= x2 − (2a+ b)x+ a2 + ab+
1−D

4
b2 = x2 − TrK/Q(y) + NK/Q(y).

Also, Cmy

(
a+ b

2 ± b
√
D

2

)
= Cmy

(
a+ b 1±

√
D

2

)
= 0, so Cmy (a+ bα) = 0. Hence Z[α] ⊆ OK.

Method 2. Let y = a + bα ∈ Z[α]. Use a theorem, to show y ∈ OK, it suffices to show
TrK/Q(y), NK/Q(y) ∈ Z. Note

TrK/Q(α) =

{
1 if D ≡ 1 (mod 4)
0 if D ̸≡ 1 (mod 4)

∈ Z and NK/Q(α) =

{
1−D
4 if D ≡ 1 (mod 4)

−D if D ̸≡ 1 (mod 4)
∈ Z .

So

Tr(K/Q)(y) = Tr(K/Q)(a+ bα) = TrK/Q(a) + TrK/Q(bα) = 2a+ b

{
1 if D ≡ 1 (mod 4)
0 if D ̸≡ 1 (mod 4)

∈ Z,

and

NK/Q(y) = (a+ bα)(a+ bα) = a2 + ab(α+ α) + b2αα = a2 + abTrK/Q(α) + b2 NK/Q(α) ∈ Z.

Thus, Z[α] ⊆ OK.
“⊆”. Let x = a + b

√
D ∈ OK with a, b ∈ Q. Then cmx

(t) = t2 − 2at + (a2 − b2)D. Also,

2a = Tr(KQ)(x) ∈ Z and a2−b2D = NKQ(x) ∈ Z. So a = a′

2 for some a′ ∈ Z. Then
(
a′

2

)2
−b2D ∈ Z.

So a′2 − (2b)2D ∈ Z. Hence (2b)2D ∈ Z. Since D ∈ Z is square-free, the denominator of b is 1 or 2.

(a) If the denominator of b is 1, then the denominator of a is 1 since a2 − b2D ∈ Z. So a, b ∈ Z.

Hence we can write x =

{
(a− b) + 2b 1+

√
D

2 if D ≡ 1 (mod 4)

a+ b
√
D if D ̸≡ 1 (mod 4)

.

(b) Similarly, if the denominator of b is 2, then the denominator of a is 2. So a − b ∈ Z. Since
2b ∈ Z is odd and (a′)2 ≡ (2b)2D (mod 4), D is a perfect square modulo 4. So D ≡ 1 (mod 4).

Thus, x ∈ Z[α], α = 1+
√
D

2 , i.e., x = (a− b) + (2b) 1+
√
D

2 .

Example 4.21. OQ
√
−1 = Z[i] and OQ

√
5 = Z

[
1+

√
5

2

]
.
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Definition 4.22. Let K = Q(
√
D). Define

disc(K) :=

{
D if D ≡ 1 (mod 4)
4D if D ̸≡ 1 (mod 4).

.

Remark. We will see there is a bijection between certain equivalence classes of ideals in OK, K
discriminant d (positive definite) and equivalence classes of binary quadratic forms of discriminant
d.

Example 4.23. The minimal polynomial of Q(
√
−1) is f = x2 + 1 = [1, 0, 1]. Then disc(f) = −4.

Note disc(Q(
√
−1)) = −4.

Definition 4.24. A positive definite binary quadratic form [a, b, c] is reduced if |b| ⩽ a ⩽ c and if
|b| = a or a = c, then b ⩾ 0.

Remark. If |b| ⩽ a ⩽ c, then D = disc[a, b, c] = b2 − 4ac < 0.

Example 4.25. x2 + y2 is reduced, but 2x2 + y2 is not reduced.

Remark. Let [a, b, c] be reduced. Set τ = −b+
√
D

2a . Then τ is a root of ax2 + bx + c, and has
positive imaginary part. So τ ∈ H := {z ∈ C | Im(z) > 0}.

Fact 4.26. We have a right action of SL2(Z) on binary quadratic forms. This corresponds to a left
action of SL2(Z) on H by linear fractional transformation[

a b
c d

]
z =

az + b

cz + d
.

Definition 4.27. The fundamental domain for the group action of SL2(Z) on H is

F =

{
z ∈ H

∣∣∣ Re(z) ∈ [−1

2
,
1

2

)
; |z| > 1 or |z| = 1 and Re(z) ⩽ 0

}
.

This means everything in H is equivalent under the group action of SL2(Z) to exactly one element
in the upper half plane F and no two elements in F are equivalent.

Theorem 4.28. [a, b, c] is reduced if and only if τ ∈ F.

Proof. “⇒”. If [a, b, c] is reduced, then since |b| ⩽ a, Re(τ) = − b
2a ∈

[
− 1

2 ,
1
2

)
. Since 0 < a ⩽ c,

|τ | =
√

b2

4a2 + −D
4a2 =

√
b2+4ac−b2

4a2 =
√

c
a ⩾ 1. If |τ | = 1, then b ⩾ 0, so Re(τ) ⩽ 0.

“⇐”. Reverse the argument.

Theorem 4.29. There is exactly one reduced form in each equivalence class of positive definite
binary quadratic form (a > 0, D < 0).

Proof. • Step 1: Claim. Each equivalence class contains a reduced form. Let ζ be an equivalence
class of positive definite binary quadratic forms of discriminant D. Let [a, b, c] ∈ ζ with minimal

a. Note t
[
0 −1
1 0

] [
a b

2
b
2 c

] [
0 −1
1 0

]
=

[
c − b

2
b
2 a

]
or g(x, y) = f |γ(x, y) = f(px+qy, rx+sy) =

f(−y, x), where p = 0, q = −1, r = 1, s = 0. If c > a, then [a, b, c] ∼ [c,−b, a] ∈ ζ, a
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contradiction since a is the minimal. So a ⩽ c. Apply

[
1 k
0 1

]
∈ SL2(Z) with k =

⌊
a−b
2a

⌋
, then

we have g(x, y) = ax2 + (2ak + b)xy + (ak2 + bk + c)y2. Since k ∈
(
a−b
2a − 1, a−b2a

]
, we have

2ak+ b ∈ (−a, a]. Note (two ways to see it) a ⩽ ak2 + ak+ c. So |2ak + b| ⩽ a ⩽ ak+ bk+ c.
Hence [a, 2ak+ b, ak2+ bk+ c] ∈ ζ is a reduced form. When a = ak2+ bk+ c, but 2ak+ b < 0,

then we can apply γ =

[
0 −1
1 0

]
to get a reduced form [ak + bk + c,−2ak − b, a] ∈ ζ.

• Step 2: Assume [a, b, c] ∈ ζ is a reduced form. Claim. There is only one reduced form in each
equivalence class. Suppose there exists another reduced form [a′, b′, c′] ∈ ζ. Then there exists

γ =

[
p q
r s

]
∈ SL2(Z) such that [a, b, c]

[
p q
r s

]
= [a′, b′, c′] with a′ = ap2 + bpr + cr2. Since

ps− qr = 1, gcd(p, r) = 1. Note

a′ = ap2 + bpr + cr2 = ap2
(
1 +

b

a

r

p

)
+ cr2 = ap2 + cr2

(
1 +

b

c

p

r

)
.

If p = 0, then r ̸= 0 and a′ = cr2 ⩾ c ⩾ a.
Assume now p ̸= 0.

(a) Assume
∣∣∣ rp ∣∣∣ ⩽ 1. Then 1 + b

a
r
p ⩾ 0. So a′ ⩾ cr2 ⩾ a.

(b) Assume
∣∣∣ rp ∣∣∣ > 1. Then 0 <

∣∣p
r

∣∣ < 1. So 1 + b
c
p
r ⩾ 0. Since p ̸= 0, a′ ⩾ ap2 ⩾ a.

Thus, a′ ⩾ a. Since

ax2 + bxy + cy2 ⩾ a(x2 + y2) + bxy ⩾ a(x2 + y2)− a|xy| ⩾ a|xy|,

the minimal nonzero positive integer [a, b, c] can represent is equal to or greater than a.
Actually, when (x, y) = (±1, 0), [a, b, c] represent a. Similarly, the minimal nonzero (positive)
integer that [a′, b′, c′] can represent is a′. Since [a, b, c] ∼ [a′, b′, c′], we have they represent the

same set of integers. So a = a′. Then γ =

[
1 k
0 1

]
for some k. So b′ = b+ 2ak. Since a = a′

and [a′, b′, c′] is reduced, b, b′ ∈ (−a, a]. Then k = 0 and b = b′. So c = c′.

Remark. How to find an equivalence reduced form.

(a) If c < a, replace [a, b, c] by [c,−b, a] under
[
0 −1
1 0

]
.

(b) If |b| > a, replace [a, b, c] by [a, b′, c′], where b′ = b + 2a
⌊
a−b
2a

⌋
∈ (−a, a], and c′ is found from

(b′)2 − 4ac′ = D = disc ([a, b, c]), i.e., c′ = (b′)2−D
4a = ak2 + bk + c.

(c) Repeat until you have a reduced form.

Example 4.30. Let f = [458, 214, 25].

(a) f ∼ [25,−214, 458].

(b)
⌊
a−b
2a

⌋
=
⌊
239
50

⌋
= 4 and f ∼ [25,−14, 2].
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(c) f ∼ [2, 14, 25],
⌊
a′−b′
2a′

⌋
= ⌊−3⌋ = −3 and f ∼ [2, 2, 1].

(d) f ∼ [1,−2, 2],
⌊
a′′−b′′
2a′′

⌋
=
⌊
3
2

⌋
= 1, f ∼ [1, 0, 1] = x2 + y2.

Theorem 4.31. Let D < 0 be a discriminant. There are only finitely many equivalence classes of
positive definite binary quadratic forms of discriminant D.

Proof. It is enough to show there are finitely many reduced forms of discriminant D. If [a, b, c] is
reduced, then |b| ⩽ a ⩽ c. Since b2 ⩽ a2 ⩽ ac, D = b2 − 4ac ⩽ −3ac. So −D ⩾ 3ac. There are only
finitely many a, c that satisfy this.

Definition 4.32. A binary quadratic form [a, b, c] is primitive if gcd(a, b, c) = 1.

Definition 4.33. The class number hD of discriminant D < 0 is the number of equivalence classes
of primitive positive definite binary quadratic forms of discriminant D.

Definition 4.34. D is a fundamental discriminant if and only if one of the following statements
holds:

(a) D ≡ 1 (mod 4) and is square-free.

(b) D = 4m, where m ≡ 2, 3 (mod 4) and m is square free.

Theorem 4.35 (Heeger, Stark-Baker, Goldfeld-Gross-Zagier). Let D be a negative, fundamental
discriminant. Then

(a) hD = 1 only for D = −3,−4,−7,−8,−11,−19,−43,−67,−164.

(b) hD = 2 only for −15,−20,−24,−35,−40,−51,−52,−88,−91,−115,−123,−148,−187,−232,
−235,−267,−403,−427.

(c) hD = 3 only for −23,−31,−59,−83,−107,−139,−211,−283,−307,−331,−379,−499,−547,
−643,−883,−907.

Definition 4.36. The number of equivalence classes of binary quadratic forms of discriminant D
with positive leading coefficient is called the class number and denoted H(D).

Theorem 4.37.

H(D) ⩽

{
2D, D > 0
8
3 |D|, D < 0

.

Proof. Let f = [a, b, c] be reduced of discriminant D. If a and c have the same sign, D = b2−4ac =
b2 − 4|ac| ⩽ a2 − 4|ac| ⩽ a2 − 4a2 = −3a2 < 0.

(a) If D > 0, since [a, b, c] is reduced, we have a and c have opposite signs, then D = b2 −
4ac = b2 + 4|ac| ⩾ 4|ac| ⩾ 4a2. So 0 < |a| ⩽ 1

2

√
D. Then (although the ratio cannot be −1)

− 1
2

√
D ⩽ b ⩽ 1

2

√
D. Note c = b2−D

4a . Hence H(D) ⩽ 2
(

1
2

√
D
)
(
√
D + 1)(1) = D +

√
D ⩽ 2D.

(b) If D < 0, then a and c have same sign and then |D| = 4ac − b2 ⩾ 4a2 − b2 ⩾ 4a2 − a2 = 3a2.

So 0 < |a| ⩽
∣∣D
3

∣∣ 12 . Then −
∣∣D
3

∣∣ 12 ⩽ b ⩽
∣∣D
3

∣∣ 12 . Hence H(D) ⩽ 2
∣∣D
3

∣∣ 12 (2∣∣D3 ∣∣ 12 + 1
)
(1) = 4

3 |D| +

2
∣∣D
3

∣∣ 12 ⩽ 8
3 |D|.



44 CHAPTER 4. BINARY QUADRATIC RESIDUE

Example 4.38. Determine H(−4) and the prime numbers represented by positive definite bi-
nary quadratic forms of discriminant −4. Let f = [a, b, c] be a reduced binary quadratic form
of discriminant −4. Then b2 − 4ac = −4 and −a < b ⩽ a < c or 0 ⩽ b ⩽ a = c. Then
4 = 4ac − b2 ⩾ 4ac − ac = 3ac. So 1 ⩽ ac ⩽ 4

3 , i.e., ac = 1, i.e., a = c = 1. So b = 0. The
only reduced form of discriminant −4 is x2 + y2. Hence H(−4) = 1. The primes represented are
p = 2, p ≡ 1 (mod 4).

Definition 4.39. We say n is properly represented by f = [a, b, c] if there exist x0, y0 with
gcd(x0, y0) = 1 such that f(x0, y0) = n.

Theorem 4.40. Let n ̸= 0, then there exists a binary quadratic form of discriminant D that
represents n properly if and only if the congruence x2 ≡ D (mod 4|n|) has a solution.

Proof. “⇐”. Suppose b is a solution to the congruence. Write b2 −D = 4nc. The form f(x, y) =
nx2 + bxy + cy2 has integer coefficient, has discriminant D, f(1, 0) = n and gcd(1, 0) = 0.

“⇒”. Suppose there exist x0, y0 with gcd(x0, y0) = 1 and some f = [a, b, c] such that f(x0, y0) =
n. Let D = b2 − 4ac. Since gcd(x0, y0) = 1, there exists m1,m2 such that m1m2 = 4|n|,
gcd(m1,m2) = 1, gcd(m1, y0) = 1 and gcd(m2, x0) = 1, since we can let m1 be the prod-
uct of prime factors pα of 4n for which p | x0 if such p exists, otherwise, let m1 = 1, and
then let m2 = 4n

m1
. Recall 4af(x, y) = (2ax + by)2 − Dy2. So 4an = (2ax0 + by0)

2 − Dy20 .

Then (2ax0 + by0)
2 ≡ Dy20 (mod m1). Since gcd(m1, y0) = 1, there exists y0 ∈ Z such that

y0y0 ≡ 1 (modm1). Then (2ax0+by0)
2y20 ≡ D (modm1). So the congruence x2 ≡ D (modm1) has

a solution. Play the same game with 4cf(x0, y0) to get a solution to x2 ≡ D (modm2). Now use the
Chinese remainder theorem to get a solution to x2 ≡ D (mod m1m2), i.e., x

2 ≡ D (mod 4|n|).

Example 4.41. Determine the set of primes represented by f(x, y) = x2+xy+3y2. Note disc(f) =
−11. Claim. f is the only reduced form of discriminant −11. Suppose g(x, y) = ax2+bxy+cy2 is a
reduced binary quadratic form of discriminant −11. Then 3ac ⩽ 4ac−b2 ⩽ 4ac, i.e., 3ac ⩽ 11 ⩽ 4ac,
i.e., 11

4 ⩽ ac ⩽ 11
3 . So ac = 3. Since a ⩽ c, a = 1, c = 3. Then b2 = 4ac − 11 = 1, i.e.,

b = ±1. If b = −1, then |b| = a, so b ⩾ 0, a contradiction. So b = 1. Thus, g = f and
H(−11) = 1. We just need to determine for which p, we can solve x2 ≡ −11 (mod 4p). If p = 2,
x2 ≡ −11 ≡ 5 (mod 8) has no solution. So you cannot represent 2. Assume p > 2. Consider
x2 ≡ −11 (mod 4p). Since x2 ≡ −11 ≡ 1 (mod 4), it has a solution. Consider x2 ≡ −11 (mod p).

Want 1 =
(

−11
p

)
= (−1)

1
2 (p−1)(−1)

1
4 (p−1)(11−1)

(
p
11

)
=
(
p
11

)
. So p ≡ 1, 3, 4, 5, 9 (mod 11). By

Chinese remainder theorem, when p ≡ 1, 3, 4, 5, 9 (mod 11), x2 ≡ −11 (mod 4p) has a solution.
Thus, these p’s are the primes represented by f .

4.1 Fractional Ideal

Definition 4.42. Let K = Q(
√
D). A fractional ideal of OK is a nonzero subgroup a ⊆ K such

that

(a) βa ⊆ a for β ∈ OK;

(b) there exists γ ∈ OK ∖ {0} such that γa ⩽ OK is ideal.

Remark. Let α ∈ OK ∖ {0}. Then α−1 = α
NK/Q(α)

∈ K. But in general it will no longer be

contained in OK. Nonetheless, it is very convenient to have the ability to divide two elements of
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OK. Fractional ideals are a generalization of ordinary ideals which do admit inverses. A fractional
ideal is to an ordinary ideal as Q is to Z. We will sometimes call ordinary ideals of OK integral
ideals.

Remark. Since γa ⩽ OK, we have any fractional ideal has the form a = αb for an integral ideal
b ⩽ OK and an element α = γ−1 ∈ K ∖ {0}.

Remark. Since γ ∈ OK and NK/Q(γ) ∈ Z, NK/Q(γ)a = γγa ⊆ OK. Thus, for (b), you can always
find n, not just γ ∈ OK. We have any fractional ideal has the form a = αb with b ⩽ OK and an
element, i.e., fractional ideal looks like 1

nb with b ⩽ OK.

Example 4.43. Let K = Q, then OK = OQ = Z and nZ ⩽ Z. Let m ∈ Z, then a = 1
mnZ is a

fractional ideal of Z. A fraction ideal has the form rA for r ∈ Q× and A ⩽ Z. Since any ideal is
principal, we have A = ⟨n⟩ for some n ∈ Z ∖ {0}, and hence rA = r⟨n⟩ = (rn)Z. Since rn is an
arbitrary element of Q×, we have {fractional ideals in Q} = {rZ : r ∈ Q×}.

Example 4.44. Let K = Q(i), then OK = Z[i], a PID. Fractional ideal looks like α⟨β⟩ = ⟨γ⟩, where
γ = αβ ∈ Q(i)×, α ∈ Q(i) and β ∈ Z[i]∖ {0}. So {fractional ideals} = {αZ[i],where α ∈ Q(i)×}.
For example, we can draw a picture for a =

(
1
2 + 1

2 i
)
Z[i] = 1

2 (1 + i)Z[i].

Example 4.45. Q(
√
D) is not a fractional ideal as you cannot clear the denominator.

Definition 4.46. Let α1, . . . , αn ∈ Q(
√
D), not all 0, the fractional ideal generated by α1, . . . , αn

is

⟨α1, . . . , αn⟩ :=


n∑
j=1

βjαj

∣∣∣ βj ∈ OK

 .

Proof. Note there exist ai, bi ∈ Q such that αi = ai + bi
√
D for any i. Then just choose m to clear

the denominators of all the ai, bi’. So m(α1, . . . , αn) = (mα1, . . . ,mαn) ⩽ OK.

Definition 4.47. We say a fractional ideal a is a principal ideal if

a = ⟨α⟩ = αOK for some α ∈ Q(
√
D).

Remark. Every ideal I ⩽ OK ⊆ Q(
√
D) gives a lattice in K. But a fractional ideal a is just a = 1

nI.

So it is a lattice in K as well. Hence there exist α, β ∈ Q(
√
D) such that a = αZ + βZ. You can

show this gives a = ⟨α, β⟩. In other words, any fractional ideal can be generated by two elements.

Definition 4.48. Let a be a fractional ideal. The product fractional ideal is

ab =

{
finite∑
i=1

αiβi, αi ∈ a, βi ∈ b

}
.

Remark. (a) This is a fractional ideal.

(b) If a = ⟨α1, α2⟩, b = ⟨β1, β2⟩, then ab = ⟨α1β1, α1β2, α2β1, α2β2⟩.

Theorem 4.49. The set of all fractional ideal of Q(
√
D) is an abelian group under multiplication

if fractional ideals with the identity element OK.
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Proof. Well-defined, abelian, associativity, all are essentially either for free or straightforward. Note
OK = ⟨1⟩ is easily seen to act as identity under multiplication. It remains to show we have inverses,
which can be seen from algebraic number theory.

Definition 4.50. Let I be the group of fractional ideals in Q(
√
D). Let p ⊆ I be the subgroup of

principal fractional ideals. The class of group of Q(
√
D) is the quotient Cl

(
Q(

√
D)
)
:= I/p.

Fact 4.51. Cl
(
Q(

√
D)
)
is a finite abelian group.

Remark. The size of Cl
(
Q(

√
D)
)
measures how far from a unique factorization domain OK is. If

Cl
(
Q(

√
D)
)
is trival, we have unique factorization in OK.

Theorem 4.52. Let I ⩽ OK. There exist a, b, c with c | a and 0 ⩽ b ⩽ a such that I = aZ+(b+cω)Z,

where ω = D+
√
D

2 . Note {1, ω} is a basis of OK. Then

[
a b
0 c

]
is a smith norm form? One has

#(OK/I) = ac = N(I) is finite.

Remark. Given a fractional ideal a, we associate a binary quadratic form as follows. Take a Z-basis
{ω1, ω2} of a with ω1 ∈ Q>0. Then

(a) ω2ω1−ω1ω2√
D

> 0,

(b) ω2 − ω2 =
√
D,

(c) ω1 | ω2ω2,

(d) The binary quadratic form fa(x, y) =
NK/Q(xω1−yω2)

N(a) = (xω1−yω2)(xω1−yω2)
N(a) .

Fact 4.53. (a) fa is an integral binary quadratic form, i.e., usual binary quadratic form with
integral coefficients.

(b) fa is a primitive binary quadratic form.

Definition 4.54. Let D be a non-square congruent to 0, 1 (mod 4). Let

F(D) = {set of equivalent class of primitive binary quadratic

of discriminant D module the action of PSL2(Z)} ,

where PSL2(Z) = SL2(Z)/{±12}. Set

F+(D) = {set of equivalent class of primitive b.q.f. [a, b, c] with a > 0

of discriminant D module the action of PSL2(Z)} .

Theorem 4.55. Let D < 0 be congruent to 0, 1 (mod 4). Then the map Φ([a, b, c]) = aZ+ −b+
√
D

2 Z
and ϕ(a) =

NK/Q(xω1−yω2)

N(A) , where a = ω1Z + ω2Z with ω2ω1−ω1ω2√
D

> 0 induces a bijection between

F+(D) and Cl
(
Q(

√
D)
)
.



Chapter 5

Continued Fraction

Given a real number θ, we can find a rational number as close to θ as we like.

Theorem 5.1 (Dirichlet 1842). Let θ ∈ R and Q ∈ R>1, then there exist p, q with 1 ⩽ q < Q such

that |qθ − p| ⩽ 1
Q , i.e.,

∣∣∣θ − p
q

∣∣∣ ⩽ 1
qQ .

Proof. Let N = ⌊Q⌋. Define {x} = x−⌊x⌋ ∈ [0, 1). Consider the following N+1 unordered numbers
in [0, 1]: 0, 1, {θ}, {2θ}, . . . , {(N−1)θ}. Partition the unit intervals intoN disjoint intervals of length
1
N . Note 0 = 0θ − 0 and 1 = 0θ − (−1) and {jθ} = jθ − ⌊jθ⌋ ∈ [0, 1) for j = 1, . . . , N − 1. Then
the difference between any two of these N + 1 numbers is of the form q′θ − p′ for some p′, q′ with
1 ⩽ q′ < N . By PHP, at least 2 of the N + 1 numbers must lie in the same intervals. Thus, there
exist p, q with 1 ⩽ q < N ⩽ Q and |qθ − p| ⩽ 1

N ⩽ 1
Q .

Corollary 5.2. Whenever θ is irrational, there exists infinitely many distinct pairs (p, q) with

q ∈ N such that
∣∣∣θ − p

q

∣∣∣ ⩽ 1
q2 .

Proof. Let Q ⩾ 2. Then there exist p, q with 1 ⩽ q < Q such that 0 <
∣∣∣θ − p

q

∣∣∣ ⩽ 1
qQ < 1

q2 . Let

Q′ >
∣∣∣θ − p

q

∣∣∣−1

. Then there exist p′, q′ with 1 ⩽ q′ < Q′ such that 0 <
∣∣∣θ − p′

q′

∣∣∣ ⩽ 1
q′Q′ <

1
q′

∣∣∣θ − p
q

∣∣∣ ⩽∣∣∣θ − p
q

∣∣∣. So p′

q′ ̸= p
q . Moreover,

∣∣∣θ − p′

q′

∣∣∣ < 1
q′Q′ <

1
q′2 . Continue and we will get infinitely many

distinct such pairs.

Remark (Fact: Roth,1958). If θ is an algebraic number, then for ϵ > 0, there exist Cϵ > 0 such

that
∣∣∣θ − p

q

∣∣∣ ⩽ Cϵ

q2+ϵ has only finitely many solutions.

Remark. q ∈ Q has finitely continued fractional. p ∈ R∖Q has infinitely continued fractional.

Theorem 5.3 (Algorithm). Let θ ∈ R. Define aj as follows.

(a) Let a0 = ⌊θ⌋. If a0 = θ, stop. If a0 ̸= θ, define θ1 such that θ = a0 +
1
θ1
, i.e., θ1 = 1

θ−a0 = 1
{θ} .

(b) Let a1 = ⌊θ1⌋. If a1 = θ1, stop. If a1 ̸= θ, define θ2 such that θ1 = a1 +
1
θ2
, i.e., θ2 = 1

θ1−a1 =
1

{θ1} . Then θ = a0 +
1
θ1

= a0 +
1

a1+
1
θ2

.

47
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(c) Continue this, if it stops at nth step, then θ is rational and write

θ = a0 +
1

a1 +
1

a2+
1

a3+ 1

...+ 1
an−1+ 1

an

= [a0, a1, . . . , an].

If θ ∈ R∖Q, it never stops, then θ is irrational and write θ = [a0, a1, a2, a3, · · · ].

Corollary 5.4. an = ⌊θn⌋ and θn = [an, an+1, · · · ].

Example 5.5. Let θ = 57
32 . Then a0 =

⌊
57
32

⌋
= 1. Set θ1 = 1

θ−a0 = 32
25 . Then a1 =

⌊
32
25

⌋
= 1. Set

θ2 = 1
θ1−a1 = 25

7 . Then a2 = 3. Set θ3 = 1
θ2−a2 = 7

4 . Then a3 = 1. Set θ4 = 1
θ3−a3 = 4

3 . Then

a4 = 1. Set θ5 = 1
θ4−a4 = 3 = a5. So

θ = 1 +
1

1 + 1
3+ 1

1+ 1
1+ 1

3

= [1, 1, 3, 1, 1, 3].

Example 5.6. Let θ =
√
3. Then a0 = 1. Set θ1 = 1

θ−a0 = 1√
3−1

= 1
2 (
√
3 + 1). Then a1 = 1. Set

θ2 = 1
θ1−a1 =

√
3 + 1. Then a2 = 2. Set θ3 = 1

θ2−a2 = 1√
3−1

= θ1. So

θ = 1 +
1

1 + 1
2+ 1

1+ 1
2+ 1

1+ 1
2+ 1

...

= [1, 1, 2, 1, 2, 1, 2, · · · ] = [1, 1, 2].

Example 5.7. e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, · · · ].

Definition 5.8. The ai’s are known as the partial quotients of θ. The θi’s are the complete
quotients of θ. The rational numbers pn

qn
= [a0, . . . , an] with gcd(pn, qn) = 1 and qn ⩾ 1 are called

the convergents to θ. The integers pn and qn satisfy the following recursive relations.

Theorem 5.9. Let θ ∈ R. Let an be the partial quotients of θ, θn the complete quotients of θ.
Then the convergents pn

qn
satisfy the recurrence relations p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2. Furthermore, pnqn − pn−1qn = (−1)n+1 for n ∈ N
and limn!∞ qn = ∞ and limn!∞

pn
qn

= θ.

Proof. Since p0
q0

= [a0] = a0, we have p0 = a0, q0 = 1. Since p1
q1

= [a0, a1] = a0 +
1
a1

= a0a1+1
a1

, we
have p1 = a0a1 + 1, q1 = a1. Since

p2
q2

= [a0, a1, a2] = a0 +
1

a1 +
1
a2

= a0 +
a2

a1a2 + 1
=
a2(a0a1 + 1) + a0

a1a2 + 1
=
a2p1 + p0
a2q1 + a0

,

we have p2 = a2p1 + p0, q2 = a2q1 + q0. So the recurrence relation holds for n = 2. Since
gcd(a, b) = gcd(a + bn, b) for n ∈ Z, we have 1 = gcd(a0, 1), 1 = gcd(1, a1) = gcd(a0a1 + 1, a1)
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and 1 = gcd(1, a2) = gcd(a2, a1a2 + 1) = gcd(a0a1a2 + a2 + a0, a1a2 + 1). So gcd(pi, qi) = 1 for
i = 0, 1, 2. Assume the statement is true for any n ⩽ m. Then

pm+1

qm+1
= [a0, a1, . . . , am, am+1] =

[
a0, a1, . . . , am−1, am +

1

am+1

]
=

(
am + 1

am+1

)
pm−1 + pm−2(

am + 1
am+1

)
qm−1 + qm−2

=
(am+1am + 1)pm−1 + am+1pm−2

(am+1am + 1)qm−1 + am+1qm−2
=
am+1(ampm−1 + pm−2) + pm−1

am+1(amqm−1 + qm−2) + qm−1
=
am+1pm + pm−1

am+1qm + qm−1
.

Claim. pnqn−1 − pn−1qn = (−1)n+1. When n = 1, p1q0 − p0q1 = (a0a1 + 1)− a0a1 = 1 = (−1)1+1.
Assume the result holds for k = n− 1. Then

pnqn−1 − pn−1qn = (anpn−1 + pn−2)qn−1 − pn−1(anqn−1 + qn−2)

= −(pn−1qn−2 − pn−2qn−1) = −(−1)n = (−1)n+1.

Similarly, pnqn+1 − pn+1qn = (−1)n+1. Define {a0} = a0, {a0, a1} = a0a1 + 1 and {a0, . . . , an} =
{a0, . . . , an−1}an + {a0, . . . , an−2}. Then by induction

{a0, . . . , an}{a1, . . . , an−1} − {a1, . . . , an}{a0, . . . , an−1} = (−1)n+1.

So gcd({a0, . . . , am+1}, {a1, . . . , am+1}) = 1. Also, by induction, am+1pm+ pm−1 = {a0, . . . , am+1}
and am+1qm + qm−1 = {a1, . . . , am+1}. So gcd(am+1pm + pm−1, am+1qm + qm−1) = 1. Thus,
gcd(pi, qi) = 1 for i ⩾ 0. Since ai ⩾ 1 for i ∈ N, we have qn = anqn−1 + qn−2 ⩾ qn−1 + qn−2 >
qn−1. So {qn} form a strictly increasing sequence of integers and thus limn!∞ qn = ∞. Since

pnqn−1 − pn−1qn = (−1)n+1, we have
∣∣∣pnqn − pn−1

qn−1

∣∣∣ = 1
qn−1qn

. Also, θ = [a0, a1, . . . , an−1, θn], where

0 < 1
θn

⩽ 1
⌊θn⌋ = 1

an
. So θ lies between pn−1

qn−1
and pn

qn
. Hence

∣∣∣θ − pn
qn

∣∣∣ ⩽ 1
qn−1qn

! 0. Thus,

limn!∞
pn
qn

= θ.

Remark. Let θ = s
t with gcd(s, t) = 1. For any convergent pn

qn
, we have either pn

qn
= θ or

1
tqn

⩽
∣∣∣ sqn−tpntqn

∣∣∣ = ∣∣∣ st − pn
qn

∣∣∣ ⩽ 1
qnqn+1

. Eventually, qn+1 > t, so it must be that for some large n,
pn
qn

= s
t . Thus, if θ ∈ Q, θ has a finite continued fraction expression.

Corollary 5.10.

θ =
θnpn−1 + pn−2

θnqn−1 + qn−2
.

Definition 5.11. θ ∈ R is a quadratic irrational when there exist a, b, c such that aθ2 + bθ+ c = 0
and b2 − 4ac > 0 is not a perfect square.

Theorem 5.12. The continued fraction [a0, a1, · · · ] represents a quadratic irrational if and only if
the sequence {aj} is ultimately periodic.

Proof. “⇐”. Suppose θ = [a0, . . . , ak−1, ak, . . . , ak+m−1]. Write ϕ = [ak, . . . , ak+m−1]. Then

ϕ = [ak, . . . , ak+m−1, ϕ]. Let
p′m
q′m

be the convergents to ϕ. Then
p′M
q′M

= [ak, . . . , ak+M ]. Then

p′0 = ak, q
′
0 = 1, p′1 = akak+1 + 1, q′1 = ak, p

′
M = ak+Mp

′
M−1 + p′M−2 for 2 ⩽ M ⩽ m − 1 and

q′M = ak+Mq
′
M−1 + q′M−2 for 2 ⩽ M ⩽ m − 1. So

p′M
q′M

= [ak, . . . , ak+M ] =
ak+Mp′M−1+p

′
M−2

qk+Mq′M−1+q
′
M−2

. Then
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ϕ = [ak, . . . , ak+m−1, ϕ] =
ϕp′m−1+p

′
m−2

ϕq′m−1+q
′
m−2

. Hence q′m−1ϕ
2 + (q′m−2 − p′m−1)ϕ − p′m−2 = 0. Thus, ϕ is

a quadratic irrational. Let pm
qm

be the convergents to θ. Then θ = [a0, . . . , ak−1, ϕ] =
pk−1ϕ+pk−2

qk−1ϕ+qk−2
.

Assume ϕ = a′
√
D+b′

d′ , a′, b′, c′ ∈ Z with D > 0 is not a perfect square. Plug it in, we also have θ

can be written as θ = a
√
D+b
d .

“⇒”. Let θ be a quadratic irrational. Assume aθ2 + bθ+ c = 0, a, b, c ∈ Z, with D = b2 − 4ac >
0 is not a perfect square. Let f(x, y) = ax2 + bxy + cy2. Let pn

qn
be convergents to θ. Set

rn =

[
pn pn−1

qn qn−1

]
. Then det(rn) = pnqn−1 − pn−1qn = (−1)n+1. So rn takes f to an “equivalent

form” fn(x, y) = anx
2 + bnxy + cny

2, which has the same discriminant as f . Then f(pn, qn) =

ap2n + bpnqn + cq2n = an, an−1 = f(pn−1, qn−1) = ap2n−1 + bpn−1qn−1 + cq2n−1 = cn. So f
(
pn
qn
, 1
)
=

a
p2n
q2n

+ bpnqn + c = an
q2n

. Since f(θ, 1) = 0, we have

an
q2n

= f

(
pn
qn
, 1

)
= f

(
pn
qn
, 1

)
− f(θ, 1) =

(
a

(
pn
qn

+ θ

)
+ b

)(
pn
qn

− θ

)
.

So |an| = q2n

∣∣∣a(pnqn + θ
)
+ b
∣∣∣∣∣∣pnqn − θ

∣∣∣. Since ∣∣∣pnqn − θ
∣∣∣ ⩽ 1

qnqn−1
⩽ 1

q2n
, we have

|an| ⩽
∣∣∣∣a(pnqn + θ

)
+ b

∣∣∣∣ = |a|
∣∣∣∣pnqn + θ

∣∣∣∣+ |b| ⩽ |a|
(
2|θ|+

∣∣∣∣pnqn − θ

∣∣∣∣)+ |b| ⩽ |a| (2|θ|+ 1) + |b|.

Hence there are finitely many choices for an. Since an−1 = cn, we have there are finitely many
choices for cn. Since b

2
n− 4ancn = b2 − 4ac, we have there are finitely many choices for bn. Let θn’s

be the complete quotients to θ. Then θ = θn+1pn+pn−1

θn+1qn+qn−1
. Let θ = ϕ

ϕ′ . Then

[
ϕ
ϕ′

] [
pn pn−1

qn qn−1

] [
θn+1

1

]
.

Since f(θ, 1) = 0 and fn(x, y) = f(pnx+ pn−1y, qnx+ qn−1y), we have

fn(θn+1, 1) = f(pnθn−1 + pn−1, qnθn+1 + qn−1) = f(ϕ, ϕ′) = aϕ2 + bϕϕ′ + cϕ′2 = ϕ′2f(θ, 1) = 0.

Since there are finitely many choices an, bn, cn, there are finitely many fn. Since (θn, 1)’s are roots
of fn, there are finitely many possible θn’s. So there exists m, l such that θl+m = θl. Then

θ = [a0, . . . , al−1, θl] = [a0, . . . , al−1, al, . . . , al+m−1, θl+m]

= [a0, . . . , al−1, al, . . . , al+m−1, θl] = [a0, . . . , al−1, al, . . . , al+m−1].

Thus, θ has periodic continued fraction.

Definition 5.13. We say θ is purely periodic if

θ = [a0, . . . , an].

Remark. Goal: Given d ∈ N not a perfect square. Compute the continued fractional of
√
d. We

first compute the continued fractional of
√
d+

⌊√
d
⌋
, which is purely periodic.

Theorem 5.14. The continued fraction expansion of the real quadratic irrational number θ is
purely periodic if and only if θ > 1 and −1 < θ < 0.
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Proof. “⇐”. Assume θ > 1 and −1 < θ < 0. As usual, define θi+1 = 1
θi−ai . Then θi+1 = 1

θi−ai
.

Note by assumption, −1 < θ0 < 0. Assume −1 < θn < 0. Since an ⩾ 1 for n ∈ Z⩾0, we have
θn − an < −1. So −1 < θn+1 < 0. Thus, −1 < θi < 0 for i ∈ Z⩾0. Then −1θi = ai +

1
θi+1

< 0.

So 0 < −ai − 1
θi+1

< 1, i.e., ai < − 1
θi+1

< ai + 1. Hence ai =
⌊
− 1
θi+1

⌋
. Since θ is quadratic

irrational, θ is eventually periodic and so for some 0 < j < k, θj = θk. Then θj = θk. So

aj−1 =
⌊
− 1
θj

⌋
=
⌊
− 1
θk

⌋
= ak−1. Then θj−1 = aj−1 +

1
θj

= ak−1 +
1
θk

= θk−1. Thus, if θj = θk,

then θj−1 = θk−1. Repeating this j times gives θ0 = θk−j . Then

θ = θ0 = [a0, . . . , ak−j−1, θk−j ] = [a0, . . . , ak−j−1, θ0] = [a0, a1, . . . , ak−j+1].

“⇒”. Assume θ is purely periodic, say θ = [a0, . . . , an] with aj ∈ N for j = 0, . . . , n. Then

θ > a0 ⩾ 1. Since θ = [a0, . . . , an−1, θ] =
θpn−1+pn−2

θqn−1+qn−2
, θ is a root of f(x) = qn−1x

2 + (qn−2 −
pn−1)x

2 − pn−2 = 0. Let θ be another root of f . Then it remains to show −1 < θ < 0. Note
f(0) = −an−2 < 0 and

f(−1) = qn−1 − qn−2 + pn−1 − pn−2 = an−1qn−2 + qn−3 − qn−2 + an−1pn−2 + pn−3 − pn−2

= (qn−2 + pn−2)(an−1 − 1) + qn−3 + pn−3 ⩾ qn−3 + pn−3 > 0.

By intemediate zero theorem, −1 < θ < 0.

Lemma 5.15. Let pn
qn

be the nth convergent of the continued fraction representation θ ∈ R ∖ Q.

If a, b ∈ Z with 1 ⩽ b < qn+1, then |qnθ − pn| < |bθ − a|.

Proof. Consider the system of equations

{
pnα+ pn+1β = a
qnα+ qn+1β = b

. Since pnqn+1−pn+1qn = (−1)n+1,

we have a unique solution to equations above{
α = (−1)n+1(aqn+1 − bpn+1) ∈ Z
β = (−1)n+1(bpn − aqn) ∈ Z .

If α = 0, then aqn+1 = bpn+1. Since gcd(pn+1, qn+1) = 1, we have qn+1 | b, contradicted by
b < qn+1. So α ̸= 0. If β = 0, then bpn = aqn and a = pnα and b = qnα. So |bθ − a| =
|α||qnθ − pn| ⩾ |qnθ − pn|. Hence we have the result if β = 0. Assume now β ̸= 0. Claim. β and α
have opposite sign. If β < 0, then qnα = b− qn+1β > 0. Since b ⩾ 1 and qi ⩾ 0 for i ⩾ 0, α > 0. If
β > 0, since b < qn+1, b < βqn+1. Then qnα = b− βqn+1 < 0. So α < 0. Recall θ lies between pn

qn

and pn+1

qn+1
. Then

(
θ − pn

qn

)(
θ − pn+1

qn+1

)
< 0. Since qi > 0 for i ∈ Z⩾0, (qnθ− pn)(qn+1θ− pn+1) < 0.

So qnθ − pn and qn+1θ − pn+1 are of opposite sign. Thus, α(qnθ − pn) and β(qn+1θ − pn+1) have
the same sign. Since α ̸= 0,

|bθ − a| = |(qnα+ qn+1β)θ − (pnα+ pn+1β)| = |α(qnθ − pn) + β(qn+1θ − pn+1)|
= |α(qnθ − pn)|+ |β(qn+1θ − pn+1)| ⩾ |α||qnθ − pn| ⩾ |qnθ − pn|.

Theorem 5.16. If 1 ⩽ b ⩽ qn, then
∣∣∣θ − pn

qn

∣∣∣ ⩽ ∣∣θ − a
b

∣∣, i.e., Continued fractions give the best

approximations.
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Proof. Suppose
∣∣∣θ − pn

qn

∣∣∣ > ∣∣θ − a
b

∣∣. Then |qnθ − pn| = qn

∣∣∣θ − pn
qn

∣∣∣ > ∣∣θ − a
b

∣∣ = |bθ − a|, contra-
dicted by Lemma 5.15.

Lemma 5.17. Let θ ∈ R∖Q. If ab ∈ Q with b ∈ N and gcd(a, b) = 1 such that
∣∣θ − a

b

∣∣ < 1
2b2 , then

a
b is a convergent pn

qn
for some n.

Proof. Assume a
b is not a convergent. We know qn’s form an increasing sequence. So there exists

n ⩾ 0 such that 1 ⩽ b = qn < qn+1. Then |qnθ − pn| ⩽ |bθ − a| = b
∣∣θ − a

b

∣∣ < b 1
2b2 = 1

2b . So∣∣∣θ − pn
qn

∣∣∣ ⩽ 1
2qnb

. Since a
b is not a convergent, bpn − aqn ̸= 0. So 1 ⩽ |bpn − aqn|. Then

1

bqn
⩽

∣∣∣∣bpn − aqn
bqn

∣∣∣∣ = ∣∣∣∣pnqn − a

b

∣∣∣∣ ⩽ ∣∣∣∣pnqn − θ

∣∣∣∣+ ∣∣∣θ − a

b

∣∣∣ < 1

2bqn
+

1

2b2
.

So b < qn, a contradiction.

Theorem 5.18. If (p, q) is a positive solution to x2 − dy2 = 1, then p
q is a convergent of the

continued fraction expresion of
√
d.

Proof. Since 1 = p2 − dq2 = (p− q
√
d)(p+ q

√
d) and p+ q

√
d > 0, p > q

√
d. Then

0 <
p

q
−
√
d =

p− q
√
d

q
=

p2 − dq2

q(p+ q
√
d)

=
1

q(p+ q
√
d)

<

√
d

q(q
√
d+ q

√
d)

=

√
d

2q
√
d
=

1

2q2
.

Since gcd(p, q) = 1, by Lemma 5.17, pq is a convergent.

Lemma 5.19. Let d > 0 not be a perfect square. Write
√
d = [a0, a1, a2, · · · ]. Define sk and tk

by s0 = 0, t0 = 1, sk+1 = aktk − sk, and tk+1 =
d−s2k+1

tk
for k ∈ Z⩾0. Then sk, tk ∈ Z with tk ̸= 0,

tk | (d− s2k) and θk = sk+
√
d

tk
for k ∈ Z⩾0.

Proof. k = 0 is clear. Assume the result holds for k. Since ak ∈ Z, sk+1 ∈ Z. Suppose tk+1 = 0.
Then d = s2k+1, which is a contradicted by d is not a perfect square. So tk+1 ̸= 0. Since tk+1 =
d−s2k+1

tk
=

d−s2k
tk

+ (2aksk − a2ktk) ∈ Z, tk+1 | (d− s2k+1). Note

θk+1 =
1

θk − ak
=

tk

(sk +
√
d)− tkak

=
tk√

d− sk+1

=
tk(sk+1 +

√
d)

d− s2k+1

=
sk+1 +

√
d

tk+1
.

Theorem 5.20. Let d ∈ N not be a perfect square. Then
√
d+
⌊√

d
⌋
> 1 and −1 < −

√
d+
⌊√

d
⌋
<

0. So
√
d+

⌊√
d
⌋
is purely periodic.

Proof. Since a0 =
⌊√

d+ ⌊d⌋
⌋
= 2

⌊√
d
⌋
,

√
d = −

⌊√
d
⌋
+
(√

d+
⌊√

d
⌋)

= −
⌊√

d
⌋
+
[
2
⌊√

d
⌋
, a1, . . . , ar−1, a0

]
= −

⌊√
d
⌋
+ 2

⌊√
d
⌋
+

1

stuff
=
⌊√

d
⌋
+

1

stuff
=

[⌊√
d
⌋
, a1, . . . , ar−1, 2

⌊√
d
⌋]
.
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Theorem 5.21. Let θ0 =
⌊√

d
⌋
+
√
d,, then ti = 1 if and only if i = jr for some j ⩾ 0.

Proof. Assume

θ =
√
d+

⌊√
d
⌋
= [a0, . . . , ar−1] = [a0, a1, . . . , ar−1, a0] = [a0, a1, a2, . . . , ar−2, a0, a1] = · · · ,

where r is chosen to be the smallest integer such that we have this type of expression for θ. Then

θi = [ai, ai+1, · · · ] = [ai, . . . , aNr−1, a0, . . . , ar−1] = [ai−(N−1)r, . . . , ar−1, a0, . . . , ar−1]

= [ai−(N−1)r, . . . , ar−2, ar−1, a0, . . . , ar−2] = [ai−(N−1)r, . . . , ai−(N−2)r−1],

is purely periodic as well. Since θ = θ0 = θr = θ2r = · · · with θi ̸= θ0 for i = 1, . . . , r − 1, we

have θ0 = θi if and only if i = rm for some m ⩾ 0. Let s0 =
⌊√

d
⌋
, t0 = 1, θ0 =

√
d +

⌊√
d
⌋
,

si+1 = aiti − si for i ∈ N and ti+1 =
d−s2i+1

ti
for i ∈ N. So similarly, we have θi =

si+
√
d

ti
for i ⩾ 0.

Then for j ∈ N, sjr+
√
d

tjr
= θjr = θ0 =

√
d +

⌊√
d
⌋
. So Z ∋ sjr − tjr

⌊√
d
⌋
= (tjr − 1)

√
d. Hence

tjr = 1. Suppose ti = 1 for some other index i. Then θi = si +
√
d. Since θi is purely periodic,

−1 < si −
√
d < 0, i.e.,

√
d − 1 < si <

√
d. So si =

⌊√
d
⌋
. Hence θi =

⌊√
d
⌋
+

√
d = θ0, a

contradiction. Exercise: show ti ̸= −1 for i ⩾ 0.

Corollary 5.22. Let θ0 =
√
d,, then ti = 1 if and only if i = jr for some j ⩾ 0.

Example 5.23. Find the quadratic irrational given by θ =
⌊
8, 1, 16

⌋
= 8 + 1

x , where x = [1, 16].
Since x = [1, 16, x] = 1 + 1

16+ 1
x

, we have x−2 + 16x−1 − 16 = 0. Solve this for x−1 and take the

positive part, x−1 = −8 +
√
80. Then θ = 8 + x−1 = 8 + (−8 +

√
80) =

√
80.

Theorem 5.24. Let d > 0 not be a perfect square. Then x2 − dy2 = 1 has infinitely many integer
solution.

Proof. By Dirichlet (1842), for Q ∈ R>1, there exist p, q ∈ Z with 1 ⩽ q < Q such that
∣∣∣q√d− p

∣∣∣ ⩽
1
Q . Then∣∣∣p+ q

√
d
∣∣∣ = ∣∣∣p− q

√
d+ 2q

√
d
∣∣∣ ⩽ ∣∣∣p− q

√
d
∣∣∣+ 2q

√
d ⩽

1

Q
+ 2q

√
d < 3q

√
d < 3Q

√
d.

So
∣∣p2 − q2d

∣∣ = ∣∣∣p− q
√
d
∣∣∣∣∣∣p+ q

√
d
∣∣∣ < 1

Q3Q
√
d = 3

√
d. We can show there are infinitely many pairs

(p, q) such that
∣∣p2 − q2d

∣∣ < 3
√
d. Since 3

√
d is finite, there exist N such that the Pell’s equation

x2 − dy2 = N has infinitely many solutions. Among these infinitely many solutions, there is a pair

of congruence class (α, β) such that infinitely many (x, y)’s satisfy

{
x ≡ α (mod N)
y ≡ β (mod N)

. Let (p, q)

and (p′, q′) satisfy the Pell’s equation and

{
p ≡ p′ ≡ α (mod N)
q ≡ q′ ≡ β (mod N)

. Then

(pp′ − dqq′)2 − d(pq′ − qp′)2 = (pp′)2 + d2(qq′)2 − d(pq′)2 − d(qp′)2 = (p2 − dq2)(p′2 − dq′2) = N2.

Set x̃ = pp′ − dqq′ and ỹ = pq′ − qp′. Then

x̃ = pp′ − dqq′ ≡ p2 − dq2 (mod N) ≡ N (mod N) ≡ 0 (mod N),
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and

ỹ = pq′ − qp′ = pq′ − p′q′ + p′q′ − qp′ = (p− p′)q′ + (q′ − q)p′ ≡ 0 (mod N).

So N | x̃ and N | ỹ. Set x = x̃
N ∈ Z and y = ỹ

N ∈ Z. Since x̃2 − dỹ2 = N2, we have x2 − dy2 = 1.
So we have a solution. Exercise: show (x, y) ̸= (±1, 0). Then we get distinct solutions. Given
a nontrivial solution (u, v) to x2 − dy2 = 1. Then (u2 + dv2)2 − d(2uv)2 = (u2 − dv2) = 1. So
(u2 + dv2, 2uv) is another solution. Repeat to get infinitely many solution.

Theorem 5.25. Let pk
qk

be the kth convergents of θ =
√
d. Then p2k − dq2k = (−1)k+1tk+1, where

tk+1 > 0 for k ⩾ 0.

Proof. Write
√
d = [a0, a1, . . . , ak, θk+1] and θ = θk+1pk+pk−1

θk+1qk+qk−1
. Substitute θk+1 = sk+1+

√
d

tk+1
, we

have
√
d =

sk+1+
√

d

tk+1
pk+pk−1

sk+1+
√

d

tk+1
qk+qk−1

, i.e.,
√
d = sk+1pk+

√
dpk+tk+1pk−1

sk+1qk+
√
dqk+tk+1qk−1

, i.e.,
√
d(sk+1qk + tk+1qk−1 − pk) =

sk+1pk + tk+1pk−1 − dqk ∈ Z. So{
sk+1qk + tk+1qk−1 = pk
sk+1pk + tk+1pk−1 = dqk

.

Then p2k−dq2k = tk+1(pkqk−1−pk−1qk) = (−1)k+1tk+1. Facts:
p2k
q2k

converges to θ from below. p2k+1

q2k+1

converges to θ from above. Since p2k
q2k

<
√
d < p2k+1

q2k+1
for k ⩾ 0, for k ⩾ 0,

{
p2k − dq2k < 0,∀2 | k
p2k − dq2k > 0,∀2 ∤ k .

Then
p2k−dq

2
k

p2k−1−dq
2
k−1

< 0, i.e., (−1)k+1tk+1

(−1)ktk
< 0, i.e., tk+1

tk
> 0 for k ⩾ 0. Since t0 = 1 > 0, we have

tk > 0 for k ⩾ 0.

Example 5.26. We have
√
15 = [3, 1, 6]. The convergents are 3

1 ,
4
1 ,

27
7 ,

31
8 , · · · . Then p

2
0 − dq20 =

32−15·12 = −6, p21−dq21 = 42−15·12 = 1, p22−dq22 = 272−15·72 = −6, p23−dq23 = 312−15·82 = 1,
t1 = t3 = 6 and t2 = t4 = 1.

Theorem 5.27. Let pk
qk

be the convergents of the continued fractions expansions of
√
d and let n

be the length of the expansion.

(a) If 2 | n, then all possible solutions of x2 − dy2 = 1 are given by

{
x = pkn−1

y = qkn−1
, k ∈ N .

(b) If 2 ∤ n, then all possible solutions of x2 − dy2 = 1 are given by

{
x = p2kn−1

y = q2kn−1
, k ∈ N .

Proof. By previous theorem, p2j −dq2j = (−1)j+1tj+1 with tj+1 > 0. To be a solution, we must have
2 | j+1. Then we get a solution if tj+1 = 1. Since n is the length of the expansion, tj+1 = 1 if and
only if j + 1 = nk for some k ∈ N, i.e., j = nk − 1. If 2 ∤ n, since 2 | j + 1, we have 2 | k. If 2 | n,
no conclusion on k.

Example 5.28. Consider x2 − 7y2 = 1. Note
√
7 = [2, 1, 1, 1, 4]. Since n = 4, solutions are{

x = p4k−1

y = q4k−1
,∀k ∈ N . Note the pi

qi

′
s are 2

1 ,
3
1 ,

5
2 ,

8
3 ,

37
14 ,

45
17 ,

82
31 ,

127
48 , · · · . Then p23 − 7 ∗ q23 =

82 − 7 ∗ 32 = 1, p27 − 7 ∗ q27 = 1272 − 7 ∗ 482 = 1, · · · .
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Definition 5.29. The unique solution (x0, y0) of x2 − dy2 = 1 in which x, y have their smallest
positive value is called the fundamental solution, i.e., if (x′, y′) is another solution, then 0 < x0 < x′

and 0 < y0 < y′.

Theorem 5.30. The fundamental solution (x, y) exists. If 2 | n,
{
x0 = pn−1

y0 = pn−1
. If 2 ∤ n,{

x0 = p2n−1

y0 = p2n−1
.

Theorem 5.31. Let (x0, y0) be fundamental solution of x2 − dy2 = 1. Then every pair of integers
(xn, yn) defined by xn + yn

√
d = (x0 + y0

√
d)n is also a solution.

Proof. Exercise: xn − yn
√
d = (x0 − y0

√
d)n. Since x0, y0 > 0, we have xn, yn > 0 for n ∈ N. Since

x2n−dy2n = (xn+ yn
√
d)(xn− yn

√
d) = (x0+ y0

√
d)n(x0− y0

√
d)n = (x20− y20d)n = 1n = 1, (xn, yn)

is a solution.

Example 5.32. Consider x2 − 35y2 = 1. The fundamental solution is

{
x0 = 6
y0 = 1

. Since (6 +
√
35)2 = 71 + 12

√
35, (71, 12) is a solution. Since (6 +

√
35)3 = 846 + 143

√
35, (846, 143) is a

solution.

Theorem 5.33. Let (x1, y1) be fundamental solution of x2−dy2 = 1. Then every positive solution
is given by (xn, yn), where xn, yn are determined by xn + yn

√
d = (x1 + y1

√
d)n.

Proof. Assume (u, v) is a positive solution that is not of this form. Since x1 + y1
√
d > 1, we have

xn + yn
√
d! ∞. Then there exist n ∈ N such that

(x1 + y1
√
d)n = xn + yn

√
d < u+ v

√
d < xn+1 + yn+1

√
d = (xn + yn

√
d)(x1 + y1

√
d).

Then

(xn + yn
√
d)(xn − yn

√
d) < (u+ v

√
d)(xn − yn

√
d) < (xn + yn

√
d)(x1 + y1

√
d)(xn − yn

√
d).

Since x2n − y2n = 1, we have 1 < (u+ v
√
d)(xn − yn

√
d) < x1 + y1

√
d. Define r, s by 1 < r + s

√
d =

(u + v
√
d)(xn − yn

√
d). Then r = xnu − ynvd and s = xnv − ynu. Then r2 − ds2 = (x2n −

dy2n)(u
2−dv2) = 1. Since 1 = (r+s

√
d)(r−s

√
d) and 1 < r+s

√
d, we have 0 < r−s

√
d < 1. Then

2r = (r+s
√
d)+(r−s

√
d) > 1+0 = 1. So r > 0. Also, since 2s

√
d = (r+

√
d)−(r−s

√
d) > 1−1 = 0,

s > 0. Since 1 < r + s
√
d < x1 + y1

√
d and r > 0, we have s > 0, a contradiction.

5.0.1 Quadratic fields

Consider the quadratic number field K = Q(
√
d) = {a+ b

√
d | a, b ∈ Q}. This is a Galois extension

of Q, i.e.,there are two automorphisms, the identity and the conjugation map σ : K ! K given by
a + b

√
d 7! a − b

√
d. Clearly σ2 = 1 and Gal(K/Q) = {1, σ}. Let α = a + b

√
d. Note σ(α) = α

if and only if b = 0, i.e., if and only if α ∈ Q. We say that K is real or complex quadratic
according to d > 0 or d < 0. The element α = a + b

√
d ∈ K is a root of the quadratic polynomial

pα(X) = X2 − 2aX + a2 − db2 ∈ Q[X]. Its second root α = a− b
√
d is called the conjugate of α.
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Definition 5.34. Let d be square free. Let K = Q(
√
d). Define

N : (K,×) ! (Q,×)

a+ b
√
d 7! (a+ b

√
d)(a− b

√
d) = a2 − b2d

and

Tr : (K,+) ! (Q,+)

a+ b
√
d 7! (a+ b

√
d) + (a− b

√
d) = 2a

and

disc : K ! Q

a+ b
√
d 7! 4db2.

Theorem 5.35. N is a multiplicative group homomorphism. Tr is an additive group homomor-
phism.

Definition 5.36. N |OK : OK ∖ {0} ! Z ∖ {0} with N(αβ) = N(α)N(β). To ease notation, we
assume d ≡ 2, 3 (mod 4), such that OK = Z[

√
d].

Remark. Goal: understand Z[
√
d]×.

Lemma 5.37. α ∈ Z[
√
d] is a unit if and only if N(α) = ±1.

Proof. Suppose there exists β ∈ Z[
√
d] such that αβ = 1. Then 1 = N(1) = N(αβ) = N(α)N(β).

So N(α) | 1. Hence N(α) = ±1. Suppose N(α) = ±1. Let α = a + b
√
d. Then ±1 = N(α) = (a +

b
√
d)(a−b

√
d). If (a+b

√
d)(a−b

√
d) = 1, then (a+b

√
d)−1 = a−b

√
d. If (a+b

√
d)(a−b

√
d) = −1,

then (a+ b
√
d)−1 = −(a− b

√
d).

Theorem 5.38. The solutions to Pell’s equations are

O×
Q(

√
d)

∼= G2 ×
(
x1 + y1

√
d
)Z
,

where (x1, y1) is the fundamental solution. and G2 = {±1} is an order 2 group. Note

(x1 + y1
√
d)−n =

(
1

x1 + y1
√
d

)n
= (x1 − y1

√
d)n = xn − yn

√
d.

Example 5.39. Consider Q(
√
7). Then OK = Z[

√
7]. To find units in Z[

√
7], we want to study

x2 − 7y2 = 1. Note
√
7 = [2, 1, 1, 1, 4], p0 = a0 = 2, q0 = 1, p1 = a1a0 + 1 = 3, q1 = a1 = 1,

p2 = a2p1+p0 = 3+2 = 5, q2 = a2q1+ q0 = 1+1 = 2, p3 = a3p2+p1 = 5+3 = 8, q3 = a3q2+ q1 =
2 + 1 = 3, · · · . So (p4−1, q4−1) = (p3, q3) = (8, 3) is a solution.

Theorem 5.40. Let d > 0 be not square and α = a+ b
√
d ∈ Q(

√
d). If N(α) = 1, then is a Pell’s

equation. If N(α) = −1, then you want a solution to x2 − dy2 = −1.

Fact 5.41.
O×
K
∼= G2 × (x1 + y1

√
d)Z.

N : O×
K ! G2. The solution to Pell’s equation is kernel of this. If d ≡ 3 (mod 4), there are no units

of norm −1.
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Remark. We want to solve the fermat equation for n = 3. Equivalently, we can show there is no
nontrivial solution to α3 + β3 + γ3 = 0. We will show this how no solution is in Q(

√
−3).

Remark. We say the units for Q(
√
d), we actually say the units for Z(

√
d).

Theorem 5.42. Let d < 0 be square-free. The field Q(
√
d) = K has units ±1 and these are

the only units except d = −1,−3. The units for Q(i) are ±1,±i. The units for Q(
√
−3) are

±1, 1±
√
−3

2 , −1±
√
−3

2 .

Proof. Let α ∈ OK with N(α) = ±1. The integral basis is

{
{1,

√
d} d ̸≡ 1 (mod 4){

1, 1+
√
d

2

}
d ≡ 1 (mod 4)

.

(a) If d ̸≡ 1 (mod 4), then α = x + y
√
d. Then N(α) = x2 − dy2. Since d < 0, we have N(α) > 0

and then N(α) ̸= −1 in this case. For d < −1, x2 − dy2 ⩾ −dy2 ⩾ 2y2. The only solutions to
x2 − dy2 = 1 are x = ±1 and y = 0, i.e., the only units are α = ±1. If d = −1, then x2 + y2 = 1.
This only has solutions x = ±1, y = 0 and x = 0, y = ±1, i.e., the only units for Q(

√
−1) are

α = ±1,±
√
−1.

(b) If d ≡ 1 (mod 4), then α = x′ + y′ 1+
√
d

2 = (2x′+y′)+y′
√
d

2 . If y′ is even, then same case as

previous one and we get some units ±1. If y′ is odd, then 2x′+y′ is odd and write α = x+y
√
d

2 with

x, y odd. So N(α) = x2−dy2
4 . Since d < 0, N(α) > 0, so N(α) ̸= −1 in this case. If d < −3, since

x2−dy2 ⩾ 1−d > 4, there are no solution to x2−dy2
4 = 1 with odd x, y. If d = −3, x

2+3y2

4 = 1 with
x, y odd, i.e., x2+3y2 = 4 with x, y odd. The only solutions are (1,±1) and (−1,±1), i.e., the only

units are α = 1±
√
−3

2 , −1±
√
−3

2 . Thus, we have units for Q(
√
−3) are α = ±1, 1±

√
−3

2 , −1±
√
−3

2 .

Remark. Let ω = −1+
√
−3

2 . Then the units of Q(
√
−3) are ±1, ±ω, ±ω2. Note 1 + ω + ω2 = 0,

and ω3 = 1.

We aren’t actually working with quadratic fields to look at fermat big theorem, it just happens that
Q(ξ3) = Q(

√
−3). Over Q(ξp), z

p = xp + yp = (x+ y)(x+ ξpy) · · · (x+ ξp−1
p y).

Definition 5.43. An element α ∈ OK is a prime if it is not a unit and it is divisible only by units
and its associates.

Theorem 5.44. Let α ∈ OK. If N(α) = ±p for a rational prime, then α is prime.

Proof. Suppose α ∈ OK satisfies N(α) = ±p and α = βγ. Then ±p = N(α) = N(βγ) = N(β)N(γ).
So N(β) = ±1 and N(γ) = ±p, or N(β) = ±p and N(γ) = ±1. So either β or γ is a unit. Hence β
or γ is associate of α. Thus, α is only divisible by units or associates. Therefore, α is prime.

Theorem 5.45. Every element α ∈ OK can be factored into primes.

Proof. Let α ∈ OK. If α is prime, we are done. If not, we can write α = β1β2 with β1, β2 not
associate of α. If β1β2 are both prime, we are done. If not, factor the one that is not prime

(possibly both). Then α = β1β
(1)
2 β

(2)
2 . Keeping doing this, write α = β1 · · · , βn. Since βi’s are

not associates of α, they are not units, either. If there is no prime factorization, you get something
like this for any n. Then |N(α)| = |

∏n
i=1 N(βi)| =

∏n
i=1|N(βi)|. So we can just choose n such that

|N(α)| < 2n, a contradiction.
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Definition 5.46. We say Q(
√
d) has unique factorization if OK is a UFD, i.e., all elements in OK

that are not 0 or units can be factored uniquely into primes up to order and associates.

Definition 5.47. We say Q(
√
d) is an Euclidean Domain if OK is an Euclidean domain, i.e., given

α, β ∈ OK with β ̸= 0, there exist γ, δ ∈ OK such that α = βγ + δ with γ = 0 or |N(δ)| < |N(γ)|.

Theorem 5.48. Every Euclidean domain Q(
√
d) has unique factorization.

Theorem 5.49. The field Q(
√
d) for d = −1,−2,−3,−7, 2, 3 is Euclidean.

Proof. Let K = Q(
√
m). Let α, β ∈ OK with β ̸= 0. Write α

β = u + v
√
m with u, v ∈ Q. Choose

x, y as close as possible to u, v, respectively. Then 0 ⩽ |u− x| ⩽ 1
2 and 0 ⩽ |v − y| ⩽ 1

2 . Set
γ = x+ y

√
m ∈ OK and δ = α− βγ ∈ OK. Since

N(δ) = N(α−βγ) = N
(α
β
−γ)

)
N(β) = N(u−x+(v−y)

√
m)N(β) =

(
(u− x)2 −m(v − y)2

)
N(β),

we have |N(δ)| =
∣∣(u− x)2 −m(v − y)2

∣∣|N(β)|. Observe{
−m

4 ⩽ (u− x)2 −m(v − y)2 ⩽ 1
4 m > 0

0 ⩽ (u− x)2 −m(v − y)2 ⩽ 1
4 − m

4 m < 0
.

If m = 2, 3,−1,−2, then |N(δ)| < |N(β)|, which implies the corresponding Q(
√
m) is Euclidean.

Let m = −3 or −7. Leave u, v as above. Choose s as close as possible to 2v and r such that
r ≡ s (mod 2) and as close to 2u as possible. Then 0 ⩽ |2v − s| ⩽ 1

2 and 0 ⩽ |2u− r| ⩽ 1. Since

m ≡ 1 (mod 4), γ = r+s
√
m

2 ∈ OK. Set δ = α− βγ ∈ OK. Since

N(δ) = N(α−βγ) = N(
α

β
−γ))N(β) = N(u− r

2
+(v− s

2
)
√
m)N(β) = ((u− r

2
)2−m(v− s

2
)2)N(β),

we have |N(δ)| ⩽
∣∣ 1
4 − m

16

∣∣|N(β)| < |N(β)|.

Theorem 5.50. Let K = Q(
√
m) have unique factorization. Then any prime π in Q(

√
m) corre-

sponds to exactly one rational prime p such that π | p.

Proof. Since N(π) = ππ ∈ Z, we have π | N(π). Let n be the smallest positive rational integer
divisible by π. Claim. n is prime in Q(

√
m). If not, write n = n1n2 with n1, n2 ̸= ±1. Then

π | n = n1n2. Since n1, n2 ̸= ±1, π | n1 or π | n2, a contradiction since n1 < n and n2 < n. Hence,
n is our n. Let q be a rational prime and p ̸= q such that π | q. Then π | 1 = px+ qy for some x, y,
a contradiction since 1 is not a prime.

Theorem 5.51. Let K = Q(
√
m) have unique factorization.

(a) Any rational prime p is either a prime π in K or the product of two prime π1, π2 not necessarily
distinct of K.

(b) The totality of primes π, π1, π2 obtained in (a) from p, together with associates constitute all
the primes in Q(

√
m).

(c) An odd rational prime p satisfying gcd(p,m) = 1 is a product π1π2 of two primes π1, π2 of K if

and only if?
(
m
p

)
= 1. Furthermore, if p = π1π2, then π1 and π2 are not associate, but π1 and π2

are associate (as are π1 and π2).
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(d) If gcd(2,m) = 1, then 2 is the associate of a square of a prime if m ≡ 3 (mod 4), 2 is prime if
m ≡ 5 (mod 8), and 2 is a product of distinct primes if m ≡ 1 (mod 8).

(e) Any rational prime p that divides m is the associate of the square of a prime in Q(
√
m).

Proof. (a) Suppose p is prime π in K, then we are done. Suppose p is not prime in K. Then p = πβ
for some π prime and β ∈ OK with β ̸= ±1. So p2 = N(p) = N(πβ) = N(π)N(β). Also, since
N(π) ∈ Z ∖ {1} and N(β) ∈ Z ∖ {1}, N(β) = ±p. So β is prime. Thus, p is the product of two
primes.

(b) Given any prime π, the previous theorem says it divides a unique rational prime p. Now apply
(a).

(c) Let p be a rational prime such that 2 ∤ p, p ∤ m and
(
m
p

)
= 1. Then there exists x such that

x2 ≡ m (mod p), i.e., p | x2 −m if and only if p | (x +
√
m)(x −

√
m). Suppose p is prime in K,

then p | x−
√
m or p | x+

√
m. Without loss of generality, assume p | x+

√
m.

(1) If m ̸≡ 1 (mod 4), then there exist a, b such that p(a + b
√
m) = x +

√
m. Then pb = 1, a

contradiction.

(2) If m ≡ 1 (mod 4), then there exist a, b such that p
(
a+ b 1+

√
m

2

)
= x +

√
m, i.e., pa + p b2 +

p b2
√
m = x+

√
m. So p b2 = 1, which is a contradiction since p ∤ 2.

Hence, p is not a prime (in K). By the proof of part (a), p is the product of two prime π1, π2 with
π1 = a + b

√
m and a2 −mb2 = N(π1) = ±p. Then π2 = p

π1
= p

a+b
√
m

= ±(a − b
√
m). So π2 =

±(a + b
√
m), which is an associate of π. Since π1

π2
= ±a+b

√
m

a−b
√
m

= ±
(

(2a)2+m(2b)2

4p + 8ab
√
m

4p

)
̸∈ OK

(Exercise), which means π1

π2
is certainly not a unit. For example, 5 = (2 + i)(2 − i). But 2 is not

odd, 1 + i = i(1− i) and 2 = (1 + i)(1− i).

(d) Assume m ≡ 3 (mod 4). Then (m −
√
m)(m +

√
m) = m2 −m = 2m

2−m
2 . If is a prime, then

2 | m−
√
m or 2 | m+

√
m. So m+

√
m

2 ∈ OK or m−
√
m

2 ∈ OK. Since 2 ∤ m and m ̸≡ 1 (mod 4), these
are actually not in OK. Hence, 2 is not prime. By the proof of part (a), there exist x, y such that
x+ y

√
m | 2 and x2 −my2 = N(x+ y

√
m) = ±2. So 2 = ±(x− y

√
m)(x+ y

√
m), where x− y

√
m

and x+y
√
m are primes. We want x−y

√
m and x+y

√
m to be associate and then 2 will be square

of a prime up to associate. Exercise: show the last part of the following

x− y
√
m

x+ y
√
m

= ±x
2 +my2 − 2xy

√
m

x2 −my2
= ±

(
x2 +my2

2
− xy

√
m

)
∈ OK.

Similarly, x+y
√
m

x−y
√
m

= ±
(
x2+my2

2 + xy
√
m
)

∈ OK. So x+y
√
m

x−y
√
m

and its inverse are in OK. Hence

x+y
√
m

x−y
√
m

∈ O×
K. Thus, x − y

√
m and x + y

√
m are associate. Assume m ≡ 1 (mod 4). Suppose 2

is not a prime. By the proof of part (a), there exist x, y of the same parity such that x+y
√
m

2

∣∣∣ 2,
and N

(
x+y

√
m

2

)
= ±2. Then x2 −my2 = ±8. If x, y are both even, write x = 2x0, y = 2y0. Then

x20 −my20 = ±2. Since m ≡ 1 (mod 4), we have x20 −my20 is odd or multiple of 4, a contradiction.
So x and y are both odd. Hence x2 ≡ y2 ≡ 1 (mod 8). Then 1 −m ≡ x2 −my2 ≡ 0 (mod 8). So
m ≡ 1 (mod 8). Thus, if m ≡ 5 (mod 8), then 2 is a prime in K. Assume m ≡ 1 (mod 8). Then



60 CHAPTER 5. CONTINUED FRACTION

1−
√
m

2
1+

√
m

2 = 1−m
4 = 2 1−m

8 . Since 2
∣∣ 1±

√
m

2 , we have 2 is not a prime. By the proof of part (d),

there exist x, y both odd such that x+y
√
m

2
x−y

√
m

2 = N
(
x+y

√
m

2

)
= ±2. Since x, y are both odd,

±
x+y

√
m

2
x−y

√
m

2

= ±x+y
√
m

x−y
√
m

= ±
(
x2+my2

8 + xy
√
m

4

)
̸∈ OK. Thus, x−y

√
m

2 and x+y
√
m

2 are not associates.

Therefore, 2 is a product of two non-associate primes.

(e) Let p be a rational prime divisor of m. If p = |m|, then p = ±
√
m
√
m. Since the norm of m is

prime p,
√
m is prime. If p < |m|, then

√
m
√
m = m = pmp . Since

√
m
p ̸∈ OK, we have p ∤

√
m in K.

So p is not prime in K. By the proof of part (a), there exists some prime π with N(π) = ±p such

that π | p. Since π |
√
m
√
m, we have π |

√
m. So π2 | m. Since m is square-free, p || m. So π ̸

∣∣∣ mp
? Thus, π2 | p.

Remark (Diophantine Equation). Let α ∈ OK with N(α) = ±p. Since N(α) = ±p, we have
α is prime. If m ̸≡ 1 (mod 4), write α = x + y

√
m. Then ±p = N(α) = αα = x2 − my2.

If m ≡ 1 (mod 4), write α = x+y
√
m

2 . Then we get a solution to x2 − my2 = ±4p. Suppose

Q(
√
m) has unique factorization. Let p be a rational prime with gcd(p, 2m) = 1 and

(
m
p

)
= 1.

(By Theorem 5.51(c), since m is odd, use gcd(p, 2m) to make sure p is odd prime.) Then if
m ̸≡ 1 (mod 4), we get a solution to one of the equation x2 −my2 = ±p; if m ≡ 1 (mod 4), we get
a solution to one of the equation x2 −my2 = ±4p.

5.0.2 The field Q(
√
−3)

Example 5.52. Find primes in Q(
√
−3). Factor 2, 3, 5, 7, · · · in Q(

√
−3). Let m = −3. Then

2m = −6. Find p such that gcd(p, 2m) = 1 or gcd(p, 6) = 6. Since
(

−3
p

)
=

{
−1 if p = 3k + 2
1 if p = 3k + 1

,

we have rational primes of the form p = 3k + 2 are primes in Q(
√
−3), and rational primes of the

form p = 3k + 1 factor in prime product π1π2 uniquely up to associates in Q(
√
−3), where{

π1 =
ap+bp

√
−3

2

π2 =
ap−bp

√
−3

−2

.

We can show 2 is not prime by contradiction. Consider p = 3. Since 3 = 3+
√
−3

2
3−

√
−3

2 , 3 =
√
−3

√
−3 and

√
−3 are prime, we have

√
−3 ∼ 3+

√
−3

2 , where ∼ denote ”associate”. Or since
3+

√
−3

2 =
√
−3 1−

√
−3

2 and 1−
√
−3

2 ∈ O×
K, we have

√
−3 ∼ 3+

√
−3

2 . We have that 6 units in Q(
√
−3)

are ±1, 1±
√
−3

2 , −1±
√
−3

2 . Write from now on θ =
√
−3. Set w = −1+

√
−3

2 . Then θ has 6 associates
±(1− w), ±(1− w2), ±(w − w2), ±θ.

Lemma 5.53. Every integer in K = Q(θ) is congruent to 0 or −1, 1 modulo θ.

Proof. Let a+bθ
2 ∈ OK. Then a, b are of the same parity. So b+aθ

2 ∈ OK. Since θ2 = −3, we

have a+bθ
2 = b+aθ

2 θ + 2a ≡ 2a (mod θ). Note 2a ≡ 0,±1 (mod 3). Since θ | 3, a+bθ
2 ≡ 2a ≡

0,±1 (mod θ).

Lemma 5.54. Let K = Q(θ). Let ξ, η ∈ OK, not divisible by θ.

(a) If ξ ≡ 1 (mod θ), then ξ3 ≡ 1 (mod θ4).
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(b) If ξ ≡ −1 (mod θ), then ξ3 ≡ −1 (mod θ4).

(c) If ξ3 + η3 ≡ 0 (mod θ), then ξ3 + η3 ≡ 0 (mod θ4).

(d) If ξ3 − η3 ≡ 0 (mod θ), then ξ3 − η3 ≡ 0 (mod θ4).

Proof. (a) If ξ ≡ 1 (mod θ), we can write ξ = 1 + βθ for some β ∈ OK. Since θ
2 = −3 and θ4 = 9,

we have

ξ3 = (1 + βθ)3 = 1 + 3βθ − 9β2 + β3θ3 ≡ 1 + 3βθ + β3θ3 ≡ 1 + θ3(β3 − β) (mod θ4).

Since β3 − β = β(β − 1)(β + 1), we have θ | β(β − 1)(β + 1) by Lemma 5.53. So ξ3 ≡ 1 (mod θ4).

(b) If ξ ≡ −1 (mod θ), then −ξ ≡ 1 (mod θ). Then by part (a), −ξ3 ≡ (−ξ)3 ≡ 1 (mod θ4). So
ξ3 ≡ −1 (mod θ4).

(c) Since θ | ξ(ξ − 1)(ξ + 1), we have ξ3 ≡ ξ (mod θ). Similarly, η3 ≡ η (mod θ). If ξ3 + η3 ≡
0 (mod θ), then ξ + η ≡ 0 (mod θ), i.e., ξ ≡ −η (mod 0). If ξ ≡ −1 (mod θ), then η ≡ 1 (mod θ).
So ξ3 ≡ −1 (mod θ4) and η3 ≡ 1 (mod θ4). Hence ξ3 + η3 ≡ −1 + 1 ≡ 0 (mod θ4). Similarly, we
have the cases ξ ≡ 0 (mod θ) and ξ ≡ 1 (mod θ)

(d) Play the same game to get the result.

Lemma 5.55. Let K = Q(θ). Let α, β, γ ∈ OK such that α3 + β3 + γ3 = 0. If gcd(α, β, γ) = 1,
then θ divides one of them.

Proof. Suppose θ divides none of them. Then α, β, γ ≡ ±1 (mod θ). So 0 = α3 + β3 + γ3 ≡
±1±1±1 (mod θ4). Then θ4 must divide 3, 1, −1 or −3. But θ4 = 9, which is a contradiction.

Lemma 5.56. Let K = Q(θ). Let α, β, γ ∈ OK ∖ {0} such that θ ∤ αβγ. Let ϵ1, ϵ2 be units and
r ∈ N such that α3 + ϵ1β

3 + ϵ2(θ
rγ)3 = 0. Then ϵ1 = ±1 and r ⩾ 2.

Proof. Since α, β ∈ OK ∖ {0}, we have α, β ≡ ±1 (mod θ). By previous Lemma 5.54(a) and
(b), α3, β3 ≡ ±1 (mod θ4). Since r > 0, we have 0 ≡ α3 + ϵ1β

3 ≡ ±1 ± ϵ1 (mod θ3). Since ϵ
is one of ±1,±w,±w2, we have ±1 ± ϵ1 is one of 2, 0,−2,±(1 ± w),±(1 ± w2) with all possible
sign combinations. Since 1 − w and 1 − w2 are associates of θ and θ2 = −3 is prime, we have θ3

cannot divide them. Also, 1 + w = −w2 ∈ O×
K and 1 + w2 = −w ∈ O×

K, so θ
3 cannot divide them.

Since N(±2) = 4 and N(θ3) = 27, we have N(θ3) ∤ N(±2). So θ3 ∤ ±2. Hence the only possibility is
±1±ξ1 = 0. So ϵ1 = ±1. Since θ | θ3 and α3+ϵ1β

3 ≡ 0 (mod θ3), we have α3+β3 ≡ 0 (mod θ) and
α3−β3 ≡ 0 (mod θ). Since θ | α(α−1)(α+1), we have α3 ≡ α (mod θ). Similarly, β3 ≡ β (mod θ).
By Lemma 5.54(c), α3 + ϵ1β

3 ≡ 0 (mod θ4). Then ϵ2(θ
rγ)3 ≡ 0 (mod θ4). So θ4 | ϵ2(θrγ)3. Thus,

r ⩾ 2.
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