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Chapter 1

Metric Spaces

In this chapter we introduce metric spaces which can be seen as a generalization of the real numbers
studied in advanced calculus. A metric space is a set X with a metric defined on it. More precisely,
the metric associates with any pair of elements of X a distance. The metric is defined axiomatically,
with the axioms being motivated from the corresponding properties of real numbers. A metric on a
set also induces topological properties such as open and closed sets, which can lead to the study of
more abstract topological spaces. Other important properties of metric spaces, such as separability
and completeness, will also be investigated in this chapter. To demonstrate some applications of
completeness, we introduce the Banach fixed point theorem and the Baire category theorem in the
context of metric spaces at the end of this chapter.

Let R = R ⊔ {∞}.

1.1 Definition and Examples

Definition 1.1. Let X be a set and d : X ×X ! R be a function on X ×X := {(x, y) | x, y ∈ X}
that satisfies for all x, y, z ∈ X,

(0) d(x, y) ⩾ 0 “nonnegativity”.

(1) d(x, y) = 0 if and only if x = y “definiteness”.

(2) d(x, y) = d(y, x) “symmetry”.

(3) d(x, y) ⩽ d(x, z) + d(z, y) “triangle-inequality”.

Then the pair (X, d) is called a metric space, where X is called the underlying set, d called the
metric or distance.

Remark. Condition (0) is redundant. To see this, let y = x in (3), then 0 = d(x, x) ⩽ d(x, z) +
d(z, x) = 2d(x, z) for any x, z ∈ X.

Example 1.2. (a) Let p ∈ R and | · |p : R× R ! R defined as (x, y) 7! |x− y|p. Then (R, | · |p) is
a metric space if and only if 0 < p ⩽ 1.
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2 CHAPTER 1. METRIC SPACES

(b) Let p ∈ R and n ∈ N. Define for p ∈ R⩾1,

dp : Rn × Rn −! R

(x, y) 7−!

(
n∑
i=1

|xi − yi|p
) 1
p

,

and

d∞ : Rn × Rn −! R
(x, y) 7−! max

i=1,...,n
|xi − yi|.

(1) If n = 1, then dp = | · | for p ∈ R∖ {0}.
(2) Let n ∈ Z⩾2. Then (Rn, dp) is a metric space if and only if p ∈ R⩾1. The metric d2 is called
the Euclidean metric on Rn.

Definition 1.3. (a) Let

l∞ := {x : N ! R | x = {xi}i⩾1 is a bounded sequence}

=

{
x : N ! R | x = sup

i∈N
|xi| <∞

}
.

(b) Let

lp =

{
x : N ! R | x = {xi}i⩾1 such that

∞∑
i=1

|xi|p <∞

}
.

Example 1.4. (lp, dp) is a metric space if and only if p ∈ R⩾1, where for p ∈ R⩾1,

dp : l
p × lp −! R

(x, y) 7−!

( ∞∑
i=1

|xi − yi|p
) 1
p

,

and

d∞ : l∞ × l∞ −! R
(x, y) 7−! sup

i∈N
|xi − yi|.

Remark. d∞ is well-defined.

Fact 1.5. Let p ∈ R. Then x ∈ (lp, dp) if and only if dp(x, 0) <∞.

Theorem 1.6. lp ⊊ lq if and only if 1 ⩽ p < q ⩽ ∞.

Example 1.7. (S, dS) is a metri space, where S = {x : N ! R | x = {xi}i∈N is a (real) sequence}
and

dS : S × S −! R

(x, y) 7−!
∞∑
i=1

1

2i
|xi − yi|

1 + |xi − yi|
.
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Proof. dS is well-defined since
∑∞
i=1

1
2i

|xi−yi|
1+|xi−yi| ⩽

∑∞
i=1

1
2i = 1.

Remark. (a) 1
2i can be replaced by ai > 0 such that

∑∞
i=1 ai <∞ (converges).

(b) t
1+t can be replaced by any function f which is bounded, increasing, concave and f(0) = 0.

Example 1.8. Let

C[a, b] = {x : [a, b] ! R | x = x(t) is a continuous function}.

(C[a, b], dp) is a metric space if and only if p ∈ R⩾1, where for p ∈ R⩾1,

dp : C[a, b]× C[a, b] −! R

(x, y) 7−!

(∫ b

a

|x(t)− y(t)|p
) 1
p

,

and

d∞ : C[a, b]× C[a, b] −! R
(x, y) 7−! max

t∈[a,b]
|x(t)− y(t)|.

Check both are well-defined.

Definition 1.9. Let

B[a, b] = {x : [a, b] ! R | x = x(t) is a bounded function}.

Example 1.10. (B[a, b], d∞) and (B(a, b), d∞) are metric spaces, where

d∞ : B(a, b)×B(a, b) −! R
(x, y) 7−! sup

t∈(a,b)

|x(t)− y(t)|.

Example 1.11. (X, ddisc) is a discrete metric space, where

ddisc : X ×X −! R

(x, y) 7−!

{
0, x = y,
1, x ̸= y.

Assumption 1.12. Let X be a metrix space.

Next we look at some basic ways to create new metric spaces from the ones that we already
have.

Definition 1.13. Let (X, d) be a metric space and Y ⊆ X, then (Y, dY×Y ) is a metric subspace of
(X, d), and dY×Y is called the metric induced by d.

Example 1.14. Let Y = {x ∈ l∞ | x = {xn}, xn = 0 or 1,∀n ∈ N} ⊆ l∞. We have (Y, d∞|Y×Y )
is a metric subspace of l∞ and d∞|Y×Y = ddisc.
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Theorem 1.15 (Finite product). Let (Xi, di) be a metric space for i = 1, . . . , n. Then (
∏n
i=1Xi, dp)

is a metric space where

dp :

n∏
i=1

Xi ×
n∏
i=1

Xi −! R

(x, y) 7−!

{ (∑n
i=1 di(xi, yi)

p
) 1
p , when p ∈ R⩾1,

max
1⩽i⩽n

di(xi, yi), when p = ∞.

Proof. Let p ∈ R⩾1. Let x = {xi}ni=1, y = {yi}ni=1, z = {zi}ni=1 ∈
∏n
i=1Xi. Let

f = (d1(x1, z1), . . . , dn(xn, zn)) ∈ Rn and g = (d1(z1, y1), . . . , dn(zn, yn)) ∈ Rn.

Then by Minkowski inequality, dp(x, y) = (
∑n
i=1 di(xi, yi)

p)
1
p ⩽ (

∑n
i=1 (di(xi, zi) + di(zi, yi))

p
)

1
p =

∥f + g∥p ⩽ ∥f∥p + ∥g∥p = dp(x, z) + dp(y, z).

Corollary 1.16. Let p ∈ R. Then (Rn, dp) is a metric space if and only if n = 1 or n ∈ Z⩾2 and
p ∈ R⩾1.

Proof. Take (Xi, di) = (R, | · |) for i = 1, . . . , n.

Theorem 1.17 (Countable space). Let (Xi, di) be a metric space for each i ∈ N. Then
(∏∞

i=1Xi, di
)

is a metric space, where

d :

∞∏
i=1

Xi ×
∞∏
i=1

Xi −! R

(x, y) 7−!
∞∑
i=1

1

2i
di(xi, yi)

1 + di(xi, yi)
.

Corollary 1.18. (S, dS) is a metric space.

Proof. Take (Xi, di) = (R, | · |) for each i ∈ N.

1.2 Topology of Metric Spaces

In this section we introduce some basic topological concepts that are of fundamental importance
in studying metric spaces. Most of these concepts are motivated from the geometry of Euclidean
spaces Rn and should become quite familiar when looking at them that way.

Assumption 1.19. Let (X, d) be a metric space and A ⊆ X.

Definition 1.20. Define

(a)
d(x,A) = inf{d(x, y) | y ∈ A}.

(b)
d(A,B) = inf{d(x, y) | x ∈ A and y ∈ B}.
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(c)
diam(A) = sup {d(x, y) | x, y ∈ A}.

(d) A is bounded if diam(A) <∞.

Definition 1.21. Let x0 ∈ X and ϵ > 0. Then we define

(a) “Open ϵ-ball around x0”:

Bdϵ (x0) = {x ∈ X | d(x, x0) < ϵ}.

(b) “Closed ϵ-ball around x0”:

Bdϵ (x0) = {x ∈ X | d(x, x0) ⩽ ϵ}.

(c) “ϵ-sphere around x0”:

∂Bdϵ (x0) = {x ∈ X | d(x, x0) = ϵ} = Bdϵ (x0)∖Bdϵ (x0).

Remark. (a) Bdϵ (x0) ̸= ∅ and Bdϵ (x0) ̸= ∅ for any metric d and ϵ > 0.

(b) ∂Bdϵ (x0) = ∅ for d = disc and any ϵ ̸= 1.

Definition 1.22. (a) x0 ∈ X is an interior point of A if there exists ϵ > 0 such that Bdϵ (x0) ⊆ A.

(b) The interior of A:

Int(A) := {x ∈ X | x is an interior point of A}.

(c) x0 ∈ X is an accumulation point (limiting point) of A if for ϵ > 0, there exists x0 ̸= x ∈ A such
that x ∈ Bdϵ (x0).

(d) The derived set of A:

A′ = {x ∈ X | x is an accumulation point of A}.

(e) The closure of A:
A := A ∪A′.

Example 1.23. Let X = (0, 1) and A = X. Then A = (0, 1) by definition.

Lemma 1.24. (a) Int(A) ⊆ A ⊆ A.

(b) x0 ∈ A if and only if for ϵ > 0, there exists x ∈ A such that x ∈ Bdϵ (x0), i.e., B
d
ϵ (x0) ∩A ̸= ∅.

(c) If A ⊆ B, then Int(A) ⊆ Int(B) and A ⊆ B.

(d) Int(A) =
(
Ac
)c
.

(e) A = (Int(Ac))c.

Definition 1.25. (a) A is open if A = Int(A) or A ⊆ Int(A).
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(b) A is closed if A = A or A ⊆ A.

Lemma 1.26. A is open if and only if Ac is closed and A is closed if and only if Ac is open.

Theorem 1.27. Bϵ(x0) is open and Bϵ(x0) is closed for all x0 ∈ X and ϵ > 0.

Proof. Let x ∈ Bϵ(x0), then d(x, x0) < ϵ. Let ϵ′ := ϵ − d(x, x0) > 0. Note for y ∈ Bϵ′(x), we have
d(y, x0) ⩽ d(y, x) + d(x, x0) < ϵ′ + d(x, x0) = ϵ. So Bϵ′(x) ⊆ Bϵ(x0). Then x ∈ Int (Bϵ(x0)).

Let x ∈ Bϵ(x0), then we have B 1
n
(x) ∩ Bϵ(x0) ̸= ∅ for n ∈ N. So there exists {yn} such that

d(yn, x) <
1
n and d(yn, x0) ⩽ ϵ for n ∈ N. Then d(x, x0) ⩽ d(x, yn) + d(yn, x0) <

1
n + ϵ for n ∈ N.

So d(x, x0) ⩽ ϵ. Thus, x ∈ Bϵ(x0).

Remark. (a) A metric space is a topology space with the topology being the collection of all open
sets.

(b) In metric space, certain sets could be open and closed. For example, in (X, ddisc), any set
A ⊆ X is both open and closed.

Proposition 1.28. (a) ∅ and X are open and closed.

(b) If {Aα}α∈I is open, then
⋃
α∈I Aα is open.

(c) If {Ai}ni=1 is open, then
⋂n
i=1Ai is open.

(d) If {Aα}α∈I is closed, then
⋂
α∈I Aα is closed.

(e) If {Ai}ni=1 is closed, then
⋃n
i=1Ai is closed.

Proof. (a) Since ∅ ⊆ Int(∅), ∅ is open. Since for x ∈ X, Bϵ(x) ⊆ X for ϵ > 0, X is open.

(b) Let x ∈
⋃
α∈I Aα. Then there exists α0 ∈ I such that x ∈ Aα0

= Int(Aα0
) ⊆ Int

(⋃
α∈I Aα

)
.

(c) Let x ∈
⋂n
i=1Ai = Int(Ai). Then x ∈ Ai for i = 1, . . . , n. So there exists ϵi > 0 such that

Bϵi(x) ⊆ Ai for each i = 1, ·, n. Let ϵ = min1⩽i⩽n {ϵi} > 0. Then Bϵ(x) ⊆ Ai for each i = 1, . . . , n.
So Bϵ(x) ⊆

⋂n
i=1Ai. Thus, x ∈ Int(

⋂n
i=1Ai).

Theorem 1.29. (a) Int(A) is the largest open set contained in A.

(b) A is the smallest closed set containing A.

Proof. (a) Let x ∈ Int(A). Then there exists ϵx > 0 such that Bϵx(x) ⊆ A. Since Bϵx(x) =
Int(Bϵx(x)) ⊆ Int(A), we have

⋃
x∈Int(A)Bϵx(x) ⊆ Int(A) =

⋃
x∈Int(A){x} ⊆

⋃
x∈Int(A)Bϵx(x).

So Int(A) =
⋃
x∈Int(A)Bϵx(x), which implies Int(A) is open. Let B ⊆ A such that B is open.

B = Int(B) ⊆ Int(A), which implies Int(A) is the largest such set.

(b) Since A = (Int(Ac))c, we have A is closed. Let C ⊇ A such that C is closed. Then C ⊇ A,
which implies A is the smallest such set.

Corollary 1.30. (a) Int(Int(A)) = Int(A).

(b) A = A.

(c) If A is open, then A is a union of open balls.

Proposition 1.31. (a) A ∪B = A ∪B and Int(A ∩B) = Int(A) ∩ Int(B).

(b) A ∩B ⊆ A ∩B and Int(A ∪B) ⊇ Int(A) ∪ Int(B).
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1.3 Separable Spaces

In this section we introduce the concept of separability for a metric space. This is a topo- logical
property that may also give a limitation on the size of metric spaces. More precisely, separable
metric spaces can not have a size that is larger than the size of real numbers. In order to define
separability, we need to introduce the notion of denseness. Roughly speaking, a subset A is dense
in a metric space (X, d) if for every point in X, it is either in A or arbitrarily close to a member of
A.

Assumption 1.32. Let (X, d) be a metric space and A ⊆ X.

Definition 1.33. A is said to be dense in (X, d) if A = X.

Remark. A is dense in X if and only if x ∈ A for x ∈ X if and only if for x ∈ X and any ϵ > 0, we
have Bϵ(x)∩A ̸= ∅ if and only if for x ∈ X and any ϵ > 0, there exists α ∈ A such that d(x, α) < ϵ.

Definition 1.34. A is said to be separable if X contains a countable dense subset.

Remark. Separability depends on the metric.

Example 1.35. (X, ddisc) is separable if and only if X is countable.

Proof. ⇐= Clearly.

=⇒ Let A ⊊ X. Then there exists x ∈ X ∖ A. So B1/2(x) = {x} ̸⊆ A. Thus, A ̸= X and so
the dense subset of X is X. Since X is countable, X is the countable dense subset of X.

Example 1.36. (a) (R, | · |) is separable since Q is a countable dense subset of R.

(b) (Rn, dp) is separable since {(q1, . . . , qn) | qi ∈ Q,∀ i = 1, . . . , n} is a countable dense subset of
Rn.

(c) (R, ddisc) is not separable.

Example 1.37. (a) (lp, dp) is a separable space for p ∈ R⩾1.

(b) (l∞, d∞) is not separable.

Proof. (a) Let A = {{xn} | xn ∈ Q, xn ̸= 0 for finitely many n ∈ N}. Since A ∼=
⋃
n∈N Qn, we have

A ⊆ lp is countable. Let x = {xi} ∈ lp and ϵ > 0. Then
∑∞
i=1|xi|

p
< ∞. So there exists N ∈ N

such that
∑∞
i=N |xi|p < ϵ/2. Pick a = {q1, . . . , qn, 0, 0, · · · } ∈ A such that |xi − qi| < ϵ

(2N)p . Then

dp(x, a) = (
∑∞
i=1|xi − qi|p)

1/p
< ϵ. So A is dense in (lp, dp).

(b) Consider Y = {{yn} = y ∈ l∞ | yn = 0 or 1,∀n ∈ N}. There is a 1-1 correspondence between
x ∈ [0, 1] and a sequence coming from its binary representaion

∑∞
n=1

yn
2n .

Since d∞|Y is a discrete metric, we have {B1/2(y) | y ∈ Y } is a collection of uncountable disjoint
open balls. So any dense subset of (l∞, d∞) is not countable.

Example 1.38. (C[0, 1], dp) is separable for p ∈ R⩾1.
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Proof. (a) Let p = ∞. It is enough to consider Q[0, 1] =
{∑finite

i=0 qit
i
∣∣ qi ∈ Q,∀ i, t ∈ [0, 1]

}
, which

is countable since Q[0, 1] ∼=
⋃∞
n=1 Qn. Let x ∈ C[0, 1] and ϵ > 0. By the Weierstrass Approximation

theorem, P [0, 1] is dense in C[0, 1], so there exists p =
∑n
i=1 pit

i ∈ P [0, 1] such that d∞(x, p) < ϵ
2 .

Since Q is dense in R, we can pick q(t) =
∑n
i=0 qit

i ∈ Q[0, 1] such that |qi − pi| < ϵ
2(n+1) for

i = 1, . . . , n. Then d∞(x, q) ⩽ d∞(x, p) + d∞(p, q) ⩽ ϵ
2 + maxt∈[0,1]

∣∣∑n
i=0(pi − qi)t

i
∣∣ ⩽ ϵ

2 +
maxt∈[0,1]

∑n
i=0|pi − qi|ti ⩽ ϵ

2 +
∑n
i=0|pi − qi| = ϵ.

(b) Let p ∈ R⩾1. Observe that dp(x, y) =
(∫ 1

0
|x(t)− y(t)|pdt

)1/p
⩽
(∫ 1

0
|d∞(x, y)|pdt

)1/p
=

d∞(x, y) for x, y ∈ C[0, 1]. Then, clearly, we have the result.

Example 1.39. (B[0, 1], d∞) is not separable.

Proof. Let Y =

{
ys ∈ B[0, 1]

∣∣∣∣∣ ys(t) =
{

1 if s ̸= t
0 if s = t

}
. Then |Y | = |[0, 1]|, which implies Y is

uncountable. Also, note d∞(ys1 , ys2) = supt∈[0,1] |ys1(t)− ys2(t)| =
{

1 if s1 ̸= s2
0 if s1 = s2

for s1, s2 ∈

[0, 1]. So d∞|Y is a discrete metric. Then {Bd1/2(ys) | ys ∈ Y } is a collection of uncountable disjoint

open balls. Thus, any dense subset of (B[0, 1], d∞) is not countable.

1.4 Continuous Mapping and Sequences

Let (X, dX) and (Y, dY ) be metric spaces and A ⊆ X.

Definition 1.40. Let f : (X, dX) ! (Y, dY ). We say f is continuous at x0 if for ϵ > 0, there exists

δ(x0, ϵ) > 0 such that f(x) ∈ BdYϵ (f(x0)) whenever x ∈ BdXδ (x0), i.e., f
(
BdXδ (x0)

)
⊆ BdYϵ (f(x0)),

i.e., BdXδ (x0) ⊆ f−1
(
BdYϵ (f(x0))

)
.

Theorem 1.41. Let f : (X, dX) ! (Y, dY ). Then f is continuous if and only if for any U ⊆ Y
open, f−1(U) ⊆ X open.

Proof. ⇐= Let f be continuous and U ⊆ Y be open. If f−1(U) = ∅, then it is open. Assume
now f−1(U) ̸= ∅. Let x0 ∈ f−1(U). Then f(x0) ∈ f

(
f−1(U)

)
⊆ U . Since U is open, there

exists ϵ > 0 such that Bϵ (f(x0)) ⊆ U . Since f is continuous at x0, there exists δ > 0 such that
Bδ(x0) ⊆ f−1 (Bϵ (f(x0))) ⊆ f−1(U). So f−1(U) is open.

⇐= Let x0 ∈ X and ϵ > 0. Then Bϵ (f(x0)) ⊆ Y open. So by assumption, f−1 (Bϵ (f(x0))) ⊆ X
is open. Also, since x0 ∈ f−1f(x0) ⊆ f−1 (Bϵ (f(x0))), there exists δ > 0 such that Bδ(x0) ⊆
f−1 (Bϵ (f(x0))). So f is continuous at x0.

Definition 1.42. x is a sequence in X denoted as x = {xn} if x is a mapping from N to X, where
xn = x(n) for n ∈ N.

(a) {xn} converges to x0 ∈ X if for ϵ > 0, there exists N ∈ N such that d(xn, x0) < ϵ for n ⩾ N ,
i.e., {xn}n⩾N ⊆ Bdϵ (x0). Denote it as

lim
n!∞

xn = x0 and xn
d
−! x0 as n! ∞.
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(b) {xn} is Cauchy if for ϵ > 0, there exists N ∈ N such that xn ∈ Bdϵ (xm) whenever m,n > N ,

i.e., d(xn, xm)
| · |
−−! 0 as m,n! ∞.

(c) {xn} is bounded if {xn} ⊆ Br(x0) for some x0 ∈ X and r > 0.

Remark. {xn} ⊆ X is bounded if and only if diam({xn}) = supm,n∈N {d(xm, xn)} <∞.

Proof. =⇒ Since {xn} ⊆ X is bounded, there exists x0 ∈ X and r > 0 such that d(xn, x0) < r for
each n ∈ N. Then d(xm, dn) ⩽ d(xm, x0) + d(xn, x0) ⩽ 2r <∞ for m,n ∈ N.

⇐= We can choose any xn as a compared point.

Theorem 1.43. (a) Convergent sequence has a unique limit.

(b) “Convergent sequence” ⊆ “Cauchy sequence” ⊆ “bounded sequence”.

Proof. (a) Assume xn ! x and xn ! y as n ! ∞. Then d(x, y) ⩽ d(x, xn) + d(xn, y) for n ∈ N.
So d(x, y) ⩽ limn!∞(d(x, xn) + d(xn, y)) = limn!∞ d(x, xn) + limn!∞(xn, y) = 0 + 0 = 0.

(b) Let xn ! x as n ! ∞. Then d(xn, xm) ⩽ d(xn, x) + d(x, xm). So 0 ⩽ limm,n!∞ d(xn, xm) ⩽
limn!∞ d(xn, x) + limm!∞ d(x, xm) = 0 + 0 = 0. So {xn} is Cauchy.

Let {xn} be Cauchy. Then for ϵ = 1, there exists N ∈ N such that d(xn, xm) < 1 whenever
n,m ⩾ N . So d(xn, xN ) < 1 for n ⩾ N . Let r = max {1, d(x1, xN ), . . . , d(XN−1, XN )}. Then
{xn} ⊆ Bd2r(xN ).

Theorem 1.44. (a) x ∈ A′ if and only if there exists {xn} ⊆ A with xn ̸= x for n ∈ N such that

xn
d
−! x ∈ X as n! ∞.

(b) x ∈ A if and only if there exists {xn} ⊆ A such that xn
d
−! x ∈ X as n! ∞.

(c) A is closed if and only if if {xn} ⊆ A and xn
d
−! x as n! ∞, then x ∈ A.

Proof. (a) x ∈ A′ if and only if for ϵ > 0, there exists x ̸= y ∈ A such that y ∈ Bdϵ (x) if and only if
there exists x ̸= xn ∈ A such that xn ∈ Bd1/n(x) for n ∈ N if and only if there exists {xn} ⊆ A with

xn ̸= x for n ∈ N such that xn
d
−! x as n! ∞.

(b) It is similar to (1).

(c) =⇒ By (2), xn
d
−! x ∈ A = A as n! ∞.

⇐= Let x ∈ A. Then by (2), there exists {xn} ⊆ A such that xn
d
−! x as n ! ∞. So By

assumption, x ∈ A.

Theorem 1.45. Let f : (X, dX) ! (Y, dY ). Then f is continuous at x0 ∈ X if and only if

(xn)
dY−! f(x0) whenever xn

dX−! x0 as n! ∞.

Proof. =⇒ Let f be continuous at x0 ∈ X and ϵ > 0. Then there exists δ(x0, ϵ) > 0 such that

BdXδ (x0) ⊆ f−1
(
BdYϵ (f(x0)

)
. Also, since xn

d
−! x as n ! ∞, there exists N ∈ N such that

{xn}n⩾N ⊆ BdXδ (x0) ⊆ f−1
(
BdYϵ (f(x0))

)
. So f ({xn}n⩾N ) ⊆ ff−1

(
BdYϵ (f(x0))

)
⊆ BdYϵ (f(x0)),

i.e., {f(xn)}n⩾N ⊆ BdYϵ (f(x0)). Thus, f(xn)
d
−! f(x0) as n! ∞.



10 CHAPTER 1. METRIC SPACES

⇐= Suppose f is not continuous at x0. Then there exists ϵ > 0 such that for δ > 0, there
exists xδ such that xδ ∈ BdXδ (x0) but f(xδ) ̸∈ BdYϵ (f(x0)). So there exists {xn} ⊆ X such that

xn ∈ BdX1/n(x0) but f(xn) ̸∈ BdYϵ (f(x0)) for n ∈ N. Thus, we have xn
dX−−! x0 but f(xn)

dY↛ f(x0) as

n! ∞, a contradiction.

1.5 Completeness

In real analysis we have encountered the notion of completeness when we prove that every Cauchy
sequence in R converges. In this section we generalize this concept to metric spaces. We will see
that unlike R, certain metric spaces are not complete. Roughly speaking, a space is complete if
there are no elements “missing” from it. A simple example is that the rational numbers Q is not
complete, because for instance, e is “missing” from it, even though we can construct a Cauchy
sequence of rational numbers that converges to e (e.g. {xn = (1+ 1

n )
n}). Remarkably, it turns out

that it is always possible to“fill all the holes” in an incomplete metric space, which leads to the
completion of a given metric space.

Assumption 1.46. Let (X, d) be a metric space.

Definition 1.47. (X, d) is said to be complete if every Cauchy sequence in (X, d) converges, i.e.,

there exists x ∈ X such that xn
d
! x for {xn} Cauchy.

Example 1.48. (R, | · |) is complete.

Example 1.49. (Rn, d2) is complete for n ∈ N.

Proof. Let {x(m)} be Cauchy in (Rn, d2), then d2(x(m), x(k)) ! 0 asm, k ! ∞. Since
∣∣∣x(m)
i − x

(k)
i

∣∣∣ ⩽(∑n
i=1

∣∣∣x(m)
i − x

(k)
i

∣∣∣2) 1
2

, we have
∣∣∣x(m)
i − x

(k)
i

∣∣∣ ! 0 as m, k ! ∞ for each i = 1, . . . , n, i.e.,

{x(m)
i } is Cauchy in (R, | · |) for each i = 1, . . . , n. Since R is complete, there exists xi ∈ R

such that x
(m)
i ! xi as m ! ∞ for each i = 1, . . . , n. Let x = (x1, . . . , xn) ∈ Rn. Then

d2(x
(m), x) =

(∑n
i=1

∣∣∣x(m)
i − xi

∣∣∣2) 1
2

! 0 as m! ∞, i.e., {x(m)} converges in (Rn, d2).

Example 1.50. (X, ddisc) is complete.

Proof. Let {xn} be Cauchy in (X, ddisc). Then there exists N ∈ N such that ddisc(xn, xm) < 1
2 for

all m,n ⩾ N . So xm = xn for m,n ⩾ N . Thus, {xn} converges in X.

Example 1.51. (lp, dp) with p ∈ R⩾1 is complete.

Proof. (a) Assume p = ∞. Let {xn} be a Cauchy sequence in (l∞, d∞) and ϵ > 0. Then there

exists N ∈ N such that
∣∣∣x(n)i − x

(m)
i

∣∣∣ ⩽ supi∈N

∣∣∣x(m)
i − x

(m)
i

∣∣∣ = d∞(x(n), x(m)) < ϵ for all m,n ⩾ N .

Since ϵ > 0 is arbitrary, {x(n)i } is Cauchy in (R, | · |) for each i ∈ N. Since (R, | · |) is complete,

there exists xi ∈ R such that x
(n)
i ! xi for i ∈ N. Let x = (x1, x2, . . . , ). Observe

∣∣∣x(n)i − xi

∣∣∣ =
limm!∞

∣∣∣x(n)i − x
(m)
i

∣∣∣ ⩽ ϵ for i ∈ N and any n ⩾ N . So d∞(x(n), x) = supi∈N

∣∣∣x(n)i − xi

∣∣∣ ⩽ ϵ for
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n ⩾ N . Since ϵ > 0 is arbitrary, d∞(x(n), x) ! 0 as n ! ∞. Notice |xi| ⩽
∣∣∣xi − x

(N)
i

∣∣∣ + ∣∣∣x(N)
i

∣∣∣ ⩽
ϵ+

∣∣∣x(N)
i

∣∣∣ for i ∈ N. So x ∈ l∞. Thus, {x(n)} converges in (l∞, d∞).

(b) Assume p ∈ R⩾1. Let {x(n)} be Cauchy in (lp, dp) and ϵ > 0. Then for each ϵ > 0, there is an

N ∈ N such that
∣∣∣x(n)i − x

(m)
i

∣∣∣ ⩽ (∑∞
i=1

∣∣∣x(n)i − x
(m)
i

∣∣∣p) 1
p

= dp(x
(n), x(m)) < ϵ for all m,n ⩾ N and

each i ∈ N. So {x(n)i } is a Cauchy sequence for each i ∈ N. Since (R, | · |) is complete, there exists

xi ∈ R such that x
(n)
i ! xi for i ∈ N. Let x = (x1, x2, · · · ). Observe

∑k
i=1

∣∣∣x(n)i − x
(m)
i

∣∣∣p < ϵp for

all m,n ⩾ N each k ∈ N. So
∑k
i=1

∣∣∣x(n)i − xi

∣∣∣p = limm!∞
∑k
i=1

∣∣∣x(n)i − x
(m)
i

∣∣∣p ⩽ ϵp for each n ⩾ N

and each k ∈ N. Hence
∑∞
i=1

∣∣∣x(n)i − xi

∣∣∣p ⩽ ϵp for each n ⩾ N . It implies

•
(∑∞

i=1

∣∣∣x(n)i − xi

∣∣∣p) 1
p

⩽ ϵ for each n ⩾ N , i.e., x(n)
dp
−! x as n! ∞ and

• x(n) − x ∈ lp. By the Minkowski inequality, ∥x∥ =
∥∥x(n) + (x− x(n))

∥∥
p

⩽
∥∥x(n)∥∥

p
+∥∥x− x(n)

∥∥
p
<∞, i.e., x ∈ lp.

Thus, {x(n)} converges in (lp, dp).

Example 1.52. (B[0, 1], d∞) is complete.

Proof. Let {xn} be Cauchy in (B[0, 1], d∞) and ϵ > 0. Then there exists N ∈ N such that
|xn(t)− xm(t)| ⩽ supt∈[0,1] |xn(t)− xm(t)| = d∞(xn, xm) < ϵ for all m,n ⩾ N and each t ∈ [0, 1].
So {xn(t)} is Cauchy in (R, | · |) for each t ∈ [0, 1]. Since (R, | · |) is complete, there exists xt ∈ R
such that xn(t) ! xt for each t ∈ [0, 1]. Let x : [0, 1] ! R given by x(t) = limn!∞ xn(t). Ob-
serve |xn(t)− x(t)| = limm!∞|xn(t)− xm(t)| ⩽ ϵ for n ⩾ N and any t ∈ [0, 1]. So d∞(xn, x) =

supt∈[0,1] |xn(t)− x(t)| ⩽ ϵ for n ⩾ N . So xn
d∞−−! x as n ! ∞. Note |x(t)| ⩽ |x(t)− xN (t)| +

|xN (t)| ⩽ ϵ+Mt, for some Mt ∈ R given xN ∈ B[0, 1], for t ∈ [0, 1]. So x ∈ B([0, 1]). Thus, {x(n)}
converges in (B[0, 1], d∞).

Theorem 1.53. Let A ⊆ X.

(a) If (A, d) is complete, then A = A.

(b) If A = A and (X, d) is complete, then (A, d) is complete,

Proof. (a) Let x ∈ A ⊆ X. Then there exists {xn} ⊆ A ⊆ X such that xn ! x as n ! ∞. So
{xn} converges in (X, d) and then {xn} is Cauchy in (X, d) and hence Cauchy in (A, d). Since
(A, d) is complete, there exists x0 ∈ A such that xn ! x0 as n ! ∞. By the uniqueness of limit,
x = x0 ∈ A. So A ⊆ A.

(b) Let {xn} be Cauchy in (A, d). Then {xn} is Cauchy in (X, d). Since (X, d) is complete, there
exists x ∈ X such that xn ! x ∈ A as n ! ∞. Since A is closed, x ∈ A. Thus, {xn} converges in
A.

Example 1.54. (lp, dq) with 1 ⩽ p < q ⩽ ∞ is not complete.



12 CHAPTER 1. METRIC SPACES

Proof. Let A = {{xn} | xn ∈ Q, xn ̸= 0 for finitely many n ∈ N}.

(a) Assume q < ∞. Recall A is dense in lq. Note A ⊊ lp ⊊ lq. So lq = A ⊆ lp ⊆ lq = lq. Hence
lp = lq ⊋ lp in (l∞, d∞). So (lp, dp) is not complete.

(b) Assume q = ∞. We know A is dense in c0. Note A ⊊ lp ⊊ c0 ⊊ l∞. So c0 = A ⊆ lp ⊆ c0 = c0.
Hence lp = c0 ⊊ l∞. So lp ⊊ lp in (l∞, d∞). Thus, (lp, d∞) is not complete.

Example 1.55. (a) C([0, 1], d∞) is complete.

(b) (C[0, 1], dp) with p ∈ R⩾1 is not complete.

Proof. (a) Method 1. Since C[0, 1] ⊆ B[0, 1] and (B[0, 1], d∞) is complete, it is enough to show

C[0, 1] is closed in (B[0, 1], d∞). Let {xn} ⊂ C[0, 1] and xn
d∞−−! x as n ! ∞. Let {tn} ⊆ R and

tn
| · |
−−! t as n ! ∞. Note |x(tn)− x(t)| ⩽ |x(tn)− xn(tn)| + |xn(tn)− xn(t)| + |xn(t)− x(t)| ! 0

as n! ∞. So x ∈ C[0, 1]. Thus, C[0, 1] is closed in (B[0, 1], d∞).

Method 2. Let {xn} be Cauchy in (C[0, 1], d∞) and ϵ > 0. Then there exists N ∈ N such
that |xn(t)− xm(t)| ⩽ maxt∈[0,1], |xn(t)− xm(t)| = d∞(xn, xm) < ϵ for all m,n ⩾ N and each
t ∈ [0, 1]. So {xn(t)} is Cauchy in (R, | · |) for each t ∈ [0, 1]. Since (R, | · |) is complete, there exists
xt ∈ R such that xn(t) ! xt for each t ∈ [0, 1]. Let x : [0, 1] ! R given by x(t) = limn!∞ xn(t).
Observe |xn(t)− x(t)| = limm!∞|xn(t)− xm(t)| ⩽ ϵ for n ⩾ N and any t ∈ [0, 1]. So d∞(xn, x) =
maxt∈[0,1] |xn(t)− x(t)| ⩽ ϵ for n ⩾ N . So xn converges to x uniformly and hence x ∈ C[0, 1].

Thus, {x(n)} converges in (C[0, 1], d∞).

(b) Let xn(t) =


0 if 0 ⩽ t ⩽ 1

2
(n+ 1)(t− 1

2 ) if 1
2 < t < 1

2 + 1
n+1

1 if 1
2 + 1

n+1 ⩽ t ⩽ 1
for n ∈ N. Then {xn} ⊆ C[0, 1]. Let

m,n ∈ N with n ⩾ m. Then |xn(t)− xm(t)| = xn(t) − xm(t)

{
⩽ 1 if 1

2 ⩽ t ⩽ 1
2 + 1

m+1

= 0 otherwise
. So

dp(xn, xm) =
(∫ 1

0
|xn(t)− xm(t)|p

) 1
p

⩽
(

1
m+1

) 1
p

! 0 as m ! 0. Hence {xn} is Cauchy in C[0, 1].

Suppose there is x ∈ C[0, 1] such that dp(xn, x) ! 0 as n! ∞. Then

(∫ 1
2

0

|xn(t)− x(t)|pdt+
∫ 1

1
2+

1
m+1

|xn(t)− x(t)|pdt

) 1
p

⩽

(∫ 1

0

|xn(t)− x(t)|pdt
) 1
p

= dp(xn, x).

Let n ⩾ m ! 0, then limn!∞

(∫ 1
2

0
|xn(t)− x(t)|pdt

) 1
p

⩽ 0 = limn!∞ dp(xn, x). So x(t) ={
0 if 0 ⩽ t ⩽ 1

2
1 if 1

2 < t ⩽ 1
. Thus, x ̸∈ C[0, 1], a contradiction.

Example 1.56. (P [0, 1], d∞) is not complete.

Proof. By Weierstrass Approximation theorem, P [0, 1] ⊆ C[0, 1] is dense. Then P [0, 1] = C[0, 1] ⊋
P [0, 1]. Also, since (C[0, 1], d∞) is complete, we have (P [0, 1], d∞) is not complete.
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1.5.1 Completion of a Metric Space

Definition 1.57. Let f : (X, dX) ! (Y, dY ).

(a) f is said to be isometric or an isometry if dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X, i.e., f
preserve distance.

(b) If f is a bijective isometry, then (X, dX) and (Y, dY ) are called isometric spaces.

Remark. If f is an isometry, then f is 1-1 and continuous.

Definition 1.58. Let (X, d) be a metric space. A complete metric space (X̃, d̃) is called a comple-

tion of (X, d) if there exists an isometry f : (X, d) ! (X̃, d̃) such that f(X) is dense in (X̃, d̃).

Example 1.59. Let I be the identity mapping I : Q ↪! R. Since I(Q) = Q = R, it is a completion.

Lemma 1.60. (a) If xn ! x, yn ! y, then d(xn, yn) ! d(x, y).

(b) If {xn} and {yn} are Cauchy, then there exists r ∈ (R, | · |) such that d(xn, yn) ! r.

Proof. (a) |d(xn, yn)− d(x, y)| ⩽ d(xn, x) + d(yn, y).

(b) |d(xn, yn)− d(xm, ym)| ⩽ d(xn, xm) + d(yn, ym) ! 0.

Theorem 1.61. Every metric space has a completion and all the completion are isometric spaces.

Proof. • Step 1. Construct X̃. Let C = {{xn} | {xn} is Cauchy in X}. Define “∼” on C by
{xn} ∼ {x′n} if limn!∞ d(xn, x

′
n) = 0. Easy to check “∼” is an equivalent relation. Let

X̃ = { [x] | [x] is an equivalent class w.r.t “∼”}.

• Step 2. Define

d̃ : X̃ × X̃ ! R
([x], [y]) 7! lim

n!∞
d(xn, yn),

where {xn} ∈ [x] and {yn} ∈ [y]. First, limn!∞ d(xn, yn) exists by the above lemma. Let
{xn} {x′n} ⊆ [x], and {yn}, {y′n} ⊆ [y], then |d(xn, yn)− d(x′n, y

′
n)| ⩽ d(xn, x

′
n)+d(yn, y

′
n) !

0 + 0 = 0. So limn!∞ d(xn, yn) = limn!∞ d(x′n, y
′
n). Thus, d̃ is well-defined. Easy to check

d̃ is a metric.

• Step 3. Define

f : X ! X̃

x 7! [(x)],

where [(x)] is the equivalent class that contains the constant (cauchy) sequence (x) = {x, x, · · · }.
Then for x, y ∈ X, d̃(f(x), f(y)) = d̃ ([(x)], [(y)]) = d̃ ((x), (y)) = limn!∞ d(x, y) = d(x, y).
So f is an isometry.

• Step 4. Let {xn} ∈ [x] ∈ X̃. For ϵ > 0, since {xn} is Cauchy in (X, d), there exists N ∈ N such

that as n ⩾ N , d(xn, XN ) < ϵ
2 . Then d̃ ([x], f(XN )) = d̃ ([x], [(xN )]) = limn!∞ d(xn, xN ) ⩽

ϵ
2 < ϵ. So f(X) is dense in (X̃, d).
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• Step 5. Let {[x]n} be Cauchy in (X̃, d̃). Since f(X) is dense in (X̃, d̃), there exists {zn} ⊆ X

such that d̃ ([x]n, f(zn)) = d̃ ([x]n, [(zn)]) <
1
n for n ∈ N. Since f is an isometry,

d(zn, zm) = d̃ (f(zn), f(zm)) ⩽ d̃ (f(zn), [x]n) + d̃ ([x]n, [x]m) + d̃ ([x]m, f(zm))

<
1

n
+ d̃ ([x]n, [x]m) +

1

m
! 0, as n,m! ∞.

So {zn} is Cauchy in (X, d). Let [x] be the equivalent class that contains {zn}. Note

d̃ ([x]n, [x]) ⩽ d̃ ([x]n, [(zn)]) + d̃ ([(zn)], [x])

⩽
1

n
+ lim
m!∞

d(zn, zm),∀n ∈ N.

So [x]n
d̃

−! [x]. Thus, (X̃, d̃) is complete.

• Let (X̂, d̂) be another completion of (X, d), then there exists an isometry g : X ! X̂ such

that g(X) is dense in (X̂, d̂).

X X̂

X̃

g

f
f◦g−1

For x̂, ŷ ∈ X̂, since g(X) is dense in (X̂, d̂), there exist {xn}, {yn} ⊆ X such that g(xn) !

x̂ and g(yn) ! ŷ. Since g is an isometry (then 1-1), g−1 : (g(X), d̂) ! (X, d) is also an
isometry, so g−1 is continuous. Thus, we get

d̃
(
(f ◦ g−1)(x̂), (f ◦ g−1)(ŷ)

)
= d̃

(
(f ◦ g−1)

(
lim
n!∞

g(xn)
)
, (f ◦ g−1)

(
lim
n!∞

g(yn)
))

= d̃
(
f
(
lim
n!∞

xn

)
, f
(
lim
n!∞

yn

))
= d̃

(
lim
n!∞

f(xn), lim
n!∞

f(yn)
)
= lim
n!∞

d̃(f(xn), f(yn))

= lim
n!∞

d(xn, yn) = lim
n!∞

d̂(g(xn), g(yn)) = d̂
(
lim
n!∞

g(xn), lim
n!∞

g(yn)
)
= d̂(x̂, ŷ).

So f ◦ g−1 is an isometry. Let [x] ∈ X̃. Since f(X) is dense in (X̃, d̃), there exists {xn} ⊆
X such that limn!∞ f(xn) = [x], w.r.t. d̃. So f(xn) is Cauchy in (X̃, d̃). Since f is an

isometry, {xn} is Cauchy in (X, d). Since g is an isometry, {g(xn)} is Cauchy in (X̂, d̂). Since

(X̂, d̂) is complete, limn!∞ g(xn) exists w.r.t. d̂. So (f ◦ g−1) (limn!∞ g(xn)) = limn!∞(f ◦
g−1)g(xn) = limn!∞ f(xn) = [x]. Hence f ◦ g−1 is onto. Thus, f ◦ g−1 : (X̃, d̃) ! (X̂, d̂) is a
bijective isometry, as desired.

1.6 Application of completeness

Let (X, d) be a metric space.

Definition 1.62. Let f : X ! X.
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(a) x ∈ X is called a fixed point of f if f(x) = x.

(b) f is called a contradiction on X if there exists α ∈ (0, 1) such that d(f(x), f(y)) ⩽ αd(x, y) for
x, y ∈ X.

Remark. If f is a contration, then so is fn for n ∈ N. The converse is not true. Let f : R ! R

be defined by f(x) =

{
−x if x ⩾ 0
x
2 if x < 0

. Since |f(x)− f(y)| = |x− y|, f is not a contraction. On

the other hand, f2(x) = f(f(x)) =

{
−x

2 if x ⩾ 0
x
4 if x < 0

. So for x, y ∈ R, we have
∣∣fx(x)− f2(y)

∣∣ ⩽
1
2 |x− y|, i.e., f2 is a contraction on R.

Theorem 1.63 (Banach Fixed Point Theorem). Let (X, d) be nonempty and complete, and f be a
contraction on X. Then f has a unique fixed point.

Proof. Choose x0 ∈ X. Define xn = f(xn−1) = f2(xn−2) = fn−1(x1) = fn(x0) for n ∈ N. Then
{xn} ⊆ X. Since f is a contraction, there exists 0 < α < 1 such that d(f(x), f(y)) ⩽ d(x, y)
for x, y ∈ X. Note d(xn+1, xn) = d(f(xn), f(xn−1)) ⩽ αd(xn, xn−1) ⩽ · · · ⩽ αnd(x1, x0). Then
for n > m, d(xn, xm) ⩽ d(xm, xm+1) + d(xm+1, xm+2) + · · · + d(xn−1, xn) ⩽ (αm + αm+1 + · · · +
αn−1)d(x1, x0) ⩽ αm 1−αn−m

1−α d(x, x0) ⩽ αm

1−αd(x, x0) ! 0 as m ! ∞. So {xn} is Cauchy in (X, d).

Since (X, d) is complete, there exists x ∈ X such that xn
d
−! x as n ! ∞. Let ϵ > 0. Then there

exists N ∈ N such that d(xn, x) <
ϵ
2 for n ⩾ N . So d(x, f(x)) ⩽ d(x, xN+1) + d(xN+1, f(x)) <

ϵ
2 + d(f(XN ), f(x)) ⩽ ϵ

2 + αd(xN , x) ⩽ ϵ
2 + α ϵ2 < ϵ. Since ϵ > 0 is arbitrary, d(x, f(x)) = 0.

So f(x) = x. Suppose there exist two x1, x2 ∈ X such that f(x1) = x1 and f(x2) = x2. Then
d(x1, x2) = d(f(x1), f(x2)) ⩽ αd(x1, x2). So d(x1, x2) = 0 and thus x1 = x2.

Remark. In the above theorem, if there is n ∈ N such that fn is a contraction, then f has a
unique fixed point. Proof. Since fn is a contraction, it has a unique fixed point x ∈ X. Then
fn(x) = x and so fn(f(x)) = fn+1(x) = f(fn(x)) = f(x), i.e., f(x) is a fixed point of fn. By the
uniqueness, f(x) = x. Suppose there are two x1, x2 ∈ X such that f(x1) = x1 and f(x2) = x2.
Then fn(x1) = fn−1(f(x1)) = fn−1(x1) = · · · = f(x1) = x1 and similarly, fn(x2) = x2, i.e., x1
and x2 are both a fixed point of fn. By the uniqueness, x1 = x2.

Example 1.64. Consider the integral equation x(t) − λ
∫ 1

0
et−sx(s)ds = y(t), where y ∈ C[0, 1]

and |λ| < 1. Then the equation has a unique solution x ∈ [0, 1]. Rewrite the equation as e−tx(t)−
λ
∫ 1

0
e−sx(s)ds = e−ty(t). Let z(t) = e−tx(t) and w(t) = e−ty(t). Then z(t) − λ

∫ 1

0
z(s)ds = w(t).

Define f : C[0, 1] ! C[0, 1] by f(z) = w + λ
∫ 1

0
z(s)ds. Let z1, z2 ∈ [0, 1]. Note

d∞(f(z1), f(z2)) = max
t∈[0,1]

∣∣∣∣w(t) + λ

∫ 1

0

z1(s)ds− w(t)− λ

∫ 1

0

z2(s)ds

∣∣∣∣
= max
t∈[0,1]

∣∣∣∣λ∫ 1

0

z1(s)ds− λ

∫ 1

0

z2(s)ds

∣∣∣∣ = |λ|
∣∣∣∣∫ 1

0

(z1(s)− z2(s))ds

∣∣∣∣
⩽ |λ|

∫ 1

0

|z1(s)− z2(s)|ds ⩽ |λ|
∫ 1

0

d∞(z1, z2)ds = |λ|d∞(z1, z2).

Definition 1.65. Let A ⊆ X. A is called nowhere dense in X if Int(A) = ∅.
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Example 1.66. A single point {x} ⊆ R is nowhere dense in (R, | · |).

Example 1.67.

A =

{
f ∈ C[0, 1] | ∃ x0 ∈ [0, 1] and M > 0 s.t.

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ⩽M,∀x ∈ [0, 1]

}
is nowhere dense in C[0, 1].

Example 1.68. The cantor set is nowhere dense in (R, | · |).

Theorem 1.69 (Baire Catogory Theorem). Let (X, d) be complete. Then X cannot be written as
a countable union of nowhere dense sets.

Proof. Suppose not, then x =
⋃∞
n=1An with An nowhere dense in X. Since A1 is nowhere

dense, A1 ̸= ∅ and then Ac1 ̸= ∅ and open. Pick x1 and B1 := Bdϵ1(x1) ⊆ Ac1 with ϵ1 < 1
2 .

Since A2 is nowhere dense, A2 ̸⊇ Bdϵ1
2

(x1) and then Ac2 ∩ Bdϵ1
2

(x1) ̸= ∅ and open. Pick x2

and B2 := Bdϵ2(x2) ⊆ Ac2 ∩ Bdϵ1
2

(x1) open with ϵ2 < ϵ1
2 < 1

22 . Since A3 is nowhere dense,

A3 ̸⊇ Bdϵ2
2

(x2) and then Ac3 ∩ Bdϵ2
2

(x2) ̸= ∅ and open. Repeat this, we get a sequence of open

balls Bn’s that satisfies Bn ⊇ Bdϵn
2
(xn) ⊇ Bn+1 with ϵn < 1

2n and Bn ∩ An = ∅. Let n,m ∈ N
with n > m. Note d(xn, xm) ⩽ d(xm, xm+1) + · · · + d(xn−1, xn) <

ϵm
2 + ϵm+1

2 + · · · + ϵn−1

2 <

1
2

(
1
2m + 1

2m+1 + · · ·+ 1
2n−1

)
= 1

2
1
2m

1−( 1
2 )
n−m

1− 1
2

< 1
2m ! 0 as m! 0. So {xn} is Cauchy. Since (X, d)

is complete, there exists x ∈ X such that xn ! x as n ! ∞. Also, since Bn ⊆ Bm, d(xn, xm).
Letting n be such that d(xn, x) <

ϵm
2 , we have d(x, xm) ⩽ d(x, xn) + d(xn, xm) < ϵm

2 + ϵm
2 < ϵm.

So x ∈ Bm for m ∈ N. Then x ̸∈ Am for m ∈ N and so x ̸̸∈
⋃∞
n=1An = X, a contradiction.

Example 1.70. [0, 1] is not countable. Suppose [0, 1] is countable, then [0, 1] =
⋃
x∈[0,1]{x} which

is a countable union of nowhere dense sets w.r.t. | · |, contradicted with Baire Category theorem.

Example 1.71. There exists f ∈ C[0, 1] such that f is not differentiable at every x ∈ [0, 1].

Proof. Suppose not. Let f ∈ C[0, 1]. Then there exists a point x0 ∈ [0, 1] such that f is differentiable

at x0. So there is n ∈ N such that |f ′(x0)| ⩽ n − 1, i.e., limx!x0

∣∣∣ f(x)−f(x0)
x−x0

∣∣∣ ⩽ n − 1. Then there

exists δ > 0 such that
∣∣∣ f(x)−f(x0)

x−x0

∣∣∣ ⩽ n whenever 0 < |x− x0| < δ. Choose m ∈ N such that 1
m < δ.

So
∣∣∣ f(x)−f(x0)

x−x0

∣∣∣ ⩽ n whenever 0 < |x− x0| < 1
m . Then f ∈ An×m := {f ∈ C[0, 1], |f(x)−f(x0)|

|x−x0| ⩽

n, 0 < |x− x0| < 1
m , n,m ∈ N}. So C[0, 1] =

⋃
n,m∈NAn×m, where An×m is nowhere dense in

C[0, 1] for n,m ∈ N, contradicted with the Baire Category theorem.

Example 1.72. If (V, ∥ · ∥) is Banach over any field k and Vi ⪇ V is (topological) closed for
i ∈ N, then

⋃∞
i=1 Vi ⊊ V . Suppose not. Since the proper subspaces {V1, V2, . . . , } of the vector

space V all have an empty interior and are closed, by Baire category theorem, V is not complete, a
contradiction. For instance, let k be a field, note k[x] =

⋃∞
i=1 Vi, where Vi = {deg(f) = i | f ∈ k[x]}

with dimk(Vi) = i. So Vi is finite dimensional, Vi is closed for each i ∈ N. Thus, k[x] can not be
equipped with a complete norm.



Chapter 2

Normed Linear Spaces

2.1 Definitions and Examples

Definition 2.1. X is called a vector space (linear space) (X,+, ·) over a scalar field K (R, C, etc)
if there exist two algebraic operations

“+” : X ×X ! X

(x, y) 7! x+ y

“·” : K×X ! X

(a, x) 7! ax
that satisfies for all a, b ∈ K and any x, y ∈ X,

(a) (X,+) is an abelian group with identity 0,

(b) a · (b · x) = (ab) · x,

(c) a · (x+ y) = a · x+ a · y,

(d) (a+ b) · x = a · x+ b · x,

(e) 1K · x = x, where 1K is the multiplicative identity of K.

Remark. Notice that there is no definition of the “product” of two elements in X. We typically
choose K = R or C.

Assumption 2.2. Let (X,+, ·) be a K-vector space and A ⊆ X.

Definition 2.3. (a) Y ⊆ X is called a subspace, denoted by Y ⩽ X if for a1, a2 ∈ K and any
y1, y2 ∈ Y , a1y1 + a2y2 ∈ Y .

(b) The span of A, denoted by span{A} or ⟨A⟩, is

⟨A⟩ =

{
finite∑
i=1

aixi

∣∣∣ ai ∈ K, xi ∈ A

}
.

(c) A is linearly independent, if
∑n
i=1 aixi = 0 with n ∈ N, ai ∈ K and xi ∈ A for i = 1, . . . , n, then

ai = 0 for i = 1, . . . , n.

17
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(d) A ⊆ X is a Hamel basis of X if A is linearly independent and ⟨A⟩ = X.

(e) The dimension of X is defined as dimX = |A|, where A is a Hamel basis of X.

A couple of natural questions one may ask are that whether a vector space always has a Hamel
basis, and whether all Hamel bases of the same vector space have the same number of elements (so
that the dimension of X is well-defined). The answers to both questions are affirmative. However,
their proofs require more tools (e.g., Zorn’s Lemma) from the set theory so we omit them and only
state the results here.

Theorem 2.4. (a) Every nonempty vector space has a Hamel basis.

(b) If A1 and A2 are Hamel bases of X, then |A1| = |A2|.

Definition 2.5. (a) (X, d,+, ·) is called a metric linear space if

(1) (X, d) is a metric space,

(2) (X,+, ·) is a vector space,

(3) + and · is continuous.

(b) (X, d,+, ·) is a translation and scaling invariant metric linear space if

(1) (X, d) is a metric space,

(2) (X,+, ·) vector space,
(3) d(x+ z, y + z) = d(x, y) and d(ax, ay) = |a|d(x, y) for all a ∈ R and x, y ∈ X.

(c) (X, ∥ · ∥,+, ·) is a normed linear space (NLS)

(1) (X,+, ·) is a vector space,

(2) the “norm” ∥ · ∥ : X ! K satisfies for all a ∈ K and x, y ∈ X,

i. ∥x∥ ⩾ 0,

ii. ∥x∥ = 0 if and only if x = 0,

iii. ∥ax∥ = |a|∥x∥,
iv. ∥x+ y∥ ⩽ ∥x∥+ ∥y∥.

Remark. Condition i is redundant. By iii and iv, 0 = ∥0∥ = ∥x− x∥ ⩽ ∥x∥ + ∥−x∥ = 2∥x∥, i.e.,
∥x∥ ⩾ 0.

Theorem 2.6. If X is a translation and scaling invariant metric linear space, then X is a metric
linear space.

Proof. It is enough to show + and · are continuous. Note + : X × X ! X and dX×X : (X ×
X) × (X ×X) ! K given by dX×X((x, y), (z, w)) = d(x, z) + d(y, w). Since d(+(x, y),+(z, w)) =
d(x + y, z + w) ⩽ d(x + y, y + z) + d(y + z, z + w) = d(x, z) + d(y, w) = dX×X((x, y), (z, w)),
we have + is Lipschitz continuous. Note · : K × X ! X and dK×X : (K × X) × (K × X) !
K give by dK×X((a, x), (b, y)) = |a− b| + d(x, y). Let (an, xn) ! (a, x) as n ! ∞ in K × X.
Then |an − a| + d(xn, x) ! 0 as n ! ∞. So an ! a and d(xn, x) ! 0 as n ! ∞. Hence
d(·(an, xn), ·(a, x)) = d(an·xn, a·x) ⩽ d(an·xn, an·x)+d(an·x, a·x) = |an|d(xn, x)+d(an·x−ax,0) =
|an|d(xn, x) + |an − a|d(x,0) ! 0 as n! ∞. Thus, · is continuous.
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Theorem 2.7. X is a translation and scaling invariant metric space if and only if X is a NLS.

Proof. =⇒ Let (X, d,+, ·) be a translation and scaling invariant metric linear space. Define ∥ · ∥ :
X ! K by ∥x∥ = d(x,0). Then for all a ∈ K and x, y ∈ X,

(a) ∥x∥ = 0 if and only if d(x,0) = 0 if and only if x = 0,

(b) ∥a · x∥ = d(a · x,0) = d(a · x, a · 0) = |a|d(x,0) = |a|∥x∥,

(c) ∥x+ y∥ = d(x+ y,0) ⩽ d(x+ y, y) + d(y,0) = d(x,0) + d(y,0) = ∥x∥+ ∥y∥.

So (X, ∥ · ∥,+, ·) is a NLS.

⇐= Let (X, ∥ · ∥,+, ·) be a NLS. Define d : X ×X ! K by d(x, y) = ∥x− y∥. Then

(a) d(x, y) = 0 if and only if ∥x− y∥ = 0 if and only if x− y = 0 if and only if x = y,

(b) d(x, y) = ∥x− y∥ = ∥−(y − x)∥ = ∥y − x∥ = d(y, x),

(c) d(x, y) = ∥x− y∥ = ∥(x− z) + (z − y)∥ ⩽ ∥x− z∥+ ∥z − y∥ = d(x, z) + d(z, y).

Also, note d(x + z, y + z) = ∥(x+ z)− (y + z)∥ = ∥x− y∥ = d(x, y) and d(ax, ay) = ∥ax− ay∥ =
|a|∥x− y∥. So (X, d,+, ·) is a translation and scaling invariant metric linear space.

Remark. Let (X, ∥ · ∥,+, ·) be a NLS. Then ∥ · ∥ : X ! R is Lipschitz continuous.

Proof. Note |∥x∥ − ∥y∥| = |d(x,0)− d(y,0)| ⩽ d(x, y) + d(0,0) = ∥x− y∥.

Example 2.8. (X, ddisc,+, ·) is not a metric linear space.

Proof. Note (X, ddisc) is a metric space and an K-vector space. Note + : X × X ! X. Let

(xn, yn) ! (x, y) as n ! ∞ in (X × X, dX×X). Then xn
ddisc−−−! x and yn

ddisc−−−! y as n ! ∞. So
there exists n ∈ N such that xn = x and yn = y for n ⩾ N . Then xn+yn = x+y for n ⩾ N . Hence

+(xn, yn) = xn + yn
disc
−−! x + y = +(x, y) as n ! ∞. So + is continuous. Note · : K ×X ! X.

Let ( 1n , xn) ! (0, x) as n! ∞ in (K×X, dK×X). But ·( 1n , xn) =
1
n · xn

ddisc↛ 0 = 0 · x = ·(0, x).

Example 2.9. (S, dS ,+, ·) is a MLS but not a NLS.

Proof. Note (S, dS) is a metric space and clearly an K-vector space. Note + : S × S ! S. Let

(x(n), y(n)) ! (x, y) as n ! ∞ in (S × S, dS×S). Then x(n)
dS−−! x and y(n)

dS−−! y as n ! ∞. So

x
(n)
i

|·|
−! xi and y

(n)
i

|·|
−! yi as n ! ∞ for i ∈ N. Hence x

(n)
i + y

(n)
i

|·|
−! xi + yi as n ! ∞ for

i ∈ N. So +(x(n), y(n)) = x(n) + y(n)
dS−−! x+ y = +(x, y) as n ! ∞. Thus, + is contniuous. Note

· : K × S ! S. Let (an, x
(n)) ! (a, x) as n ! ∞ in (K × S, dK×S). Then an

|·|
−! a and x(n)

dS−−! x

as n ! ∞. So x
(n)
i

·
−! xi as n ! ∞ for i ∈ N. Hence an · x(n)i

|·|
−! a · xi as n ! ∞ for i ∈ N. So

·(an, x(n)) = an · x(n) dS−−! a · x = ·(a, x) as n ! ∞. Thus, · is continuous. Easy to see (S, dS ,+, ·)
is translation invariant, but it is not scaling invariant.
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Example 2.10. (lp, dp,+, ·) for p ∈ R⩾1, (C[0, 1], dp,+, ·) for p ∈ R⩾1 and (B[0, 1], d∞) are trans-
lation and scaling invariant metric linear spaces and hence NLSs, with

∥x∥p =


(
∑∞
n=1|xn|

p
)

1
p , if x ∈ lp,

supn∈N |xn| if x ∈ l∞,(∫ 1

0
|x(t)|pdt

) 1
p

if x ∈ C[0, 1],

supt∈[0,1] x(t) if x ∈ C[0, 1] or B[0, 1].

Definition 2.11. A Banach space is a complete NLS, i.e.,

(a) (X, ∥ · ∥) is a NLS.

(b) X is complete w.r.t. d : X ×X ! R given by d(x, y) = ∥x− y∥.

Example 2.12. (lp, dp,+, ·) for p ∈ R⩾1, (C[0, 1], d∞,+, ·) and (B[0, 1], d∞,+, ·) are Banach spaces.

Definition 2.13. Let X be a vector space and A ⊆ X. A is said to be convex if for x, y ∈ A and
any λ[0, 1], λx+ (1− λ)y ∈ A.

Theorem 2.14. Let (X, ∥ · ∥) be a NLS. Then Bϵ(0) and Bϵ(0) are convex for ϵ > 0.

Proof. Let x, y ∈ Bϵ(0) = {z ∈ X | ∥z∥ < ϵ} and λ ∈ [0, 1]. Then ∥x∥, ∥y∥ < ϵ and so
∥λx+ (1− λ)y∥ ⩽ ∥λx∥+ ∥(1− λ)y∥ ⩽ |λ|∥x∥+ |1− λ|∥y∥ < λϵ+ (1− λ)ϵ = ϵ.

Example 2.15 (Unit desks in (R2, ∥ · ∥p)). Note

B1(0) = {(x, y) | ∥(x, y)∥p ⩽ 1} =

{
(x, y)

∣∣∣∣∣
{
xp + yp ⩽ 1 if 1 ⩽ p <∞,
max{|x|, |y|} ⩽ 1 if p = ∞.

}

X

Y

(a) When p = ∞, it is a square,

(b) When p = 2, it is a circle,

(c) When p = 1, it is a tiltable square

(d) When 0 < p < 1, the unit desk is concave, so (R2, ∥ · ∥p) is not a NLS, which we have showed
it is not a metric space.
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2.2 Sequence series and Schander basis

Assumption 2.16. Let (X, ∥ · ∥) and (Y, ∥ · ∥) be NLSs.

Definition 2.17. Let {xn} ⊆ X.

(a) {xn} is convergent if there exists x ∈ X such that ∥xn − x∥ ! 0 as n ! ∞. Denote is as

limn!∞ xn = x or xn
∥ · ∥
−−! x as n! ∞.

(b) {xn} is Cauchy if for ϵ > 0, thre exists N ∈ N such that ∥xn − xm∥ < ϵ whenever n ⩾ N , i.e.,
∥xn − xm∥ ! 0 as n,m! ∞.

(c) The series
∑∞
n=1 xn is convergent if there exists x ∈ X such that

∥∥∥∑N
i=1 xi − x

∥∥∥! 0, as N !
∞.

(d) The series
∑∞
n=1 is absolutely convergent if

∑∞
n=1∥xn∥ <∞.

Theorem 2.18. (X, ∥ · ∥) is Banach if and only if every absolutely convergent series in (X, ∥ · ∥)
converges.

Proof. =⇒ Let {xn} ⊆ X such that
∑∞
n=1∥xn∥ < ∞. Let SN =

∑N
n=1 xn for N ∈ N. Let

N,M ∈ N with N > M . Since
∑∞
n=1∥xn∥ < ∞, ∥SN − SM∥ =

∥∥∥∑N
n=M+1 xn

∥∥∥ ⩽
∑N
n=M+1∥xn∥ ⩽∑∞

n=M+1∥xn∥ ! 0 as M ! ∞. So {SN} is Cauchy in (X, ∥·∥). Since (X, ∥ · ∥) is Banach, there

exists x ∈ X such that
∑∞
n=1 xn = limN!∞

∑N
n=1 xn = limN!∞ SN = x, i.e.,

∑∞
n=1 converges.

⇐= Let {xn} be Cauchy in (X, ∥ · ∥). Then there exists n1 ∈ N such that ∥xn − xn1
∥ < 1

2
for n ⩾ n1. For i ∈ Z⩾2, ni ∈ N such that ∥xn − xni∥ < 1

2i for n ⩾ ni ⩾ ni−1. In particular,∥∥xni+1
− xni

∥∥ < 1
2i for i ∈ N. So

∑∞
k=1

∥∥xnk+1
− xnk

∥∥ ⩽
∑∞
k=1

1
2k

= 1 < ∞. Hence
∑∞
k=1 xnk+1

−
xnk is absolutely convergent. By assumption, there exists x ∈ X such that

∑∞
k=1 xnk+1

− xnk = x,
i.e., limk!∞(xnk+1

− xn1) = x, i.e., limk!∞ xnk = x+ xn1 , i.e., {xnk} converges in (X, ∥ · ∥). Also,
since {xn} is Cauchy in (X, ∥ · ∥), we have {xn} converges. Thus, (X, ∥ · ∥) is Banach.

Definition 2.19. A sequence {en} ⊆ X is a Schauder basis of (X, ∥ · ∥) if for x ∈ X, there exists
a unique sequence of coefficients {an} ⊆ R such that x =

∑∞
n=1 anen.

Theorem 2.20. If X has a Schauder basis, then X is separable.

Example 2.21. (l∞, ∥ . . . ∥) and (B[0, 1], ∥ . . . , ∥∞) do not have Schauder bases.

2.3 Finite Dimension NLS

In this section we consider normed linear spaces that are of finite dimensions. These spaces are
important since they often appear in many considerations such as in linear algebra and approxi-
mation theory. Intuitively such spaces should be simpler than infinite dimensional normed linear
spaces. In this and the subsequent section, we will see for certain aspects finite dimensional normed
linear spaces do become nicer than infinite dimensional spaces. A main reason of that is in a finite
dimensional space we always have a Hamel basis with finitely many linearly independent vectors
to work with. We start by looking at an important property of such vectors that will be used
throughout this section.
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Assumption 2.22. Let X be a vector space.

Theorem 2.23 (Linear combination theorem). Let (X, ∥ · · · ∥) be a normed linear space and
{xi}ni=1 ⊆ X be linearly independent. Then there exists c > 0 such that ∥

∑n
i=1 aixi∥ ⩾ c

∑n
i=1|ai|.

Theorem 2.24. Every finite dimensional NLS is complete.

Definition 2.25. Let ∥ · ∥1 and ∥ · ∥2 be two norms defined on X.

(a) ∥ · ∥1 is said to be stronger than ∥ · ∥2 if there existsM > 0 such that ∥x∥2 ⩽Mx1 for all x ∈ X.

(b) ∥ · ∥2 are said to be equivalent if there exist m,M > 0 such that m∥x∥2 ⩽ ∥x∥1 ⩽M |x|2 for all
x ∈ X. Namely, ∥ · ∥1 is stronger than ∥ · ∥2 and ∥ · ∥2 is also stronger than ∥ · ∥1.
Lemma 2.26. Let ∥ · ∥1 be stronger than ∥ · ∥2.
(a) The identity map i : (X, ∥ · ∥) ! ∥ · ∥2 is Lipschitz continuous.

(b) If {xn} converges in (X, ∥ · ∥1), then {xn} converges in ∥ · ∥2.

(c) If {xn} is Cauchy in (X, ∥ · ∥1), then {xn} is Cauchy in ∥ · ∥2.

(d) A ⊆ (X, ∥ · ∥1) is dense, then A ⊆ ∥ · ∥2 is dense.

(e) A ⊆ ∥ · ∥2 is open (closed), then A ⊆ (X, ∥ · ∥1) is open (closed).

Theorem 2.27. All norms on a finite dimensional vector space are equivalent.

Remark. It implies that convergence or divergence of a sequence in a finite dimension vector space
does not depend on the particular choice of a norm on that space.

2.4 Compactness

Theorem 2.28. Let (X, ∥ · ∥) be finite dimensional and K ⊆ X. Then K is compact if and only if
K is closed and bounded.

Theorem 2.29. Let (X, dX) and (Y, dY ) be metric spaces and f : X ! Y is continuous. If K ⊆ X
is compact, then f(K) ⊆ Y is compact.

Lemma 2.30 (Riesz’s Lemma). Let (X, ∥ · ∥) be a normed linear space and Y ⪇ X closed. Then
for θ ∈ (0, 1), there exists x ∈ X and ∥x∥ = 1 such that d(x, Y ) ⩾ θ.

Corollary 2.31. Let (X, ∥ · ∥) be a normed linear space, Y ⪇ X and dimY < ∞. Then there
exists x ∈ X with ∥x∥ = 1 such that d(x, Y ) = 1.

Theorem 2.32. Let (X, ∥ · ∥) be nonzero. Then B1(0) is compact if and only if dimX <∞.

Let X be a metric space and A ⊆ X.

Definition 2.33. A is totally bounded if and only if for ϵ > 0, there exists {xi}ni=1 = {xi(ϵ)}ni=1 ⊆ A
such that A ⊆

⋃n
i=1Bϵ(xi), i.e., d(a, xi) < ϵ for some i ∈ {1, . . . , n}.

Theorem 2.34. A is compact if and only if A is totally bounded and complete.

Theorem 2.35. (a) If A is compact, then A is totally bounded.

(b) If A is totally bounded and X is complete, then A is compact. “precompact”

(c) If A is totally bounded, then A is separable.
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2.5 Bounded linear operator on NLS

Definition 2.36. Let X and Y be two vector spaces and T : X ! Y is a linear operator if
D(T ) ⩽ X and T (a1x1 + a2x2) = a1T (x1) + a2T (x2) for a1, a2 ∈ R and any x1, x2 ∈ X.

Remark. If both X and Y are of finite dimension, then T can be represented as a matrix.

Theorem 2.37. Let X and Y be two vector spaces and T : X ! Y a linear operator.

(a) T (0) = 0,

(b) Im(T ) ⩽ Y ,

(c) Ker(T ) ⩽ D(T ) ⩽ X,

(d) dimD(T ) = dimKer(T ) + dim Im(T ).

(e) Ker(T ) = {0} if and only if T is 1-1 if and only if there exists T−1 : Im(T ) ! D(T ). In this
case, T−1 is also linear and dim(D(T )) = dim(Im(T )).

Assumption 2.38. Throughout this section, we always assume D(T ) = X unless otherwise indi-
cated.

Definition 2.39. Let
L(X,Y ) = {T : X ! Y | T is linear}.

Theorem 2.40. L(X,Y ) is an K-vector space.

Assumption 2.41. Let (X, ∥ · ∥) and (Y, ∥ · ∥) be two normed linear spaces.

Definition 2.42. T : X ! Y is a bounded operator if there exists M > 0 such that ∥T (x)∥Y ⩽
M∥x∥X for x ∈ D(T ).

Remark. T : X ! Y is a bounded operator if and only if if A ⊆ D(T ) bounded, then T (A) ⊆ Y
bounded.

Theorem 2.43. Let T : X ! Y be linear. Then T is bounded if and only if T is Lipschitz
continuous if and only if T is continuous if and only if T is continuous at x0 ∈ D(T ).

Corollary 2.44. Let T : X ! Y be linear and bounded, then Ker(T ) is closed in X.

Definition 2.45.

B(X,Y ) := {T : X ! Y | T is linear and bounded}
= {T : X ! Y | T is linear and continous}
=: C(X,Y )

⩽ L(X,Y ).

Theorem 2.46. (B(X,Y ), ∥ · ∥) is a NLS, with

∥T∥ := sup
x ̸=0

∥Tx∥Y
∥x∥X

= sup
∥x∥X=1

∥T (x)∥Y = sup
∥x∥X⩽1

∥T (x)∥Y .

Theorem 2.47. If dimX <∞, then B(X,Y ) = L(X,Y ).

Theorem 2.48. B(X,Y ) is a Banach if Y is a Banach.
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2.6 Bounded linear functional and Dual space

In last section, we considered (bounded and linear) operators which map between normed linear
spaces. When the range space lies in the scalar field R (or C), such operators are even more
important and so frequently used that a special name, functional, is designated to them. Collection
of all bounded linear functionals of a given normed linear space also plays an important role, and is
called the dual space. One of the core branches in mathematics, functional analysis, was initiated
from the analysis of functionals.

Definition 2.49. Let X be a (real) vector space.

(a) The algebraic dual of X is X∨ = L(X,R).

(b) The topological dual of X is X ′ = B(X,R) ⩽ L(X,R).

Remark. (a) Since the topological dual is more commonly used, usually we simply call X ′ the
dual of X.

(b) X ′ is a Banach space. If dimX <∞, then X∨ = X ′.

Definition 2.50. {xn} converges weakly to x, denoted by xn
w
−! x or xn ⇀ x as n ! ∞, if

|T (xn)− T (x)| ! 0 for T ∈ X ′.

Weak convergence has various applications in analysis, for instance, in the theory of partial
diferential equations. The concept exactly illustrates a basic principle of functional analysis, namely,
the investigation of spaces is often related to that of their dual spaces. The following result indicates
some of the basic relationships between strong and weak convergences.

Theorem 2.51. If xn ! x as n! ∞, then xn ⇀ x as n! ∞.

Theorem 2.52. If dim(X) <∞, then xn ! x as n! ∞ if and only if xn ⇀ x as n! ∞.



Chapter 3

Inner Product Spaces

3.1 Definition and Examples

In normed linear spaces we can add vectors and multiply a vector by scalars, just as in the usual
vector algebra in Rn. In addition, the norm of a vector generalizes the basic concept of the length of
a vector in Rn. However, one important aspect from vector algebra that is missing in normed linear
spaces is an analogue of the “dot” product, and many geometric properties (e.g. orthogonality)
that may be described by the dot product. Inner product spaces and Hilbert spaces (complete inner
product space) are the vectors spaces in which such generalizations can be done. As we will see
in this chapter, such spaces are special normed linear spaces, but their theory is richer and retains
many features of Euclidean spaces, with a central concept being orthogonality.

3.2 Definition and Examples

Definition 3.1. Let X be a vector space over K (= R or C). We call (X, ⟨·, ·⟩) an inner product
space if we can define the inner product ⟨·, ·⟩ : X × X ! K that satisfies for all x, y, z ∈ X and
a ∈ K,

(a) ⟨x, x⟩ ⩾ 0 and ⟨x, x⟩ = 0 if and only if x = 0, “positive definiteness”.

(b) ⟨x, y⟩ = ⟨y, x⟩, “conjugacy symmetry”.

(c) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩ and ⟨ax, z⟩ = a⟨x, z⟩, “linearity in first argument”.

Remark. (a) Note the definition of an inner product depends on the scalar field we use, and using
real number R is a special case of using complex number C. Therefore throughout this chapter we
will choose complex number C as the scalar field. This is different from the norm defined in Chapter
2 where choosing real number R as the scalar field in general does not lead to much difference from
choosing complex number C.

(b) We have ⟨0, x⟩ = ⟨x,0⟩ = 0 for any x ∈ X by conjugate symmetry since ⟨0, x⟩ = ⟨0 · 0, x⟩ =
0⟨0, x⟩ = 0.

25
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(c) We have

⟨x, ay + bz⟩ = ⟨ay + bz, x⟩ = a⟨y, x⟩+ b⟨z, x⟩ = a⟨x, y⟩+ b⟨x, z⟩,∀x, y, z ∈ X and a, b ∈ K.

So if K = R, ⟨·⟩ is bilinear. If K = C, ⟨·⟩ is sesquilinear.

Lemma 3.2 (Cauchy-Schwartz inequality). Let (X, ⟨·, ·⟩) be an inner product space. Then

|⟨x, y⟩|2 ⩽ ⟨x, x⟩⟨y, y⟩,∀x, y ∈ X.

Theorem 3.3. (X, ∥ · ∥) is a real inner product space if and only if (X, ∥ · ∥) is a NLS with the
norm satisfying the parallelogram identity

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2),∀x, y ∈ X.

Remark. Thus whenever there is an inner product, it automatically generates a norm by the
formula ∥ · ∥ =

√
⟨·, ·⟩, and as a result we can consider the length of a vector, distance between

vectors, and convergence, etc. In particular, the Cauchy-Schwartz inequality may be stated as
|⟨x, y⟩| ⩽ ∥x∥∥y∥. On the other hand, a norm can only generate an inner product (by the polariza-
tion identity) when it satisfies the parallelogram identity.

Definition 3.4. A complete inner product space is called a Hilbert space.

Example 3.5. Rn is a Hibert space with the inner product defined by

⟨x, y⟩ =
n∑
i=1

xiyi,∀x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

Example 3.6. Cn is a Hibert space with the inner product defined by

⟨x, y⟩ =
n∑
i=1

xiyi,∀x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Cn.

Example 3.7. (lp, ∥ · ∥p) with p ∈ R⩾1 can not be an inner product space unless p = 2, in which
case it is also a Hilbert space.

Example 3.8. (a) (C[0, 1], ∥ · ∥∞) is not an inner product space.

(b) (C[0, 1], ∥ · ∥2) is an inner product space, but not a Hilbert space.

Lemma 3.9 (Continuity of inner product). Let X be an inner product space. Let xn ! x and
yn ! y in X, as n! ∞, then ⟨xn, yn⟩ ! ⟨x, y⟩ in C, as n! ∞.

3.3 Orthogonal Complement and Direct Sum

One distinguished feature of inner product spaces or Hilbert spaces is that they may be decomposed
as the (direct) sum of appropriate smaller subspaces which are orthogonal to each other. Such
decomposition is motivated from the Euclidean geometry where we can “project” a vector onto a
plane or an axis by drawing perpendicular lines. We start with some basic notations.
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Assumption 3.10. Let X be an inner product space unless otherwise indicated..

Definition 3.11. Let A,B ⊆ X and x, y ∈ X.

(a) The angle between X and y is defined by

∠(x, y) = arccos

(
|⟨x, y⟩|
∥x∥∥y∥

)
∈ [0, π].

(b) x and y are orthogonal, denoted by x ⊥ y, if ∠(x, y) = π
2 or ⟨x, y⟩ = 0.

(c) x is orthogonal to A, denoted by x ⊥ A, if and only if ⟨x, y⟩ = 0 for y ∈ A.

(d) A is orthogonal to B, denoted by A ⊥ B, if ⟨x, y⟩ = 0 for x ∈ A and any y ∈ B.

(e) The orthogonal complement of A, denoted by A⊥, is defined by

A⊥ = {x ∈ X | ⟨x, y⟩ = 0,∀y ∈ A}.

Theorem 3.12. Let Y ⊆ X be convex and complete. Then for x ∈ X, there exists a unique yx ∈ Y
such that ∥x− yx∥ = d(x, Y ).

Remark. The convexity and completeness assumptions may be replaced by stronger conditions.
The commonly used ones are “Y is a complete subspace of X”, and “X is Hilbert, Y is a closed
subspace of X” (note that linearity (subspace) implies convexity), as we will see in the rest of this
chapter.

Theorem 3.13. Let Y ⩽ X be complete. Then for any x ∈ X, there exists yx ∈ Y such that
∥x− yx∥ = d(x, Y ) if and only if (x− yx) ⊥ Y .

Definition 3.14. Let X be a vector space and Y, Z ⩽ X. Then we say X is a direct sum of Y and
Z, denoted by X = Y ⊕ Z, if X = Y + Z and Y ∩ Z = {0}.

Lemma 3.15. Let X be a vector space and Y,Z ⩽ X. Then X = Y ⊕Z if and only if every x ∈ X
has a unique expression x = yx + zx for some yx ∈ Y and zx ∈ Z.

Theorem 3.16. Let Y ⩽ X be complete, then X = Y ⊕ Y ⊥.

Theorem 3.17. Let Y ⩽ X complete. Then there exists PY : X ! Y such that

(a) PY ∈ B(X,Y ) and ∥PY ∥ = 1.

(b) P 2
Y = PY .

(c) Im(PY ) = Y and Ker(PY ) = Y ⊥.

Lemma 3.18. Let ∅ ≠ A,B ⊆ X, then A ⊥ B if and only if ⟨A⟩ ⊥ ⟨B⟩.

Corollary 3.19. Let A ⊆ X, then A⊥ is a closed subspace of X.
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3.4 Orthonormal Sets and Sequences

Assumption 3.20. Let X be an inner product space.

Definition 3.21. (a) A ⊆ X is an orthonormal set if ⟨x, y⟩ = 0 for any x, y ∈ A such that x ̸= y,
and ⟨x, x⟩ = 1.

(b) A ⊆ X is an orthonormal basis of X if A is an orthonormal set and ⟨A⟩ = X.

Remark. If an orthonormal set A is countable, e.g., A = {xn}∞n=1, then A is also called an
orthonormal sequence. In this case, the orthonormality condition may be written in terms of the
Kronecker delta notation:

⟨xi, xj⟩ = δi,j =

{
0 if i ̸= j
1 if i = 1

,∀ i, j ∈ N.

Theorem 3.22. Let dimX = n ∈ N. Then there exists an orthonormal basis {ei}ni=1 of X. In

fact, {ei}ni=1 is also a Hamel basis. Then for x ∈ X, x =
∑n
i=1⟨x, ei⟩ei and ∥x∥2 =

∑n
i=1|⟨x, ei⟩|

2
.

Theorem 3.23 (Finite Dimension Approximation). Let {ei}ni=1 ⊆ X be an orthonormal set. Then
for x ∈ X, there exists a unique yx ∈ Y := ⟨{ei}ni=1⟩ such that ∥x− yx∥ = d(x, Y ) and x− yx ⊥ Y .
In fact, yx =

∑n
i=1⟨x, ei⟩ei, so

x =

n∑
i=1

⟨x, ei⟩ei + zx ∈ Y ⊕ Y ⊥.

Proof. Y is complete since Y is a finite dimensional NLS.

Theorem 3.24 (Bessel’s inequality). Let {ei}∞i=1 be an orthonormal sequence. Then
∑∞
i=1|⟨x, ei⟩|

2 ⩽
∥x∥2 for all x ∈ X.

Lemma 3.25. Let {ei}∞i=1 ⊆ X be an orthonormal sequence. Then
∑∞
i=1|⟨x, ei⟩|

2
= ∥x∥2 for all

x ∈ ⟨{ei}∞i=1⟩.

Theorem 3.26. Let {ei}∞i=1 ⊆ be an orthonormal sequence. The followings are equivalent.

(a) X = span{ei}∞i=1, “{ei}∞i=1 is an orthonormal basis”.

(b) ∥x∥2 =
∑∞
i=1|⟨x, ei⟩|

2
for x ∈ X, “Parseval’s indetity”.

(c) x =
∑∞
i=1⟨x, ei⟩ei for x ∈ X, “Fouries series”.

(d) ⟨x, y⟩ =
∑∞
i=1⟨x, ei⟩⟨y, ei⟩ for x, y ∈ X, “Plancherel’ identity”.

3.5 Dual space of Hilbert spaces and Adjoint operator

In Chapter 2 we defined the dual space of a normed linear space X as the space of all bounded linear
functionals on X. As inner product spaces are special normed linear spaces, we may also consider
their dual spaces, namely, if X is an inner product space, we have X ′ = B(X,C), with the complex
numbers C being the scalar field. In particular, in this section we will see that if X is a Hilbert
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space, then its dual space can be identified as itself, i.e., X ′ ∼= X. The proof of this isomorphism is
based on the celebrated Riesz Representation Theorem, which says every bounded linear functional
defined on a Hilbert space has a unique representation in terms of taking inner product with a fixed
element that depends on the functional. The Riesz Representation Theorem also leads to a general
representation of sesquilinear forms on Hilbert spaces and enables us to define an important class
of operators called the (Hilbert) adjoint operator.

Assumption 3.27. Let X be an inner product space unless otherwise indicated.

Lemma 3.28. For x ∈ X,

Tx : X ! C
y 7! ⟨y, x⟩

is a bounded linear functional on X and ∥Tx∥ = ∥x∥.

Theorem 3.29 (Riesz Representation Theorem). Let X be a Hilbert space. Then for any T ∈ X ′,
there exists a unique xT ∈ X such that T = TxT . i.e., T (y) = ⟨y, xT ⟩ for all y ∈ X. In addtion,
∥T∥ = ∥xT ∥.

Corollary 3.30. Let X be a Hilbert space. Then X ∼= X ′.

Definition 3.31. Let X be Y be a NLSs. Then B : X × Y ! C is a bounded sesquilinear form if

(a) B is sequilinear: B(ax1+bx2, y1) = aB(x1, y1)+bB(x2, y1) and B(x1, ay1+by2) = aB(x1, y1)+
bB(x1, y2).

(b) B is bounded: ther exists M > 0 such that |B(x, y)| ⩽M∥x∥∥y∥ for x ∈ X and y ∈ Y . In this
case, we define the norm of B as

∥B∥ := sup
x ̸=0,y ̸=0

|B(x, y)|
∥x∥∥y∥

= sup
∥x∥=1, ∥y∥=1

|B(x, y)|.

Theorem 3.32 (RRT for bounded sesqulinear form). Let X,Y be Hilbert spaces and B : X×Y ! C
be a bounded sesquilinear form. Then there exists a unique S ∈ B(X,Y ) such that B(x, y) =
⟨Sx, y⟩Y for x ∈ X and y ∈ Y . In addition, ∥B∥ = ∥S∥.

Definition 3.33. Let X,Y be Hilbert spaces and T ∈ B(X,Y ). We call T ∗ ∈ B(Y,X) the (Hilbert)
adjoint operator of T if

⟨Tx, y⟩Y = ⟨x, T ∗y⟩X .

Theorem 3.34. Let X,Y be Hilbert spaces and T ∈ B(X,Y ). Then there exists a unique T ∗ ∈
B(Y,X). Moreover, ∥T ∗∥ = ∥T∥.

Theorem 3.35. Let X,Y, Z be Hilbert spaces and T, S ∈ B(X,Y ) and U ∈ B(Y,Z).

(a) (T + S)∗ = T ∗ + S∗.

(b) (aT )∗ = aT ∗ for any a ∈ C.

(c) (T ∗)∗ = T .
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(d) (UT )∗ = T ∗U∗.

Theorem 3.36. Let X,Y be Hilbert spaces and T ∈ B(X,Y ).

(a) Ker(T ) = Im(T ∗)⊥ and Ker(T ∗) = Im(T )⊥.

(b) Ker(T )⊥ = Im(T ∗) and Ker(T ∗)⊥ = Im(T ).

(c) Ker(T ∗T ) = Ker(T ) and Ker(TT ∗) = Ker(T ∗).

Corollary 3.37. Let X,Y be Hilbert spaces and T ∈ B(X,Y ). Then

X = Ker(T )⊕Ker(T )⊥ = Im(T ∗)⊥ ⊕ Im(T ∗),

Y = Ker(T ∗)⊕Ker(T ∗)⊥ = Im(T )⊥ ⊕ Im(T ).



Chapter 4

Fundamental Theorems for
Normed and Banach Spaces

Let X be a set.

4.1 Zorn’s Lemma

Definition 4.1. A partial order on X is a binary relation on X ×X denoted “⩽” that satisfies:
for any x, y, z ∈ X,

(a) x ⩽ x, “reflexivity”;

(b) if x ⩽ y and y ⩽ x, then x = y, “anti-symmetry”;

(c) if x ⩽ y and y ⩽ z, then x ⩽ z, “transitivity”.

Remark. A partial ordered set is also called a poset.

Let (X,⩽) be a poset.

Definition 4.2. X is totally ordered if for any x, y ∈ X, we must have x ⩽ y or y ⩽ x.

Definition 4.3. Y ⊆ X is called a chain if Y is a totally ordered.

Example 4.4. (a) R is totally ordered w.r.t. the usual “⩽”.

(b) P(X) is partially ordered not totally ordered w.r.t. the usual “⊆”.

(c) Let X = R×R. Define “⩽” as following: (x1, x2) ⩽ (y1, y2) if x1 ⩽ y1 and x2 ⩽ y2. Then X is
partially ordered not totally ordered.

(d) Let X = R×R. Define “⩽” as following: (x1, x2) ⩽ (y1, y2) if x1 < y1 or x1 = y1 and x2 ⩽ y2.
Then X is totally ordered.

Definition 4.5. Let Y ⊆ X.
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(a) u ∈ X is called an upper bound of Y if y ⩽ u for any y ∈ Y .

(b) m ∈ X is called a maximal element of X if it satisfies that if m ⩽ x for some x ∈ X, then
x = m.

Remark. R has neither upper bound nor maximal element.

Lemma 4.6 (Zorn’s lemma). Let X be a partially ordered set. If every chain of X has an upper
bound, then X has a maximal element.

Remark. Zorn’s lemma is equivalent to the Axiom of Choice and the Well-Ordering Principal.

Definition 4.7. Let X be an R-vector space. Let p : X ! R such that for any x, y ∈ X,

(a) p(x+ y) ⩽ p(x) + p(y), “subadditivity”.

(b) p(ax) = ap(x) for any a > 0, “positive homogeneity”.

Then p is called a sublinear functional on X.

Example 4.8. If X is a normed linear space, then ∥·∥ is a sublinear functional on X.

4.2 The Hahn-Banach Theorems

Theorem 4.9 (The Hahn-Banach Theorem). Let X be an R-vector space and p be a sublinear
functional on X. If Y ⩽ X and φ : Y ! R is a linear functional that satisfies φ(y) ⩽ p(y) for
any y ∈ Y , then there exists a linear extension φ̃ : X ! R, i.e., φ̃ is linear and φ̃|Y = φ such that
φ̃(x) ⩽ p(x) for any x ∈ X = D(φ̃).

Proof. Let B = {ψ : D(ψ) ! R | Y ⊆ D(ψ), ψ is linear, ψ|Y = φ, ψ(x) ⩽ p(x),∀x ∈ D(ψ)}.
Define “⩽” on B as follows: ψ1 ⩽ ψ2 if and only if ψ2 is a linear extension of ψ1, i.e., D(ψ1) ⊆

D(ψ2) and ψ2|D(ψ1) = ψ1. Let ψ1, ψ2, ψ3 ∈ B.
Since D(ψ1) ⊆ D(ψ1) and ψ1|D(ψ1) = ψ1, we have ψ1 ⩽ ψ1.
Let ψ1 ⩽ ψ2 and ψ2 ⩽ ψ1. Then D(ψ1) ⊆ D(ψ2) and ψ2|D(ψ1) = ψ1 and D(ψ2) ⊆ D(ψ1) and

ψ1|D(ψ2) = ψ2. So ψ1 = ψ1|D(ψ1) = ψ1|D(ψ2) = ψ2.
Let ψ1 ⩽ ψ2 ⩽ ψ3. Then D(ψ1) ⊆ D(ψ2) and ψ2|D(ψ1) = ψ1 and D(ψ2) ⊆ D(ψ3) and

ψ3|D(ψ2) = ψ2. So D(ψ1) ⊆ D(ψ2) ⊆ D(ψ3) and ψ3|D(ψ1) = ψ3|D(ψ2|D(ψ1)) = ψ2|D(ψ1) = ψ1. Hence
ψ1 ⩽ ψ3.

So “⩽” is a partial order on B.
Let C ⊆ B be a chain. Define φ̃ :

⋃
ψ∈C D(ψ) ! R given by φ̃(x) = ψ(x) if x ∈ D(ψ). Let

x, y ∈
⋃
ψ∈C D(ψ). Since C is a chain, there exists ψ ∈ C such that x, y ∈ D(ψ). Since D(ψ) is an

R-vector space, ax+ by ∈ D(ψ) ⊆
⋃
ψ∈C D(ψ) for any a, b ∈ R. So D(φ̃) is an R-vector space.

Let x ∈ D(ψ1) ∩ D(ψ2), where ψ1, ψ2 ∈ C. Since C is a chain, either ψ1 ⩽ ψ2 or ψ2 ⩽ ψ1,
say ψ1 ⩽ ψ2. Then D(ψ1) ∩ D(ψ2) = D(ψ1) and ψ2|D(ψ1) = ψ1. So ψ1(x) = ψ2(x) for any
x ∈ D(ψ1) = D(ψ1) ∩ D(ψ2). Hence φ̃ is well-defined.

Similar argument gives φ̃(ax+ by) = aφ̃(x) + bφ̃(y). So φ̃ is linear.
In addition, φ̃ is clearly an upper bound of C. So by Zorn’s lemma, B has a maximal element φ̃.
Claim φ̃ is what we need. It suffies to show D(φ̃) = X. Suppose not, there exists 0 ̸= x0 ∈

X ∖ D(φ̃). Consider Z = span{D(φ̃), x0}. Since D(φ̃) is an R-vector space, every z ∈ Z has a
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representation z = y+cx0 with y ∈ D(φ̃) and c ∈ R. Let z = y1+c1x0 = y2+c2x0 with y1, y2 ∈ D(φ̃)
and c1, c2 ∈ R, then y1 − y2 = (c2 − c1)x0 ∈ D(φ̃) ∩ span{x0} = {0}, so y1 = y2 and since x0 ̸= 0,
c1 = c2. Hence this representation is unique. Define φ0 : Z ! R given by φ0(y + cx0) = φ̃(y) + ca
for some a ∈ R. Clearly, φ0|D(φ̃) = φ̃. Note φ0 is linear since for any y1, y2 ∈ D(φ̃) and any
b1, b2, c1, c2 ∈ R, we have φ0(b1(y1 + c1x0) + b2(y2 + c2x0)) = φ0(b1y1 + b2y2 + (b1c1 + b2c2)x0) =
φ̃(b1y1 + b2y2) + (b1c1 + b2c2)a = b1φ̃(y1) + b2φ̃(y2) + b1c1a+ b2c2a = b1(φ̃(y1) + c1a) + b2(φ̃(y2) +
c2a) = b1φ0(y1 + c1x0) + b2φ0(y2 + c2x0). Claim φ0(z) ⩽ p(z) for any z ∈ Z. To show it, it is
equivalent to show φ0(y + cx0) ⩽ p(y + cx0) for any y ∈ D(φ̃) and any c ∈ R. If c = 0, clearly,
φ0(y) = φ̃(y) = φ(y) ⩽ p(y) for any y ∈ Y . Assume c ̸= 0 now. It suffices to show the case c = ±1
because then for any c > 0, we have φ0(y + cx0) = cφ0(y/c + x0) ⩽ cp(y/c + x0) = p(y + cx0)
since φ0 is linear and similarly for c < 0. Thus, we only need to show φ0(y + x0) ⩽ p(y + x0) and
φ0(y

′ − x0) ⩽ p(y′ − x0) for any y, y′ ∈ D(φ̃), i.e., φ̃(y′) − p(y′ − x0) ⩽ c ⩽ p(y + x0) − φ̃(y) for
any y, y′ ∈ D(φ̃), i.e., c can be selected if and only if φ̃(y′)− p(y′ − x0) ⩽ p(y + x0)− φ̃(y) for any
y, y′ ∈ D(φ̃) if and only if φ̃(y)+ φ̃(y′) ⩽ p(y+x0)+p(y

′−x0) for any y, y′ ∈ D(φ̃) which is always
true since φ̃(y) + φ̃(y′) = φ̃(y + y′) ⩽ p(y + y′) ⩽ p(y + x0) + p(y′ − x0).

Therefore, we have φ0 ∈ B and φ̃ ⩽ φ0. By the maximality of φ̃, we have φ = φ0, a contradiction
since x0 ̸∈ D(φ̃) but x0 ∈ Z = D(φ0).

Let X be a NLS.

Corollary 4.10 (Hahn-Banach for NLS). Let Y ⩽ X and φ ∈ Y ′. Then there exists φ̃ ∈ X ′ such
that φ̃|Y = φ and ∥φ̃∥ = ∥φ∥.

Proof. Note |φ(y)| ⩽ ∥φ∥∥y∥ for any y ∈ Y . Define p(x) = ∥φ∥∥x∥ for any x ∈ X. Since φ ∈ Y ′,
p is well-defined. Then φ(y) ⩽ p(y) for any y ∈ Y . Also, note p is sublinear on Y since for any
x, y ∈ X and a > 0, we have

(a) p(x+ y) = ∥φ∥∥x+ y∥ ⩽ ∥φ∥(∥x∥+ ∥y∥) = ∥φ∥∥x∥+ ∥φ∥∥y∥ = p(x) + p(y);

(b) p(ax) = ∥φ∥∥ax∥ = a∥φ∥∥x∥ = ap(x).

Since φ ∈ Y ′, φ : Y ! R is a linear functional. Then by Hahn-Banach theorem, there exists
φ̃ : X ! R such that φ̃ is a linear extension of φ and φ̃(x) ⩽ p(x) = ∥φ∥∥x∥ for any x ∈ X.
Then ∥φ̃∥ = supx∈X,∥x∥=1|φ̃(x)| ⩽ supx∈X,∥x∥=1∥φ∥∥x∥ = ∥φ∥. On the other hand, ∥φ̃∥ ⩾ ∥φ∥ is
obvious. So ∥φ̃∥ = ∥φ∥.

Corollary 4.11. Let x ∈ X. Then there exists φ̃ ∈ X ′ such that ∥φ̃∥ = 1 and φ̃(x) = ∥x∥.

Proof. Let Y = span{x} ⩽ X and define φ : Y ! R given by φ(ax) = a∥x∥. Easy to verify φ is
linear. Note φ is bounded since |φ(ax)| = |a|∥x∥ = ∥ax∥ for any a ∈ R and x ∈ X. So ∥φ∥ ⩽ 1.

Actually, ∥φ∥ = 1 since ∥φ∥ = supax̸=0
|φ(ax)|
∥ax∥ = supa̸=0

|a∥x∥|
∥ax∥ = supa ̸=0

|a|∥x∥
|a|∥x∥ = supa̸=0∥x0∥

2
= 1.

Thus, by previous corollary, there exists φ̃ ∈ X ′ such that φ̃|Y = φ and ∥φ̃∥ = ∥φ∥ = 1. Since
x ∈ Y , φ̃(x) = φ(x) = ∥x∥.

Corollary 4.12. Let x ∈ X. Then ∥x∥ = supφ∈X′,∥φ∥=1|φ(x)|. Conclude that if there is x ∈ X
such that φ(x) = 0 for any φ ∈ X ′, then x = 0.

Proof. “⩾”. Since |φ(x)| ⩽ ∥φ∥∥x∥ for any φ ∈ X ′, supφ∈X′,∥φ∥=1|φ(x)| ⩽ supφ∈X′,∥φ∥=1∥φ∥∥x∥ =
supφ∈X′,∥φ∥=1∥x∥ = ∥x∥.

“⩽”. For any x ∈ X, by previous corollary, there exists φ̃ ∈ X ′ such that ∥φ̃∥ = 1 and
φ̃(x) = ∥x∥. So supφ∈X′,∥φ∥=1|φ(x)| ⩾ |φ̃(x)| = ∥x∥.
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Remark. Equivalently, ∥x∥ = supφ∈X′,x ̸=0
|φ(x)|
∥φ∥ = supφ∈X′,∥φ∥⩽1|φ(x)|, which all compute the

norm of an element the other way around.

Theorem 4.13. Let Y ⩽ X. Then d(x, Y ) := infy∈Y ∥x− y∥ = supφ∈X′,∥φ∥⩽1,φ|Y =0|φ(x)| for any
x ∈ X. In particular, we recover the previous corollary if Y = {0}.

Proof. “⩾”. Let φ ∈ X ′ such that ∥φ∥ ⩽ 1 and φ|Y = 0. Since φ is linear, |φ(x)| = |φ(x)− φ(y)| =
|φ(x− y)| ⩽ ∥φ∥∥x− y∥ ⩽ ∥x− y∥ for any y ∈ Y . So |φ(x)| ⩽ infy∈Y ∥x− y∥ = d(x, Y ). Hence
supφ∈X′,∥φ∥⩽1,φ|Y =0|φ(x)| ⩽ d(x, Y ).

“⩽”. If x ∈ Y , then d(x, Y ) = 0 and clearly it holds. Assume x ̸∈ Y now. Consider Y0 =
span{Y, x} = {y + ax | y ∈ Y, a ∈ R}. Similar to the proof of Hahn-Banach theorem, every y0 ∈ Y0
has a representation y0 = y + ax with y ∈ Y and a ∈ R. Define φ0 : Y0 ! R by φ0(y + ax) =
ad(x, Y ). Clearly, φ0 is linear and φ0|Y = 0. Let y ∈ Y and a ∈ R. Since −y

a ∈ Y , we have
|φ0(y + ax)| = |a|d(x, Y ) ⩽ |a|

∥∥x− (−y
a )
∥∥ = ∥y + ax∥. So φ0 is bounded and hence φ0 ∈ Y ′

0 . By
previous corollary, there exists an extension φ̃ ∈ X ′ such that φ̃|Y0

= φ0|Y0
= 0 and ∥φ̃∥ = ∥φ0∥ ⩽ 1.

Since x ∈ Y0, we have supφ∈X′,∥φ∥⩽1,φ|Y =0|φ(x)| ⩾ |φ̃(x)| = |φ0(x)| = |φ0(0 + x)| = d(x, Y ).

Corollary 4.14. Let Y ⩽ X and x ∈ X. Then d(x, Y ) ⩽ ∥x∥.

Proof. Follow from two previous result or follow from 0 ∈ Y and ∥x∥ = d(x, 0).

Remark. This is a kind of dual variational problem.

4.3 Geometric Hahn-Banach Theorem

Let X be a real vector space.

Definition 4.15. Let Y ⊆ X. x0 ∈ Y is an internal point of Y if for any x ∈ X, there exists
ϵ(x) > 0 such that x0 + tx ∈ Y for any t ∈ R with |t| < ϵ.

Remark. If x0 ∈ Y ⊆ X is an interior point, then it is an internal point. But the converse may
be false.

Since x0 ∈ Y is an interior point, there exists r > 0 such that Br(x0) ⊆ Y . For any 0 ̸= x ∈ X,
choose ϵ(x) = r

∥x∥ and then x0 + tx ∈ Br(x0) ⊆ Y for any t ∈ R with |t| < ϵ.

Consider the set A ⊆ R2 consisting of the union of

• the region delimited by the graphs of
√
x and −

√
x over [0,∞),

• the region delimited by the graphs of
√
−x and −

√
−x over (−∞, 0],

• the y-axis.

Then 0 ∈ A is internal but not interior.

Theorem 4.16. Let Y ⊆ X be convex and x0 ∈ Y . If X is finite dimensional, then x0 is an
interior point of Y if and only if x0 is an internal point of Y .

Lemma 4.17. Let K ⊆ X be convex and contain 0 as an internal point. Define pK : X ! R given
by pK(x) = inf{m > 0 | x

m ∈ K}. Then

(a) pK is well-defined.
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(b) pK is a sublinear functional on X.

(c) If x ∈ K, then pK(x) ⩽ 1.

(d) x is an internal point of K if and only if pK(x) < 1.

Proof. (a) Let x ∈ X. It suffices to show pK(x) <∞. Since 0 is an internal point of K, there exists
ϵ(x) > 0 such that 0+ tx = tx ∈ K for any t ∈ R with |t| < ϵ. Pick m = 1

ϵ +1. Then 1
m = ϵ

1+ϵ < ϵ.

So x
m = ϵ

1+ϵx ∈ K. Thus, pK(x) ⩽ m = 1
ϵ + 1.

(b) pK(ax) = apK(x) for any a > 0 and any x ∈ X follows from the definition of pK(x).
Let x, y ∈ X, α = pK(x) and β = pK(y). Let ϵ > 0. Then by the definition of the infimum,
there exist mx ∈ {m > 0 | x

m ∈ K} with mx < α + ϵ and my ∈ {m > 0 | x
m ∈ K} with

my < α + ϵ, i.e., there exist 0 < ϵx, ϵy < ϵ such that x
α+ϵx

∈ K and y
β+ϵy

∈ K. Since K is convex,
x+y

α+β+ϵx+ϵy
= α+ϵx

α+β+ϵx+ϵy
x

α+ϵx
+

β+ϵy
α+β+ϵx+ϵy

y
β+ϵy

∈ K. So pK(x+ y) ⩽ α+ β+ ϵx+ ϵy ⩽ α+ β+2ϵ.

Since ϵ > 0 is arbitrary, pK(x+ y) ⩽ α+ β = pK(x) + pK(y).

(c) Let x ∈ K. Then x = x
1 ∈ K. So pK(x) ⩽ 1. Converse is not true. For example, X = R,

K = (−1, 1) and x = 1 with pK(1) = 1.

(d) =⇒ Let x be an internal point of K. Then there exists ϵ(x) > 0 such that x+ tx ∈ K for any
t ∈ R with |t| < ϵ. Pick α such that 1

1+ϵ < α < 1, i.e., 1/α−1 < ϵ. Then x/α = x+(1/α−1)x ∈ K.
Thus, pK(x) ⩽ α < 1.

⇐= Let pK(x) < 1. Then there exists α ∈ (0, 1) such that x
α ∈ K. Let y ∈ X. Since X is

a real vector space, y
1−α ∈ X. Since 0 is an internal point K, there exists ϵ(y, α) > 0 such that

0+ t y
1−α ∈ K for any t ∈ R with |t| < ϵ. Since K is convex, x+ ty = α xα + (1−α) ty

1−α ∈ K for any
t ∈ R with |t| < ϵ. Since y ∈ Y is arbitrary, we have x is an internal point of K.

Definition 4.18. Let φ be a linear functional on X and c ∈ R.

(a) The set {x ∈ X | φ(x) = c} is called a hyperplane of X w.r.t. φ.

(b) The sets {x ∈ X | φ(x) > c} and {x ∈ X | φ(x) < c} are called a half spaces of X w.r.t. φ.

Remark. The set of solutions of {φ(x) = c | x ∈ X} forms a hyperplane w.r.t. φ.

Theorem 4.19 (Hahn-Banach Geometric Version). Let K ⊆ X be convex and contains 0 as an
internal point. Then for any y ̸∈ K, there exists φ : X ! R linear such that φ(y) = 1 and if every
point in K is an internal point, then φ(x) < 1 for any x ∈ K. Namely, y can be separated from K
by the hyperplane {x ∈ X | φ(x) = 1}.

K

y



36 CHAPTER 4. FUNDAMENTAL THEOREMS FOR NORMED AND BANACH SPACES

Proof. Since K ⊆ X is convex and contains 0 as an internal point, previous lemma is applicable.
Consider Y = span{y} and define φ0 : Y ! R by φ0(ay) = a. Easy to check φ0 is linear.
If a ⩽ 0, φ0(ay) = a ⩽ 0 ⩽ pK(ay). If a > 0, since y ̸∈ K, we have pK(y) ⩾ 1 and then
φ0(ay) = a ⩽ apK(y) = pK(ay), i.e., φ0(y) ⩽ pK(y) for any y ∈ Y . Hence φ0(ay) ⩽ pK(ay) for
any a ∈ R. Also, pK is sublinear on X, by Hahn-Banach theorem (analytic version), there exists
φ : X ! R linear and φ|Y = φ0 such that φ(x) ⩽ pK(x) for any x ∈ X. In particular, since y ∈ Y ,
φ(y) = φ0(y) = 1 and since every point x ∈ K is an internal point, φ(x) ⩽ pK(x) < 1 for any
x ∈ K.

Corollary 4.20. Let K ⊆ X be convex and contains at least one internal point. Then for any
y ̸∈ K, there exists φ : X ! R linear such that φ(x) ⩽ φ(y) for any x ∈ K.

Proof. Let x0 ∈ K be an internal point and consider K̃ = K − {x0} = {x− x0 | x ∈ K} ⊆ X. For

any x1−x0, x2−x0 ∈ K̃ with x1, x2 ∈ K, since K is convex, we have λ(x1−x0)+(1−λ)(x2−x0) =
λx1 + (1− λ)x2︸ ︷︷ ︸

∈K

−x0 ∈ K̃. So K̃ ⊆ X is convex. Since x0 ∈ K, 0 = x0 − x0 ∈ K̃. Claim 0 is an

internal point of K̃. Need to show for any x − x0 ∈ K̃, there exists ϵ = ϵ(x, x0) > 0 such that

tx + (1 − t)x0 − x0 = 0 + t(x − x0) ∈ K̃ for any t ∈ R with |t| < ϵ, i.e., tx + (1 − t)x0 ∈ K for
any t ∈ R with |t| < ϵ. Since x0 is an interior point, there exists 0 < ϵ0 = ϵ0(x) < 1 such that
x0 + tx ∈ K for any t ∈ R with |t| < ϵ0 < 1. Also, since K is convex and x0 ∈ K, for any x ∈ X,

tx + (1 − t)x0 ∈ K for any t ∈ R with |t| < ϵ0 < 1. Hence 0 is an internal point of K̃. Now, let

y ̸∈ K, then y − x0 ̸∈ K̃. So by a similar proof as the above theorem, there exists φ : X ! R
linear and φ(y − x0) = 1 such that φ(x) ⩽ pK̃(x) for any x ∈ X. Then for any x ∈ K, we have

x−x0 ∈ K̃ ⊆ X and then φ(x)−φ(x0) = φ(x−x0) ⩽ pK̃(x−x0) ⩽ 1 = φ(y−x0) = φ(y)−φ(x0),
i.e., φ(x) ⩽ φ(y).

Corollary 4.21. Let A,B ⊆ X be nonempty and convex with A ∩B = ∅ and at least one has an
internal point. Then there exists c ∈ R and φ : X ! R linear such that φ(a) ⩽ c ⩽ φ(b) for any
a ∈ A and b ∈ B. Namely, A and B can be separated by the hyperplane {x ∈ X | φ(x) = c}.

Proof. Let K = A − B = {a − b | a ∈ A, b ∈ B}. Let a1 − b1, a2 − b2 ∈ K and λ ∈ (0, 1).
Since λ(a1 − b1) + (1 − λ)(a2 − b2) = λa1 + (1 − λ)a2 − (λb1 + (1 − λ)b2) ∈ K, we have K is
convex. Wlog, assume A has an internal point x0. Then for any x ∈ X, there exists ϵ(a) such
that x0 + tx ∈ A for any t ∈ R with |t| < ϵ. Since B ̸= ∅, there exists b ∈ B and we have for any
x ∈ X, x0 − b + tx = (x0 + tx) − b ∈ A − B = K for any t ∈ R with |t| < ϵ. So x0 − b is an
internal point of K. Since A ∩B ̸= ∅, 0 ̸∈ K. By previous corollary, there exists φ : X ! R linear
such that for any a ∈ A and b ∈ B, φ(a) − φ(b) = φ(a − b) ⩽ φ(0) = 0, i.e., φ(a) ⩽ φ(b). Pick
c ∈ [supa∈A φ(a), infb∈B φ(b)].

Remark. The above corollary is related to OR.

4.4 The adjoint operator

Let X and Y be NLS’s, T ∈ B(X,Y ).
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Recall 4.22. Let X,Y be Hilbert space and T ∈ B(X,Y ). Then there exists a unique (Hilbert)
adjoint T ∗ ∈ B(Y,X) such that ⟨Tx, y⟩Y = ⟨x, T ∗y⟩X for any x ∈ X and y ∈ Y . In addition,
∥T ∗∥ = ∥T∥.

Remark. Let ψ ∈ Y ′. Define φ : X ! R by φ(x) = ψ(Tx). Then

(a) φ is linear since both ψ and T are linear.

(b) φ is bounded since |φ(x)| = |ψ(Tx)| ⩽ ∥ψ∥ · ∥Tx∥Y ⩽ ∥ψ∥ · ∥T∥ · ∥x∥X for any x ∈ X.

Definition 4.23. The (NLS) adjoint of T , denoted by T ∗, is defined as T ∗ : Y ′ ! X ′ by T ∗(ψ) =
ψ ◦ T , i.e., (T ∗ψ)(x) = ψ(Tx) for any ψ ∈ Y ′ and x ∈ X.

Theorem 4.24. T ∗ ∈ B(Y ′, X ′) and ∥T ∗∥ = ∥T∥.

Proof. Easy to check T ∗ is linear. Since ∥T ∗ψ∥ = sup∥x∥=1|(T ∗ψ)(x)| = sup∥x∥=1|ψ(Tx)| ⩽
sup∥x∥=1∥ψ∥∥Tx∥Y ⩽ sup∥x∥=1∥ψ∥∥T∥∥x∥ = ∥ψ∥∥T∥ for any ψ ∈ Y ′, we have T ∗ is bounded
and ∥T ∗∥ ⩽ ∥T∥.

On the other hand, let x ∈ X and consider Tx ∈ Y . Then by previous corollary, there exists
ψ ∈ Y ′ with ∥ψ∥ = 1 such that ψ(T (x)) = ∥Tx∥. So ∥Tx∥ = ψ(T (x)) = (T ∗ψ)(x) ⩽ |T ∗ψ(x)| ⩽
∥T ∗ψ∥∥x∥ ⩽ ∥T ∗∥∥ψ∥∥x∥ = ∥T ∗∥∥x∥. Since x ∈ X is arbitrary, ∥T∥ ⩽ ∥T ∗∥.

Proposition 4.25. (a) (T + S)∗ = T ∗ + S∗ for any T, S ∈ B(X,Y ).

(b) (aT )∗ = aT ∗ for any a ∈ R and T ∈ B(X,Y ).

(c) If T ∈ B(X,Y ) and T−1 exists with T−1 ∈ B(Y,X), then (T ∗)−1 also exists with (T ∗)−1 ∈
B(X ′, Y ′) and (T ∗)−1 = (T−1)∗.

(d) (T ◦ S)∗ = S∗ ◦ T ∗ for any S ∈ B(X,Y ) and T ∈ B(Y, Z)

Proof. (3) Let ψ1, ψ2 ∈ Y ′. Since T−1 exists, T ∗(ψ1) = T ∗(ψ2) if and only if (T ∗ψ1)(x) =
(T ∗ψ2)(x) for any x ∈ X if and only if ψ1(Tx) = ψ2(Tx) for any x ∈ X if and only if ψ1◦T = ψ2◦T
if and only if ψ1 = ψ2. So T

∗ is 1-1.

Let φ ∈ X ′. Then φ ◦ T−1 ∈ Y ′. Since T ∗(φ ◦ T−1) = φ ◦ T−1 ◦ T = φ, we have T ∗ is onto.

Hence (T ∗)−1 exists. Claim. (T ∗)−1 = (T−1)∗. First, (T ∗)(T−1)∗ = idX′ if and only if
T ∗(T−1)∗φ = φ for any φ ∈ X ′ which is true since T ∗(T−1)∗φ = (φ ◦ T−1) ◦ T = φ. Similarly, we
can prove (T−1)∗(T ∗) = idY ′ .

Remark. Let X,Y be Hilbert spaces and T ∈ B(X,Y ). Define T ∗
H by ⟨Tx, y⟩ = ⟨x, T ∗

Hy⟩, then
T ∗
H ∈ B(Y,X) and define T ∗

N by T ∗
N(ψ) = ψ ◦ T , then T ∗

N ∈ B(Y ′, X ′).
Relation between T ∗

H and T ∗
N.

X Y

X ′ Y ′

T

T∗
H

U

T∗
N

V
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Let ψ ∈ Y ′. Then φ := T ∗
Nψ ∈ X ′. By R.R.T., there exists a unique yψ ∈ Y and xφ ∈ X such that

ψ(y) = ⟨y, yψ⟩ and φ(x) = ⟨x, xφ⟩ for any y ∈ Y and x ∈ X, and ∥yψ∥ = ∥ψ∥ and ∥xφ∥ = ∥φ∥.
Define U : X ′ ! X by U(φ) = xφ and V : Y ′ ! Y by V (ψ) = yψ. Then U, V are bijective,
linear and isometry. So we can define T ∗ : Y ! X by T ∗(yψ) = xφ. Then T ∗ = U ◦ T ∗

N ◦ V −1

and T ∗ ∈ B(Y,X). Let x ∈ X, then Tx ∈ Y and so ⟨Tx, yψ⟩Y = ψ(Tx) = (T ∗
Nψ)(x) = φ(x) =

⟨x, xφ⟩X = ⟨x, T ∗yψ⟩X . Since the Hilbert adjoint is unique, T ∗
H = T ∗ = U ◦ T ∗

N ◦ V −1.

Example 4.26. Let X = lp and Y = lq, where p, q ∈ R>1 and 1
p + 1

q = 1. Recall X ′ ∼= Y and

Y ′ ∼= X.
Let y = {yn} ∈ lq and φy : lp ! R be defined by φy(x) =

∑∞
n=1 xnyn.

Let x = {xn} ∈ lp and φx : lq ! R be defined by φx(y) =
∑∞
n=1 xnyn.

If T ∈ B(X,Y ), let T : lp ! lq be given by T (x) = y, and T ∗ ∈ B(Y ′, X ′) with T ∗ : (lq)′ ! (lp)′

by T ∗(φx) = φy.

Example 4.27. Let X = (C[0, 1], ∥·∥∞), g ∈ X and define Tg : C[0, 1] ! C[0, 1] by Tg(f) = f ◦ g.
Then Tg ∈ B(C[0, 1], C[0, 1]). Let x ∈ [0, 1] and define φx : C[0, 1] ! R by φx(f) = f(x). Then
φx ∈ (C[0, 1])′. Since T ∗

g (φx)(f) = φx(Tgf) = φx(f ◦ g) = (f ◦ g)(x) = φg(x)(f) for any f ∈ C[0, 1],
we have T ∗

g (φx) = φg(x).

4.5 Reflexive spaces

Let X be a NLS.

Definition 4.28. Given x ∈ X, we may define lx : X ′ ! R by sending φ to φ(x).

Lemma 4.29. lx ∈ X ′′ and ∥lx∥ = ∥x∥.

Proof. Easy to see lx is linear. Since |lx(φ)| = |φ(x)| ⩽ ∥x∥∥φ∥, we have ∥lx∥ ⩽ ∥x∥. In fact,
∥lx∥ = supφ∈X′,∥φ∥=1|lx(φ)| = supφ∈X′,∥φ∥=1|φ(x)| = ∥x∥.

Definition 4.30. The map C : X ! X ′′ defined by C(x) = lx is called the canonical mapping
from X to X ′′.

Lemma 4.31. The canonical mapping C is an isometrical isomorphism (“∼=”) between X and
Im(C), i.e., bijective linear and isometric.

Proof. Easy to check C is linear. Since ∥C(x)∥ = ∥lx∥ = ∥x∥, it is an isometry and then 1-1.
Clearly, it is onto.

Definition 4.32. X is called reflexive if Im(C) = X ′′.

Remark. (a) If X is reflexive, then X ∼= X ′′. But if X ∼= X ′, X may be not reflexive. Counterex-
ample, R. (James (1951)).

(b) If X is reflexive, then X is complete.

Example 4.33. Rn, lp, Lp[0, 1] with p ∈ R>1, finite dimensional NLS’s, and Hilbert spaces are
reflexive.

Example 4.34. l1, l∞. L1[0, 1], L∞[0, 1] and C[0, 1] are not reflexive.
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Theorem 4.35. Every Hilbert space is reflexive.

Proof. Let H be a real Hilberl space. Want to show for any l ∈ H ′′, there exists x ∈ H such that
C(x) = lx = l.
Recall for φ ∈ H ′, by R.R.T., there exists a unique xφ ∈ H such that φ(x) = ⟨x, xφ⟩H for any
x ∈ X and ∥φ∥ = ∥xφ∥. We can define U : H ′ ! H by U(φ) = xφ, then U is linear, bijective and
isometry.
Claim H ′ = B(H,R) is a Hilbert space w.r.t. ⟨φ1, φ2⟩H′ = ⟨Uφ1, Uφ2⟩H . First, since R is complete,
H ′ is complete. Secondly, for any φ1, φ2 ∈ H ′ and a ∈ R, since H is Hilbert and U is linear,

(a) ⟨φ1, φ1⟩H′ = ⟨Uφ1, Uφ1⟩H ⩾ 0.

(b) ⟨φ1, φ2⟩H′ = ⟨Uφ1, Uφ2⟩H = ⟨Uφ2, Uφ1⟩H = ⟨φ2, φ1⟩H′ .

(c) the linearity in both arguments.

So H ′ is Hilbert. Then by R.R.T., for any l ∈ (H ′)′ = H ′′, there exists a unique φl ∈ H ′ such
that l(φ) = ⟨φ,φl⟩H′ = ⟨Uφ,Uφl⟩H = ⟨xφ, xφl⟩H = ⟨xφl , xφ⟩H = φ(xφl) = lxφl (φ) for any φ ∈ H ′.
Hence l = lxφl and so C is onto.

Recall 4.36. (X, d) is separable if X has a countable dense subset. For example, l∞ is not
separable.

Theorem 4.37. If X ′ is separable, so is X.

Proof. Since X ′ is separable, ∂B1(0) = {φ ∈ X ′ | ∥φ∥ = 1} ⊆ X ′ has a countable dense subset, say
{φn} ⊆ ∂B1(0). For each n ∈ N, since supx∈X,∥x∥=1|φn(x)| = ∥φn∥ = 1, there exists xn ∈ X with

∥xn∥ = 1 such that |φn(xn)| ⩾ 1
2 . Let Y = span{xn}∞n=1. Claim Y = X and hence X is separable

since it has a countable dense subset {
∑finite
n=1 anxn | an ∈ Q,∀n}.

Suppose Y ̸= X, then Y ⩽ X is closed, by HW#1, there exists φ ∈ X ′ and ∥φ∥ = 1 such
that φ|Y = 0. Note φ ∈ ∂B1(0) and 1

2 ⩽ |φn(xn)| = |φn(xn)− φ(xn)| = |(φn − φ)(xn)| ⩽
∥φn − φ∥∥xn∥ = ∥φn − φ∥ for any n ∈ N, contradicting the fact that {φn} is dense in ∂B1(0).
Thus, Y = X.

Remark. The converse is not true, e.g. l1 is separable, but l∞ is not.

Corollary 4.38. If X is separable but X ′ is not, then X is not reflexive.

Proof. Suppose X is reflexive, then X ∼= X ′′. Also, since X is separable, X ′′ is separable. So X ′ is
separable, a contradiction.

Example 4.39. (C[0, 1], ∥·∥∞) is not reflexive. We know C∞[0, 1] is separable.
Claim (C[0, 1])′ is not separable. It suffices to construct uncountably many disjoint open balls
in (C[0, 1])′. Let x ∈ [0, 1] and define φx : C[0, 1] ! R by φx(f) = f(x). Then φx ∈ (C[0, 1])′
with ∥φx∥ = 1. In addition, for x ̸= y ∈ [0, 1], claim ∥φx − φy∥ = 2. Note ∥(φx − φy)f∥ =
|φx(f)− φy(f)| ⩽ |f(x)− f(y)| ⩽ 2∥f∥∞ and we can find a set of spline functions to make its
norm ⩾ 1.
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4.6 Uniform Boundedness Principal

Let X,Y be NLS’s.

Definition 4.40. Let (X, d) be a metric space and A ⊆ X. A is of first category in X if A can be
written as a countable union of nowhere dense sets. Otherwise, A is of second category in X.

Remark. Finite union of nowhere dense sets is still nowhere dense. But not necessarily for count-
able union, e.g. Q =

⋃∞
n=1 Fn, where Fn = {mn | m ∈ Z} for any n ∈ N.

Theorem 4.41 (Baire Category Theorem). Let (X, d) be a complete metric space. Then X is of
second category in itself.

Theorem 4.42 (Uniform Boundedness Principal). Let X be Banach and {Tα}α∈I ⊆ B(X,Y ). If
for any x ∈ X, {Tαx}α∈I is bounded, then {∥Tα∥}α∈I is also bounded.

Proof. Let AN = {x ∈ X | ∥Tαx∥Y ⩽ N, ∀α ∈ I} for N ∈ N. Fix N ∈ N and let {xn} ⊆ AN such
that xn ! x as n ! ∞. Since {Tα}α∈I and ∥·∥ are continuous, ∥Tαx∥Y = ∥Tα(limn!∞ xn)∥Y =
∥limn!∞ Tαxn∥Y = limn!∞∥Tαxn∥Y ⩽ N for α ∈ I since {xn} ⊆ AN . So x ∈ AN and then
AN ⊆ X is closed.

Let x ∈ X. Since {Tαx}α∈I is bounded, there exists N = Nx ∈ N such that ∥Tαx∥Y ⩽ N for
α ∈ I. So x ∈ AN and hence X =

⋃∞
N=1AN . Since X is complete, by Baire Category theorem,

there exists N0 ∈ N such that Int(AN0) = Int(AN0) ̸= ∅ since AN0 is closed. So there exists
x0 ∈ AN0 and r0 > 0 such that Br0(x0) ⊆ AN0 . Let zx = x0 +

r0
2

x
∥x0∥X

. Then zx ∈ Br0(x0) ⊆ AN0 .

So ∥Tαx∥Y =
∥∥∥Tα( 2∥x0∥X

r0
(zx − x0)

∥∥∥
Y
=

2∥x0∥X
r0

∥Tαzx − Tαx0∥Y ⩽ 2∥x0∥X
r0

· 2N0 =
4∥x0∥XN0

r0
=: M

for α ∈ I. Thus, ∥Tα∥ ⩽M for α ∈ I.

Corollary 4.43. If supα∈I∥Tα∥ = ∞, then there exists x0 ∈ X such that supα∈I∥Tα(x0)∥Y = ∞.

Corollary 4.44 (Banach-Steinhaus Theorem). Let X be Banach, {Tn}n∈N ⊆ B(X,Y ), {Tnx} be
convergent for any x ∈ X and T : X ! Y given by Tx = limn!∞ Tn(x). Then T ∈ B(X,Y ).

Proof. Let a1, a2 ∈ R and x1, a2 ∈ X. Since {Tn}n∈N ⊆ B(X,Y ) and {Tnx} is convergent for
any x ∈ X, T (a1x1 + a2x2) = limn!∞ Tn(a1x1 + a2x2) = limn!∞(a1Tn(x1) + a2Tn(x2)) =
a1 limn!∞ Tn(x1) + a2 limn!∞ Tn(x2) = a1T (x1) + a2T (x2). So T is linear.

Let x ∈ X. Since {Tnx} converges, {∥Tnx∥} is bounded. Then by Uniform Boundedness
Principal, {∥Tn∥} is bounded. So there exists M > 0 such that ∥Tn∥ ⩽ M for n ∈ N. Since {Tn}
and ∥·∥ are continuous, ∥Tx∥ = ∥limn!∞ Tnx∥ = limn!∞∥Tnx∥ ⩽ limn!∞∥Tn∥∥x∥ ⩽ M∥x∥.
Thus, ∥T∥ ⩽M .

Remark. We may not have ∥Tn∥ ! ∥T∥ as n! ∞.

Example 4.45. Consider c00 = {{xn} ⊆ l∞ | {xn} has finitely many nonzero terms}. Then
(c00, ∥·∥∞) is not complete.

For n ∈ N, define φn : c00 ! R by φn({xm}) = nxn. Then {φn} ⊆ B(c00,R) = c′00.
Let x = {xm} ∈ c00. Then there exists Nx ∈ N such that xm = 0 for any m > Nx. So

|φn({xm})| = n|xn| ⩽ Nx sup1⩽m⩽Nx |xm| =:Mx for n ∈ N. On the other hand, since |φn({xm})| =
n|xn| ⩽ n∥{xm}∥∞ and |φn({0, 0, . . . , 0, 1

"nth
, 0, · · · })| = n with ||{0, 0, . . . , 0, 1

"nth
, 0, · · · }||∞ = 1, we have

∥φn∥ = n for n ∈ N. So by Uniform Boundedness Principal, (c00, ∥·∥∞) cannot be complete.
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Theorem 4.46. Let Y ⊆ X. If {φ(y) | y ∈ Y } is bounded in R for any φ ∈ X ′, then Y is bounded.

Proof. By assumption, {ly(φ)}y∈Y = {φ(y) | y ∈ Y } is bounded with {ly}y∈Y ⊆ B(X ′,R). Since
X ′ is Banach, by Uniform Boundedness Principal, we have {∥y∥}y∈Y = {∥ly∥}y∈Y is bounded.

4.7 Weak Convergence

Let X be a NLS.

Definition 4.47. Let {xn} ⊆ X. We say {xn} converges weakly to x ∈ X, denoted xn ⇀ x if
|φ(xn)− φ(x)| ! 0 as n! ∞ for φ ∈ X ′.

Theorem 4.48. Let {xnk} ⊆ {xn} ⊆ X and xn ⇀ x ∈ X as n! ∞. Then

(a) x is unique;

(b) xnk ! x as k ! ∞;

(c) {xn} is bounded.

Proof. (a) Suppose xn ⇀ y ∈ X as n ! ∞. Let φ ∈ X ′. Then φ(xn) ! φ(x) and φ(xn) ! φ(y)
as n ! ∞. Since convergent sequence has a unique limit, φ(x) = φ(y), i.e., φ(x − y) = 0. Since
φ ∈ X ′ is arbitrary, x = y.

(b) Since xn ⇀ x, φ(xn) ! φ(x) as n ! ∞ for φ ∈ X ′. So φ(xnk) ! φ(x) as k ! ∞ for φ ∈ X ′.
Hence xnk ⇀ x as k ! ∞.

(c) Since xn ⇀, {φ(xn)} converges in R for φ ∈ X ′. So {φ(xn)} is bounded in R for φ ∈ X ′. Hence
by a corollary of Uniform Boundedness Principal, we have {xn} is bounded.

Theorem 4.49. Let {xn} ⊆ X.

(a) If xn ! x ∈ X, then xn ⇀ x as n! ∞.

(b) The converse of (a) is not true in general.

(c) If dimRX <∞, xn ! x ∈ X if and only if xn ⇀ x ∈ X as n! ∞.

Proof. (a) Since xn ! x ∈ X, ∥xn − x∥ ! 0 as n ! ∞. So for any φ ∈ X ′, |φ(xn)− φ(x)| =
|φ(xn − x)| ⩽ ∥φ∥∥xn − x∥ ! 0 as n! ∞.

(b) Counter example. Let X be a Hilbert space with an orthonormal basis {en}. Claim. en ⇀ 0
but en ↛ 0 as n! ∞. Since ∥em − en∥ =

√
2 for all 1 ⩽ m < n <∞, we have en ↛ 0 as n! ∞.

Let φ ∈ X ′. By R.R.T., there exists a unique z ∈ X such that φ(x) = ⟨x, z⟩ for any x ∈ X. by

Bessel’s inequality,
∑∞
n=1

∣∣⟨en, z⟩2∣∣ ⩽ ∥z∥2 < ∞, i.e.,
∑∞
n=1|⟨en, z⟩|

2
converges. So ⟨en, z⟩ ! 0 as

n! ∞. Hence φ(en) = ⟨en, z⟩ ! 0 = φ(0) as n! ∞. Thus, en ⇀ 0 as n! ∞.

(c) It suffices to show if xn ⇀ x ∈ X, then xn ! x. Let dimRX = m and {ei}mi=1 ⊆ X be a

basis. Then x =
∑m
i=1 aiei for some a1, . . . , am ∈ R and for n ∈ N, xn =

∑m
i=1 a

(n)
i for some

a
(n)
1 , . . . , a

(n)
m ∈ R. By Exercise#6 in Homework 1, there exists φi ∈ X ′ for i = 1, . . . ,m such that

φi(ej) = δij for 1 ⩽ j ⩽ m. Then φi(x) = φi(
∑m
j=1 ajej) = ai and φi(xn) = φi(

∑m
j=1 a

(n)
j ej) = a

(n)
i

for i = 1, . . . ,m. Since xn ⇀ x, a
(n)
i = φi(xn) ! φi(x) = ai as n ! ∞ for i = 1, . . . ,m. So

∥xn − x∥ =
∥∥∥∑m

i=1(a
(n)
i − ai)ei

∥∥∥ ⩽
∑m
i=1

∣∣∣a(n)i − ai

∣∣∣∥ei∥ ! 0 as n! ∞.
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Theorem 4.50. Let A ⊆ X be closed and convex. Let {xn} ⊆ A with xn ⇀ x. Then x ∈ A.

Proof. Suppose x ̸∈ A. Since A is closed, x ∈ Ac open. So there exists ϵ > 0 such that Bϵ(x) ⊆ Ac,
i.e., Bϵ(x) ∩ A = ∅. Also, since Bϵ(x) is open, by Geometric Hahn-Banach theorem, there exists
0 ̸= φ ∈ X ′ and c ∈ R such that φ(a) ⩽ c ⩽ φ(b) for a ∈ A and b ∈ Bϵ(x). So φ(a) ⩽ φ(x+ ϵy) =
φ(x) + ϵφ(y) for a ∈ A and y ∈ B1(0). Since {xn} ⊆ A, φ(xn) − φ(x) ⩽ ϵφ(y) for n ∈ N and
y ∈ B1(0).

Since 0 ̸= φ ∈ X ′, there exists 0 ̸= z ∈ X such that φ(z) ̸= 0. Also, since φ is linear,
φ(xn) − φ(x) ⩽ ±ϵφ( z

∥z∥ ) = ± ϵ
∥z∥ |φ(z)|. Let n ! ∞, since xn ⇀ x, we have 0 ⩽ − ϵ

∥z∥ |φ(z)|, a
contradicton.

Corollary 4.51. Let f : X ! R be continuous and convex. If {xn} ⊆ X such that xn ⇀ x as
n! ∞, then f(x) ⩽ lim infn!∞ f(xn).

Proof. Let M = lim infn!∞ f(xn). Let ϵ > 0. Set Aϵ = {x ∈ X | f(x) ⩽M + ϵ}, then Aϵ is closed
since f is continuous, and is convex since f is convex. Since lim infn!∞ f(xn) = M , there exists
{xnk} ⊆ {xn} such that f(xnk) ⩽M + ϵ for k ∈ N. So {xnk} ⊆ Aϵ. Also, since xn ⇀ x as n! ∞,
xnk ⇀ x as k ! ∞. Hence, by the previous theorem, x ∈ Aϵ. So f(x) ⩽ M + ϵ. Since ϵ > 0 is
arbitrary, f(x) ⩽M .

Definition 4.52. Y ⊆ X is called weakly sequentially compact (W.S.C.) if every sequence in Y has
a subsequence that converges weakly in Y .

Lemma 4.53. If Y is weakly sequentially compact, then Y is bounded.

Proof. Suppose not, then there is {yn} ⊆ Y such that ∥yn∥ ⩾ n for each n ∈ N. Since Y is weakly
sequentially compact, there is {ynk} ⊆ yn such that {ynk} converges weakly. So {ynk} is bounded,
contradicted with ∥ynk∥ ⩾ nk.

Theorem 4.54 (Banach-Alaoglu). Let X be reflexive. Then B1(0) ⊆ X is weakly sequentially
compact.

Proof. Let {yn} ⊆ B1(0) and Y = span{yn}. Then Y ⩽ X is closed and separable with a countable

dense subset {
∑finite
i=1 aiyi | ai ∈ Q,∀ i} ∼= QN. Since X is reflexive and Y ⩽ X is closed, by

Exercise#2 in Homework 3, Y is reflexive, i.e., Y ∼= Y ′′. Also, since Y is separable, we have Y ′′ is
separable.

Since Y ′ is isomorphic to a subspace of Y ′′, Y ′ is separable. So there exists A = {φm ∈ Y ′ |
m ∈ N} countable dense in Y ′. For a fixed m ∈ N, {φm(yn)}∞n=1 is bounded in R since |φm(yn)| ⩽
∥φm∥∥yn∥ ⩽ ∥φm∥ <∞ for n ∈ N. So there exists {ynk} ⊆ {yn} such that {φ1(ynk)}∞k=1 converges.
Then there exists {ynkl } ⊆ {ynk} such that {φ2(ynkl )}

∞
l=1 converges and clearly {φ1(ynkl )}

∞
l=1

converges. By diagonal argument, there exists {ynk} ⊆ {yn} such that {φm(ynk)}∞k=1 converges for
all m ∈ N.

Define l : A ! R by l(φm) = limk!∞ φm(ynk). Easy to check l is linear. Since |l(φm)| =
|limk!∞ φm(ynk)| = limk!∞|φm(ynk)| ⩽ limk!∞∥φm∥∥ynk∥ ⩽ ∥φm∥, l is bounded. Hence l ∈ Y ′′.
Since Y is reflexive, there exists y ∈ Y such that l(φ) = C(y)(φ) = ly(φ) = φ(y) for any φ ∈ Y ′.
So limk!∞ φm(ynk) = l(φm) = φm(y) for m ∈ N, i.e., φm(ynk) ! φm(y) as k ! ∞. Since A is
dense in Y ′, φ(ynk) ! φ(y) for all φ ∈ Y ′. Thus, ynk ⇀ y ∈ Y as k ! ∞.

Theorem 4.55. If
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(a) {∥xn∥} bounded and,

(b) for any φ ∈ A, φ(xn) ! φ(x) as n! ∞,

then xn ⇀ x as n! ∞.

Proof. By Problem#1 in Homework 4.

Remark. (a) If X is Banach and B1(0) ⊆ X is weakly sequentially compact, then X is reflexive.

(b) If K ⊆ X is closed, bounded and convex, then K is weakly sequentially compact.

(c) If X is reflexive, then any bounded sequence in X must have a weakly convergent subsequence.

Corollary 4.56. Let X be reflexive, ∅ ̸= K ⊆ X closed and convex. If y ̸∈ K, then there exists
x0 ∈ X such that ∥y − x0∥ = d(y,K).

Proof.

Definition 4.57. A sequence {Tn} ⊆ B(X,Y ) is called

(a) uniformly convergent if {Tn} converges in B(X,Y ), i.e., there exists T ∈ B(X,Y ) such that
∥Tn − T∥ ! 0 as n! 0;

(b) strongly convergent if {Tnx} converges strongly in Y for x ∈ X, i.e., there exists T : X ! Y
such that ∥Tnx− Tnx∥ ! 0 as n! ∞ for x ∈ X;

(c) weakly convergent if {Tnx} converges weakly in Y for x ∈ X, i.e., there exists T : X ! Y such
that |φ(Tnx)− φ(Tx)| ! 0 as n! 0 for x ∈ X and φ ∈ Y ′.

Remark. Uniform convergence implies strong convergence and strong convergence implies weakly
convergence.

Example 4.58. (a) For n ∈ N, define Tn : l2 ! l2 by x = {xn} 7! {0, . . . , 0︸ ︷︷ ︸
n times

, xn+1, xn+2, · · · }.

Easy to show {Tn} ⊆ B(l2, l2) and ∥Tn∥ = 1 for n ∈ N. So {Tn} does not converge to 0 uniformly.

For any x = {xn} ∈ l2, ∥Tnx− 0x∥2 = ∥Tnx∥2 =
(∑∞

i=n+1 x
2
i

)1/2
! 0 as n ! ∞. So Tn ! 0

strongly.

(b) For n ∈ N, define Tn : l2 ! l2 by x = {xn} 7! {0, . . . , 0︸ ︷︷ ︸
n times

, x1, x2, x3, · · · }. Easy to check

{Tn} ⊆ B(l2, l2) and ∥Tn∥ = 1.

Let φ ∈ (l2)′. Since l2 is Hilbert, by R.R.T., there exists y = {yn} ∈ l2 such that φ(x) = ⟨x, y⟩ =∑∞
i=1 xiyi for x ∈ l2. So by Cauchy Schwarz inequality, |φ(Tnx)| = |φ({0, . . . , 0︸ ︷︷ ︸

n times

, x1, x2, x3, · · · })| =

|
∑∞
i=1 xiyn+i| ⩽ (

∑∞
i=1|xi|

2
)

1
2 (
∑∞
i=n+1|yi|

2
)

1
2 = ∥x∥2(

∑∞
i=n+1|yi|

2
)

1
2 ! 0 as n ! ∞ for x ∈ l2. So

Tn ! T weakly.

In addition, note for x = {1, 0, 0, · · · } ∈ l2, ∥Tnx− Tmx∥ =
√
2 for m,n ∈ N with m ̸= n. So

Tn does not converges to 0 strongly.
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Lemma 4.59. If X is Banach and T is a strong convergence limit of {Tn} ⊆ B(X,Y ), then
T ∈ B(X,Y ).

Proof. It direcly follows from Banach-Steinhaus Theorem.

Remark. Note ∥Tn∥ may not converge to ∥T∥.

Example 4.60. For n ∈ N, let Tn : c00 ! l2 be given by x = {xn} 7! {x1, 2x2, 3x3, . . . , nxn, xn+1,
xn+2, · · · }. Claim. Tn ! T strongly, where T : c00 ! l2 is defined by x = {xn} 7! {nxn}.

Note ∥Tnx− Tx∥2 = ||{0, . . . , 0︸ ︷︷ ︸
n times

,−nxn+1,−(n + 1)xn+2, · · · }||2 ! 0 for x = {xn} ∈ c00. So

Tn ! T strongly. But T ̸∈ B(X,Y ) since it is unbounded.

Definition 4.61. A sequence {φn} ⊆ X ′ is

(a) strongly convergent to φ ∈ X ′ if ∥φn − φ∥X′ ! 0 as n! ∞.

(b) weak∗ convergent to φ ∈ X ′, denoted φn
w∗

−−! φ if |φn(x)− φ(x)| ! 0 as n! ∞ for any x ∈ X.

Proposition 4.62. Let {φn} ⊆ X ′.

(a) If φn ⇀ φ, then φn
w∗

−−! φ.

(b) If φn
w∗

−−! φ and X is reflexive, then φn ⇀ φ.

Proof. (a) Note for x ∈ X, |φn(x)− φ(x)| = |lx(φn)− lx(φ)| ! 0 since φn ⇀ φ.

(b) Let l ∈ X ′′. SinceX is reflexive, there exists x ∈ X such that l = C(x) = lx. So |l(φn)− l(φ)| =
|lx(φn)− lx(φ)| = |φn(x)− φ(x)| ! 0 since φn

w∗

−−! φ.

Definition 4.63. Let Y ⊆ X ′ be weak∗ sequentially compact if for any {φn} ⊆ Y , there exists

{φnk} ⊆ {φn} such that φnk
w∗

−−! φ.

Theorem 4.64. Let X be separable. Then B
∥·∥X′
1 (0) ⊆ X ′ is weak∗ sequentially compact.

Proof. Let {φn} ⊆ B
∥·∥X′
1 (0). Let {xm} ⊆ X be countable and dense. For a fixed m ∈ N,

{φn(m)}∞n=1 is bounded in R since |φn(xm)| ⩽ ∥φn∥∥xm∥ ⩽ ∥xm∥ for n ∈ N. So there exists
{φnk} ⊆ {φn} such that {φnk(x1)} converges. Then there exists {φnkl } ⊆ {φnk} such that {φnkl } ⊆
{φnk} such that φnkl (x2) converges. By “diagonal argument”, we can find {φnk} ⊆ {φn} such that
{φnk(xm)} converges for all m ⩾ 1.

Define φ : {xm} ! R by φ(xm) = limk!∞ φnk(xm). By a similar result to problem#1 in
Homework 4, we can extend from {xm} to X by defining φ : X ! R by x 7! limk!∞ φnk(x). So

φnk
w∗

−−! φ.

In addition, since |φ(x)| = |limk!∞ φnk(x)| ⩽ limk!∞∥φnk∥∥x∥ ⩽ ∥x∥ for x ∈ X. So ∥φ∥ ⩽ 1

and thus φ ∈ B
∥·∥X′
1 (0).



4.8. OPEN MAPPING AND CLOSED GRAPH THEOREM 45

4.8 Open mapping and closed graph theorem

Let X and Y be NLS’s.

Definition 4.65. Let X and T metric spaces. T : X ! Y is called an opening mapping if for any
A ⊆ X open, T (A) ⊆ Y open.

Remark. A continuous mapping may not be an open mapping. For example, consider f : (0, 1) !
R given by f(x) = 1, and sin(·) : (0, 2π) ! R. Then f(0, 1) and sin(0, 2π) are not open in R,
respectively.

Lemma 4.66. Let X and Y be Banach and T ∈ B(X,Y ). If T is onto, then T (B1(0)) contains an
open ball that includes 0 ∈ Y .

Proof. First note for x ∈ X, take k ∈ N with k > 2∥x∥, i.e.,
∥∥x
k

∥∥ < 1
2 , i.e., x ∈ kB 1

2
(0). So there

exists ϵ0 > 0 and y0 ∈ T (B 1
2
(0)) such that Bϵ0(y0) ⊆ T (B 1

2
(0)), i.e., Bϵ0(0) = Bϵ0(y0) − {y0} ⊆

T (B 1
2
(0))− {y0}. Claim. T (B 1

2
(0))− {y0} ⊆ T (B1(0)).

Proof of the Claim. Let y ∈ T (B 1
2
(0)) − {y0}. Then y + y0 ∈ T (B 1

2
(0)). So there exists

{T (wn)} ⊆ T (B 1
2
(0)) such that T (wn) ! y + y0 as n ! ∞. Also, since y0 ∈ B 1

2
(0), there exists

{T (zn)} ⊆ T (B 1
2
(0)) such that T (zn) ! y as n! ∞. So T (wn−zn) = Twn−Tzn ! (y+y0)−y0 =

y with ∥wn − zn∥ ⩽ ∥wn∥+ ∥zn∥ < 1
2 + 1

2 = 1. Then {wn − zn} ⊆ B1(0) and so y ∈ T (B1(0)).

Hence we get Bϵ0(0) ⊆ T (B1(0)) and so B ϵ0
2n

(0) ⊆ T (B 1
2n

(0)) for n ∈ N since T is linear.

Claim. B ϵ0
2
(0) ⊆ T (B1(0)). Let y ∈ B ϵ0

2
(0) ⊆ T (B 1

2
(0)). Then there exists T (x1) ∈ T (B 1

2
(0))

such that ∥y − Tx1∥ < ϵ0
22 , i.e., y − Tx1 ∈ B ϵ0

22
(0) ⊆ T (B 1

22
(0)). Then there exists T (x2) ∈

T (B 1
22
(0)) such that ∥y − Tx1 − Tx2∥ ⩽ ϵ0

23 , i.e., y−Tx1−Tx2 ∈ B ϵ0
23
(0) ⊆ T (B 1

23
(0)). Repeat this,

for n ∈ N, we can find {xn} ⊆ X with ∥xn∥ < 1
2n such that ∥y − Tx1 − Tx2 − · · · − Txn∥ ⩽ ϵ0

2n+1 .
Let zn =

∑n
i=1 xi ∈ X. Then for n,m ∈ N with n > m, ∥zn − zm∥ = ∥

∑
−i = m+ 1nXi∥ ⩽∑n

i=m+1
1
2i ⩽ 1

2m+1 ! 0. So {zn} ⊆ X is Cauchy. Also, since X is complete, there exists x ∈ X
such that

∑n
i=1 xi = zn ! x as n ! ∞. Note ∥y − T (

∑n
i=1 xi)∥ ! 0 as n ! ∞. Since T

is continuous, we have y = limn!∞ T (
∑n
i=1 xi) = T (limn!∞

∑n
i=1 xi) = T (x). Since ∥x∥ =

∥
∑∞
i=1 xi∥ ⩽

∑∞
i=1∥xi∥ ⩽

∑∞
i=1

1
2i = 1, we have x ∈ B1(0). So y = Tx ∈ T (B1(0)).

Theorem 4.67 (Open Mapping Theorem). Let X and Y be Banach and T ∈ B(X,Y ). If T is
onto, then T is an open mapping.

Proof. Let A ⊆ X be open. Let x ∈ A. Then there exists r > 0 such that Br(x) ⊆ A. So
A−{x} ⊇ Br(x)−{x} = Br(0), i.e.,

1
r (A−{x}) ⊇ B1(0). Also, since T is linear, 1

r (T (A)− Tx) =

T ( 1r (A−{x})) ⊇ T (B1(0)) ⊇ B∥·∥Y
ϵ (0) for some ϵ > 0 by previous lemma, i.e., T (A)−T (x) ⊇ Brϵ(0),

i.e., T (A) ⊇ Brϵ(0) + T (x) = Brϵ(T (x)).

Corollary 4.68 (Inverse Mapping Theorem). Let X and Y be Banach and T ∈ B(X,Y ). If T is
bijective, then T−1 ∈ B(Y,X).

Proof. Since T is bijective and T is linear and then T−1 : Y ! X is also linear. Since T is onto, by
Open Mapping Theorem, T is an open mapping. So T−1 is continuous and thus T−1 is bounded.
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Definition 4.69. A linear operator T : D(T ) ! Y with domain D(T ) ⊆ X, is called a closed
operator if the graph of the operator

g(T ) := {(x, y) ∈ X × Y | x ∈ D(T ), y = Tx}

is closed in X × Y .

Remark. (a) Recall X × Y is a NLS with the norm ∥(x, y)∥X×Y := ∥x∥X + ∥y∥Y . In particular,
if X,Y are both Banach, then so is X × Y .

(b) Most of the (linear) operators in practical purpose are closed.

Lemma 4.70. T is closed if and only if if {xn} ⊆ D(T ), xn
∥·∥X−−−! x ∈ X and Txn

∥·∥Y−−−! y ∈ Y ,
then x ∈ D(T ) and y = Tx.

Proof. =⇒ Since xn ! x and Txn ! y as n! ∞, we have ∥(xn, Txn)− (x, y)∥X×Y = ∥(xn − x, Txn − y)∥X×Y =
∥xn − x∥X + ∥Txn − y∥Y ! ∞ as n ! ∞, i.e., {(xn, T (xn))} ⊆ g(T ) converges to (x, y), then
(x, y) ∈ g(T ) since g(T ) is closed. So x ∈ D(T ) and y = Tx.

⇐= Let (x, y) ∈ g(T ). Then there exists {(xn, Txn)} ⊆ g(T ) such that (xn, T (xn))
∥·∥X×Y
−−−−−!

(x, y). Similarly, xn ! x and Txn ! y as n ! ∞. By assumption, x ∈ D(T ) and y = Tx. So
(x, y) ∈ g(T ).

Example 4.71. Let T : C1[0, 1] ! C[0, 1] be given by f 7! f ′. Then T is unbounded but closed.

Proof. Let n ∈ N and fn(x) = xn ∈ C1[0, 1]. Then ∥fn∥∞ = 1 and ∥Tfn∥∞ =
∥∥nxn−1

∥∥
∞ = n. So

∥T∥ ⩾ n. Thus, T is unbounded.

Let {fn} ⊆ C1[0, 1], fn
∥·∥∞−−−! f and T (fn) = f ′n

∥·∥∞−−−! g. Let x ∈ [0, 1]. Then
∫ x
0
g(t)dt =∫ x

0
limn!∞ f ′n(t)dt = limn!∞

∫ x
0
f ′n(t)dt = limn!∞(fn(x)− fn(0)) = f(x)− f(0) since f ′n

∥·∥∞−−−! g

and length([0, x]) = x < ∞, i.e., f(x) = f(0) +
∫ x
0
g(t)dt. By Fundamental Theorem of Calculus,

f ∈ C1[0, 1] and T (f) = f ′ = g. Thus, by previous lemma, T is closed.

Example 4.72. Let id : D(T ) ! D(T ) ⊆ X and D(T ) ⊆ X is dense. If {xn} ⊆ D(T ) and
xn ! x ∈ X ∖D(T ), then id(xn) = xn ! x. But since x ̸∈ D(T ), T is not closed.

Theorem 4.73 (Closed Graph Theorem). Let X,Y be Banach and T : X ⊇ D(T ) ! Y be a closed
linear operator. If D(T ) is closed in X, then T is bounded.

Proof. Since X is Banach and D(T ) ⊆ X is closed, D(T ) is Banach. Since X,Y are Banach, X×Y
is Banach. Also, since T is closed, g(T ) is closed in X × Y . So g(T ) is Banach.

Now consider P : g(T ) ! D(T ) given by (x, Tx) 7! x. Easy to check P ∈ B(g(T ),D(T )) and
P is bijective. Then by Inverse Mapping Theorem, P−1 : D(T ) ! g(T ) given by x 7! (x, Tx) is
bounded. So there existsM > 0 such that

∥∥P−1(x)
∥∥
X×Y = ∥(x, Tx)∥X×Y ⩽M∥x∥X for x ∈ D(T ).

Hence ∥Tx∥Y ⩽M∥x∥X for x ∈ D(T ).

Fact 4.74. Let T : D(T ) ⊆ X ! Y be linear and bounded. If D(T ) is closed in X, then T is
closed.

Proof. If {xn} ⊆ D(T ), xn ! x and Txn ! y, then x ∈ D(T ) since D(T ) ⊆ X is closed, and
Txn ! Tx since T is bounded. So by the uniqueness of limit, we have Tx = y.
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Theorem 4.75 (Two-Norm theorem). If (X, ∥·∥1) and (X, ∥·∥2) are both Banach, and one norm
is stronger than the other, then ∥·∥1 and ∥·∥2 are equivalent.

Proof. Wlog., assume ∥·∥2 is stronger than ∥·∥1. Then there existsM > 0 such that ∥x∥1 ⩽M∥x∥2
for all x ∈ X. Consider id : (X, ∥·∥1) ! (X, ∥·∥2). Obviously, id is linear. To show id is bounded,
it suffices to show id is closed by Closed Graph Theorem since (X, ∥·∥1) and (X, ∥·∥2) are Banach.

If {xn} ⊆ X, xn
∥·∥1−−! x and idxn = xn

∥·∥2−−! y, then obviously x ∈ X and idx = y since
∥id(x)− y∥1 = ∥x− y∥1 ⩽ ∥x− xn∥1 + ∥xn − y∥1 ⩽ ∥x− xn∥1 +M∥xn − y∥2 ! 0 as n! ∞.

Example 4.76. (C[0, 1], ∥·∥1) is not complete, where ∥f∥1 =
∫ 1

0
|f(t)|dt.

Proof. Suppose not. Since ∥f∥1 =
∫ 1

0
|f(t)|dt ⩽ ∥f∥∞ for all f ∈ C1[0, 1], we have ∥·∥∞ is stronger

than ∥·∥1. Also, since (C[0, 1], ∥·∥∞) is complete, by Two-Norm Theorem, ∥·∥1 and ∥·∥∞ are equiv-
alent. So there is a M > 0 such that ∥f∥∞ ⩽M∥f∥ for all f ∈ C[0, 1], which is impossible.
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Chapter 5

Spectral Theory of Linear
Operators

Let X,Y be complex NLS’s.

5.1 Basic definitions and examples

Definition 5.1. Let T : X ⊇ D(T ) ! X be a linear operator.

(a) For λ ∈ C, if Tλ = T − λI : Im(Tλ) ! D(Tλ) has an inverse, then we call the inverse
Rλ(T ) = T−1

λ = (T − λI)−1 the resolvent of T .

(b) λ ∈ C is a regular value of T if the following conditions hold.

(1) Rλ(T ) exists.

(2) Rλ(T ) is bounded.

(3) Rλ(T ) is densely defined, i.e., D(Rλ(T )) ⊆ X is dense.

The collection of all regular values is called the resolvent set of T , denoted as ρ(T ).

(c) The complement of ρ(T ), denoted as σ(T ) = C∖ ρ(T ), is called the spectrum of T and can be
divided into the following 3 cases:

(1) Point (discrete) spectrum of T :

σρ(T ) = {λ ∈ σ(T ) | Rλ(T ) does not exist}.

(2) Continuous spectrum of T :

σc(T ) = {λ ∈ σ(T ) | Rλ(T ) exists, densely defined, but unbounded}.

(3) Residual spectrum of T :

σr(T ) = {λ ∈ σ(T ) | Rλ(T ) exists, but not densely defined}.

49
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σc(T ) ∪ σr(T ) are called the essential spectrum.

Remark. (a) Name “resolvent” comes from solving Tλx = y.

(b) Rλ(T ) is linear.

(c) C = ρ(T ) ∪ σ(T ) = ρ(T ) ∪ σρ(T ) ∪ σc(T ) ∪ σr(T ).

(d) If λ ∈ σρ(T ), λ is also called an eigenvalue of T . NoteRλ(T ) = (T−λI)−1 : D(Rλ(T )) ! D(Tλ)
exists if and only if Tλ = T − λI is 1-1 if and only if Ker(Tλ) = {0} = {x | (T − λI)x = 0}. Thus if
0 ̸= x satisfying (T − λI)x = 0, then λ ∈ σρ(T ) and x is called an eigenvector corresponding to λ.

Lemma 5.2. Let x1, . . . , xn be eigenvectors corresponding to different eigenvalues λ1, . . . , λn, then
x1, . . . , xn are linearly independent.

Proof. Suppose not, reorder them and let xm with m ∈ {1, . . . , n} be the first vector that can be

written as a linear combination of its previous vectors. Namely, xm =
∑m−1
i=1 aixi with ai ∈ C for

i = 1, . . . ,m − 1. Then 0 = (T − λmI)xm =
∑m−1
i=1 ai(Txi − λmxi) =

∑m−1
i=1 ai(λi − λm)xi. Also,

by the minimality of m, x1, . . . , xm−1 are independent, so ai(λi − λm) = 0 for i = 1, . . . ,m − 1.
Also, since λ1, . . . , λm are distinct, ai = 0 for i = 1, . . . ,m− 1. So xm = 0, a contradiction.

Example 5.3. Let dimCX = n ⩾ 1 with a standard basis {e1, . . . , en}. Let T : X ! X be given by
T (ei) =

∑n
j=1 aijej with ai1, . . . , ain ∈ C for i = 1, . . . , n. Then T is linear and can be represented

as a matrix A = [aij ]. Let λ ∈ σρ(T ). Then (T − λI)x = 0 for some x ̸= 0. So (A − λIn)x = 0.
Hence det(T − λIn) = 0 and it has a complex root since det(A− λIn) ∈ C[λ] has degree n.

If λ ̸∈ σρ(T ) , then Rλ(T ) exists and is defined on the entire X and bounded. So λ ∈ ρ(T ), i.e.,
σc(T ) = σr(T ) = ∅.

Example 5.4. Consider the right-shift operator T : l2 ! l2. Recall T ∈ B(l2, l2) and ∥T∥ = 1.
Claim. 0 ∈ σr(T ) ⊆ C. Let T−1 : Im(T ) ! be the left inverse (left-shift) of T . Then T−1 =
(T − 0I)−1 = R0(T ). So D(R0(T )) = D(T−1) = Im(T ) = {x ∈ l2 | x = {0, x1, x2, · · · }} is not
dense in l2. Hence 0 ∈ σr(T ).

Theorem 5.5. Let X be Banach and T ∈ B(X,X).

(a) If Rλ(T ) exists and is defined on X, then Rλ(T ) is bounded.

(b) If λ ∈ ρ(T ), then Rλ(T ) is defined on the entire X (and also bounded by (a)).

Proof. (a) Since T ∈ B(X,X), T − λI ∈ B(X,X). Since Rλ(T ) = (T − λI)−1 exists and is defined
on X, and X is Banach, by Inverse Mapping Theorem, Rλ(T ) ∈ B(X,X).

(b) Since T ∈ B(X,X) and D(T ) = X is closed, we have T is closed by previous Fact. Claim.
T − λI is also closed. Let {xn} ⊆ X with xn ! x ∈ X, and (T − λI)xn ! y as n ! ∞. Then
Txn = (T − λI)xn + xn ! y + x = Tx as n ! ∞ since T is closed. So (T − λI)x = Tx − λx =
limn!∞ Txn − λ limn!∞ xn = limn!∞(T − λI)xn = y.

Let {(T −λI)xn} ⊆ Im(T −λI) = D(Rλ(T )) such that (T −λI)xn ! y, where {xn} ⊆ X. Since
X is complete, y ∈ X. Since λ ∈ σρ(T ), Rλ(T ) is bounded. So Rλ(T )((T −λI)xn) ! Rλ(T )y ∈ X.
Then (T −λI)−1y = x, i.e., y = (T −λI)x for some x ∈ X. So y ∈ Im(T −λI) = D(Rλ(T )). Hence
D(Rλ(T )) is closed. Also, since λ ∈ ρ(T ), D(Rλ(T )) = D(Rλ(T )) = X.
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5.2 Spectral Properties of Bounded Linear Operators

Let X be Banach and T ∈ B(X,X).

Recall 5.6. (X, ∥·∥) is Banach if and only if every absolutely convergent series converges.

Lemma 5.7. If ∥T∥ < 1, then (I − T )−1 exists, (I − T )−1 ∈ B(X,X) and (I − T )−1 =
∑∞
n=0 T

n.

Proof. Since X is Banach, B(X,X) is Banach. To show
∑∞
n=0 T

n converges, it suffices to show∑∞
n=0∥Tn∥ < ∞, which is true since

∑∞
n=0∥Tn∥ ⩽

∑∞
n=0∥T∥

n
= 1

1−∥T∥ < ∞. So
∑∞
n=0 T

n ∈
B(X,X). Only need to show (I − T )−1 =

∑∞
n=0 T

n. This can be seen from (I − T )(
∑∞
n=0 T

n) =∑∞
n=0((I − T )Tn) = limN!∞(I − T )(

∑N
n=0 T

n) = limN!∞(I − TN+1) = I − 0 = I since∥∥TN+1 − 0
∥∥ ⩽ ∥T∥N+1 ! 0 as N ! ∞.

Theorem 5.8. σ(T ) ⊆ B∥T∥(0) = {λ ∈ C | |λ| ⩽ ∥T∥}. So ρ(T ) ̸= ∅.

Proof. Prove by contrapositive. Since
∥∥T
λ

∥∥ < 1, by previous lemma, we have Rλ(T ) = (T−λI)−1 =

(−λ(I − 1
λT ))

−1 = − 1
λ (I −

T
λ )

−1 = − 1
λ

∑∞
n=0

Tn

λn = −
∑∞
n=0

Tn

λn+1 ∈ B(X,X). So λ ∈ ρ(T ).

Theorem 5.9. σ(T ) is closed in C. So σ(T ) is compact, combining with the previous theorem.

Proof. It suffices to show ρ(T ) is open. Let λ0 ∈ ρ(T ). Let λ ∈ C. Then T − λI = T −
λ0I + (λ0 − λ)I = (T − λ0I)(I + (λ0 − λ)(T − λ0I)

−1). So Tλ = Tλ0
(I − (λ − λ0)Rλ0

(T )).
Hence for ∥(λ− λ0)Rλ0

(T )∥ = |λ− λ0|∥Rλ0
(T )∥ < 1, i.e., |λ− λ0| < 1

∥Rλ0
(T )∥ , we have Rλ(T ) =

T−1
λ = (I − (λ − λ0)Rλ0

(T ))−1T−1
λ0

=
∑∞
n=0(λ − λ0)

nRλ0
(T )nRλ0

(T ) =
∑∞
n=0(λ − λ0)

nRn+1
λ0

(T )

and so ∥Rλ(T )∥ ⩽ ∥Rλ0
(T )∥

∑∞
n=0∥(λ− λ0)Rλ0

(T )∥n =
∥Rλ0

(T )∥
1−∥(λ−λ0)Rλ0

(T )∥ , hence λ ∈ ρ(T ). So

B 1

∥Rλ0 (T )∥
(λ0) ⊆ ρ(T ). Thus, ρ is open.

Theorem 5.10. Let λ, µ ∈ ρ(T ). Then

(a) Rλ(T )−Rµ(T ) = (λ− µ)Rλ(T )Rµ(T ). “resolvent equation”

(b) Rλ(T )S = SRλ(T ) if S ∈ B(X,X) and ST = TS.

(c) Rλ(T )Rµ(T ) = Rµ(T )Rλ(T ).

Proof. (a) Rλ(T ) − Rµ(T ) = Rλ(T )TµRµ(T ) −Rλ(T )TλRµ(T ) = Rλ(T )(Tµ − Tλ)Rµ(T ) = (λ −
µ)Rλ(T )Rµ(T ).

(b) If ST = TS, then STλ = S(T − λI) = ST − λS = TS − λS = (T − λI)S = TλS. So
Rλ(T )S = Rλ(T )STλRλ(T ) = Rλ(T )TλSRλ(T ) = SRλ(T ).

(c) Since µ ∈ ρ(T ), Rµ(T ) ∈ B(X,X) by previous theorem. Since TT = TT , by (b), we have
Rµ(T )T = TRµ(T ). Again, by (b), Rλ(T )Rµ(T ) = Rµ(T )Rλ(T ).
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5.2.1 Recall

Let X,Y,X1, X2, {Xn} be Banach and T : X ! Y be linear.

Definition 5.11. (a) A domain D ⊆ C is an open connected set.

(b) A complex-valued function of a complex variable f(λ) is holomorphic (analytic) on D if f is

differentiable at every λ ∈ D, i.e., f ′(λ) = lim∆λ!0
f(λ+∆λ)−f(λ)

∆λ exists for λ ∈ D.

(c) f is holomorphic at λ0 ∈ C if f is holomorphic on a neighborhood around λ0.

(d) f is entire if f is holomorphic on C.

Theorem 5.12. (a) f is holomorphic on D if and only if f(λ) =
∑∞
n=0 cn(λ − λ0)

n with cn ∈ C
for i ⩾ 0 for any λ ∈ B

|·|
r (λ0), where r is radius of convergence.

(b) (Liouville) Any bounded entire function is a constant function.

Definition 5.13. Let E ⊆ C be open. Then an operator function S : E ! B(X,X) is called locally
holomorphic if for x ∈ X and φ ∈ X ′, the complex function f(λ) := φ(S(λ)x) is holomorphic on E.

In fact, S is holomorphic if E is a domain.

Theorem 5.14. (a) R : ρ(T ) ! B(X,X) given by S(λ) = Rλ(T ) is locally holomorphic.

(b) For λ ∈ ρ(T ), ∥Rλ(T )∥ ⩾ 1
d(λ) , where d(λ) = infµ∈σ(T )|λ− µ|.

Proof. (a) Want to show for x ∈ X and φ ∈ X ′, f(λ) := φ(Rλ(T )x) is holomorphic on ρ(T ). Let
λ0 ∈ ρ(T ). Let λ ∈ C. Similar to the proof of previous theorem, for λ ∈ B 1

∥Rλ0 (T )∥
(λ0), f(λ) =

φ(Rλ(T )) = φ(
∑∞
n=0(λ− λ0)

nRn+1
λ0

(T )x) =
∑∞
n=0 φ(R

n+1
λ0

(T )x)(λ− λ0)
n with φ(Rn+1

λ0
(T )x) ∈ C

for n ⩾ 0. So f is holomorphic on ρ(T ).

(b) If |µ− λ| < 1
∥Rλ(T )∥ , then µ ∈ ρ(T ). So if µ ∈ σ(T ), then |µ− λ| ⩾ 1

∥Rλ(T )∥ . Hence d(λ) =

infµ∈σ(T )|µ− λ| ⩾ 1
∥Rλ(T )∥ .

Lemma 5.15. (a) If T is compact, then T is bounded, i.e., K(X,Y ) ⊆ B(X,Y ).

(b) If dim(X) = ∞, then id is not complete.

(c) K ⊆ X is compact if and only if any sequence in K has a convergent subsequence which
converges to a point in K.

Lemma 5.16. For {yn} ⊆ Y , {yn} has a convergent subsequence which converges to Y , then Y is
compact.

Proof. Let {xn} ⊆ Y . Then for n ∈ N, there exists {yn,m}∞m=1 ⊆ Y such that yn,m ! xn as
m! ∞. For n ∈ N, there exists Mn ∈ N such that ∥yn,Mn − xn∥ < 1

n . Consider {yn,Mn}∞n=1 ⊆ Y ,

by assumption, there is {ynk,Mnk
}∞k=1 ⊆ {yn,Mn}∞n=1 such that ynk,Mnk

! y ∈ Y as k ! ∞.

Then ∥xnk − y∥ ⩽
∥∥∥xnk − ynk,Mnk

∥∥∥ +
∥∥∥ynk,Mnk

− y
∥∥∥ ⩽ 1

nk
+
∥∥∥ynk,Mnk

− y
∥∥∥ ! 0 as k ! ∞. So

xnk ! y ∈ Y as k ! ∞. Thus, Y is compact.
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Theorem 5.17. T is compact if and only if for any {xn} ⊆ X bounded, {T (xn)} has a convergent
subsequence.

Proof. =⇒ Since T is compact and {xn} is bounded, {T (xn)} is compact. So {T (xn)} ⊆ {T (xn)}
has a convergent subsequence.

⇐= For any B ⊆ X bounded, consider {yn} ⊆ T (B), where yn = T (xn) and {xn} ⊆ B is
bounded. By assumption, {yn} has a convergent subsequence. So T (B) is compact by previous
lemma. Thus, T is compact.

Remark. If T1, T2 are compact linear, then T1 + T2 and aT1 for a ∈ C are also compact linear.
Thus, K(X,Y ) is a vector space.

Theorem 5.18. (a) If T is bounded and dim(T (X)) < ∞ (“operators with finite rank”), then T
is compact.

(b) If dim(X) <∞, then T is compact.

Proof. (a) Let {xn} ⊆ X be bounded. Since T is bounded, {T (xn)} is also bounded since ∥Txn∥ ⩽
∥xn∥ and {xn} is uniformly bounded. So {T (xn)} is closed and bounded in T (X). So {T (xn)} is
compact since dim(X) < ∞. Thus, {T (xn)} ⊆ {T (xn)} has a convergent subsequence and hence
T is compact.

(b) Since dim(X) < ∞ and T is linear, T is bounded from MATH8210. On the other hand, since
dim(T (X)) ⩽ dim(X) <∞, T is compact by (a).

Remark. K(X,Y ) ⊆ B(X,Y ) is closed since Y is Banach.

Theorem 5.19. If {Tn} are compact linear and ∥Tn − T∥ ! 0 as n ! 0. Then T is compact
linear.

Proof. Linearity of T is obvious. Let {xn} ⊆ X be bounded. Then there exists M > 0 such that
∥xn∥ < M . Since {Tn} is compact, by “diagonal argument”, there exists {xmk} ⊆ {xm} such
that {Tn(xmk)}∞k=1 converges for all n ∈ N. Let ϵ > 0. Since ∥Tn − T∥ ! 0 as n ! ∞, there
exists N ∈ N such that ∥TN − T∥ < ϵ

3M . Since {TN (xmk)}∞k=1 is Cauchy, there exists N ′ such
that |TN (xmk)− TN (xml)| < ϵ

3 for k, l ⩾ N ′. So ∥T (xmk)− T (xml)∥ ⩽ ∥T (xmk)− TN (xmk)∥ +
∥TN (xmk)− TN (xml)∥ + ∥TN (xml)− T (xml)∥ ⩽ ϵ

3MM + ϵ
3 + ϵ

3MM = ϵ for k, l ⩾ N ′. Hence
{T (xmk)} is Cauchy in Y . Also, since Y is Banach, {T (xmk)} converges. Thus, T is compact.

Example 5.20. If {Tn} is compact linear and Tn ! T strongly as n ! ∞, then T may not be
compact.

Proof. For n ∈ N, let Tn : l2 ! l2 be given by x = {xm} 7! {x1, . . . , xn, 0, 0, · · · }. Then {Tn} are

bounded linear with finite rank for n ∈ N. For x ∈ l2, ∥Tnx− id(x)∥2 = (
∑∞
i=n+1|xi|

2
)

1
2 ! 0 as

n! ∞ since x ∈ l2. So Tn ! id strongly as n! ∞, but id is not compact since dim(l2) = ∞.

Example 5.21. Define T : l2 ! l2 by x = {xn} 7! {x1, x2

2 ,
x3

3 , . . . ,
xn
n , · · · }. Then T is compact

linear.

Proof. For n ∈ N, let Tn : l2 ! l2 be given by x = {xm} 7! {x1, x2

2 ,
x3

3 , . . . ,
xn
n , 0, 0, · · · }. Then

for n ∈ N, Tn are compact linear since Tn is bounded and dim(Tn(l
2)) = n < ∞. For n ∈ N

and x ∈ l2, ∥(Tn − T )x∥2 = ∥Tnx− Tx∥22 =
∑∞
i=n+1

x2
i

i2 ⩽ 1
(n+1)2

∑∞
i=n+1 x

2
i ⩽ 1

(n+1)2 ∥x∥
2
2. Then

∥Tn − T∥ ⩽ 1
n+1 . So Tn ! T uniformly. Thus, T is compact linear.
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Example 5.22. Define T : C[0, 1] ! C[0, 1] by Tx =
∫ 1

0
K(t, s)x(s)ds, where K : [0, 1]× [0, 1] ! R

is continuous. Then T is compact linear.

Proof. Linearity and boundedness of T is obvious. Let {xn} ⊆ C[0, 1] be bounded. Then there
exists M > 0 such that ∥xn∥ ⩽ M for n ∈ N. So ∥Txn∥∞ ⩽ ∥T∥∥xn∥∞ < ∥T∥M , i.e., {T (xn)}
is uniformly bounded. Let ϵ > 0. Since K ∈ C([0, 1] × [0, 1]) and [0, 1] × [0, 1] is compact, K is
uniformly continuous. So there exists δ = δ(ϵ) > 0 such that |K(t1, s)−K(t2, s)| < ϵ

M when-
ever t1, t2 ∈ [0, 1] with |t1 − t2| < δ for s ∈ [0, 1]. Hence for n ∈ N, |T (xn)(t1)− T (xn)(t2)| =∣∣∣∫ 1

0
K(t1, s)xn(s)ds−

∫ 1

0
K(t2, s)xn(s)ds

∣∣∣ ⩽ ∫ 1

0
|K(t1, s)−K(t2, s)|∥xn∥ds < ϵ

M ·M = ϵ whenever

t1, t2 ∈ [0, 1] with |t1 − t2| < δ. So {T (xn)} is equicontinuous. Thus, by Arzela-Ascoli theorem,
{T (xn)} has a convergent subsequence.

Theorem 5.23 (Arzela-Ascoli). Let {fn} ⊆ (C[0, 1], ∥·∥). If

(a) ∥fn∥∞ ⩽M for n ∈ N;

(b) {fn} is equicontinuous, i.e., for ϵ > 0, there exists δ = δ(ϵ) > 0 such that |fn(t1)− fn(t2)| < ϵ
whenever t1, t2 ∈ [0, 1] with |t1 − t2| < δ for n ∈ N;

then {fn} has a convergent subsequence.

Lemma 5.24. If {xn} ⊆ X satisfies for any subsequence {xnk} ⊆ {xn}, there exsits {xnkl } ⊆ {xnk}
such that xnkl ! x0 as l ! ∞, then xn ! x0 as n! ∞.

Proof. Suppose not, then there exists ϵ > 0 such that for k ∈ N, we have ∥xnk − x0∥ ⩾ ϵ for some
nk ⩾ k and nk ⩾ nk−1, where n0 = 0. So {xnk} does not have any subsequence convergent to 0, a
contradiction.

Theorem 5.25. Let T : X ! Y be compact linear. If xn ⇀ x, then T (xn) ! T (x) as n! ∞.

Proof. Let φ ∈ Y ′. Then φ ◦ T is bounded linear since both φ and T are bounded linear, i.e.,
φ ◦ T ∈ X ′. So φ(T (xn)) ! φ(T (x)). Hence Txn ⇀ Tx as n ! ∞. Let {Txnk} ⊆ {Txn} with
{xnk} ⊆ {xn}. Since xn ⇀ x, {xnk} is bounded. Also, since T is compact, {Txnk} has a convergent
subsequence {Txnkl }. Since Txn ⇀ Tx as n ! ∞, Txnkl ⇀ Tx as l ! ∞. Thus, by previous
lemma, Txn ! Tx as n! ∞.

Theorem 5.26. Let T : X ! Y be compact linear. Then Im(T ) = T (X) is separable.

Proof. Note X =
⋃∞
n=0Bn(0). Then T (X) = T (

⋃∞
n=0Bn(0)) =

⋃∞
n=0 T (Bn(0)). Let n ∈ N .

Then Bn ⊆ X is bounded. So T (Bn(0) is compact since T is compact. Then T (Bn(0)) is totally
bounded. So T (Bn(0)) is separable. Then there exists countable dense subset Dn ⊆ T (Bn(0)). So⋃∞
n=1Dn is countable dense in

⋃∞
n=1 T (Bn(0)) = T (X) since

⋃∞
n=1 Un is countable and

⋃∞
n=1Dn ⊇⋃∞

n=1Dn =
⋃∞
n=1 T (Bn(0)) = T (X).

Theorem 5.27. Let T : X ! Y be compact linear. Then T ∗ : Y ′ ! X ′ is also compact linear.

Proof. Since X ′ is complete, it suffices to show for any B ⊆ Y ′, say ∥φ∥ ⩽ M for φ ∈ B, T ∗(B)
is totally bounded. Let ϵ > 0. Want to show there exist φ1, . . . , φn ∈ B such that for φ ∈ B,
sup∥x∥⩽1|φ(Tx)− φk(Tx)| = ∥T ∗(φ)− T ∗(φk)∥X ⩽ ϵ for some k ∈ {1, . . . , n}. Since B1(0) ⊆ X is
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bounded, T (B1(0)) is totally bounded in Y . Hence there exist x1, . . . , xm ∈ B1(0) such that for
x ∈ B1(0), ∥Tx− Txj∥Y ⩽ ϵ

3M for some j ∈ {1, . . . ,m}.
Define l : Y ′ ! Rm by l(φ) = (φ(Tx1), . . . , φ(Txm)). Since T is compact, it is bounded. Also,

since φ is bounded, l is bounded. Also, since dim(l(Y ′)) ⩽ m, l is compact. Also, since B ⊆ Y ′ is
bounded, l(B) is totally bounded in Rm. Hence there exist φ1, . . . , φn ∈ B such that for φ ∈ B,
∥l(φ)− l(φk)∥Rm ⩽ ϵ

3 for some k ∈ {1, . . . , n}.
Thus, for x ∈ B1(0) and φ ∈ B, |φ(Tx)− φk(Tx)| ⩽ |φ(Tx)− φ(Txj)|+ |φ(Txj)− φk(Txj)|+

|φk(Txj)− φk(Tx)| ⩽ ∥φ∥∥Tx− Txj∥+∥l(φ)− l(φk)∥+∥φk∥|Txj − Tx| ⩽M · ϵ
3M+ ϵ

3+M · ϵ
3M = ϵ.

Therefore, sup∥x∥⩽1|φ(Tx)− φk(Tx)| ⩽ ϵ.
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