Number Theory

Jim Brown (Notes by Shuai Wei)

September 17, 2023

Contents

1	pen Problems 1		
2	Introduction	3	
	2.1 Prerequisites	3	
	2.2 Pythagorean Triple	7	
	2.2.1 Algebraic Methods to Find Pythagorean Triple	8	
	2.3 Congruences	9	
		12	
	2.5 Newton's method \ldots	15	
	2.6 p -adic numbers \ldots	16	
	2.6.1 Roots of unity in \mathbf{Q}_p via Hensel's lemma	22	
	2.6.2 Primitive roots	24	
3	Quadratic Reciprocity	27	
	3.1 Legendre symbol	27	
	3.1.1 Algebraic number theory proof of QR	30	
	3.2 Jacobi symbol	33	
4	Binary Quadratic Residue	37	
	4.1 Fractional Ideal	44	
5	Continued Fraction	47	
	5.0.1 Quadratic fields	55	
	5.0.2 The field $\mathbb{Q}(\sqrt{-3})$		

Chapter 1

Open Problems

Many problems are easy to state but hard to prove.

(a) Given $n \in \mathbb{Z}_{\geq 2}$, is it always true that there exists $x, y, z \in \mathbb{N}$ such that $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$? Vaughan proved the number of $n \leq N$ for which the above equality is insolvable is $O(N \cdot \exp(-c(\log N)^{\frac{2}{3}}))$ for some positive constant c.

(b) Modern: Twin Primes. There are infinitely many pairs of primes (p, p') such that p - p' = 2. Zhang proved there are infinitely many pairs of prime numbers that differ by 70 million or less, i.e., $\lim_{n\to\infty} \inf(p_{n+1} - p_n) < N = 7 \times 10^7$, where p_n is the n^{th} prime. James Maynard prove it holds for N = 252. According to the Polymath project wiki, N = 246. Assume another conjecture, N = 6.

(c) Fermat's Last Theorem: $x^n + y^n = z^n$ has no positive interger solutions (x, y, z) for $n \in \mathbb{Z}_{>2}$. Almost all of modern algebra came from people trying to prove Fermat's Last Theorem. Fermat's Last Theorem is a corollary to a theorem that every elliptic curve is a modular form.

(d) Is it true the equation $x^n + y^n = z^n + w$ with $n \ge 5$?

Remark. All of these can be formulated as looking for solutions to equations $f(x_1, \ldots, x_n) = 0$ for $f \in \mathbb{Z}[x_1, \ldots, x_n]$ and solutions in \mathbb{R}^n for some integrating set R. These are called Diophantine equation-all the complicated machinery today was developed to solve them.

Chapter 2

Introduction

Convention 2.1. Assume all varaibles in this book are integers.

2.1 Prerequisites

Definition 2.2. (a) Assume $a \neq 0$. We say a divides b and write $a \mid b$ if there exists $c \in \mathbb{Z}$ such that ac = b.

(b) Assume $a \neq 0$ and $k \ge 0$. Write $a^k \mid b$ "exactly divides" if $a^k \mid b$ but $a^{k+1} \nmid b$.

Fact 2.3. We have the following facts.

- (a) $a \mid a$ for any $a \neq 0$.
- (b) $a \mid 0$, for any $a \neq 0$.
- (c) If $a \mid b$ and $b \mid c$, then $a \mid c$.
- (d) If $a \mid b$ and $a \mid c$, then $a \mid (bx + cy)$ for all $x, y \in \mathbb{Z}$.
- (e) If $a \mid b$ and $b \mid a$, then a = b.
- (f) If $a \mid b$ and a > 0 and b > 0, then $a \leq b$.
- (g) If $m \neq 0$, then $ma \mid mb$.

Theorem 2.4 (Division Algorithm). Assume $a \neq 0$. There exist unique $q, r \in \mathbb{Z}$ such that b = aq+r and $0 \leq r < a$. In particular, if $a \nmid b$, then 0 < r < a.

Proof. Let $q_0 = \arg \max_{q \in \mathbb{Z}} \{aq \mid aq \leqslant b\}$. Then $a(q_0 + 1) > b$, i.e., $a > b - aq_0$. Let $r_0 := b - aq_0$. Then $b = aq_0 + r_0$ with $0 \leqslant r_0 < a$. Suppose there exist another $r_1, q_1 \in \mathbb{Z}$ such that $b = aq_1 + r_1$ and $0 \leqslant r_1 < a$. Then $aq_0 + r_0 = aq_1 + r_1$, i.e., $a \mid (r_1 - r_0)$. Since $-a < r_1 - r_0 < a$, $r_1 = r_0$. Also, since $a \neq 0, q_0 = q_1$.

Definition 2.5. Let $a \neq 0$.

(a) If $a \mid b$ and $a \mid c$, we say a is a common divisor of b and c.

(b) The largest common positive divisor of b and c is called the *greatest common divisor* of b and c, denoted by (b, c) or gcd(b, c).

(c) Analogously define $gcd(b_1, \ldots, b_n)$.

Theorem 2.6.

$$gcd(b,c) = \min\{bx + cy > 0 \mid x, y \in \mathbb{Z}\}.$$

Proof. Let $D = \{bu + cv > 0 \mid u, v \in \mathbb{Z}\}$, Then $D \neq \emptyset$. Let d := bx + cy for some $x, y \in \mathbb{Z}$ such that $d = \min D$. Suppose $d \nmid b$. Since d > 0, we can write b = dq + r with 0 < r < d. Then $r = b - dq = b - (bx + cy)q = b(1 - qx) + c(-yq) \in D$, contradicted by $0 < r < d = \min D$. So $d \mid b$. Similarly, $d \mid c$. Hence $d \leq g = \gcd(b, c)$. Note gB = b and gC = c for some $B, C \in \mathbb{Z}$. Then d = (gB)x + (gC)y = g(Bx + Cy). So $g \mid d$. Since g, d > 0, we have $g \leq d$ and then g = d.

Corollary 2.7. If am + bn = 1, then

$$gcd(a,b) = gcd(a,n) = gcd(m,b) = gcd(m,n) = 1.$$

Theorem 2.8. Let $m \in \mathbb{N}$, then gcd(mb, mc) = m gcd(b, c).

Proof. Let $d = \gcd(b, c)$. Then $d \mid b$ and $d \mid c$. Since $m \neq 0$, $md \mid mb$ and $md \mid mc$. So $\gcd(mb, mc) \ge md$. Suppose there exists D > md such that $D \mid mb$ and $D \mid mc$. Then D = mx for some $x \in \mathbb{N}$. Then $x \mid b$ and $x \mid c$. So $x \le \gcd(b, c) = d$. Also, D = mx > md, i.e., x > d, a contradiction.

Corollary 2.9. If $d \in \mathbb{N}$ such that $d \mid a$ and $d \mid b$, then $gcd(\frac{a}{d}, \frac{b}{d}) = \frac{gcd(a,b)}{d}$ and so $d \mid gcd(a,b)$.

Proof.
$$\operatorname{gcd}(a,b) = \operatorname{gcd}\left(d\left(\frac{a}{d}\right), d\left(\frac{b}{d}\right)\right) = d \cdot \operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right).$$

Theorem 2.10. If gcd(a, m) = 1 = gcd(b, m), then gcd(ab, m) = 1.

Proof. There exist x_1, x_2 and $y_1, y_2 \in \mathbb{Z}$ such that $ax_1 + my_1 = 1$ and $bx_1 + my_2 = 1$. Then $ax_1 = 1 - my_1$, $bx_1 = 1 - my_2$ and $abx_1x_2 = 1 - my_1 - my_2 + m^2y_1y_2$, i.e., $abx_1x_2 + m(y_1 + y_2 - my_1y_2) = 1$. By Corollary 2.7, gcd(ab, m) = 1.

Fact 2.11.

$$gcd(a,b) = gcd(b,a) = gcd(-a,b) = gcd(a,b+ax).$$

Theorem 2.12. If $c \mid ab$ and gcd(b, c) = 1, then $c \mid a$.

Proof. Since there exist m, n such that 1 = bm + cn, we have a = abm + acn. Since $c \mid ab$ and $c \mid ac$, we have $c \mid a$.

Theorem 2.13 (Euclidean Algorithm). Let $c \in \mathbb{N}$. Repeat applying the division algorithm, write

$$b = cq_1 + r_1, 0 \leqslant r_1 < c,$$

$$c = r_1q_2 + r_2, 0 \leqslant r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, 0 \leqslant r_3 < r_2,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n, 0 \leqslant r_n < r_{n-1}$$

$$r_{n-1} = r_nq_{n+1}.$$

Then $r_n = \gcd(b, c)$.

2.1. PREREQUISITES

Proof.

$$gcd(b,c) = gcd(b - cq_1, c) = gcd(r_1, c) = gcd(r_1, c - r_1q_2) = gcd(r_1, r_2)$$
$$= \dots = gcd(r_{n-1}, r_n) = gcd(r_n, 0) = r_n.$$

Remark. This allows us to solve the linear Diophantine equation $bx + cy = \text{gcd}(b, c) = r_n$, i.e.,

$$r_n = r_{n-2} - r_{n-1}q_n = (r_{n-4} - r_{n-3}q_{n-2})q_{n-1} - (r_{n-3} - r_{n-2}q_{n-1})q_n,$$

i.e., continue to let $r_j = r_{j-2} - q_j r_{j-1}$ for j = n, ..., 3 and $r_2 = c - r_1 q_2$ and $r_1 = b - cq_1$.

Definition 2.14. (a) We say $b \in \mathbb{Z}$ is a *common multiple* of a_1, \dots, a_n if $a_i \mid b$ for $i = 1, \dots, n$.

(b) The *least common multiple* is the smallest positive common multiples. Denote this by

$$[a_1,\ldots,a_n] = \operatorname{lcm}(a_1,\ldots,a_n).$$

Fact 2.15.

$$\operatorname{lcm}(a,b) = \frac{ab}{\operatorname{gcd}(a,b)}.$$

Definition 2.16. Let $n \in \mathbb{N}$. We say that *a* is *congruent* to *b* modulo *n*, and write $a \equiv b \pmod{n}$, when $m \mid (a - b)$. We say that *a* is *not congruent* to *b* modulo *n*, and write $a \not\equiv b \pmod{m}$, when $m \nmid (a - b)$.

Remark. \equiv is an equivalence relation.

Theorem 2.17. Let $n \in \mathbb{N}$. Then $ca \equiv cb \pmod{n}$ if and only if $a \equiv b \pmod{\frac{n}{\gcd(c,n)}}$. In particular, if $ca \equiv cb \pmod{n}$ and $\gcd(c,n) = 1$, then $a \equiv b \pmod{n}$.

Proof. \Longrightarrow Note there exists k such that c(a - b) = nk. Also ther exist $r, s \in \mathbb{Z}$ with gcd(r, s) = 1 so that n = dr and c = ds. Then drk = nk = c(a - b) = ds(a - b), i.e., rk = s(a - b). Since $gcd(r, s) = 1, r \mid (a - b)$. So $(n/d) \mid a - b$.

Theorem 2.18. Let $n \in \mathbb{N}$. Then there exists x such that $ax \equiv 1 \pmod{n}$ if and only if gcd(a, n) = 1. If x_1 and x_2 are any two such integers, then $x_1 \equiv x_2 \pmod{n}$.

Proof. \implies Suppose gcd(a,n) > 1, then (ax,n) > 1 for any x. But if one were to have $ax \equiv 1 \pmod{n}$, then write ax = 1 + nq for some q, so gcd(ax,n) = gcd(1 + nq, n) = gcd(1, n) = 1, a contradiction.

 $\Longleftrightarrow By Theorem 2.6.$

Definition 2.19. Let $n \in \mathbb{N}$.

(a) If $x \equiv y \pmod{n}$, then y is called a *residue* of x modulo n.

(b) We say that $\{x_1, \dots, x_n\}$ is a *complete residue system* modulo n if for each y, there exists a unique x_i with $y \equiv x_i \pmod{m}$.

(c) The set of x with $x \equiv a \pmod{m}$ is called the *residue class*, or *congruence classm* of a modulo m.

Definition 2.20. We say $p \ge 2$ is *prime* if whenever $p \mid ab$, then $p \mid a$ or $p \mid b$.

Remark. Since \mathbb{Z} is a Unique Factorization Domain, It is equivalent to say p is prime if the only divisors of p is ± 1 and $\pm p$.

Lemma 2.21. Every $n \ge 2$ is a product of prime.

Proof. Proof by induction. Base case: 2 is straightforward. Inductive step: Assume every integer 2 < n < N is a product of prime. If N is a prime, then we are done. If N is not a prime, then it has a proper divisor d, write N = dn, 1 < d, n < N. Apply inductive hypothesis to d and n, so they have prime factorization. Hence N has a prime factorization. This gives the result.

Definition 2.22. Let $n \in \mathbb{Z} \setminus \{\pm 1, 0\}$, write $n = (\pm 1) \prod_{i=1}^{m} p_i^{e_i}$, with $p_1 < \cdots < p_m$ primes and $e_1, \ldots, e_m \in \mathbb{N}$. This is the *canonical factorization* of n.

Theorem 2.23 (Fundamental Theorem of Arithemetic). The canonical factorization of $n \in \mathbb{Z}^{\geq 2}$ is unique.

Proof. Proof by induction. Suppose we have a unique factorization for all integer $2 \leq n \leq N$. Suppose we have two canonical factorizations $N + 1 = \prod_{i=1}^{m} p_i^{e_i} = \prod_{j=1}^{k} q_i^{f_i}$. Since p_1 is prime and $p_1 \mid \prod_{j=1}^{k} q_j^{f_j}, p_1 \mid q_j$ for some $j \in \{1, \ldots, k\}$. Since p_1 and q_j are primes, we have $p_1 = q_j$. Then $p_1^{e_1-1} \prod_{i=2}^{m} p_i^{e_i} = q_j^{f_j-1} \prod_{i=1, i \neq j}^{k} q_i^{f_i} \leq N$. Now apply the inductive hypothesis.

Theorem 2.24 (Euclid). There are infinitely many primes.

Proof. Assume there are only finitely many primes, say p_1, \ldots, p_n . Set $N = p_1 \cdots p_n + 1$. Since N > 1, N has prime factorization and then there exists a prime p such that $p \mid N$. Then $p = p_j$ for some $j \in \{1, \ldots, n\}$ and $p \mid (p_1 \cdots p_n)$. So $p \mid (N - p_1 \cdots p_n)$, i.e., $p \mid 1$, a contradiction.

Theorem 2.25. Let p_n be the n^{th} prime. Then $p_n < 2^{2^n}$.

Proof. Proof by induction. Base case: $p_1 = 2 < 2^{2^1}$. Suppose this is true for all $n \leq N$. Since $p_i \nmid (p_1 \cdots p_N + 1)$ for $i = 1, \dots, N$, we have $p_{N+j} \mid (p_1 \cdots p_N + 1)$ for some $j \geq 1$. So

$$p_{N+1} \leqslant p_{N+j} \leqslant p_1 \cdots p_N + 1 < 2^{2^1} \cdots 2^{2^N} + 1 = 2^{\sum_{j=1}^N 2^j} + 1 = 2^{2(2^N-1)} + 1$$
$$= 2^{2^{N+1}-2} + 1 < 2^{2^{N+1}-2} + 2^{2^{N+1}-2} = 2^{2^{N+1}-1} < 2^{2^{N+1}}.$$

Definition 2.26. Let $x \in \mathbb{R}_{\geq 0}$. Define

$$\pi(x) = \#\{p \text{ prime} \mid p \leqslant x\}.$$

Theorem 2.27 (Prime Number Theorem).

$$\pi(x) \sim \frac{x}{\log x}$$

Proof. By Hadamard and de la Valle.

Remark. Since it is asymptotic result, the log base can be any number that is greater than 1.

Corollary 2.28. $\pi(x) > \log(\log x)$, where the log base can be any $2 < \alpha < 4$.

Proof. Let $x \ge 2$. Choose n such that $2^{2^n} \le x < 2^{2^{n+1}}$. Then by theorem 2.25, we have $\pi(x) \ge n$. Since our log is an increasing function, $\log x < \log 2^{2^{n+1}} = 2^{n+1} \log 2 = 2^n \log 4 < 2^n$. So $\log(\log x) < n \log 2 < n \le \pi(x)$.

Theorem 2.29. There are arbitrary large gaps between consecutive primes.

Proof. Let n be the gap size and consider the sequence n! + 2, ..., n! + n. Since the i^{th} number in the sequence is divisible by i + 1 for i = 1, ..., n - 1, we have a sequence of n - 1 consecutive composite numbers. So as $n \to \infty$, the gap between consecutive primes get arbitrary large. \Box

Lemma 2.30. If p is odd prime, then $p \equiv \pm 1 \pmod{4}$, i.e., $p \equiv 1 \pmod{4}$ or $p \equiv 3 \pmod{4}$.

Fact 2.31. If $p_1, p_2 \equiv 1 \pmod{4}$, then $p_1p_2 \equiv 1 \pmod{4}$.

Theorem 2.32 (Euclid). There are infinitely many primes of the form 4k + 3.

Proof. Assume p_1, \ldots, p_n are all the prime of the form $p \equiv 3 \pmod{4}$. Set $N = 4p_1 \cdots p_n - 1$. Then $N \equiv 3 \pmod{4}$ and $p_i \nmid N$ for $i = 1, \ldots, n$. So there must be a prime other than p_1, \ldots, p_n dividing N. Since N is odd, $2 \nmid N$. Suppose $N = q_1^{e_1} \cdots q_r^{e_r}$ for some $e_1, \cdots, e_r \in \mathbb{N}$ and primes $q_1, \cdots, q_r \equiv 1 \pmod{4}$. By Fact 2.31, we have N has the form $N \equiv 1 \pmod{4}$, a contradiction. Hence, N has at least one prime factor p of the form 4k + 3. Since $p_i \nmid N$ for $i = 1, \ldots, n$, we have $p \neq p_i$ for $i = 1, \ldots, n$, a contradiction.

Lemma 2.33 (Dirichet's theorem). Let gcd(a, b) = 1, then there are infinitely many primes of the form ak + b for $k \in \mathbb{N}$.

Lemma 2.34. There exists $n \ge 1$ and $f \in \mathbb{Z}[x_1, \ldots, x_n]$ whose positive values are precisely the prime numbers.

(a) Matijasevic proved the smallest n is 10, the polynomial degree $d \sim 1.6 \times 10^{45}$.

(b) JSW proved the smallest degree is 5 and the number of variables is 42.

Theorem 2.35. If $f \in \mathbb{Z}[t]$ with deg(f) > 1, then f cannot take just prime values for $t \in \mathbb{Z}$.

Proof. Suppose $f(t) := a_k t^k + \cdots + a_1 t + a_0$ is such a polynomial. Let $n_0 \in \mathbb{Z}$ and p be prime such that $f(n_0) = p$. Let $s \in \mathbb{Z}$. Then there exists $Q \in \mathbb{Z}[t]$ such that

$$f(n_0 + sp) = a_k(n_0 + sp)^k + \dots + a_1(n_0 + sp) + a_0 = f(n_0) + pQ(s) = p + pQ(s) = p(1 + Q(s)).$$

So $p \mid f(n_0 + sp)$. By assumption, $f(n_0 + sp)$ is prime. So $f(n_0 + sp) = p$ for $s \in \mathbb{Z}$, i.e., $f(n_0 + sp) - p = 0$ for $s \in \mathbb{Z}$, contradicted by $\deg(f - p) = k$.

2.2 Pythagorean Triple

Theorem 2.36 (Pythagorean theorem). We want all integer solution to the equation $x^2 + y^2 = z^2$. If (a, b, c) is a solution and (a, b, c) = 1, we say (a, b, c) is a primitive pythagorean triple. *Proof.* We only work with primitive solution. Note that $a^2, b^2, c^2 \equiv 0, 1 \pmod{4}$. So c must be even. Without loss of generality, assume a is even and b odd. Then $b^2 = c^2 - a^2 = (c - a)(c + a)$. Claim. gcd(c - a, c + a) = 1. Since c - a is odd,

$$gcd(c - a, c + a) = gcd(c - a, c + a - (c - a)) = gcd(c - a, 2a) = gcd(c - a, a) = gcd(c, a).$$

Suppose there exists prime p such that $p \mid \gcd(c, a)$, then $p \mid a$ and $p \mid c$. Then $p \mid c^2 - a^2 = b^2$ and so $p \mid b$. So $p \mid \gcd(a, b, c) = 1$, a contradiction. Hence $\gcd(c - a, c + a) = \gcd(c, a) = 1$. So there exist $m, n \in \mathbb{Z}$ such that $c + a = m^2$ and $c - a = n^2$. Hence $a = \frac{m^2 - n^2}{2}$, b = mn and $c = \frac{m^2 + n^2}{2}$. Thus, any odd $m, n \in \mathbb{Z}$ with $\gcd(m, n) = 1$ satisfying $2 \mid m^2 - n^2$ and $2 \mid m^2 + n^2$ can form a solution (a, b, c) with $a = \frac{m^2 - n^2}{2}$, b = mn and $c = \frac{m^2 + n^2}{2}$.

Remark. Since m, n are odd, $r := \frac{m+n}{2} \in \mathbb{Z}$ and $s := \frac{m-n}{2} \in \mathbb{Z}$. Then by Corollary 2.9, $gcd(r,s) = \frac{1}{2}gcd(m+n,m-n) = \frac{1}{2}gcd(2m,2n) = gcd(m,n) = 1$. Also, we can show r and s have oppositve parity. Since $\frac{(r+s)^2-(r-s)^2}{2} = 2rs$, $(r+s)(r-s) = r^2 - s^2$ and $\frac{(r+s)^2+(r-s)^2}{2} = r^2 + s^2$, the primitive pythagorean triples are given by $\{r^2 - s^2, 2rs, r^2 + s^2\}$ for r, s coprime of opposite parity.

Example 2.37. Let m = 1 and n = 3, we have $\{a, b, c\} = \{3, 4, 5\}$.

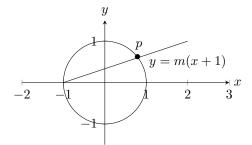
Theorem 2.38. If $X^4 + Y^4 = Z^2$ for $(X, Y, Z) \in \mathbb{Z}^3$, then XYZ = 0.

Proof. Let (x, y, z) be the solution with $x, y, z \in \mathbb{N}$ and smallest z. Then (x^2, y^2, z) is a primitive pythagorean triple. So there exist r, s coprime of opposite parity such that $x^2 = 2rs, y^2 = r^2 - s^2$ and $z = r^2 + s^2$. Then $r \leq r^2 < z$ and $s^2 + y^2 = r^2$. Since (r, s) = 1, (s, y, r) is a primitive pythagorean triple. Then there are coprime m and n of opposite parity such that s = 2mn, $y = m^2 - n^2$, and $r = m^2 + n^2$. So $x^2 = 2rs = 2(m^2 + n^2)(2mn) = 4mn(m^2 + n^2)$. Since m, n and $m^2 + n^2$ are pairwise coprime, there exist $a, b, c \in \mathbb{N}$ such that $m = a^2$, $n = b^2$ and $m^2 + n^2 = c^2$. Then $a^4 + b^4 = c^2$. So (a, b, c) is a solution. But $0 < c \leq c^2 = m^2 + n^2 = r < z$, a contradiction. \Box

Corollary 2.39. If $X^4 + Y^4 = Z^4$ for $(X, Y, Z) \in \mathbb{Z}^3$, then XYZ = 0.

2.2.1 Algebraic Methods to Find Pythagorean Triple

Example 2.40. Let (a, b, c) be primitive pythagorean triple $a^2 + b^2 = c^2$. Then $(\frac{a}{c})^2 + (\frac{b}{c})^2 = 1$, which means $(\frac{a}{c}, \frac{b}{c})$ is a rational points on the unit cycle. To study primitive pythagorean triple, we can parametrize rational points on unit cycle.



Let p be the intersection. Then $p = \left(\frac{1-m^2}{1+m^2}, \frac{2m}{1+m^2}\right)$. Let $m = \frac{s}{r}$ with $r \neq 0$. Then $p = \left(\frac{r^2-s^2}{r^2+s^2}, \frac{2rs}{r^2+s^2}\right)$.

2.3. CONGRUENCES

Lemma 2.41. For coprime r, s,

$$gcd(2, r^{2} + s^{2}) = gcd(2rs, r^{2} + s^{2}) = gcd(r^{2} - s^{2}, r^{2} + s^{2}).$$

Proof. Let $p \mid \gcd(rs, r^2 + s^2)$, then $p \mid rs$. Since p is prime, $p \mid r$ or $p \mid s$. Without loss of generality, assume $p \mid r$. Also, since $p \mid r^2 + s^2$. $p \mid s^2$. Since p is prime, $p \mid s$, a contradiction. So $\gcd(rs, r^2 + s^2) = 1$. Note $\gcd(r^2 - s^2, r^2 + s^2) = \gcd(2r^2, r^2 + s^2) = \gcd(2, r^2 + s^2)$. \Box

Definition 2.42. For r, s coprime, define $\delta(r, s) = \gcd(2, r^2 + s^2)$. Then

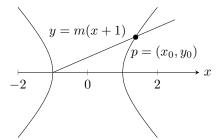
$$\delta(r,s) = \begin{cases} 1, & \text{if } r \not\equiv s \pmod{2} \\ 2, & \text{if } r \equiv s \pmod{2} \end{cases}$$

Then $\left(\frac{r^2-s^2}{r^2+s^2}, \frac{2rs}{r^2+s^2}\right) = \left(\frac{\frac{r^2-s^2}{\delta(r,s)}}{\frac{r^2+s^2}{\delta(r,s)}}, \frac{\frac{2rs}{\delta(r,s)}}{\frac{r^2+s^2}{\delta(r,s)}}\right)$. By Lemma 2.41, this gives the primitive pythagorean triple

$$\{a,b,c\} = \left\{\frac{r^2 - s^2}{\delta(r,s)}, \frac{2rs}{\delta(r,s)}, \frac{r^2 + s^2}{\delta(r,s)}\right\}$$

Remark. If we require r and s of opposite parity, then $\delta(r, s) = 1$ and we recover the previous result from our algebra computations.

Example 2.43. Consider the Pell's equation $x^2 - Dy^2 = 1$, for D a positive square-free integer.



It is easy to find given any rational number $m, p = \left(\frac{1+Dm^2}{1-Dm^2}, \frac{2m}{1-Dm^2}\right)$ is a rational solution of $x^2 - Dy^2 = 1$.

Remark. Note $x^2 + y^2 = 1$ implies $x^2 + y^2 = z^2$. Analogously, $x^2 - Dy^2 = 1$ implies $x^2 - Dy^2 = z^2$.

2.3 Congruences

In this section, assume $n \in \mathbb{N}$ and p is prime.

Definition 2.44. Defin *Euler's* ϕ -function by

$$\phi(n) := \#\{1 \le a \le n \mid \gcd(a, n) = 1\}.$$

Theorem 2.45.

$$\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}.$$

Proof. $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ if and only if there exists $b \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $ab \equiv 1 \pmod{n}$ if and only if there exists k such that ab + nk = 1 if and only if gcd(a, n) = 1.

Theorem 2.46 (Euler's theorem). If gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Proof. Since
$$gcd(a, n) = 1$$
, $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. So $a^{\phi(n)} = a^{\#(\mathbb{Z}/n\mathbb{Z})^{\wedge}} \equiv 1 \pmod{n}$.

Corollary 2.47 (Fermat's little theorem (FLT)). If $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Since gcd(a, p) = 1 and $\phi(p) = p - 1$, take n = p in Euler's theorem.

Remark. If we want to solve $ax \equiv b \pmod{n}$, we are asking if a has an inverse modulo n. If we consider this as an equation over $\mathbb{Z}/n\mathbb{Z}$, can we solve ax = b? Yes, if $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ if and only if gcd(a, n) = 1.

Corollary 2.48.

$$a^p \equiv a \pmod{p}, \forall a \in \mathbb{Z}$$

Proof. By Fermat's little theorem and $0^p \equiv 0 \pmod{p}$.

Theorem 2.49 (Wilson's theorem).

$$(p-1)! \equiv -1 \pmod{p}.$$

Proof. If p = 2 or 3, we are done. For $1 \le a < p$, gcd(a, p) = 1. Then there exists $1 \le \tilde{a} < p$ such that $\tilde{a}a \equiv 1 \pmod{p}$. Pair them up. The issue is if $a^2 \equiv 1 \pmod{p}$, then $p \mid a^2 - 1 = (a+1)(a-1)$, i.e., $a \equiv 1 \pmod{p}$ or $a \equiv -1 \pmod{p}$. So a = 1 or -1. Then $\{2, \ldots, p-2\}$ can be grouped into pairs whose product is 1 modulo p, i.e.,

$$(p-1)! = 1 \cdot 2 \cdot 3 \cdots (p-2)(p-1) = 1 \cdot (p-1) \prod_{j=2}^{n-2} j \equiv (p-1) \cdot 1 \pmod{p} \equiv -1 \pmod{p}.$$

Theorem 2.50.

$$x^{2} \equiv -1 \pmod{p} \begin{cases} has a solution & if p = 2 \text{ or } p \equiv 1 \pmod{4} \\ has no solution & if p \equiv 3 \pmod{4} \end{cases}$$

Proof. If p = 2, this is straightforward. If $p \equiv 1 \pmod{4}$, set $r = \frac{p-1}{2}$. Then $2 \mid r$. Set $x = \pm (r!)$. Since $\frac{m-p}{2} \equiv \frac{m+p}{2} \pmod{p}$, we have

$$\begin{aligned} x^2 &= (r!)^2 = 1 \cdots \frac{p-1}{2} \frac{p-1}{2} \cdots 1 = 1 \cdots \frac{p-1}{2} \frac{p-1}{2} \cdots 1 \cdot (-1)^{\frac{p-1}{2}} \\ &= 1 \cdots \frac{p-1}{2} \frac{1-p}{2} \cdots (-1) \equiv 1 \cdots \frac{p-1}{2} \frac{1-p}{2} \cdots \frac{p-2-p}{2} \pmod{p} \\ &\equiv 1 \cdots \frac{p-1}{2} \frac{1+p}{2} \cdots \frac{p-2+p}{2} \pmod{p} \equiv 1 \cdots \frac{p-1}{2} \frac{p+1}{2} \cdots (p-1) \pmod{p} \\ &\equiv (p-1)! \pmod{p} \equiv -1 \pmod{p}. \end{aligned}$$

Next, let $p \equiv 3 \pmod{4}$ and assume there is some x such that $x^2 \equiv -1 \pmod{p}$. Then $p \nmid x$, i.e., gcd(x,p) = 1. Since $\frac{p-1}{2}$ is odd, we have $(x^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. Also, by Fermat's little theorem, $(x^2)^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \pmod{p}$, a contradiction since $p \neq 2$.

Corollary 2.51. If $p \mid a^2 + b^2$ and $p \equiv 3 \pmod{4}$, then $p \mid a$ and $p \mid b$.

Proof. Note $a^2 \equiv -b^2 \pmod{p}$. Suppose $p \nmid b$. Since p is prime, there exists \tilde{b} such that $b\tilde{b} \equiv 1 \pmod{p}$. So $b^2\tilde{b}^2 \equiv 1 \pmod{p}$ and then $(a\bar{b})^2 \equiv -1 \pmod{p}$, contradicted by $p \equiv 3 \pmod{4}$. \Box

Lemma 2.52. $p = a^2 + b^2$ for some a, b if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Proof. p = 2 is straightforward.

 \implies Suppose $p \equiv 3 \pmod{4}$. Since p is prime, $a \neq 0$ and $b \neq 0$. Since $p = a^2 + b^2$, then $p \mid a$ and $p \mid b$ by Corollary 2.51. So there exist $a_0, b_0 \in \mathbb{Z} \setminus \{0\}$ such that $p = p^2(a_0^2 + b_0^2)$, i.e., $1 = a_0^2 + b_0^2$, a contradiction.

Theorem 2.53 (Fermat). Write

$$n = 2^{\alpha} \left(\prod_{p \equiv 1 \pmod{4}} p^{\beta} \right) \left(\prod_{q \equiv 3 \pmod{4}} q^{\gamma} \right).$$

Then n is a sum of the 2 squares if and only if $2 \mid \gamma$ for each γ .

Proof. Observe

$$(a^{2} + b^{2})(c^{2} + d^{2}) = (a + bi)(c + di)\overline{(a + bi)(c + di)}$$

= $||ac - bd + (ad + bc)i||^{2}$
= $(ac - bd)^{2} + (ad + bc)^{2} = (ac + bd)^{2} + (ad - bc)^{2}.$

 \Leftarrow Done by previous lemma and observation.

 $\implies \text{Assume } n = a^2 + b^2. \text{ Let } q \mid n \text{ with } q \equiv 3 \pmod{4}. \text{ Then by Corollary 2.51, } q \mid a \text{ and } q \mid b \text{ and so } q^2 \mid n. \text{ Then we can consider } \frac{n}{q^2} = \left(\frac{a}{q}\right)^2 + \left(\frac{b}{q}\right)^2. \text{ If } \gamma = 2k + 1 \text{ for some } k \in \mathbb{N}, \text{ given } \frac{n}{q^2} \text{ has the similar form as } n, \text{ by inductive argument, we see } \frac{n}{q^{2k}} = \left(\frac{a}{q^k}\right)^2 + \left(\frac{b}{q^k}\right)^2. \square$

Remark. The number of ways to write a $n \in \mathbb{N}$ as a sum of two squares is given by $s_n = \sum_{d|n} \chi_{-4}(d)$, where $\chi_{-4}(m) = \begin{cases} 1 & m \equiv 1 \pmod{4} \\ -1 & m \equiv 3 \pmod{4} \\ 0 & m \equiv 0, 2 \pmod{4} \end{cases}$.

Remark. We don't get every integer as a sum of 2 squares, what about the sum of r squares for r > 2? r = 3: no and r = 4: yes, which can be proved by the theorem of Lagrange. Use Hamiltonian quaternions to prove this: $\mathbb{Z}[i, j, k]$. Note $p = a^2 + b^2 = (a + bi)(a - bi)$, which factors in $\mathbb{Z}[i]$ if p = 2 or $p \equiv 1 \pmod{4}$ and does not factor in $\mathbb{Z}[i]$ if $p \equiv 3 \pmod{4}$.

2.4 Chinese Remainder Theorem

In this section, assume p is prime. Let canonical factorization of n be $n = p_1^{e_1} \cdots p_r^{e_n}$.

Remark. If we are given $ax \equiv b \pmod{n}$, we know this has a solution if gcd(a, n) = 1. Since there exist z, y such that a(bz) + n(by) = b, we have x = bz.

Theorem 2.54 (Chinese remainder theorem (CRT)). Let m_1, \ldots, m_r denote r positive integers with $gcd(m_i, m_j) = 1$ for any $i \neq j$. Let a_1, \ldots, a_m be in the system of congruence $x \equiv a_i \pmod{m_i}$ for $i = 1, \ldots, r$. Then it has a solution. Moreover, if x_0 is a solution, then any other solution satisfies $x \equiv x_0 \pmod{m_1 \cdots m_n}$.

Proof. Let n = 2. Then there exists $k_1 \in \mathbb{Z}$ such that $x - a_1 = m_1 k_1$. Then $a_1 + m_1 k_1 \equiv a_2 \pmod{m_2}$, i.e., $m_1 k_1 \equiv (a_2 - a_1) \pmod{m_2}$. Since $\gcd(m_1, m_2) = 1$, there exists \widetilde{m}_1 such that $m_1 \widetilde{m}_1 \equiv 1 \pmod{m_2}$. So $k_1 \equiv (a_2 - a_1) \widetilde{m}_1 \pmod{m_2}$. Then there exists $k_2 \in \mathbb{Z}$ such that $k_1 = (a_2 - a_1) \widetilde{m}_1 + k_2 m_2$. So $x = a_1 + m_1 (a_2 - a_1) \widetilde{m}_1 + k_2 m_1 m_2$ and then $x \equiv a_1 + m_1 (a_2 - a_1) \widetilde{m}_1 \pmod{m_1 m_2}$. The rest follows from the induction.

Example 2.55. Find the solutons if any of $x \equiv 1 \pmod{15}$ and $x \equiv 2 \pmod{35}$. By the first congruence, we have $x \equiv 1 \pmod{3}$ and $x \equiv 1 \pmod{5}$. By the second congruence, we have $x \equiv 2 \pmod{5}$ and $x \equiv 2 \pmod{5}$. So $x \equiv 1 \pmod{5}$ and $x \equiv 2 \pmod{5}$, a contradiction.

Definition 2.56. (a) $f : \mathbb{N} \to \mathbb{C}$ is called an *arithmetic function*.

(b) An arithmetic function f is *multiplicative* if for any $m, n \in \mathbb{N}$ with gcd(m, n) = 1, then f(mn) = f(m)f(n).

(c) An arithmetic function f is additive if for any $m, n \in \mathbb{Z}_{\geq 1}$ with gcd(m, n) = 1, then f(mn) = f(m) + f(n).

(d) An arithmetic function f is totally (completely) multiplicative if f(mn) = f(m)f(n) for any $m, n \in \mathbb{N}$.

(e) An arithmetic function f is totally (completely) additive if f(mn) = f(m) + f(n) for any $m, n \in \mathbb{N}$.

Proposition 2.57. We have the followings.

(a) If f is completely multiplicative, then $\phi(n) = \phi(p_1)^{e_1} \cdots \phi(p_r)^{e_r}$.

(b) If f is multiplicative, then $\phi(n) = \phi(p_1^{e_1}) \cdots \phi(p_r^{e_r})$.

Definition 2.58. Any set $R \subseteq \mathbb{Z}$ is called a *reduced residue system modulo* n if

- (a) gcd(r, n) = 1 for $r \in R$;
- (b) R contains $\phi(n)$ elements;
- (c) no two elements of R are congruent modulo n.

Any set of n integers, no two of which are congruent modulo n, is called a *complete reduced* residue system modulo n.

Lemma 2.59.

$$\phi(p^k) = p^{k-1}(p-1), \forall k \in \mathbb{N}.$$

Proof. If gcd(p,d) > 1 and $d \leq p^k$, then $d = p, 2p, \ldots, p^{k-1}p$, which has p^{k-1} of them. So $\phi(p^k) = p^k - p^{k-1}$.

Theorem 2.60. The arithmetic function ϕ is multiplicative. In particular,

$$\phi(n) = \phi\left(\prod_{i=1}^{r} p_i^{e_i}\right) = \prod_{i=1}^{r} \phi(p_i^{e_i}) = \prod_{i=1}^{r} \left(p_i^{e_i} - p_i^{e_i-1}\right) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right).$$

Proof. It is enough show ϕ is multiplicative. Let $n, n' \in \mathbb{N}$ with gcd(n, n') = 1. Let a and a' run through a reduced residue system modulo n and n', respectively. The number of distinct pairs (a, a') is $\phi(n)\phi(n')$. Suppose $d := gcd(an' + a'n, nn') \nmid n$. Then $d \neq 1$. Since $d \mid nn'$ and gcd(n, n') = 1, without loss of generality, assume $d \mid n'$ and $d \nmid n$. Since $d \mid (an' + a'n)$, we have $d \mid a'$. Also, since $d \mid n'$ and gcd(a', n') = 1, we have gcd(a', d) = 1, contradicted by $d \mid a'$. Hence $d \mid n$. Similarly, $d \mid n'$. Then $d \mid gcd(n, n') = 1$ and so gcd(an' + a'n, nn') = 1. Thus, $an' + a'n \in (\mathbb{Z}/nn'\mathbb{Z})^{\times}$. Assume there exist a_1, a_2, a'_1, a'_2 such that $a_1n' + a'_1n \equiv a_2n' + a'_2n \pmod{nn'}$. Then $(a_1 - a_2)n' \equiv (a'_2 - a'_1)n \pmod{n}$ and so there exists k such that $(a_1 - a_2)n' = n((a'_2 - a'_1) + kn')$, i.e., $(a_1 - a_2)n' \equiv 0 \pmod{n}$. Also, since gcd(n, n') = 1, $a_1 \equiv a_2 \pmod{n}$. Similarly, $a'_1 \equiv a'_2 \pmod{n'}$. Hence each an' + a'n is a distinct reduced residue. Thus, $\phi(nn') \ge \phi(n)\phi(n')$.

Next, find b such that gcd(b, nn') = 1. Then gcd(b, n) = 1 = gcd(b, n'). Claim. there are a, a' such that $an' + a'n \equiv b \pmod{n}$ with gcd(a, n) = 1 = gcd(a', n'). Write gcd(n, n') = 1 = nm' + n'm for some m, m'. Then gcd(m, n) = 1 = gcd(m', n'). Also, b = b(nm' + n'm) = n(bm') + n'(bm) =: na + n'a'. Since gcd(m, n) = 1 and gcd(b, n) = 1, gcd(bm, n) = 1. Similarly, gcd(bm', n') = 1. Since every reduced residue modulo nn' is of the form an' + bn' with gcd(a, n) = 1 = gcd(a', n'), we have $\phi(n)\phi(n') \ge \phi(nn')$.

Lemma 2.61. Let f be a multiplicative function. Define

$$g(n) = \sum_{d|n} f(d).$$

Then g is also multiplicative.

Proof. Let $m, n \in \mathbb{N}$ with gcd(m, n) = 1. If $d \mid mn$, since gcd(m, n) = 1, we can write $d = d_1d_2$, where $d_1 = gcd(d, m)$ and $d_2 = gcd(d, n)$. Since $gcd(d_1, d_2) = 1$, we have

$$g(mn) = \sum_{d|mn} f(d) = \sum_{d_1d_2|mn} f(d_1)f(d_2) = \sum_{d_1|m} \sum_{d_2|n} f(d_1)f(d_2) = \sum_{d_1|m} f(d_1) \sum_{d_2|n} f(d_2) = g(m)g(n).$$

Corollary 2.62.

$$\sum_{d|n} \phi(d) = n.$$

Proof. Let $n = p_1^{e_1} \cdots p_r^{e_r}$ be the canonical factorization. Since the possible factors of $p_i^{e_i}$ are $p_i^0, \cdots, p_i^{e_i}$ and $\phi(1) = 1$, we have for $i = 1, \dots, r$,

$$\sum_{d \mid p_i^{e_i}} \phi(d) = \sum_{k=1}^{e_i} \phi(p_i^k) + 1 = 1 + \sum_{k=1}^{e_i} (p_i^k - p_i^{k-1}) = p_i^{e_i}.$$

Then by Proposition 2.57(b),

$$\sum_{d|n} \phi(d) = \sum_{d|p_1^{e_1} \cdots p_r^{e_r}} \phi\left(p_1^{e_1} \cdots p_r^{e_r}\right) = \sum_{d|p_1^{e_1}} \phi\left(p_1^{e_1}\right) \cdots \sum_{d|p_r^{e_r}} \phi\left(p_r^{e_r}\right) = p_1^{e_1} \cdots p_r^{e_r} = n.$$

Definition 2.63. Given $f(x) = a_r x^r + \cdots, a_1 x + a_0$, we say the *degree* of f modulo n is j if $a_j \neq 0 \pmod{n}$ and $a_{j+1}, \ldots, a_r \equiv 0 \pmod{n}$.

Theorem 2.64. Let $f \in \mathbb{Z}[x]$ and $N_f(m)$ be the number of solution of $f \equiv 0 \pmod{m}$. Then N_f is a multiplicative function, i.e., $N_f(n) = N_f(\prod_{j=1}^r p_j^{e_j}) = \prod_{j=1}^r N_f(p_j^{e_j})$.

Proof. Let $m_1, m_2 \in \mathbb{N}$ with $gcd(m_1, m_2) = 1$. Assume $f(a) \equiv 0 \pmod{m_1 m_2}$ for some a. Let $a_j \equiv a \pmod{m_j}$ for j = 1, 2, then $f(a_j) \equiv f(a) \equiv 0 \pmod{m_j}$ for j = 1, 2. Given a, we get a distinct pair (a_1, a_2) . So $N_f(m_1 m_2) \leq N_f(m_1) N_f(m_2)$.

Next, assume $f(a_1) \equiv 0 \pmod{m_1}$ and $f(a_2) \equiv 0 \pmod{m_2}$ for some a_1, a_2 . Since $\gcd(m_1, m_2) = 1$, by CRT, there exist a such that $a \equiv a_1 \pmod{m_1}$ and $a \equiv a_2 \pmod{m_2}$. Then $f(a) \equiv f(a_1) \equiv 0 \pmod{m_1}$ and $f(a) \equiv f(a_2) \equiv 0 \pmod{m_2}$. So $m_1 \mid f(a)$ and $m_2 \mid f(a)$. Since $\gcd(m_1, m_2) = 1$, $m_1m_2 \mid f(a)$, i.e., $f(a) \equiv 0 \pmod{m_1m_2}$. So $N_f(m_1)N_f(m_2) \leq N_f(m_1m_2)$.

Example 2.65. $2x \equiv 0 \pmod{4}$. Then x = 0 and x = 2 are both solutions though $\deg(2x) = 1$.

Theorem 2.66. Let $f \in \mathbb{Z}[x]$ have degree n modulo p with $n \ge 1$. Then the congruences $f(x) \equiv 0 \pmod{p}$ has at most n solutions.

Proof. If n = 1, then $ax + b \equiv 0 \pmod{p}$, so $x \equiv -ba^{-1} \pmod{p}$. Proved by induction. Assume the result is true for all polynomials of degree less than n. Let $\deg(f) = n$. If f has no solutions, we are done. Suppose f has a solution a. Then $f(a) \equiv 0 \pmod{p}$. Then we can write f(x) = (x - a)g(x) for some $g \in (\mathbb{Z}/p\mathbb{Z})[x]$. Then $\deg(g) < \deg(f) = n$, so induction hypothesis gives at most $\deg(g)$ solutions to $g(x) \equiv 0 \pmod{p}$. So $f(x) \equiv (x-a)g(x) \equiv 0 \pmod{p}$ implies x = a or $g(x) \equiv 0 \pmod{p}$. Hence f has at most $1 + \deg(g) = \deg(f)$ roots.

Corollary 2.67. If $d \mid p-1$, then the congruence $x^d \equiv 1 \pmod{p}$ has precisely d solutions.

Example 2.68. (a) $x^2 \equiv -1 \pmod{p}$ has 2 solutions if $p \equiv 1 \pmod{4}$ and has 0 solutions if $p \equiv 3 \pmod{4}$.

(b) $x^{p-1} - 1 \equiv 0 \pmod{p}$ has p - 1 solutions by Fermat's little theorem. Then $x^{p-1} - 1 \equiv (x - 1) \cdots (x - (p - 1)) \equiv 0 \pmod{p}$. Plug in $x = 0, -1 \equiv (-1) \cdots (-(p - 1)) \equiv (p - 1)! \pmod{p}$, which is Wilson's theorem.

2.5 Newton's method

In this section, assume p is prime.

Theorem 2.69. This method gives a sequence of real numbers x_n satisfying $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. You hope $x_n \to x$.

Example 2.70. Find a solution to the congruences $f(x) = x^2 + 1 \equiv 0 \pmod{5^4}$. Consider $x^2 + 1 \equiv 0 \pmod{5}$, which has solutions 2, 3. If $x_0 = 2$, then $f'(x_0) = 2x_0 \equiv 4 \equiv -1 \pmod{5}$. Also, $f(x_0) = 5 \equiv 0 \pmod{5}$. Then $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{5}{-1} = 7$. Then $f(x_1) = x_1^2 + 1 = 50 \equiv 0 \pmod{5^2}$ and $f'(x_1) = 2x_1 \equiv 14 \equiv -1 \pmod{5}$. So $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 7 - \frac{50}{-1} = 57$. Then $f(x_2) = x_2^2 + 1 = 3250 \equiv 0 \pmod{5^3}$ and $f'(x_2) = 2x_2 = 114 \equiv -1 \pmod{5}$. So $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 57 - \frac{3250}{-1} \equiv 182 \pmod{5^4}$. Then $x_3^2 + 1 \equiv 0 \pmod{5^4}$.

Lemma 2.71 (Hensel's lemma). Let $f \in \mathbb{Z}[x]$. Suppose $f(a) \equiv 0 \pmod{p^j}$, $p^t \parallel f'(a)$ and $j \ge 2t+1$. Then

- (a) whenever $b \equiv a \pmod{p^{j-t}}$, we have $f(b) \equiv f(a) \pmod{p^j}$ and $p^t \parallel f'(b)$;
- (b) there exists a unique s (mod p) with the property that $f(a + sp^{j-t}) \equiv 0 \pmod{p^{j+1}}$.

Proof. (a) Write $b - a = hp^{j-t}$ for some h. Since $2(j-t) = j + j - 2t \ge j + 1 > j$ and $p^t \mid f'(a)$,

$$f(b) = f(a + hp^{j-t}) = f(a) + f'(a)hp^{j-t} + \frac{f''(a)}{2}(hp^{j-t})^2 + \dots \equiv f(a) \pmod{p^j}.$$

Since $j - t \ge t + 1$,

$$f'(b) = f'(a + hp^{j-t}) = f'(a) + f''(a)hp^{j-t} \pmod{p^{2(j-t)}} \equiv f'(a) \pmod{p^{t+1}}.$$

Thus, $p^t \parallel f'(b)$.

(b) Write $f'(a) = gp^t$ for some g with gcd(p, g) = 1. Note there exists \overline{g} such that $g\overline{g} \equiv 1 \pmod{p}$, i.e., $1 - g\overline{g} \equiv 0 \pmod{p}$. Since $f(a) \equiv 0 \pmod{p^j}$, we have $f(a)(1 - g\overline{g}) \equiv 0 \pmod{p^{j+1}}$. Let $a' := a - p^{-t}\overline{g}f(a)$. Since $f(a) \equiv 0 \pmod{p^j}$, $p^{-t}f(a) \equiv 0 \pmod{p^{j-t}}$. Since $2(j-t) \ge j+1$,

$$f(a') = f(a - p^{-t}\bar{g}f(a)) \equiv f(a) - (p^{-t}\bar{g}f(a))f'(a) + \frac{f''(a)}{2}(p^{-t}\bar{g}f(a))^2 \pmod{p^{3(j-t)}}$$
$$\equiv f(a) - (p^{-t}f(a)\bar{g})f'(a) \pmod{p^{j+1}} = f(a) - f(a)g\bar{g} \pmod{p^{j+1}}$$
$$\equiv f(a)(1 - g\bar{g}) \pmod{p^{j+1}} \equiv 0 \pmod{p^{j+1}}.$$

With $g = p^{-t} f'(a)$, set $s := -p^{-j} f(a) \overline{g} \equiv -p^{-j} f(a) g^{-1} \pmod{p} = -p^{-j} f(a) \left[p^{-t} f'(a) \right]^{-1} \pmod{p}$.

Suppose we have two s' and s such that $f(a + sp^{j-t}) \equiv f(a + s'p^{j-t}) \pmod{p^{j+1}}$. Then $f(a) + sp^{j-t}f'(a) \equiv f(a) + s'p^{j-t}f'(a) \pmod{p^{j+1}}$, i.e., $sp^{j-t}f'(a) \equiv s'p^{j-t}f'(a) \pmod{p^{j+1}}$. Since $p^t \parallel f'(a)$, we have $p^j \frac{f'(a)}{p^t}(s - s') \equiv 0 \pmod{p^{j+1}}$. So $s \equiv s' \pmod{p}$.

Remark. Let $f(a_1) \equiv 0 \pmod{p^j}$ with $p^t \parallel f'(a_1)$ and $j \ge 2t + 1$. Then there exists s_1 such that $f(a_2) := f(a_1 + s_1 p^{j-t}) \equiv 0 \pmod{p^{j+1}}$. So $a_2 - a_1 = s_1 p^{j-t} \equiv 0 \pmod{p^{t+1}}$. Next, since

 $\begin{aligned} f'(a_2) &= f'(a_1 + s_1 p^{j-t}) = f'(a_1) + f''(a_1) s_1 p^{j-t} \equiv f'(a_1) \pmod{p^{t+1}} \text{ and } p^t \mid \mid f'(a_1), p^t \mid \mid f'(a_2). \\ \text{Also, since } j+1 &\geq 2t+1, \text{ there exists a unique } s_2 \pmod{p} \text{ such that } f(a_3) &:= f(a_2 + s_2 p^{j+1-t}) \equiv 0 \pmod{p^{j+1}}. \\ \text{So } a_3 - a_2 &= s_2 p^{j+1-t} \equiv 0 \pmod{p^{t+2}}. \\ \text{By inducitive process, we have from root } a_1 \pmod{p}, \text{ we get a sequence } (a_m)_{m \geq 1} \text{ such that for any } n \leqslant m, a_m \equiv a_n \pmod{p^{t+n}}. \end{aligned}$

Corollary 2.72. If $f \in \mathbb{Z}[x]$ and there exists a such that $f(a) \equiv 0 \pmod{p^j}$ and $p \nmid f'(a)$ and $j \ge 1$. Then there exists a unique $s \pmod{p}$ with the property that $f(a + sp^j) \equiv 0 \pmod{p^{j+1}}$.

Example 2.73. Find a solution to the congruences $f(x) = x^2 + 1 \equiv 0 \pmod{5^4}$. Consider $x^2 + 1 \equiv 0 \pmod{5^1}$, which has solution 2, 3. Let $a_1 = 2$, then $f'(a_1) = 2a_1 = 4$. Since $5^0 \parallel 4$, t = 0. Let

$$s_1 = -5^{-1} f(2) [5^{-0} f'(2)]^{-1} \pmod{5} = -\frac{1}{5} 5(4)^{-1} \pmod{5} = -4 \pmod{5} \equiv 1 \pmod{5}.$$

Then consider $x^2 + 1 \equiv 0 \pmod{5^2}$ with root $a_2 = 2 + 1 \cdot 5^{1-0} \equiv 7 \pmod{5^2}$, we have $f(a_2) \equiv 50 \equiv 0 \pmod{5^2}$ and $f'(a_2) = 2a_2 = 14$. Let

$$s_2 = -5^{-2} f(7) [5^{-0} f'(7)]^{-1} \pmod{5} = -\frac{1}{25} 50(14)^{-1} \pmod{5} = -8 \pmod{5} \equiv 2 \pmod{5}.$$

Then consider $x^2 + 1 \equiv 0 \pmod{5^2}$ with root $a_3 = 7 + 2 \cdot 5^{2-0} = 57 \pmod{5^3}$, we have $f(a_3) \equiv 3250 \equiv 0 \pmod{5^3}$ and $f'(a_3) = 2a_3 = 114$. Let

$$s_3 = -5^{-3} f(57) [5^{-0} f'(57)]^{-1} \pmod{5} = -\frac{1}{125} 3250 \frac{1}{114} \pmod{5} = -26 \cdot (4)^{-1} \pmod{5} \equiv 1 \pmod{5}.$$

Then $a_1 = 57 + 5^{3-0} + 1 \equiv 182 \pmod{5^4}$ and $f(a_2) = 182^2 + 1 \equiv 0 \pmod{5^4}$.

Then $a_4 = 57 + 5^{3-0} \cdot 1 \equiv 182 \pmod{5^4}$ and $f(a_4) \equiv 182^2 + 1 \equiv 0 \pmod{5^4}$.

2.6 *p*-adic numbers

In this section, assume p is prime.

Definition 2.74. Let \mathcal{K} be a field. A real-valued function $|\cdot| : \mathcal{K} \to \mathbb{R}^+$ is a *valuation* if there is a $M \in \mathbb{R}^+$ such that the following conditions hold: for any $b, c \in \mathcal{K}$,

(a) |b| = 0 if and only if b = 0,

(b)
$$|bc| = |b||c|,$$

(c) if $|b| \leq 1$, then $|1+b| \leq M$.

Example 2.75. (a) The trivial valuation, taking M = 1, $|x| = \begin{cases} 0, x = 0 \\ 1, x \neq 0 \end{cases}$.

- (b) The absolute value on \mathbb{R} is a valuation, taking M = 2.
- (c) Usual absolute value on \mathbb{C} , taking M = 2.

Definition 2.76. (a) Define the *p*-adic absolute value/norm by

$$|n|_{p} = \begin{cases} p^{-\nu_{p}(n)} & \text{if } n \neq 0\\ 0 & \text{if } n = 0 \end{cases},$$

where $\nu_p(n)$ is such that $p^{\nu_p(n)} \parallel n$.

2.6. P-ADIC NUMBERS

(b) If $r \in \mathbb{Q} \setminus \{0\}$, write $r = p^t \frac{a}{b}$ with $p \nmid ab$. Define the *p*-adic absolute value/norm by

$$|r|_p = \begin{cases} p^{-t} & \text{if } r \neq 0\\ 0 & \text{if } r = 0 \end{cases}$$

Theorem 2.77.

$$\left|\frac{m}{n}\right|_{p} = \frac{|m|_{p}}{|n|_{p}} = \frac{p^{-\nu_{p}(m)}}{p^{-\nu_{p}(n)}} = p^{-(\nu_{p}(m) - \nu_{p}(n))}, \forall \frac{m}{n} \in \mathbb{Q}.$$

Theorem 2.78. $|\cdot|_p$ is a valuation on \mathbb{Q} .

Proof. (a) It is straightforward.

(b) Let $r_1 = p^{t_1} \frac{a_1}{b_1}$ with $p \nmid a_1 b_1$ and $r_2 = p^{t_2} \frac{a_2}{b_2}$ with $p \nmid a_2 b_2$, then $r_1 r_2 = p^{t_1 + t_2} \frac{a_1 a_2}{b_1 b_2}$ with $p \nmid a_1 a_2 b_1 b_2$. Then $|r_1 r_2|_p = p^{-(t_1 + t_2)} = |r_1|_p |r_2|_p$.

(c) Let $\alpha \in \mathbb{Q} \setminus \{0\}$ such that $|\alpha|_p \leq 1$. Write $\alpha = p^t \frac{u}{v}$ with $p \nmid uv$, so $t \ge 0$. Let $s \ge 0$ such that $p^s \mid\mid v + p^t u$ and so $|1 + \alpha|_p = \left|\frac{v + p^t u}{v}\right|_p = \frac{|v + p^t u|_p}{|v|_p} = \frac{p^{-s}}{1} \le 1$.

Theorem 2.79.

$$|x+y|_{p} \leq \max\{|x|_{p}, |y|_{p}\}, \forall x, y,$$

which is ultrametric inequality that is stronger than triangle inequality.

Definition 2.80. Given $|\cdot|, x \in \mathbb{Q}$ and $\epsilon \in \mathbb{R}_{>0}$, define an *open ball* by

$$B_{|\cdot|_n}(x,\epsilon) = \{ y \in \mathbb{Q} : |x - y|_p < \epsilon \}.$$

Theorem 2.81. Any point is the center of the disk.

Proof. Let $a, b \in B_{|\cdot|}(x, \epsilon)$, then

$$|a-b|_p \leqslant |x-b+a-x|_p \leqslant \max\{|x-b|, |a-x|\} < \epsilon.$$
 Hence $B_{|\cdot|_p}(a,\epsilon) = B_{|\cdot|_p}(x,\epsilon) = B_{|\cdot|_p}(b,\epsilon).$

Remark. In the *p*-adic integers, congruences are approximations: for $a, b \in \mathbb{Z}$, $a \equiv b \pmod{p^n}$ is the same as $|a - b|_p \leq \frac{1}{p^n}$. Turning information modulo one power of *p* into similar information modulo a higher power of *p* can be interpreted as improving an approximation.

Example 2.82. Define a sequence $a_1 = 4$, $a_2 = 34$, $a_3 = 334$, $a_4 = 3334$, \cdots . Then $a_n = \left\lceil \frac{10^n}{3} \right\rceil$ or $3a_n = 10^n + 2$, i.e., $3a_n - 2 = 10^n$. Then $|3a_n - 2|_5 = |10^n|_5 = 5^{-n} \to 0$. So $a_n \xrightarrow{|\cdot|_5} \frac{2}{3}$. Thus,

$$\frac{2}{3} = \lim_{n \to \infty} a_n = 3 + 3 \cdot 10 + 3 \cdot 10^2 + 3 \cdot 10^3 + \cdots$$

Definition 2.83. Let \mathcal{K} be any field with valuation $|\cdot|$. A sequence $\langle a_n \rangle \subseteq \mathcal{K}$ converges to b if for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|a_n - b| < \epsilon$ for any $n \ge N$.

Definition 2.84. We say a field \mathcal{K} is *complete* if every Cauchy sequence in \mathcal{K} converges to an element of \mathcal{K} .

Remark. Recall that when one completes \mathbb{Q} with respect to the usual absolute value, we arrive at \mathbb{R} . We will develop a completion of \mathbb{Q} based upon the *p*-adic absolute value $|\cdot|_p$, leading us to the complete metric space \mathbb{Q}_p , the field of *p*-adic **numbers**.

Remark. Given a valuation $|\cdot|$ on \mathcal{K} , we get a topology on \mathcal{K} with basis given by open balls.

Definition 2.85. Let \mathcal{K} be a field with valuation $|\cdot|$. We say $\mathcal{F} \supseteq \mathcal{K}$ together with a valuation $|\cdot|_{\mathcal{F}}$ that extend $|\cdot|$ is a *completion* of \mathcal{K} w.r.t. $|\cdot|$ if

- (a) \mathcal{F} is complete.
- (b) \mathcal{F} is the closure of \mathcal{K} .

Theorem 2.86. Given a field \mathcal{K} with valuation $|\cdot|$, there is a completion of \mathcal{K} w.r.t. $|\cdot|$. Moreover, any two completions are canonically isomorphic.

Definition 2.87.

$$\mathbf{Q}_p = completion \text{ of } \mathbb{Q} \text{ w.r.t. } |\cdot|_n$$

Definition 2.88. A valuation $|\cdot|$ on \mathcal{K} is called *non-archimedean* if it satisfies the ultrametric inequality. Otherwise, we say it is archimedean.

Example 2.89. $|\cdot|_p$ is non-archimedean on \mathbb{Q} . The absolute value $|\cdot|$ is archimedean on \mathbb{Q} .

Theorem 2.90 (Ostrowski). Let \mathcal{K} be a field. If \mathcal{K} is complete w.r.t archmedean valuation $|\cdot|$, then \mathcal{K} is isomorphic to \mathbb{R} or \mathbb{C} .

Theorem 2.91. If we consider \mathbb{Q} , the only valuation on \mathbb{Q} are powers of $|\cdot|$, or $|\cdot|_p$.

Definition 2.92. Let \mathcal{K} be a field with non-archmedean valuation $|\cdot|$. Define

$$\begin{split} \mathcal{O} &= \{ x \in \mathcal{K} : |x| \leqslant 1 \}, \\ \mathfrak{p} &= \{ x \in \mathcal{K} : |x| < 1 \}, \\ \mathcal{O}^{\times} &= \{ x \in \mathcal{K} : |x| = 1 \} = \mathcal{O} \smallsetminus \mathfrak{p}. \end{split}$$

Theorem 2.93. (a) The set σ is a ring, which is called the valuation ring. The set σ is also referred to as the $(|\cdot|)$ -adic integers, for example \mathbf{Z}_p : p-adic integers.

(b) The set \mathfrak{p} is the maximal ideal in the local ring \mathfrak{O} . $\mathfrak{O}/\mathfrak{p}$ is called residue class field.

(c) The set \mathcal{O}^{\times} is the units in \mathcal{O} .

Example 2.94. Let $\frac{2}{3} \in \mathbb{Q}$. Then $\frac{2}{3}$ is a 5-adic **integer** since $\left|\frac{2}{3}\right|_5 = 1$, but not a 3-adic integer since $\left|\frac{2}{3}\right|_3 = 3$.

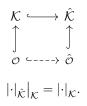
Remark. If $\mathcal{K} = \mathbf{Q}_p$, then $\mathcal{O} =: \mathbf{Z}_p$, which is where our sequence of lifted solutions from Hensel's lemma.

Example 2.95. Let $\mathcal{K} = \mathbf{Q}_p$, then with $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \setminus \{0\}$,

$$\begin{split} \mathcal{O} &= \left\{ \frac{a}{b} : p \nmid b \right\}, \\ \mathfrak{p} &= \left\{ \frac{a}{b} \in \mathcal{O} : p \mid a \right\}, \\ \mathcal{O}^{\times} &= \left\{ \frac{a}{b} \in \mathbb{Q} : p \nmid ab \right\} = \left\{ \frac{a}{b} \in \mathcal{O} : p \nmid a \right\}. \end{split}$$

Definition 2.96. Let $\hat{\mathcal{K}}$ be the completion of \mathcal{K} w.r.t. $|\cdot|$. Let $\hat{\sigma}$ be the valuation ring of $\hat{\mathcal{K}}$. Let $\hat{\mathfrak{p}}$ be the maximal ideal in $\hat{\sigma}$. Let $\hat{\sigma}^{\times}$ be the units in $\hat{\sigma}$.

Lemma 2.97. The natural map $\mathcal{O}/\mathfrak{p} \to \hat{\mathcal{O}}/\hat{\mathfrak{p}}$ induced via $\mathcal{O} \hookrightarrow \hat{\mathcal{O}}$ is an isomorphism.



Proof. Let $R \xrightarrow{\psi} S$ be a ring homomorphism and $I \leq R$ and $J \leq S$ be ideals with $\psi(I) \subseteq J$. Define $\phi: R/I \to S/J$ by $r + I \mapsto \psi(r) + J$. Let $r_1 + I = r_2 + I \in R/I$. Since ψ is a ring homomorphism, $\psi(r_1) - \psi(r_2) = \psi(r_1 - r_2) \in \psi(I) \subseteq J$. So $\psi(r_1) + J = \psi(r_2) + J$. Hence ϕ is well-defined. Clearly, it is also a ring homomorphism.

Consider $\varphi : \mathcal{O}/\mathfrak{p} \to \hat{\mathcal{O}}/\hat{\mathfrak{p}}$ by $a + \mathfrak{p} \mapsto a + \hat{\mathfrak{p}}$. Then φ is a well-defined ring homomorphism since $f : \mathfrak{p} \stackrel{\subseteq}{\to} \hat{\mathfrak{p}}$ is a ring homomorphism and $f(\mathfrak{p}) = \mathfrak{p} \subseteq \hat{\mathfrak{p}}$. Let $a + \mathfrak{p} \in \operatorname{Ker}(\varphi)$ with $a \in \mathcal{O}$. Then $a + \hat{\mathfrak{p}} = \hat{\mathfrak{p}}$, i.e., $a \in \hat{\mathfrak{p}}$. Then $|a|_{\mathcal{K}} = |a|_{\hat{\mathcal{K}}} < 1$. So $a \in \mathfrak{p}$ and then $a + \mathfrak{p} = \mathfrak{p}$. Thus, it is 1-1. Let $\alpha + \hat{\mathfrak{p}} \in \hat{\mathcal{O}}/\hat{\mathfrak{p}}$ with $\alpha \in \hat{\mathcal{O}}$. Since $\hat{\mathcal{K}}$ is the closure of \mathcal{K} , there exists $a \in \mathcal{K}$ such that $|a - \alpha|_{\hat{\mathcal{K}}} < 1$. Also, since $\alpha \in \hat{\mathcal{O}}$, $|\alpha|_{\hat{\mathcal{K}}} \leq 1$. So $|a|_{\mathcal{K}} = |a|_{\hat{\mathcal{K}}} = |\alpha + (a - \alpha)|_{\hat{\mathcal{K}}} \leq \max\{|\alpha|_{\hat{\mathcal{K}}}, |a - \alpha|_{\hat{\mathcal{K}}}\} \leq 1$. So $a \in \mathcal{O}$. Also, since $|a - \alpha|_{\hat{\mathcal{K}}} < 1$, $a - \alpha \in \hat{\mathfrak{p}}$. Hence $\varphi(a + \mathfrak{p}) = a + \hat{\mathfrak{p}} = \alpha + \hat{\mathfrak{p}}$. Thus, φ is onto.

Example 2.98 (Exercise). Let $\mathcal{K} = \mathbf{Q}_p$. Show that $\mathcal{O}/\mathfrak{p} \cong \mathbb{F}_p$.

Remark. Our result gives $\hat{\mathcal{K}} = \mathbf{Q}_p$, $\hat{\mathcal{O}} = \mathbf{Z}_p$ and $\hat{\mathcal{O}}/\hat{\mathfrak{p}} \cong \mathcal{O}/\mathfrak{p} \cong \mathbb{F}_p$.

Let $|\cdot|$ be nonarchmedean.

Definition 2.99. The set $\{|a| : a \in \mathcal{K}^{\times}\}$ is a subgroup of $(\mathbb{R}_{>0}, \cdot)$. This is called the *valuation* group.

Example 2.100 (Exercise). The valuation groups of \mathcal{K} and $\hat{\mathcal{K}}$ coincides.

Definition 2.101. A valuation $|\cdot| : \mathcal{K} \to \mathbb{R}^+$ is *discrete* if there exists $\delta > 0$ such that when $1 - \delta \leq |a| \leq 1 + \delta$, we have |a| = 1.

Lemma 2.102. A valuation $|\cdot| : \mathcal{K} \to \mathbb{R}^+$ is discrete if and only if the max ideal \mathfrak{p} is principal.

Proof. \Leftarrow Let $\mathfrak{p} = \langle \varpi \rangle \mathcal{O}$ for some $\varpi \in \mathcal{K}$. If |a| < 1, then $a \in \mathfrak{p}$ and so $a = \varpi b$ for some $b \in \mathcal{O}$. So $|a| \leq |\varpi|$. If |a| > 1, then $\left|\frac{1}{a}\right| < 1$ and so $\frac{1}{a} \in \mathfrak{p}$. Then $\frac{1}{a} = \varpi c$ for some $c \in \mathcal{O}$. So $|a| \geq |\varpi|^{-1}$. This gives $|\cdot|$ is discrete since when $|\varpi| < |a| < |\varpi|^{-1}$, then |a| = 1.

 $\implies \text{Since } |\cdot| \text{ is discrete, the set } S = \{|a|: |a| < 1\} \text{ attains an upper bound. Say this happens at} \\ \varpi. \text{ Let } c \in \mathfrak{p}. \text{ Then } \left|\frac{c}{\varpi}\right| = \frac{|c|}{|\varpi|} \leq 1 \text{ and so } \frac{c}{\varpi} \in \mathcal{O}. \text{ Hence } c = \varpi \frac{c}{\varpi} \in \langle \varpi \rangle \mathcal{O} \text{ and so } \mathfrak{p} \subseteq \langle \varpi \rangle. \text{ Clearly,} \\ \langle \varpi \rangle \subseteq \mathfrak{p}. \text{ Thus, } \mathfrak{p} = \langle \varpi \rangle. \qquad \Box$

Example 2.103. $\mathfrak{p} = \max$ ideal of $\mathbf{Z}_p = p\mathbf{Z}_p$ and $\mathbf{Z}_p/p\mathbf{Z}_p \cong \mathbb{F}_p$.

Lemma 2.104. Let \mathcal{K} be complete w.r.t. a non-archmedean valuation $|\cdot|$. Then $\sum_{n=0}^{\infty} a_n$ converges if and only if $\lim_{n\to\infty} a_n = 0$.

Proof. Assume $\lim_{n\to\infty} a_n = 0$. Then given $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that whenever $N > N_{\epsilon}$, $|a_N| < \epsilon$. Let $N \ge M > N_\epsilon$, then $\left|\sum_{i=0}^N a_i - \sum_{i=0}^M a_i\right| = \left|\sum_{i=M+1}^N a_i\right| \le \max_{M+1 \le i \le N} |a_i| < \epsilon$. So $\{\sum_{i=0}^{N} a_i\}$ is Cauchy and thus that \mathcal{K} complete means it converges.

Lemma 2.105. Let \mathcal{K} be complete w.r.t. non-archmedean discrete valuation $|\cdot|$. Let $\varpi \in \mathcal{O}$ such that $\mathfrak{p} = (\varpi)$. Let $\mathcal{A} \subseteq \mathfrak{O}$ be a set of representatives of $\mathfrak{O}/\mathfrak{p}$. Then every $a \in \mathfrak{O}$ has a unique representation $a = \sum_{n=0}^{\infty} a_n \varpi^n$ with $a_n \in \mathcal{A}$. Conversely, every such sum converges to an element of \mathcal{O} .

Proof. \Longrightarrow Let $a \in \mathcal{O}$. Then there is a unique element $a_0 \in \mathcal{A}$ such that $a \in a_0 + \mathfrak{p}$. So $a = a_0 + \varpi b_1$ for some $b_1 \in \mathcal{O}$. Note there is a unique $a_1 \in \mathcal{A}$ such that $b_1 = a_1 + \varpi b_2$ for some $b_2 \in \mathcal{O}$. Then $a = a_0 + \varpi a_1 + \varpi^2 b_2.$ Continue this and we get a unique sequence with $a = a_0 + a_1 \varpi + a_2 \varpi^2 + \dots + a_n \varpi^n + b_{n+1} \varpi^{n+1}$. Since $|b_{n+1} \varpi^{n+1}| \leq |\varpi^{n+1}| = |\varpi|^{n+1} \to 0$, $a - \sum_{k=0}^n a_k \varpi^k = b_{n+1} \varpi^{n+1} \to 0$. Thus, $\sum_{n=0}^{\infty} a_j \varpi^j \to a$. " \Leftarrow " It follows from Lemma 2.104.

Corollary 2.106. Given a element of \mathbf{Z}_p , since $p\mathbf{Z}_p = \langle p \rangle$, we can write it uniquely in the form $\alpha = \sum_{n=0}^{\infty} a_n p^n$ with $a_n \in \{0, \dots, p-1\}.$

Example 2.107. Suppose we want to find an element α in \mathbb{Z}_7 such that $5\alpha = 1$, i.e., $\alpha = \frac{1}{5}$. Let $\alpha = \sum_{n=0}^{\infty} a_n 7^n. \text{ Then } 0 = -1 + 5\alpha = -1 + \sum_{n=0}^{\infty} 5a_n 7^n, \text{ i.e., } -1 + 5a_0 \equiv 0 \pmod{7}, \text{ so } a_0 = 3. \text{ Hence } \alpha = 3 + \sum_{n=1}^{\infty} a_n 7^n. \text{ Note } 0 = -1 + 5\alpha = 14 + \sum_{n=1}^{\infty} 5a_n 7^n, \text{ i.e., } 7\left((2 + 5a_1) + \sum_{n=2}^{\infty} 5a_n 7^{n-1}\right) = 0. \text{ Then } 2 + 5a_1 \equiv 0 \pmod{7}. \text{ So } a_1 = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Hence } \alpha = 3 + 1 \cdot 7^1 + \sum_{n=2}^{\infty} a_n 7^n. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Actually, } \frac{1}{5} = \alpha = 1. \text{ Actually, } \frac{1}{$ $3 + 1 \cdot 7 + 4 \cdot 7^2 + 5 \cdot 7^3 + \cdots$

Proposition 2.108. Let $\{a_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in \mathbf{Z}_p . If $a_n \xrightarrow{|\cdot|_p} \alpha$, then $\alpha \in \mathbf{Z}_p$.

Proof. Since $a_n \xrightarrow{|\cdot|_p} \alpha$ in \mathbf{Q}_p , there is $N \in \mathbb{N}$ such that $|a_n - \alpha|_p < 1$ when $n \ge N$. Also, since $a_N \in \mathbf{Z}_p$, $|a_N|_p \le 1$. So $|\alpha|_p = |\alpha - a_N + a_N|_p \le \max\{|\alpha - a_N|_p, |a_N|_p\} \le 1$. Thus, $\alpha \in \mathbf{Z}_p$. \Box

Proposition 2.109. (a) \mathbb{Z} is dense in \mathbb{Z}_p . Formally, that means that for every $\alpha \in \mathbb{Z}_p$ and every $\epsilon > 0, \ B_{|\cdot|_n}(\alpha, \epsilon) \cap \mathbb{Z} \neq \emptyset.$

(b) \mathbb{Q} is dense in \mathbf{Q}_p .

Proof. (a) Let $\epsilon > 0$. Then there exists $n \in \mathbb{N}$ such that $p^{-n} < \epsilon$. Let $\alpha \in \mathbb{Z}_p$. Then by Corollary 2.106, α has the unique representation $\sum_{k=1}^{\infty} a_k p^k$ with $a_k \in \mathbf{Z}_p$. Let $\beta = \sum_{k=1}^{n-1} a_k p^k \in \mathbb{Z}$. Then $|\alpha - \beta|_p \leq p^{-n} < \epsilon$.

(b) It is similar.

Theorem 2.110 (A basic version of Hensel's lemma). If $f \in \mathbf{Z}_p[x]$ and $a \in \mathbf{Z}_p$ satisfies $f(a) \equiv$ 0 (mod p) and $f'(a) \not\equiv 0 \pmod{p}$, then there is a unique $\alpha \in \mathbf{Z}_p$ such that $f(\alpha) = 0$ and $\alpha \equiv 0$ $a \pmod{p}$.

Proof. We prove this by induction on $n \in \mathbb{N}$, there exists an $a_n \in \mathbb{Z}_p$ such that $f(a_n) \equiv 0 \pmod{p^n}$ and $a_n \equiv a \pmod{p}$. The case n = 1 is trivial, using $a_1 = a$. Assume the inductive hypothesis holds for n, we seek $a_{n+1} \in \mathbf{Z}_p$ such that $f(a_{n+1}) \equiv 0 \pmod{p^{n+1}}$ and $a_{n+1} \equiv a \pmod{p}$. Since $f(a_{n+1}) \equiv 0 \pmod{p^{n+1}}$ implies $f(a_{n+1}) \equiv 0 \pmod{p^n}$, any root of $f(X) \mod p^{n+1}$ reduces to

2.6. P-ADIC NUMBERS

a root of $f(X) \mod p^n$. By the inductive hypothesis there is a root $a_n \mod p^n$, so we seek an $a_{n+1} \in \mathbf{Z}_p$ such that $a_{n+1} \equiv a_n \pmod{p^n}$ and $f(a_{n+1}) \equiv 0 \pmod{p^{n+1}}$. Write $a_{n+1} = a_n + t_n p^n$. The goal is to find $t_n \in \mathbf{Z}_p$ such that $f(a_{n+1}) \equiv 0 \pmod{p^{n+1}}$. Assume $\deg(f) \ge 2$. Claim. $f(X+Y) = f(X) + f'(X)Y + g(X,Y)Y^2$ for some $g \in \mathbf{Z}_p[X,Y]$. Write for some $d \ge 2$, $f(X) = \sum_{i=0}^d c_j X^i \in \mathbf{Z}_p[x]$. Then

$$f(X+Y) = \sum_{j=0}^{d} c_j (X+Y)^j = c_0 + c_1 (X+Y) + \sum_{j=2}^{d} c_j \left[X^j + \binom{j}{1} X^{j-1} Y + g_j (X,Y) Y^2 \right]$$

$$= c_0 + c_1 X + c_1 Y + \sum_{j=2}^{d} c_j X^j + \sum_{j=2}^{d} c_j j X^{j-1} Y + \sum_{j=2}^{d} c_j g_j (X,Y) Y^2$$

$$= \sum_{j=0}^{d} c_j X^j + \sum_{j=0}^{d} c_j j X^{j-1} Y + \sum_{j=2}^{d} c_j g_j (X,Y) Y^2 = f(X) + f'(X) Y + g(X,Y) Y^2.$$

Since $2n \ge n+1$ and $\frac{f(a_n)}{p^n} \in \mathbf{Z}_p$,

$$f(a_{n+1}) = f(a_n + t_n p^n) \equiv 0 \pmod{p^{n+1}}$$

$$\iff f(a_n) + f'(a_n)t_n p^n + g(a_n, t_n p^n)(t_n p^n)^2 \equiv 0 \pmod{p^{n+1}}$$

$$\iff f(a_n) + f'(a_n)t_n p^n \equiv 0 \pmod{p^{n+1}}$$

$$\iff f'(a_n)t_n p^n \equiv -f(a_n) \pmod{p^{n+1}}$$

$$\iff f'(a_n)t_n \equiv -\frac{f(a_n)}{p^n} \pmod{p},$$

Since $a_n \equiv a \pmod{p}$, $f'(a_n) \equiv f'(a) \not\equiv 0 \pmod{p}$. So there is a solution for t_n in the congruence mod p. Since $a_{n+1} = a_n + t_n p^n$ and $a_n \equiv a \pmod{p}$, we have $a_{n+1} \equiv a \pmod{p}$. This completes the induction. This also gives a sequence $\{a_j\}_{j\in\mathbb{N}}$ satisfying $f(a_j) \equiv 0 \pmod{p^j}$ and $a_{j+1} \equiv a_j \pmod{p^j}$, for $j \in \mathbb{N}$. Note $|a_{j+1} - a_j|_p \leq p^{-j}$ for $j \in \mathbb{N}$. So the sequence $\{a_j\}_{j\in\mathbb{N}}$ is Cauchy, which converges to some $\alpha \in \mathbb{Z}_p$. Also, note $a_m \equiv a_n \pmod{p^n}$ for any $m > n \ge 1$. Letting $m \to \infty$, we have $\alpha \equiv a_n \pmod{p^n}$ for $n \in \mathbb{N}$. In particular, $\alpha \equiv a \pmod{p}$. Also, since $f(\alpha) \equiv f(a_n) \equiv 0 \pmod{p^n}$, $|f(\alpha)|_p \leq \frac{1}{p^n}$ for $n \in \mathbb{N}$. Thus, $f(\alpha) = 0$. Suppose there exists $\beta \in \mathbb{Z}_p$ such that $f(\beta) = 0$ and $\beta \equiv a \pmod{p}$. Claim. $\beta = \alpha$. It is enough to show $\beta \equiv \alpha \pmod{p^n}$ for all $n \in \mathbb{N}$. Proof by induction. Since $\beta \equiv a \equiv \alpha \pmod{p}$, the case n = 1 is straightforward. Assume $\beta \equiv \alpha \pmod{p^n}$. Then $\beta = \alpha + p^n \gamma_n$ with $\gamma_n \in \mathbb{Z}_p$. We have $f(\beta) = f(\alpha + p^n \gamma_n) \equiv f(\alpha) + f'(\alpha)p^n \gamma_n \pmod{p^{n+1}}$. Since $f(\alpha) = 0 = f(\beta)$, $0 \equiv f'(\alpha)p^n \gamma_n \pmod{p^{n+1}}$ and then $f'(\alpha)\gamma_n \equiv 0 \pmod{p}$. Since $f'(\alpha) \equiv$ $f'(\alpha) \not\equiv 0 \pmod{p}$, we have $\gamma_n \equiv 0 \pmod{p}$. Thus, $\beta \equiv \alpha \pmod{p^{n+1}}$.

Remark. In general, if $f'(a) \equiv 0 \pmod{p}$, then sometimes there are no lifts and sometimes there are multiple lifts.

Remark. A similar argument shows that for all $n \ge 1$, f has a unique root mod p^n that reduces to $a \pmod{p}$. So we can think about the uniqueness of the lifting of the mod p root in two ways: it has a unique lifting to a root in \mathbb{Z}_p or it has a unique lifting to a root in $\mathbb{Z}/(p^n)$ for all $n \ge 1$.

Example 2.111. Let $f(x) = 5x - 1 \in \mathbb{Z}_7[x]$ and a = 3. Then $f(3) \equiv 0 \pmod{7}$ and $f'(x) = 5 \not\equiv 0 \pmod{7}$. So we have a unique $\alpha \in \mathbb{Z}_7$ such that $5\alpha = 1$ and $\alpha \equiv 3 \pmod{7}$. In previous example, we saw approximations to α .

Example 2.112. Let $f(x) = x^3 - 2 \in \mathbb{Z}_5[x]$. Note $f(3) \equiv 0 \pmod{5}$, $f'(x) = 3x^2$ and $f'(3) \neq 0 \pmod{5}$. Then there exists unique $\alpha \in \mathbb{Z}_5$ such that $\alpha \equiv 3 \pmod{5}$ and $\alpha^3 = 2$ in \mathbb{Z}_5 . Note $\alpha = 3 + 2 \cdot 5^2 + 2 \cdot 5^3 + 3 \cdot 5^4 + \cdots$.

Example 2.113. Let $f(x) = x^3 - x - 2 \in \mathbb{Z}_2[x]$. Then $f(0) \equiv 0 \pmod{2}$, $f(1) \equiv 0 \pmod{2}$, $f'(1) \equiv 0 \pmod{2}$, $f'(x) \equiv 3x^2 - 1 \equiv x^2 - 1 \pmod{2}$, $f'(0) \neq 0 \pmod{2}$ and $f'(1) \equiv 0 \pmod{2}$. Hensel's lemma says you have a unique $\alpha \in \mathbb{Z}_2$ such that $f(\alpha) = 0$ and $\alpha \equiv 0 \pmod{2}$. Explicitly, $\alpha = 0 + 2 + 2^2 + 2^4 + 2^7 + \cdots$.

Example 2.114. Let $n \in \mathbb{Z}$, $p \nmid n$ and $u \in \mathbf{Z}_p$ such that $u \equiv 1 \pmod{p\mathbf{Z}_p}$, i.e., $u = 1 + a_1p + a_2p^2 + \cdots$ for some $a_1, a_2 \cdots \in \mathbb{Z}_p$. Then there exists $\beta \in \mathbf{Z}_p$ such that $\beta^n = u$. Let $f(x) = x^n - u$. Note $f(1) = 1^n - u = 1 - u \equiv 0 \pmod{p}$, $f'(x) = nx^{n-1}$ and $f'(1) = n \not\equiv 0 \pmod{p}$. By Hensel's lemma, there exists a unique $\beta \in \mathbf{Z}_p$ such that $f(\beta) = 0$ and $\beta \equiv 1 \pmod{p}$.

Definition 2.115. In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that gives 1 when raised to some positive integer power n. In field theory and ring theory the notion of root of unity also applies to any ring with a multiplicative identity element.

Any algebraically closed field has exactly $n n^{\text{th}}$ roots of unity if n is not divisible by the characteristic of the field.

Example 2.116. Consider $f(x) = x^p - x \in \mathbf{Z}_p[x]$. By Fermat's little theorem, for $k = 0, \ldots, p-1$, $f(k) \equiv 0 \pmod{p}$ and $f'(x) = px^{p-1} - 1 \equiv -1 \neq 0 \pmod{p}$. Hensel's lemma says for $k = 0, \ldots, p-1$, there exists a unique $w_k \in \mathbf{Z}_p$ such that $f(w_k) = 0$ and $w_k \equiv k \pmod{p}$. For $k = 1, \ldots, p-1$, we have $w_k^{p-1} = 1$. The numbers $\{w_k, 0 \leq k \leq p-1\}$ are distinct since they are already distinct when reduced modulo p. Thus, for each non-zero residue class modulo p, we get a unique $(p-1)^{\text{th}}$ root of unity. So $x^p - x = x (x^{p-1} - 1)$ splits completely over $\mathbf{Z}_p[x]$. Its roots in \mathbf{Z}_p are 0 and p-adic $(p-1)^{\text{th}}$ roots of unitys. Note $w_0 = 0, w_1 = 1$ and $w_{p-1} = -1$. Other w_k 's are more interesting. For instance, when $p = 5, w_k$ is a root of $x^5 - x = x(x^4 - 1) = x(x-1)(x+1)(x^2+1)$. So w_2 and w_3 are square roots of -1 in \mathbf{Z}_5 : $w_2 = 2+5+2\cdot5^2+5^3+3\cdot5^4+4\cdot5^5+\cdots, w_3 = 3+3\cdot5+2\cdot5^2+3\cdot5^3+5^4+\cdots$. Then $w_2, w_3 \in \mathbf{Z}_5$ such that $w_2^2 = -1$ and $w_3^2 = -1$.

Theorem 2.117 (A strong version of Hensel' lemma). Let $f(x) \in \mathbf{Z}_p[x]$ and $a \in \mathbf{Z}_p$ such that $|f(a)|_p < |f'(a)|_p^2$. There is a unique $\alpha \in \mathbf{Z}_p$ such that $f(\alpha) = 0$ and $|\alpha - a|_p < |f'(a)|_p$. Moreover,

(a)
$$|\alpha - a|_p = \left| \frac{f(a)}{f'(a)} \right|_p < |f'(a)|_p$$

(b)
$$|f'(\alpha)|_p = |f'(\alpha)|_p$$

Remark. In the basic version of Hensel' lemma, since $f'(a) \neq 0 \pmod{p}$ if and only if $|f'(a)|_p = 1$, we have $|f(a)|_p < |f'(a)|_p^2 = 1$ if and only if $p \mid f(a)$.

2.6.1 Roots of unity in Q_p via Hensel's lemma

In this section, assume p is prime.

Remark. Hensel's lemma is often considered to be a method of finding roots to polynomials, but that is just the one aspect: the existence of a root. There is also a uniqueness part to Hensel's lemma: it tells us there is a unique root within a certain distance of an approximate root. We will use the uniqueness to find all of the roots of unity in \mathbf{Q}_{p} .

Theorem 2.118. The roots of units in \mathbf{Q}_p are the $(p-1)^{th}$ root of unity for p odd and ± 1 for p = 2.

Proof. Let $x \in \mathbf{Q}_p$ with $x^n = 1$. Then $|x|_p^n = 1$. So $|x|_p = 1$. Hence $x \in \mathbf{Z}_p^{\times} \subseteq \mathbf{Z}_p$. Therfore, we work in \mathbf{Z}_p right from the start. Let's consider roots of unity of order relatively prime to p. Let ξ_1 and ξ_2 be roots of unity in \mathbf{Z}_p with order prime to p and let m be the product of their order. Then both of ξ_1 and ξ_2 are roots of $f(x) = x^m - 1$ and $p \nmid m$. Since $p \nmid 1$, we have $p \nmid \xi_j$ and then $|f'(\xi_j)|_p = |m\xi_j^{m-1}|_p = |\xi_j|_p^{m-1} = 1$ for j = 1, 2. Since $f(\xi_j) = 0$, the uniqueness of Hensel's lemma says that the only root α of $x^m - 1$ satisfying $|\alpha - \xi_j|_p < |f'(\xi_j)|_p = 1$ is ξ_j for j = 1, 2. So if $\xi_2 \equiv \xi_1 \pmod{p\mathbf{Z}_p}$, then by the uniqueness, $\xi_2 = \xi_1$. These statements says distinct roots of unity in \mathbf{Z}_p having order prime to p cannot be congruent modulo p. In Example 2.116, we have showed in \mathbf{Z}_p , each w_k (congruence class) for $k = 1, \ldots, p-1$ is a root of $x^{p-1} - 1$ and p-1 is prime to p. So each congruence class mod $p\mathbf{Z}_p$ contains a unique $(p-1)^{\text{th}}$ root of unity. Hence the only roots of unity of order prime to p in \mathbf{Q}_p are roots of $x^{p-1} - 1$.

Claim. the only p^{th} root of unity in \mathbf{Z}_p^{\times} is 1 for odd p and the only 4^{th} roots of unity in \mathbf{Z}_2^{\times} are ± 1 . This implies the only p^{th} power roots of unity in \mathbf{Z}_p^{\times} are 1 for odd p and ± 1 for p = 2. First we consider roots of unity of p-power order. We first consider p odd and suppose $\xi \in \mathbf{Z}_p^{\times} = \{\sum_{k=0}^{\infty} a_k p^k \in \mathbf{Z}_p \mid a_0 \neq 0\}$ such that $\xi^p = 1$. Then $\gcd(\xi, p) = 1$ and $\xi \equiv 1 \pmod{p}$. Consider $f(x) = x^p - 1$. Then $f(\xi) = 0$ and $|f'(\xi)|_p = |p\xi^{p-1}|_p = |p|_p |\xi|_p^{p-1} = |p|_p = \frac{1}{p}$. So the uniqueness in Hensel's lemma implies the ball

$$\left\{x \in \mathbf{Q}_p : |x - \xi|_p < |f'(\xi)|_p\right\} = \left\{x \in \mathbf{Q}_p : |x - \xi|_p \leqslant \frac{1}{p^2}\right\} = \xi + p^2 \mathbf{Z}_p$$

contains no p^{th} root of unity other than ξ . Claim. $\xi \equiv 1 \pmod{p^2 \mathbf{Z}_p}$, so 1 is in that ball and thus $\xi = 1$. Write $\xi = 1 + py$ for some $y \in \mathbf{Z}_p$. Then

$$1 = \xi^p = (1 + py)^p = 1 + p(py) + \sum_{k=2}^{p-1} {p \choose k} (py)^k + (py)^p \equiv 1 + p(py) \pmod{p^3},$$

i.e., $p^2 y \equiv 0 \pmod{p^3}$. So $p \mid y$. Thus, $\xi \equiv 1 \pmod{p^2}$ which forces $\xi = 1$. Now we turn to p = 2. We want to show the only 4th roots of unity in \mathbb{Z}_2^{\times} are ± 1 . This won't use Hensel's lemma. Let $\xi \in \mathbb{Z}_2^{\times}$ be a 4th root of unity and $\xi \neq \pm 1$. Since $x^4 - 1 = (x^2 - 1)(x^2) + 1$, we have $\xi^2 = -1$ and then $\xi^2 \equiv -1 \pmod{4}$. However, since $\xi \in \mathbb{Z}_2^{\times}$, we have $\xi \equiv 1$ or 3 (mod 4) and then $\xi^2 \equiv 1 \pmod{4}$, a contradiction. For any prime p, a root of unity is a (unique) product of a root of unity of p-power order and a root of unity of order prime to p, so the only root of unity in \mathbb{Q}_p , are the roots of $X^{p-1} - 1$ for $p \neq 2$ and ± 1 for p = 2.

Lemma 2.119. $p\mathbf{Z}_p$ is the unique ideal of \mathbf{Z}_p .

Remark (Notation). Usually, write μ_n for the n^{th} root unity. $\mu_n(\mathbb{C}) \subseteq \mathbb{C}$ where $\mu_n(\mathbb{C})$ is the set of n^{th} root of unity in \mathbb{C} . We showed $\mu_p(\mathbf{Q}_p) \subseteq \mathbf{Z}_p$.

Example 2.120. For $d \in \mathbb{Z}$, the equation $x^3 + 2y^3 + 5z^3 + dw^2 = 0$ has a nontrivial solution $(x, y, z, w) \in \mathbb{Z}_{17}^4$.

Proof. Note (1, 2, 0, 0) satisfies $1^3 + 2 \cdot 2^3 + 5 \cdot 0^3 + d \cdot 0^3 \equiv 0 \pmod{17}$. Fix (y, z, w) = (2, 0, 0)and set $f(x) = x^3 + 16$. Since $|f(1)|_{17} = |17|_{17} = \frac{1}{17} < 1$ and $|f'(1)|^2 = |3|^2_{17} = 1^2 = 1$, we have $|f(1)|_{17} < |f'(1)|^2_{17}$. So Hensel's lemma applies to give $\alpha \in \mathbb{Z}_{17}$ with $f(\alpha) = 0$. Hence $\alpha^3 + 2 \cdot (2^3) + 5 \cdot 0^3 + d \cdot 0^3 = 0$, i.e., $(\alpha, 2, 0, 0) \in \mathbb{Z}_{17}^4$ is a nontrivial solution.

2.6.2 Primitive roots

In this section, assume p is prime.

Definition 2.121. Let $n \in \mathbb{N}$ and gcd(a, n) = 1. Let $ord_n(a)$ denote the (multiplicative) order of a modulo n,

Lemma 2.122. Let $n \in \mathbb{N}$ and gcd(a, n) = 1. Then the order of a modulo n exists and divides $\phi(n)$. Moreover, if $a^k \equiv 1 \pmod{n}$, then the order of a modulo n divides k.

Proof. By Euler's theorem, $a^{\phi(n)} \equiv 1 \pmod{n}$. Then the order exists and let $d = \operatorname{ord}_n(a)$. Since $\langle a \rangle \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$, by Lagrange' theorem, $\operatorname{ord}_n(a) \mid \phi(n)$. Suppose $a^k \equiv 1 \pmod{n}$. Division algorithm allows us to write $k = d\epsilon + r$ with $r, d \in \mathbb{Z}$ and $0 \leq r < d$. So $a^k = a^{d\epsilon+r} = (a^d)^{\epsilon} \cdot a^r \equiv a^r \pmod{n}$. Since $a^k \equiv 1 \pmod{n}$, $a^r \equiv 1 \pmod{n}$. Then by the minimality of d, r = 0. Thus, $d \mid k$.

Lemma 2.123. Suppose $\operatorname{ord}_m(a) = h$. Then $\operatorname{ord}_m(a^k) = \frac{h}{\operatorname{gcd}(h,k)}$.

Proof. Since $\operatorname{ord}_m(a) = h$, $\operatorname{gcd}(a, m) = 1$. So $\operatorname{gcd}(a^k, m) = 1$. Assume $(a^k)^j \equiv 1 \pmod{m}$, then $h \mid kj$ by Lemma 2.122. Note $h \mid kj$ if and only if $\frac{h}{\operatorname{gcd}(h,k)} \mid \frac{k}{\operatorname{gcd}(h,k)} j$. Since $\operatorname{gcd}\left(\frac{h}{\operatorname{gcd}(h,k)}, \frac{k}{\operatorname{gcd}(k,h)}\right) = 1$, we have $\frac{h}{\operatorname{gcd}(h,k)} \mid j$. So $\frac{h}{\operatorname{gcd}(h,k)} \mid \operatorname{ord}_m(a^k)$. Note $(a^k)^{\frac{h}{\operatorname{gcd}(h,k)}} = a^{\frac{kh}{\operatorname{gcd}(h,k)}} = (a^h)^{\frac{k}{\operatorname{gcd}(h,k)}} \equiv 1 \pmod{m}$. So $\operatorname{ord}_m(a^k) \mid \frac{h}{\operatorname{gcd}(h,k)}$.

Lemma 2.124. Let $\operatorname{ord}_m(a) = h$ and $\operatorname{ord}_m(b) = k$. If $\operatorname{gcd}(h, k) = 1$, then $\operatorname{ord}_m(ab) = hk$.

Proof. Let $d = \operatorname{ord}_m(ab)$. Since $(ab)^{hk} = a^{hk} \cdot b^{hk} = (a^h)^k (b^k)^h \equiv 1^k \cdot 1^h \pmod{m} \equiv 1 \pmod{m}$, $d \mid hk$. Since $1 \equiv a^h \equiv (a^h)^d \pmod{m}$, $b^{dh} \equiv (a^h)^d b^{dh} \equiv [(ab)^d]^h \equiv 1 \pmod{m}$. So $k = \operatorname{ord}_m(b) \mid dh$. Since $\operatorname{gcd}(h,k) = 1$, $k \mid d$. Similarly, $h \mid d$. This gives $hk = \frac{hk}{\operatorname{gcd}(h,k)} = \operatorname{lcm}(h,k) \mid d$. \Box

Definition 2.125. Let $m \in \mathbb{N}$. We say g is a primitive root modulo m if $\operatorname{ord}_m(g) = \phi(m)$.

Theorem 2.126. g is a primitive root modulo m if and only if g is generator of $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

Proof. \Longrightarrow Since $\operatorname{ord}_m(g)$ is defined, $\operatorname{gcd}(g,m) = 1$. So $g \in (\mathbb{Z}/m\mathbb{Z})^{\times}$. Note $\operatorname{ord}_m(g) = \phi(m) = |(\mathbb{Z}/m\mathbb{Z})^{\times}|$.

 \Leftarrow It is straightforward.

Theorem 2.127. There exists $\phi(p-1)$ primitive roots modulo p.

Proof. If p = 2, this is straightforward. Assume p is odd prime. Then each element in $\{1, \ldots, p-1\}$ has order (modulo p) dividing $\phi(p) = p-1$. Given $d \mid p-1$, let $\psi(d)$ denotes the number of elements in $\{1, \ldots, p-1\}$ with order d modulo p. So $\sum_{d \mid p-1} \psi(d) = p-1$. Claim. $\psi(d) = \phi(d)$ for any $d \mid p-1$. Let $d \mid p-1$. Suppose $\operatorname{ord}_p(a) = d$. Then a, \ldots, a^d are all inequivalent modulo p. These are all solutions of $x^d - 1 \equiv 0 \pmod{p}$ and no other solutions. So anythings of order d must be in this list. Alo, since $\operatorname{ord}_p(a^k) = \frac{d}{\gcd(d,k)}$ by Lemma 2.123, the elements of order d are precisely those a^k with $\gcd(d, k) = 1$. These are $\phi(d)$ such powers. So in particular, $\psi(p-1) = \phi(p-1)$, which is the number of elements in $\{1, \ldots, p-1\}$ with order $p-1 = \phi(p)$.

Theorem 2.128. Let g be a primitive root modulo p, then there exists x such that g + px is a primitive root modulo p^2 . Moreover, g + px is a primitive root modulo p^k for $k \in \mathbb{N}$ when p is odd. (Thus, we have primitive roots modulo p^k , i.e., $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ is cyclic for $k \in \mathbb{N}$).

Proof. Want to find an x such that g' := g + px is primitive modulo p^2 . Since $\operatorname{ord}_p(g) = \phi(p) = p-1$, $g^{p-1} = 1 + py$ for some y. We have $(g')^{p-1} = (g + px)^{p-1} \equiv g^{p-1} + (p-1)g^{p-2}px \pmod{p^2}$. So $(g')^{p-1} = 1 + pz$ with $z \equiv \frac{g^{p-1}-1}{p} + (p-1)g^{p-2}x \pmod{p^2}$. Since $(p-1)g^{p-2}$ is prime to p and we can choose x such that $\gcd(z,p) = 1$ (first choose such a z, and then solve for x). Since $g' \equiv g \pmod{p}$, g' is primitive modulo p. Let $k \ge 2$ and $d = \operatorname{ord}_{p^k}(g')$. Then $d \mid \phi(p^k) = p^{k-1}(p-1)$. We have $(g + px)^d = g'^d \equiv 1 \pmod{p}$, i.e., $g^d \equiv 1 \pmod{p}$. So $p - 1 \mid d$. Since $(g')^{p-1} = 1 + pz$ with $\gcd(p, z) = 1, (g')^{p-1} \not\equiv 1 \pmod{p^2}$. So $d \ne p - 1$ and then d > p - 1. Since $\phi(p) = (p-1) \mid d \mid p^{j-1}(p-1)$ for $j \ge 2, (p-1) \mid d \mid p(p-1)$.

Let k = 2. Since d > p - 1, $\operatorname{ord}_{p^2}(g') = d = p(p-1) = \phi(p^2)$. Thus, g' is primitive modulo p^2 . For higher power $k \ge 3$, assume p is odd. Suppose $d = \operatorname{ord}_{p^k}(g') < \phi(p^k) = p^{k-1}(p-1)$. Since $\phi(p) = p - 1 \mid d \mid p^{k-1}(p-1)$, we have $d = p^j(p-1)$ for some $0 \le j \le k-1$. Since p is odd, $\left((g')^{p-1}\right)^{p^j} = (1+pz)^{p^j} = 1 + p^{j+1}z_j$ for some z_j with $\operatorname{gcd}(z_j, p) = 1$ since $\operatorname{gcd}(z, p) = 1$. So if $(g')^{p^j(p-1)} \equiv 1 \pmod{p^k}$, then $j+1 \ge k$, a contradiction. Thus, we must have $d = \phi(p^k)$.

Exercise 2.129. What does the proof fail for p = 2?

Corollary 2.130. (a) The number of primitive root modulo p is $\phi(p-1)$.

- (b) The number of primitive roots modulo p^2 is $(p-1)\phi(p-1)$.
- (c) The number of primitive roots modulo p^k is $p^{k-2}(p-1)\phi(p-1)$, where p is odd.

Proof. Let m be a modulus in each question. Then by Theorem 2.128, there exists a primitive root g modulo m.

Theorem 2.131. There exists primitive root modulo m if and only if $m = 2, 4, p^k$ or $2p^k$ for p odd prime.

Proof. For 2, 4, p^k with p odd, we are done. Let p be odd and $m = 2p^k$, By Theorem 2.128, there is a primitive root modulo p^k denoted by g. Since p^k is odd, either g or $g + p^k$ is odd. Set g' be whichever is odd. Then $g' \equiv g \pmod{p^k}$. Suppose there exists $b \in \mathbb{N}$ and $b < \phi(p^k)$ such that $g'^b \equiv 1 \pmod{2p^k}$, then $g'^b \equiv 1 \pmod{p^k}$, a contradiction. So the order of $g' \mod 2p^k$ must be at least $\phi(p^k) = \phi(2)\phi(p^k) = \phi(2p^k)$. Thus, g' is a primitive root modulo $2p^k$.

Next, suppose *m* is none of these forms. Write $m = n_1 n_2$ with $gcd(n_1, n_2) = 1$ and $n_1, n_2 > 2$. If gcd(j, n) = 1, then gcd(n - j, n) = 1. So for n > 2, all numbers relatively prime to *n* can be matched up into pairs $\{j, n-j\}$. Hence $\phi(n_1)$ and $\phi(n_2)$ are even. Take *a* with gcd(a, m) = 1. Then $gcd(a, n_1) = 1 = gcd(a, n_2)$. By Euler's theorem, $a^{\phi(n_1)} \equiv 1 \pmod{n_1}$. Since ϕ is multiplicative, $a^{\frac{1}{2}\phi(m)} = a^{\frac{1}{2}\phi(n_1)\phi(n_2)} \equiv (a^{\phi(n_1)})^{\frac{\phi(n_2)}{2}} \equiv 1 \pmod{n_1}$. Similarly, $a^{\frac{1}{2}\phi(m)} \equiv 1 \pmod{n_2}$. Since $gcd(n_1, n_2) = 1$, we have $a^{\frac{1}{2}\phi(m)} \equiv 1 \pmod{n}$. Thus, every *a* with gcd(a, m) = 1 has order $\leq \frac{1}{2}\phi(m) < \phi(m)$, so there is no primitive root modulo *m*.

At last, suppose $m = 2^r$ with $r \ge 3$. Then the numbers relatively prime to m is odd. Claim. given an odd integer $a \ge 3$, we have $a^{2^{r-2}} \equiv 1 \pmod{2^r}$. So there is no primitive root modulo m. Claim, for any r > 2, $2^r \parallel (5^{2^{r-2}} - 1)$. Assume this is true for k. Then $2^k \parallel (5^{2^{k-2}} + 1)$. So $2^{k+1} \parallel (5^{2^{k-2}} - 1)(5^{2^{k-2}} + 1) = 5^{2^{k-1}} - 1$. Hence the claim is proved. This gives 5 has order 2^{r-2} modulo 2^r . So the residues 5^k with $k = 1, \ldots, 2^{r-2}$ are all distinct. Check the residues -5^k for $k = 1, \ldots, 2^{r-2}$ are distinct and distinct from 5^k 's, so this gives all residues since $\phi(2^r) = 2^r - 2^{r-1} = 2^{r-1}$. Hence all **reduced** residues modulo 2^r can be written as $(-1)^l 5^k$ for $l = 0, 1, k = 1, \ldots, 2^{r-2}$. Note $((-1)^l 5^k)^{2^{r-2}} = (5^k)^{2^{r-2}} \equiv 1 \pmod{2^r}$. Corollary 2.132.

$$\begin{aligned} (\mathbb{Z}/p^{r}\mathbb{Z})^{\times} &\cong C_{\phi(p^{r})}, \ p \text{ odd}, \\ (\mathbb{Z}/2\mathbb{Z})^{\times} &\cong C_{1} = C_{1}, \\ (\mathbb{Z}/4\mathbb{Z})^{\times} &\cong C_{2} = \mathbb{Z}/2\mathbb{Z}, \\ (\mathbb{Z}/2^{r}\mathbb{Z})^{\times} &\cong C_{2} \times C_{2^{r-2}} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{e-2}\mathbb{Z}, \ r \geqslant 3. \end{aligned}$$

Theorem 2.133. Let $m = 2^e \prod_{p^r | |m,p>2} p^r$. Then

$$(\mathbb{Z}/m\mathbb{Z})^{\times} \cong G \times \prod_{p^r \mid |m,p>2} C_{\phi(p^r)},$$

where

$$G \cong \left\{ \begin{array}{ccc} C_1, & e = 0, 1 \\ C_2, & e = 2 \\ C_2 \times C_{2^{e-2}} & e > 2 \end{array} \right. .$$

Proof. By Corollary 2.132 and Chinese Remainder Theorem.

26

Chapter 3

Quadratic Reciprocity

Let p be prime.

3.1 Legendre symbol

Definition 3.1. Let gcd(a, m) = 1. If $x^n \equiv a \pmod{m}$ has a solution, we say a is an n^{th} power residue modulo m. If n = 2, we say a is quadratic residue if this has a solution and quadratic non-residue, otherwise.

Definition 3.2. Let p be odd. We define the Legendre symbol $\left(\frac{a}{p}\right)$ by

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1, & a \text{ is quadratic residue and } p \nmid a \\ -1, & a \text{ is not quadratic residue and } p \nmid a \\ 0, & p \mid a \end{cases}$$

Theorem 3.3. Let $p \nmid a$. Then the congruence $x^n \equiv a \pmod{p}$ is solvable if and only if $a^{\frac{p-1}{\gcd(n,p-1)}} \equiv 1 \pmod{p}$.

Proof. " \Rightarrow ". Since $p \nmid x$, by Fermat's little theorem, we have $a^{\frac{p-1}{\gcd(n,p-1)}} \equiv (x^n)^{\frac{p-1}{\gcd(n,p-1)}} \equiv (x^{p-1})^{\frac{n}{\gcd(n,p-1)}} \equiv 1 \pmod{p}$.

"\equiv ". Let g be a primitive root modulo p. Then $a \equiv g^r \pmod{p}$ for some $r \in \mathbb{N}$. We have $1 \equiv (g^r)^{\frac{p-1}{\gcd(n,p-1)}} \equiv g^{\frac{r(p-1)}{\gcd(n,p-1)}} \pmod{p}$. Then $\operatorname{ord}_p(g) = (p-1) \mid \frac{r(p-1)}{\gcd(n,p-1)}$. So $\gcd(n,p-1) \mid r$. Write r = knx + k(p-1)y for some k, x, y. So $a \equiv g^r \equiv g^{knx+k(p-1)y} \equiv (g^{kx})^n \cdot (g^{p-1})^{ky} \equiv (g^{kx})^n \pmod{p}$.

Example 3.4. Is 3 a 4th power modulo 17 ? Note $x^4 \equiv 3 \pmod{17}$ has a solution if and only if $3^{\frac{16}{\gcd(4,16)}} \equiv 1 \pmod{17}$ if and only if $3^4 \equiv 1 \pmod{17}$, not true.

Assumption 3.5. Let p be odd.

Theorem 3.6 (Euler' Criterion).

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Proof. If $p \mid a$, we are done. Assume $p \nmid a$. Then by Fermat's little theorem, $(a^{\frac{p-1}{2}})^2 = a^{p-1} \equiv 1 \pmod{p}$, i.e., $a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$. By Theorem 3.3, $a^{\frac{p-1}{2}} = a^{\frac{p-1}{\gcd(2,p-1)}} \equiv 1 \pmod{p}$ if and only if $\left(\frac{a}{p}\right) = 1$.

Theorem 3.7. (a) $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$. (b) If $a \equiv b \pmod{p}$, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$. (c) If gcd(a, p) = 1, then $\left(\frac{a^2}{p}\right) = 1$ and $\left(\frac{a^2b}{p}\right) = \left(\frac{b}{p}\right)$. (d) $\left(\frac{1}{p}\right) = 1$ and $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$. Proof. (a) Since $\left(\frac{ab}{p}\right) \equiv (ab)^{\frac{p-1}{2}} \equiv a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \pmod{p}$ and $\left(\frac{ab}{p}\right), \left(\frac{a}{p}\right), \left(\frac{b}{p}\right) \in \{0, 1, -1\}$ and $p \ge 3$, we have $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.

Theorem 3.8. The number of solutions of $x^2 \equiv a \pmod{p}$ is exactly $1 + \left(\frac{a}{p}\right)$.

Proof. If x_0 is a solution, then $-x_0 \equiv p - x_0 \pmod{p}$ is also a solution. If $p \mid a$, then $x^2 \equiv a \pmod{p}$ only has one solution.

Definition 3.9. Let $n \in \mathbb{N}$. Define the numerically least residue of a modulo n to be a' such that $a' \equiv a \pmod{n}$ and $-\frac{1}{2}n < a' \leq \frac{1}{2}n$.

Lemma 3.10 (Gauss's lemma). Let gcd(a, p) = 1. Write a_j to be numerically least residue of a_j modulo p for $j \in \mathbb{N}$. Then $\left(\frac{a}{p}\right) = (-1)^l$, where

$$l = \# \left\{ 1 \leqslant j \leqslant \frac{p-1}{2} \mid a_j < 0 \right\}.$$

Proof. Claim. The numbers $\{|a_j|, 1 \leq j \leq \frac{p-1}{2}\}$ are the numbers $1, 2, \ldots, \frac{p-1}{2}$ in some order. By definition of a_j 's, it's enough to show that $|a_j|$'s are distinct. Suppose first $a_j = a_k$ for some $j, k \in \{1, \cdots, \frac{p-1}{2}\}$ with $j \neq k$. This gives $a_j \equiv a_k \pmod{p}$. Since $\gcd(a, p) = 1$, we have $j \equiv k \pmod{p}$, a contradiction. Suppose $a_j = -a_k$ for some $j \neq k$. This gives $a_j \equiv -ak \pmod{p}$, i.e., $a(j+k) \equiv 0 \pmod{p}$. Similarly, $g+k \equiv 0 \pmod{p}$, a contradiction. Write $r = \frac{p-1}{2}$. Then $(-1)^l r! = a_1 \cdots a_r \equiv (1a) \cdots (ra) \pmod{p}$, i.e., $r!a^r \equiv (-1)^l r! \pmod{p}$. Since $\gcd(r!, p) = 1$, we have $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} = a^r \equiv (-1)^l \pmod{p}$.

Example 3.11. Since $4^2 \equiv 5 \pmod{11}$, we have $\left(\frac{5}{11}\right) = 1$. Note

j	aj	a_j
1	5	5
2	10	-1
3	15	4
4	20	-2
5	25	3

3.1. LEGENDRE SYMBOL

Then l = 2. So $\left(\frac{5}{11}\right) = (-1)^2 = 1$.

Corollary 3.12. Let gcd(a, 2p) = 1, then $\left(\frac{a}{p}\right) = (-1)^l$, where $l = \sum_{j=1}^{\frac{p-1}{2}} \left\lfloor \frac{ja}{p} \right\rfloor$. Moreover, $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.

Proof. Consider $a, 2a, \ldots, \frac{p-1}{2}a$. Let r_1, \ldots, r_n denote the residues of these ja's modulo p that exceed $\frac{p}{2}$, and s_1, \ldots, s_k be the residues between 0 and $\frac{p}{2}$. Note $n + k = \frac{p-1}{2}$ and gcd(a, p) = 1. Using $ja = p \left| \frac{ja}{p} \right|$ + remainder, we have

$$\sum_{j=1}^{\frac{p-1}{2}} ja = \sum_{j=1}^{\frac{p-1}{2}} p \left\lfloor \frac{ja}{p} \right\rfloor + \sum_{j=1}^{n} r_j + \sum_{j=1}^{k} s_j.$$
(3.1)

Since $\frac{p}{2} < r_i < p$, we have the numerically least residue of r_i is $r_i - p$ for i = 1, ..., n. By the proof in Gauss's lemma, we have the absolute value of numerically residues, i.e., $(p - r_i)$'s and s_j 's are all distinct and are the numbers $1, ..., \frac{p-1}{2}$ in some order. Then

$$\sum_{j=1}^{\frac{p-1}{2}} j = \sum_{j=1}^{n} (p-r_j) + \sum_{j=1}^{k} s_j = np - \sum_{j=1}^{n} r_j + \sum_{j=1}^{k} s_j.$$
(3.2)

Let (3.1) - (3.2), we have $(a-1)\sum_{j=1}^{\frac{p-1}{2}} j = \sum_{j=1}^{\frac{p-1}{2}} p \left\lfloor \frac{ja}{p} \right\rfloor - np + 2\sum_{j=1}^{n} r_j$, i.e.,

$$(a-1)\frac{p^2-1}{8} = p\left(\sum_{j=1}^{\frac{p-1}{2}} \left\lfloor \frac{ja}{p} \right\rfloor - n\right) + 2\sum_{j=1}^{n} r_j.$$
(3.3)

Since gcd(a, 2p) = 1, a is odd. So $0 \equiv p\left(\sum_{j=1}^{\frac{p-1}{2}} \lfloor \frac{ja}{p} \rfloor - n\right) \pmod{2}$. Since gcd(p, 2) = 1, $\sum_{j=1}^{\frac{p-1}{2}} \lfloor \frac{ja}{p} \rfloor \equiv n \pmod{2}$. By Gauss's lemma, we have $\left(\frac{a}{p}\right) = (-1)^n = (-1)^{\sum_{j=1}^{\frac{p-1}{2}} \lfloor \frac{ja}{p} \rfloor}$. Moreover, if a = 2, we have $\sum_{j=1}^{\frac{p-1}{2}} \lfloor \frac{2j}{p} \rfloor = \sum_{j=1}^{\frac{p-1}{2}} 0 = 0$ and then $\frac{p^2-1}{8} \equiv -np \equiv n \pmod{2}$ by 3.3. So by Gauss's lemma, we have $\left(\frac{2}{p}\right) = (-1)^n = (-1)^{\frac{p^2-1}{8}}$.

Remark. Take a = -1, since $\sum_{j=1}^{\frac{p-1}{2}} \left\lfloor \frac{-j}{p} \right\rfloor = \sum_{j=1}^{\frac{p-1}{2}} (-1) = -\frac{p-1}{2}$, we have $0 \equiv p \left(-\frac{p-1}{2} - n \right) \pmod{2}$, i.e., $n \equiv -\frac{p-1}{2} \equiv \frac{p-1}{2} \pmod{2}$. Then

$$\left(\frac{-1}{p}\right) = (-1)^n = (-1)^{\frac{p-1}{2}}.$$

So if $p \equiv 1 \pmod{4}$, then -1 is a square root modulo p; if $p \equiv 1 \pmod{4}$, then not. Then

$$\left(\frac{-2}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{2}{p}\right) = (-1)^{\frac{p-1}{2} + \frac{p^2-1}{8}}.$$

Theorem 3.13 (Quadratic reciprocity (QR)). Let p and q be distinct odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

 $\begin{array}{l} Proof. \ \text{Let} \ S = \left\{ (x,y) \in \mathbb{N}^2 \mid 1 \leqslant x \leqslant \frac{p-1}{2}, \ 1 \leqslant y \leqslant \frac{q-1}{2} \right\}. \ \text{Let} \ S_1 = \left\{ (x,y) \in S \mid qx > py \right\} \ \text{and} \\ S_2 = \left\{ (x,y) \in S \mid qx < py \right\}. \ \text{Let} \ (x,y) \in S. \ \text{Suppose} \ qx = py, \ \text{then} \ p \mid qx, \ \text{i.e.}, \ p \mid q \ \text{or} \ p \mid x, \\ \text{a contradiction. Hence} \ S = S_1 \sqcup S_2. \ \text{Also,} \ S_1 = \left\{ (x,y) \in S \mid 1 \leqslant x \leqslant \frac{p-1}{2}, 1 \leqslant y < \frac{qx}{p} \right\} \ \text{and} \\ S_2 = \left\{ (x,y) \in S \mid 1 \leqslant y \leqslant \frac{q-1}{2}, 1 \leqslant x < \frac{py}{q} \right\}. \ \text{So} \ \#S_1 = \sum_{x=1}^{\frac{p-1}{2}} \left\lfloor \frac{qx}{p} \right\rfloor \ \text{and} \ \#S_2 = \sum_{y=1}^{\frac{q-1}{2}} \left\lfloor \frac{py}{q} \right\rfloor. \ \text{Since} \\ \#S = \#S_1 + \#S_2, \ \frac{p-1}{2} \frac{q-1}{2} = \sum_{x=1}^{\frac{p-1}{2}} \left\lfloor \frac{qx}{p} \right\rfloor + \sum_{y=1}^{\frac{q-1}{2}} \left\lfloor \frac{py}{q} \right\rfloor. \ \text{Thus, since} \ \text{gcd}(p, 2q) = 1 = \ \text{gcd}(q, 2p), \ \text{by} \\ \text{Corollary 3.12,} \ \left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{\sum_{y=1}^{\frac{p-1}{2}} \left\lfloor \frac{py}{q} \right\rfloor}. \ (-1)^{\sum_{x=1}^{\frac{q-1}{2}} \left\lfloor \frac{qx}{p} \right\rfloor} = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}. \end{array}$

Remark. $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$ by Theorem 2.52 if and only if $\left(\frac{-1}{p}\right) = 1$; $p = x^2 + 2y^2$ if and only if $\left(\frac{-2}{p}\right) = 1$.

Example 3.14.

$$\left(\frac{21}{71}\right) = \left(\frac{3}{71}\right) \left(\frac{7}{71}\right) = (-1)^{\frac{3-1}{2}\frac{71-1}{2}} \left(\frac{71}{3}\right) (-1)^{\frac{7-1}{2}\frac{71-1}{2}} \left(\frac{71}{7}\right) = \left(\frac{2}{3}\right) \left(\frac{1}{7}\right) = (-1)^{\frac{3^2-1}{8}} \cdot 1 = 1.$$

Example 3.15. Since $\left(\frac{1}{3}\right) = 1$ and $\left(\frac{2}{3}\right) = (-1)^{\frac{3^2-1}{8}} = -1$,

$$\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2}} \cdot (-1)^{\frac{p-1}{2}\frac{3-1}{2}} \left(\frac{p}{3}\right) = \left(\frac{p}{3}\right) = \left\{\begin{array}{cc}1 & p \equiv 1 \pmod{3}\\-1 & p \equiv 2 \pmod{3}\end{array}\right\}$$

3.1.1 Algebraic number theory proof of QR

2 is a square modulo p if and only if $p \equiv 1,7 \pmod{8}$, i.e., $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$. We already proved this, but we will give a new proof. Let $\xi_n = e^{\frac{2\pi i}{n}}$ be a primitive n^{th} root of unity in \mathbb{C} .

Definition 3.16. Set

$$\mathbb{Z}[\xi_n] = \{a_0 + a_1\xi_n + \dots + a_{n-1}\xi_n^{n-1}\}$$

which is a ring.

Definition 3.17. Let \mathcal{K}/\mathbb{Q} be a finite field extention. We say $\alpha \in \mathcal{K}$ is an *algebraic integer* if there exists a monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$.

Fact 3.18. Show that the algebraic integer in \mathbb{Q} are the usual integers.

Notation 3.19. Denote the set of algebraic integers in \mathcal{K} by $\mathcal{O}_{\mathcal{K}}$. So $\mathcal{O}_{\mathbb{O}} = \mathbb{Z}$.

Theorem 3.20. Every element of $\mathbb{Z}[\xi_n]$ is an algebraic integer. Moreover, $\mathbb{Z}[\xi_n] \cap \mathbb{Q} = \mathbb{Z}$.

Proof. Let $\alpha \in \mathbb{Z}[\xi_n]$. Then we can write $\alpha \xi_n^i = \sum_{j=0}^{n-1} a_{ij} \xi_n^j$ for $i = 0, \ldots, n-1$. Define a matrix $A = (a_{ij}) \in \operatorname{Mat}_n(\mathbb{Z})$ and $P(t) = \det(tI_n - A) \in \mathbb{Z}[t]$, which is monic. Define $V = {}^t(1, \xi_n, \xi_n^2, \ldots, \xi_n^{n-1})$. Then the set of equations can be re-written as $AV = \alpha V$, which implies α is an eigenvalue of A. So α is a root of the monic polynomial $P \in \mathbb{Z}[t]$.

Fact 3.21.

$$\mathcal{O}_{\mathbb{Q}(\xi_n)} = \mathbb{Z}[\xi_n].$$

Notation 3.22. For $x, y \in \mathbb{Z}[\xi_n]$, write $x \equiv y \pmod{p\mathbb{Z}[\xi_n]}$ to mean $x - y \in p\mathbb{Z}[\xi_n]$.

Fact 3.23. Since $\mathbb{Z} \subseteq \mathbb{Z}[\xi_n]$, if $x, y \in \mathbb{Z}$, $x \equiv y \pmod{p\mathbb{Z}[\xi_n]}$ is the same as $x \equiv y \pmod{p}$.

Theorem 3.24 (New proof).

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.$$

Proof. Set $\xi = \xi_8$ and $\mathcal{O} = \mathbb{Z}[\xi_8]$. Then $0 = \xi^8 - 1 = (\xi^4 - 1)(\xi^4 + 1)$. Since ξ is primitive 8th root of unity, we have $\xi^4 + 1 = 0$, i.e., $\xi^2 + \xi^{-2} = 0$. Set $\tau = \xi + \xi^{-1}$. Then $\tau^2 = (\xi + \xi^{-1})^2 = \xi^2 + 2 + \xi^{-2} = 2$. So $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\xi)$. By Euler's criterion, $\tau^{p-1} = (\tau^2)^{\frac{p-1}{2}} = 2^{\frac{p-1}{2}} \equiv \left(\frac{2}{p}\right) \pmod{p}$. So $\tau^{p-1} = 2^{\frac{p-1}{2}} \equiv \left(\frac{2}{p}\right) \pmod{p}$, i.e., $\tau^p \equiv \left(\frac{2}{p}\right) \tau \pmod{p}$.

(a) Assume $p \equiv 1 \pmod{8}$. Then $\xi^p = \xi$ and $\xi^{-p} = \xi^{-1}$. So $\tau^p = (\xi + \xi^{-1})^p \equiv \xi^p + \xi^{-p} = \xi + \xi^{-1} = \tau \pmod{p\mathcal{O}}$. Thus, $\tau \equiv \left(\frac{2}{p}\right) \tau \pmod{p\mathcal{O}}$. Note $p\mathcal{O}$ is not prime ideal, so we can't just cancel τ . Multiply by τ , we have $\tau^2 \equiv \left(\frac{2}{p}\right) \tau^2 \pmod{p\mathcal{O}}$, i.e., $2 \equiv \left(\frac{2}{p}\right) 2 \pmod{p\mathcal{O}}$. So $2 \equiv \left(\frac{2}{p}\right) 2 \pmod{p}$ by Fact 3.23. Since $\gcd(p, 2) = 1$, $1 \equiv \left(\frac{2}{p}\right) \pmod{p}$. So $\left(\frac{2}{p}\right) = 1$.

(b) Assume $p \equiv -1 \pmod{8}$. Then $\xi^p = \xi^{-1}$, $\xi^{-p} = \xi$. So everything else is the same and as a result, we have $\left(\frac{2}{p}\right) = 1$.

(c) Assume $p \equiv 3 \pmod{8}$. Since $\xi^4 = -1$, we have

$$\tau^p \equiv \xi^p + \xi^{-p} \equiv \xi^3 + \xi^{-3} \equiv \xi^4 \xi^{-1} + \xi^{-4} \xi \equiv -\xi^{-1} - \xi = -(\xi + \xi^{-1}) \equiv -\tau \pmod{p\sigma}.$$

So $-\tau \equiv \left(\frac{2}{p}\right)\tau \pmod{p\mathcal{O}}$. Multiply by τ , we have $-2 \equiv \left(\frac{2}{p}\right)2 \pmod{p}$. Similarly, $\left(\frac{2}{p}\right) = -1$.

(d) Assume $p \equiv -3 \pmod{8}$. Then $\xi^p = \xi^{-3}$ and $\xi^{-p} = \xi^3$. So everything else is the same and as a result, we have $\left(\frac{2}{p}\right) = -1$.

Remark. We calculate $\left(\frac{2}{p}\right)$ using algebraic number theorem. Main input: $\tau = \xi_p + \xi_p^{-1}, \tau^2 = 2$ and $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\xi_8)$. These are enough information to calculate $\left(\frac{2}{p}\right)$.

Remark. To prove QR, we need to consider $\begin{pmatrix} q \\ p \end{pmatrix}$ and $\begin{pmatrix} p \\ q \end{pmatrix}$. Want to do the same type of argument in $\mathbb{Q}(\xi_8)$, so we want some $\tau \in \mathbb{Z}[\xi_p]$ so that $\tau^2 = p$. Unfortunately, this isn't always possible. Since $\xi_8 = \frac{1-\sqrt{-3}}{2}$ and $\sqrt{-3} = 1 - 2\xi_8$, $\mathbb{Q}(\xi_8) = \mathbb{Q}(\sqrt{-3})$. So there can be no element $\tau \in \mathbb{Z}[\xi_8] \subseteq \mathbb{Q}(\xi_8)$ satisfying $\tau^2 = 3$ since we would get $\mathbb{Q}(\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{-3})$, a contradiction. Thus, we can find τ such that in general, the best we can hope for is to find $\tau \in \mathbb{Z}[\xi_p]$ such that $\tau^2 = \pm p$.

Proposition 3.25. There are the same number of quadratic residue as non-residue in $\mathbb{Z}/p\mathbb{Z}$.

Proof. Let ϖ be an primitive root modulo p. Then $\varpi, \ldots, \varpi^{p-1}$ are distinct. Let $k \in \{1, \cdots, p-1\}$ be odd. Suppose $(\overline{\omega}^j)^2 \equiv \overline{\omega}^k \pmod{p}$ for some $j \in \{1, \dots, p-1\}$. Since $\gcd(\overline{\omega}, p) = 1, \overline{\omega}^{2j-k} \equiv 1$ 1 (mod p). Also, since $\operatorname{ord}_p(\varpi) = p-1$, we have $p-1 \mid 2j-k$. Since $2j-k \leq 2j-1 \leq 2(p-1)-1 < 2(p-1)-1 <$ 2(p-1), we have 2j-k=p-1, contradicted by k is odd. Hence ϖ^k if a quadractic residue if and only if k is even.

Definition 3.26. Define a Gauss sum

$$\tau = \sum_{t \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \left(\frac{t}{p}\right) \xi_p^t = \sum_{t=1}^{p-1} \left(\frac{t}{p}\right) \xi_p^t$$

Theorem 3.27.

$$\tau^2 = (-1)^{\frac{p-1}{2}} p$$

Proof. Define $\tau_q = \sum_{t=1}^{p-1} \left(\frac{t}{p}\right) \xi_p^{qt}$ for $q = 1, \dots, p-1$. Then by Proposition 3.25, $\tau_0 = 0$. So $\binom{q}{p}\tau_q = \sum_{t=1}^{p-1} \binom{qt}{p}\xi_p^{qt} = \sum_{t=1}^{p-1} \binom{t}{p}\xi_p^t = \tau$ since $\{q, 2q, \cdots, (p-1)q\}$ is a complete reduced residue system modulo p. Since $p \nmid q$, we have $\left(\frac{q}{p}\right)^2 = 1$ and then $\tau_q = \left(\frac{q}{p}\right)\tau$. Hence

$$\sum_{q=1}^{p-1} \tau_q \tau_{-q} = \sum_{q=1}^{p-1} \left(\frac{-q^2}{p}\right) \tau^2 = \sum_{q=1}^{p-1} \left(\frac{-1}{p}\right) \tau^2 = \sum_{q=1}^{p-1} (-1)^{\frac{p-1}{2}} \tau^2 = (-1)^{\frac{p-1}{2}} (p-1) \tau^2$$

Moreover,

$$\tau_{q}\tau_{-q} = \sum_{t=1}^{p-1} \left(\frac{t}{p}\right) \xi_{p}^{qt} \sum_{s=1}^{p-1} \left(\frac{s}{p}\right) \xi_{p}^{-qs} = \sum_{t=1}^{p-1} \sum_{s=1}^{p-1} \left(\frac{t}{p}\right) \left(\frac{s}{p}\right) \xi_{p}^{q(t-s)}$$

Note for $1 \leq t, s \leq p-1$, if t = s, then $\sum_{q=0}^{p-1} \xi_p^{q(t-s)} = p$; if $t \neq s$, then since $2-p \leq t-s \leq p-2$, we have $p \nmid t-s$ and so $\sum_{q=0}^{p-1} \xi_p^{q(t-s)} = \sum_{q=0}^{p-1} \xi_p^q = \frac{1-\xi_p^p}{1-\xi_p} = 0$. Hence

$$\sum_{q=0}^{p-1} \tau_q \tau_{-q} = \sum_{q=0}^{p-1} \left(\sum_{t=1}^{p-1} \sum_{s=1}^{p-1} \left(\frac{t}{p} \right) \left(\frac{s}{p} \right) \xi_p^{q(t-s)} \right) = \sum_{t=1}^{p-1} \sum_{s=1}^{p-1} \left(\frac{t}{p} \right) \left(\frac{s}{p} \right) \sum_{q=0}^{p-1} \xi_p^{q(t-s)} = \sum_{t=1}^{p-1} 1 \cdot p = p(p-1).$$

Thus, $p(p-1) = (-1)^{\frac{p-1}{2}} (p-1)\tau^2$. i.e., $(-1)^{\frac{p-1}{2}} p = \tau^2$.

Thus, $p(p-1) = (-1)^{\frac{p-1}{2}}(p-1)\tau^2$. i.e., $(-1)^{\frac{p-1}{2}}p = \tau^2$.

Theorem 3.28 (QR: New Proof). Let p, q be distinct odd primes.

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

Proof. Set $p^* = (-1)^{\frac{p-1}{2}} p$. Since Gauss sum $\tau \in \mathbb{Z}[\xi_p] \subseteq \mathbb{Q}(\xi_p)$ and $\tau^2 = p^*, \mathbb{Q}(\sqrt{p^*}) \subseteq \mathbb{Q}(\xi_p)$. So

$$\left(\frac{p^*}{q}\right) = \left(\frac{(-1)^{\frac{p-1}{2}}}{q}\right) \left(\frac{p}{q}\right) = \left(\frac{-1}{q}\right)^{\frac{p-1}{2}} \left(\frac{p}{q}\right) = \left((-1)^{\frac{q-1}{2}}\right)^{\frac{p-1}{2}} \left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right).$$

3.2. JACOBI SYMBOL

Hence $\left(\frac{p^*}{q}\right)\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$. Thus, to show QR, it is equivalent to show $\left(\frac{q}{p}\right) = \left(\frac{p^*}{q}\right)$. Note $\tau^{q-1} = (\tau^2)^{\frac{q-1}{2}} = (p^*)^{\frac{q-1}{2}} \equiv \left(\frac{p^*}{q}\right) \pmod{q}$ by Euler's criterion. Then $\tau^q \equiv \left(\frac{p^*}{q}\right) \tau \pmod{q}$. Since $q \nmid p$ is odd and by Freshmen's dream, we have

$$\tau^q = \left(\sum_{t=0}^{p-1} \left(\frac{t}{p}\right) \xi_p^t\right)^q \equiv \sum_{t=0}^{p-1} \left(\frac{t}{p}\right)^q \xi_p^{qt} = \sum_{t=0}^{p-1} \left(\frac{t}{p}\right) \xi_p^{qt} \pmod{q\mathbb{Z}[\xi_p]}.$$

Let \tilde{q} for the inverse of q modulo p. Let $qt \equiv k \pmod{p}$, then $t \equiv \tilde{q}k \pmod{p}$ and so

$$\left(\frac{p^*}{q}\right)\tau \equiv \tau^q = \sum_{k=0}^{p-1} \left(\frac{\widetilde{q}k}{p}\right)\xi_p^k = \left(\frac{\widetilde{q}}{p}\right)\sum_{k=0}^{p-1} \left(\frac{k}{p}\right)\xi_p^k \equiv \left(\frac{\widetilde{q}}{p}\right)\tau \pmod{q\mathbb{Z}[\xi_p]}.$$

Since $\begin{pmatrix} \tilde{q} \\ p \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} \tilde{q}q \\ p \end{pmatrix} = \begin{pmatrix} 1 \\ p \end{pmatrix} = 1$, we have $\begin{pmatrix} \tilde{q} \\ p \end{pmatrix} = \begin{pmatrix} q \\ p \end{pmatrix}$. So $\begin{pmatrix} p^* \\ q \end{pmatrix} \tau \equiv \begin{pmatrix} q \\ p \end{pmatrix} \tau \pmod{q\mathbb{Z}[\xi_p]}$. Hence $\begin{pmatrix} \frac{p^*}{q} \end{pmatrix} \tau^2 \equiv \begin{pmatrix} q \\ p \end{pmatrix} \tau^2 \pmod{q\mathbb{Z}[\xi_p]}$, i.e., $\begin{pmatrix} \frac{p^*}{q} \end{pmatrix} p^* \equiv \begin{pmatrix} q \\ p \end{pmatrix} p^* \pmod{q}$. Since $\gcd(p^*, q) = 1$, $\begin{pmatrix} \frac{p^*}{q} \end{pmatrix} \equiv \begin{pmatrix} q \\ p \end{pmatrix} \pmod{q}$. Thus, $\begin{pmatrix} \frac{p^*}{q} \end{pmatrix} = \begin{pmatrix} q \\ p \end{pmatrix}$.

3.2 Jacobi symbol

Definition 3.29. Let $n \in \mathbb{N}$ be odd, the *Jacobi symbol* $\left(\frac{a}{n}\right)$ is defined as the product of the Legendre symbols corresponding to the prime factors of n, i.e.,

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \cdots \left(\frac{a}{p_r}\right)^{e_r},$$

where $n = p_1^{e_1}, \cdots p_r^{e_r}$ is the canonical factorization of n.

Theorem 3.30. Let $Q = p_1 \cdots p_s$, where p_i 's are odd primes and not necessarily distinct. Then (a) $\left(\frac{a}{1}\right) = 1$.

- (b) If $gcd(a, Q) \neq 1$, then $\left(\frac{a}{Q}\right) = 0$.
- (c) If gcd(a, Q) = 1, then $\left(\frac{a}{Q}\right) = \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_s}\right)$.

Remark. This symbol does not tell you about quadratic residues.

Theorem 3.31. Let $Q, Q' \in \mathbb{N}$ be odd.

(a)
$$\left(\frac{p}{Q}\right)\left(\frac{p}{Q'}\right) = \left(\frac{p}{QQ'}\right).$$

(b) $\left(\frac{p}{Q}\right)\left(\frac{p'}{Q}\right) = \left(\frac{pp'}{Q}\right).$
(c) If $gcd(p,Q) = 1$, then $\left(\frac{p}{Q^2}\right) = \left(\frac{p^2}{Q}\right) = 1.$

(d) If gcd(pp', QQ') = 1, then $\left(\frac{p'p^2}{Q'Q^2}\right) = \left(\frac{p'}{Q'}\right)$. (e) If $p \equiv p' \pmod{Q}$, then $\left(\frac{p}{Q}\right) = \left(\frac{p'}{Q}\right)$.

Proof. (a) Write $Q = p_1 \cdots p_s$ and $Q = p'_1, \cdots, p'_t$ with p_i 's and p_i 's odd primes. Then we have $\left(\frac{p}{p_1}\right) \cdots \left(\frac{p}{p_s}\right) \left(\frac{p}{p'_1}\right) \cdots \left(\frac{p}{p'_t}\right) = \left(\frac{p}{QQ'}\right).$

Remark. The Jacobi symbol does not determine if something is residue modulo Q. For example, if $7 \nmid a$, then $\left(\frac{a}{49}\right) = \left(\frac{a}{7^2}\right) = \left(\frac{a}{7}\right) \left(\frac{a}{7}\right) = 1$. But not every a is a QR modulo 49. On the other hand, if $\left(\frac{a}{Q}\right) = -1$, then $-1 = \left(\frac{a}{Q}\right) = \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_s}\right)$, which means at least one of these must be -1, say $\left(\frac{a}{p_j}\right) = -1$. Suppose $x^2 \equiv a \pmod{Q}$, then since $p_j \mid Q$, we have $x^2 \equiv a \pmod{p_j}$, as well, which is a contradiction since $\left(\frac{a}{p_j}\right) = -1$. So if $\left(\frac{a}{Q}\right) = -1$, it means there is no solution for $x^2 \equiv a \pmod{Q}$.

Theorem 3.32. Let $Q \in \mathbb{N}$ be odd, then

$$\left(\frac{-1}{Q}\right) = (-1)^{\frac{Q-1}{2}} and \left(\frac{2}{Q}\right) = (-1)^{\frac{Q^2-1}{8}}$$

Proof. Write $Q = p_1 \cdots p_s$ with p_i 's odd prime. Then

$$\left(\frac{-1}{Q}\right) = \left(\frac{-1}{p_1}\right) \cdots \left(\frac{-1}{p_s}\right) = (-1)^{\frac{p_1-1}{2}} \cdots (-1)^{\frac{p_s-1}{2}} = (-1)^{\sum_{j=1}^s \frac{p_j-1}{2}}$$

Let n_1 and n_2 be odd. Then

$$\frac{1}{2}(n_1-1) + \frac{1}{2}(n_2-1) = \frac{1}{2}(n_1n_2-1) - \frac{1}{2}(n_1-1)(n_2-1) \equiv \frac{1}{2}(n_1n_2-1) \pmod{2}.$$

Hence by induction, $\left(\frac{-1}{Q}\right) = (-1)^{\frac{1}{2}(p_1 \cdots p_s - 1)} = (-1)^{\frac{1}{2}(Q-1)}$. Note

$$\left(\frac{2}{Q}\right) = \left(\frac{2}{p_1}\right) \cdots \left(\frac{2}{p_s}\right) = (-1)^{\frac{p_1^2 - 1}{8}} \cdots (-1)^{\frac{p_s^2 - 1}{8}} = (-1)^{\sum_{j=1}^s \frac{p_j^2 - 1}{8}}$$

Let n_1 and n_2 be odd. Since $n_1^2 \equiv 1 \equiv n_2^2 \pmod{4}, \frac{1}{8}(n_1^2 - 1)(n_2^2 - 1) \equiv 0 \pmod{2}$. This gives

$$\frac{1}{8}(n_1^2 - 1) + \frac{1}{8}(n_2^2 - 1) = \frac{1}{8}(n_1^2 n_2^2 - 1) - \frac{1}{8}(n_1^2 - 1)(n_2^2 - 1) \equiv \frac{1}{8}(n_1^2 n_2^2 - 1) \pmod{2}.$$

Hence by induction, $\left(\frac{2}{Q}\right) = (-1)^{\frac{1}{8}(p_1^2 \cdots p_s^2 - 1)} = (-1)^{\frac{1}{8}(Q^2 - 1)}.$

Theorem 3.33 (Jacobi). Let $Q \in \mathbb{N}$ be odd and gcd(p, Q) = 1. Then

$$\left(\frac{p}{Q}\right)\left(\frac{Q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{Q-1}{2}}$$

Proof. Use the same techniques as Theorem 3.32.

3.2. JACOBI SYMBOL

Remark. We can use Jacobi to quickly calculate Legendre symbol.

Example 3.34.

$$\begin{pmatrix} \frac{1111}{8093} \end{pmatrix} = (-1)^{\frac{1}{4}8092 \cdot 1110} \begin{pmatrix} \frac{8093}{1111} \end{pmatrix} = \begin{pmatrix} \frac{316}{1111} \end{pmatrix} = \begin{pmatrix} \frac{2}{1111} \end{pmatrix}^2 \begin{pmatrix} \frac{79}{1111} \end{pmatrix} = (-1)^{\frac{1}{4}78 \cdot 1110} \begin{pmatrix} \frac{1111}{79} \end{pmatrix}$$
$$= -\begin{pmatrix} \frac{5}{79} \end{pmatrix} = -(-1)^{\frac{1}{4}4 \cdot 78} \begin{pmatrix} \frac{79}{5} \end{pmatrix} = -\begin{pmatrix} \frac{4}{5} \end{pmatrix} = -\begin{pmatrix} \frac{2}{5} \end{pmatrix}^2 = -1.$$

So 1111 is not a quadratic residue modulo 8093.

Remark. Sum of squares: arithemetric in $\mathbb{Z}[i]$. Quadratic reciprocity: arithemetric in $\mathbb{Z}[\xi_p]$. Binary quadratic: arithemetric in $\mathbb{Q}(\sqrt{d})$.

CHAPTER 3. QUADRATIC RECIPROCITY

Chapter 4

Binary Quadratic Residue

Definition 4.1. A binary quadratic form is a homogeneous polynomial

$$f: ax^2 + bxy + cy^2 \in \mathbb{Z}[x, y]$$

We will sometimes denote this as [a, b, c]. Given n, we say f reresents n if there exists $(x_0, y_0) \in \mathbb{Z}^2$ such that $f(x_0, y_0) = n$.

Remark. Classical motivation: Figure out which integers are represented by a given form. We have an example already.

Theorem 4.2. Let $f = x^2 + y^2$. Then an integer n is represented by f if and only if n has a prime factorization

$$n = 2^e \prod_{p_j \equiv 1 \pmod{4}} p_j^{e_j} \prod_{q_i \equiv 3 \pmod{4}} q_i^{h_i}$$

where $h_i \equiv 0 \pmod{2}$ for all $q_i \mid n \text{ and } q_i \equiv 3 \pmod{4}$.

Proof. By Theorem 2.53.

Theorem 4.3. $f = x^2 + y^2$ and $g = x^2 + 2xy + 2y^2$ represent the same integers.

Proof. If $n = g(x_0, y_0) = x_0^2 + 2x_0y_0 + 2y_0^2$, then $n = f(x_0 + y_0, y_0)$. If $n = f(x_1, y_1) = x_1^2 + y_1^2$, then $n = g(x_1 - y_1, y_1)$.

Corollary 4.4. Let $f = x^2 + 2xy + 2y^2$. Then an integer *n* is represented by *f* if and only if *n* has a prime factorization

$$n = 2^e \prod_{p_j \equiv 1 \pmod{4}} p_j^{e_j} \prod_{q_i \equiv 3 \pmod{4}} q_i^{h_i}$$

where $h_i \equiv 0 \pmod{2}$ for all $q_i \mid n \text{ and } q_i \equiv 3 \pmod{4}$.

Remark. We should think of
$$f$$
 and g above as equivalent binary quadratic forms (b.q.f.'s). Note $f(x,y) = (x,y) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = (x,y) \begin{bmatrix} x \\ y \end{bmatrix} = x^2 + y^2$ and $g(x,y) = (x,y) \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^2 + 2xy + 2y^2$. We could ask for the matrices to be similar: $t \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ by elementary transformation. Maybe what we want is the matrices associated to f and g to be similar matrices.

Definition 4.5. Given any $f = ax^2 + bxy + cy^2 = (x, y) \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$, associate the matrix $\begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix}$.

Assumption 4.6. Let f, g be binary quadratic forms.

Definition 4.7. We say f and g are equivalent if the associated matrices are $SL_2(\mathbb{Z})$ -similar.

Remark. We can define an action γ of $SL_2(\mathbb{Z})$ on the set of binary quadratic forms f by

$$f|\gamma(x,y) = (f \circ \gamma)(x,y) = f(\gamma(x,y)) = f\left(\gamma \begin{bmatrix} x \\ y \end{bmatrix}\right)$$

when regarding γ as a matrix. For example, let $\gamma = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$. Then $\gamma \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} px + qy \\ rx + sy \end{bmatrix}$ and

 $f\left(\gamma \begin{bmatrix} x \\ y \end{bmatrix}\right) = f(px + qy, rx + sy).$ Check this gives a right group action.

Definition 4.8. We say f and g are *similar*, write $f \sim g$ if there exists $\gamma \in SL_2(\mathbb{Z})$ such that $f = g \circ \gamma$.

Exercise 4.9. Definitions 4.7 and 4.8 are equivalent.

Theorem 4.10. If $f \sim g$, then f and g represent the same set of integers.

Proof. Let $\gamma \in \text{SL}_2(\mathbb{Z})$ such that $g = f \circ \gamma$. Let $\tau \in \text{SL}_2(\mathbb{Z})$ such that $f = g \circ \tau$. Let $(x_0, y_0) \in \mathbb{Z}^2$ such that $f(x_0, y_0) = n$. Then $g(\gamma^{-1}(x_0, y_0)) = f(\gamma(\gamma^{-1}(x_0, y_0))) = f(x_0, y_0) = n$. Let $(x_1, y_1) \in \mathbb{Z}^2$ such that $g(x_1, y_1) = m$. Then $f(\tau^{-1}(x_1, y_1)) = g(\tau(\tau^{-1}(x_1, y_1))) = g(x_1, y_1) = m$.

Example 4.11. Consider the binary quadratic form f = [458, 214, 25]. Note $f(-1, -1) = 17 \cdot 41$, $f(-1, 0) = 2 \cdot 229$, $f(0, 1) = 5^2$, f(1, 1) = 269, $f(-1, 2) = 2 \cdot 5 \cdot 13$, f(-1, 3) = 41. Check: Let $\gamma = \begin{bmatrix} 4 & -3 \\ -17 & 13 \end{bmatrix} \in SL_2(\mathbb{Z})$, then $(f \circ \gamma)(x, y) = x^2 + y^2$.

Definition 4.12. The discriminant of a binary quadratic form f = [a, b, c] is $b^2 - 4ac$. Write

$$\operatorname{disc}(f) = b^2 - 4ac.$$

Remark. Note

disc([a, b, c]) =
$$-4 \begin{vmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{vmatrix}$$
.

Theorem 4.13. If $f \sim g$, then $\operatorname{disc}(f) = \operatorname{disc}(g)$.

Proof. Let $g = f \circ \gamma$. View the corresponding matrices, $\operatorname{disc}(g) = \operatorname{disc}(f \circ \gamma) = \operatorname{det}(\gamma) \operatorname{disc}(f) \operatorname{det}(\gamma) = \operatorname{disc}(f)$.

Remark. The converse is not true. $x^2 + 6y^2$ represents 1, $2x^2 + 3y^2$ does not represent 1 but they have same determinant -24.

Theorem 4.14. The set of all discriminants of binary quadratic forms is exactly the set of integers d such that $d \equiv 0, 1 \pmod{4}$.

Proof. Let f = [a, b, c]. Then $d = b^2 - 4ac$. So $d \equiv b^2 \pmod{4}$. Hence $d \equiv 0, 1 \pmod{4}$. Next, assume $d \equiv 0, 1 \pmod{4}$. Then $d = b^2$ for some b by Lemma 2.52. Set f(x) = bxy.

Theorem 4.15. If $\operatorname{disc}(f) < 0$, then f is a definite form. If $\operatorname{disc}(f) > 0$, then f is an indefinite form.

 $\begin{array}{l} \textit{Proof. Set } c = \left\{ \begin{array}{l} -\frac{d}{4} & \text{if } d \equiv 0 \pmod{4} \\ -\frac{d-1}{4} & \text{if } d \equiv 1 \pmod{4} \end{array} \right. \text{ When } c = -\frac{d}{4}, \ [1,0,c] \text{ has disciminant } d; \text{ when } c = -\frac{d-1}{4}, \ [1,1,c] \text{ has disciminant } d. \text{ The forms } \left[1,0,-\frac{d}{4}\right] \text{ and } \left[1,-1,-\frac{d-1}{4}\right] \text{ are the principal binary quadratic forms of disciminant } d. \text{ Consider } f = [a,b,c]. \text{ Then } 4af = 4a(ax^2 + bxy + cy^2) = 4a^2x^2 + 4abxy + 4acy^2 = (2ax + by)^2 + (4ac - b^2)y^2 = (2ax + by)^2 - \text{disc}(f)y^2. \end{array} \right.$

(a) If $\operatorname{disc}(f) < 0$, then $4ac = b^2 - \operatorname{disc}(f) > 0$, i.e., ac > 0. Also, $f \neq 0$ except (x, y) = (0, 0). So f is positive (negative) definite if a > 0 (a < 0).

(b) If $\operatorname{disc}(f) > 0$, then f(1,0) = a and $f(b,-2a) = -a \cdot \operatorname{disc}(f)$, which have opposite sign unless a = 0; similarly, f(0,1) = c and $f(-2c,b) = -c \cdot \operatorname{disc}(f)$, which have opposite sign unless c = 0. When a = 0 = c, we have $f(1,1) = b \neq 0$ and $f(1,-1) = -b \neq 0$, which have opposite sign. Thus, f is indefinite.

(c) Assume disc(f) = 0. If $a \neq 0$, since f(b, -2a) = 0, $f = \frac{(2ax+by)^2}{4a}$ is semidefinite. If a = 0, then b = 0 and then $f(x, y) = cy^2$, since f(1, 0) = 0, f is semidefinite.

Assumption 4.16. Let D be a square-free integer.

Definition 4.17. Set the field

$$\mathcal{K} = \mathbb{Q}(\sqrt{D}) = \{a + b\sqrt{D} \mid a, b \in \mathbb{Q}\}.$$

Definition 4.18. The ring of integer of \mathcal{K} is

 $\mathcal{O}_{\mathcal{K}} = \{ a \in \mathcal{K} \mid a \text{ is integral over } \mathbb{Z} \} = \{ a \in \mathcal{K} \mid a \text{ is a root of } f, f \in \mathbb{Z}[x] \text{ is monic} \}.$

Fact 4.19. The map $\tau : \mathcal{K} \to \mathcal{K}$ given by $a + b\sqrt{D} \mapsto a - b\sqrt{D}$ is an isomorphism of fields.

Remark. Observe \mathcal{K} as a 2-dimensional \mathbb{Q} -vector space with a basis $\{1, \sqrt{D}\}$. For example, let $\beta = a + b\sqrt{D} \in \mathcal{K}$ with $a, b \in \mathbb{Q}$. Define $\tau_{\beta} : \mathcal{K} \to \mathcal{K}$ by $x \mapsto \beta x$. Then $\tau_{\beta} \in \operatorname{Hom}_{\mathbb{Q}}(\mathcal{K}, \mathcal{K})$. Note $\tau_{\beta}(1) = a + b\sqrt{D}$ and $\tau_{\beta}(\sqrt{D}) = (a + b\sqrt{D})\sqrt{D} = bD + a\sqrt{D}$. So the matrix of τ_{β} is $m_{\beta} = \begin{bmatrix} a & bD \\ b & a \end{bmatrix}$. Since $\tau(\beta) = \overline{\beta}$, det $(m_{\beta}) = a^2 - b^2D = \beta\overline{\beta} = \beta \cdot \tau(\beta) =: N_{\mathcal{K}/\mathbb{Q}}(\beta)$. Also, $\operatorname{Tr}(m_{\beta}) = 2a = \beta + \overline{\beta} =: \operatorname{Tr}_{\mathcal{K}/\mathbb{Q}}(\beta)$. The characteristic polynomial of the action of β is

$$C_{m_{\beta}}(x) = \det(x \cdot I_2 - m_{\beta}) = \det \begin{bmatrix} x - a & -bD \\ -b & x - a \end{bmatrix} = (x - a)^2 - b^2 D$$
$$= x^2 - 2ax + a^2 - b^2 D = x^2 - \operatorname{Tr}_{\mathcal{K}/\mathbb{Q}}(\beta)x + \operatorname{N}_{\mathcal{K}/\mathbb{Q}}(\beta).$$

Since $C_{m_{\beta}}(x) = (x-a)^2 - b^2 D$, $C_{m_{\beta}}(a \pm b\sqrt{D}) = 0$.

Theorem 4.20. Set $\alpha = \begin{cases} \frac{1+\sqrt{D}}{2} & \text{if } D \equiv 1 \pmod{4} \\ \sqrt{D} & \text{if } D \not\equiv 1 \pmod{4} \end{cases}$. Then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\alpha] := \{a + b\alpha \mid a, b \in \mathbb{Z}\} = (1, \alpha)\mathbb{Z}.$

Proof. " \supseteq ". Method 1: Let $y = a + b\alpha \in \mathbb{Z}[\alpha]$. Left to consider $\alpha = \frac{1+\sqrt{D}}{2}$. Then $\tau_u(1) = \tau_u(1)$ $a + b\frac{1+\sqrt{D}}{2} = a + \frac{b}{2} + \frac{b}{2}\sqrt{D}$ and $\tau_y(\sqrt{D}) = \left(a + b\frac{1+\sqrt{D}}{2}\right)\sqrt{D} = \frac{bD}{2} + \left(a + \frac{b}{2}\right)\sqrt{D}$. So $m_y = b\frac{D}{2} + b\frac{1+\sqrt{D}}{2}$. $\begin{bmatrix} a + \frac{b}{2} & \frac{b}{2} \\ \frac{bD}{2} & a + \frac{b}{2} \end{bmatrix}$. Note

$$C_{m_y}(x) = \det(x \cdot I_2 - m_y) = \left(x - a - \frac{b}{2}\right)^2 - \frac{b^2 D}{4}$$
$$= x^2 - (2a + b)x + a^2 + ab + \frac{1 - D}{4}b^2 = x^2 - \operatorname{Tr}_{\mathcal{K}/\mathbb{Q}}(y) + \operatorname{N}_{\mathcal{K}/\mathbb{Q}}(y).$$

Also, $C_{m_y}\left(a + \frac{b}{2} \pm \frac{b\sqrt{D}}{2}\right) = C_{m_y}\left(a + b\frac{1\pm\sqrt{D}}{2}\right) = 0$, so $C_{m_y}(a + b\alpha) = 0$. Hence $\mathbb{Z}[\alpha] \subseteq \mathcal{O}_{\mathcal{K}}$. Method 2. Let $y = a + b\alpha \in \mathbb{Z}[\alpha]$. Use a theorem, to show $y \in \mathcal{O}_{\mathcal{K}}$, it suffices to show

 $\operatorname{Tr}_{\mathcal{K}/\mathbb{Q}}(y), \ \mathcal{N}_{\mathcal{K}/\mathbb{Q}}(y) \in \mathbb{Z}.$ Note

$$\operatorname{Tr}_{\mathcal{K}/\mathbb{Q}}(\alpha) = \begin{cases} 1 & \text{if } D \equiv 1 \pmod{4} \\ 0 & \text{if } D \not\equiv 1 \pmod{4} \end{cases} \in \mathbb{Z} \text{ and } \operatorname{N}_{\mathcal{K}/\mathbb{Q}}(\alpha) = \begin{cases} \frac{1-D}{4} & \text{if } D \equiv 1 \pmod{4} \\ -D & \text{if } D \not\equiv 1 \pmod{4} \end{cases} \in \mathbb{Z}.$$

So

$$\operatorname{Tr}(\mathcal{K}/\mathbb{Q})(y) = \operatorname{Tr}(\mathcal{K}/\mathbb{Q})(a+b\alpha) = \operatorname{Tr}_{\mathcal{K}/\mathbb{Q}}(a) + \operatorname{Tr}_{\mathcal{K}/\mathbb{Q}}(b\alpha) = 2a+b \begin{cases} 1 & \text{if } D \equiv 1 \pmod{4} \\ 0 & \text{if } D \not\equiv 1 \pmod{4} \end{cases} \in \mathbb{Z},$$

and

$$N_{\mathcal{K}/\mathbb{Q}}(y) = (a+b\alpha)(a+b\overline{\alpha}) = a^2 + ab(\alpha+\overline{\alpha}) + b^2\alpha\overline{\alpha} = a^2 + ab\operatorname{Tr}_{\mathcal{K}/\mathbb{Q}}(\alpha) + b^2\operatorname{N}_{\mathcal{K}/\mathbb{Q}}(\alpha) \in \mathbb{Z}.$$

Thus, $\mathbb{Z}[\alpha] \subseteq \mathcal{O}_{\mathcal{K}}$. " \subseteq ". Let $x = a + b\sqrt{D} \in \mathcal{O}_{\mathcal{K}}$ with $a, b \in \mathbb{Q}$. Then $c_{m_x}(t) = t^2 - 2at + (a^2 - b^2)D$. Also, $2a = \operatorname{Tr}(\mathcal{K}_{\mathbb{Q}})(x) \in \mathbb{Z} \text{ and } a^2 - b^2 D = \operatorname{N}_{\mathcal{K}_{\mathbb{Q}}}(x) \in \mathbb{Z}. \text{ So } a = \frac{a'}{2} \text{ for some } a' \in \mathbb{Z}. \text{ Then } \left(\frac{a'}{2}\right)^2 - b^2 D \in \mathbb{Z}.$ So $a'^2 - (2b)^2 D \in \mathbb{Z}$. Hence $(2b)^2 D \in \mathbb{Z}$. Since $D \in \mathbb{Z}$ is square-free, the denominator of b is 1 or 2.

(a) If the denominator of b is 1, then the denominator of a is 1 since $a^2 - b^2 D \in \mathbb{Z}$. So $a, b \in \mathbb{Z}$. Hence we can write $x = \begin{cases} (a-b) + 2b\frac{1+\sqrt{D}}{2} & \text{if } D \equiv 1 \pmod{4} \\ a+b\sqrt{D} & \text{if } D \not\equiv 1 \pmod{4} \end{cases}$.

(b) Similarly, if the denominator of b is 2, then the denominator of a is 2. So $a - b \in \mathbb{Z}$. Since $2b \in \mathbb{Z}$ is odd and $(a')^2 \equiv (2b)^2 D \pmod{4}$, D is a perfect square modulo 4. So $D \equiv 1 \pmod{4}$. Thus, $x \in \mathbb{Z}[\alpha]$, $\alpha = \frac{1+\sqrt{D}}{2}$, i.e., $x = (a-b) + (2b)\frac{1+\sqrt{D}}{2}$.

Example 4.21. $\mathcal{O}_{\mathbb{Q}\sqrt{-1}} = \mathbb{Z}[i]$ and $\mathcal{O}_{\mathbb{Q}\sqrt{5}} = \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.

Definition 4.22. Let $\mathcal{K} = \mathbb{Q}(\sqrt{D})$. Define

$$\operatorname{disc}(\mathcal{K}) := \begin{cases} D & \text{if } D \equiv 1 \pmod{4} \\ 4D & \text{if } D \not\equiv 1 \pmod{4}. \end{cases}$$

Remark. We will see there is a bijection between certain equivalence classes of ideals in $\mathcal{O}_{\mathcal{K}}$, \mathcal{K} discriminant d (positive definite) and equivalence classes of binary quadratic forms of discriminant d.

Example 4.23. The minimal polynomial of $\mathbb{Q}(\sqrt{-1})$ is $f = x^2 + 1 = [1, 0, 1]$. Then disc(f) = -4. Note disc $(\mathbb{Q}(\sqrt{-1})) = -4$.

Definition 4.24. A positive definite binary quadratic form [a, b, c] is *reduced* if $|b| \leq a \leq c$ and if |b| = a or a = c, then $b \ge 0$.

Remark. If $|b| \leq a \leq c$, then $D = \operatorname{disc}[a, b, c] = b^2 - 4ac < 0$.

Example 4.25. $x^2 + y^2$ is reduced, but $2x^2 + y^2$ is not reduced.

Remark. Let [a, b, c] be reduced. Set $\tau = \frac{-b + \sqrt{D}}{2a}$. Then τ is a root of $ax^2 + bx + c$, and has positive imaginary part. So $\tau \in \mathfrak{H} := \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}.$

Fact 4.26. We have a right action of $SL_2(\mathbb{Z})$ on binary quadratic forms. This corresponds to a left action of $SL_2(\mathbb{Z})$ on \mathfrak{H} by linear fractional transformation

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} z = \frac{az+b}{cz+d}.$$

Definition 4.27. The *fundamental domain* for the group action of $SL_2(\mathbb{Z})$ on \mathfrak{H} is

$$\mathfrak{F} = \left\{ z \in \mathfrak{H} \mid \operatorname{Re}(z) \in \left[-\frac{1}{2}, \frac{1}{2} \right); |z| > 1 \text{ or } |z| = 1 \text{ and } \operatorname{Re}(z) \leqslant 0 \right\}.$$

This means everything in \mathfrak{H} is equivalent under the group action of $SL_2(\mathbb{Z})$ to exactly one element in the upper half plane \mathfrak{F} and no two elements in \mathfrak{F} are equivalent.

Theorem 4.28. [a, b, c] is reduced if and only if $\tau \in \mathfrak{F}$.

Proof. " \Rightarrow ". If [a, b, c] is reduced, then since $|b| \leq a$, $\operatorname{Re}(\tau) = -\frac{b}{2a} \in \left[-\frac{1}{2}, \frac{1}{2}\right)$. Since $0 < a \leq c$, $|\tau| = \sqrt{\frac{b^2}{4a^2} + \frac{-D}{4a^2}} = \sqrt{\frac{b^2 + 4ac - b^2}{4a^2}} = \sqrt{\frac{c}{a}} \ge 1$. If $|\tau| = 1$, then $b \ge 0$, so $\operatorname{Re}(\tau) \le 0$. " \Leftarrow ". Reverse the argument.

Theorem 4.29. There is exactly one reduced form in each equivalence class of positive definite binary quadratic form (a > 0, D < 0).

Proof. • Step 1: Claim. Each equivalence class contains a reduced form. Let ζ be an equivalence class of positive definite binary quadratic forms of discriminant D. Let [a, b, c] ∈ ζ with minimal a. Note $t \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} c & -\frac{b}{2} \\ \frac{b}{2} & a \end{bmatrix}$ or g(x, y) = f(px+qy, rx+sy) = f(-y, x), where p = 0, q = -1, r = 1, s = 0. If c > a, then [a, b, c] ~ [c, -b, a] ∈ ζ, a contradiction since a is the minimal. So $a \leq c$. Apply $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z})$ with $k = \lfloor \frac{a-b}{2a} \rfloor$, then we have $g(x,y) = ax^2 + (2ak+b)xy + (ak^2+bk+c)y^2$. Since $k \in \left(\frac{a-b}{2a}-1, \frac{a-b}{2a}\right]$, we have $2ak+b \in (-a,a]$. Note (two ways to see it) $a \leq ak^2 + ak + c$. So $|2ak+b| \leq a \leq ak + bk + c$. Hence $[a, 2ak+b, ak^2+bk+c] \in \zeta$ is a reduced form. When $a = ak^2 + bk + c$, but 2ak+b < 0, then we can apply $\gamma = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ to get a reduced form $[ak+bk+c, -2ak-b, a] \in \zeta$.

• Step 2: Assume $[a, b, c] \in \zeta$ is a reduced form. Claim. There is only one reduced form in each equivalence class. Suppose there exists another reduced form $[a', b', c'] \in \zeta$. Then there exists $\gamma = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z})$ such that $[a, b, c] \begin{bmatrix} p & q \\ r & s \end{bmatrix} = [a', b', c']$ with $a' = ap^2 + bpr + cr^2$. Since ps - qr = 1, $\operatorname{gcd}(p, r) = 1$. Note

$$a' = ap^{2} + bpr + cr^{2} = ap^{2} \left(1 + \frac{b}{a} \frac{r}{p} \right) + cr^{2} = ap^{2} + cr^{2} \left(1 + \frac{b}{c} \frac{p}{r} \right).$$

If p = 0, then $r \neq 0$ and $a' = cr^2 \ge c \ge a$. Assume now $p \neq 0$.

- (a) Assume $\left|\frac{r}{p}\right| \leq 1$. Then $1 + \frac{b}{a}\frac{r}{p} \ge 0$. So $a' \ge cr^2 \ge a$.
- (b) Assume $\left|\frac{r}{p}\right| > 1$. Then $0 < \left|\frac{p}{r}\right| < 1$. So $1 + \frac{b}{c}\frac{p}{r} \ge 0$. Since $p \neq 0, a' \ge ap^2 \ge a$.

Thus, $a' \ge a$. Since

$$ax^2 + bxy + cy^2 \ge a(x^2 + y^2) + bxy \ge a(x^2 + y^2) - a|xy| \ge a|xy|,$$

the minimal nonzero positive integer [a, b, c] can represent is equal to or greater than a. Actually, when $(x, y) = (\pm 1, 0)$, [a, b, c] represent a. Similarly, the minimal nonzero (positive) integer that [a', b', c'] can represent is a'. Since $[a, b, c] \sim [a', b', c']$, we have they represent the same set of integers. So a = a'. Then $\gamma = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ for some k. So b' = b + 2ak. Since a = a' and [a', b', c'] is reduced, $b, b' \in (-a, a]$. Then k = 0 and b = b'. So c = c'.

Remark. How to find an equivalence reduced form.

(a) If c < a, replace [a, b, c] by [c, -b, a] under $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

(b) If |b| > a, replace [a, b, c] by [a, b', c'], where $b' = b + 2a \lfloor \frac{a-b}{2a} \rfloor \in (-a, a]$, and c' is found from $(b')^2 - 4ac' = D = \text{disc}([a, b, c])$, i.e., $c' = \frac{(b')^2 - D}{4a} = ak^2 + bk + c$.

(c) Repeat until you have a reduced form.

Example 4.30. Let f = [458, 214, 25].

- (a) $f \sim [25, -214, 458].$
- (b) $\lfloor \frac{a-b}{2a} \rfloor = \lfloor \frac{239}{50} \rfloor = 4$ and $f \sim [25, -14, 2]$.

- (c) $f \sim [2, 14, 25], \left\lfloor \frac{a'-b'}{2a'} \right\rfloor = \lfloor -3 \rfloor = -3 \text{ and } f \sim [2, 2, 1].$
- (d) $f \sim [1, -2, 2], \left\lfloor \frac{a'' b''}{2a''} \right\rfloor = \left\lfloor \frac{3}{2} \right\rfloor = 1, f \sim [1, 0, 1] = x^2 + y^2.$

Theorem 4.31. Let D < 0 be a discriminant. There are only finitely many equivalence classes of positive definite binary quadratic forms of discriminant D.

Proof. It is enough to show there are finitely many reduced forms of discriminant D. If [a, b, c] is reduced, then $|b| \leq a \leq c$. Since $b^2 \leq a^2 \leq ac$, $D = b^2 - 4ac \leq -3ac$. So $-D \geq 3ac$. There are only finitely many a, c that satisfy this.

Definition 4.32. A binary quadratic form [a, b, c] is primitive if gcd(a, b, c) = 1.

Definition 4.33. The class number h_D of discriminant D < 0 is the number of equivalence classes of primitive positive definite binary quadratic forms of discriminant D.

Definition 4.34. *D* is a *fundamental discriminant* if and only if one of the following statements holds:

- (a) $D \equiv 1 \pmod{4}$ and is square-free.
- (b) D = 4m, where $m \equiv 2, 3 \pmod{4}$ and m is square free.

Theorem 4.35 (Heeger, Stark-Baker, Goldfeld-Gross-Zagier). Let D be a negative, fundamental discriminant. Then

(a) $h_D = 1$ only for D = -3, -4, -7, -8, -11, -19, -43, -67, -164.

(b) $h_D = 2$ only for -15, -20, -24, -35, -40, -51, -52, -88, -91, -115, -123, -148, -187, -232, -235, -267, -403, -427.

(c) $h_D = 3$ only for -23, -31, -59, -83, -107, -139, -211, -283, -307, -331, -379, -499, -547, -643, -883, -907.

Definition 4.36. The number of equivalence classes of binary quadratic forms of discriminant D with positive leading coefficient is called the *class number* and denoted H(D).

Theorem 4.37.

$$H(D) \leqslant \begin{cases} 2D, \quad D > 0\\ \frac{8}{3}|D|, \quad D < 0 \end{cases}$$

Proof. Let f = [a, b, c] be reduced of discriminant D. If a and c have the same sign, $D = b^2 - 4ac = b^2 - 4|ac| \le a^2 - 4|ac| \le a^2 - 4a^2 = -3a^2 < 0$.

(a) If D > 0, since [a, b, c] is reduced, we have a and c have opposite signs, then $D = b^2 - 4ac = b^2 + 4|ac| \ge 4|ac| \ge 4a^2$. So $0 < |a| \le \frac{1}{2}\sqrt{D}$. Then (although the ratio cannot be -1) $-\frac{1}{2}\sqrt{D} \le b \le \frac{1}{2}\sqrt{D}$. Note $c = \frac{b^2 - D}{4a}$. Hence $H(D) \le 2\left(\frac{1}{2}\sqrt{D}\right)(\sqrt{D} + 1)(1) = D + \sqrt{D} \le 2D$.

(b) If D < 0, then a and c have same sign and then $|D| = 4ac - b^2 \ge 4a^2 - b^2 \ge 4a^2 - a^2 = 3a^2$. So $0 < |a| \le \left|\frac{D}{3}\right|^{\frac{1}{2}}$. Then $-\left|\frac{D}{3}\right|^{\frac{1}{2}} \le b \le \left|\frac{D}{3}\right|^{\frac{1}{2}}$. Hence $H(D) \le 2\left|\frac{D}{3}\right|^{\frac{1}{2}} \left(2\left|\frac{D}{3}\right|^{\frac{1}{2}} + 1\right)(1) = \frac{4}{3}|D| + 2\left|\frac{D}{3}\right|^{\frac{1}{2}} \le \frac{8}{3}|D|$. **Example 4.38.** Determine H(-4) and the prime numbers represented by positive definite binary quadratic forms of discriminant -4. Let f = [a, b, c] be a reduced binary quadratic form of discriminant -4. Then $b^2 - 4ac = -4$ and $-a < b \leq a < c$ or $0 \leq b \leq a = c$. Then $4 = 4ac - b^2 \geq 4ac - ac = 3ac$. So $1 \leq ac \leq \frac{4}{3}$, i.e., ac = 1, i.e., a = c = 1. So b = 0. The only reduced form of discriminant -4 is $x^2 + y^2$. Hence H(-4) = 1. The primes represented are $p = 2, p \equiv 1 \pmod{4}$.

Definition 4.39. We say n is properly represented by f = [a, b, c] if there exist x_0, y_0 with $gcd(x_0, y_0) = 1$ such that $f(x_0, y_0) = n$.

Theorem 4.40. Let $n \neq 0$, then there exists a binary quadratic form of discriminant D that represents n properly if and only if the congruence $x^2 \equiv D \pmod{4|n|}$ has a solution.

Proof. " \Leftarrow ". Suppose b is a solution to the congruence. Write $b^2 - D = 4nc$. The form $f(x, y) = nx^2 + bxy + cy^2$ has integer coefficient, has discriminant D, f(1,0) = n and gcd(1,0) = 0.

"⇒". Suppose there exist x_0, y_0 with $gcd(x_0, y_0) = 1$ and some f = [a, b, c] such that $f(x_0, y_0) = n$. Let $D = b^2 - 4ac$. Since $gcd(x_0, y_0) = 1$, there exists m_1, m_2 such that $m_1m_2 = 4|n|$, $gcd(m_1, m_2) = 1$, $gcd(m_1, y_0) = 1$ and $gcd(m_2, x_0) = 1$, since we can let m_1 be the product of prime factors p^{α} of 4n for which $p \mid x_0$ if such p exists, otherwise, let $m_1 = 1$, and then let $m_2 = \frac{4n}{m_1}$. Recall $4af(x, y) = (2ax + by)^2 - Dy^2$. So $4an = (2ax_0 + by_0)^2 - Dy_0^2$. Then $(2ax_0 + by_0)^2 \equiv Dy_0^2 \pmod{m_1}$. Since $gcd(m_1, y_0) = 1$, there exists $\bar{y}_0 \in \mathbb{Z}$ such that $y_0\bar{y}_0 \equiv 1 \pmod{m_1}$. Then $(2ax_0 + by_0)^2 \bar{y}_0^2 \equiv D \pmod{m_1}$. So the congruence $x^2 \equiv D \pmod{m_1}$ has a solution. Play the same game with $4cf(x_0, y_0)$ to get a solution to $x^2 \equiv D \pmod{m_2}$. Now use the Chinese remainder theorem to get a solution to $x^2 \equiv D \pmod{m_1 n_2}$, i.e., $x^2 \equiv D \pmod{4|n|}$.

Example 4.41. Determine the set of primes represented by $f(x, y) = x^2 + xy + 3y^2$. Note disc(f) = -11. Claim. f is the only reduced form of discriminant -11. Suppose $g(x, y) = ax^2 + bxy + cy^2$ is a reduced binary quadratic form of discriminant -11. Then $3ac \leq 4ac - b^2 \leq 4ac$, i.e., $3ac \leq 11 \leq 4ac$, i.e., $\frac{11}{4} \leq ac \leq \frac{11}{3}$. So ac = 3. Since $a \leq c$, a = 1, c = 3. Then $b^2 = 4ac - 11 = 1$, i.e., $b = \pm 1$. If b = -1, then |b| = a, so $b \geq 0$, a contradiction. So b = 1. Thus, g = f and H(-11) = 1. We just need to determine for which p, we can solve $x^2 \equiv -11 \pmod{4p}$. If p = 2, $x^2 \equiv -11 \equiv 5 \pmod{8}$ has no solution. So you cannot represent 2. Assume p > 2. Consider $x^2 \equiv -11 \pmod{4p}$. Since $x^2 \equiv -11 \equiv 1 \pmod{4}$, it has a solution. Consider $x^2 \equiv -11 \pmod{p}$. Want $1 = \left(\frac{-11}{p}\right) = (-1)^{\frac{1}{2}(p-1)}(-1)^{\frac{1}{4}(p-1)(11-1)} \left(\frac{p}{11}\right) = \left(\frac{p}{11}\right)$. So $p \equiv 1, 3, 4, 5, 9 \pmod{11}$. By Chinese remainder theorem, when $p \equiv 1, 3, 4, 5, 9 \pmod{11}$, $x^2 \equiv -11 \pmod{4p}$ has a solution. Thus, these p's are the primes represented by f.

4.1 Fractional Ideal

Definition 4.42. Let $\mathcal{K} = \mathbb{Q}(\sqrt{D})$. A fractional ideal of $\mathcal{O}_{\mathcal{K}}$ is a nonzero subgroup $\mathfrak{a} \subseteq K$ such that

- (a) $\beta \mathfrak{a} \subseteq \mathfrak{a}$ for $\beta \in \mathcal{O}_{\mathcal{K}}$;
- (b) there exists $\gamma \in \mathcal{O}_{\mathcal{K}} \setminus \{0\}$ such that $\gamma \mathfrak{a} \leq \mathcal{O}_{\mathcal{K}}$ is ideal.

Remark. Let $\alpha \in \mathcal{O}_{\mathcal{K}} \setminus \{0\}$. Then $\alpha^{-1} = \frac{\overline{\alpha}}{N_{\mathcal{K}/\mathbb{Q}}(\alpha)} \in \mathcal{K}$. But in general it will no longer be contained in $\mathcal{O}_{\mathcal{K}}$. Nonetheless, it is very convenient to have the ability to divide two elements of

 $\mathcal{O}_{\mathcal{K}}$. Fractional ideals are a generalization of ordinary ideals which do admit inverses. A fractional ideal is to an ordinary ideal as \mathbb{Q} is to \mathbb{Z} . We will sometimes call ordinary ideals of $\mathcal{O}_{\mathcal{K}}$ integral ideals.

Remark. Since $\gamma \mathfrak{a} \leq \mathcal{O}_{\mathcal{K}}$, we have any fractional ideal has the form $\mathfrak{a} = \alpha \mathfrak{b}$ for an integral ideal $\mathfrak{b} \leq \mathcal{O}_{\mathcal{K}}$ and an element $\alpha = \gamma^{-1} \in \mathcal{K} \setminus \{0\}$.

Remark. Since $\bar{\gamma} \in \mathcal{O}_{\mathcal{K}}$ and $N_{\mathcal{K}/\mathbb{Q}}(\gamma) \in \mathbb{Z}$, $N_{\mathcal{K}/\mathbb{Q}}(\gamma)\mathfrak{a} = \gamma\bar{\gamma}\mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}}$. Thus, for (b), you can always find n, not just $\gamma \in \mathcal{O}_{\mathcal{K}}$. We have any fractional ideal has the form $\mathfrak{a} = \alpha\mathfrak{b}$ with $\mathfrak{b} \leq \mathcal{O}_{\mathcal{K}}$ and an element, i.e., fractional ideal looks like $\frac{1}{n}\mathfrak{b}$ with $\mathfrak{b} \leq \mathcal{O}_{\mathcal{K}}$.

Example 4.43. Let $K = \mathbb{Q}$, then $\mathcal{O}_{\mathcal{K}} = \mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$ and $n\mathbb{Z} \leq \mathbb{Z}$. Let $m \in \mathbb{Z}$, then $\mathfrak{a} = \frac{1}{m}n\mathbb{Z}$ is a fractional ideal of \mathbb{Z} . A fraction ideal has the form rA for $r \in \mathbb{Q}^{\times}$ and $A \leq \mathbb{Z}$. Since any ideal is principal, we have $A = \langle n \rangle$ for some $n \in \mathbb{Z} \setminus \{0\}$, and hence $rA = r\langle n \rangle = (rn)\mathbb{Z}$. Since rn is an arbitrary element of \mathbb{Q}^{\times} , we have {fractional ideals in \mathbb{Q} } = { $r\mathbb{Z} : r \in \mathbb{Q}^{\times}$ }.

Example 4.44. Let $\mathcal{K} = \mathbb{Q}(i)$, then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[i]$, a PID. Fractional ideal looks like $\alpha \langle \beta \rangle = \langle \gamma \rangle$, where $\gamma = \alpha \beta \in \mathbb{Q}(i)^{\times}$, $\alpha \in \mathbb{Q}(i)$ and $\beta \in \mathbb{Z}[i] \setminus \{0\}$. So {fractional ideals} = { $\alpha \mathbb{Z}[i]$, where $\alpha \in \mathbb{Q}(i)^{\times}$ }. For example, we can draw a picture for $\mathfrak{a} = (\frac{1}{2} + \frac{1}{2}i) \mathbb{Z}[i] = \frac{1}{2}(1+i)\mathbb{Z}[i]$.

Example 4.45. $\mathbb{Q}(\sqrt{D})$ is not a fractional ideal as you cannot clear the denominator.

Definition 4.46. Let $\alpha_1, \ldots, \alpha_n \in \mathbb{Q}(\sqrt{D})$, not all 0, the *fractional ideal* generated by $\alpha_1, \ldots, \alpha_n$ is

$$\langle \alpha_1, \dots, \alpha_n \rangle := \left\{ \sum_{j=1}^n \beta_j \alpha_j \mid \beta_j \in \mathcal{O}_{\mathcal{K}} \right\}.$$

Proof. Note there exist $a_i, b_i \in \mathbb{Q}$ such that $\alpha_i = a_i + b_i \sqrt{D}$ for any *i*. Then just choose *m* to clear the denominators of all the a_i, b_i '. So $m(\alpha_1, \ldots, \alpha_n) = (m\alpha_1, \ldots, m\alpha_n) \leq \mathcal{O}_{\mathcal{K}}$.

Definition 4.47. We say a fractional ideal \mathfrak{a} is a *principal ideal* if

$$\mathfrak{a} = \langle \alpha \rangle = \alpha \mathcal{O}_{\mathcal{K}}$$
 for some $\alpha \in \mathbb{Q}(\sqrt{D})$.

Remark. Every ideal $I \leq \mathcal{O}_{\mathcal{K}} \subseteq \mathbb{Q}(\sqrt{D})$ gives a lattice in \mathcal{K} . But a fractional ideal \mathfrak{a} is just $\mathfrak{a} = \frac{1}{n}I$. So it is a lattice in \mathcal{K} as well. Hence there exist $\alpha, \beta \in \mathbb{Q}(\sqrt{D})$ such that $\mathfrak{a} = \alpha \mathbb{Z} + \beta \mathbb{Z}$. You can show this gives $\mathfrak{a} = \langle \alpha, \beta \rangle$. In other words, any fractional ideal can be generated by two elements.

Definition 4.48. Let \mathfrak{a} be a fractional ideal. The product fractional ideal is

$$\mathfrak{ab} = \left\{ \sum_{i=1}^{\text{finite}} \alpha_i \beta_i, \alpha_i \in \mathfrak{a}, \beta_i \in \mathfrak{b} \right\}.$$

Remark. (a) This is a fractional ideal.

(b) If $\mathfrak{a} = \langle \alpha_1, \alpha_2 \rangle$, $\mathfrak{b} = \langle \beta_1, \beta_2 \rangle$, then $\mathfrak{a}\mathfrak{b} = \langle \alpha_1\beta_1, \alpha_1\beta_2, \alpha_2\beta_1, \alpha_2\beta_2 \rangle$.

Theorem 4.49. The set of all fractional ideal of $\mathbb{Q}(\sqrt{D})$ is an abelian group under multiplication if fractional ideals with the identity element $\mathcal{O}_{\mathcal{K}}$.

Proof. Well-defined, abelian, associativity, all are essentially either for free or straightforward. Note $\mathcal{O}_{\mathcal{K}} = \langle 1 \rangle$ is easily seen to act as identity under multiplication. It remains to show we have inverses, which can be seen from algebraic number theory.

Definition 4.50. Let \mathcal{I} be the group of fractional ideals in $\mathbb{Q}(\sqrt{D})$. Let $\mathfrak{p} \subseteq \mathcal{I}$ be the subgroup of principal fractional ideals. The class of group of $\mathbb{Q}(\sqrt{D})$ is the quotient $\operatorname{Cl}\left(\mathbb{Q}(\sqrt{D})\right) := \mathcal{I}/\mathfrak{p}$.

Fact 4.51. $\operatorname{Cl}\left(\mathbb{Q}(\sqrt{D})\right)$ is a finite abelian group.

Remark. The size of $\operatorname{Cl}\left(\mathbb{Q}(\sqrt{D})\right)$ measures how far from a unique factorization domain $\mathcal{O}_{\mathcal{K}}$ is. If $\operatorname{Cl}\left(\mathbb{Q}(\sqrt{D})\right)$ is trival, we have unique factorization in $\mathcal{O}_{\mathcal{K}}$.

Theorem 4.52. Let $I \leq \mathcal{O}_{\mathcal{K}}$. There exist a, b, c with $c \mid a$ and $0 \leq b \leq a$ such that $I = a\mathbb{Z} + (b+c\omega)\mathbb{Z}$, where $\omega = \frac{D+\sqrt{D}}{2}$. Note $\{1, \omega\}$ is a basis of $\mathcal{O}_{\mathcal{K}}$. Then $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ is a smith norm form? One has $\#(\mathcal{O}_{\mathcal{K}}/I) = ac = \mathbb{N}(I)$ is finite.

Remark. Given a fractional ideal \mathfrak{a} , we associate a binary quadratic form as follows. Take a \mathbb{Z} -basis $\{\omega_1, \omega_2\}$ of \mathfrak{a} with $\omega_1 \in \mathbb{Q}_{>0}$. Then

- (a) $\frac{\omega_2 \overline{\omega}_1 \omega_1 \overline{\omega}_2}{\sqrt{D}} > 0$,
- (b) $\omega_2 \overline{\omega}_2 = \sqrt{D}$,
- (c) $\omega_1 \mid \omega_2 \overline{\omega}_2$,

(d) The binary quadratic form $f_{\mathfrak{a}}(x,y) = \frac{N_{\mathcal{K}/\mathbb{Q}}(x\omega_1 - y\omega_2)}{N(\mathfrak{a})} = \frac{(x\omega_1 - y\omega_2)(x\overline{\omega}_1 - y\overline{\omega}_2)}{N(\mathfrak{a})}.$

Fact 4.53. (a) $f_{\mathfrak{a}}$ is an integral binary quadratic form, i.e., usual binary quadratic form with integral coefficients.

(b) $f_{\mathfrak{a}}$ is a primitive binary quadratic form.

Definition 4.54. Let D be a non-square congruent to $0, 1 \pmod{4}$. Let

 $\mathcal{F}(D) = \{$ set of equivalent class of primitive binary quadratic

of discriminant D module the action of $PSL_2(\mathbb{Z})$ },

where $\operatorname{PSL}_2(\mathbb{Z}) = \operatorname{SL}_2(\mathbb{Z})/\{\pm \mathbb{1}_2\}$. Set

 $\mathcal{F}^+(D) = \{\text{set of equivalent class of primitive b.q.f. } [a, b, c] \text{ with } a > 0$

of discriminant D module the action of $PSL_2(\mathbb{Z})$.

Theorem 4.55. Let D < 0 be congruent to 0, 1 (mod 4). Then the map $\Phi([a, b, c]) = a\mathbb{Z} + \frac{-b + \sqrt{D}}{2}\mathbb{Z}$ and $\phi(\mathfrak{a}) = \frac{N_{\mathcal{K}/\mathbb{Q}}(x\omega_1 - y\omega_2)}{N(A)}$, where $\mathfrak{a} = \omega_1\mathbb{Z} + \omega_2\mathbb{Z}$ with $\frac{\omega_2\overline{\omega}_1 - \omega_1\overline{\omega}_2}{\sqrt{D}} > 0$ induces a bijection between $\mathcal{F}^+(D)$ and $\operatorname{Cl}\left(\mathbb{Q}(\sqrt{D})\right)$.

Chapter 5

Continued Fraction

Given a real number θ , we can find a rational number as close to θ as we like.

Theorem 5.1 (Dirichlet 1842). Let $\theta \in \mathbb{R}$ and $Q \in \mathbb{R}_{>1}$, then there exist p, q with $1 \leq q < Q$ such that $|q\theta - p| \leq \frac{1}{Q}$, *i.e.*, $|\theta - \frac{p}{q}| \leq \frac{1}{qQ}$.

Proof. Let $N = \lfloor Q \rfloor$. Define $\{x\} = x - \lfloor x \rfloor \in [0, 1)$. Consider the following N+1 unordered numbers in [0, 1]: $0, 1, \{\theta\}, \{2\theta\}, \ldots, \{(N-1)\theta\}$. Partition the unit intervals into N disjoint intervals of length $\frac{1}{N}$. Note $0 = 0\theta - 0$ and $1 = 0\theta - (-1)$ and $\{j\theta\} = j\theta - \lfloor j\theta \rfloor \in [0, 1)$ for $j = 1, \ldots, N-1$. Then the difference between any two of these N + 1 numbers is of the form $q'\theta - p'$ for some p', q' with $1 \leq q' < N$. By PHP, at least 2 of the N + 1 numbers must lie in the same intervals. Thus, there exist p, q with $1 \leq q < N \leq Q$ and $|q\theta - p| \leq \frac{1}{N} \leq \frac{1}{Q}$.

Corollary 5.2. Whenever θ is irrational, there exists infinitely many distinct pairs (p,q) with $q \in \mathbb{N}$ such that $\left|\theta - \frac{p}{q}\right| \leq \frac{1}{q^2}$.

Proof. Let $Q \ge 2$. Then there exist p, q with $1 \le q < Q$ such that $0 < \left|\theta - \frac{p}{q}\right| \le \frac{1}{qQ} < \frac{1}{q^2}$. Let $Q' > \left|\theta - \frac{p}{q}\right|^{-1}$. Then there exist p', q' with $1 \le q' < Q'$ such that $0 < \left|\theta - \frac{p'}{q'}\right| \le \frac{1}{q'Q'} < \frac{1}{q'}\left|\theta - \frac{p}{q}\right| \le \left|\theta - \frac{p}{q'}\right| \le \frac{1}{q'Q'} < \frac{1}{q'}\left|\theta - \frac{p}{q'}\right| \le \frac{1}{q'Q'} < \frac{1}{q'Q'} <$

Remark (Fact: Roth,1958). If θ is an algebraic number, then for $\epsilon > 0$, there exist $C_{\epsilon} > 0$ such that $\left|\theta - \frac{p}{q}\right| \leq \frac{C_{\epsilon}}{q^{2+\epsilon}}$ has only finitely many solutions.

Remark. $q \in \mathbb{Q}$ has finitely continued fractional. $p \in \mathbb{R} \setminus \mathbb{Q}$ has infinitely continued fractional.

Theorem 5.3 (Algorithm). Let $\theta \in \mathbb{R}$. Define a_i as follows.

(a) Let $a_0 = \lfloor \theta \rfloor$. If $a_0 = \theta$, stop. If $a_0 \neq \theta$, define θ_1 such that $\theta = a_0 + \frac{1}{\theta_1}$, i.e., $\theta_1 = \frac{1}{\theta - a_0} = \frac{1}{\{\theta\}}$. (b) Let $a_1 = \lfloor \theta_1 \rfloor$. If $a_1 = \theta_1$, stop. If $a_1 \neq \theta$, define θ_2 such that $\theta_1 = a_1 + \frac{1}{\theta_2}$, i.e., $\theta_2 = \frac{1}{\theta_1 - a_1} = \frac{1}{\{\theta_1\}}$. Then $\theta = a_0 + \frac{1}{\theta_1} = a_0 + \frac{1}{a_1 + \frac{1}{\theta_2}}$. (c) Continue this, if it stops at n^{th} step, then θ is rational and write

$$\theta = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_3 + \frac{1}{a_{n-1} + \frac{1}{a_n}}}}} = [a_0, a_1, \dots, a_n].$$

If $\theta \in \mathbb{R} \setminus \mathbb{Q}$, it never stops, then θ is irrational and write $\theta = [a_0, a_1, a_2, a_3, \cdots]$.

Corollary 5.4. $a_n = \lfloor \theta_n \rfloor$ and $\theta_n = [a_n, a_{n+1}, \cdots]$.

Example 5.5. Let $\theta = \frac{57}{32}$. Then $a_0 = \lfloor \frac{57}{32} \rfloor = 1$. Set $\theta_1 = \frac{1}{\theta - a_0} = \frac{32}{25}$. Then $a_1 = \lfloor \frac{32}{25} \rfloor = 1$. Set $\theta_2 = \frac{1}{\theta_1 - a_1} = \frac{25}{7}$. Then $a_2 = 3$. Set $\theta_3 = \frac{1}{\theta_2 - a_2} = \frac{7}{4}$. Then $a_3 = 1$. Set $\theta_4 = \frac{1}{\theta_3 - a_3} = \frac{4}{3}$. Then $a_4 = 1$. Set $\theta_5 = \frac{1}{\theta_4 - a_4} = 3 = a_5$. So

$$\theta = 1 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3}}}}} = [1, 1, 3, 1, 1, 3].$$

Example 5.6. Let $\theta = \sqrt{3}$. Then $a_0 = 1$. Set $\theta_1 = \frac{1}{\theta - a_0} = \frac{1}{\sqrt{3} - 1} = \frac{1}{2}(\sqrt{3} + 1)$. Then $a_1 = 1$. Set $\theta_2 = \frac{1}{\theta_1 - a_1} = \sqrt{3} + 1$. Then $a_2 = 2$. Set $\theta_3 = \frac{1}{\theta_2 - a_2} = \frac{1}{\sqrt{3} - 1} = \theta_1$. So

$$\theta = 1 + \frac{1}{1 + \frac{1}{2 + \frac{$$

Example 5.7. $e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, \cdots].$

Definition 5.8. The a_i 's are known as the partial quotients of θ . The θ_i 's are the complete quotients of θ . The rational numbers $\frac{p_n}{q_n} = [a_0, \ldots, a_n]$ with $gcd(p_n, q_n) = 1$ and $q_n \ge 1$ are called the *convergents* to θ . The integers p_n and q_n satisfy the following recursive relations.

Theorem 5.9. Let $\theta \in \mathbb{R}$. Let a_n be the partial quotients of θ , θ_n the complete quotients of θ . Then the convergents $\frac{p_n}{q_n}$ satisfy the recurrence relations $p_0 = a_0$, $q_0 = 1$, $p_1 = a_0a_1 + 1$, $q_1 = a_1$, $p_n = a_np_{n-1} + p_{n-2}$ and $q_n = a_nq_{n-1} + q_{n-2}$. Furthermore, $p_nq_n - p_{n-1}q_n = (-1)^{n+1}$ for $n \in \mathbb{N}$ and $\lim_{n\to\infty} q_n = \infty$ and $\lim_{n\to\infty} \frac{p_n}{q_n} = \theta$.

Proof. Since $\frac{p_0}{q_0} = [a_0] = a_0$, we have $p_0 = a_0$, $q_0 = 1$. Since $\frac{p_1}{q_1} = [a_0, a_1] = a_0 + \frac{1}{a_1} = \frac{a_0 a_1 + 1}{a_1}$, we have $p_1 = a_0 a_1 + 1$, $q_1 = a_1$. Since

$$\frac{p_2}{q_2} = [a_0, a_1, a_2] = a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = a_0 + \frac{a_2}{a_1 a_2 + 1} = \frac{a_2(a_0 a_1 + 1) + a_0}{a_1 a_2 + 1} = \frac{a_2 p_1 + p_0}{a_2 q_1 + a_0}$$

we have $p_2 = a_2p_1 + p_0$, $q_2 = a_2q_1 + q_0$. So the recurrence relation holds for n = 2. Since gcd(a, b) = gcd(a + bn, b) for $n \in \mathbb{Z}$, we have $1 = gcd(a_0, 1)$, $1 = gcd(1, a_1) = gcd(a_0a_1 + 1, a_1)$

and $1 = \gcd(1, a_2) = \gcd(a_2, a_1a_2 + 1) = \gcd(a_0a_1a_2 + a_2 + a_0, a_1a_2 + 1)$. So $\gcd(p_i, q_i) = 1$ for i = 0, 1, 2. Assume the statement is true for any $n \leq m$. Then

$$\frac{p_{m+1}}{q_{m+1}} = [a_0, a_1, \dots, a_m, a_{m+1}] = \left[a_0, a_1, \dots, a_{m-1}, a_m + \frac{1}{a_{m+1}}\right] = \frac{\left(a_m + \frac{1}{a_{m+1}}\right)p_{m-1} + p_{m-2}}{\left(a_m + \frac{1}{a_{m+1}}\right)q_{m-1} + q_{m-2}} \\ = \frac{(a_{m+1}a_m + 1)p_{m-1} + a_{m+1}p_{m-2}}{(a_{m+1}a_m + 1)q_{m-1} + a_{m+1}q_{m-2}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + p_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}p_m + p_{m-1}}{a_{m+1}q_m + q_{m-1}}$$

Claim. $p_n q_{n-1} - p_{n-1} q_n = (-1)^{n+1}$. When n = 1, $p_1 q_0 - p_0 q_1 = (a_0 a_1 + 1) - a_0 a_1 = 1 = (-1)^{1+1}$. Assume the result holds for k = n - 1. Then

$$p_n q_{n-1} - p_{n-1} q_n = (a_n p_{n-1} + p_{n-2})q_{n-1} - p_{n-1}(a_n q_{n-1} + q_{n-2})$$
$$= -(p_{n-1}q_{n-2} - p_{n-2}q_{n-1}) = -(-1)^n = (-1)^{n+1}$$

Similarly, $p_n q_{n+1} - p_{n+1} q_n = (-1)^{n+1}$. Define $\{a_0\} = a_0$, $\{a_0, a_1\} = a_0 a_1 + 1$ and $\{a_0, \ldots, a_n\} = \{a_0, \ldots, a_{n-1}\}a_n + \{a_0, \ldots, a_{n-2}\}$. Then by induction

$$\{a_0,\ldots,a_n\}\{a_1,\ldots,a_{n-1}\}-\{a_1,\ldots,a_n\}\{a_0,\ldots,a_{n-1}\}=(-1)^{n+1}.$$

So $gcd(\{a_0, \ldots, a_{m+1}\}, \{a_1, \ldots, a_{m+1}\}) = 1$. Also, by induction, $a_{m+1}p_m + p_{m-1} = \{a_0, \ldots, a_{m+1}\}$ and $a_{m+1}q_m + q_{m-1} = \{a_1, \ldots, a_{m+1}\}$. So $gcd(a_{m+1}p_m + p_{m-1}, a_{m+1}q_m + q_{m-1}) = 1$. Thus, $gcd(p_i, q_i) = 1$ for $i \ge 0$. Since $a_i \ge 1$ for $i \in \mathbb{N}$, we have $q_n = a_nq_{n-1} + q_{n-2} \ge q_{n-1} + q_{n-2} > q_{n-1}$. So $\{q_n\}$ form a strictly increasing sequence of integers and thus $\lim_{n\to\infty} q_n = \infty$. Since $p_nq_{n-1} - p_{n-1}q_n = (-1)^{n+1}$, we have $\left|\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}}\right| = \frac{1}{q_{n-1}q_n}$. Also, $\theta = [a_0, a_1, \ldots, a_{n-1}, \theta_n]$, where $0 < \frac{1}{\theta_n} \le \frac{1}{\lfloor \theta_n \rfloor} = \frac{1}{a_n}$. So θ lies between $\frac{p_{n-1}}{q_{n-1}}$ and $\frac{p_n}{q_n}$. Hence $\left|\theta - \frac{p_n}{q_n}\right| \le \frac{1}{q_{n-1}q_n} \to 0$. Thus, $\lim_{n\to\infty} \frac{p_n}{q_n} = \theta$.

Remark. Let $\theta = \frac{s}{t}$ with gcd(s,t) = 1. For any convergent $\frac{p_n}{q_n}$, we have either $\frac{p_n}{q_n} = \theta$ or $\frac{1}{tq_n} \leq \left|\frac{sq_n-tp_n}{tq_n}\right| = \left|\frac{s}{t}-\frac{p_n}{q_n}\right| \leq \frac{1}{q_nq_{n+1}}$. Eventually, $q_{n+1} > t$, so it must be that for some large n, $\frac{p_n}{q_n} = \frac{s}{t}$. Thus, if $\theta \in \mathbb{Q}$, θ has a finite continued fraction expression.

Corollary 5.10.

$$\theta = \frac{\theta_n p_{n-1} + p_{n-2}}{\theta_n q_{n-1} + q_{n-2}}.$$

Definition 5.11. $\theta \in \mathbb{R}$ is a quadratic irrational when there exist a, b, c such that $a\theta^2 + b\theta + c = 0$ and $b^2 - 4ac > 0$ is not a perfect square.

Theorem 5.12. The continued fraction $[a_0, a_1, \cdots]$ represents a quadratic irrational if and only if the sequence $\{a_j\}$ is ultimately periodic.

Proof. " \Leftarrow ". Suppose $\theta = [a_0, \dots, a_{k-1}, \overline{a_k, \dots, a_{k+m-1}}]$. Write $\phi = [\overline{a_k, \dots, a_{k+m-1}}]$. Then $\phi = [a_k, \dots, a_{k+m-1}, \phi]$. Let $\frac{p'_m}{q'_m}$ be the convergents to ϕ . Then $\frac{p'_M}{q'_M} = [a_k, \dots, a_{k+M}]$. Then $p'_0 = a_k, q'_0 = 1, p'_1 = a_k a_{k+1} + 1, q'_1 = a_k, p'_M = a_{k+M} p'_{M-1} + p'_{M-2}$ for $2 \leq M \leq m-1$ and $q'_M = a_{k+M} q'_{M-1} + q'_{M-2}$ for $2 \leq M \leq m-1$. So $\frac{p'_M}{q'_M} = [a_k, \dots, a_{k+M}] = \frac{a_{k+M} p'_{M-1} + p'_{M-2}}{q_{k+M} q'_{M-1} + q'_{M-2}}$. Then

 $\phi = [a_k, \dots, a_{k+m-1}, \phi] = \frac{\phi p'_{m-1} + p'_{m-2}}{\phi q'_{m-1} + q'_{m-2}}.$ Hence $q'_{m-1}\phi^2 + (q'_{m-2} - p'_{m-1})\phi - p'_{m-2} = 0.$ Thus, ϕ is a quadratic irrational. Let $\frac{p_m}{q_m}$ be the convergents to θ . Then $\theta = [a_0, \dots, a_{k-1}, \phi] = \frac{p_{k-1}\phi + p_{k-2}}{q_{k-1}\phi + q_{k-2}}.$ Assume $\phi = \frac{a'\sqrt{D} + b'}{d'}, a', b', c' \in \mathbb{Z}$ with D > 0 is not a perfect square. Plug it in, we also have θ can be written as $\theta = \frac{a\sqrt{D} + b}{d}.$

can be written as $\theta = \frac{p_1 - p_1}{d}$. " \Rightarrow ". Let θ be a quadratic irrational. Assume $a\theta^2 + b\theta + c = 0, a, b, c \in \mathbb{Z}$, with $D = b^2 - 4ac > 0$ is not a perfect square. Let $f(x, y) = ax^2 + bxy + cy^2$. Let $\frac{p_n}{q_n}$ be convergents to θ . Set $r_n = \begin{bmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{bmatrix}$. Then $\det(r_n) = p_n q_{n-1} - p_{n-1}q_n = (-1)^{n+1}$. So r_n takes f to an "equivalent form" $f_n(x, y) = a_n x^2 + b_n xy + c_n y^2$, which has the same discriminant as f. Then $f(p_n, q_n) = ap_n^2 + bp_n q_n + cq_n^2 = a_n, a_{n-1} = f(p_{n-1}, q_{n-1}) = ap_{n-1}^2 + bp_{n-1}q_{n-1} + cq_{n-1}^2 = c_n$. So $f\left(\frac{p_n}{q_n}, 1\right) = a\frac{p_n^2}{q_n^2} + b\frac{p_n}{q_n} + c = \frac{a_n}{q_n^2}$. Since $f(\theta, 1) = 0$, we have

$$\frac{a_n}{q_n^2} = f\left(\frac{p_n}{q_n}, 1\right) = f\left(\frac{p_n}{q_n}, 1\right) - f(\theta, 1) = \left(a\left(\frac{p_n}{q_n} + \theta\right) + b\right)\left(\frac{p_n}{q_n} - \theta\right).$$

So $|a_n| = q_n^2 \left| a \left(\frac{p_n}{q_n} + \theta \right) + b \right| \left| \frac{p_n}{q_n} - \theta \right|$. Since $\left| \frac{p_n}{q_n} - \theta \right| \leq \frac{1}{q_n q_{n-1}} \leq \frac{1}{q_n^2}$, we have

$$|a_n| \leq \left| a\left(\frac{p_n}{q_n} + \theta\right) + b \right| = |a| \left| \frac{p_n}{q_n} + \theta \right| + |b| \leq |a| \left(2|\theta| + \left| \frac{p_n}{q_n} - \theta \right| \right) + |b| \leq |a| \left(2|\theta| + 1 \right) + |b|.$$

Hence there are finitely many choices for a_n . Since $a_{n-1} = c_n$, we have there are finitely many choices for c_n . Since $b_n^2 - 4a_nc_n = b^2 - 4ac$, we have there are finitely many choices for b_n . Let θ_n 's be the complete quotients to θ . Then $\theta = \frac{\theta_{n+1}p_n + p_{n-1}}{\theta_{n+1}q_n + q_{n-1}}$. Let $\theta = \frac{\phi}{\phi'}$. Then $\begin{bmatrix} \phi \\ \phi' \end{bmatrix} \begin{bmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{bmatrix} \begin{bmatrix} \theta_{n+1} \\ 1 \end{bmatrix}$. Since $f(\theta, 1) = 0$ and $f_n(x, y) = f(p_n x + p_{n-1}y, q_n x + q_{n-1}y)$, we have

$$f_n(\theta_{n+1},1) = f(p_n\theta_{n-1} + p_{n-1}, q_n\theta_{n+1} + q_{n-1}) = f(\phi,\phi') = a\phi^2 + b\phi\phi' + c\phi'^2 = \phi'^2 f(\theta,1) = 0.$$

Since there are finitely many choices a_n, b_n, c_n , there are finitely many f_n . Since $(\theta_n, 1)$'s are roots of f_n , there are finitely many possible θ_n 's. So there exists m, l such that $\theta_{l+m} = \theta_l$. Then

$$\theta = [a_0, \dots, a_{l-1}, \theta_l] = [a_0, \dots, a_{l-1}, a_l, \dots, a_{l+m-1}, \theta_{l+m}]$$

= $[a_0, \dots, a_{l-1}, a_l, \dots, a_{l+m-1}, \theta_l] = [a_0, \dots, a_{l-1}, \overline{a_l, \dots, a_{l+m-1}}].$

Thus, θ has periodic continued fraction.

Definition 5.13. We say θ is *purely periodic* if

$$\theta = [\overline{a_0, \ldots, a_n}].$$

Remark. Goal: Given $d \in \mathbb{N}$ not a perfect square. Compute the continued fractional of \sqrt{d} . We first compute the continued fractional of $\sqrt{d} + \left|\sqrt{d}\right|$, which is purely periodic.

Theorem 5.14. The continued fraction expansion of the real quadratic irrational number θ is purely periodic if and only if $\theta > 1$ and $-1 < \overline{\theta} < 0$.

Proof. " \Leftarrow ". Assume $\theta > 1$ and $-1 < \overline{\theta} < 0$. As usual, define $\theta_{i+1} = \frac{1}{\theta_i - a_i}$. Then $\overline{\theta_{i+1}} = \frac{1}{\overline{\theta_i} - a_i}$. Note by assumption, $-1 < \overline{\theta_0} < 0$. Assume $-1 < \overline{\theta_n} < 0$. Since $a_n \ge 1$ for $n \in \mathbb{Z}_{\ge 0}$, we have $\overline{\theta_n} - a_n < -1$. So $-1 < \overline{\theta_{n+1}} < 0$. Thus, $-1 < \overline{\theta_i} < 0$ for $i \in \mathbb{Z}^{\ge 0}$. Then $-1\overline{\theta_i} = a_i + \frac{1}{\overline{\theta_{i+1}}} < 0$. So $0 < -a_i - \frac{1}{\overline{\theta_{i+1}}} < 1$, i.e., $a_i < -\frac{1}{\overline{\theta_{i+1}}} < a_i + 1$. Hence $a_i = \left\lfloor -\frac{1}{\overline{\theta_{i+1}}} \right\rfloor$. Since θ is quadratic irrational, θ is eventually periodic and so for some 0 < j < k, $\theta_j = \theta_k$. Then $\overline{\theta_j} = \overline{\theta_k}$. So $a_{j-1} = \left\lfloor -\frac{1}{\overline{\theta_j}} \right\rfloor = \left\lfloor -\frac{1}{\overline{\theta_k}} \right\rfloor = a_{k-1}$. Then $\theta_{j-1} = a_{j-1} + \frac{1}{\theta_j} = a_{k-1} + \frac{1}{\theta_k} = \theta_{k-1}$. Thus, if $\theta_j = \theta_k$, then $\theta_{j-1} = \theta_{k-1}$. Repeating this j times gives $\theta_0 = \theta_{k-j}$. Then

$$\theta = \theta_0 = [a_0, \dots, a_{k-j-1}, \theta_{k-j}] = [a_0, \dots, a_{k-j-1}, \theta_0] = [\overline{a_0, a_1, \dots, a_{k-j+1}}]$$

" \Rightarrow ". Assume θ is purely periodic, say $\theta = [\overline{a_0, \ldots, a_n}]$ with $a_j \in \mathbb{N}$ for $j = 0, \ldots, n$. Then $\theta > a_0 \ge 1$. Since $\theta = [a_0, \ldots, a_{n-1}, \theta] = \frac{\theta p_{n-1} + p_{n-2}}{\theta q_{n-1} + q_{n-2}}$, θ is a root of $f(x) = q_{n-1}x^2 + (q_{n-2} - p_{n-1})x^2 - p_{n-2} = 0$. Let $\overline{\theta}$ be another root of f. Then it remains to show $-1 < \overline{\theta} < 0$. Note $f(0) = -a_{n-2} < 0$ and

$$f(-1) = q_{n-1} - q_{n-2} + p_{n-1} - p_{n-2} = a_{n-1}q_{n-2} + q_{n-3} - q_{n-2} + a_{n-1}p_{n-2} + p_{n-3} - p_{n-2}$$

= $(q_{n-2} + p_{n-2})(a_{n-1} - 1) + q_{n-3} + p_{n-3} \ge q_{n-3} + p_{n-3} > 0.$

By intemediate zero theorem, $-1 < \overline{\theta} < 0$.

Lemma 5.15. Let $\frac{p_n}{q_n}$ be the n^{th} convergent of the continued fraction representation $\theta \in \mathbb{R} \setminus \mathbb{Q}$. If $a, b \in \mathbb{Z}$ with $1 \leq b < q_{n+1}$, then $|q_n \theta - p_n| < |b\theta - a|$.

Proof. Consider the system of equations $\begin{cases} p_n \alpha + p_{n+1}\beta &= a \\ q_n \alpha + q_{n+1}\beta &= b \end{cases}$. Since $p_n q_{n+1} - p_{n+1}q_n = (-1)^{n+1}$, we have a unique solution to equations above

$$\begin{cases} \alpha = (-1)^{n+1}(aq_{n+1} - bp_{n+1}) \in \mathbb{Z} \\ \beta = (-1)^{n+1}(bp_n - aq_n) \in \mathbb{Z} \end{cases}$$

If $\alpha = 0$, then $aq_{n+1} = bp_{n+1}$. Since $gcd(p_{n+1}, q_{n+1}) = 1$, we have $q_{n+1} \mid b$, contradicted by $b < q_{n+1}$. So $\alpha \neq 0$. If $\beta = 0$, then $bp_n = aq_n$ and $a = p_n\alpha$ and $b = q_n\alpha$. So $|b\theta - a| = |\alpha||q_n\theta - p_n| \ge |q_n\theta - p_n|$. Hence we have the result if $\beta = 0$. Assume now $\beta \neq 0$. Claim. β and α have opposite sign. If $\beta < 0$, then $q_n\alpha = b - q_{n+1}\beta > 0$. Since $b \ge 1$ and $q_i \ge 0$ for $i \ge 0$, $\alpha > 0$. If $\beta > 0$, since $b < q_{n+1}$, $b < \beta q_{n+1}$. Then $q_n\alpha = b - \beta q_{n+1} < 0$. So $\alpha < 0$. Recall θ lies between $\frac{p_n}{q_n}$ and $\frac{p_{n+1}}{q_{n+1}}$. Then $\left(\theta - \frac{p_n}{q_n}\right)\left(\theta - \frac{p_{n+1}}{q_{n+1}}\right) < 0$. Since $q_i > 0$ for $i \in \mathbb{Z}_{\ge 0}$, $(q_n\theta - p_n)(q_{n+1}\theta - p_{n+1}) < 0$. So $q_n\theta - p_n$ and $q_{n+1}\theta - p_{n+1}$ are of opposite sign. Thus, $\alpha(q_n\theta - p_n)$ and $\beta(q_{n+1}\theta - p_{n+1})$ have the same sign. Since $\alpha \neq 0$,

$$\begin{aligned} |b\theta - a| &= |(q_n\alpha + q_{n+1}\beta)\theta - (p_n\alpha + p_{n+1}\beta)| = |\alpha(q_n\theta - p_n) + \beta(q_{n+1}\theta - p_{n+1})| \\ &= |\alpha(q_n\theta - p_n)| + |\beta(q_{n+1}\theta - p_{n+1})| \ge |\alpha||q_n\theta - p_n| \ge |q_n\theta - p_n|. \end{aligned}$$

Theorem 5.16. If $1 \leq b \leq q_n$, then $\left|\theta - \frac{p_n}{q_n}\right| \leq \left|\theta - \frac{a}{b}\right|$, i.e., Continued fractions give the best approximations.

Proof. Suppose $\left|\theta - \frac{p_n}{q_n}\right| > \left|\theta - \frac{a}{b}\right|$. Then $|q_n\theta - p_n| = q_n \left|\theta - \frac{p_n}{q_n}\right| > \left|\theta - \frac{a}{b}\right| = |b\theta - a|$, contradicted by Lemma 5.15.

Lemma 5.17. Let $\theta \in \mathbb{R} \setminus \mathbb{Q}$. If $\frac{a}{b} \in \mathbb{Q}$ with $b \in \mathbb{N}$ and gcd(a, b) = 1 such that $\left|\theta - \frac{a}{b}\right| < \frac{1}{2b^2}$, then $\frac{a}{b}$ is a convergent $\frac{p_n}{q_n}$ for some n.

Proof. Assume $\frac{a}{b}$ is not a convergent. We know q_n 's form an increasing sequence. So there exists $n \ge 0$ such that $1 \le b = q_n < q_{n+1}$. Then $|q_n\theta - p_n| \le |b\theta - a| = b|\theta - \frac{a}{b}| < b\frac{1}{2b^2} = \frac{1}{2b}$. So $\left|\theta - \frac{p_n}{q_n}\right| \le \frac{1}{2q_nb}$. Since $\frac{a}{b}$ is not a convergent, $bp_n - aq_n \ne 0$. So $1 \le |bp_n - aq_n|$. Then

$$\frac{1}{bq_n} \leqslant \left| \frac{bp_n - aq_n}{bq_n} \right| = \left| \frac{p_n}{q_n} - \frac{a}{b} \right| \leqslant \left| \frac{p_n}{q_n} - \theta \right| + \left| \theta - \frac{a}{b} \right| < \frac{1}{2bq_n} + \frac{1}{2b^2}.$$

So $b < q_n$, a contradiction.

Theorem 5.18. If (p,q) is a positive solution to $x^2 - dy^2 = 1$, then $\frac{p}{q}$ is a convergent of the continued fraction expression of \sqrt{d} .

Proof. Since $1 = p^2 - dq^2 = (p - q\sqrt{d})(p + q\sqrt{d})$ and $p + q\sqrt{d} > 0$, $p > q\sqrt{d}$. Then

$$0 < \frac{p}{q} - \sqrt{d} = \frac{p - q\sqrt{d}}{q} = \frac{p^2 - dq^2}{q(p + q\sqrt{d})} = \frac{1}{q(p + q\sqrt{d})} < \frac{\sqrt{d}}{q(q\sqrt{d} + q\sqrt{d})} = \frac{\sqrt{d}}{2q\sqrt{d}} = \frac{1}{2q^2}.$$

Since gcd(p,q) = 1, by Lemma 5.17, $\frac{p}{q}$ is a convergent.

Lemma 5.19. Let d > 0 not be a perfect square. Write $\sqrt{d} = [a_0, a_1, a_2, \cdots]$. Define s_k and t_k by $s_0 = 0, t_0 = 1, s_{k+1} = a_k t_k - s_k$, and $t_{k+1} = \frac{d - s_{k+1}^2}{t_k}$ for $k \in \mathbb{Z}_{\geq 0}$. Then $s_k, t_k \in \mathbb{Z}$ with $t_k \neq 0$, $t_k \mid (d - s_k^2)$ and $\theta_k = \frac{s_k + \sqrt{d}}{t_k}$ for $k \in \mathbb{Z}_{\geq 0}$.

Proof. k = 0 is clear. Assume the result holds for k. Since $a_k \in \mathbb{Z}$, $s_{k+1} \in \mathbb{Z}$. Suppose $t_{k+1} = 0$. Then $d = s_{k+1}^2$, which is a contradicted by d is not a perfect square. So $t_{k+1} \neq 0$. Since $t_{k+1} = \frac{d-s_{k+1}^2}{t_k} = \frac{d-s_k^2}{t_k} + (2a_ks_k - a_k^2t_k) \in \mathbb{Z}$, $t_{k+1} \mid (d - s_{k+1}^2)$. Note

$$\theta_{k+1} = \frac{1}{\theta_k - a_k} = \frac{t_k}{(s_k + \sqrt{d}) - t_k a_k} = \frac{t_k}{\sqrt{d} - s_{k+1}} = \frac{t_k(s_{k+1} + \sqrt{d})}{d - s_{k+1}^2} = \frac{s_{k+1} + \sqrt{d}}{t_{k+1}}.$$

Theorem 5.20. Let $d \in \mathbb{N}$ not be a perfect square. Then $\sqrt{d} + \lfloor \sqrt{d} \rfloor > 1$ and $-1 < -\sqrt{d} + \lfloor \sqrt{d} \rfloor < 0$. So $\sqrt{d} + \lfloor \sqrt{d} \rfloor$ is purely periodic.

Proof. Since
$$a_0 = \left\lfloor \sqrt{d} + \lfloor d \rfloor \right\rfloor = 2 \left\lfloor \sqrt{d} \right\rfloor$$
,
 $\sqrt{d} = -\left\lfloor \sqrt{d} \right\rfloor + \left(\sqrt{d} + \left\lfloor \sqrt{d} \right\rfloor \right) = -\left\lfloor \sqrt{d} \right\rfloor + \left[2 \left\lfloor \sqrt{d} \right\rfloor, \overline{a_1, \dots, a_{r-1}, a_0}\right]$
 $= -\left\lfloor \sqrt{d} \right\rfloor + 2 \left\lfloor \sqrt{d} \right\rfloor + \frac{1}{\text{stuff}} = \left\lfloor \sqrt{d} \right\rfloor + \frac{1}{\text{stuff}} = \left\lfloor \left\lfloor \sqrt{d} \right\rfloor, \overline{a_1, \dots, a_{r-1}, 2 \left\lfloor \sqrt{d} \right\rfloor} \right\rfloor$.

Theorem 5.21. Let $\theta_0 = \lfloor \sqrt{d} \rfloor + \sqrt{d}$, then $t_i = 1$ if and only if i = jr for some $j \ge 0$.

Proof. Assume

$$\theta = \sqrt{d} + \left\lfloor \sqrt{d} \right\rfloor = \left[\overline{a_0, \dots, a_{r-1}}\right] = \left[a_0, \overline{a_1, \dots, a_{r-1}, a_0}\right] = \left[a_0, a_1, \overline{a_2, \dots, a_{r-2}, a_0, a_1}\right] = \cdots$$

where r is chosen to be the smallest integer such that we have this type of expression for θ . Then

$$\theta_i = [a_i, a_{i+1}, \cdots] = [a_i, \dots, a_{Nr-1}, \overline{a_0, \dots, a_{r-1}}] = [a_{i-(N-1)r}, \dots, a_{r-1}, \overline{a_0, \dots, a_{r-1}}] = [a_{i-(N-1)r}, \dots, a_{r-2}, \overline{a_{r-1}, a_0, \dots, a_{r-2}}] = [\overline{a_{i-(N-1)r}, \dots, a_{i-(N-2)r-1}}],$$

is purely periodic as well. Since $\theta = \theta_0 = \theta_r = \theta_{2r} = \cdots$ with $\theta_i \neq \theta_0$ for $i = 1, \ldots, r-1$, we have $\theta_0 = \theta_i$ if and only if i = rm for some $m \ge 0$. Let $s_0 = \lfloor \sqrt{d} \rfloor$, $t_0 = 1$, $\theta_0 = \sqrt{d} + \lfloor \sqrt{d} \rfloor$, $s_{i+1} = a_i t_i - s_i$ for $i \in \mathbb{N}$ and $t_{i+1} = \frac{d-s_{i+1}^2}{t_i}$ for $i \in \mathbb{N}$. So similarly, we have $\theta_i = \frac{s_i + \sqrt{d}}{t_i}$ for $i \ge 0$. Then for $j \in \mathbb{N}$, $\frac{s_{jr} + \sqrt{d}}{t_{jr}} = \theta_{jr} = \theta_0 = \sqrt{d} + \lfloor \sqrt{d} \rfloor$. So $\mathbb{Z} \ni s_{jr} - t_{jr} \lfloor \sqrt{d} \rfloor = (t_{jr} - 1)\sqrt{d}$. Hence $t_{jr} = 1$. Suppose $t_i = 1$ for some other index i. Then $\theta_i = s_i + \sqrt{d}$. Since θ_i is purely periodic, $-1 < s_i - \sqrt{d} < 0$, i.e., $\sqrt{d} - 1 < s_i < \sqrt{d}$. So $s_i = \lfloor \sqrt{d} \rfloor$. Hence $\theta_i = \lfloor \sqrt{d} \rfloor + \sqrt{d} = \theta_0$, a contradiction. Exercise: show $t_i \neq -1$ for $i \ge 0$.

Corollary 5.22. Let $\theta_0 = \sqrt{d}$, then $t_i = 1$ if and only if i = jr for some $j \ge 0$.

Example 5.23. Find the quadratic irrational given by $\theta = \lfloor 8, \overline{1, 16} \rfloor = 8 + \frac{1}{x}$, where $x = [\overline{1, 16}]$. Since $x = [1, 16, x] = 1 + \frac{1}{16 + \frac{1}{x}}$, we have $x^{-2} + 16x^{-1} - 16 = 0$. Solve this for x^{-1} and take the positive part, $x^{-1} = -8 + \sqrt{80}$. Then $\theta = 8 + x^{-1} = 8 + (-8 + \sqrt{80}) = \sqrt{80}$.

Theorem 5.24. Let d > 0 not be a perfect square. Then $x^2 - dy^2 = 1$ has infinitely many integer solution.

Proof. By Dirichlet (1842), for $Q \in \mathbb{R}_{>1}$, there exist $p, q \in \mathbb{Z}$ with $1 \leq q < Q$ such that $\left| q\sqrt{d} - p \right| \leq \frac{1}{Q}$. Then

$$\left| p + q\sqrt{d} \right| = \left| p - q\sqrt{d} + 2q\sqrt{d} \right| \le \left| p - q\sqrt{d} \right| + 2q\sqrt{d} \le \frac{1}{Q} + 2q\sqrt{d} < 3q\sqrt{d} < 3Q\sqrt{d}.$$

So $|p^2 - q^2 d| = |p - q\sqrt{d}| |p + q\sqrt{d}| < \frac{1}{Q} 3Q\sqrt{d} = 3\sqrt{d}$. We can show there are infinitely many pairs (p,q) such that $|p^2 - q^2 d| < 3\sqrt{d}$. Since $3\sqrt{d}$ is finite, there exist N such that the Pell's equation $x^2 - dy^2 = N$ has infinitely many solutions. Among these infinitely many solutions, there is a pair of congruence class (α, β) such that infinitely many (x, y)'s satisfy $\begin{cases} x \equiv \alpha \pmod{N} \\ y \equiv \beta \pmod{N} \end{cases}$. Let (p,q) and (p',q') satisfy the Pell's equation and $\begin{cases} p \equiv p' \equiv \alpha \pmod{N} \\ q \equiv q' \equiv \beta \pmod{N} \end{cases}$. Then

$$(pp' - dqq')^2 - d(pq' - qp')^2 = (pp')^2 + d^2(qq')^2 - d(pq')^2 - d(qp')^2 = (p^2 - dq^2)(p'^2 - dq'^2) = N^2.$$

Set $\tilde{x} = pp' - dqq'$ and $\tilde{y} = pq' - qp'$. Then

$$\widetilde{x} = pp' - dqq' \equiv p^2 - dq^2 \pmod{N} \equiv N \pmod{N} \equiv 0 \pmod{N},$$

and

$$\tilde{y} = pq' - qp' = pq' - p'q' + p'q' - qp' = (p - p')q' + (q' - q)p' \equiv 0 \pmod{N}.$$

So $N \mid \tilde{x}$ and $N \mid \tilde{y}$. Set $x = \frac{\tilde{x}}{N} \in \mathbb{Z}$ and $y = \frac{\tilde{y}}{N} \in \mathbb{Z}$. Since $\tilde{x}^2 - d\tilde{y}^2 = N^2$, we have $x^2 - dy^2 = 1$. So we have a solution. Exercise: show $(x, y) \neq (\pm 1, 0)$. Then we get distinct solutions. Given a nontrivial solution (u, v) to $x^2 - dy^2 = 1$. Then $(u^2 + dv^2)^2 - d(2uv)^2 = (u^2 - dv^2) = 1$. So $(u^2 + dv^2, 2uv)$ is another solution. Repeat to get infinitely many solution.

Theorem 5.25. Let $\frac{p_k}{q_k}$ be the k^{th} convergents of $\theta = \sqrt{d}$. Then $p_k^2 - dq_k^2 = (-1)^{k+1} t_{k+1}$, where $t_{k+1} > 0$ for $k \ge 0$.

Proof. Write $\sqrt{d} = [a_0, a_1, \dots, a_k, \theta_{k+1}]$ and $\theta = \frac{\theta_{k+1}p_k + p_{k-1}}{\theta_{k+1}q_k + q_{k-1}}$. Substitute $\theta_{k+1} = \frac{s_{k+1} + \sqrt{d}}{t_{k+1}}$, we have $\sqrt{d} = \frac{\frac{s_{k+1} + \sqrt{d}}{t_{k+1}}p_k + p_{k-1}}{\frac{s_{k+1} + \sqrt{d}}{t_{k+1}}q_k + q_{k-1}}$, i.e., $\sqrt{d} = \frac{s_{k+1}p_k + \sqrt{d}p_k + t_{k+1}p_{k-1}}{s_{k+1}q_k + \sqrt{d}q_k + t_{k+1}q_{k-1}}$, i.e., $\sqrt{d}(s_{k+1}q_k + t_{k+1}q_{k-1} - p_k) = s_{k+1}p_k + t_{k+1}p_{k-1} - dq_k \in \mathbb{Z}$. So

$$\begin{cases} s_{k+1}q_k + t_{k+1}q_{k-1} &= p_k \\ s_{k+1}p_k + t_{k+1}p_{k-1} &= dq_k \end{cases}.$$

 $\begin{array}{l} \text{Then } p_k^2 - dq_k^2 = t_{k+1}(p_k q_{k-1} - p_{k-1} q_k) = (-1)^{k+1} t_{k+1}. \text{ Facts: } \frac{p_{2k}}{q_{2k}} \text{ converges to } \theta \text{ from below. } \frac{p_{2k+1}}{q_{2k+1}} \\ \text{converges to } \theta \text{ from above. Since } \frac{p_{2k}}{q_{2k}} < \sqrt{d} < \frac{p_{2k+1}}{q_{2k+1}} \text{ for } k \ge 0, \text{ for } k \ge 0, \\ \begin{cases} p_k^2 - dq_k^2 < 0, \forall 2 \mid k \\ p_k^2 - dq_k^2 > 0, \forall 2 \nmid k \end{cases}. \\ \text{Then } \frac{p_k^2 - dq_k^2}{p_{k-1}^2 - dq_{k-1}^2} < 0, \text{ i.e., } \frac{(-1)^{k+1} t_{k+1}}{(-1)^k t_k} < 0, \text{ i.e., } \frac{t_{k+1}}{t_k} > 0 \text{ for } k \ge 0. \\ \end{cases} \text{ Since } t_0 = 1 > 0, \text{ we have } t_k > 0 \text{ for } k \ge 0. \\ \end{array}$

Example 5.26. We have $\sqrt{15} = [3, \overline{1,6}]$. The convergents are $\frac{3}{1}$, $\frac{4}{1}$, $\frac{27}{7}$, $\frac{31}{8}$, \cdots . Then $p_0^2 - dq_0^2 = 3^2 - 15 \cdot 1^2 = -6$, $p_1^2 - dq_1^2 = 4^2 - 15 \cdot 1^2 = 1$, $p_2^2 - dq_2^2 = 27^2 - 15 \cdot 7^2 = -6$, $p_3^2 - dq_3^2 = 31^2 - 15 \cdot 8^2 = 1$, $t_1 = t_3 = 6$ and $t_2 = t_4 = 1$.

Theorem 5.27. Let $\frac{p_k}{q_k}$ be the convergents of the continued fractions expansions of \sqrt{d} and let n be the length of the expansion.

(a) If
$$2 \mid n$$
, then all possible solutions of $x^2 - dy^2 = 1$ are given by
$$\begin{cases} x = p_{kn-1} \\ y = q_{kn-1} \end{cases}, k \in \mathbb{N}.$$

(b) If
$$2 \nmid n$$
, then all possible solutions of $x^2 - dy^2 = 1$ are given by
$$\begin{cases} x = p_{2kn-1} \\ y = q_{2kn-1} \end{cases}, k \in \mathbb{N}.$$

Proof. By previous theorem, $p_j^2 - dq_j^2 = (-1)^{j+1}t_{j+1}$ with $t_{j+1} > 0$. To be a solution, we must have $2 \mid j+1$. Then we get a solution if $t_{j+1} = 1$. Since n is the length of the expansion, $t_{j+1} = 1$ if and only if j+1 = nk for some $k \in \mathbb{N}$, i.e., j = nk - 1. If $2 \nmid n$, since $2 \mid j+1$, we have $2 \mid k$. If $2 \mid n$, no conclusion on k.

Example 5.28. Consider $x^2 - 7y^2 = 1$. Note $\sqrt{7} = [2, \overline{1, 1, 1, 4}]$. Since n = 4, solutions are $\begin{cases} x = p_{4k-1} \\ y = q_{4k-1} \end{cases}, \forall k \in \mathbb{N}. \text{ Note the } \frac{p_i}{q_i}'s \text{ are } \frac{2}{1}, \frac{3}{1}, \frac{5}{2}, \frac{8}{3}, \frac{37}{14}, \frac{45}{17}, \frac{82}{31}, \frac{127}{48}, \cdots. \text{ Then } p_3^2 - 7 * q_3^2 = 8^2 - 7 * 3^2 = 1, p_7^2 - 7 * q_7^2 = 127^2 - 7 * 48^2 = 1, \cdots.$ **Definition 5.29.** The unique solution (x_0, y_0) of $x^2 - dy^2 = 1$ in which x, y have their smallest positive value is called the *fundamental solution*, i.e., if (x', y') is another solution, then $0 < x_0 < x'$ and $0 < y_0 < y'$.

Theorem 5.30. The fundamental solution (x, y) exists. If $2 \mid n$, $\begin{cases} x_0 = p_{n-1} \\ y_0 = p_{n-1} \end{cases}$. If $2 \nmid n$,

 $\begin{cases} x_0 = p_{2n-1} \\ y_0 = p_{2n-1} \end{cases}$

Theorem 5.31. Let (x_0, y_0) be fundamental solution of $x^2 - dy^2 = 1$. Then every pair of integers (x_n, y_n) defined by $x_n + y_n \sqrt{d} = (x_0 + y_0 \sqrt{d})^n$ is also a solution.

Proof. Exercise: $x_n - y_n \sqrt{d} = (x_0 - y_0 \sqrt{d})^n$. Since $x_0, y_0 > 0$, we have $x_n, y_n > 0$ for $n \in \mathbb{N}$. Since $x_n^2 - dy_n^2 = (x_n + y_n \sqrt{d})(x_n - y_n \sqrt{d}) = (x_0 + y_0 \sqrt{d})^n (x_0 - y_0 \sqrt{d})^n = (x_0^2 - y_0^2 d)^n = 1^n = 1, (x_n, y_n)$ is a solution.

Example 5.32. Consider $x^2 - 35y^2 = 1$. The fundamental solution is $\begin{cases} x_0 = 6 \\ y_0 = 1 \end{cases}$. Since $(6 + \sqrt{35})^2 = 71 + 12\sqrt{35}$, (71, 12) is a solution. Since $(6 + \sqrt{35})^3 = 846 + 143\sqrt{35}$, (846, 143) is a solution.

Theorem 5.33. Let (x_1, y_1) be fundamental solution of $x^2 - dy^2 = 1$. Then every positive solution is given by (x_n, y_n) , where x_n, y_n are determined by $x_n + y_n\sqrt{d} = (x_1 + y_1\sqrt{d})^n$.

Proof. Assume (u, v) is a positive solution that is not of this form. Since $x_1 + y_1\sqrt{d} > 1$, we have $x_n + y_n\sqrt{d} \to \infty$. Then there exist $n \in \mathbb{N}$ such that

$$(x_1 + y_1\sqrt{d})^n = x_n + y_n\sqrt{d} < u + v\sqrt{d} < x_{n+1} + y_{n+1}\sqrt{d} = (x_n + y_n\sqrt{d})(x_1 + y_1\sqrt{d}).$$

Then

$$(x_n + y_n\sqrt{d})(x_n - y_n\sqrt{d}) < (u + v\sqrt{d})(x_n - y_n\sqrt{d}) < (x_n + y_n\sqrt{d})(x_1 + y_1\sqrt{d})(x_n - y_n\sqrt{d}).$$

Since $x_n^2 - y_n^2 = 1$, we have $1 < (u + v\sqrt{d})(x_n - y_n\sqrt{d}) < x_1 + y_1\sqrt{d}$. Define r, s by $1 < r + s\sqrt{d} = (u + v\sqrt{d})(x_n - y_n\sqrt{d})$. Then $r = x_nu - y_nvd$ and $s = x_nv - y_nu$. Then $r^2 - ds^2 = (x_n^2 - dy_n^2)(u^2 - dv^2) = 1$. Since $1 = (r + s\sqrt{d})(r - s\sqrt{d})$ and $1 < r + s\sqrt{d}$, we have $0 < r - s\sqrt{d} < 1$. Then $2r = (r + s\sqrt{d}) + (r - s\sqrt{d}) > 1 + 0 = 1$. So r > 0. Also, since $2s\sqrt{d} = (r + \sqrt{d}) - (r - s\sqrt{d}) > 1 - 1 = 0$, s > 0. Since $1 < r + s\sqrt{d} < x_1 + y_1\sqrt{d}$ and r > 0, we have s > 0, a contradiction.

5.0.1 Quadratic fields

Consider the quadratic number field $\mathcal{K} = \mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}$. This is a Galois extension of \mathbb{Q} , i.e., there are two automorphisms, the identity and the conjugation map $\sigma : \mathcal{K} \to \mathcal{K}$ given by $a + b\sqrt{d} \mapsto a - b\sqrt{d}$. Clearly $\sigma^2 = 1$ and $\operatorname{Gal}(\mathcal{K}/\mathbb{Q}) = \{1, \sigma\}$. Let $\alpha = a + b\sqrt{d}$. Note $\sigma(\alpha) = \alpha$ if and only if b = 0, i.e., if and only if $\alpha \in \mathbb{Q}$. We say that \mathcal{K} is real or complex quadratic according to d > 0 or d < 0. The element $\alpha = a + b\sqrt{d} \in \mathcal{K}$ is a root of the quadratic polynomial $p_{\alpha}(X) = X^2 - 2aX + a^2 - db^2 \in \mathbb{Q}[X]$. Its second root $\overline{\alpha} = a - b\sqrt{d}$ is called the conjugate of α . **Definition 5.34.** Let d be square free. Let $K = \mathbb{Q}(\sqrt{d})$. Define

$$\begin{split} \mathbf{N} &: (\mathcal{K}, \times) \to (\mathbb{Q}, \times) \\ & a + b\sqrt{d} \mapsto (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - b^2 d \end{split}$$

and

$$Tr: (\mathcal{K}, +) \to (\mathbb{Q}, +)$$
$$a + b\sqrt{d} \mapsto (a + b\sqrt{d}) + (a - b\sqrt{d}) = 2a$$

and

disc :
$$\mathcal{K} \to \mathbb{Q}$$

 $a + b\sqrt{d} \mapsto 4db^2$

Theorem 5.35. N is a multiplicative group homomorphism. Tr is an additive group homomorphism.

Definition 5.36. $N|_{\mathcal{O}_{\mathcal{K}}} : \mathcal{O}_{\mathcal{K}} \setminus \{0\} \to \mathbb{Z} \setminus \{0\}$ with $N(\alpha\beta) = N(\alpha)N(\beta)$. To ease notation, we assume $d \equiv 2, 3 \pmod{4}$, such that $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{d}]$.

Remark. Goal: understand $\mathbb{Z}[\sqrt{d}]^{\times}$.

Lemma 5.37. $\alpha \in \mathbb{Z}[\sqrt{d}]$ is a unit if and only if $N(\alpha) = \pm 1$.

Proof. Suppose there exists $\beta \in \mathbb{Z}[\sqrt{d}]$ such that $\alpha\beta = 1$. Then $1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta)$. So $N(\alpha) \mid 1$. Hence $N(\alpha) = \pm 1$. Suppose $N(\alpha) = \pm 1$. Let $\alpha = a + b\sqrt{d}$. Then $\pm 1 = N(\alpha) = (a + b\sqrt{d})(a - b\sqrt{d})$. If $(a + b\sqrt{d})(a - b\sqrt{d}) = 1$, then $(a + b\sqrt{d})^{-1} = a - b\sqrt{d}$. If $(a + b\sqrt{d})(a - b\sqrt{d}) = -1$, then $(a + b\sqrt{d})^{-1} = -(a - b\sqrt{d})$.

Theorem 5.38. The solutions to Pell's equations are

$$\mathcal{O}_{\mathbb{Q}(\sqrt{d})}^{\times} \cong G_2 \times \left(x_1 + y_1 \sqrt{d}\right)^{\mathbb{Z}},$$

where (x_1, y_1) is the fundamental solution. and $G_2 = \{\pm 1\}$ is an order 2 group. Note

$$(x_1 + y_1\sqrt{d})^{-n} = \left(\frac{1}{x_1 + y_1\sqrt{d}}\right)^n = (x_1 - y_1\sqrt{d})^n = x_n - y_n\sqrt{d}.$$

Example 5.39. Consider $\mathbb{Q}(\sqrt{7})$. Then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{7}]$. To find units in $\mathbb{Z}[\sqrt{7}]$, we want to study $x^2 - 7y^2 = 1$. Note $\sqrt{7} = [2, \overline{1, 1, 1, 4}]$, $p_0 = a_0 = 2$, $q_0 = 1$, $p_1 = a_1a_0 + 1 = 3$, $q_1 = a_1 = 1$, $p_2 = a_2p_1 + p_0 = 3 + 2 = 5$, $q_2 = a_2q_1 + q_0 = 1 + 1 = 2$, $p_3 = a_3p_2 + p_1 = 5 + 3 = 8$, $q_3 = a_3q_2 + q_1 = 2 + 1 = 3$, \cdots . So $(p_{4-1}, q_{4-1}) = (p_3, q_3) = (8, 3)$ is a solution.

Theorem 5.40. Let d > 0 be not square and $\alpha = a + b\sqrt{d} \in \mathbb{Q}(\sqrt{d})$. If $N(\alpha) = 1$, then is a Pell's equation. If $N(\alpha) = -1$, then you want a solution to $x^2 - dy^2 = -1$.

Fact 5.41.

$$\mathcal{O}_{\mathcal{K}}^{\times} \cong G_2 \times (x_1 + y_1 \sqrt{d})^{\mathbb{Z}}$$

 $N : \mathcal{O}_{\mathcal{K}}^{\times} \to G_2$. The solution to Pell's equation is kernel of this. If $d \equiv 3 \pmod{4}$, there are no units of norm -1.

Remark. We want to solve the fermat equation for n = 3. Equivalently, we can show there is no nontrivial solution to $\alpha^3 + \beta^3 + \gamma^3 = 0$. We will show this how no solution is in $\mathbb{Q}(\sqrt{-3})$.

Remark. We say the units for $\mathbb{Q}(\sqrt{d})$, we actually say the units for $\mathbb{Z}(\sqrt{d})$.

Theorem 5.42. Let d < 0 be square-free. The field $\mathbb{Q}(\sqrt{d}) = \mathcal{K}$ has units ± 1 and these are the only units except d = -1, -3. The units for $\mathbb{Q}(i)$ are $\pm 1, \pm i$. The units for $\mathbb{Q}(\sqrt{-3})$ are $\pm 1, \frac{1\pm\sqrt{-3}}{2}, \frac{-1\pm\sqrt{-3}}{2}$.

Proof. Let $\alpha \in \mathcal{O}_{\mathcal{K}}$ with $N(\alpha) = \pm 1$. The integral basis is $\begin{cases} \{1, \sqrt{d}\} & d \not\equiv 1 \pmod{4} \\ \{1, \frac{1+\sqrt{d}}{2}\} & d \equiv 1 \pmod{4} \end{cases}$.

(a) If $d \neq 1 \pmod{4}$, then $\alpha = x + y\sqrt{d}$. Then $N(\alpha) = x^2 - dy^2$. Since d < 0, we have $N(\alpha) > 0$ and then $N(\alpha) \neq -1$ in this case. For d < -1, $x^2 - dy^2 \geqslant -dy^2 \geqslant 2y^2$. The only solutions to $x^2 - dy^2 = 1$ are $x = \pm 1$ and y = 0, i.e., the only units are $\alpha = \pm 1$. If d = -1, then $x^2 + y^2 = 1$. This only has solutions $x = \pm 1, y = 0$ and $x = 0, y = \pm 1$, i.e., the only units for $\mathbb{Q}(\sqrt{-1})$ are $\alpha = \pm 1, \pm \sqrt{-1}$.

(b) If $d \equiv 1 \pmod{4}$, then $\alpha = x' + y' \frac{1+\sqrt{d}}{2} = \frac{(2x'+y')+y'\sqrt{d}}{2}$. If y' is even, then same case as previous one and we get some units ± 1 . If y' is odd, then 2x' + y' is odd and write $\alpha = \frac{x+y\sqrt{d}}{2}$ with x, y odd. So $N(\alpha) = \frac{x^2 - dy^2}{4}$. Since d < 0, $N(\alpha) > 0$, so $N(\alpha) \neq -1$ in this case. If d < -3, since $x^2 - dy^2 \ge 1 - d > 4$, there are no solution to $\frac{x^2 - dy^2}{4} = 1$ with odd x, y. If d = -3, $\frac{x^2 + 3y^2}{4} = 1$ with x, y odd, i.e., $x^2 + 3y^2 = 4$ with x, y odd. The only solutions are $(1, \pm 1)$ and $(-1, \pm 1)$, i.e., the only units are $\alpha = \frac{1\pm\sqrt{-3}}{2}, \frac{-1\pm\sqrt{-3}}{2}$. Thus, we have units for $\mathbb{Q}(\sqrt{-3})$ are $\alpha = \pm 1, \frac{1\pm\sqrt{-3}}{2}, \frac{-1\pm\sqrt{-3}}{2}$.

Remark. Let $\omega = \frac{-1+\sqrt{-3}}{2}$. Then the units of $\mathbb{Q}(\sqrt{-3})$ are ± 1 , $\pm \omega$, $\pm \omega^2$. Note $1 + \omega + \omega^2 = 0$, and $\omega^3 = 1$.

We aren't actually working with quadratic fields to look at fermat big theorem, it just happens that $\mathbb{Q}(\xi_3) = \mathbb{Q}(\sqrt{-3})$. Over $\mathbb{Q}(\xi_p)$, $z^p = x^p + y^p = (x+y)(x+\xi_p y)\cdots(x+\xi_p^{p-1}y)$.

Definition 5.43. An element $\alpha \in \mathcal{O}_{\mathcal{K}}$ is a *prime* if it is not a unit and it is divisible only by units and its associates.

Theorem 5.44. Let $\alpha \in \mathcal{O}_{\mathcal{K}}$. If $N(\alpha) = \pm p$ for a rational prime, then α is prime.

Proof. Suppose $\alpha \in \mathcal{O}_{\mathcal{K}}$ satisfies $N(\alpha) = \pm p$ and $\alpha = \beta \gamma$. Then $\pm p = N(\alpha) = N(\beta \gamma) = N(\beta) N(\gamma)$. So $N(\beta) = \pm 1$ and $N(\gamma) = \pm p$, or $N(\beta) = \pm p$ and $N(\gamma) = \pm 1$. So either β or γ is a unit. Hence β or γ is associate of α . Thus, α is only divisible by units or associates. Therefore, α is prime. \Box

Theorem 5.45. Every element $\alpha \in \mathcal{O}_{\mathcal{K}}$ can be factored into primes.

Proof. Let $\alpha \in \mathcal{O}_{\mathcal{K}}$. If α is prime, we are done. If not, we can write $\alpha = \beta_1 \beta_2$ with β_1, β_2 not associate of α . If $\beta_1 \beta_2$ are both prime, we are done. If not, factor the one that is not prime (possibly both). Then $\alpha = \beta_1 \beta_2^{(1)} \beta_2^{(2)}$. Keeping doing this, write $\alpha = \beta_1 \cdots \beta_n$. Since β_i 's are not associates of α , they are not units, either. If there is no prime factorization, you get something like this for any n. Then $|\mathcal{N}(\alpha)| = |\prod_{i=1}^n \mathcal{N}(\beta_i)| = \prod_{i=1}^n |\mathcal{N}(\beta_i)|$. So we can just choose n such that $|\mathcal{N}(\alpha)| < 2^n$, a contradiction.

Definition 5.46. We say $\mathbb{Q}(\sqrt{d})$ has unique factorization if $\mathcal{O}_{\mathcal{K}}$ is a UFD, i.e., all elements in $\mathcal{O}_{\mathcal{K}}$ that are not 0 or units can be factored uniquely into primes up to order and associates.

Definition 5.47. We say $\mathbb{Q}(\sqrt{d})$ is an *Euclidean Domain* if $\mathcal{O}_{\mathcal{K}}$ is an Euclidean domain, i.e., given $\alpha, \beta \in \mathcal{O}_{\mathcal{K}}$ with $\beta \neq 0$, there exist $\gamma, \delta \in \mathcal{O}_{\mathcal{K}}$ such that $\alpha = \beta\gamma + \delta$ with $\gamma = 0$ or $|N(\delta)| < |N(\gamma)|$.

Theorem 5.48. Every Euclidean domain $\mathbb{Q}(\sqrt{d})$ has unique factorization.

Theorem 5.49. The field $\mathbb{Q}(\sqrt{d})$ for d = -1, -2, -3, -7, 2, 3 is Euclidean.

Proof. Let $\mathcal{K} = \mathbb{Q}(\sqrt{m})$. Let $\alpha, \beta \in \mathcal{O}_{\mathcal{K}}$ with $\beta \neq 0$. Write $\frac{\alpha}{\beta} = u + v\sqrt{m}$ with $u, v \in \mathbb{Q}$. Choose x, y as close as possible to u, v, respectively. Then $0 \leq |u - x| \leq \frac{1}{2}$ and $0 \leq |v - y| \leq \frac{1}{2}$. Set $\gamma = x + y\sqrt{m} \in \mathcal{O}_{\mathcal{K}}$ and $\delta = \alpha - \beta\gamma \in \mathcal{O}_{\mathcal{K}}$. Since

$$N(\delta) = N(\alpha - \beta\gamma) = N\left(\frac{\alpha}{\beta} - \gamma\right) N(\beta) = N(u - x + (v - y)\sqrt{m}) N(\beta) = \left((u - x)^2 - m(v - y)^2\right) N(\beta),$$

we have $|\mathcal{N}(\delta)| = |(u-x)^2 - m(v-y)^2||\mathcal{N}(\beta)|$. Observe

$$\begin{cases} -\frac{m}{4} \leqslant (u-x)^2 - m(v-y)^2 \leqslant \frac{1}{4} & m > 0\\ 0 \leqslant (u-x)^2 - m(v-y)^2 \leqslant \frac{1}{4} - \frac{m}{4} & m < 0 \end{cases}$$

If m = 2, 3, -1, -2, then $|N(\delta)| < |N(\beta)|$, which implies the corresponding $\mathbb{Q}(\sqrt{m})$ is Euclidean. Let m = -3 or -7. Leave u, v as above. Choose s as close as possible to 2v and r such that $r \equiv s \pmod{2}$ and as close to 2u as possible. Then $0 \leq |2v - s| \leq \frac{1}{2}$ and $0 \leq |2u - r| \leq 1$. Since $m \equiv 1 \pmod{4}, \gamma = \frac{r+s\sqrt{m}}{2} \in \mathcal{O}_{\mathcal{K}}$. Set $\delta = \alpha - \beta\gamma \in \mathcal{O}_{\mathcal{K}}$. Since

$$\mathcal{N}(\delta) = \mathcal{N}(\alpha - \beta\gamma) = \mathcal{N}(\frac{\alpha}{\beta} - \gamma) \mathcal{N}(\beta) = \mathcal{N}(u - \frac{r}{2} + (v - \frac{s}{2})\sqrt{m}) \mathcal{N}(\beta) = \left((u - \frac{r}{2})^2 - m(v - \frac{s}{2})^2\right) \mathcal{N}(\beta),$$

we have $|\mathcal{N}(\delta)| \leq \left|\frac{1}{4} - \frac{m}{16}\right| |\mathcal{N}(\beta)| < |\mathcal{N}(\beta)|.$

Theorem 5.50. Let $\mathcal{K} = \mathbb{Q}(\sqrt{m})$ have unique factorization. Then any prime π in $\mathbb{Q}(\sqrt{m})$ corresponds to exactly one rational prime p such that $\pi \mid p$.

Proof. Since $N(\pi) = \pi \overline{\pi} \in \mathbb{Z}$, we have $\pi \mid N(\pi)$. Let n be the smallest positive rational integer divisible by π . Claim. n is prime in $\mathbb{Q}(\sqrt{m})$. If not, write $n = n_1 n_2$ with $n_1, n_2 \neq \pm 1$. Then $\pi \mid n = n_1 n_2$. Since $n_1, n_2 \neq \pm 1, \pi \mid n_1$ or $\pi \mid n_2$, a contradiction since $n_1 < n$ and $n_2 < n$. Hence, n is our n. Let q be a rational prime and $p \neq q$ such that $\pi \mid q$. Then $\pi \mid 1 = px + qy$ for some x, y, a contradiction since 1 is not a prime.

Theorem 5.51. Let $\mathcal{K} = \mathbb{Q}(\sqrt{m})$ have unique factorization.

(a) Any rational prime p is either a prime π in \mathcal{K} or the product of two prime π_1, π_2 not necessarily distinct of \mathcal{K} .

(b) The totality of primes π, π_1, π_2 obtained in (a) from p, together with associates constitute all the primes in $\mathbb{Q}(\sqrt{m})$.

(c) An odd rational prime p satisfying gcd(p,m) = 1 is a product $\pi_1\pi_2$ of two primes π_1, π_2 of \mathcal{K} if and only if? $\left(\frac{m}{p}\right) = 1$. Furthermore, if $p = \pi_1\pi_2$, then π_1 and π_2 are not associate, but π_1 and $\overline{\pi_2}$ are associate (as are $\overline{\pi_1}$ and π_2). (d) If gcd(2,m) = 1, then 2 is the associate of a square of a prime if $m \equiv 3 \pmod{4}$, 2 is prime if $m \equiv 5 \pmod{8}$, and 2 is a product of distinct primes if $m \equiv 1 \pmod{8}$.

(e) Any rational prime p that divides m is the associate of the square of a prime in $\mathbb{Q}(\sqrt{m})$.

Proof. (a) Suppose p is prime π in \mathcal{K} , then we are done. Suppose p is not prime in \mathcal{K} . Then $p = \pi\beta$ for some π prime and $\beta \in \mathcal{O}_{\mathcal{K}}$ with $\beta \neq \pm 1$. So $p^2 = N(p) = N(\pi\beta) = N(\pi)N(\beta)$. Also, since $N(\pi) \in \mathbb{Z} \setminus \{1\}$ and $N(\beta) \in \mathbb{Z} \setminus \{1\}$, $N(\beta) = \pm p$. So β is prime. Thus, p is the product of two primes.

(b) Given any prime π , the previous theorem says it divides a unique rational prime p. Now apply (a).

(c) Let p be a rational prime such that $2 \nmid p, p \nmid m$ and $\left(\frac{m}{p}\right) = 1$. Then there exists x such that $x^2 \equiv m \pmod{p}$, i.e., $p \mid x^2 - m$ if and only if $p \mid (x + \sqrt{m})(x - \sqrt{m})$. Suppose p is prime in \mathcal{K} , then $p \mid x - \sqrt{m}$ or $p \mid x + \sqrt{m}$. Without loss of generality, assume $p \mid x + \sqrt{m}$.

(1) If $m \neq 1 \pmod{4}$, then there exist a, b such that $p(a + b\sqrt{m}) = x + \sqrt{m}$. Then pb = 1, a contradiction.

(2) If $m \equiv 1 \pmod{4}$, then there exist a, b such that $p\left(a + b\frac{1+\sqrt{m}}{2}\right) = x + \sqrt{m}$, i.e., $pa + p\frac{b}{2} + p\frac{b}{2}\sqrt{m} = x + \sqrt{m}$. So $p\frac{b}{2} = 1$, which is a contradiction since $p \nmid 2$.

Hence, p is not a prime (in \mathcal{K}). By the proof of part (a), p is the product of two prime π_1, π_2 with $\pi_1 = a + b\sqrt{m}$ and $a^2 - mb^2 = N(\pi_1) = \pm p$. Then $\pi_2 = \frac{p}{\pi_1} = \frac{p}{a+b\sqrt{m}} = \pm(a - b\sqrt{m})$. So $\overline{\pi}_2 = \pm(a + b\sqrt{m})$, which is an associate of π . Since $\frac{\pi_1}{\pi_2} = \pm \frac{a+b\sqrt{m}}{a-b\sqrt{m}} = \pm \left(\frac{(2a)^2 + m(2b)^2}{4p} + \frac{8ab\sqrt{m}}{4p}\right) \notin \mathcal{O}_{\mathcal{K}}$ (Exercise), which means $\frac{\pi_1}{\pi_2}$ is certainly not a unit. For example, 5 = (2+i)(2-i). But 2 is not odd, 1 + i = i(1 - i) and 2 = (1 + i)(1 - i).

(d) Assume $m \equiv 3 \pmod{4}$. Then $(m - \sqrt{m})(m + \sqrt{m}) = m^2 - m = 2\frac{m^2 - m}{2}$. If is a prime, then $2 \mid m - \sqrt{m}$ or $2 \mid m + \sqrt{m}$. So $\frac{m + \sqrt{m}}{2} \in \mathcal{O}_{\mathcal{K}}$ or $\frac{m - \sqrt{m}}{2} \in \mathcal{O}_{\mathcal{K}}$. Since $2 \nmid m$ and $m \not\equiv 1 \pmod{4}$, these are actually not in $\mathcal{O}_{\mathcal{K}}$. Hence, 2 is not prime. By the proof of part (a), there exist x, y such that $x + y\sqrt{m} \mid 2$ and $x^2 - my^2 = N(x + y\sqrt{m}) = \pm 2$. So $2 = \pm (x - y\sqrt{m})(x + y\sqrt{m})$, where $x - y\sqrt{m}$ and $x + y\sqrt{m}$ are primes. We want $x - y\sqrt{m}$ and $x + y\sqrt{m}$ to be associate and then 2 will be square of a prime up to associate. Exercise: show the last part of the following

$$\frac{x - y\sqrt{m}}{x + y\sqrt{m}} = \pm \frac{x^2 + my^2 - 2xy\sqrt{m}}{x^2 - my^2} = \pm \left(\frac{x^2 + my^2}{2} - xy\sqrt{m}\right) \in \mathcal{O}_{\mathcal{K}}.$$

Similarly, $\frac{x+y\sqrt{m}}{x-y\sqrt{m}} = \pm \left(\frac{x^2+my^2}{2} + xy\sqrt{m}\right) \in \mathcal{O}_{\mathcal{K}}$. So $\frac{x+y\sqrt{m}}{x-y\sqrt{m}}$ and its inverse are in $\mathcal{O}_{\mathcal{K}}$. Hence $\frac{x+y\sqrt{m}}{x-y\sqrt{m}} \in \mathcal{O}_{\mathcal{K}}^{\times}$. Thus, $x - y\sqrt{m}$ and $x + y\sqrt{m}$ are associate. Assume $m \equiv 1 \pmod{4}$. Suppose 2 is not a prime. By the proof of part (a), there exist x, y of the same parity such that $\frac{x+y\sqrt{m}}{2} \mid 2$, and $N\left(\frac{x+y\sqrt{m}}{2}\right) = \pm 2$. Then $x^2 - my^2 = \pm 8$. If x, y are both even, write $x = 2x_0, y = 2y_0$. Then $x_0^2 - my_0^2 = \pm 2$. Since $m \equiv 1 \pmod{4}$, we have $x_0^2 - my_0^2$ is odd or multiple of 4, a contradiction. So x and y are both odd. Hence $x^2 \equiv y^2 \equiv 1 \pmod{8}$. Then $1 - m \equiv x^2 - my^2 \equiv 0 \pmod{8}$. So $m \equiv 1 \pmod{8}$. Then 2 is a prime in \mathcal{K} . Assume $m \equiv 1 \pmod{8}$. Then

 $\frac{1-\sqrt{m}}{2}\frac{1+\sqrt{m}}{2} = \frac{1-m}{4} = 2\frac{1-m}{8}. \text{ Since } 2 \mid \frac{1\pm\sqrt{m}}{2}, \text{ we have } 2 \text{ is not a prime. By the proof of part (d),}$ there exist x, y both odd such that $\frac{x+y\sqrt{m}}{2}\frac{x-y\sqrt{m}}{2} = N\left(\frac{x+y\sqrt{m}}{2}\right) = \pm 2.$ Since x, y are both odd, $\pm \frac{x+y\sqrt{m}}{2} = \pm \frac{x+y\sqrt{m}}{x-y\sqrt{m}} = \pm \left(\frac{x^2+my^2}{8} + \frac{xy\sqrt{m}}{4}\right) \notin \mathcal{O}_{\mathcal{K}}.$ Thus, $\frac{x-y\sqrt{m}}{2}$ and $\frac{x+y\sqrt{m}}{2}$ are not associates. Therefore, 2 is a product of two non-associate primes.

(e) Let p be a rational prime divisor of m. If p = |m|, then $p = \pm \sqrt{m}\sqrt{m}$. Since the norm of m is prime p, \sqrt{m} is prime. If p < |m|, then $\sqrt{m}\sqrt{m} = m = p\frac{m}{p}$. Since $\frac{\sqrt{m}}{p} \notin \mathcal{O}_{\mathcal{K}}$, we have $p \nmid \sqrt{m}$ in \mathcal{K} . So p is not prime in \mathcal{K} . By the proof of part (a), there exists some prime π with $N(\pi) = \pm p$ such that $\pi \mid p$. Since $\pi \mid \sqrt{m}\sqrt{m}$, we have $\pi \mid \sqrt{m}$. So $\pi^2 \mid m$. Since m is square-free, $p \mid |m$. So $\pi \nmid \frac{m}{p}$? Thus, $\pi^2 \mid p$.

Remark (Diophantine Equation). Let $\alpha \in \mathcal{O}_{\mathcal{K}}$ with $N(\alpha) = \pm p$. Since $N(\overline{\alpha}) = \pm p$, we have $\overline{\alpha}$ is prime. If $m \not\equiv 1 \pmod{4}$, write $\alpha = x + y\sqrt{m}$. Then $\pm p = N(\alpha) = \alpha\overline{\alpha} = x^2 - my^2$. If $m \equiv 1 \pmod{4}$, write $\alpha = \frac{x + y\sqrt{m}}{2}$. Then we get a solution to $x^2 - my^2 = \pm 4p$. Suppose $\mathbb{Q}(\sqrt{m})$ has unique factorization. Let p be a rational prime with gcd(p, 2m) = 1 and $\left(\frac{m}{p}\right) = 1$. (By Theorem 5.51(c), since m is odd, use gcd(p, 2m) to make sure p is odd prime.) Then if $m \not\equiv 1 \pmod{4}$, we get a solution to one of the equation $x^2 - my^2 = \pm p$; if $m \equiv 1 \pmod{4}$, we get a solution to one of the equation $x^2 - my^2 = \pm p$; if $m \equiv 1 \pmod{4}$, we get a solution to one of the equation $x^2 - my^2 = \pm 4p$.

5.0.2 The field $\mathbb{Q}(\sqrt{-3})$

Example 5.52. Find primes in $\mathbb{Q}(\sqrt{-3})$. Factor 2, 3, 5, 7, \cdots in $\mathbb{Q}(\sqrt{-3})$. Let m = -3. Then 2m = -6. Find p such that gcd(p, 2m) = 1 or gcd(p, 6) = 6. Since $\left(\frac{-3}{p}\right) = \begin{cases} -1 & \text{if } p = 3k + 2 \\ 1 & \text{if } p = 3k + 1 \end{cases}$, we have rational primes of the form p = 3k + 2 are primes in $\mathbb{Q}(\sqrt{-3})$, and rational primes of the form p = 3k + 1 uniquely up to associates in $\mathbb{Q}(\sqrt{-3})$, where

$$\begin{cases} \pi_1 &= \frac{a_p + b_p \sqrt{-3}}{2} \\ \pi_2 &= \frac{a_p - b_p \sqrt{-3}}{-2} \end{cases}$$

We can show 2 is not prime by contradiction. Consider p = 3. Since $3 = \frac{3+\sqrt{-3}}{2}\frac{3-\sqrt{-3}}{2}$, $3 = \sqrt{-3}\sqrt{-3}$ and $\sqrt{-3}$ are prime, we have $\sqrt{-3} \sim \frac{3+\sqrt{-3}}{2}$, where \sim denote "associate". Or since $\frac{3+\sqrt{-3}}{2} = \sqrt{-3}\frac{1-\sqrt{-3}}{2}$ and $\frac{1-\sqrt{-3}}{2} \in \mathcal{O}_{\mathcal{K}}^{\times}$, we have $\sqrt{-3} \sim \frac{3+\sqrt{-3}}{2}$. We have that 6 units in $\mathbb{Q}(\sqrt{-3})$ are $\pm 1, \frac{1\pm\sqrt{-3}}{2}, \frac{-1\pm\sqrt{-3}}{2}$. Write from now on $\theta = \sqrt{-3}$. Set $w = \frac{-1+\sqrt{-3}}{2}$. Then θ has 6 associates $\pm(1-w), \ \pm(1-w^2), \ \pm(w-w^2), \ \pm\theta$.

Lemma 5.53. Every integer in $\mathcal{K} = \mathbb{Q}(\theta)$ is congruent to 0 or -1, 1 modulo θ .

Proof. Let $\frac{a+b\theta}{2} \in \mathcal{O}_{\mathcal{K}}$. Then a, b are of the same parity. So $\frac{b+a\theta}{2} \in \mathcal{O}_{\mathcal{K}}$. Since $\theta^2 = -3$, we have $\frac{a+b\theta}{2} \equiv \frac{b+a\theta}{2}\theta + 2a \equiv 2a \pmod{\theta}$. Note $2a \equiv 0, \pm 1 \pmod{3}$. Since $\theta \mid 3, \frac{a+b\theta}{2} \equiv 2a \equiv 0, \pm 1 \pmod{\theta}$.

Lemma 5.54. Let $\mathcal{K} = \mathbb{Q}(\theta)$. Let $\xi, \eta \in \mathcal{O}_{\mathcal{K}}$, not divisible by θ .

(a) If $\xi \equiv 1 \pmod{\theta}$, then $\xi^3 \equiv 1 \pmod{\theta^4}$.

- (b) If $\xi \equiv -1 \pmod{\theta}$, then $\xi^3 \equiv -1 \pmod{\theta^4}$.
- (c) If $\xi^3 + \eta^3 \equiv 0 \pmod{\theta}$, then $\xi^3 + \eta^3 \equiv 0 \pmod{\theta^4}$.
- (d) If $\xi^3 \eta^3 \equiv 0 \pmod{\theta}$, then $\xi^3 \eta^3 \equiv 0 \pmod{\theta^4}$.

Proof. (a) If $\xi \equiv 1 \pmod{\theta}$, we can write $\xi = 1 + \beta \theta$ for some $\beta \in \mathcal{O}_{\mathcal{K}}$. Since $\theta^2 = -3$ and $\theta^4 = 9$, we have

$$\xi^3 = (1+\beta\theta)^3 \equiv 1+3\beta\theta - 9\beta^2 + \beta^3\theta^3 \equiv 1+3\beta\theta + \beta^3\theta^3 \equiv 1+\theta^3(\beta^3-\beta) \pmod{\theta^4}.$$

Since $\beta^3 - \beta = \beta(\beta - 1)(\beta + 1)$, we have $\theta \mid \beta(\beta - 1)(\beta + 1)$ by Lemma 5.53. So $\xi^3 \equiv 1 \pmod{\theta^4}$.

(b) If $\xi \equiv -1 \pmod{\theta}$, then $-\xi \equiv 1 \pmod{\theta}$. Then by part (a), $-\xi^3 \equiv (-\xi)^3 \equiv 1 \pmod{\theta^4}$. So $\xi^3 \equiv -1 \pmod{\theta^4}$.

(c) Since $\theta \mid \xi(\xi - 1)(\xi + 1)$, we have $\xi^3 \equiv \xi \pmod{\theta}$. Similarly, $\eta^3 \equiv \eta \pmod{\theta}$. If $\xi^3 + \eta^3 \equiv 0 \pmod{\theta}$, then $\xi + \eta \equiv 0 \pmod{\theta}$, i.e., $\xi \equiv -\eta \pmod{\theta}$. If $\xi \equiv -1 \pmod{\theta}$, then $\eta \equiv 1 \pmod{\theta}$. So $\xi^3 \equiv -1 \pmod{\theta^4}$ and $\eta^3 \equiv 1 \pmod{\theta^4}$. Hence $\xi^3 + \eta^3 \equiv -1 + 1 \equiv 0 \pmod{\theta^4}$. Similarly, we have the cases $\xi \equiv 0 \pmod{\theta}$ and $\xi \equiv 1 \pmod{\theta}$

(d) Play the same game to get the result.

Lemma 5.55. Let $\mathcal{K} = \mathbb{Q}(\theta)$. Let $\alpha, \beta, \gamma \in \mathcal{O}_{\mathcal{K}}$ such that $\alpha^3 + \beta^3 + \gamma^3 = 0$. If $gcd(\alpha, \beta, \gamma) = 1$, then θ divides one of them.

Proof. Suppose θ divides none of them. Then $\alpha, \beta, \gamma \equiv \pm 1 \pmod{\theta}$. So $0 = \alpha^3 + \beta^3 + \gamma^3 \equiv \pm 1 \pm 1 \pm 1 \pmod{\theta^4}$. Then θ^4 must divide 3, 1, -1 or -3. But $\theta^4 = 9$, which is a contradiction. \Box

Lemma 5.56. Let $\mathcal{K} = \mathbb{Q}(\theta)$. Let $\alpha, \beta, \gamma \in \mathcal{O}_{\mathcal{K}} \setminus \{0\}$ such that $\theta \nmid \alpha\beta\gamma$. Let ϵ_1, ϵ_2 be units and $r \in \mathbb{N}$ such that $\alpha^3 + \epsilon_1\beta^3 + \epsilon_2(\theta^r\gamma)^3 = 0$. Then $\epsilon_1 = \pm 1$ and $r \ge 2$.

Proof. Since $\alpha, \beta \in \mathcal{O}_{\mathcal{K}} \setminus \{0\}$, we have $\alpha, \beta \equiv \pm 1 \pmod{\theta}$. By previous Lemma 5.54(a) and (b), $\alpha^3, \beta^3 \equiv \pm 1 \pmod{\theta^4}$. Since r > 0, we have $0 \equiv \alpha^3 + \epsilon_1 \beta^3 \equiv \pm 1 \pm \epsilon_1 \pmod{\theta^3}$. Since ϵ is one of $\pm 1, \pm w, \pm w^2$, we have $\pm 1 \pm \epsilon_1$ is one of 2, 0, $-2, \pm (1 \pm w), \pm (1 \pm w^2)$ with all possible sign combinations. Since 1 - w and $1 - w^2$ are associates of θ and $\theta^2 = -3$ is prime, we have θ^3 cannot divide them. Also, $1 + w = -w^2 \in \mathcal{O}_{\mathcal{K}}^{\times}$ and $1 + w^2 = -w \in \mathcal{O}_{\mathcal{K}}^{\times}$, so θ^3 cannot divide them. Since N(±2) = 4 and N(θ^3) = 27, we have N(θ^3) ∤ N(±2). So $\theta^3 \nmid \pm 2$. Hence the only possibility is $\pm 1 \pm \xi_1 = 0$. So $\epsilon_1 = \pm 1$. Since $\theta \mid \theta^3$ and $\alpha^3 + \epsilon_1 \beta^3 \equiv 0 \pmod{\theta^3}$, we have $\alpha^3 + \beta^3 \equiv 0 \pmod{\theta}$ and $\alpha^3 - \beta^3 \equiv 0 \pmod{\theta}$. Since $\theta \mid \alpha(\alpha - 1)(\alpha + 1)$, we have $\alpha^3 \equiv \alpha \pmod{\theta}$. Similarly, $\beta^3 \equiv \beta \pmod{\theta}$. By Lemma 5.54(c), $\alpha^3 + \epsilon_1 \beta^3 \equiv 0 \pmod{\theta^4}$. Then $\epsilon_2(\theta^r \gamma)^3 \equiv 0 \pmod{\theta^4}$. So $\theta^4 \mid \epsilon_2(\theta^r \gamma)^3$. Thus, $r \ge 2$.