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Chapter 1

Metric Spaces

In this chapter we introduce metric spaces which can be seen as a generalization of the real numbers
studied in advanced calculus. A metric space is a set X with a metric defined on it. More precisely,
the metric associates with any pair of elements of X a distance. The metric is defined axiomatically,
with the axioms being motivated from the corresponding properties of real numbers. A metric on a
set also induces topological properties such as open and closed sets, which can lead to the study of
more abstract topological spaces. Other important properties of metric spaces, such as separability
and completeness, will also be investigated in this chapter. To demonstrate some applications of
completeness, we introduce the Banach fixed point theorem and the Baire category theorem in the
context of metric spaces at the end of this chapter.
Let R =R U {oo}.

1.1 Definition and Examples

Definition 1.1. Let X be a set and d: X x X — R be a function on X x X := {(z,y) | z,y € X}
that satisfies for all z,y,z € X,

(0) d(z,y) > 0 “nonnegativity”.

(1) d(z,y) =0 if and only if z = y “definiteness”.
(2) d(z,y) = d(y,x) “symmetry”.

(3) d(z,y) < d(z,z) +d(z,y) “triangle-inequality”.

Then the pair (X,d) is called a metric space, where X is called the underlying set, d called the
metric or distance.

Remark. Condition (0) is redundant. To see this, let y = z in (3), then 0 = d(z,z) < d(z,2) +
d(z,z) = 2d(z, z) for any z,z € X.

Example 1.2. (a) Let pe R and |-’ : R x R — R defined as (x,y) — |z — y|’. Then (R,|-|") is
a metric space if and only if 0 < p < 1.
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(b) Let p € R and n € N. Define for p € R7!,
dp :R" xR" — R

(@,y) — (Zl‘z - yip> )

=

i=1
and
dey : R" x R” — R
(.9) — max |~
(1) If n =1, then d,, = | - | for p € R~ {0}.

METRIC SPACES

(2) Let n € Z72. Then (R",d,) is a metric space if and only if p € R!. The metric dy is called

the Fuclidean metric on R™.

Definition 1.3. (a) Let

I°:={z:N—R|x={z;}i>1 is a bounded sequence}

—{x:NHR|z—Sup|zi|<oo}.
i€N

(b) Let

P = {x :N— R |z = {z;};>1 such that Z|azi|p < oo} .

i=1

Example 1.4. (IP,d,) is a metric space if and only if p € R*!, where for p € R,

dp : P xIP — R

o0 »
(2,y) — (Zm - yz|p> )
i=1
and
doo : 1 X 1° — R
(2,y) — sup |z; — yil.
ieN
Remark. d., is well-defined.
Fact 1.5. Let p € R. Then € (I?,d,) if and only if d,(z,0) < oco.
Theorem 1.6. [P C 7 if and only if 1 <p < q < o0.

Example 1.7. (S,dg) is a metri space, where S = {z : N = R | z = {x;};¢en is a (real) sequence}

and

ds:5xS—R

o0

1 |$z‘—yi|
(m’y)Hgglﬂxi—yi\'
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Proof. ds is well-defined since 3°7°, & 120l < 570 L =1, O

i=1 27 T+[z;—y;|
Remark. (a) 4 can be replaced by a; > 0 such that Y ;- a; < oo (converges).
(b) ILH can be replaced by any function f which is bounded, increasing, concave and f(0) = 0.
Example 1.8. Let

Cla,b) = {z : [a,b] = R |z = z(¢) is a continuous function}.
(Cla,b],dp) is a metric space if and only if p € RZ!, where for p € R>!,

dy : Cla,b] x Cla,b] — R
b ;
- ( / |:c<t>—y<t>|p> ,

ds : Cla,b] x Cla, b)) — R

(z,y) — Jnax lz(t) — y(t)].

and

Check both are well-defined.
Definition 1.9. Let

Bla,b] = {z : [a,b] = R | z = z(t) is a bounded function}.
Example 1.10. (Bla,b],d) and (B(a,b),ds) are metric spaces, where

doo : B(a,b) x B(a,b) —

(z,y) = sup |z(t) —y(t)|.
te(a,b)

Example 1.11. (X, dgisc) is a discrete metric space, where

ddisc X x X —R
0, ==y,
(z,y) — { 1, z#u.
Assumption 1.12. Let X be a metrix space.

Next we look at some basic ways to create new metric spaces from the ones that we already
have.

Definition 1.13. Let (X, d) be a metric space and Y C X, then (Y,dy «y) is a metric subspace of
(X,d), and dy «y is called the metric induced by d.

Example 1.14. Let Y = {z € [* |z = {x,}, z,, =0 or 1,¥n € N} C [*°. We have (Y, doo|yxy)
is a metric subspace of I and deo|y xy = ddisc-
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Theorem 1.15 (Finite product). Let (X;,d;) be a metric space fori=1,...,n. Then ([, Xi,dp)
is a metric space where

dpﬁszﬁXz_’R
=1 =1

1
(z,y) — (Xoisi i@ yi)?) 7, when p € RZY,
Y max d;(zi, yi), when p = oo.
1<ign

Proof. Let p € RZ!. Let o = {x;}1 1,y = {yi}1uy. 2 = {2}, € [To, Xi. Let
f = (dl(.’l?l, 2'1), ey dn(mna Zn)) S R"™ and g = (d1(21>y1)7 ey dn(znvyn)) S R™.

Then by Minkowski inequality, dp(z,y) = (O i, di(zs,y:)P)? < (Oiey (di(wis i) + di(z,1:))7)? =
If+gll, <IfIl, + lgll, = dp(z, 2) + dp(y, 2). O

=
=

Corollary 1.16. Let p € R. Then (R™, d,) is a metric space if and only if n =1 or n € 77? and
p € RZL

Proof. Take (X;,d;) = (R,|-]) fori=1,...,n. O

Theorem 1.17 (Countable space). Let (X;,d;) be a metric space for eachi € N. Then ([];2; Xi, d;)
is a metric space, where

d: HXZ X HXZ — R
i=1 i=1
— 1 di(zi,y)
(#.9)— ; 201+ di(wi,yi)
Corollary 1.18. (5,dg) is a metric space.
Proof. Take (X;,d;) = (R,|]) for each i € N. O

1.2 Topology of Metric Spaces

In this section we introduce some basic topological concepts that are of fundamental importance
in studying metric spaces. Most of these concepts are motivated from the geometry of Euclidean
spaces Rn and should become quite familiar when looking at them that way.

Assumption 1.19. Let (X, d) be a metric space and A C X.
Definition 1.20. Define

(a)
d(z, A) = inf{d(z,y) | y € A}.

(b)
d(A, B) = inf{d(z,y) | z € A and y € B}.
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()
diam(A) = sup {d(z,y) | z,y € A}.
(d) A is bounded if diam(A) < co.
Definition 1.21. Let 2o € X and € > 0. Then we define
(a) “Open e-ball around x(”:
Bi(zo) = {z € X | d(z,20) < ¢}.

(b) “Closed e-ball around x(”:

Bé(z) = {z € X | d(z,x0) < €}.
(c) “e-sphere around x(”:

OB (z0) = {x € X | d(z,20) = €} = Bd(x¢) ~ B%(x0).

Remark. (a) B%(zy) # 0 and Bd(zq) # 0 for any metric d and € > 0.
(b) 9B (x¢) = () for d = disc and any € # 1.
Definition 1.22. (a) xo € X is an interior point of A if there exists € > 0 such that B%(zo) C A.
(b) The interior of A:

Int(A) := {x € X | z is an interior point of A}.
(¢) o € X is an accumulation point (limiting point) of A if for e > 0, there exists xg # x € A such
that = € B%(xy).

(d) The derived set of A:

A" ={x € X | z is an accumulation point of A}.

(e) The closure of A:
A=AUA.

Example 1.23. Let X = (0,1) and A = X. Then A = (0,1) by definition.

Lemma 1.24. (a) Int(4) C A C A.

b) x € A if and only if for € > 0, there exists x € A such that x € B%(zy), i.e., Bd(wo) N A # 0.
c¢) If AC B, then Int(A) C Int(B) and A C B.

d) Int(A) = (4°)".

e) A= (Int(A°))°.

Definition 1.25. (a) A is open if A =1Int(A) or A C Int(A).

(
(
(
(
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(b) A'is closed if A= Aor AC A.
Lemma 1.26. A is open if and only if A€ is closed and A is closed if and only if A€ is open.
Theorem 1.27. B.(x) is open and Bc(zo) is closed for all xg € X and € > 0.

Proof. Let x € Be(zg), then d(x,z9) < €. Let ¢ := € — d(z,x¢) > 0. Note for y € B (z), we have
d(y,z0) < d(y,z) +d(z,20) < € +d(z,29) = €. So Be(z) C Be(xg). Then z € Int (Be(zo)).

Let # € B(w), then we have B1(z) N Bc(zg) # 0 for n € N. So there exists {y,} such that
d(yn,x) < L and d(yn, o) < € for n'€ N. Then d(z,20) < d(z,yn) + d(yn, x0) < L + € for n € N.
So d(x,z¢) < €. Thus, x € B.(zp). O

Remark. (a) A metric space is a topology space with the topology being the collection of all open
sets.

(b) In metric space, certain sets could be open and closed. For example, in (X, dqisc), any set
A C X is both open and closed.

Proposition 1.28. (a) §) and X are open and closed.

(b) If {Aq}aer is open, then (J,; Aq is open.

(c) If {A;}, is open, then (), A; is open.

(d) If {Aq}aer is closed, then (., Aq is closed.

(e) If {A;}, is closed, then [ J;_; A; is closed.

Proof. (a) Since () C Int(@), () is open. Since for z € X, B.(xz) C X for € > 0, X is open.
(b) Let z € U

(c) Let z € N, 4; = Int(4;). Then z € A; for i = 1,...,n. So there exists ¢; > 0 such that
Be,(z) C A; for each i = 1,-,n. Let € = minj¢;<, {€;} > 0. Then B.(x) C A4, foreach i =1,...,n.
So Be(z) €N, Ai. Thus, z € Int(N);_, 4;). O

A, Then there exists o € I such that z € Ay, = Int(Aq,) € Int (U,e; Aa)-

acl acl -

Theorem 1.29. (a) Int(A) is the largest open set contained in A.

(b) A is the smallest closed set containing A.

Proof. (a) Let € Int(A). Then there exists €, > 0 such that B, () C A. Since B, (z) =

Int(Be, (z)) € Int(A), we have U, crpa) Be. (@) € Int(A) = U cma){zt € Userna) Be. ()
So Int(A) = U,emi(a) Be. (x), which implies Int(A) is open. Let B C A such that B is open.
B = Int(B) C Int(A), which implies Int(A) is the largest such set.

(b) Since A = (Int(A°))¢, we have A is closed. Let C' O A such that C is closed. Then C' D A4,
O

which implies A is the smallest such set.

Corollary 1.30. (a) Int(Int(A)) = Int(A).

(b) A=A,

(c) If A is open, then A is a union of open balls.

Proposition 1.31. (a) AUB = AU B and Int(4A N B) = Int(A4) N Int(B).
(b) ANB C AN B and Int(AU B) 2 Int(A) U Int(B).
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1.3 Separable Spaces

In this section we introduce the concept of separability for a metric space. This is a topo- logical
property that may also give a limitation on the size of metric spaces. More precisely, separable
metric spaces can not have a size that is larger than the size of real numbers. In order to define
separability, we need to introduce the notion of denseness. Roughly speaking, a subset A is dense
in a metric space (X, d) if for every point in X, it is either in A or arbitrarily close to a member of

A.
Assumption 1.32. Let (X, d) be a metric space and A C X.
Definition 1.33. A is said to be dense in (X,d) if A = X.

Remark. A is dense in X if and only if z € A for 2 € X if and only if for z € X and any ¢ > 0, we
have B.(z) N A # () if and only if for # € X and any € > 0, there exists a € A such that d(z, a) < e.

Definition 1.34. A is said to be separable if X contains a countable dense subset.
Remark. Separability depends on the metric.
Example 1.35. (X, dgisc) is separable if and only if X is countable.

Proof. < Clearly.
—> Let A C X. Then there exists 2 € X \ A. So Bys(z) = {a} € A. Thus, A # X and so
the dense subset of X is X. Since X is countable, X is the countable dense subset of X. O

Example 1.36. (a) (R,|-|) is separable since Q is a countable dense subset of R.

(b) (R™,d,) is separable since {(q1,...,¢n) | ¢ € Q,Vi=1,...,n} is a countable dense subset of
R™.

(¢) (R,dqisc) is not separable.
Example 1.37. (a) (I?,d,) is a separable space for p € RZL.
(b) (I°°,dw) is not separable.

Proof. (a) Let A= {{z,} | 2, € Q,z, # 0 for finitely many n € N}. Since A = |, .,y Q", we have
A C [P is countable. Let z = {z;} € I” and € > 0. Then > :° |z;|” < co. So there exists N € N
such that Y = v|z;|” < €/2. Pick a = {q1,...,¢n,0,0,---} € A such that |z; — ¢;| < @nyr- Then

dp(z,a) = (O |vi — %|)"/? < €. So A is dense in (I, dp).

(b) Counsider Y = {{y,} =y €1 |y, =0o0r 1,Vn € N}. There is a 1-1 correspondence between

x € [0,1] and a sequence coming from its binary representaion Y | 4.
Since doo|y is a discrete metric, we have { By /5(y) | y € Y} is a collection of uncountable disjoint

open balls. So any dense subset of (I°°,d,) is not countable. O

Example 1.38. (C[0,1],d,) is separable for p € R>!.
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Proof. (a) Let p = oo. It is enough to consider Q[0,1] = {Zﬁnge @it | g € Q,Vi,t € [0, 1]}, which
is countable since Q[0,1] = |J;—; Q™. Let z € C[0,1] and € > 0. By the Weierstrass Approximation
theorem, P[0,1] is dense in C[0, 1], so there exists p = Y1 | p;it* € P[0,1] such that do(z,p) < .
Since @ is dense in R, we can pick ¢(t) = Y. ,¢t" € Q[0,1] such that |g; — p;| < s for
i=1..,n Then doo(7,4) < doo(®,p) + doo(p,q) < § + maxiep ) [Xilo (i — 0| < 5+
maxge(o1] Di—olPi — Gilt' < 5+ D iolpi — ¢l = €.

/P 1/p
(b) Let p € R>L. Observe that dy(z,y) = ( It |pdt> ( Moo (2, y |pdt) -
doo(z,y) for z,y € C[0,1]. Then, clearly, we have the result. O

Example 1.39. (B0, 1],d) is not separable.

Proof. Let Y = {ys € B[0,1] 0 ifs—t

ys(t) = { L ifs#1 } Then |Y| = |[0,1]], which implies Y is

if S1 7& S92

. for s1,89 €
if 51 = 89 1 o2

uncountable. Also, note deo(Ys,,Ysy) = SUDsefo1] [Usy (£) = ¥s, (D) = { (1)

[0,1]. So dwoly is a discrete metric. Then {B{l/2 (ys) | ys € Y} is a collection of uncountable disjoint
open balls. Thus, any dense subset of (B[0, 1], d) is not countable. O

1.4 Continuous Mapping and Sequences
Let (X,dx) and (Y, dy) be metric spaces and A C X.

Definition 1.40. Let f: (X,dx) — (Y,dy). We say f is continuous at xq if for e > 0, there exists
§(xg, €) > 0 such that f(x) € B (f(x0)) whenever z € B3X (z0), i.e., f (Bglx (mo)) C B (f(wo)),

ie., Bf* (x0) € [ (B (f(x0)))-

Theorem 1.41. Let f : (X,dx) — (Y,dy). Then f is continuous if and only if for any U CY
open, f~1(U) C X open.

Proof. <= Let f be continuous and U C Y be open. If f~1(U) = 0, then it is open. Assume
now f~HU) # 0. Let zo € f~'(U). Then f(zo) € f(f*(U)) € U. Since U is open, there
exists € > 0 such that B, (f(zo)) € U. Since f is continuous at zg, there exists § > 0 such that
By(wo) € £~ (Be (f(20))) € /(). So = (U]) is open.

<= Let 29 € X and € > 0. Then B, (f(z0)) C Y open. So by assumption, f~! (B (f(x0))) € X
is open. Also, since mg € f~1f(xo) C f~1 (B (f(w0))), there exists § > 0 such that Bs(zg) C
F1(Bc (f(x0))). So f is continuous at xg. O

Definition 1.42. z is a sequence in X denoted as © = {z,,} if = is a mapping from N to X, where
Zn = x(n) for n € N.

(a) {xn} converges to xg € X if for € > 0, there exists N € N such that d(z,,x¢) < € for n > N,
ie., {zn}tnsn C BY(20). Denote it as

. d
lim z, = x¢ and x,, — x¢ as n — oo.
n—oo
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(b) {xn} is Cauchy if for € > 0, there exists N € N such that x,, € B%(z,,) whenever m,n > N,
ie., d(zn, Tm) 1, 0 as m,n — oo.

(¢) {xn} is bounded if {x,} C B,(x) for some g € X and r > 0.

Remark. {z,} C X is bounded if and only if diam({z,,}) = sup,, ey {d(Zm, Tn)} < 00.

Proof. = Since {z,} C X is bounded, there exists zo € X and r > 0 such that d(z,,z¢) < r for
each n € N. Then d(zm, d,) < d(zm,x0) + d(zy, x0) < 2r < 0o for m,n € N.
<= We can choose any z,, as a compared point. O

Theorem 1.43. (a) Convergent sequence has a unique limit.
(b) “Convergent sequence” C “Cauchy sequence” C “bounded sequence”.

Proof. (a) Assume z, — x and x,, — y as n — oo. Then d(z,y) < d(z,z,) + d(z,,y) for n € N.
So d(z,y) < limy,—oo(d(z, n) + d(xn,y)) = lim,— oo d(x, 2,,) + limy,— oo (Tn,y) =04+ 0 = 0.

(b) Let z,, » x as n — o0o. Then d(xy, n) < d(zy, ) + d(2, m). So 0 < limy, oo d(Tn, Tm) <
limy, 00 d(@p, ) 4+ limy,— 00 d(2, ) =0+ 0= 0. So {z,} is Cauchy.

Let {z,,} be Cauchy. Then for e = 1, there exists N € N such that d(z,,z,) < 1 whenever
n,m = N. So d(zp,zn) < 1 for n > N. Let r = max{l,d(z1,zn),...,d(Xn_1,Xn)}. Then

Theorem 1.44. (a) x € A" if and only if there exists {x,} C A with x, # x for n € N such that
xnixGX as n — 00.

(b) x € A if and only if there exists {x,} C A such that x, LreX asn— .

(c) A is closed if and only if if {xn,} C A and x, 42 asn— 00, then x € A.

Proof. (a) x € A’ if and only if for € > 0, there exists x # y € A such that y € B(z) if and only if
there exists x # x, € A such that z,, € B‘li/n (z) for n € N if and only if there exists {z,,} C A with

x,L#xforneNsuchthata:nixasn—>oo.
(b) It is similar to (1).

(¢) = By (2),$nix6Z:Aasn—>oo.
<= Let € A. Then by (2), there exists {x,,} C A such that x, 4 2z asn — oo So By

assumption, x € A. O

Theorem 1.45. Let f : (X,dx) — (Y,dy). Then f is continuous at ©o € X if and only if

(xn) A, f(xo) whenever x,, 94X, 20 as n — o

Proof. = Let f be continuous at zo € X and ¢ > 0. Then there exists §(zp,¢e) > 0 such that
BgX (zo) € f7H (B (f(z0)). Also, since z, 4z asn — 00, there exists N € N such that
{#n}nzn C© B§¥(z0) € f7 (B (f(20)))- So f ({zn}nzn) © ff 7 (BE (f(20))) S BE (f(o)),
e, {f(@n)tnzn © B (f(20)). Thus, f(z,) 5 f(zo) as n — oo.
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<= Suppose f is not continuous at zy. Then there exists ¢ > 0 such that for § > 0, there

exists x5 such that z; € BI¥(x) but f(xs) ¢ B (f(x0)). So there exists {x,} C X such that
Ty € B‘li;‘n(xo) but f(z,) & BY (f(xg)) for n € N. Thus, we have z,, X, 20 but f(zn) & f(xo) as
n — 00, a contradiction. O

1.5 Completeness

In real analysis we have encountered the notion of completeness when we prove that every Cauchy
sequence in R converges. In this section we generalize this concept to metric spaces. We will see
that unlike R, certain metric spaces are not complete. Roughly speaking, a space is complete if
there are no elements “missing” from it. A simple example is that the rational numbers Q is not
complete, because for instance, e is “missing” from it, even though we can construct a Cauchy
sequence of rational numbers that converges to e (e.g. {z, = (14 1)"}). Remarkably, it turns out
that it is always possible to“fill all the holes” in an incomplete metric space, which leads to the
completion of a given metric space.

Assumption 1.46. Let (X, d) be a metric space.

Definition 1.47. (X,d) is said to be complete if every Cauchy sequence in (X, d) converges, i.e.,
there exists z € X such that x, > z for {zn} Cauchy.

Example 1.48. (R,|-|) is complete.

Example 1.49. (R",ds) is complete for n € N.

Proof. Let {z(™} be Cauchy in (R", ds), then do(z(™), 2(F)) — 0 asm, k — oo. Since ‘xgm) - mgk)‘ <

1
2\ 2
(Z?_l xz(-m) —xz(-k)‘ ) , we have ‘xgm) —xgk)‘ — 0 as m,k — oo for each i = 1,...,n, ie.,
{xgm)} is Cauchy in (R,|-]) for each ¢ = 1,...,n. Since R is complete, there exists x; € R
such that xl(-m) — x; asm — oo for each ¢ = 1,...,n. Let z = (x1,...,2,) € R*. Then
2\ 2
do(x(™) ) = (Zfl l‘z(-m) —x; ) — 0 as m — oo, i.e., {x(™} converges in (R",ds). O

Example 1.50. (X, dgjsc) is complete.

Proof. Let {x,} be Cauchy in (X, dgisc). Then there exists N € N such that dgise(zn, Tm) < % for

all m,n > N. So z,,, = x,, for m,n > N. Thus, {z,} converges in X. O
Example 1.51. (I?,d,) with p € R®! is complete.

Proof. (a) Assume p = oo. Let {z"} be a Cauchy sequence in (I°°,ds) and € > 0. Then there
exists N € N such that ’xE") —2{™| < sup;ey ’zgm) - zgm)‘ = doo (2, 2(M)) < ¢ for all m,n > N.

Since € > 0 is arbitrary, {335”)} is Cauchy in (R, |-|) for each ¢ € N. Since (R,|-|) is complete,
(n)

there exists x; € R such that xEH) — x; for i € N. Let x = (21,x9,...,). Observe ‘xz —xz;| =

xgm) ‘ < € for

<efori€Nandany n > N. So de(2(™,2) = sup;ey xz(-") —x;

lim,,,— 0o ‘xin) —
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n > N. Since e > 0 is arbitrary, doo(z(™,2) — 0 as n — oo. Notice |z;] <

T; — xEN)’ +

xEN) ‘ <

€+

xEN)’ for i € N. So 2 € 1°°. Thus, {z(™} converges in (I°°,dn.).

(b) Assume p € RZ!. Let {x(™} be Cauchy in (I?,d,) and e > 0. Then for each ¢ > 0, there is an

oy L
N € N such that ‘acgn) — acgm)‘ < (Zoo L) )p = dy (™, (™) < € for all m,n > N and

i=1

X

each i € N. So {xz(")} is a Cauchy sequence for each i € N. Since (R, |-|) is complete, there exists

z; € R such that xgn) — x; for i € N. Let @ = (z1,22,---). Observe Zle

p
xl(n) — xl(m)‘ < €P for

P
all m,n > N each k € N. So Zle‘xgn) —
)

(n
x,; — X

P
= lim,;, o0 Zle :vz-") — CEEm)‘ < e foreachn> N

P
and each k € N. Hence Zfil < €P for each n > N. It implies

1
P\ _ d
(n) )pgeforeachn2N,1.e., (™) 2 2 as n — oo and

° (Zf; Ty T
e (™ — gz € IP. By the Minkowski inequality, [|z| = |« +(x—x("))Hp < ||3c(”)Hp +
Hx — x(”)Hp < o0, ie., xell.
Thus, {z(™} converges in (I7,d,). O

Example 1.52. (B[0,1],dw) is complete.

Proof. Let {z,} be Cauchy in (B[0,1],ds) and € > 0. Then there exists N € N such that
|20 (t) — Zm (t)] < supiejo ] [Tn(t) — T (t)| = doo(Tn, ) < € for all m,n > N and each t € [0, 1].
So {z,(t)} is Cauchy in (R,|-|) for each t € [0,1]. Since (R,|-|) is complete, there exists z; € R
such that x,(t) — x; for each ¢t € [0,1]. Let x : [0,1] — R given by z(t) = lim,—.cc ,(t). Ob-
serve |z, (t) — 2(t)| = limm—oo|Tn(t) — 2m ()] < e for n = N and any t € [0,1]. So deo(xpn,z) =
SUPse(o,1] [Tn(t) —2(t)] < € for n > N. So z, =, 1 as n — oo. Note lz(t)| < |z(t) —zn(t)| +
lzn (t)] < € + My, for some M; € R given zx € B0, 1], for t € [0,1]. So x € B([0,1]). Thus, {z(™}
converges in (B0, 1], dw). O

Theorem 1.53. Let A C X.
(a) If (A,d) is complete, then A = A.
(b) If A= A and (X, d) is complete, then (A,d) is complete,

Proof. (a) Let # € A C X. Then there exists {z,} C A C X such that z,, — x as n — oo. So
{z,} converges in (X,d) and then {x,} is Cauchy in (X,d) and hence Cauchy in (4,d). Since
(A, d) is complete, there exists o € A such that x,, — xp as n — co. By the uniqueness of limit,
x=u1x9 € A. So AC A.

(b) Let {z,} be Cauchy in (A,d). Then {z,} is Cauchy in (X,d). Since (X,d) is complete, there

exists ¢ € X such that z,, — z € A as n — oco. Since A is closed, z € A. Thus, {x,} converges in
A. O

Example 1.54. (I?,d,) with 1 < p < ¢ < oo is not complete.
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Proof. Let A= {{z,} |z, € Q,z, # 0 for finitely many n € N}.

(a) Assume g < co. Recall A is dense in 19. Note A C [P C 9. Sol? = A C [P C 9 =[9. Hence

P =172107in (I°°,d). So (IP,d,) is not complete.

(b) Assume ¢ = co. We know A is dense in cg. Note A C 1P C ¢y C1®. Socg=ACIP C & = cp.
Hence [P = co C 1. So IP C IP in (I°°,dy.). Thus, (IP,ds) is not complete. O

Example 1.55. (a) C([0,1],d) is complete.
(b) (C[0,1],d,) with p € RZ! is not complete.

Proof. (a) Method 1. Since C[0,1] C BJ[0,1] and (B[0,1],ds) is complete, it is enough to show

C[0,1] is closed in (BJ[0,1],dw). Let {x,} C C[0,1] and =, =, 2 asn — oo. Let {t,} C R and

tn 1, t as n — oco. Note |z(t,) — 2(t)] < |2(tn) — zn(tn)| + |2 (tn) — 20 ()] + |20 (t) — 2(t)| — 0

asn — o0o. So x € C[0,1]. Thus, C[0,1] is closed in (B0, 1], dw)-

Method 2. Let {x,} be Cauchy in (C[0,1],ds) and € > 0. Then there exists N € N such
that [z, () — zm ()] < maxieio), [2n(t) —xm( )| = doo(@n,xm) < € for all m,n > N and each
t €[0,1]. So {x,(t)} is Cauchy in (R, |-|) for each ¢ € [0,1]. Since (R, |-|) is complete, there exists

x¢ € R such that x,(t) — x; for each t € [0,1]. Let z : [0,1] — R given by x(t) = lim,, 00 Zn(t).
Observe |z, (t) — ()] = limym—oo|@n(t) — 2 (t)| < € for n > N and any ¢ € [0,1]. So deo(zp,x) =
maxyeo,1] |2n(t) — 2(t)| < € for n > N. So x, converges to x uniformly and hence z € CI0,1].
Thus, {z(™} converges in (C[0, 1], dso).

0 ﬁogtgé
(b) Let z,(t) = { (n+1)(t—3) if3<t<3+ 5 forn € N. Then {z,} C C[0,1]. Let
1 if 5+ 47 <t<1

<1 if3<t<5+5

m,n € N with n > m. Then |z,(t) — 2, (¢)] = 2, (t) — xm(t){ ~0 0therw1se m+l - So

dp(Tp, Tm) = (f01|:1:n(t) - xm(t)|p>5 < (ﬁ“); — 0 as m — 0. Hence {x,} is Cauchy in C]0, 1].

Suppose there is x € C[0, 1] such that dp(z,,z) — 0 as n — co. Then

</0%|:vn(t)—x(t)|pdt+/; () - |Pdt> (/ |2 (t) — (¢ |pdt> — dy(an,2).

mE1

D=

Let n > m — 0, then lim, <f0%|xn(t)—x(t)|pdt> < 0 = limy oo dp(xn,x). So z(t) =

1
{ (1] i? 3 t\< 21 Thus, x ¢ C[0, 1], a contradiction. =
2

Example 1.56. (P]0,1],d) is not complete.

Proof. By Weierstrass Approximation theorem, P[0,1] C C]0,1] is dense. Then PJ0, 1] = C0, 1]
P[0, 1]. Also, since (C[0,1],ds) is complete, we have (P[0, 1], do) is not complete.

RV
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1.5.1 Completion of a Metric Space
Definition 1.57. Let f: (X,dx) — (Y,dy).

(a) f is said to be isometric or an isometry if dy (f(z), f(y)) = dx(z,y) for all z,y € X, ie., f
preserve distance.

(b) If f is a bijective isometry, then (X,dx) and (Y,dY) are called isometric spaces.
Remark. If f is an isometry, then f is 1-1 and continuous.

Definition 1.58. Let (X, d) be a metric space. A complete metric space (X d) is called a comple-
tion of (X, d) if there exists an isometry f : (X, d) — (X, d) such that f(X) is dense in (X,d).

Example 1.59. Let I be the identity mapping I : Q — R. Since I(Q) = Q = R, it is a completion.
Lemma 1.60. (a) If z, — z, y, — y, then d(x,,y,) — d(z,y).

(b) If {x,,} and {y,} are Cauchy, then there exists r € (R, |-|) such that d(x,,y,) — r

Proof. (a) |d(zn, yn) — d(2,y)| < d(zn, ) + d(yn, y)-

(b) [d(@n, yn) = d(@m, ym)| < d(@n, 2m) + d(Yn, Ym) — 0. O
Theorem 1.61. Fvery metric space has a completion and all the completion are isometric spaces.

Proof. e Step 1. Construct X. Let C = {{z,} | {zn} is Cauchy in X}. Define “~” on C by
{zn} ~ {an} if lim, . d(2p,27,) = 0. Easy to check “~” is an equivalent relation. Let
X ={[z] | [#] is an equivalent class w.r.t “~”}.

e Step 2. Define
d: XxX >R
(fa) o) = lim_ d(z. 1)
where {x,} € [z] and {y,} € [y]. First, lim, .o d(xn,y,) exists by the above lemma. Let
{zn} {27} C [2], and {yn}, {5} C [y], then [d(wn, yn) — d(@), yp)| < d(@n, 23,) +d(Yn, yp,) —

040 =0. So limy_,00 d(Tn, Yn) = limy, 0o d(,,y,,). Thus, d is well-defined. Easy to check
d is a metric.

e Step 3. Define
f:X— X
z = [(z)],

where [(z)] is the equivalent class that contains the constant (cauchy) sequence (z) = {z,z,--- }.

Then for @,y € X, d(f(2), f(y)) = d([(@)], [(¥)]) = d((2),(y)) = limpoo d(z,y) = d( Y)-
So f is an isometry.

e Step 4. Let {z,} € [z] € X. For ¢ > 0, since {z,,} is Cauchy in (X, d), there exists N € N such
that as n > N, d(z,, Xn) < §. Then d([ , f(Xn)) = d([ I, [(zn)]) = limy— oo d(p, xN) <
5 < e So f(X) is dense in (X,d).
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e Step 5. Let {[z],} be Cauchy in (X,d). Since f(X) is dense in (X,d), there exists {z,} C X
such that d ([z]n, f(2n)) = d ([2]n, [(2n)]) < L for n € N. Since f is an isometry,

Az, 2m) = d (f(20), F(zm)) < d(f(2n), [2]n) + d ([2]n [2]m) + d ([2]ms f(2m))

L~ 1
<= +d([33]n7 [x]m) + — — 0, asn,m — oo.
n m
So {z,} is Cauchy in (X, d). Let [z] be the equivalent class that contains {z,}. Note

d (2], [2]) < d ([2]n, [(20)]) + d ([(20)], [2])
— + lim d(zpn,2m),¥n € N.

n m— 00

So [z]n 4, [z]. Thus, (X,d) is complete.

o Let (X ,CZ) be another completion of (X,d), then there exists an isometry g : X — X such
that g(X) is dense in (X,d).

X 24X

\‘ J{fog’1
X

For #, § € X, since g(X) is dense in (X,d), there exist {z,}, {yn} C X such that g(z,) —
# and g(y,) — §. Since g is an isometry (then 1-1), g7 : (9(X),d) — (X,d) is also an
isometry, so ¢! is continuous. Thus, we get

A((fog ™)@, (fog™)@) =d((Fog™) (Jim glaa)),(fog™) (lim g(ya)))
= d(f (tim ) f (lim pa)) =d( i fa), Hm ) = lim d(f(ea). f(5))

= lim d(@ny) = lim d(g(wn). gyn) = d ( lim_g(wa), lim g(y)) = d(@. 7).

n—oo n—oo

So fog ! is an isometry. Let [z] € X. Since f(X) is dense in (X, d), there exists {z,} C
X such that lim, o f(z,) = [z], w.r.t. d. So f(zn) is Cauchy in (X, d). Since f is an
isometry, {an} is Cauchy in (X, d). Since g is an isometry, {g(z,)} is Cauchy in (X, d). Since
(X,d) is complete, limy, o g(2,) exists w.r.t. d. So (f o g™") (lim, e 9(@n)) =limp_oo(f ©
g Ng(xy) = limy_oo f(2n) = [#]. Hence fog~!is onto. Thus, fog~t: (X, d) — (X,d)is a
bijective isometry, as desired. O

1.6 Application of completeness

Let (X, d) be a metric space.
Definition 1.62. Let f: X — X.
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(a) ¢ € X is called a fized point of f if f(z) =

(b) f is called a contradiction on X if there exists o € (0,1) such that d(f(z), f(y)) < ad(z,y) for
z,y € X.

Remark. If f is a contration, then so is f™ for n € N. The converse is not true. Let f: R — R

be defined by f(z) = { ;I ﬁz i 8 . Since |f(x) — f(y)| = |z —y|, f is not a contraction. On
2
T 3 >
the other hand, f2(z) = f(f(z)) = { 2 if 2> 0

. So for z,y € R, we have |f*(z) — f2(y)| <

%|x —y), i.e., f2 is a contraction on R.

Theorem 1.63 (Banach Fixed Point Theorem). Let (X, d) be nonempty and complete, and f be a
contraction on X. Then f has a unique fixed point.

Proof. Choose g € X. Define x,, = f(zn_1) = f2(zn_2) = f* Y(x1) = f*(xo) for n € N. Then
{z,} C€ X. Since f is a contraction, there exists 0 < a < 1 such that d(f(x), f(y)) < d(z,y)
for z,y € X. Note d(znt1,2n) = d(f(xn), f(zn_1)) < ad(mn,xn,l) < -+ < a™d(z1,x0). Then
for n > m, d(xp, Tm) < d(@m, Tma1) + A @mi1, Tma2) + -+ d(@p_1,2,) < (@™ + ™ 400 4

a" Nd(zy, 7o) < ™2 10‘" “d(x,z0) < ﬁ”ad(ac xo) — 0 as m — 0. So {z,} is Cauchy in (X d).

Since (X, d) is complete, there exists © € X such that z, 9, ¢ asn — oo. Let € > 0. Then there
exists N € N such that d(z,,z) < § for n > N. So d(z, f(z)) < d(z,2n11) + d(zn41, f(2)) <
S+ dAd(f(Xn), f(x) < § 4+ ad(zn,z) < §+ af < e Since € > 0 is arbitrary, d(z, f(z)) =

So f(x) = =. Suppose there exist two z1,22 € X such that f(r1) = 21 and f(x2) = x2. Then
d(z1,z2) = d(f(z1), f(x2)) < ad(z1,22). So d(x1,x2) = 0 and thus z; = z,. O

Remark. In the above theorem, if there is n € N such that f™ is a contraction, then f has a
unique fixed point. Proof. Since f™ is a contraction, it has a unique fixed point z € X. Then
f™(z) = x and so f*(f(x)) = f* Y (z) = f(f*(x)) = f(z), i.e., f(z) is a fixed point of . By the
uniqueness, f(r) = x. Suppose there are two z1,x2 € X such that f(z1) = 21 and f(z2) = zo.
Then f"(z1) = f* 1 (f(z1)) = " Ha1) = -+ = f(a1) = 21 and similatly, f"(z2) = 22, Le., 21
and xo are both a fixed point of f. By the uniqueness, r; = x».

Example 1.64. Consider the integral equation x(¢ )\fl t=sx(s)ds = y(t), where y € C|[0,1]
and || < 1. Then the equation has a unique solutlon xz € 10,1]. Rewrlte the equation as e~z (t) —

)\fol e Sx(s)ds = e ty(t). Let z(t) = e tz(t) and w(t) = e 'y(t). Then z(t) — )\fol z(s)ds = w(t).
Define f : C[0,1] — C[0,1] by f(z) = w—l—)\fo s)ds. Let z1,z9 € [0, 1]. Note

w(t) + )\/0 z1(s)ds —w(t) — )\/0 zo(s)ds

1 1
/\/0 z1(s )dsf)\/o 29(8)ds ( 1(8) — z2(s))ds

|)\|/ |21(s) — 2z2(s)|ds < |)\\/ 0o(21, 22)ds = |A|doo (21, 22)-

doo(f(21), f(22)) = max

te0,1]

= max
te[0,1]

N

Definition 1.65. Let A C X. A is called nowhere dense in X if Int(A4) = 0.
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Example 1.66. A single point {#} C R is nowhere dense in (R,]|-]).
Example 1.67.

f@) = f(zo)

Tr — X

A:{fEC’[O,lHH xo € [0,1] and M > 0 s.t. ‘ <M,Vxe[0,1]}

is nowhere dense in C[0, 1].
Example 1.68. The cantor set is nowhere dense in (R,|-]).

Theorem 1.69 (Baire Catogory Theorem). Let (X, d) be complete. Then X cannot be written as
a countable union of nowhere dense sets.

Proof. Suppose not, then x = |J,—, A, with A, nowhere dense in X. Since A; is nowhere

dense, A; # 0 and then A{ # 0 and open. Pick @1 and By := BZ (z1) C Af with ¢ < 1.

Since A, is nowhere dense, Ay 2 B% (1) and then A§ N BY (z;) # ) and open. Pick
2 2

and By = BZ (z5) C AN B%(ml) open with e < ¢ < 5. Since A3 is nowhere dense,

Az 2 B%,(z2) and then A§ N BY (x5) # () and open. Repeat this, we get a sequence of open
2 2

balls B,’s that satisfies B,, O B%, (z,,) 2 Bny1 with ¢, < 2% and B, N A, = 0. Let n,m € N
2

with n > m. Note d(zn,Tm) < d(@Tm,Tmy1) + - + d(Tp_1,2n) < G+ T 4.0 4 2L <

_ l n—m
gttt 57) = 35 ) <12)1 < 50 — 0asm — 0. So {z,} is Cauchy. Since (X, d)

is complete, there exists € X such that z,, — x as n — oo. Also, since B,, C By, d(n,ZTm).
Letting n be such that d(z,,z) < %, we have d(z,zy) < d(x,2,) + d(Tn, Tm) < B+ B < €.
So x € B, for m € N. Then z ¢ A, form € Nand so z ¢ J;—, A, = X, a contradiction. O

Example 1.70. [0,1] is not countable. Suppose [0, 1] is countable, then [0,1] = {J, ¢ 1j{z} which
is a countable union of nowhere dense sets w.r.t. ||, contradicted with Baire Category theorem.

Example 1.71. There exists f € C[0,1] such that f is not differentiable at every z € [0, 1].

Proof. Suppose not. Let f € C[0,1]. Then there exists a point z¢ € [0, 1] such that f is differentiable
Lfﬁ“’) < n —1. Then there

r—x

at xo. So there is n € N such that |f/'(zo)| < n —1, ie., lim, 4,

exists § > 0 such that ’%ﬁ%)
So ‘M
T—xo

< n whenever 0 < |z — zo| < §. Choose m € N such that = < 4.

< n whenever 0 < |z —zo| < L. Then f € Ayxm = {f € C[0, 1],% <

n,0 < |z — x| < %,n,m € N}. So C[0,1] = U, men Anxm, where Ay sy, is nowhere dense in

C10,1] for n,m € N, contradicted with the Baire Category theorem. O
Example 1.72. If (V,|-||) is Banach over any field k¥ and V; < V is (topological) closed for

i € N, then (J;2, Vi € V. Suppose not. Since the proper subspaces {Vi,Va,...,} of the vector
space V' all have an empty interior and are closed, by Baire category theorem, V' is not complete, a
contradiction. For instance, let k be a field, note k[z] = (J;2, Vi, where V; = {deg(f) =i | f € k[z]}
with dimg(V;) = 4. So V; is finite dimensional, V; is closed for each ¢ € N. Thus, k[x] can not be

equipped with a complete norm.



Chapter 2

Normed Linear Spaces

2.1 Definitions and Examples

Definition 2.1. X is called a vector space (linear space) (X, +,-) over a scalar field K (R, C, etc)
if there exist two algebraic operations

4T X x X - X “iKx X — X

(z.y) —z+y (a,2) — ax
that satisfies for all a,b € K and any z,y € X,

(a) (X,+) is an abelian group with identity O,

(b) a-(b-2) = (ab) -,

(@) o @+y)=a-z+a-y,

(d) (a+b)-z=a-z+b-x,

(e) 1k -z = x, where 1k is the multiplicative identity of K.

Remark. Notice that there is no definition of the “product” of two elements in X. We typically
choose K =R or C.

Assumption 2.2. Let (X, +,-) be a K-vector space and A C X.

Definition 2.3. (a) Y C X is called a subspace, denoted by Y < X if for aj,as € K and any
Y1,Y2 €Y, a1y1 +ay2 €Y.

(b) The span of A, denoted by span{A} or (A), is

finite
<A> = {Z a;x; | a; € K, x; EA}

=1

(c) Ais linearly independent, if > | a;z; =0 withn € N, a; € Kand x; € A fori=1,...,n, then
a;=0fori=1,...,n.

17
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(d) A C X is a Hamel basis of X if A is linearly independent and (A) = X.
(e) The dimension of X is defined as dim X = |A|, where A is a Hamel basis of X.

A couple of natural questions one may ask are that whether a vector space always has a Hamel
basis, and whether all Hamel bases of the same vector space have the same number of elements (so
that the dimension of X is well-defined). The answers to both questions are affirmative. However,
their proofs require more tools (e.g., Zorn’s Lemma) from the set theory so we omit them and only
state the results here.

Theorem 2.4. (a) Every nonempty vector space has a Hamel basis.
(b) If Ay and Ay are Hamel bases of X, then |A1| = |As].
Definition 2.5. (a) (X,d,+,-) is called a metric linear space if

(1) (X,d) is a metric space,
(2) (X,+,-) is a vector space,
(

3) + and - is continuous.
(b) (X,d,+,") is a translation and scaling invariant metric linear space if

(1) (X,d) is a metric space,
(2) (X, +,-) vector space,
(3) d(x + z,y + z) = d(x,y) and d(az,ay) = |a|d(x,y) for all a € R and z,y € X.

() (X,]|-|l,+,) is a normed linear space (NLS)

(1) (X,+,-) is a vector space,

(2) the “norm” ||-|| : X — K satisfies for all a € K and =,y € X,
i flz|| =0,

ii. ||z|| =0 if and only if x = 0,

il laz| = |al|2[,

.l +yll < llzll + flyll-

Remark. Condition i is redundant. By iii and iv, 0 = ||0]| = ||z — z|| < ||=|| + ||—=| = 2||=]|, i-e.,
[[z]| > 0.

Theorem 2.6. If X is a translation and scaling invariant metric linear space, then X is a metric
linear space.

Proof. Tt is enough to show + and - are continuous. Note + : X x X — X and dxxx : (
X) x (X x X) — K given by dxxx((z,v), (z,w)) = d(z, z) + d(y,w). Since d(+(z,y), +(z, w)
Az + 5,2+ w) < d@+ 4,y +2) + Ay + 207+ w) = d(z,2) + Ay, w) = dxex (@), (2 0)
we have + is Lipschitz continuous. Note - : K x X — X and dgxx : (Kx X) x (K x X) —
K give by dxxx((a,x),(b,y)) = |a —b| + d(x,y). Let (an,z,) — (a,z) as n — oo in K x X.
Then |a, —a| + d(xn,z) — 0 as n — oo. So a, — a and d(x,,2) — 0 as n — oo. Hence
d(-(an,xpn), (a,2)) = d(an Tn,ax) < d(an T, an-2)+d(an-x,a-z) = |ap|d(zy, x)+d(a,-z—ax,0) =
lan|d(zn, ) + |an — ald(z,0) — 0 as n — oo. Thus, - is continuous. O
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Theorem 2.7. X is a translation and scaling invariant metric space if and only if X is a NLS.

Proof. = Let (X,d,+,-) be a translation and scaling invariant metric linear space. Define || - || :
X — Kby ||z|| = d(z,0). Then for all ¢ € K and z,y € X,

(a) ||z|| = 0 if and only if d(z,0) = 0 if and only if x = 0,
(b) fla-z|| = d(a-2,0) =d(a-z,a-0)=|ald(z,0) = al||z[],
(©) llz +yll = dz +y,0) < d(z +y,y) +d(y,0) = d(z,0) + d(y, 0) = [l]| + [[y]-

So (X, |-, +,-) is a NLS.
<= Let (X, |l,+,) be a NLS. Define d : X x X — K by d(x,y) = ||x — y||. Then

(a) d(z,y) =0if and only if ||z — y|| = 0 if and only if z —y = 0 if and only if z = y,
(b) d(z,y) = llz —yll = [I-(y = 2)| = [ly — ]| = d(y, z),
(€) d(z,y) = llz =yl = [z —2) + (z =yl < [l — 2] + [z = y| = d(=, 2) + d(z,y).

Also, note d(z + 2,y + 2) = [[(z + 2) = (y + 2)|| = |lz —yll = d(z,y) and d(az, ay) = |laz — ay| =

lal||z — y||. So (X,d,+,-) is a translation and scaling invariant metric linear space. O
Remark. Let (X, ||, +,:) be a NLS. Then ||-|| : X — R is Lipschitz continuous.
Proof. Note |||z]| = [ly[l| = |d(z,0) — d(y,0)| < d(z,y) +d(0,0) = [lz — y]|. a

Example 2.8. (X, dgisc, +, ) is not a metric linear space.

Proof. Note (X,dgisc) is a metric space and an K-vector space. Note + : X x X — X. Let

(Tn,Yn) — (2,9) as n — oo in (X x X,dxxx). Then z, Gaise, o and Yn LN y as n — 0o0. So
there exists n € N such that z,, = z and y,, = y for n > N. Then x,, +vy, = x+y for n > N. Hence

disc

+(Tn,Yn) = T + Yy — ¢+ y = +(z,y) as n — oo. So + is continuous. Note - : K x X — X.
Let (£,2,) — (0,2) asn — oo in (K x X,dgxx). But «(3,2,) = 1.2, M0 =02 = «(0,z). O

Example 2.9. (S,dg,+,-) is a MLS but not a NLS.

Proof. Note (S,dg) is a metric space and clearly an K-vector space. Note + : S x S — S. Let

(x™),4y™) — (2,9) as n — oo in (S x S,dsxs). Then z(™ 25, 2 and y™ gs, y as n — 00. So

2™ I, 4, and yim I, i as n — oo for i € N. Hence 2™ gy I, i+ g as n — oo for

i € N. So +(z(™,y™) = 2™ 4 4 LN y = +(x,y) as n — oo. Thus, + is contniuous. Note
K xS — 8. Let (a,,z") — (a,z) as n — oo in (K x S, dkxs). Then a, I 4 and 2 %5, ¢

n) - . n) |l .
E)—>xiasn—>ooforzeN. Henceanm‘g)—>a-xiasn—>ooforz€N. So

asn — 00. S0
(ap, ™) = a, - (™ 0.2 = -(a,x) as n — oo. Thus, - is continuous. Easy to see (5, dg,+, )

is translation invariant, but it is not scaling invariant. O
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Example 2.10. (I?,d,,+,-) for p € RZ!, (C[0,1],dp, +,-) for p € RZ! and (BJ0,1],dw) are trans-
lation and scaling invariant metric linear spaces and hence NLSs, with

1
Caalzal™)?, iz e,
SUP, e |Zn | if x € 1%,

(f01|x(t)|pdt) T itz e 0o, 1],
supiep,1) 2(t)  if 2 € C[0,1] or B[0,1].

e, =

Definition 2.11. A Banach space is a complete NLS, i.e.,

(a) (X,]-|) is a NLS.

(b) X is complete w.r.t. d: X x X — R given by d(z,y) = ||l — y/|.

Example 2.12. (I, d,, +,-) for p € RZ!, (C[0,1],dw, +, -) and (B[0, 1], dx, +, -) are Banach spaces.

Definition 2.13. Let X be a vector space and A C X. A is said to be convez if for z,y € A and
any A0,1], Az + (1 — Ny € A.

Theorem 2.14. Let (X,|-||) be a NLS. Then B.(0) and B.(0) are convex for ¢ > 0.

Proof. Let z,y € B.(0) = {# € X | ||z]] < €} and A € [0,1]. Then |z|,|ly]] < € and so
Az + (1= Nyl < []Azll + [[(1 =Nyl < llz] +[1 = Alllyll < Ae + (1= Ae = e 0

Example 2.15 (Unit desks in (R?,[-|,)). Note

max{|z|,|ly|} <1 if p=o0.

B1(0) = {(z,y) | (=, )]l <1} = {(%y)

{xp+yp<1 if1<p<oo,}

Y

N
N

a) When p = oo, it is a square,

(

(b) When p = 2, it is a circle,

(¢) When p =1, it is a tiltable square
(

d) When 0 < p < 1, the unit desk is concave, so (R?, || - [[,) is not a NLS, which we have showed
it is not a metric space.
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2.2 Sequence series and Schander basis

Assumption 2.16. Let (X,||-]|) and (Y, -||) be NLSs.
Definition 2.17. Let {z,} C X.

(a) {x,} is convergent if there exists z € X such that ||z, — x| — 0 as n — oo. Denote is as
lim,, oo T, = T OT T, Mmz: as n — oo.

(b) {zy} is Cauchy if for € > 0, thre exists N € N such that ||z, — 2| < € whenever n > N, i.e.,
|2 — 2m] — 0 as n,m — oo.

(c) The series Y > |z, is convergent if there exists x € X such that HZZV:I x; — xH —0, as N —
0.

(d) The series Y, is absolutely convergent if > >°  ||z,|| < occ.

Theorem 2.18. (X, ||-||) is Banach if and only if every absolutely convergent series in (X, | -||)
converges.

Proof. = Let {x,} C X such that > >~ |lz,| < co. Let Sy = 22[21 zn for N € N. Let
N, M € Nwith N > M. Since S5 |ea | < o0, 15 = Sull = || S0 oaris 2| < Shlappallanll <
Yo llznll = 0 as M — oo. So {Sy} is Cauchy in (X, |[-||). Since (X,||-||) is Banach, there
exists € X such that 3°° | @, = limy oo Yo, @ = limy oo Sy = 7, ie., 3.0 converges.
<= Let {z,} be Cauchy in (X, | -||). Then there exists n; € N such that |z, —z,,[| < %
for n > ny. For i € Z?2, n; € N such that |zn — xn, || < 2i for n > n; > n;_1. In particular,
|20y — || < 2 for i € N. So 307 || @,y — @ny|| € Xpeq 35 = 1 < 0o. Hence Y 3 @, —
&, is absolutely convergent. By assumption, there exists ¢ € X such that >°.°; &y, ., — Tn, =,
Le., limg oo (T, — Tn,) = @, Le., im0 T, = + 2y, i€, {xy, } converges in (X, | -|]). Also,
since {x,} is Cauchy in (X, || -||), we have {z,} converges. Thus, (X,| -||) is Banach. O

Definition 2.19. A sequence {e,} C X is a Schauder basis of (X, | -]|) if for z € X, there exists
a unique sequence of coefficients {a,} C R such that z =) 7 | ane,.

Theorem 2.20. If X has a Schauder basis, then X is separable.
Example 2.21. (I*°,]...||) and (B[0,1],]..., ||..) do not have Schauder bases.

2.3 Finite Dimension NLS

In this section we consider normed linear spaces that are of finite dimensions. These spaces are
important since they often appear in many considerations such as in linear algebra and approxi-
mation theory. Intuitively such spaces should be simpler than infinite dimensional normed linear
spaces. In this and the subsequent section, we will see for certain aspects finite dimensional normed
linear spaces do become nicer than infinite dimensional spaces. A main reason of that is in a finite
dimensional space we always have a Hamel basis with finitely many linearly independent vectors
to work with. We start by looking at an important property of such vectors that will be used
throughout this section.
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Assumption 2.22. Let X be a vector space.

Theorem 2.23 (Linear combination theorem). Let (X,||---||) be a normed linear space and
{z;}I~; C X be linearly independent. Then there exists ¢ > 0 such that |31, a;x;|| = e > i |ail.

Theorem 2.24. FEvery finite dimensional NLS is complete.
Definition 2.25. Let || -||; and || - ||, be two norms defined on X.
(a) |||, is said to be stronger than || - ||, if there exists M > 0 such that ||z||, < Mz, for all z € X.

(b) |-, are said to be equivalent if there exist m, M > 0 such that m||z||, < ||z||; < M]z|, for all
x € X. Namely, | - ||, is stronger than || -||, and |- ||, is also stronger than ||-||;.
Lemma 2.26. Let || - ||; be stronger than ||-||,.

(a) The identity map i : (X, | -||) — |- ||, is Lipschitz continuous.
(b) If {x,} converges in (X, ||-||;), then {x,} converges in || - |,.
(c) If {x} is Cauchy in (X, ||-||;), then {x,} is Cauchy in | - [|,.
(d) AC(X,||-|l;) is dense, then A C || - |, is dense.

(e) AC| -], is open (closed), then A C (X, | -|;) is open (closed).

Theorem 2.27. All norms on a finite dimensional vector space are equivalent.

Remark. It implies that convergence or divergence of a sequence in a finite dimension vector space
does not depend on the particular choice of a norm on that space.

2.4 Compactness
Theorem 2.28. Let (X, | -||) be finite dimensional and K C X. Then K is compact if and only if
K is closed and bounded.

Theorem 2.29. Let (X,dx) and (Y,dy) be metric spaces and f : X — Y is continuous. If K C X
is compact, then f(K) CY is compact.

Lemma 2.30 (Riesz’s Lemma). Let (X, ||-]|) be a normed linear space and Y < X closed. Then
for 0 € (0,1), there exists z € X and ||| =1 such that d(z,Y) > 6.

Corollary 2.31. Let (X, | -]||) be a normed linear space, ¥ < X and dimY < oco. Then there
exists x € X with ||z|| = 1 such that d(z,Y) = 1.

Theorem 2.32. Let (X, | -||) be nonzero. Then B;(0) is compact if and only if dim X < co.
Let X be a metric space and A C X.

Definition 2.33. A is totally bounded if and only if for € > 0, there exists {z;}; = {z;(e)}.; C A
such that A C |J!_, Be(z), i.e., d(a,x;) < € for some i € {1,...,n}.

Theorem 2.34. A is compact if and only if A is totally bounded and complete.
Theorem 2.35. (a) If A is compact, then A is totally bounded.

(b) If A is totally bounded and X is complete, then A is compact. “precompact”
(c) If A is totally bounded, then A is separable.
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2.5 Bounded linear operator on NLS

Definition 2.36. Let X and Y be two vector spaces and T : X — Y is a linear operator if
D(T) € X and T(a1x1 + asxe) = a1 T(x1) + aeT(x2) for aj,as € R and any 1,22 € X.

Remark. If both X and Y are of finite dimension, then T" can be represented as a matrix.
Theorem 2.37. Let X and Y be two vector spaces and T : X —'Y a linear operator.

(a) T(0) =0,

(b) Im(T) <Y,

(¢) Kex(T) < D(T) < X,

(d) dim D(T') = dim Ker(T) 4+ dim Im(T').

(e) Ker(T) = {0} if and only if T is 1-1 if and only if there exists T~' : Im(T) — D(T). In this
case, T~ is also linear and dim(D(T)) = dim(Im(T)).

Assumption 2.38. Throughout this section, we always assume D(T') = X unless otherwise indi-
cated.

Definition 2.39. Let
LX,Y)={T:X — Y |T is linear}.

Theorem 2.40. L(X,Y) is an K-vector space.
Assumption 2.41. Let (X, || -]|) and (Y, |- ||) be two normed linear spaces.

Definition 2.42. T : X — Y is a bounded operator if there exists M > 0 such that |T'(z)||, <
M||z|| y for x € D(T).

Remark. T : X — Y is a bounded operator if and only if if A C D(T") bounded, then T(A) CY
bounded.

Theorem 2.43. Let T : X — Y be linear. Then T is bounded if and only if T is Lipschitz
continuous if and only if T is continuous if and only if T is continuous at xy € D(T).

Corollary 2.44. Let T: X — Y be linear and bounded, then Ker(T') is closed in X.
Definition 2.45.

B(X,Y):={T:X — Y |T is linear and bounded}
{T: X — Y | T is linear and continous}
=C(X,Y)
< L(X,Y).

Theorem 2.46. (B(X,Y),|-|) is a NLS, with
[T
I T]| := sup r = IT()lly = sup [|T(z)]y-
w20 [2llx  jally=1 [EIPeS!
Theorem 2.47. If dim X < oo, then B(X,Y) = L(X,Y).
Theorem 2.48. B(X,Y) is a Banach if Y is a Banach.
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2.6 Bounded linear functional and Dual space

In last section, we considered (bounded and linear) operators which map between normed linear
spaces. When the range space lies in the scalar field R (or C), such operators are even more
important and so frequently used that a special name, functional, is designated to them. Collection
of all bounded linear functionals of a given normed linear space also plays an important role, and is
called the dual space. One of the core branches in mathematics, functional analysis, was initiated
from the analysis of functionals.

Definition 2.49. Let X be a (real) vector space.
(a) The algebraic dual of X is XV = L(X,R).
(b) The topological dual of X is X' = B(X,R) < L(X,R).

Remark. (a) Since the topological dual is more commonly used, usually we simply call X’ the
dual of X.

(b) X' is a Banach space. If dim X < oo, then XV = X",

Definition 2.50. {z,} converges weakly to z, denoted by z, - x or z, — x as n — oo, if
|T(x,) —T(x)] — 0for T € X'.

Weak convergence has various applications in analysis, for instance, in the theory of partial
diferential equations. The concept exactly illustrates a basic principle of functional analysis, namely,
the investigation of spaces is often related to that of their dual spaces. The following result indicates
some of the basic relationships between strong and weak convergences.

Theorem 2.51. If x,, — x as n — oo, then x, — T as n — 00.

Theorem 2.52. If dim(X) < oo, then z,, — = as n — oo if and only if v, — x as n — oc.



Chapter 3

Inner Product Spaces

3.1 Definition and Examples

In normed linear spaces we can add vectors and multiply a vector by scalars, just as in the usual
vector algebra in R™. In addition, the norm of a vector generalizes the basic concept of the length of
a vector in R™. However, one important aspect from vector algebra that is missing in normed linear
spaces is an analogue of the “dot” product, and many geometric properties (e.g. orthogonality)
that may be described by the dot product. Inner product spaces and Hilbert spaces (complete inner
product space) are the vectors spaces in which such generalizations can be done. As we will see
in this chapter, such spaces are special normed linear spaces, but their theory is richer and retains
many features of Euclidean spaces, with a central concept being orthogonality.

3.2 Definition and Examples

Definition 3.1. Let X be a vector space over K (= R or C). We call (X, (-,-)) an inner product
space if we can define the inner product (-,-) : X x X — K that satisfies for all z,y,z € X and
a €K,

(a) (x,x) 20 and (z,z) = 0 if and only if x = 0, “positive definiteness”.

(b) (&) = (5,3}, “conjugacy symmetry”.
(c) (x+y,2) = {(x,2) + (y, 2) and (az, z) = a(zx, z), “linearity in first argument”.

Remark. (a) Note the definition of an inner product depends on the scalar field we use, and using
real number R is a special case of using complex number C. Therefore throughout this chapter we
will choose complex number C as the scalar field. This is different from the norm defined in Chapter
2 where choosing real number R as the scalar field in general does not lead to much difference from
choosing complex number C.

(b) We have (0,z) = (x,0) = 0 for any z € X by conjugate symmetry since (0,z) = (0-0,z) =
0(0,z) = 0.

25
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(¢) We have

(z,ay + bz) = (ay + bz, x) = aly,z) + b(z,x) = alz,y) + b(z,2),Vz,y,2 € X and a,b € K.
So if K =R, () is bilinear. If K = C, (-) is sesquilinear.

Lemma 3.2 (Cauchy-Schwartz inequality). Let (X, (-,-)) be an inner product space. Then

[z, y)[* < (z,2)(y,y), Yo,y € X.

Theorem 3.3. (X,||-||) i¢s a real inner product space if and only if (X, -||) is a NLS with the
norm satisfying the parallelogram identity

2 2 2 2
[z +yll” + llz =yl = 20|l + ly["), Va,y € X.

Remark. Thus whenever there is an inner product, it automatically generates a norm by the
formula ||-|| = /{-,-), and as a result we can consider the length of a vector, distance between
vectors, and convergence, etc. In particular, the Cauchy-Schwartz inequality may be stated as
[{z,y)| < ||z]||lyll. On the other hand, a norm can only generate an inner product (by the polariza-
tion identity) when it satisfies the parallelogram identity.

Definition 3.4. A complete inner product space is called a Hilbert space.

Example 3.5. R" is a Hibert space with the inner product defined by
(z,y) = inyi,Vac =(z1,...,2n) and y = (y1,-..,Yn) € R".
i=1
Example 3.6. C" is a Hibert space with the inner product defined by

<$,y> = inmuvx = (LL'l,.. -7xn) and Y= (y1>“' Jyn) eC".
=1

Example 3.7. (I, |- [|,) with p € R*" can not be an inner product space unless p = 2, in which
case it is also a Hilbert space.

Example 3.8. (a) (C[0,1],] -||,,) is not an inner product space.
(b) (C[0,1],]-||5) is an inner product space, but not a Hilbert space.

Lemma 3.9 (Continuity of inner product). Let X be an inner product space. Let z, — z and
yn — y in X, as n — oo, then (z,,y,) — (z,y) in C, as n — oo.

3.3 Orthogonal Complement and Direct Sum

One distinguished feature of inner product spaces or Hilbert spaces is that they may be decomposed
as the (direct) sum of appropriate smaller subspaces which are orthogonal to each other. Such
decomposition is motivated from the Fuclidean geometry where we can “project” a vector onto a
plane or an axis by drawing perpendicular lines. We start with some basic notations.
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Assumption 3.10. Let X be an inner product space unless otherwise indicated..
Definition 3.11. Let A, B C X and z,y € X.

(a) The angle between X and y is defined by

£(z,y) = arccos ( (@, y) ) € [0, 7).

[yl

(b) x and y are orthogonal, denoted by x L y, if Z(z,y) = § or (z,y) = 0.

(¢) x is orthogonal to A, denoted by = L A, if and only if (z,y) =0 for y € A.

(d) A is orthogonal to B, denoted by A L B, if (x,y) =0 for x € A and any y € B.
(e) The orthogonal complement of A, denoted by AL, is defined by

At ={zr e X |(z,y) =0,Vy c A}.
Theorem 3.12. Let Y C X be convex and complete. Then for x € X, there exists a unique y, € Y
such that |z — y.|| = d(z,Y).

Remark. The convexity and completeness assumptions may be replaced by stronger conditions.
The commonly used ones are “Y is a complete subspace of X”, and “X is Hilbert, Y is a closed
subspace of X” (note that linearity (subspace) implies convexity), as we will see in the rest of this
chapter.

Theorem 3.13. Let Y < X be complete. Then for any x € X, there exists y, € Y such that
|z — ya|l = d(z,Y) if and only if (x —y,) LY.

Definition 3.14. Let X be a vector space and Y, Z < X. Then we say X is a direct sum of Y and
Z,denoted by X =Y @ Z,if X =Y +Z and Y N Z = {0}.

Lemma 3.15. Let X be a vector space and Y, Z < X. Then X =Y & 7 if and only if every z € X
has a unique expression x = y, + 2, for some y, € Y and z, € Z.

Theorem 3.16. Let Y < X be complete, then X =Y @Y+,

Theorem 3.17. Let Y < X complete. Then there exists Py : X — Y such that
(a) Py € B(X,Y) and ||Py| = 1.

(b) PE = Py.

(c) Im(Py) =Y and Ker(Py) =Y.

Lemma 3.18. Let ) # A, B C X, then A L B if and only if (A) L (B).

Corollary 3.19. Let A C X, then A~ is a closed subspace of X.
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3.4 Orthonormal Sets and Sequences

Assumption 3.20. Let X be an inner product space.

Definition 3.21. (a) A C X is an orthonormal set if (x,y) = 0 for any z,y € A such that x # y,
and (z,z) = 1.

(b) A C X is an orthonormal basis of X if A is an orthonormal set and (4) = X.

Remark. If an orthonormal set A is countable, e.g., A = {z,}52,, then A is also called an
orthonormal sequence. In this case, the orthonormality condition may be written in terms of the
Kronecker delta notation:

s o ifi#Ay .
<x“xj>—(5w—{ 1 it ,Vi,j € N.

Theorem 3.22. Let dim X = n € N. Then there exists an orthonormal basis {e;}?, of X. In
fact, {e;}7_, is also a Hamel basis. Then forx € X, x =31 (x,e;)e; and |z]|> = S0 |(z, e:) .
Theorem 3.23 (Finite Dimension Approximation). Let {e;}? ; C X be an orthonormal set. Then
for x € X, there exists a unique y, € Y := ({e;}7_) such that ||z — yz|| = d(z,Y) and x —y, L Y.
In fact, yo = 32, (z, e:)ei, so

n

T = Z(:ﬂ,el)ei +z, €YYt

i=1

Proof. Y is complete since Y is a finite dimensional NLS. O

N

Theorem 3.24 (Bessel’s inequality). Let {e;}52, be an orthonormal sequence. Then Y~ |(x, ei)|?
|z||* for all z € X.

Lemma 3.25. Let {e;}5°; € X be an orthonormal sequence. Then Z;’il\<m,ei)|2 = ||lz||? for all
z e ({ei}i2y)-

Theorem 3.26. Let {e;}32, C be an orthonormal sequence. The followings are equivalent.

(a) X = span{e;}2,, 4e;}2, is an orthonormal basis”.

) ||lz||* = Zi1‘<$»€i>‘2 forx € X, “Parseval’s indetity”.

(c) x =32 (z,e)e; for x € X, “Fouries series”.

(d) (z,y) =370 (z,e:)(y,e;) for x,y € X, “Plancherel’ identity”.

3.5 Dual space of Hilbert spaces and Adjoint operator

In Chapter 2 we defined the dual space of a normed linear space X as the space of all bounded linear
functionals on X. As inner product spaces are special normed linear spaces, we may also consider
their dual spaces, namely, if X is an inner product space, we have X’ = B(X, C), with the complex
numbers C being the scalar field. In particular, in this section we will see that if X is a Hilbert
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space, then its dual space can be identified as itself, i.e., X’ = X. The proof of this isomorphism is
based on the celebrated Riesz Representation Theorem, which says every bounded linear functional
defined on a Hilbert space has a unique representation in terms of taking inner product with a fixed
element that depends on the functional. The Riesz Representation Theorem also leads to a general
representation of sesquilinear forms on Hilbert spaces and enables us to define an important class
of operators called the (Hilbert) adjoint operator.

Assumption 3.27. Let X be an inner product space unless otherwise indicated.

Lemma 3.28. For z € X,

T,: X —-C
y = (Y, )
is a bounded linear functional on X and ||T,| = ||=]|.

Theorem 3.29 (Riesz Representation Theorem). Let X be a Hilbert space. Then for any T € X',
there exists a unique xp € X such that T = Ty,.. i.e., T(y) = (y,xzr) for ally € X. In addtion,
17N = Nzl

Corollary 3.30. Let X be a Hilbert space. Then X = X',
Definition 3.31. Let X be Y be a NLSs. Then B : X x Y — C is a bounded sesquilinear form if

(a) B issequilinear: B(ax1+bxa,y1) = aB(x1,y1)+bB(22,y1) and B(x1, ay1 +bye) = aB(x1,y1) +
BB(Jfl,yQ)-

(b) B is bounded: ther exists M > 0 such that |B(xz,y)| < M||z||||ly|| for z € X and y € Y. In this

case, we define the norm of B as

[B(z,y)|
Bl := sup === sup  |B(z,y)].
2#£0,y#£0 llz [yl lzl|=1, llyll=1

Theorem 3.32 (RRT for bounded sesqulinear form). Let X, Y be Hilbert spaces and B : X XY — C
be a bounded sesquilinear form. Then there exists a unique S € B(X,Y) such that B(z,y) =
(Sz,y)y forx € X andy €Y. In addition, ||B| = ||S]|-

Definition 3.33. Let X,Y be Hilbert spaces and T' € B(X,Y). We call T* € B(Y, X) the (Hilbert)
adjoint operator of T if

<T‘Ta y>Y = <I7 T*y>X

Theorem 3.34. Let X,Y be Hilbert spaces and T € B(X,Y). Then there exists a unique T* €
B(Y, X). Moreover, |[T*|| = ||T].

Theorem 3.35. Let X,Y,Z be Hilbert spaces and T, S € B(X,Y) and U € B(Y, Z).
(a) (T +8)* =T*+ S*.

(b) (aT)* =aT* for any a € C.

(c) (T) =T.
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(d) (UT)* =T*U*.

Theorem 3.36. Let X,Y be Hilbert spaces and T € B(X,Y).

(a) Ker(T) = Im(T*)* and Ker(T*) = Im(T)*.

(b) Ker(T)* = Im(T*) and Ker(T*)* = Im(T).

(c) Ker(T*T) = Ker(T) and Ker(TT*) = Ker(T™).

Corollary 3.37. Let X,Y be Hilbert spaces and T' € B(X,Y). Then
X = Ker(T) ® Ker(T)* = Im(T*)* & Im(T™),

Y = Ker(T*) @ Ker(T*)* = Im(T)* @ Im(7T)



Chapter 4

Fundamental Theorems for
Normed and Banach Spaces

Let X be a set.

4.1 Zorn’s Lemma

Definition 4.1. A partial order on X is a binary relation on X x X denoted “<” that satisfies:
for any x,y,z € X,

(a) z <z, “reflexivity”;

(b) if x < y and y < z, then x = y, “anti-symmetry”;

(¢) if z <y and y < z, then o < z, “transitivity”.

Remark. A partial ordered set is also called a poset.

Let (X, <) be a poset.

Definition 4.2. X is totally ordered if for any x,y € X, we must have z <y or y < z.
Definition 4.3. Y C X is called a chain if Y is a totally ordered.

Example 4.4. (a) R is totally ordered w.r.t. the usual “<”.

(b) Z(X) is partially ordered not totally ordered w.r.t. the usual “C”.

(¢) Let X = R x R. Define “<” as following: (x1,22) < (y1,92) if 1 < y1 and 22 < y2. Then X is
partially ordered not totally ordered.

(d) Let X =R x R. Define “<” as following: (x1,22) < (y1,¥2) if 1 < y; or x1 = y; and x5 < yo.
Then X is totally ordered.

Definition 4.5. Let Y C X.

31
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b

(a) u € X is called an upper bound of Y if y < u for any y € Y.
) m
T =m.

€ X is called a maximal element of X if it satisfies that if m < z for some x € X, then

Remark. R has neither upper bound nor maximal element.

Lemma 4.6 (Zorn’s lemma). Let X be a partially ordered set. If every chain of X has an upper
bound, then X has a maximal element.

Remark. Zorn’s lemma is equivalent to the Axiom of Choice and the Well-Ordering Principal.
Definition 4.7. Let X be an R-vector space. Let p: X — R such that for any z,y € X,

(a) p(x+y) < p(x)+p(y), “subadditivity”.

(b) p(az) = ap(x) for any a > 0, “positive homogeneity”.

Then p is called a sublinear functional on X.

Example 4.8. If X is a normed linear space, then ||-|| is a sublinear functional on X.

4.2 The Hahn-Banach Theorems

Theorem 4.9 (The Hahn-Banach Theorem). Let X be an R-vector space and p be a sublinear
functional on X. If Y < X and ¢ : Y — R is a linear functional that satisfies o(y) < p(y) for
any y € Y, then there exists a linear extension @ : X — R, i.e., ¢ is linear and @y = ¢ such that

¢(z) < p(x) for any x € X = ().

Proof. Let B={¢: 2(¢) = R|Y C 2(¢), ¢ is linear, |y = ¢, ¥(x) < p(x),Vz € 2(¢)}.

Define “<” on B as follows: 11 < 12 if and only if 99 is a linear extension of 11, i.e., Z(¢1) C
D (2) and V2| g(yp,) = Y1 Let 1,12, € B.

Since Z(¢1) € Z(¢1) and ¥1|g(yp,) = Y1, we have ¢ < 1.

Let 91 < t2 and 92 < 1. Then Z(11) C Z(3p2) and ¥2|g(y,) = ¥1 and P(¢2) € Z(¢1) and
V1| a(p) = Y2- S0 Y1 = P1lgw,) = V1la(y.) = Yo

Let ’ll)l < wg < ’(/Jg. Then @(wl) g @(¢2) and '1/12|_@(w1) = 1)/}1 and @(wQ) g @(wg) and
V3|a(y,) = V2. So D(1) C D(¥2) € Z(v¥3) and Y3la(p,) = V3la(4al ) = Y2lo(p,) = ¥1. Hence
1 < 3.

So “<” is a partial order on B.

Let C C B be a chain. Define ¢ : Jyee Z(¢) — R given by @(x) = ¢(z) if z € Z(¢). Let
T,y € quec P(1). Since C is a chain, there exists 1 € C such that z,y € 2(¢). Since Z(¢) is an
R-vector space, ax + by € (1) C Uyee Z(¥) for any a,b € R. So Z(p) is an R-vector space.

Let z € 2(¢1) N D(1pa), where 11,12 € C. Since C is a chain, either ¢ < 19 or s < 91,
say 1/}1 S 77[}2. Then .@(1/}1) n 9(1/)2) = .@(’(/)1) and wQ‘@(d&) = 1/}1. So 7,/}1(56) = 1/)2(13) for any
x € D(p1) = D(1) N D(1p2). Hence ¢ is well-defined.

Similar argument gives @(ax 4 by) = ap(x) + bp(y). So @ is linear.

In addition, ¢ is clearly an upper bound of C. So by Zorn’s lemma, /3 has a maximal element (.

Claim @ is what we need. It suffies to show 2(@) = X. Suppose not, there exists 0 # zy €
X N\ 2(9). Consider Z = span{Z(p),zo}. Since Z(¢) is an R-vector space, every z € Z has a
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representation z = y+cxo withy € Z(p) and ¢ € R. Let z = y1+c129 = yotcoxo with y1,y2 € 2(9)
and c1,co € R, then y1 —y2 = (c2 — ¢1)xp € 2(¢) Nspan{zo} = {0}, so y1 = y2 and since z¢ # 0,
¢1 = co. Hence this representation is unique. Define g : Z — R given by ¢o(y + cxo) = ¢(y) + ca
for some a € R. Clearly, oo = ¢. Note pq is linear since for any yi,y2 € Z(¢) and any
b1, b2, c1,c2 € R, we have ¢o(b1(y1 + c1z0) + b2(y2 + c20)) = wo(biy1 + bays + (bic1 + baca)zo) =
@(b1y1 + bayz) + (brcr + baca)a = b1@(y1) + bap(y2) + bicia + bacea = b1 (@(y1) + c1a) + b2 (@(y2) +
caa) = bipo(y1 + c120) + bawo(y2 + c2xg). Claim @g(z) < p(z) for any z € Z. To show it, it is
equivalent to show ¢g(y + cxo) < p(y + cxp) for any y € 2(¢) and any ¢ € R. If ¢ = 0, clearly,
vo(y) = o(y) = e(y) < p(y) for any y € Y. Assume ¢ # 0 now. It suffices to show the case ¢ = +1
because then for any ¢ > 0, we have o(y + cxo) = cpo(y/c + xo) < eply/c+ xo) = p(y + cxo)
since (g is linear and similarly for ¢ < 0. Thus, we only need to show ¢ (y + x0) < p(y + x0) and
@o(y" — xo) < p(y' — o) for any y,y" € Z(9), ie., @(y') — p(y' — o) < ¢ < p(y + x0) — $(y) for
any 4,y € 2(9), i.e., ¢ can be selected if and only if ¢(y") — p(y' — z0) < p(y + xo) — ¢(y) for any
v,y € 2(¢) if and only if p(y) +@(y") < ply+x0) +p(y' — o) for any y,y" € P(p) which is always
true since @(y) + 4(y') =@y +y') <ply+y') <p(y + x0) + p(y — o).

Therefore, we have ¢y € B and ¢ < ¢g. By the maximality of ¢, we have ¢ = g, a contradiction
since xg & D(@) but zo € Z = D(¢o). O

Let X be a NLS.

Corollary 4.10 (Hahn-Banach for NLS). Let Y < X and ¢ € Y. Then there exists ¢ € X’ such
that gy = ¢ and [|2]| = [|¢l|

Proof. Note |o(y)| < |l¢lllly]l for any y € Y. Define p(z) = ||¢]|||z| for any € X. Since ¢ € Y/,
p is well-defined. Then ¢(y) < p(y) for any y € Y. Also, note p is sublinear on Y since for any
z,y € X and a > 0, we have

(a) p(z+y) = llelllz +yll < el izl + Tyl = lelllzl+ lelllyl = p(z) + ply);
(b) plaz) = [[ellllaz]l = allelllz|| = ap(x).

Since ¢ € Y/, ¢ : Y — R is a linear functional. Then by Hahn-Banach theorem, there exists
® : X — R such that @ is a linear extension of ¢ and (z) < p(x) = ||¢||||z] for any z € X.
Then |2]] = supsex, o1 |2(@)] < 5pyex oyt Iellllell = @]l On the other hand, 3] > o] is
obvious. So ||| = ||¢ll- O

Corollary 4.11. Let x € X. Then there exists ¢ € X’ such that ||¢]| = 1 and @(z) = ||z]|.
Proof. Let Y = span{z} < X and define ¢ : ¥ — R given by p(axz) = a||z||. Easy to verify ¢ is

linear. Note ¢ is bounded since |¢(ax)| = |al||z]| = ||az|| for any a € R and z € X. So |l¢| < 1.
Actually, ||¢|| = 1 since ||¢|| = sup letan)] — qup, o L2l = sup, o 1llzl = sup, o llzol|* = 1

) 0270 az] a0 Taz|_ = S"WPa0 Jafa]| a0 :
Thus, by previous corollary, there exists ¢ € X’ such that ¢ly = ¢ and ||@| = ||¢|| = 1. Since
ey, gr) =p(r) = | -

Corollary 4.12. Let x € X. Then [[z]| = sup,ecx o =1l¢(z)|. Conclude that if there is x € X
such that p(z) =0 for any ¢ € X', then x = 0.

Proof. “>". Since [p(x)| < [l¢]l[|z]| for any ¢ € X', supgex/ o)=119(@)] < subgex/ p=1ll@llllz]l =
SupcpéX’,HgoH:le” = [|z|.

“<?. For any = € X, by previous corollary, there exists ¢ € X’ such that ||¢]] = 1 and

O

p(a) = [lz]|- So suppexs |p=1le(@)] = [¢(x)] = ||z[|.
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‘ﬁ;ﬁﬁl = SUP,e x| <1l¢(z)], which all compute the

Remark. Equivalently, |[z|| = sup,ex/ »0
norm of an element the other way around.

Theorem 4.13. Let Y < X. Then d(x,Y) = infyev ||z — yll = subgex/ jo)<1,0]y =0l (@)] for any
x € X. In particular, we recover the previous corollary if Y = {0}.

Proof. “>”. Let ¢ € X’ such that ||| < 1 and ¢|y = 0. Since ¢ is linear, |p(x)| = |p(x) — ¢(y)| =
lo(x —y)| < llellllz =yl < |Jla—yl| for any y € Y. So |p(z)| < infyey||z —y|| = d(z,Y). Hence

SUPge X7 o] <1,0ly =0l P(Z)| < d(z,Y).

“<". Itz €Y, then d(z,Y) = 0 and clearly it holds. Assume x ¢ Y now. Consider Yy =
span{Y,z} = {y+ax | y € Y,a € R}. Similar to the proof of Hahn-Banach theorem, every yo € Yy
has a representation yo = y + ax with y € Y and a € R. Define ¢y : Yo — R by ¢o(y + azx) =
ad(z,Y). Clearly, o is linear and poly = 0. Let y € Y and a € R. Since —% € Y, we have

a

lpo(y + ax)| = |ald(z,Y) < |al||z — (=%)|| = [ly + az||. So @ is bounded and hence ¢, € Yy. By
previous corollary, there exists an extension ¢ € X’ such that @|y, = ¢oly, = 0 and ||| = ||¢oll < 1.
Since x € Yo, we have sup,e x/ |4 <1,0]y =0/P(®)| = |9(x)] = [po(z)| = |00+ z)| = d(z,Y). O

Corollary 4.14. Let Y < X and « € X. Then d(z,Y) < ||z].
Proof. Follow from two previous result or follow from 0 € Y and ||z|| = d(z,0). O

Remark. This is a kind of dual variational problem.

4.3 Geometric Hahn-Banach Theorem

Let X be a real vector space.

Definition 4.15. Let Y C X. zg € Y is an internal point of Y if for any z € X, there exists
e(z) > 0 such that xo +tx € Y for any t € R with [t]| < e.

Remark. If zg € Y C X is an interior point, then it is an internal point. But the converse may
be false.

Since g € Y is an interior point, there exists r > 0 such that B,.(x¢) CY. For any 0 # z € X,
choose €(z) = ey and then 2o +t2 € B, (z9) CY for any t € R with [t| < e.

Consider the set A C R? consisting of the union of
e the region delimited by the graphs of y/x and —/z over [0, c0),
e the region delimited by the graphs of v/—z and —y/—z over (—o0, 0],
e the y-axis.
Then 0 € A is internal but not interior.

Theorem 4.16. Let Y C X be conver and x¢g € Y. If X is finite dimensional, then zy is an
interior point of Y if and only if xo is an internal point of Y.

Lemma 4.17. Let K C X be convex and contain 0 as an internal point. Define px : X — R given
by px(z) =inf{m > 0| £ € K}. Then

m

(a) pk is well-defined.
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(b) pk is a sublinear functional on X.
(¢) If z € K, then pi(x) < 1.
(d) z is an internal point of K if and only if pg () < 1.

Proof. (a) Let z € X. It suffices to show px (z) < co. Since 0 is an internal point of K, there exists
e(z) > 0 such that 0+tz =tz € K for any ¢t € R with [¢| <e. Pick m=1+41. Then L = - <e.

1+e
So = = -z € K. Thus, px(z) <Sm=¢+1L

(b) px(azr) = apk(x) for any @ > 0 and any x € X follows from the definition of px ().
Let x,y € X, @ = pg(x) and 8 = px(y). Let € > 0. Then by the definition of the infimum,
there exist m, € {m > 0| = € K} with m; < a+eand my, € {m > 0| = € K} with

my < a + €, i.e., there exist 0 < €;,€, < € such that aj_”e € K and ﬂj_’E € K. Since K is convex,
x Y

Tty _ ateg B+te y
oFBtestey,  atBtestey ate T aTBteate, Bic, € K. Sopk(r+y) Sat+pf+ete <a+tf+2e

Since € > 0 is arbitrary, px(z +y) < a+ 8 = pr(z) + px (v).

(c) Let x € K. Then v = § € K. So pg(x) < 1. Converse is not true. For example, X = R,
K =(-1,1) and z = 1 with pg(1) = 1.

(d) = Let x be an internal point of K. Then there exists €(z) > 0 such that z + ¢tz € K for any
t € R with |t| < e. Pick a such that 1%-5 <a<lie,l/a—1<e Thenz/a=x+(1/a—1)z € K.
Thus, pr(z) < a < 1.

<= Let pg(r) < 1. Then there exists o € (0,1) such that £ € K. Let y € X. Since X is
a real vector space, t#—~ € X. Since 0 is an internal point K, there exists €(y,a) > 0 such that
0+t € K for any t € R with [¢| < e. Since K is convex, z +ty = a2 + (1 —a){L € K for any
t € R with |t| < e. Since y € Y is arbitrary, we have z is an internal point of K. O

Definition 4.18. Let ¢ be a linear functional on X and ¢ € R.

(a) The set {x € X | p(x) = ¢} is called a hyperplane of X w.r.t. .

(b) The sets {z € X | p(x) > c} and {z € X | p(z) < ¢} are called a half spaces of X w.r.t. ¢.
Remark. The set of solutions of {¢(z) = ¢ |z € X} forms a hyperplane w.r.t. ¢.

Theorem 4.19 (Hahn-Banach Geometric Version). Let K C X be conver and contains 0 as an
internal point. Then for any y & K, there exists ¢ : X — R linear such that o(y) = 1 and if every
point in K is an internal point, then p(x) <1 for any x € K. Namely, y can be separated from K
by the hyperplane {z € X | p(x) = 1}.
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Proof. Since K C X is convex and contains 0 as an internal point, previous lemma is applicable.

Consider Y = span{y} and define ¢y : ¥ — R by po(ay) = a. Easy to check ¢q is linear.
If a <0, polay) = a < 0 < prlay). If a > 0, since y € K, we have px(y) > 1 and then
po(ay) = a < apk(y) = px(ay), ie., po(y) < pr(y) for any y € Y. Hence ¢o(ay) < px(ay) for
any a € R. Also, pk is sublinear on X, by Hahn-Banach theorem (analytic version), there exists
¢ : X — R linear and ¢|y = ¢¢ such that p(z) < px(z) for any = € X. In particular, since y € Y,
©(y) = po(y) = 1 and since every point € K is an internal point, p(z) < px(z) < 1 for any
Tz e K. O

Corollary 4.20. Let K C X be convex and contains at least one internal point. Then for any
y & K, there exists ¢ : X — R linear such that ¢(z) < ¢(y) for any = € K.

Proof. Let 29 € K be an internal point and consider K = K — {zo} = {x — ¢ | z € K} C X. For
any a1 — o, T2 — o € K with z1, 2 € K, since K is convex, we have A(zy — o) + (1 —\) (22 — ) =
A1+ (1= Nag—x9 € K. So K C X is convex. Since 7y € K, 0 = 29 — 9 € K. Claim 0 is an
€K
internal point of K. Need to show for any = — 2o € K, there exists € = €(x,z¢) > 0 such that
to + (1 —t)xg — 29 = 0+ t(z — xo) € K for any ¢t € R with [t| < ¢, i.e., tz + (1 — t)zg € K for
any t € R with || < e. Since z( is an interior point, there exists 0 < ¢y = €p(z) < 1 such that
o +tx € K for any ¢t € R with |t| < ¢g < 1. Also, since K is convex and zy € K, for any = € X,
te + (1 —t)zg € K for any ¢t € R with |t| < ¢y < 1. Hence 0 is an internal point of K. Now, let
y € K, then y — x¢ & K. So by a similar proof as the above theorem, there exists ¢ : X — R
linear and ¢(y — xo) = 1 such that ¢(x) < pg(x) for any x € X. Then for any € K, we have
z—xg € K C X and then ¢(z) —p(z0) = p(x —z0) < pg(z—z0) <1 =0y —z0) = ¢(y) — @(x0),
Le., p(z) < o(y). O

Corollary 4.21. Let A, B C X be nonempty and convex with AN B = () and at least one has an
internal point. Then there exists ¢ € R and ¢ : X — R linear such that ¢(a) < ¢ < ¢(b) for any
a € A and b € B. Namely, A and B can be separated by the hyperplane {x € X | p(z) = ¢}.

Proof. Let K = A—B ={a—b]aec Ab e B}. Let ag —bi,as — by € K and A € (0,1).
Since A(a; — b1) + (1 — A)(az — b2) = Aa; + (1 — Naz — (Mb1 + (1 — A\)b2) € K, we have K is
convex. Wlog, assume A has an internal point zp. Then for any = € X, there exists €(a) such
that xo + tz € A for any t € R with |t| < e. Since B # (), there exists b € B and we have for any
xr e X, x9g—b+tr = (ro+tr) —be A—B =K for any t € R with |[{| < e. So z¢p—bis an
internal point of K. Since AN B # 0, 0 ¢ K. By previous corollary, there exists ¢ : X — R linear
such that for any a € A and b € B, p(a) — ¢(b) = p(a —b) < ¢(0) = 0, i.e., p(a) < @(b). Pick
c € [sup,ec 4 p(a),infpep @(b)]. O

Remark. The above corollary is related to OR.

4.4 'The adjoint operator

Let X and Y be NLS’s, T € B(X,Y).
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Recall 4.22. Let X,Y be Hilbert space and 7' € B(X,Y). Then there exists a unique (Hilbert)
adjoint T* € B(Y, X) such that (Tz,y)y = (x,T*y)x for any z € X and y € Y. In addition,
1T = [I1]-

Remark. Let ¢ € Y. Define ¢ : X — R by ¢(z) = ¢(Tz). Then
(a)  is linear since both ¢ and T are linear.
(b) @ is bounded since |p(x)| = [¢(Tz)| < [[¢[| - [Tzlly <9l IT] - [[z]lx for any z € X.

Definition 4.23. The (NLS) adjoint of T, denoted by T*, is defined as T* : Y' — X’ by T*(¢)) =
YoT, ie., (T*Y)(x) =¢(Tx) for any v € Y’ and z € X.

Theorem 4.24. T* € B(Y', X') and | T*|| = ||T||.

Proof. Easy to check T* is linear. Since [[T*9[ = supj,=1[(T"9¥)(@)] = supj;=1[¢(Tz)| <
Sup =1 [ 1Tl < supju1[[QITNl[|z]| = [T for any ¢ € Y’, we have T is bounded
and ||| < [|T]]-

On the other hand, let x € X and consider Tz € Y. Then by previous corollary, there exists
¢ €Y' with [[¢[| = 1 such that ¢(T(x)) = [|[Tz|. So [|Tz| = (T (x)) = (T"¢)(x) < [T"(x)] <
[Tzl < [T*[[llllzl = IT*[[lz]l. Since z € X is arbitrary, ||T| < [T O

Proposition 4.25. (a) (T'+ S)* =T* + S* for any T, S € B(X,Y).
(b) (aT)* = aT* for any a e Rand T € B(X,Y).

() T € B(X,Y) and T~ exists with T-! € B(Y, X), then (T*)~! also exists with (T*)~! €
B(X'Y") and (T*)~' = (T~1)*.

(d) (ToS)*=5cT* forany S € B(X,Y) and T € B(Y,Z)

Proof. (3) Let 11,12 € Y'. Since T—! exists, T*(¢01) = T*(3)o) if and only if (T*yy)(z) =
(T*1p2)(z) for any z € X if and only if o1 (T'z) = 1o(Tx) for any x € X if and only if 1)1 0T = 90T
if and only if ¥ = 1. So T™* is 1-1.
Let o € X’. Then poT~! € Y'. Since T*(poT 1) =poT 1 oT = p, we have T* is onto.
Hence (T*)7! exists. Claim. (T*)~! = (T~Y)*. First, (T*)(T~1)* = idys if and only if
T*(T~1)*¢ = ¢ for any ¢ € X’ which is true since T*(T"1)*¢ = (po T1) o T = ¢. Similarly, we
can prove (T~1)*(T*) = idy-. O

Remark. Let X,Y be Hilbert spaces and T' € B(X,Y). Define Tj; by (T'z,y) = (z,T}y), then
T3 € B(Y, X) and define T3 by T%(¢) = ¢ o T, then T3 € B(Y', X7).
Relation between T3; and T%.
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Let ¢ € Y'. Then ¢ := Ty € X'. By R.R.T., there exists a unique y, € Y and z, € X such that

P(y) = (Y yy) and p(z) = (z,2,) for any y € Y and z € X, and [jyy[| = [[¢]| and [lz, || = |l
Define U : X' - X by U(p) = zp, and V : Y — Y by V() = yy. Then U,V are bijective,
linear and isometry. So we can define 7% : Y — X by T*(yy) = z,. Then T* = U o T o V!
and T* € B(Y,X). Let « € X, then Te € Y and so (T'z,yy)y = ¥ (Tz) = (T{Y)(z) = ¢(z) =
(x,2,)x = (¥, T*yy)x. Since the Hilbert adjoint is unique, 7j; = T* = U o Tj; o V1.

Example 4.26. Let X = [? and Y = [, where p,q € R”! and 1%4—% = 1. Recall X’ =Y and
Y' = X.

Let y = {yn} €19 and ¢, : I’ — R be defined by ¢, (z) = 377 | TpYn.

Let = {z,} € I? and ¢, : {7 — R be defined by ¢, (y) = > 00| ZnYn.

IfTeB(X,Y),let T: 1P — 1% be given by T'(z) =y, and T* € B(Y', X') with T* : (17)" — (I?)’
by T*(pa) = ¢y
Example 4.27. Let X = (C[0,1], |]-||.); 9 € X and define T} : C[0,1] — C[0,1] by Ty(f
Then T, € B(C[0,1],C[0,1]). Let z € [0,1] and define ¢, : C[0,1] — R by ¢.(f) = f(

pa € (C[0,1])". Since T (pa)(f) = @a(Tgf) = a(f 0 9) = (f 0 9)(x) = () (f) for any f € C[0, 1],
we have T (¢x) = Pg(a)-

4.5 Reflexive spaces

Let X be a NLS.
Definition 4.28. Given z € X, we may define [, : X’ — R by sending ¢ to ¢(x).
Lemma 4.29. [, € X" and ||l,.|| = ||z

Proof. Easy to see [, is linear. Since |lz(¢)| = |
L]l = suPgex/ =11tz (©)] = SuPe x/ ) =1]P(2)

Definition 4.30. The map C : X — X" defined by C(z) = I, is called the canonical mapping
from X to X”.

p@)] < [lzllllell, we have [[l.]| < [lz[|. In fact,
| = ll=[l. H

Lemma 4.31. The canonical mapping C is an isometrical isomorphism (“2”) between X and
Im(C), i.e., bijective linear and isometric.

Proof. Easy to check C is linear. Since ||C(z)| = ||iz|| = |lz||, it is an isometry and then 1-1.
Clearly, it is onto. O

Definition 4.32. X is called reflezive if Im(C) = X".

Remark. (a) If X is reflexive, then X = X”. But if X = X’, X may be not reflexive. Counterex-
ample, R. (James (1951)).

(b) If X is reflexive, then X is complete.

Example 4.33. R", [P, LP[0,1] with p € R>!, finite dimensional NLS’s, and Hilbert spaces are
reflexive.

Example 4.34. [', (. L'[0,1], L*°[0,1] and C[0, 1] are not reflexive.
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Theorem 4.35. Every Hilbert space is reflexive.

Proof. Let H be a real Hilberl space. Want to show for any [ € H”, there exists x € H such that
Clx)=1, =1

Recall for ¢ € H’, by R.R.T., there exists a unique z, € H such that p(z) = (z,z,)n for any
z € X and ||| = ||z, |. We can define U : H' — H by U(y) = z,, then U is linear, bijective and
isometry.

Claim H' = B(H,R) is a Hilbert space w.r.t. {1, 02)m = (Up1, Ups) . First, since R is complete,
H'’ is complete. Secondly, for any 1,2 € H' and a € R, since H is Hilbert and U is linear,

(a) (p1,01)m = (Up1,Up1)m 2 0.

(b) {1, 02y = (Upr, Upa)m = (Up2, Upr) i = (p2, 1)1
(c) the linearity in both arguments.

So H’ is Hilbert. Then by R.R.T., for any | € (H')’ = H", there exists a unique ¢; € H' such

that l(‘ﬁ) = <§07%01>H’ = <U‘P7 U‘:Dl>H = <'73907x501>H = <x¢z’xsﬁ>H = ‘P(-rsaz) = lww (‘P) for any ¢ € H'.
Hence | = l%l and so C' is onto. O

Recall 4.36. (X,d) is separable if X has a countable dense subset. For example, [*° is not
separable.

Theorem 4.37. If X' is separable, so is X.

Proof. Since X’ is separable, dB1(0) = {¢ € X' | ||¢]| = 1} € X’ has a countable dense subset, say
{¢n} € 0B1(0). For each n € N, since sup ¢ x |z)=1/¢n(®)| = |l¢nll = 1, there exists z, € X with
2| =1 such that |¢,(2,)| > %. Let Y = span{z,,}32,. Claim ¥ = X and hence X is separable
since it has a countable dense subset {Zir;ltle anTy | an € Q,¥n}.

Suppose Y # X, then Y < X is closed, by HW#1, there exists ¢ € X’ and ||¢| = 1 such
that ¢ly = 0. Note ¢ € 9B1(0) and 5 < |u(za)| = |@n(a) = @(za)l = [(n = @)(@n)| <
len — @llllznll = llon — ¢l for any n € N, contradicting the fact that {¢,} is dense in 0B;(0).
Thus, Y = X. O]

Remark. The converse is not true, e.g. [! is separable, but {* is not.
Corollary 4.38. If X is separable but X’ is not, then X is not reflexive.

Proof. Suppose X is reflexive, then X = X”. Also, since X is separable, X" is separable. So X’ is
separable, a contradiction. O

Example 4.39. (C[0,1],[-]|.) is not reflexive. We know C*°[0, 1] is separable.

Claim (C[0,1])" is not separable. It suffices to construct uncountably many disjoint open balls
in (C[0,1])’. Let = € [0,1] and define ¢, : C[0,1] — R by ¢, (f) = f(z). Then ¢, € (C[0,1])
with |l¢z| = 1. In addition, for  # y € [0,1], claim [j¢, —¢,| = 2. Note [[(pz — @y)fll =
lox(f) — oy ()] < |f(x) = f(y)] < 2| f|l,, and we can find a set of spline functions to make its
norm > 1.
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4.6 Uniform Boundedness Principal

Let X,Y be NLS’s.

Definition 4.40. Let (X, d) be a metric space and A C X. A is of first category in X if A can be
written as a countable union of nowhere dense sets. Otherwise, A is of second category in X.

Remark. Finite union of nowhere dense sets is still nowhere dense. But not necessarily for count-
able union, e.g. Q =, F,, where F,, = { | m € Z} for any n € N.

Theorem 4.41 (Baire Category Theorem). Let (X,d) be a complete metric space. Then X is of
second category in itself.

Theorem 4.42 (Uniform Boundedness Principal). Let X be Banach and {Ty}aer C B(X,Y). If
for any x € X, {Tox}aer is bounded, then {||Ta||}acr is also bounded.

Proof. Let Ay = {z € X | ||[Tax|y < N,Ya €I} for N € N. Fix N € N and let {z,} € Ay such
that z, — x as n — oo. Since {T}aer and ||| are continuous, [|Thz|y = ||Ta(lim, oo z0)|ly =
iy, — oo TaZnlly = limy—ool|Taznlly < N for a € I since {z,} € Ay. So ¢ € Ay and then
An C X is closed.

Let z € X. Since {Thx}aer is bounded, there exists N = N, € N such that ||T,z||,, < N for
a€1. Sox € Ay and hence X = (J3_, Ay. Since X is complete, by Baire Category theorem,
there exists Ny € N such that Int(Ay,) = Int(An,) # 0 since Ay, is closed. So there exists

xo € Ap, and ro > 0 such that B,,(x¢) C An,. Let z, = xo + %’W Then z, € By, (z0) C An,.
2 2 2 4 N

So [ Toally = |[Za (530 (2 = 20) || = W5 Tuzs — Tomolly < e - 2Ny = Mool —: a1

for o € I. Thus, ||T,| < M for a € I. O

Corollary 4.43. If sup,c;||To|| = oo, then there exists z9 € X such that sup,¢;||Ta(z0)|ly = o0.

Corollary 4.44 (Banach-Steinhaus Theorem). Let X be Banach, {7, },en C B(X,Y), {Thz} be
convergent for any x € X and T : X — Y given by Ta = lim,, o T(z). Then T € B(X,Y).

Proof. Let aj,a2 € R and z1,a2 € X. Since {T),}nen € B(X,Y) and {T,a} is convergent for
any x € X, T(a1x1 + (121‘2) = lim,_ Tn(alxl + (121‘2) = limn_,oo(alTn(zl) + CLQTn(.IQ)) e
ay limy,— o0 Ty (1) 4 a2 limy, oo T (22) = a1T(x1) + a2T(x2). So T is linear.

Let z € X. Since {T,,x} converges, {||T,z||} is bounded. Then by Uniform Boundedness
Principal, {||T,||} is bounded. So there exists M > 0 such that ||T;,|| < M for n € N. Since {T},}
and ||-|| are continuous, [|[Tz| = ||limy—co Tnz| = lmy_oo||Thnz| < limy,—oo||Thllllz]] < M|z
Thus, [T < M.

Remark. We may not have ||T,,|| — ||T|| as n — oc.

Example 4.45. Consider cop = {{zn} C I*® | {x,} has finitely many nonzero terms}. Then
(c00s |||l o) is not complete.

For n € N, define ¢, : cogo — R by ¢, ({xm}) = nz,. Then {p,} C B(coo, R) = ¢jp-

Let © = {&m} € coo. Then there exists N, € N such that z,, = 0 for any m > N,. So
lon({zm})] = n|on| < Nesupignen, [Tm| =1 M, for n € N. On the other hand, since |¢,({zm})| =
n|z,| < nl[{zm}|, and [¢,({0,0,... ,O,Tl 0, H| = nwith |[{0,0,..., O,Tl USRS Hloo = 1, we have

lonl| = n for n € N. So by Uniform Boundedness Principal, (cgo, ||-||,) cannot be complete.
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Theorem 4.46. Let Y C X. If {¢o(y) | y € Y} is bounded in R for any ¢ € X', then'Y is bounded.

Proof. By assumption, {l,(¢)}yey = {¢(y) | y € Y} is bounded with {l,},ey € B(X',R). Since
X' is Banach, by Uniform Boundedness Principal, we have {||y||}yey = {||lly|| }yey is bounded. O

4.7 Weak Convergence

Let X be a NLS.

Definition 4.47. Let {z,} C X. We say {x,} converges weakly to x € X, denoted z,, — z if
lo(xn) — @(z)] — 0 as n — oo for p € X'.

Theorem 4.48. Let {z,, } C {z,} C X and z,, =~z € X asn — co. Then
(a) x is unique;

(b) xn, — = as k — 0o;

(c) {zn} is bounded.

Proof. (a) Suppose xz, =y € X asn — o0o. Let ¢ € X'. Then p(z,) — ¢(x) and p(z,) — ¢(y)
as n — 00. Since convergent sequence has a unique limit, p(z) = ¢(y), i.e., (z —y) = 0. Since
p € X' is arbitrary, x = y.

(b) Since z, — z, @(x,) — w(x) as n — oo for p € X'. So ¢(xn,) — ¢(z) as k — oo for p € X'.
Hence z,, — x as k — oo.

(¢) Since x,, —, {p(x,)} converges in R for ¢ € X’. So {¢(x,)} is bounded in R for ¢ € X’. Hence
by a corollary of Uniform Boundedness Principal, we have {x,} is bounded. O

Theorem 4.49. Let {z,} C X.

(a) If z, — x € X, then x, = = as n — oo.

(b) The converse of (a) is not true in general.

(¢) If dimg X < 00, x, — x € X if and only if x, =z € X as n — oo.

Proof. (a) Since z,, — = € X, ||z, —z|| = 0 as n — oco. So for any ¢ € X', |p(x,) — o(z)| =
[p(zn —2)| < lpllllzn — 2] — 0 as n — oc.

(b) Counter example. Let X be a Hilbert space with an orthonormal basis {e,}. Claim. e, — 0
but e, + 0 as n — oo. Since |le,, — e, = V2 for all 1 <m < n < oo, we have e,, » 0 as n — oo.
Let ¢ € X’. By R.R.T., there exists a unique z € X such that ¢(z) = (z,z) for any = € X. by
Bessel’s inequality, >°  [(en, 2)?| < I2))* < o0, ie., Zzo:l|<en,z>\2 converges. So (en,z) — 0 as
n — oo. Hence ¢(e,) = {e,, z) — 0= p(0) as n — oco. Thus, e,, = 0 as n — 0.

(c) It suffices to show if z, = x € X, then z,, — x. Let dimg X = m and {e;}”; € X be a

basis. Then z = Y .-, a;e; for some ay,...,a, € R and forn € N, z,, = > 1", al(-n) for some
a&"), . ,ag,if) € R. By Exercise#6 in Homework 1, there exists ¢; € X’ for ¢ = 1,...,m such that
pi(ej) = dij for 1 < j < m. Then pi(z) = ;(3°71, aje;) = a; and pi(zn) = wi(3o52, a§-n)ej) = az(")
for: = 1,...,m. Since z, — =z, al(-n) = pi(zn) — pi(z) =a; asn — oo for i = 1,...,m. So
|zn — x| = szil(agn) —a)e|l <>, al™ — ag||les]| = 0 as n — oo. O
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Theorem 4.50. Let A C X be closed and convex. Let {x,} C A with x, — x. Then z € A.

Proof. Suppose x ¢ A. Since A is closed, € A€ open. So there exists € > 0 such that B.(z) C A€,
ie., Be(z) N A =10. Also, since B.(z) is open, by Geometric Hahn-Banach theorem, there exists
0+# ¢ € X’ and ¢ € R such that p(a) < ¢ < ¢(b) for a € A and b € B.(z). So p(a) < p(x + ey) =
o(x) + ep(y) for a € A and y € B1(0). Since {z,} C A, p(r,) — ¢(x) < ep(y) for n € N and
A Bl(O)

Since 0 # ¢ € X', there exists 0 # z € X such that p(z) # 0. Also, since ¢ is linear,
o(zn) — o) < :i:ego(HzH) = :N:H—ZH\@(Z)\ Let n — oo, since =, — z, we have 0 < —ﬁ|<p(z)|, a
contradicton. O

N -

Corollary 4.51. Let f : X — R be continuous and convex. If {z,} C X such that z,, — z as
n — oo, then f(z) < liminf,, . f(zn).

Proof. Let M = liminf, .o f(x,). Let € > 0. Set Ac = {x € X | f(x) < M + ¢}, then A, is closed
since f is continuous, and is convex since f is convex. Since liminf, o f(z,) = M, there exists
{zn,} C {2z} such that f(z,,) < M +efor k € N. So {z,,} C A.. Also, since z,, = x as n — oo,
Zn, — « as k — oo. Hence, by the previous theorem, z € A.. So f(x) < M +e. Since € > 0 is
arbitrary, f(x) < M. O

Definition 4.52. Y C X is called weakly sequentially compact (W.S.C.) if every sequence in Y has
a subsequence that converges weakly in Y.

Lemma 4.53. If Y is weakly sequentially compact, then Y is bounded.

Proof. Suppose not, then there is {y,} C Y such that ||y,|| > n for each n € N. Since Y is weakly
sequentially compact, there is {yn, } € y, such that {y,, } converges weakly. So {y,, } is bounded,
contradicted with ||y, || = nk. O

Theorem 4.54 (Banach-Alaoglu). Let X be reflevive. Then B1(0) C X is weakly sequentially
compact.

Proof. Let {y,} C B1(0) and Y = span{y, }. Then Y < X is closed and separable with a countable
dense subset {Ef:lte ayi | a; € Q,Vi} = QY. Since X is reflexive and Y < X is closed, by
Exercise##2 in Homework 3, Y is reflexive, i.e., Y 2 Y". Also, since Y is separable, we have Y is
separable.

Since Y’ is isomorphic to a subspace of Y| Y’ is separable. So there exists A = {¢,, € Y’ |
m € N} countable dense in Y’. For a fixed m € N, {¢,,(yn)}22 is bounded in R since |¢m (yn)| <
lom[lynll < [l@m]] < oo for n € N. So there exists {yn, } C {yn} such that {¢1(yn, )}, converges.
Then there exists {yn, } C {yn,} such that {©a(yn, )}iS, converges and clearly {©1(yn,, )},
converges. By diagonal argument, there exists {y,, } € {y»} such that {¢, (yn, )}, converges for
all m € N.

Define [ : A — R by I(¢m) = limg— 00 ¢m(yn, ). Easy to check [ is linear. Since |I(¢m)| =
im0 Pm (Yn,, )| = Mg oo |@m (Yn, )| < limg— oo [[@mll[¥n, || < [l¢ml],  is bounded. Hence I € Y.
Since Y is reflexive, there exists y € Y such that I(¢) = C(y)(¢) = ly(¢) = ¢(y) for any ¢ € Y.
So limy— oo ©m(Yny,) = om) = em(y) for m € N, ie., o (yn,) — ©m(y) as k — co. Since A is
dense in Y, o(yn,) — ¢(y) for all p € Y'. Thus, y,, =y €Y as k — oc. O

Theorem 4.55. If
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(a) {||zn||} bounded and,

(b) for any ¢ € A, p(x,) — p(z) as n — oo,

then x, — x as n — 00.

Proof. By Problem#1 in Homework 4. O
Remark. (a) If X is Banach and B;(0) C X is weakly sequentially compact, then X is reflexive.
(b) If K C X is closed, bounded and convex, then K is weakly sequentially compact.

(¢) If X is reflexive, then any bounded sequence in X must have a weakly convergent subsequence.

Corollary 4.56. Let X be reflexive, ) # K C X closed and convex. If y ¢ K, then there exists
zo € X such that |ly — zol| = d(y, K).

Proof. O
Definition 4.57. A sequence {T,,} C B(X,Y) is called

(a) uniformly convergent it {T},} converges in B(X,Y), i.e., there exists T € B(X,Y) such that
|7 —T| — 0 asn— 0;

(b) strongly convergent if {T,,z} converges strongly in Y for x € X, i.e., there exists T : X — Y
such that ||T,z — Thz|| — 0 as n — oo for z € X;;

(c) weakly convergent if {T,x} converges weakly in Y for z € X, i.e., there exists T : X — Y such
that |o(Thx) —o(Tz)| > 0asn — 0forz € X and ¢ € Y.

Remark. Uniform convergence implies strong convergence and strong convergence implies weakly
convergence.

Example 4.58. (a) For n € N, define T}, : 1> — 1> by 2 = {x,} — {0,...,0,Zp41,Tpio, -}

n times

Easy to show {T},} C B(I?,1?) and ||T,,|| = 1 for n € N. So {T},} does not converge to 0 uniformly.

For any z = {z,} € 12, [Tz — 0z|l, = |Tozly, = (g, 41 xf)lm —0asn —o0. SoT, —0
strongly.
(b) For n € N, define T, : 12 — I? by 2 = {z,} — {0,...,0,21,22,23,--- }. Easy to check

_—
n times

{T,} € B(I?,1?) and | T,,|| = 1.
Let ¢ € (I%). Since [? is Hilbert, by R.R.T., there exists y = {y,,} € [? such that ¢(z) = (z,y) =
oo wiy; for z € 12, So by Cauchy Schwarz inequality, |¢(T,z)| = [¢({0,...,0,21, 22, z3,--- })| =

n times
1

00 0o 2\1 0o 2\ 1 e 2,1
|Zi:1 TiYni| < (Zz:1|x1| )2 (Zi:n+1|yi| )z = ||x||2(Zz:n+1|yz\ )2 = 0asn — oo forx € I2. So
T, — T weakly.

In addition, note for x = {1,0,0,---} € 12, | Thz — Tynz| = /2 for m,n € N with m # n. So
T,, does not converges to 0 strongly.
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Lemma 4.59. If X is Banach and T is a strong convergence limit of {T,,} C B(X,Y), then
T e B(X,Y).

Proof. Tt direcly follows from Banach-Steinhaus Theorem. O

Remark. Note ||T,|| may not converge to |7

Example 4.60. For n € N, let T}, : coo — {2 be given by z = {x,} — {21, 272,323, ...,nZTn, Tni1,
Tpi2,- - }. Claim. T,, — T strongly, where T : coo — [? is defined by x = {x,,} — {nx,}.
Note || T,z —Tz|y, = |[{0,...,0, —n2py1, —(n + 1)@py2, -tz — 0 for @ = {x,} € coo. So
n times

T, — T strongly. But T' ¢ B(X,Y) since it is unbounded.
Definition 4.61. A sequence {p,} C X' is

(a) strongly convergent to ¢ € X' if ||pn — ¢l x, — 0 as n — oo.

(b) weak* convergent to ¢ € X', denoted ¢, v, @ if |on(z) — p(z)| = 0 as n — oo for any =z € X.

Proposition 4.62. Let {¢,} C X'.
(a) If @, — @, then ¢, > .

(b) If v, v, ¢ and X is reflexive, then ¢,, — .
Proof. (a) Note for z € X, |on(z) — ()| = [lz(¢n) — lo(¢)| — 0 since ¢, — .

(b) Let! € X”. Since X is reflexive, there exists z € X such that [ = C(z) = I,. So |l(¢n) — l(p)| =
o (9n) = Lz ()] = len () — @(2)| — 0 since @, = . 0

Definition 4.63. Let Y C X’ be weak* sequentially compact if for any {p,} C Y, there exists
{@n,} € {pn} such that ¢y, - P-

Theorem 4.64. Let X be separable. Then E!'”X' (0) C X' is weak* sequentially compact.

Proof. Let {¢,} C E!‘“X’(o). Let {z,,} € X be countable and dense. For a fixed m € N,
{on(m)}52, is bounded in R since |pn(xm)| < [lenllllzm] < ||zm| for n € N. So there exists
{én,} € {¢n} such that {¢,, (v1)} converges. Then there exists {¢n,, } € {¢n, } such that {¢n, } C
{¢n, } such that ¢n, (z2) converges. By “diagonal argument”, we can find {¢n, } C {¢n} such that
{¢n, ()} converges for all m > 1.

Define ¢ : {z;} — R by p(zm) = limg— oo @n, (Tm). By a similar result to problem#1 in
Homework 4, we can extend from {z,,} to X by defining ¢ : X — R by z — limy_,o0 @n, (z). So

w*

Png — P

In addition, since |p(z)| = |limg— oo ©n, ()] < limg_ool|on, ||ll2]] < |z for z € X. So ||¢] < 1
and thus ¢ € E!Hx'(ﬂ). O
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4.8 Open mapping and closed graph theorem
Let X and Y be NLS’s.

Definition 4.65. Let X and T metric spaces. T : X — Y is called an opening mapping if for any
A C X open, T(A) CY open.

Remark. A continuous mapping may not be an open mapping. For example, consider f : (0,1) —
R given by f(x) = 1, and sin(:) : (0,27) — R. Then f(0,1) and sin(0,27) are not open in R,
respectively.

Lemma 4.66. Let X and Y be Banach and T' € B(X,Y'). If T is onto, then T'(B;1(0)) contains an
open ball that includes 0 € Y.

Proof. First note for x € X, take k € N with k > 2||z]|, i.e., H%H < 3, ie,xe€ kB1(0). So there
exists €9 > 0 and yo € T(B1(0)) such that Be,(yo) € T(B1(0)), i.e., B,(0) = Be,(y0) — {vo} €

T(B}(0)) - {yo}. Claim. T(B,(0)) — {yo} < T(B1(0)).

1
2

Proof of the Claim. Let y € T(B1(0)) — {yo}. Then y +yo € T(B1(0)). So there exists

{T(wn)} € T(B1(0)) such that T'(wn) — y + yo as n — oo. Also, since yo € B1(0), there exists
{T(2n)} € T(By(0)) such that T'(z,) — y as n — 00. So T'(wy—2p) = Twn—T2n — (y+yo) —yo =
y with [Jwy, — 2, || < Jwa|| + |20l < & + & = 1. Then {w, — 2,} € B1(0) and so y € T(B1(0)).

Hence we get Be,(0) € T'(B1(0)) and so Be (0) € T(B 1, (0)) for n € N since T is linear.
Claim. Be (0) € T(B1(0)). Let y € Be (0) € T(B1(0)). Then there exists T'(z1) € T(B1(0))

such that |ly —Ta1f| < 5%, ie, y —Tay € By (0) € T(B1 (0)). Then there exists T'(z2) €
2 22

22
T'(B,(0)) such that ||y — Tz — Tao|| < 58, ie., y—Tw1—Tx2 € Beg (0) C T(B4 (0)). Repeat this,
2 2 2
for n € N, we can find {z,} C X with ||z,|| < 5 such that |ly — Tz — Tas — -+ — Ta,|| < 52.
Let z, = >, a; € X. Then for n,m € N with n > m, ||z, — zn|| = | —i=m+1"X;|| <

it 37 < gt — 0. So {z,} € X is Cauchy. Also, since X is complete, there exists z € X
such that > ,@; = 2, — x asn — oo. Note |ly—T(> " x;)| — 0asn — oo. Since T
is cgontinuous, we have y zoolimln_>OO T r @) = T(limp—oo > iy @) = T(z). Since |z| =
1>y wall < Yooy llwsl] < 0,21 57 = 1, we have 2 € B1(0). So y = Tx € T(B1(0)). O

Theorem 4.67 (Open Mapping Theorem). Let X and Y be Banach and T € B(X,Y). If T is
onto, then T is an open mapping.

Proof. Let A C X be open. Let © € A. Then there exists r > 0 such that B.(z) C A. S
A—{z} D B,(z) — {z} = B.(0), i.e., 1(A—{z}) D B1(0). Also, since T is linear, 1(T(A) — Tz) =
T(L(A—{z})) 2 T(B:1(0)) 2 By (0) for some € > 0 by previous lemma, i.e., T(A)—T(z) D B,(0
ie., T(A) D Bye(0) + T(x) = B(T(x)).

@)

O

Corollary 4.68 (Inverse Mapping Theorem). Let X and Y be Banach and T' € B(X,Y). If T is
bijective, then T-! € B(Y, X).

Proof. Since T is bijective and T is linear and then T-! : Y — X is also linear. Since T is onto, by
Open Mapping Theorem, 7T is an open mapping. So 7! is continuous and thus 7! is bounded. [J
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Definition 4.69. A linear operator T : D(T) — Y with domain D(T) C X, is called a closed
operator if the graph of the operator

g(T) ={(z,y) e X xY |2 € D(T),y =Tx}
is closed in X x Y.

Remark. (a) Recall X x Y is a NLS with the norm [[(z,9) x vy = l|z] x + ||¥]ly- In particular,
if X,Y are both Banach, then sois X x Y.

(b) Most of the (linear) operators in practical purpose are closed.

Lemma 4.70. T is closed if and only if if {z,} C D(T), x, Mix, € X and Tz, L yevy,
then z € D(T) and y = Tx.

Proof. = Since x,, — x and T'x,, — y asn — oo, we have ||(xy,, Txy) — (2,9)|| x oy = [[(xn — 2, Ty
lzrn — 2zl x + | Tzn —ylly — 00 as n — oo, ie., {(zn,T(zn))} € g(T) converges to (x,y), then
(z,y) € g(T) since g(T') is closed. So x € D(T) and y = Tx.

<= Let (z,y) € g(T). Then there exists {(z,,Tx,)} C ¢g(T) such that (z,,T(x,))
(z,y). Similarly, , — = and Tz, — y as n — oco. By assumption, € D(T) and y = Tz. So
(z,y) € g(T). O

Example 4.71. Let T : C'[0,1] — C[0,1] be given by f + f’. Then T is unbounded but closed.

0l x x v
—_—

Proof. Let n € N and f,(z) = 2™ € C'(0,1]. Then [|fu|,, =1 and |Tfnllo, = ||na"""|_ =n. So
||IT|| = n. Thus, T is unbounded.

Let {fo} C C'[0,1), fo 0= £ and T(fo) = £ L= g Let 2 € [0,1]. Then [7 g(t)dt =

S i S ()t = Ty, [ fL(0)dt = T, oo (fu(@) — f2(0)) = f(2) — £(0) since f, 1= g
and length([0,z]) = z < oo, i.e., f(z) = f(0) + [, g(t)dt. By Fundamental Theorem of Calculus,
f€C0,1] and T(f) = f' = g. Thus, by previous lemma, T is closed. O

Example 4.72. Let id : D(T) — D(T) C X and D(T) C X is dense. If {z,} C D(T) and
Tn — ¢ € X N\ D(T), then id(z,) = x, — z. But since z € D(T), T is not closed.

Theorem 4.73 (Closed Graph Theorem). Let X,Y be Banach and T : X 2 D(T) — Y be a closed
linear operator. If D(T) is closed in X, then T is bounded.

Proof. Since X is Banach and D(T') C X is closed, D(T) is Banach. Since X,Y are Banach, X XY
is Banach. Also, since T is closed, g(T') is closed in X x Y. So ¢g(T') is Banach.

Now consider P : g(T') — D(T) given by (z,Tx) — z. Easy to check P € B(¢(T),D(T)) and
P is bijective. Then by Inverse Mapping Theorem, P~! : D(T) — g¢(T) given by z — (z,Tx) is
bounded. So there exists M > 0 such that HP_I(J:)HXXY =|(z,Tx)|| xxy < M|z| y for z € D(T).
Hence ||Tz||y < M||z||y for z € D(T). O

Fact 4.74. Let T : D(T) C X — Y be linear and bounded. If D(T) is closed in X, then T is
closed.

Proof. It {z,} C D(T), ,, — x and Tz, — y, then x € D(T) since D(T) C X is closed, and
Tx, — Tx since T is bounded. So by the uniqueness of limit, we have Tz = y. O

- y)HXxY =
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Theorem 4.75 (Two-Norm theorem). If (X, |-||;) and (X,|-||5) are both Banach, and one norm
is stronger than the other, then |-||; and |||, are equivalent.

Proof. Wlog., assume ||-||, is stronger than |[|-||;. Then there exists M > 0 such that ||z|; < M||z||,
for all z € X. Consider id : (X, ||-[|1) — (X, ||-||). Obviously, id is linear. To show id is bounded,
it suffices to show id is closed by Closed Graph Theorem since (X, ||-||;) and (X, ||-||,) are Banach.

If {z,} C X, z, LLIN 2z and idz, = z, LN y, then obviously x € X and idz = y since

[id(z) =yl = llz = ylly < lle = znll, + ll2n =yl <ll2 = zall, + Mllzn —yll, = 0asn—oco. O
Example 4.76. (C[0,1],[-||;) is not complete, where ||f||; = f01|f(t)|dt.

Proof. Suppose not. Since ||f||; = fol\f(t)|dt < | fll, for all f € C*0,1], we have |-|| . is stronger
than ||-[|,. Also, since (C[0,1],[]-||,) is complete, by Two-Norm Theorem, ||-||, and ||-||, are equiv-
alent. So there is a M > 0 such that || f|| < M]||f|| for all f € C[0,1], which is impossible. O
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Chapter 5

Spectral Theory of Linear
Operators

Let X,Y be complex NLS’s.

5.1 Basic definitions and examples

Definition 5.1. Let T': X D D(T) — X be a linear operator.

(a) For A € C, if Tx = T — X : Im(T\) — D(T)) has an inverse, then we call the inverse
RA(T) =Ty ' = (T — M)~ the resolvent of T.

(b) A € C is a regular value of T if the following conditions hold.

(1) RA(T) exists.
(2) RA(T) is bounded.
(3) RA(T) is densely defined, i.e., D(Rx(T)) C X is dense.

The collection of all regular values is called the resolvent set of T', denoted as p(T').

(¢) The complement of p(T), denoted as o(T) = C ~\ p(T), is called the spectrum of T and can be
divided into the following 3 cases:

(1) Point (discrete) spectrum of T
0,(T) ={X € o(T) | Rx(T) does not exist}.
(2) Continuous spectrum of T
0.(T) ={X € o(T) | RA(T) exists, densely defined, but unbounded}.
(3) Residual spectrum of T

o-(T) ={X € o(T) | Rx(T) exists, but not densely defined}.

49
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0c(T)Uo.(T) are called the essential spectrum.
Remark. (a) Name “resolvent” comes from solving Thz = y.
(b) RA(T) is linear.
(¢) C=p(M)Ua(T)=p(T)Uo,(T)Uoe(T)Uo.(T).

(d) IfX € 0,(T), X is also called an eigenvalue of T. Note Ry (T) = (T—XI)~' : D(RA(T)) — D(T})
exists if and only if T\ = T — Al is 1-1 if and only if Ker(7Ty) = {0} = {z | (T — AI)x = 0}. Thus if
0 # z satisfying (' — M)z = 0, then A\ € ¢,(T) and x is called an eigenvector corresponding to A.

Lemma 5.2. Let x1,...,x, be eigenvectors corresponding to different eigenvalues Ay, ..., A,, then
Z1,...,T, are linearly independent.
Proof. Suppose not, reorder them and let x,, with m € {1,...,n} be the first vector that can be

written as a linear combination of its previous vectors. Namely, x,, = Zﬁzl a;x; with a; € C for
t=1,....m—1. Then 0 = (T — \,])x), = er;_ll a;(Tx; — Apzi) = ZZi_ll a;(Ni — Am )z Also,
by the minimality of m, z1,...,2,,—1 are independent, so a;(A\; — A\;,) =0 for i =1,...,m — 1.
Also, since A1, ..., A\, are distinct, a; =0 fori=1,...,m — 1. So x,,, = 0, a contradiction. O

Example 5.3. Let dim¢ X = n > 1 with a standard basis {e;,...,e,}. Let T : X — X be given by
T(e;) = Z;'L=1 aije; with a1, ...,a;, € Cfor i =1,...,n. Then T is linear and can be represented
as a matrix A = [a;;]. Let A € 0,(T). Then (T'— A)z = 0 for some x # 0. So (A — Al,)z = 0.
Hence det(T — A\I,,) = 0 and it has a complex root since det(A — AI,,) € C[\] has degree n.

If A€ 0,(T) , then R (T) exists and is defined on the entire X and bounded. So A € p(T), i.e.,
o0o(T) =0,.(T) = 0.

Example 5.4. Consider the right-shift operator T : [ — [%2. Recall T € B(I?,1?) and ||T| = 1.
Claim. 0 € 0.(T) C C. Let T~! : Im(T) — be the left inverse (left-shift) of 7. Then T—! =
(T —0I)~! = Ro(T). So D(Ro(T)) =D(T~Y) =Im(T) = {z € 12| 2 = {0,21,72,--- }} is not
dense in 2. Hence 0 € o,.(T).

Theorem 5.5. Let X be Banach and T € B(X, X).
(a) If RA(T) exists and is defined on X, then Rx(T') is bounded.
(b) If X € p(T), then Rx(T) is defined on the entire X (and also bounded by (a)).

Proof. (a) Since T € B(X,X), T — M € B(X, X). Since Rx(T) = (T — X\ )~! exists and is defined
on X, and X is Banach, by Inverse Mapping Theorem, R (T) € B(X, X).

(b) Since T € B(X,X) and D(T) = X is closed, we have T is closed by previous Fact. Claim.
T — A is also closed. Let {z,} C X with z,, —» z € X, and (T — AI)z,, — y as n — oo. Then
Te, =T - M)z, +2, > y+a =Tz asn — oo since T is closed. So (T'— M)z =Tz — Iz =
limy, oo T2y — Ay o0 Tp, = limy, oo (T — Az, = 9.

Let {(T— M)z, } CIm(T —A) = D(RA(T)) such that (T'— AI)z, — y, where {z,,} C X. Since
X is complete, y € X. Since A € 0,(T'), RA(T') is bounded. So RA(T)((T'—X)xy) — Ra(T)y € X.
Then (T — M)~y =z, ie.,y = (T — )z for some z € X. Soy € Im(T — \I) = D(R(T)). Hence
D(RA(T)) is closed. Also, since A € p(T), D(RA(T)) = D(RA(T)) = X. O
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5.2 Spectral Properties of Bounded Linear Operators

Let X be Banach and T € B(X, X).

Recall 5.6. (X, |||) is Banach if and only if every absolutely convergent series converges.
Lemma 5.7. If ||| < 1, then (I — 7)™ " exists, ( —T7)"' € B(X,X) and (I —T)~' =372 T™
Proof. Since X is Banach, B(X, X) is Banach. To show Y~  T™ converges, it suffices to show
ST < oo, which s true since S| T € S oT1* = by < 0. S0 X, T" €
B(X,X). Only need to show (I —T)~! = >>° /T™. This can be seen from (I —T)(> oo ,T") =

oI =TT = limy_oo(I — T)(XN, T = limy_oo(l — TN*1) = I —0 = I since
n=0 n=0
[N+ — o < TV — 0 as N — oc. O

Theorem 5.8. o(T) € By (0) ={X € C| X < |T||}. So p(T) #0.

Proof. Prove by contrapositive. Since H% H < 1, by previous lemma, we have Ry (T) = (T—\)~! =
(AT =3T) P =3I =) == o == 2 5er € B(X,X). So X € p(T). O
Theorem 5.9. o(T) is closed in C. So o(T) is compact, combining with the previous theorem.

Proof. Tt suffices to show p(T) is open. Let A\g € p(T). Let A € C. Then T — A\ = T —

Mol + ()\0 - )\)I = ( — )\QI)(I + ()\0 — /\)(T Aol )71). So Ty = TAO(I — (/\ - )\0)72)\0(’11))

Hence for |[(A — Ao)Ra, (D)l = IA = Mol [|Rae ()| < 1, 16, |A = Xg] < m, we have Ry (T) =

T = (1= (A= 20) R (T) M5 = 2o0Z(A = 20)"Roag (1) R (T) = 3o0Zo(A = Xo)"RAH(T)
n_ _ Ran@

and 50 [RAD)] < R (1) S0~ Mo R (D" = o hence 3 (1), o

(Xo) € p(T). Thus, p is open. O

[[Rxq (™)
Theorem 5.10. Let A\, pn € p(T). Then
(a) Rx(T) —Ru(T) = (A= ) RA(T)Ru(T). “resolvent equation”
(b) RA(T)S = SRA(T) if S € B(X,X) and ST = TS.
(¢) RA(TRu(T) = Ryu(T)RA(T).

Proof. (a) RA(T) — Ru(T) = RA(D)T,Ru(T) — RA(T)TaARu(T) = RA(T) (T — TA)RW(T) = (A —
WRA(T)RL(T).

(b) If ST = TS, then ST\ = S(T' —X) = ST —AS =TS - XS = (T —X)S =T,5. So
RA(T)S = RA(T)STARANT) = RA(T)TASRA(T) = SRA(T).

(c) Since p € p(T), Ru(T) € B(X,X) by previous theorem. Since TT = TT, by (b), we have
R.(T)T =TR,(T). Again, by (b), RA(T)R.(T) = Ru(T)RA(T). O
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5.2.1 Recall
Let X,Y, X, X5, {X,} be Banach and T : X — Y be linear.

Definition 5.11. (a) A domain D C C is an open connected set.

(b) A complex-valued function of a complex variable f(X) is holomorphic (analytic) on D if f is
differentiable at every A € D, i.e., f/(A) = limax_o M exists for A € D.

(c) fis holomorphic at g € C if f is holomorphic on a neighborhood around Ag.
(d) f is entire if f is holomorphic on C.

Theorem 5.12. (a) f is holomorphic on D if and only if f(X) = > .2 cn(X — Xo)"™ with ¢, € C

fori >0 for any A € B| ‘(/\0) where r is radius of convergence.
(b) (Liowville) Any bounded entire function is a constant function.

Definition 5.13. Let E C C be open. Then an operator function S : E — B(X, X) is called locally
holomorphic if for x € X and ¢ € X', the complex function f(X) := ¢(S(A\)x) is holomorphic on E.
In fact, S is holomorphic if E' is a domain.

Theorem 5.14. (a) R: p(T) — B(X, X) given by S(\) = RA(T) is locally holomorphic.
(b) For A € p(T), |RA(T)]| = d(—)\ where d(X\) = inf ()| A — pl.

Proof. (a) Want to show for z € X and ¢ € X', f(\) := ¢(RA(T)z) is holomorphic on p(T). Let
Ao € p(T). Let A € C. Similar to the proof of previous theorem, for A € B__ (M), f(A) =

[[Rxo ]
P(RA(T)) = o(Xng (X = Ao)" Ry (T)z) = 3207 o o(RATH(T)a) (A = Ao)™ with (RYF(T)z) € C
for n > 0. So f is holomorphic on p(T).

b) If |p— A < Hﬂl( T then p € p(T). So if p € o(T), then |p— A > lle(T)”. Hence d()\) =

inf,comm | — Al 27 A(T)H' O

Lemma 5.15. (a) If T is compact, then T is bounded, i.e., K(X,Y) C B(X,Y).
(b) If dim(X) = oo, then id is not complete.

(c) K C X is compact if and only if any sequence in K has a convergent subsequence which
converges to a point in K.

Lemma 5.16. For {y,} C Y, {y,} has a convergent subsequence which converges to Y, then Y is
compact.

Proof. Let {z,} C Y. Then for n € N, there exists {y,.m}>_; C Y such that y,,,, — z, as
m — oo. For n € N, there exists M,, € N such that ||y, a7, — 2n|| < L. Consider {y, a,}52, C Y,
by assumption, there is {yn,, M,, 1221 € {Yn.ar, folg such that yp, M., — Y €Y ask — oo
R AN
—y €Y as k — oo. Thus, Y is compact. O

Then [z, ]| < | Yt — 3] = 0 85 k= oo, S0

Trg = Ynp, M,

T,
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Theorem 5.17. T is compact if and only if for any {x,} C X bounded, {T(x,)} has a convergent
subsequence.
Proof. = Since T is compact and {z,} is bounded, {T'(x,)} is compact. So {T'(z,)} C {T(x,)}
has a convergent subsequence.

<= For any B C X bounded, consider {y,} C T(B), where y, = T'(z,) and {z,} C B is
bounded. By assumption, {y,} has a convergent subsequence. So T(B) is compact by previous
lemma. Thus, T is compact. O

Remark. If T},7, are compact linear, then 71 + T5 and a7} for a € C are also compact linear.
Thus, K(X,Y) is a vector space.

Theorem 5.18. (a) If T is bounded and dim(T(X)) < oo (“operators with finite rank”), then T
1§ compact.

(b) If dim(X) < oo, then T is compact.
Proof. (a) Let {z,} C X be bounded. Since T is bounded, {T'(x,)} is also bounded since |7z, || <

|z || and {z,} is uniformly bounded. So {T'(z,)} is closed and bounded in T(X). So {T(z,)} is
compact since dim(X) < oco. Thus, {T(z,)} C {T(x,)} has a convergent subsequence and hence

T is compact.

(b) Since dim(X) < co and T is linear, T is bounded from MATH8210. On the other hand, since
dim(7T(X)) < dim(X) < oo, T is compact by (a). O

Remark. K(X,Y) C B(X,Y) is closed since Y is Banach.

Theorem 5.19. If {T,,} are compact linear and | T, —T|| — 0 as n — 0. Then T is compact
linear.

Proof. Linearity of T is obvious. Let {z,} C X be bounded. Then there exists M > 0 such that
|zn|| < M. Since {T,} is compact, by “diagonal argument”, there exists {«,,,} C {zm} such
that {T,,(zm,)}7>, converges for all n € N. Let € > 0. Since || T, —T| — 0 as n — oo, there
exists N € N such that || Ty — T|| < g557. Since {Tn(wpm,)}72, is Cauchy, there exists N’ such
that [T (@m,) — T (2m)| < § for ki 2 N'. 80 | T(@my) — T(wm)l| < 7 (@my) — Tor(m, )| +
TN (zmy,) = TN (@) | + |1 TN (@) = T(@m)|| < 355M + § + 55M = € for k,1 > N’. Hence
{T(xn, )} is Cauchy in Y. Also, since Y is Banach, {T(z,,,)} converges. Thus, T is compact. [

Example 5.20. If {T},} is compact linear and T,, — T strongly as n — oo, then T" may not be
compact.

Proof. For n € N, let T), : I — [? be given by = = {z,,} — {z1,...,2,,0,0,---}. Then {T,,} are
bounded linear with finite rank for n € N. For z € 12, | T,z — id(2)]|, = (Z;’in+1|xi|2)% — 0 as
n — oo since x € I%. So T}, — id strongly as n — oo, but id is not compact since dim(/?) = co. O

Example 5.21. Define T : I — I by © = {an} — {1, %,%,..., 22 ... }. Then T is compact
linear.

Proof. For n € N, let Tj, : 1> — [? be given by x = {z,,} — {21, 2,5, ...,%2,0,0,---}. Then
for n € N, T,, are compact linear since T, is bounded and dim(7,(I?)) = n < co. For n € N

2 2 z?2 2
and @ € 12, ||(T, = T)all* = |Tuw = Tall} = 32,11 % < oty Lisss 22 < g 2113 Then

i=n-+1 42 i

1T —T| < n_lH. So T;, — T uniformly. Thus, T is compact linear. O
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Example 5.22. Define T': C[0,1] — C[0,1] by Tz = fol K(t,s)x(s)ds, where K : [0,1] x [0,1] = R
is continuous. Then T is compact linear.

Proof. Linearity and boundedness of T is obvious. Let {x,} C C[0,1] be bounded. Then there
exists M > 0 such that ||z, || < M for n € N. So ||Txz,| < |T||[|znl < |TIM, ie., {T(x,)}
is uniformly bounded. Let ¢ > 0. Since K € C([0,1] x [0,1]) and [0, 1] x [0, 1] is compact, K is
uniformly continuous. So there exists § = d(e) > 0 such that |K(t1,s) — K(t2,s)] < 57 when-
ever t1,te € [0,1] with |67 —ta] < ¢ for s € [0,1]. Hence for n € N, |T(z,)(t1) — T'(zn)(t2)| =
‘fol K(t1,8)zn(s)ds — [ K(tg,s)xn(s)ds‘ < UK (t,5) = K(ta, 8)|[wnllds < & - M = € whenever
ty,te € [0,1] with [t; — 2] < 8. So {T(x,)} is equicontinuous. Thus, by Arzela-Ascoli theorem,
{T(x,)} has a convergent subsequence. O

Theorem 5.23 (Arzela-Ascoli). Let {f,} C (C[0,1], |- If
(a) Ifulloo < M forn € N;

(b) {fn} is equicontinuous, i.e., for € > 0, there exists § = §(e) > 0 such that | fn(t1) — fu(t2)| < €
whenever tq,ts € [0,1] with |t1 — ta| < § for n € N;

then {fn} has a convergent subsequence.

Lemma 5.24. If {z,,} C X satisfies for any subsequence {x,,, } C {x,}, there exsits {z,,, } C {zn,}
such that T, — To a8 |l — oo, then x,, — zg as n — oo.

Proof. Suppose not, then there exists € > 0 such that for k € N, we have ||x,, — z¢| > € for some
ng > k and ny = ng_1, where ng = 0. So {x,, } does not have any subsequence convergent to 0, a
contradiction. O

Theorem 5.25. Let T : X — Y be compact linear. If x,, — x, then T(x,) — T(x) as n — co.

Proof. Let ¢ € Y. Then ¢ o T is bounded linear since both ¢ and T are bounded linear, i.e.,
poT € X'. So o(T(x,)) — ¢(T(x)). Hence Ta,, — Tz as n — oo. Let {Tx,, } C {Tx,} with
{zn,} C {zn}. Since z, — z, {z,, } is bounded. Also, since T is compact, {Tz,, } has a convergent
subsequence {Txnkl }. Since Tz, — Tz as n — o0, Ty, — Tw as Il — oo. Thus, by previous
lemma, Tz, — Tx as n — oo. O]

Theorem 5.26. Let T : X — Y be compact linear. Then Im(T) = T(X) is separable.

Proof. Note X = (J;2;Bn(0). Then T(X) = T(U;—, Bn(0)) = Ui~ T(B,(0)). Let n € N.
Then B,, C X is bounded. So T'(B,(0) is compact since T" is compact. Then T'(B,(0)) is totally
bounded. So T'(B,(0)) is separable. Then there exists countable dense subset D,, C T'(B,(0)). So
U>2, Dy, is countable dense in |J;-, T'(B,,(0)) = T'(X) since | J;—, U, is countable and | J,-, D,, 2

Unzi Dn = UnZy T(Ba(0)) = T(X). O
Theorem 5.27. Let T : X — Y be compact linear. Then T* : Y' — X' is also compact linear.

Proof. Since X' is complete, it suffices to show for any B C Y, say ||¢|| < M for ¢ € B, T*(B)
is totally bounded. Let € > 0. Want to show there exist ¢1,...,, € B such that for ¢ € B,
sup”zuglhp(Tx) —op(T2)] = [|[T*(¢) — T* ()|l x < € for some k € {1,...,n}. Since B1(0) C X is
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bounded, T'(B1(0)) is totally bounded in Y. Hence there exist x1,...,2, € B1(0) such that for
x € B1(0), [|[Tz — T,y < 557 for some j € {1,...,m}.

Define [ : Y/ — R™ by I(¢) = (¢(Tx1),. ..,@(Txm)). Since T is compact, it is bounded. Also,
since ¢ is bounded, ! is bounded. Also, since dim({(Y")) < m, [ is compact. Also, since B C Y is
bounded, {(B) is totally bounded in R™. Hence there exist ¢1,...,p, € B such that for p € B,
116) ~ 1) e < § for some k € {1,.....n}.

Thus, for z € B, (0) and € B, [p(T) - T < [o(Te) — (T + () — 1T +
(or(Ta;) — pu(Ta)| < [lpl|T — Ty | +1i(0) — Lol +lpull Ty — Tx| < Mg+ 5+ Mgy =
Therefore, sup,<1|¢(T7) — px(T2)| < e D
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