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Chapter 1

The Basics

1.1 Graphs

Definition 1.1. A graph is a pair G = (V,E) of sets with E ⊆ V 2.

(a) The order of G is |G| or |V |. The size of G is ∥G∥ or |E|.

(b) v ∈ V is incident on e ∈ E if v ∈ e, in which case, we say e is an edge at v.

(c) e and f are adjacent if they share a vertex.

(d) The coloring number, χ(G) is the smallest number of colors required to color each vertex so
that no adjacent vertices are colored the same.

(e) G is a complete graph if all vertices are pairwise adjacent. Let Kn be the complete graph on n
vertices.

(f) Pairwise non-adjacent vertices are called independent. A set of independent vertices is a stable
set. α(G) is the size of the largest stable set.

(g) G′ ⊆ G if V ′ ⊆ V and E′ ⊆ E. Then G′ is called a subgraph of G.

(h) G′ ⊆ G and G′ contains all edges xy ∈ E with x, y ∈ V ′, then G′ is the subgraph induced by
V ′. Denote it as G′ = G[V ′].

(i) An induced subgraph that is complete is a clique.

(j) ω(G) is the size of the largest clique of G.

(k) The complement of G is G = (V,E).

(l) For G = (V,E) and G′ = (V ′, E′), G′ ∼= G if there exists a bijection ϕ : V ! V ′ with
xy ∈ E ⇐⇒ ϕ(x)ϕ(y) ∈ E′.

(m) G is edge maximal with respect to a property if G has the property but G + uv does not for
any uv ̸∈ E.
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2 CHAPTER 1. THE BASICS

(n) N(v) is the neighbor set of v. N(U) is the set of neighbors of vertices in V ∖ U .

(o) dG(v) = d(v) is the number of neighbors of v (when G is simple).

(p) δ(G) = min{d(v)|v ∈ V }. ∆(G) = max{d(v)|v ∈ V }.

(q) When all vertices have the same degree k, G is k-regular.

(r) The average degree is d(G) =
∑

v∈V d(v)

V .

(s) G is perfect if and only if it contains no odd hole or antihole if and only if χ(G) = ω(G).

Definition 1.2. The line graph L(G) of G = (V,E) is the graph on V with

(a)

V (L(G)) = E.

(b) ef ∈ E(L(G)) if and only if e and f are adjacent in G.

Remark. The line graph of G represents adjacencies between edges.

Example 1.3. The L(K5), i.e., Peterson graph is as follows.

{1, 2}

{3, 4} {3, 5} {4, 5}

{2, 5} {1, 3}

{2, 4} {1, 4}

{1, 5} {2, 3}

Since χ(L(K5)) = 3 ⩾ 2 = ω(L(K5)), Peterson graph is not perfect.

1.2 The degree of vertex

Theorem 1.4. Every simple finite graph with at least one edge has a nonempty subgraph H with

δ(H) >
1

2
d(H) ⩾

1

2
d(G),

i.e.,

δ(H) > ϵ(H) ⩾ ϵ(G).
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Proof. Start with G and remove a vertex at a time, obtaining

G = G0 ⊇ G1 ⊇ · · · ⊇ Gi ⊇ · · · ⊇ H.

Specifically, if vi ∈ V (Gi) with d(vi) ⩽ ϵ(Gi), then Gi+1 = Gi − vi. Otherwise, let H = Gi and
stop. Claim 1. We do stop since G is finite. Claim 2. The average degree is non-decreasing. Let
Gi = (V,E). Then

ϵ(Gi+1) =
|E| − d(vi)

|V | − 1
⩾

|E| − ϵ(Gi)

|V | − 1
=

|E| − |E|
|V |

|V | − 1
=

|E|
|V |

= ϵ(Gi).

Claim 3. H ̸= ∅. Suppose not. Then let H = Gk, then Gk−1 = K1 but then ϵ(K1) = 0. But
ϵ(G) > 0 since we have at least one edge, contradicting Claim 2.

1.3 Path and Cycles

Definition 1.5. A path of length k is a graph P = (V,E) with V = {x0, x1, . . . , xk} and
E = (x0x1, x1x2, . . . , xk−1xk), where xi’s are all distinct. So The length is the number of edges.
Sometimes we denote a path as a sequence of vertices

x0x1 · · ·xk.

P k is a path of length k. P 0 = K1.

Definition 1.6. xPy: x and y are two intermediate points in the path P .

x0 x1 · · · xk−1 xk

P 0 = x1Pxk−1.

Definition 1.7. Let G = (V,E). In a path x0x1 · · ·xk, if x0, xk ∈ A but x1, . . . , xk−1 ̸∈ A, then
P = x0x1 · · ·xk is an A-path.

Definition 1.8. Two u-v paths are independent (or internally disjoint) if they have only u, v in
common.

Definition 1.9. A walk is a sequence W = (v0, e1, v1, e2, v2, . . . , vk−1, ek, vk), where

ei = vi−1vi,∀1 ⩽ i ⩽ k.

The length is the number of edges v0-vk walk. If v0 = vk, it is a closed walk.

Definition 1.10. A trial is a walk with no repeated edges.
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Remark. A path is a walk with no repeated vertices.

Theorem 1.11. Let G be a graph.

(a) Every u-v walk (u ̸= v) contains a u-v path.

(b) Every closed u-v walk contains a cycle.

(c) Every closed walk with an odd number of edges contains an odd cycle.

Proof. Let
w = (u = v0, e1, v1, e2, v2, . . . , ek, vk = v).

Let w′ be a subsequence that is itself an u-v walk and is as short as possible. Suppose w′ is not a
u-v path. Then ∃a repeated vertex, say vj = vl with j < l. But them

(v0 = u, e1, v1, . . . , vj = vl, el, . . . , ek, vk = v)

is a shorter subsequence that is also a walk.

Definition 1.12. (a) The girth g(G) is the length of a shortest cycle.

(b) The circumference of G is length of a longest cycle.

(c) d(u, v) is length of shortest u-v path.

(d)
diam(G) = max

u,v∈V
d(u, v).

(e) The eccentricity
e(v) = max

u∈V
d(u, v).

(f) A vertex with the smallest eccentricity is central. The radius of G is e(z), where z is central.

rad(G) = min
v∈V

e(v) = min
v∈V

max
u∈V

d(u, v).

Remark.
rad(G) ⩽ diam(G) ⩽ 2 rad(G).

Theorem 1.13. Every graph G contains (provided that δ(G) ⩾ 2.)

(a) a path of length δ(G) and

(b) a cycle of length at least δ(G) + 1.

Proof. Let x0, . . . , xk be a longest path in G. Then all the neighbours of xi lie on this path, other-
wise, if w is a neighbor that is not in the path, then x0, . . . , xk, w is a longer path, a contradiction.
Hence d ⩾ d(xk) ⩾ δ(G). Let

i = min{0 ⩽ i < k | xixk ∈ E(G)}.

Then xi · · ·xkxi is a cycle of length at least δ(G) + 1.
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x0 · · · xi xi+1 xi+2 xi+3 · · · xk

Theorem 1.14. Every graph G containing a cycle satisfies g(G) ⩽ 2 diam(G) + 1.

Proof. Let C be a shortest cycle in G. If g(G) ⩾ 2 diam(G) + 2, then C has two vertices whose
distance in C is at least diam(G)+1. In G, these vertices have a lesser distance; any shortest path P
between them is therefore not a subgraph of C. Thus, P contains a C-path xPy. Together with the
shorter of the two x-y paths in C, this path xPy forms a shorter cycle than C, a contradiction.

1.4 Connectivity

Definition 1.15. Let G = (V,E) be nonempty. G is connected if ∃a u-v path for each u, v ∈ V .
U ⩽ V is connected if G[U ] is connected.

Theorem 1.16. G is connected, then vertices of G can be ordered as v1, . . . , vk so that each Gi =
[v1, . . . , vi] is connected for i = 1, . . . , n.

Proof. Pick any vertex as v1 and assume inductively that we have picked v1, . . . , vj with Gj con-
nected for j = 1, . . . , i. Let v ∈ G∖Gi. Since G is connected, ∃v1-v path P in G. Let vi+1 be the
first vertex on P that is not in G. Clearly, Gi+1 is connected.

Definition 1.17. The maximal connected subgraphs of G are its components.

Definition 1.18. Let X ⊆ V ∪ E and we call X a separating set if G−X is disconneted.
If X is a separating set with X ⊆ V , we call X a separator.

Remark. Clearly, the components are induced subgraphs, and their vertex sets partition V . Since
connected graphs are non-empty, the empty graph has no components.

Definition 1.19. Let k ∈ N0. G is k-connected if |G| > k and G−X is connected for all X ⊆ V
with |X| < k. The connectivity κ(G) is the largest k for which G is k-connected.

Remark. κ(G) = 0 if and only if G is disconnected or a K1.

Example 1.20. K5 is 0-connected since it is connected. K5 is 1-connected since K4 is connected.
K5 is 2-connected since K3 is connected. K5 is 3-connected since K2 is connected. K5 is 4-
connected since K1 is connected. K5 is not 5-connected since

∣∣K5
∣∣ = 5. Hence κ(G) = 4. Since if

a graph G is k-connected, then |G| > k,

κ(Kn) = n− 1,∀n ∈ Z⩾1.

Theorem 1.21. The smallest separator of G, X has |X| = κ(G).

Definition 1.22. If |G| > 1 and F ⊆ E with G− F connected for all F ⊆ E with |F | < l, then G
is l-edge connected. λ(G) is the largest l for which G is l-edge connected.
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Theorem 1.23. If G is non-trivial,

κ(G) ⩽ λ(G) ⩽ δ(G).

Proof. The second inequality follows from the fact that all edges incident with a fixed vertex separate
G. To prove the first, let F be a set of λ(G) edges such that G − F is disconnected, i.e., F is a
smallest separating set of edges. We just need to show

κ(G) ⩽ |F |.

The idea is to construct a set X ⊆ V that is a separator having |X| ⩽ |F |.

(a) Suppose first that G has a vertex that is not incident with an edge in F . Let C be the component
of G− F containing v. Then the vertices of C that are incident with an edge in F separate v from
G− C. Since no edge in F has both ends in C by the minimality of F , there are at most |F | such
vertices, giving κ(G) ⩽ |F |.

(b) Suppose now that every vertex is incident with an edge in F . Let v be any vertex, and let C
be the component of G− F containing v. Then the neighbors w of v with vw ̸∈ F lie in C and are
incident with distinct edges in F by the minimality of F , giving dG(v) ⩽ |F |,∀v ∈ V . As NG(v)
separates v from any other vertices in G, this yields κ(G) ⩽ |F |, unless there are no other vertices,
i.e., unless {v} ∪N(v) = V . But v was an arbitrary vertex. So we may assume that G is complete,
giving κ(G) = λ(G) = |G| − 1.

1.5 Trees and forests

Definition 1.24. An acyclic graph is a forest. A tree is a connected acyclic graph.

Example 1.25. List all tress on 6 vertices.
We have 6 tress.

Remark (Cayley’s formula). The number of trees on n labeled vertices is nn−2,∀n ∈ Z⩾0. The
formula equivalently counts the number of spanning trees of a complete graph with labeled vertices.
The number of unlabeled trees on n vertices: generating functions.

Theorem 1.26. TFAE.

(a) T is a tree.

(b) ∃ ! u-v path in T for every u, v ∈ V (T ).

(c) T is minimally connected.

(d) T is maximally acyclic.

Proof. (i)=⇒(ii) Suppose there exists two distinct u-v paths in T for some u, v ∈ T . Say

P1 = u = x0 · · ·xl = v,

P2 = u = y0 · · · yk = v.
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But then x0 · · ·xlyk · · · y0 is a walk beginning and ending at u. Hence it contains a cycle, a contra-
diction.

(i)=⇒(iii) Suppose T is not minimally connected. Then for some edge uv, T − uv is connected
and hence contains a u-v path P . But then uPvu is a cycle.

(i)=⇒(iv) Suppose T is not maximally acyclic. Then for some edge uv with u ̸∼ v, we can
connect u and v such that T + uv is acyclic. Let P be the unique uv path in T before adding new
edge. Then uPvu is a cycle. Others will be left as an exercise.

Definition 1.27. A special vertex T is called a root. A vertex of T other than the root, of degree
1 is called a leaf.

Theorem 1.28. Every nontrivial tree contains a leaf.

Proof. Let P be a longest path. Let P = x0 · · ·xk. Then xk is a leaf.

Corollary 1.29. The vertices of a tree can be listed v0 · · · vn so that vi has a unique neighbor in
{v0, . . . , vi−1},∀1 ⩽ i ⩽ n.

Proof. For any connected graph, by previous theorem, there exists an ordering {v0, . . . , vn} so that
for 1 ⩽ i ⩽ n, [v0, . . . , vi] is connected. Assume inductively [v0, . . . , vi] is a tree. We claim that the
only new edge results vivi+1 when we add vi+1.

Corollary 1.30. Let G be acyclic. Then G is a tree if and only if ∥G∥ = n− 1.

Proof. =⇒ Induction on i shows that the subgraph spanned by the first i vertices in previous
corollary has i− 1 edges.

⇐= Let G be any connected graph with n vertices and n− 1 edges. Let G′ be a spanning tree
in G. Since G′ has n− 1 edges by the first implication, it follows G = G′.

Theorem 1.31. A graph T with |T | = n is a tree if and only if any 2 of the following hold.

(a) T is a cyclic.

(b) T is connected.

(c) ∥T∥ = n− 1.

Corollary 1.32. Let T be any tree of order n and let G be any graph with δ(G) = n − 1. Then
G contains a tree isomorphic to T as a subgraph.

Proof. List the tree v0 · · · vn. Induction. [v0] is in G. Assume [v0, . . . , vi] is a subgraph of G. WTS

[v0, . . . , vi, vi+1] ⊆ G.
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1.6 Bipartite

Definition 1.33. A graph G = (V,E) is r-partite if there exists an r-partition of V so that every
edge of G has ends in distinct partite class. If r = 2, G is called bipartite.

Definition 1.34. If G and G′ are disjoint, then G ∗G′ is obtained by taking the disjoint union of
G and G′ and joining every vertex in V (G) with every vertex in v(G′) with an edge.

Example 1.35. P 1 ∗ P 2.

Definition 1.36. An r-partite graph in which every two vertices from different partition classes
are adjacent is called complete. The complete r-partite graph Kn1 ∗ · · · ∗Knr is written as

Kn1···nk
.

Example 1.37. K1,5 is a star.

Theorem 1.38. A graph is bipartite if and only if it contains no odd cycles.

Proof. =⇒ Let G = (V,E) be bipartite with V = V1 ∪ V2. Suppose G contains and odd cycle
v0 · · · vk with k even. Without loss of generality, let v0 ∈ V1, then v1 ∈ V2 and v2 ∈ V1, . . . , vk ∈ V1.
But v0 ∼ vk, a contradiction.

⇐= Suppose G contains no odd cycle. Fix v0 ∈ G. Let

V1 = {v ∈ V (G)|d(v0, v) is odd}.

V2 = {v ∈ V (G)|d(v0, v) is even}.

If u ∈ V1 and w ∈ V1 and u ∼ w, then we have an odd cycle. If u ∈ V2 and w ∈ V2 and u ∼ w, then
we have an odd cycle.

1.7 Contraction and minors

Definition 1.39. Let G = (V,E) and e ∈ E so that {e} is not a separating set, i.e., e is not a
bridge or cut edge. Then G− e is the graph obtained from G by removing e.

Definition 1.40. An edge contraction G ∖ e is obtained by removes an edge from a graph while
simultaneously merging the two vertices that is previous joined and removing any resulting loops
on multiple edges.

Definition 1.41. Any graph obtained from G by a series of deletions and contractions is called a
minor of G. Note we define the deletion of a cut edge to be the contraction of that edge. To undo
a deletion, we add the edge back.

Definition 1.42. Let X be a fixed graph. Replacing the vertices x of X with disjoint connected
graphs Gx and replacing the edges xy of X with non-empty sets of Gx −Gy edeges, yields a graph
that we shall call an IX, where Gx − Gy is the set of all edges with an end in Gx and the other
in Gy. More formally, a graph G is an IX if its vertex set admits a partition {Vx|x ∈ V (X)} into
connected subsets Vx such that distinct vertices x, y ∈ X are adjacent in X if and only if G contains
a Vx − Vy edge.
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Definition 1.43. If a graph G contains an IX as a subgraph, then X is a minor of G.

Example 1.44. Peterson has a K5 minor.

Definition 1.45. A subdividing of X, informally, any graph obtained from X by ‘subdividing’
some or all its edges by drawing new vertices on those edges. In other words, replace some edges
of X with new paths between their ends, so that none of these paths has an inner vertex in V (X).
When G is a subdivision of X, we also say that G is a TX. The original vertices of X are the branch
vertices of the TX and its new vertices are called subdividing vertices. Note that subdividing
vertices have degree 2 while branch vertices retain their degree from X.

Definition 1.46. If a graph G contains a TX as a subgraph, then X is a topological minor of Y .

1.8 Euler tours

Definition 1.47. Let G = (V,E) be connected, simple and finite. An Euler tour is G is a closed
walk that uses each edge exactly once. A graph is Eulerian if it contains an Euler tour.

Theorem 1.48. A connected graph G is Eulerian if and only if∀v ∈ V , dG(v) is even.

Proof. =⇒ Let W be an Euler tour. Then dW (v) = dG(v). Since dW (v) is even, dG(v) is even.
⇐= Let W be a longest walk that uses each edge at most once. We claim that W is closed.

Else dW (G) is odd for the last vertex u in W . But then W is not as long as possible. We claim
that for any u, v ∈ W , the edge uv ∈ W , provided uv ∈ E. Else W is not as long as possible. We
claim that ∀v ∈ V, v ∈ W . Suppose not. Then v ∈ V but v ̸∈ W . Wlog, v ∼ u with u ∈ W . uWuv
is a longer walk.

1.9 Some linear algebra

Definition 1.49. Let G = (V,E) with V = {c1, . . . , vn} and E = {e1, . . . , en}. Associated any
U ⊆ V a vector XU ∈ Fn

2 with

XU (v) =

{
1 if v ∈ U
0 otherwise

.

Similarly, for F ⊆ E, XF ∈ Fm
2 .

Remark. Add two vectors in Fm
2 means taking the symmetric differences. We abuse notation

slightly and refer to XU as U and XF as F .

Definition 1.50. Let C(G) be the subspaces of Fm
2 , spanned by the cycles of G. We call it the

cycle space.

Definition 1.51. F ⊆ E is a cut if V has a partition {V1, V2} so that every edge f ∈ F has one
end in V1 and one end in V2. A minimal cut is a bond.

Definition 1.52. Let C∗(G) be the subspace of Fn
2 generated by all the bonds. Special case of a

bond: V1 = 1 or |V2| = 1, say V1 = {v}, then the cut F is denoted as E(v).
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Theorem 1.53. Let {V1, V2} partition V . Let F be corresponding cut. Then in Fn
2

F =
∑
v∈V1

E(v).

Proof. Every edge in the sum appears twice if both ends are in V1 and once if exactly one end is in
V1.

Lemma 1.54. {E(V )|v ∈ V } generates C∗(G).

Example 1.55. Consider the following graph.

v1

v2 v4 v5 v6

v7

e1

e4
e3

e2

e7

e5 e6

e8

The vertex-edge incident matrix is

M =

e1 e2 e3 e4 e5 e6 e7 e8


E(v1) 1 0 1 1 0 0 0 0
E(v2) 1 1 0 0 0 0 1 0
E(v3) 0 1 0 0 1 1 0 0
E(v4) 0 0 1 0 1 0 0 0
E(v5) 0 0 0 1 0 1 1 1
E(v6) 0 0 0 0 0 0 0 1

Definition 1.56. A tree T is spanning tree of G if

(a) T is a subgraph of G.

(b) V (T ) = V (G).

Theorem 1.57. The rank of the incident matrix is n− 1.

Proof. Find n − 1 linearly independent columns, equivalently, an spanning tree T in G. Then
|T | = n− 1.

Theorem 1.58. Let M be the incident matrix. Then for any set of (n − 1) linearly independent
columns of M , the edges corresponding to these columns make up a spanning tree of G. The columns
corresponding to any tree are linearly independent. The fundamental cycle are minimally linearly
dependent.

Proof. {v|E(v)} generates C∗(G).

Corollary 1.59.
dim(C∗(G)) = n− 1.
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Definition 1.60. For F, F ′ ∈ Fm
2 , the inner product is

⟨F, F ′⟩ =
m∑
i=1

F (ei)F
′(ei) ∈ F2.

Theorem 1.61. The inner product is zero if and only if F and F ′ have an even number of edges
in common.

Example 1.62. Let F = (1, 0, 0, 0, 0, 1) and F ′ = (1, 1, 0, 0, 0, 1). Then

⟨F, F ′⟩ = 1 + 0 + 0 + 0 + 0 + 1 = 0.

Definition 1.63. For any subspace F os Fm
2 , we define

F⊥ = {D ∈ Fm
2 |⟨F,D⟩ = 0,∀F ∈ F}.

Lemma 1.64. Every cut C ∈ C is a (possibly empty) disjoint union of edge of cycles in G.

Theorem 1.65.
C = C∗⊥ and C∗ = C⊥,

i.e.,
C ⊕ C∗ = Fm

2 .

Proof. Let C ∈ C(G) and D ∈ C∗(D). Then C intersects D an even number of times. Hence

C ⊆ C∗⊥ and C∗ ⊆ C⊥.

Exercise.

Corollary 1.66.
dim(C(G)) = m− n+ 1.

1.9.1 Basis

Theorem 1.67. (a) A basis for the cycle space C is obtained as follows: for any spanning tree T
of G, each out of tree edge ij creates a unique cycle if edge ij is concatednated to the unique in-tree
ji path and there are exactly m − n + 1 such cycles. The basis obtained in this way is called a
fundamental cycle basis.

(b) Let T be a spanning tree. For every edge f ∈ T , the forest T − f has exactly two component.
The set Df ⊆ E of edges of G between these components is a bond in G, the fundamental cut of f
with respect to T . Then a fundamental cut of G with respect to T form a basis of C∗(G).

Theorem 1.68.
Ker(M) = C(G).

Im(MT ) = C∗(G).

Example 1.69. If we put M into standard form, we’d get [In−1 | A], where A is (n−1)×(m−n+1)
matrix.
Then the matrix [AT | Im−n+1] generates C

∗(G).
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Example 1.70. Consider the following graph.

v1

v2 v4 v5 v6

v4

e1

e4
e3

e2

e7

e5 e6

e8

The vertex-edge incident matrix is

M =

e1 e2 e3 e4 e5 e6 e7 e8


E(v1) 1 0 1 1 0 0 0 0
E(v2) 1 1 0 0 0 0 1 0
E(v3) 0 1 0 0 1 1 0 0
E(v4) 0 0 1 0 1 0 0 0
E(v5) 0 0 0 1 0 1 1 1
E(v6) 0 0 0 0 0 0 0 1

Let {e1, e2, e3, e4, e8} be a spanning tree. Then

[In−1 | A] =

e1 e2 e3 e4 e8 e5 e6 e7


e1 1 0 0 0 0 1 1 1
e2 0 1 0 0 0 1 1 0
e3 0 0 1 0 0 1 0 0
e4 0 0 0 1 0 0 1 1
e8 0 0 0 0 1 0 0 0

Add e5, there is a cycle {e1, e2, e3, e5}, which is a min. dependent set and also a fundamental
cycle. So the e5 column has a column vector (1, 1, 1, 0, 0)T . aij = 1 if and only if ei is used in the
fundamental cycle associated with ej . Note

[AT |Im−n+1] =

e1 e2 e3 e4 e8 e5 e6 e7( )e5 1 1 1 0 0 1 0 0
e6 1 1 0 1 0 0 1 0
e7 1 0 0 1 0 0 0 1

Note every row is a fundamental cycle.

Remark. Let the edges of T be the basic elements and non-basic elements is called non-tree edges.
Fundamental cycle is the unique cycle containing exactly one non-tree edge.

Theorem 1.71. Any collection of edges that induces a subgraph H with dH(v) even for all v ∈ V (H)
is a disjoint union of cycles.



Chapter 2

Matching Covering and Packing

Definition 2.1. A matching M in a simple graph G = (V,E) is a set of independent edges. These
vertices incident with the edges of a matching M are said to be saturated by M , the others are
unsaturated.

Definition 2.2. A perfect matching in a graph is a matching that saturated every vertex, that is,
a matching of size exactly n

2 .

Remark. A perfect matching can only occur in a graph with evenly many vertices.

Remark. maximum: largest possible. maximal: whether it can be extended by simply adding an
edge.

Example 2.3. In P 3,

a b c d

{ab, cd} is maximal matching and a maximum matching (
⌊
4
2

⌋
= 1 since it contains 2 edges in 4

vertices.). {bc} is a maximal mathching but not a maximum matching.

Definition 2.4. An M -alternating path is a path that alternates between edges in E ∖ M and
edges in M (in order).

Definition 2.5. An M -augmenting path P = (v1, . . . , vk) is an M -alternating path s.t. v1, vk ̸∈
V (M).

Example 2.6. Let M = {BF,CG}.

A B C D

E F G H

EBFD and AFBGCH are M alternating paths.

Lemma 2.7. Let M1 and M2 be matching of G. The degree of every vertex in [M1∆M2] is 1 or
2, Hence, [M1∆M2] is the disjoint union of paths and cycles. Furthermore, each such cycle or path
alternates in edges in M1 and M2.

13
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Theorem 2.8 (Berge). A matching M in G is maximum if and only if G does not contain an
M -augmenting path.

Proof. =⇒ By contrapositive.

⇐= Again, by contrapositive. Suppose M is not maximum. Let M ’ be a larger matching. Then
M ′∆M is a collection of paths and even cycles that alternate between M and M ′. At least one
such path begins at M ′ and ends at M ′. But this is an M -augmenting path.

2.1 Matching, vertex covering in bipartite graph

Let G = (V,E) be bipartite with V = {A,B}.

Definition 2.9. A vertex cover U is a subset of V s.t. for all edges e, there is a vertex, say u ∈ U
with u incident with e.

Remark. For now, an alternating path w.r.t. a matching M begins at an unsaturated vertex in
A, and contains, alternately edges from E ∖M and from M . An alternating path that ends in an
unmatched vertex of B is called an augmenting path.

Definition 2.10.

τ(G) = size of the smallest vertex cover

ν(G) = size of a maximum matching.

Theorem 2.11 (König).

τ(G) = ν(G).

Proof. Consider

a

y

x

b

c

d e

f g



2.1. MATCHING, VERTEX COVERING IN BIPARTITE GRAPH 15

with M = {xy, cd, de, fg} being maximum. So a is the only unsaturated vertex. Clearly,

τ(G) ⩾ ν(G).

Let M be a maximum matching. Construct a vertex cover U as follows. For each matching edge
xy ∈ M with x ∈ A and y ∈ B, do the following: if y is reachable via an alternating path, then put
y into U , otherwise, put x into U . Claim: every edge is incident with a vertex in U . Let ab ∈ E
with a ∈ A and b ∈ B. If ab ∈ M , done. Suppose ab ̸∈ M .

Case 1: a is unsaturated. Then b is saturated. Else M is not maximum. Say a′b ∈ M .

b

a

a′

Then a, ab, b is an alternating path ending at b. So b is reachable from a and then b ∈ U .
Case 2: a is saturated.

b′

a

b

Say ab′ ∈ M . If a ∈ U , we are done. Else b′ ∈ U and so b′ is reachable via an alternating path P .
Let

P ′ =

{
Pb if b ∈ P

Pb′ab if b ̸∈ P
.

Then b must be reachable and so b ∈ U .

Definition 2.12.

N(S) = {u ∈ N(s) for all s ∈ S}.

Theorem 2.13. A necessary (marriage) condition for a matching saturating A is

|S| ⩽ |N(s)|,∀S ⊆ A.

Theorem 2.14 (Hall 1935). A bipartite graph G = (V,E) with V = {A,B} has a matching
saturating A if and only if

|S| ⩽ |N(S)|,∀S ⊆ A.

Proof. =⇒ By the marriage condition.
⇐= Assume G contains no A matching. Then

ν(G) < |A|.
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Let U be a minimum vertex cover, say U = A1 ∪B1. By König theorem,

|A1|+ |B1| = |U | = τ(G) = ν(G) < |A|.

Then
|B1| < |A| − |A1| = |A∖A1|.

Notice that there are no edges between A∖A1 and B ∖B1. Hence N(A∖A1) ⊆ B1. Thus,

|N(A∖A1)| ⩽ |B1| < |A∖A1|,

which contradicts the assumption.

Definition 2.15. A k-regular spanning subgraph is called a k-factor.

Corollary 2.16. 1-factor: a matching that saturates all vertices (perfect). A subgraph H ⊆ G is
a 1-factor of G if and only if E(H) is a matching of V .

Corollary 2.17. Every k-regular bipartite graph has a 1-factor. (Or every regular bipartite graph
has a perfect matching.)

Proof. Let G = (V,E) be k-regular with V = {A,B}. Since k|A| = k|B|, |A| = |B|. Let S ⊆ A.
Then S is joined to N(S) by a total of k|S| edges. These are among the k|N(S)| edges of G incident
with N(S). Hence k|S| ⩽ k|N(S)|. Then |S| ⩽ |N(S)|. So Hall’s condition is satisfied. Thus, G
has a matching saturating A and so has an 1-factor.

Definition 2.18. For X ⊆ A,
defG(X) = |X| − |N(X)|.

We have
def(G) = max

X⊆A
defG(X).

Theorem 2.19 (Refinement of Hall’s theorem). Let G = (V,E) with V = {A,B}, then

ν(G) = |A| − def(G).

Proof. Let d = def(G) and ν = ν(G). Clearly, ν ⩽ |A| − d. Construct G′:{
add b1, . . . , bd to B

add edges ab : ∀a ∈ A
.

By Halls’ theorem, G′ has a matchingM of A. Note thatM use precisely edges in E(G)∖E(G′).

2.2 Matching in general graphs

Definition 2.20. Let CG be the set if its components.

Definition 2.21. Let q(G) be the number of components of G of odd order.

Theorem 2.22. The necessary condition for the existence of a 1-factor (Tutte’s condition) is:

q(G− S) ⩽ |S|,∀S ⊆ V (G).
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Theorem 2.23 (Tutte). A graph G has a 1-factor if and only if

q(G− S) ⩽ |S|,∀S ⊆ V (G).

Proof. Say G satisfies Tutte condition but has no 1-factor. In fact, let G be edge maximal w.r.t.
these properties. Let

K = {v ∈ V : u ∼ v,∀u ̸= v}.

Claim: Every component of G−K is a complete graph. Suppose not. Then ∃a, b, c ∈ V −K with
a ∼ b, b ∼ c, but a ̸∼ c. Then since b ̸∈ K, ∃d ∈ V such that d ̸∼ b. By edge maximality, there
exists a matching M1, saturating all vertices except a and c, and a matching M2 saturating all
vertices except b and d.

m l k e

f b h

a c

d

g

i

Consider M1∆M2: alternating cycles and paths. Then we construct an augmenting path P : start
d, alternating between edges in M1 and edges in M2.

(a) P ends at b. But then P is an M2-augmenting path, a contradiction since M2 is maximum.

(b) P ends at a or c. Consider Pab. Then Pab is an M2-augmenting path, a contradiction.

So every component of G−K is a complete graph. Thus, we have a 1-factor, a contradiction.

Corollary 2.24 (Peterson 1891). Every cubic bridgeless graph has a 1-factor.

Proof. We show that every graph satisfies Tutte’s condition.
Let S ⊆ V . Consider an odd component C of G−S. Then ∂(C), coboundary of C, is the set of all
edges in G with exact one end in C. Note

3|C| =
∑
v∈C

d(v) = 2|E(C)|+ |∂(C)|.

So |∂(C)| is odd. Since G is bridgeless, |∂(C)| ⩾ 3. This is true for each odd component. So with
S = V − S,

∣∣∂(S)∣∣ ⩾ 3 · q(G− S). Also,
∣∣∂(S)∣∣ = |∂(S)| ⩽ 3|S|. Hence 3|S| ⩾

∣∣∂(S)∣∣ ⩾ 3q(G− S).
Thus, |S| ⩾ q(G− S).
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2.3 Complementary

Definition 2.25. G is factor critical if it has no 1-factor but G− u has a 1-factor for any u ∈ V .

Definition 2.26. A near factor is a matching in which only 1 vertex is unsaturated.

Definition 2.27. A vertex v is essential if every maximum matching covers v

Lemma 2.28. If G is connected and ν(G− u) = ν(G),∀u ∈ V , then G is factor critical.

Proof. Let G be connected with ν(G) = ν(G − u),∀u ∈ V . So G has no 1-factor. It suffices to
show no maximum matching leaves two distinct vertices unmatched. Suppose we have a maximum
matching M s.t. x and y are unmatched and d(x, y) is as smallest as possible. Clearly, d(x, y) ⩾ 2.
Let P be a shorstest x-y path. Then there is a vertex v that is in the interior of P . By the
minimality of d, v is matched by M . Since ν(G− v) = ν(G), v is inessential. (All vertices of G is
inessential.) Then there exists a maximum matching M ′ missing v.By the minimality of d, x, y is
matched by M ′.

f a g

b x · · · v · · · y

c d e

In above graph, red edeges are in M and blue edges are in M ′ and black edges are neither in M
nor in M ′. In M∆M ′, since each path alternates in edges in M1 and M2, the paths in it starting
at x and y are distinct. Let Q be the path in M∆M ′ starting at x, wlog, Q does not end at v?
Then Q∆M ′ is a maximum matching avoiding x and v?

Definition 2.29. Let G = (V,E) be a graph with no 1-factor. Define

D(G) = {v ∈ V : v is an inessential vertex},

A(G) = {v ∈ V ∖D(G) : v ∈ N(D(G))},

C(G) = V ∖ {D(G) ∩A(G)}.

Theorem 2.30. Consider
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a b

c d

e f

g

h i

j

k l m

n

o p q r

s t u v w x y

α

β

Since D(G) is in the bottom, A(G) is in the middle and then C(G) is the left ones.

Lemma 2.31 (Stability lemma). Let G = (V,E) be a graph with no 1-factor. Then∀u ∈ A, we
have

D(G− u) = D(G),

A(G− u) = A(G)− u,

C(G− u) = C(G).

Proof. Claim ν(G − u) = ν(G) − 1,∀u ∈ A. Since u ∈ A is essential, no matching of G − u has
cardinality ν(G). So

ν(G− u) < ν(G).

Furthermore, let M be a maximum matching of G, then |M | = ν(G), and u ∈ A is saturated
by M , say by α ∈ M . Then M − α is a matching of G − u and |M − α| = ν(G) − 1. Hence
ν(G − u) ⩾ |M − α| = ν(G) − 1. Thus, ν(G − u) = ν(G) − 1. Claim D(G) ⊆ D(G − u),∀u ∈ A.
Let o ∈ D(G). Let Mo be a maximum matching of G leaving o unmatched. Then |Mo| = ν(G). Let
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β ∈ Mo be incident with u ∈ A. Then Mo−β is a matching of G−k of size |Mo − β| = ν(G)−1, and
hence, by previous claim, a maximum matching of G−u leaving o unmatched. Hence o ∈ D(G−u).

Next, D(G − u) ⊆ D(G). Choose v ∈ D(G − u). Let M ′ be a maximum matching of G − u
missing v. Let w ∈ D(G) with w ∼ u and let M be a maximum matching of G missing w. We
need to construct a maximum matching of G missing v, (this would imply that v ∈ D(G − u) as
required.) If M misses v, then we are done. So assume not. Then v is matched by M . Let P be
the path of M∆M ′ starting at v.

Case 1: P1 ends with an edge of M ′. Then M∆P is a matching in G missing v, and it is the
same cardinality as M , hence maximum. So we are done.

Case 2: P ends with an edge of M . Consider M ′∆P . It is maximum. Hence it must match u.
So M ends at u. But then M∆(P + uw) is a maximum matching avoiding v as required.

Corollary 2.32. Let G = (V,E) be no 1-factor.

(a) Let M be a maximum matching in G, let u ∈ A(G) and let f be the unique edge in M incident
with u. Then M − f is a maximum matching of G− u.

(b) Let M be a maximum matching in G. Then if f is an edge of M with one end in A(G), then
the other end of f is necessarily in D(G).

Theorem 2.33 (Edmond’s Gallai’s structure theorem). Let G = (V,E) be a graph with no 1-factor
and D,A,C be defined before. Then

(a) Every component of [D] is factor critical (odd).

(b) Every component of [C] has a 1-factor (even).

(c) Define a bipartite graph {A,B}, where A = A(G) and a vertex of B is a component of [D],
with ab an edge if and only if a is adjacent to at least one vertex in B.
Hall’s condition holds with a surplus,

|N(X)| ⩾ |X|+ 1,∀X ⊆ A.

(d) Let M be a maximum matching of G. Then M contains a near-factor of each component of
[D].
A 1-factor of each component of [C] and vertices in A are matched to vertices in distinct component
of [D].

(e)

ν(G) =
1

2
(|V | − q(G−A) + |A|).

Proof. Delete vertex of A one at a time.

D(G−A) = D(G),

A(G−A) = ∅,

C(G−A) = C(G).
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(a) Since any matching M of G saturating A, M ∩ E(G − A) has cardinality ν(G) − |A| and is a
maximum matching of G−A. Use Gallai’s lemma, it is enough to show

ν(Gi − v) = ν(Gi),∀v ∈ V (Gi),

where Gi is a component of [D]. So let
v ∈ V (Gi).

Let Mv be a maximum matching of G, leaving v unsaturated. Remove all edges of Mv incident with
A and then the part left has cardinality ν(G) − |A| and is a maximum matching of G − A. Since
the component of [D] are disjoint, restricting Mv − E[A] is a maximum matching of Gi avoiding
v. So ν(Gi) = ν(Gi − v). By Gallai’s lemma, Gi is factor critical.

(b) Note that [C] has 1-factor (start with a maximum matching M of G and remove all edges
incident with A.) (Again we used consequence (2) above).

(d) (Key point: every vertex k ∈ A is saturated by any maximum matching M of G, say β ∈ M
is incident with k and the other end of β must be in D. Else remove k and β to get a maximum
matching of G − k?) From (a) and (b), it follows that a maximum matching in G − A consists
of a 1-factor of [C] and a near factor of each component of [D], i.e., we can do better than this,
so this must be as large as possible. We also know that removing all edges incident with A from
any maximum matching of G results in a maximum matching of G − A, and hence leaves exactly
1 vertex unsaturated in each component Gi of G−A in D.

(e) Clearly now.

(c) Let C ⊆ A. Let u ∈ X and let u ∼ v with v ∈ b, where b is some component of [D]. Let M be a
maximum matching of G avoiding v. By (d), the rest of the vertices in b are matched to vertices also
in b. Hence no vertex in X is matched to a vertex of b. It follows that each of the |X| vertices in X
is matched to a distinct component other than b in [D]. These |X| distinct components, together
with b form our requisite set of size at least |X|+ 1 elements in B in the neighbor set of X.
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Chapter 3

Connectivity

3.1 2-connected graphs and subgraphs

Definition 3.1. A cut vertex is one that separates of two other vertices.

Definition 3.2. G is 2-connected if it contains at least 3 vertices and has no cut vertex.

Definition 3.3. Ear decomposition is a simple recursive procedure for generating any 2-connected
graph starting with a cycle.

Definition 3.4. An F -path is also called an ear of F in G.

Theorem 3.5. Let F be a nontrivial subgraph of a 2-connected graph G. Then F has an ear in G.

Proof. Case 1: F spans G. Then ∃e ∈ E(G− F ). Then e is an ear.

Case 2: F is not spanning. Since G is connected, ∃xy ∈ E(G) with x ∈ V (F ) and y ∈ V (G−F ).
Since G is 2-connected, there is a (y, F − x)-path Q in G− x. So P = xyQ is an ear in F .

Theorem 3.6. Let F be an 2-connected subgraph of G. Let P be an ear of F . Then F ∪ P is
2-connected.

Definition 3.7. A nested sequence of graphs is a (finite) sequence (G0, . . . , Gk) with Gi ⊊ Gi+1

for 0 ⩽ i ⩽ k − 1.

Definition 3.8. An ear decomposition of 2-connected graph is a nested sequence (G0, . . . , Gk) of
a 2-connected so that

(a) G0 is a cycle;

(b) Gi+1 = Gi ∪ Pi, where Pi is an ear of Gi in G, 0 ⩽ i ⩽ k − 1.

Example 3.9. Consider the following graph.

23
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a

b c

d e

(a) G1

a

b f c

g

d e

(b) G2

a

b f c

h i

g

d e

(c) G3

a

b f c

h i

j g

d e

(a) G4

a

b f c

h i

j g

d e

(b) G5

a

b f c

h i

j g

d e

Figure 3.3: G6

Lemma 3.10. Every 2-connected graph G has a cycle.
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Proof. Since G is 2-connected, G is connected. Suppose G is acyclic, then G is a tree. So G contains
a leaf x. Let y be the unique vertex adjoint to x, then y is a cut vertex, a contradiction.

Lemma 3.11. G is 2-connected if and only if it has an ear decomposition.

Proof. ⇐= Induction on the number of ears. G0 is a cycle and 2-conncetd. Then inductively apply
previous theorem that the union of 2-connected graph and an ear is still 2-connected.

=⇒ Use previous lemma and the following theorem.

Theorem 3.12. Let F be a nontrivial proper subgraph of a 2-connected graph G. Then F has an
ear in G.

Definition 3.13. A block of a graph G is a maximal connected subgraph without a cut vertex.

Remark. Types of blocks.

(a) maximal 2-connected graph.

(b) a bridge.

(c) an isolated vertex.

(d) If different blocks overlap, then they overlap in one vertex (a cut vertex).

(e) Every edge lies in a unique block.

(f) G is the union of its blocks.

Definition 3.14. A bond is a minimal cut. Assume G is cut into two parts A and B, then either
A or B is connected.

Theorem 3.15. If F is a cut with xy ∈ F , then F is a bond if and only if it is a minimal
intersection set of all x-y path.

Lemma 3.16. (a) cycles of G are cycles of the blocks.

(b) bonds of G are bonds of the blocks.

Proof. (a) A cycle is 2-connected. So it must be part of some maximal 2-connected subgraphs.

(b) Let F be a bond of G, let xy ∈ F . So F separates x and y in G. Let B be the block containing
xy, by the maximality of B, G contains no B-path. Hence B contains all x-y paths (or use previous
theorem). So F ∩ E(B) separates x and y in B. Thus, F is also a bond in B.

Lemma 3.17. For distinct edges e and f of G, TFAE.

(a) e and f belong to the same block;

(b) e and f belong to the same cycle;

(c) e and f belong to the same bond;
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u1 u2

v1 v2

e

f

u1 u2

v1 v2

e

f

Proof. (i)=⇒(ii) Let e and f be in the same block B. Let B be 2-connected. Claim in any 2-
connected graph, any two edges are in the same cycle. It suffices to show that for any two distinct
pairs {u1, u2} and {v1, v2} of vertices, there are two disjoint paths. Since B is 2-connected, it has
an ear decomposition {B0, . . . , Bk}. If k = 0, then B is a cycle, done. Then induct on k. Let
0 ⩽ i ⩽ k − 1.

Case 1: both {u1, u2} and {v1, v2} are in Bi. True by inductive assumption.
Case 2: both are in P , which is an ear of Bi, since Gi is connected, they are in the same cycle.
Case 3: one pair is in Bi and the other is in Pk.
Use induction with the pairs {u1, u2} in Gi and {u, v} in Gi (By symmetry).
(iii)=⇒(ii) Let e and f be in the same cycle C. Removing e and f from C leaving two paths

P1 and P2. Grow P1 and P2 into a partition V1, V2 of G so that e, f ∈ V1 − V2, so that [V2] is
connected? Then edges between V1 and V2 form a bond of G? Let V2 be the connected component
of G− P1 containing P2 and V2? Let V1 = V (G)− V2. (iii)=⇒(i) Assume e and f are in the same
bond of G. That bond is also a bond of some block B of G. Then B contains e and f .

Definition 3.18. Bipartite {A,B}, where A is the set of cut vertices and B is the set of blocks.
a ∼ B in this block graph if a ∈ B.

B2 B1

a1

B3

B4 a2 B5

Definition 3.19. The block graph of a connected graph is a tree.

3.2 The structure of 3-connected graphs

Example 3.20. Consider G

a y

x

z b

f

e
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Then G/e is

a

w

z b

So it is not 3-connected since it contains a 2-vertex cut {x, c}. G/f is

a′

c′

x y

It is 3-connected.

Lemma 3.21. Let G be a 3-conneted with |G| ⩾ 5 and let e = xy ∈ E(G) s.t. G/e is not
3-connected. Then ∃z ∈ V such that {x, y, z} is a 3-vertex cut of G.

Proof. Let G be

a y

x

z b

e

Let {z, w} be a 2-vertex cut of G/e.

a

w

z b

Both z and w cannot be the result of contracting e, say z is that vertex. Set

F := G− z.

a y

w

b

e
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(Since G is 3-connected, F is 2-connected.) However,

F/e = (G− z)/e = G/e− z.

a

w

b

Note G/e− z has a 1-vertex cut {w}. Hence w must be the result of contracting e. Thus, {x, y, z}
is a 3-vertex cut of G. (z is not the resulting of contracting xy.)

Lemma 3.22. If G is 2-connected and {x, y} is a 2-vertex cut of G with x ∼ y and C is any
component of G− {x, y}, then H = [V (C) ∪ {x, y}] is also 2-connected.

C D

x

y

E F

Proof. Suppose not. Then there is a cut vertex u ∈ V (H).
Case 1. u = x or y. Wlog, let u = x. Then G looks like

x

K

y

So there is no y-C edges? Then G− x contains C as a component, a contradiction?
Case 2. u ∈ C. Let C ′ be component of H − {u}.

x

u

y

C ′
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Then v is a cut vertex of G, a contradiction.

Theorem 3.23 (Thomason 1981). Let G be a 3-connected graph with at least 5 vertices. Then G
contains an edge such that G/e is 3-connected.

Proof. Suppose not. Then for any edge e = xy of G, G/e is not 3-connected. By previous lemma,
∃z ∈ V associated with xy such that {z, x, y} is a 3-vertex cut of G. Choose e and z such that
G − {x, y, z} has a component F with as many vertices as possible. Consider G − z. Since G is
3-conneted, G−z is 2-connected. Also G−z has the 2-vertex cut {x, y}. Hence H = [V (F )∪{x, y}]
is 2-connected by previous lemma. Let u be a neighbor of z in a component of G− {x, y, z}, other
than F .

x

F y

z u

e

f

Since f = zu ∈ E(G), by our assumption, ∃v ∈ V such that {z, u, v} is a 3-vertex cut of G. Since
H is 2-connected, H − v is connected and is thus contained in component of G−{z, u, v}. But the
order of H − v is larger than |F |, contradicting the maximality of F .

3.3 Menger’s theorem

Theorem 3.24 (Menger 1927). Let G = (V,E) and A,B ⊆ V . Then the minimum number of
vertices separating A from B in G is equal to the largest collection of disjoint A-B path in G.

Proof. Let

k = κ(G,A,B) = minimum number of vertices separating A from B.

Clearly, the cardinality of the largest collection of vertex disjoint A-B path ⩽ k. Induct on ∥G∥. If
∥G∥ = 0, the only A-B paths are the singletons |A ∩B|, which is the largest number of disjoint A-B
path. Also, the smallest separating set is A ∩B. Assume ∥G∥ ⩾ 1. Then there exists e = xy ∈ E.

a b c

d e f

g h

with A = {b, c, e, f} and B = {a, b, e, d}. Inductively, assume statement holds for graphs of smallest
size. Suppose G has no k disjoint A-B paths, then neither does G/e. Let ve be the contracted vertex.
Replace A with A′ and B with B′. Put ve into A′ if {x, y}∩A ̸= ∅. Put Ve into B′ if {x, y}∩B ̸= ∅.
By the induction hypothesis, G/e contains an A-B speparator Y of fewer than k vertices. Note
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that ve ∈ Y , otherwise, Y ⊆ V would be an A-B separater. Hence X := (Y − {ve}) ∪ {xy} is an
A-B separators in G of cardinality k. Let

k = κ(G,A,B) and p = maximum number of A-B disjoint paths in G;

k′ = κ(G,A′, B′) and p′ = maximum number of A′-B′ disjoint paths in G.

Then p′ ⩽ p, p < k and p′ = k′. Also, k′ = k or k − 1. Hence p = k − 1 and p′ = k − 1 = k′.
Consider G − e. Since x, y ∈ X, every A-X separator in G − e is also an A-B separator in G and
hence contains at least k vertices. So by induction there are k disjoint A-X paths in G − e, and
similarly there are k disjoint X-B paths in G−e. As X separates A from B, these two path systems
do not meet outside X, and can thus be combined to k disjoint A-B paths.

Remark. We have the following stronger statement. If P is any set of fewer than k disjoint A-B
paths in G, then G contains a set of |P |+ 1 disjoint A-B paths exceeding P .

Corollary 3.25 (König theorem). Let G = (V,E) be a bipartite with bipartition {A,B}. Every
A-B path is an edge in G. Every vertex cover is an A-B separating set.

Definition 3.26. Let G = (V,E). If a ∈ V and B ⊆ V with a ̸∈ B, then an a-B fan is a collection
of paths with pairwise intersection at a.

Corollary 3.27 (To Menger). For B ⊆ V and a ∈ V ∖ B, the size of a smallest a-B separation
not containing a is equal to the maximum number of paths in an a-B fan.

Proof. Apply Menger to G-a with A = NG(a).

Corollary 3.28. Let a, b (s, t) be two distinct vertices of G = (V,E). If ab ̸∈ E, then the minimum
number of vertices not containing {a, b} separating a from b in G (κ(a, b)) is equal to the maximum
number of independent (internally disjoint) a-b paths in G (λ(a, b)).

Corollary 3.29 (Edge a-b version). The minimum number of edges separating a from b (κ′(a, b))
is equal to the maximum number of edge disjoint a-b paths in G (λ′(a, b)).

Proof. Apply Menger’ a-b version of the line graph of G.

Theorem 3.30 (Menger’s global version). (a) A simple graph is k-connected if and only if it con-
tains k independent paths between any 2 distinct vertices.

(b) A simple graph is k-edge-connected if and only if it contains k edge-disjoint paths between any
2 distinct vertices.

Proof. (a) ⇐= Say G contains k-independent paths between 2 distinct vertices. Then |G| > k.
Furthermore, G connot be separated by fewer than k vertices. Hence G is k-connected.

=⇒ Assume G is k-connected.
Then |G| > k and any separating set has size at least k. Assume ∃a, b ∈ V s.t. there are at most
k − 1 independent paths between a and b. If ab ̸∈ E, by previous corollary, the minimum number
of vertices separating a from b is at most k − 1, which is contradicted by that G is k-connected.
Hence ab ̸∈ E. Set G′ = G− ab. Since ab is a-b path, which must be independent of any other a-b
paths, G′ contains at most k − 2 independent a-b paths. Then G′ has an a-b sepatators X with at
most k−2 vertices. Since |G′| > k, |G′| ⩾ k. Also, |X| ⩽ k−2. So ∃v ∈ V such that v ̸∈ X ∪{a, b}
in G′. It must be the case that in G′ either X separates a from v or X separates b from v, wlog,
say a. But then X ∪ {b} is a set of at most k− 1 vertices separating v from a in G. Thus, G is not
k-connected, a contradiction.



Chapter 4

Planar Graphs

Remark (Problem). Given distinct vertices x1, . . . , xk andy1, . . . , yk, find k independent paths
P1, . . . , Pk, where Pi is an xi-yi path, called an x-y linkage. This is a NP-hard problem even if
k = 2.

4.1 Topological prerequisites

Definition 4.1. A topology is a collection of subsets called open sets of a ground set X that is
closed under arbitrary union and finite intersection. X is called a topological space.

Example 4.2. The smallest topology on X is {∅, X}.

Example 4.3. In discrete topology, every subset is open.

Example 4.4. In metric space, open sets are generated by open sets.

Definition 4.5. A function between two topological spaces is continuous if the preimage of every
open set is open.

Definition 4.6. A homeomorphism is a continuous bijection between two topological spaces for
which the inverse function is continuous.

Example 4.7. The identity function

(R, ddisc)
id
−! (R, |·|),

is bijection continuous but not a homeomorphism since the inverse

(R, |·|) id
−! (R, ddisc),

is not continuous since the open set {x} in (R, ddisc) is not open in (R, |·|) (closed).

Lemma 4.8. A continuous bijective map is a homeomorphism if and only if the image of every
open is open.

Definition 4.9. A set is closed if it is the complement of an open set.

31
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Remark. In a metric space, closed sets contain all limit points.

Definition 4.10. A set is compact if every open cover has a finite subcover.

Remark. In R, closed and bounded sets are compact.

Remark. Topological studies properties of objects that does not change under homeomorphism.

Example 4.11. [0, 1] is homeomorphic to a polygonal arc in R2.

Remark. Topological graph theory was studied first to address 4-color theorem.

Remark. Two homeomorphic spaces share the same topological properties. For example, if one
of them is compact, then the other is as well; if one of them is connected, then the other is as well;
if one of them is Hausdorff, then the other is as well; their homotopy and homology groups will
coincide.

Definition 4.12. In R2, a set S is open if ∀x ∈ S, ∃r > 0 such that the open disk Br(x) ⊆ S,
where Br(x) is called a neighborhood of x.

Definition 4.13. A straight line segment in R2 between p and q is of the form

{p+ λ(p− q) : 0 ⩽ λ ⩽ 1}.

Definition 4.14. A polygonal arc P is a set A ⊆ R2 and is a union of finitely many line segment
and is homeomorphic to [0, 1] in R1. The images of 0 and 1, say x and y are called the ends of P .
Say P links x and y, define

o

P = P ∖ {x, y}.

Definition 4.15. A polygon is a subset of R2, which is the union of finitely many straight line
segment and is homeomorphic to the unit cycle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

Definition 4.16. A bond of a polygonal arc or a polygon P is a point in P where line segments
meet. Note there are just finitely many bonds.

Theorem 4.17. Complement of finite union of (polygon) arcs is open.

Definition 4.18. Let Ω ⊆ R2 be an open set. Define x ∼ y if x, y ∈ Ω and there is a polygonal arc
A ⊆ Ω having ends x and y. Note “∼” is an equivalent relation and equivalence classes are called
arcwise connected components of Ω, or region of Ω.

Definition 4.19. If x ∼ y, for any x, y ∈ Ω, we say that Ω is arcwise connected.

Definition 4.20. If X ⊆ R2 is closed, we call an arcwise connected component of R2 −X a face
of X.

Definition 4.21. The frontier or (boundary) of a set X ⊆ R2 is the set Y of all points in R2 such
that every neighbor of y meets both X and R2 −X.

Theorem 4.22. If X is open, frontier of X is in R2 −X.

Theorem 4.23 (Jordan curve theorem for polygon). Every polygon P ⊆ R2 has exactly two faces
of which exactly one is bounded. The boundary of each of the two faces is P .
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Proof. Let x ∈ R2 − P and L be an half line starting at x and containing no bonds of P . Let
π(x, L) = |L ∩ P | (mod 2). Check if L1 and L2 are two such lines starting at x, then π(x, L1) =
π(x, L2). Call this number π(x). Check π is a continuous function. Then π is constant on each
arcwise connected component of R2 − P . Choose two points x1 and x2 close to each other but on
opposite side of a line segment of P . Then π(x1) ̸= π(x2). So P has at least two faces. Suppose
P has at least 3 faces. Choose x1, x2, x3 on each face. Let x be on the boundary of P (but not a
bound). So x is on a line segment S. Pick O a small open neighborhood of x with O ∩ P = O ∩ S.
For each of x1, x2, x3, shoot a half line towards P but not on the way. Travel on the line segment
along lots of neighbors of P to O from there. Going backwards, we get a polygonal arc from O to
x1. So each of x1, x2, x3 can be reached from a point in O by a polygonal arc not intersecting P .
But O − P has at most two arcwise connected components. So by PHP and the def. of face, at
least two of x1, x2, x3 are in the same region of R2∖P . Hence P has at most 2 faces. Furthermore,
every point of O ∩ S belongs to the boundary of both faces. Also, since x is arbitrary, P is the
boundary of both faces. Check one region is unbounded.

Lemma 4.24. Let P1, P2, P3 be 3 (polygonal) arcs between the same two end points and are
otherwise disjoint. Then R2 ∖ (P1 ∪ P2 ∪ P3) has exactly 3 regions with

(a) fontier P1 ∪ P2, P2 ∪ P3 and P1 ∪ P3.

(b) If P is an arc between a point in
o

P 1 and
o

P 3 whose intersection lies in the region of R2∖(P1∪P3)

that contains P2, then
o

P ∩
o

P 2 ̸= ∅.

Proof. (Sketch)
o

P i is entirely contained in one of the 2 faces in R2 ∖ {Pj ∪ Pk}.

(a) It follows from PJCT, too.

(b) P2 separates one of the two regions defined by P1 ∪ P3 into two parts. Consider Pab stated. a
is in one of these regions, the one bounded by P1 ∪P2 and b is in the one bounded by P2 ∪P3. Let
c be the first point on P that is in both. Then c ∈ P2.

Definition 4.25. A closed set X separates an open region O if O ∖X has more than 1 region.

4.2 Drawing graphs

Definition 4.26. A drawing of a graph G = (V,E) is a function f that maps each v ∈ V to
f(v) ∈ R2. f maps each edge e = uv ∈ E to f(e), a polygonal arc, with ends f(u) and f(v).

Definition 4.27. A point in f(e) ∩ f(e′) other than the common ends is a crossing.

Remark (Perturbation assumption for planar graph). We have the following remarks.

• The interior of an edge contains no vertex and no point of any other edge.

• If 2 edges cross more than once, we can reduce the number of crossings.

• No pair of edges is parallel.

Definition 4.28. A graph is planar if it has a drawing with no crossings. Such a drawing is a
plane embedding of G. A plane graph is a particular drawing of a planar graph with no crossing.
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Definition 4.29. Let G be a planar and consider a plane drawing of G. The (open) regions of
R2 ∖G are the faces of G.

Remark (Fact). We have the following facts.

• If G is finite and so bounded, then we can constrcut a big desk containing all of G and so G
has only one unbounded face.

• The faces of G are pairwise disjoint.

• The points p, q not on an edges of a plane graph are in the same face if and only if there exists
a p-q arc crossing no edges of G.

Definition 4.30. A chord of a cycle C is an edge e joining two vertices on C but with e ̸∈ C.

Theorem 4.31. Neither K5 nor K3,3 are planar.

Proof. Consider a drawing of G = K5 or K3,3 in the plane. Let C be a spanning cycle in G = K3,3.

a e c

b f d

Then we can draw C as a polygon:

e

f d

a c

b

By PJCJ, R2 − C has exactly 2 faces. Let e be a chord of C, then by definition,
o
e is entirely

contained in one of these two faces. We will say that two chords of C conflict if their endpoints on
C occur in alternating order, for example, the chords fc and eb conflict. Conflicting chords must
be drawn in different faces. But K3,3 has 3 pairwise conflicting chords and R∖C has only 2 faces,
so K3,3 cannot be drawn in the plane. A similar argument holds for K5.

The following Lemmas are used for proving Kuratowski’s theorem.

Lemma 4.32. Let G be a planar graph and E be the edge set of a face F of G. Then there is an
embedding in which F is the unbounded face.

Lemma 4.33. Every minimal nonplanar graph is 2-connected.
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Proof. Let G be minimal nonplanar. Suppose G were not connected, then one of the component
would be a nonplanar, which is contradicted by the minimality and so G is connected. Suppose
v were a cut vertex and let C1, . . . , Ck be the components of G − v with k ⩾ 2. For i = 1, . . . , k,
let Hi be the subgraph of G induced by Ci ∪ {v}. By the minimality of G, each Hi is planar for
i = 1, . . . , k. Squeeze each to fit an angle less than 360o

k at v and merge. But then G is planar, a
contradiction and so G is 2-connected.

Definition 4.34. Aminimal nonplanar graph is a nonplanar graph for which every proper subgraph
is planar.

Lemma 4.35. Let G be minimal nonplanar and has a separator S of size 2, say S = {x, y}. Let
C1 be one component of G − {x, y} and let C2 = G − {x, y} − C1. Let Gi be the subgraph of G
induced by Ci∪{x, y} for i = 1, 2. Note V (G1)∩V (G2) = {x, y}. Define for i = 1, 2, Hi = Gi∪xy.
Then at least one of H1, H2 is nonplanar, otherwise we could glue H1 and H2 at xy and remove xy
to obtain a planar graph G, a contradiction.

Definition 4.36. A Kuratowski graph is a subdivision of K5 or K3,3.

Lemma 4.37. A minimal nonplanar graph with no Kuratowski subgraph is 3-connected.

Proof. Assume G is minimal non-planar. Then G is 2-connected by previous Lemma. Suppose G
were not 3-connected. Then by last Lemma, H1 or H2 defined in last Lemma is nonplanar, say H1.
Since H1 has fewer edges than G, H1 must contain a Kuratowski subgraph. Replace xy with an
x-y path using only edges in H2 and this gives a Kuratowski subgraph of G, a contradiction.

Lemma 4.38. A 3-connected graph with at least 5 vertices has an edge whose contraction leaves
the graph 3-connected.

Lemma 4.39. If G/e has a Kuratowski subgraph, then G also does.

Proof. Let H be the Kuratowski subgraph of G′ = G/e. Let e = xy and z be the vertex resulting
from contracting the edge e.

Case 1: z is a nonbranching vertex of H. Uncontracted to get a Kuratowski subgraph of G, for
example z is on ab.

a e c

b f d

Case 2: If when we uncontract z (inflation), at least one of the vertices {x, y} has degree 2 in
the subgraph of G induced by (V (H) − z) ∪ {x, y}. Still, we have a Kuratowski subgraph after
expanding z.

y e c

x

b f d



36 CHAPTER 4. PLANAR GRAPHS

Case 3: x and y have degree greater than 2 in this same subgraph, i.e., degH(z) = 4.

x e c

y f d

Remark. Sometimes, the contrapositive statement is more useful.

Theorem 4.40 (Kuratowski, 1930). G is planar if and only if G contains no subdivision of K5 or
K3,3 (no Kuratowski subgraph).

Proof. The goal is to show

(a) Show that a minimal nonplanar graph with no Kuratowski subgraph must be 3-connected.

(b) Prove that a 3-connected graph with no Kuratowski subgraph must in fact be planar.

Remark (Fact). We have the following facts.

• Subdividing edges does not affect planarity.

• Deletion and contraction preserve planarity.

• So it makes sense to seek minimal non-planar graphs with respect to these operations.

Theorem 4.41 (Wagner,1937). G is planar if and only if it has no subgraph contractible to K5 or
K3,3.

Remark (Fact). A graph contains K5 or K3,3 as a minor if and only if it contains K5 or K3,3 as
a topological minor.

Theorem 4.42 (Fary’s Theorem, 1948). Every finite planar graph has an embedding in which all
edges are straight line segments.

Remark (Recall). An embedding is a drawing of the graph in the plane.

Remark (Fact). If each face boundary is convex, we say the representation is convex.

Definition 4.43. A set A is convex if for any x, y ∈ A and∀0 ⩽ λ ⩽ 1,

(1− λ)x+ λy ∈ A.

Definition 4.44. A convex embedding of G is a planar embedding in which each inner face is
convex.

Theorem 4.45 (Tutte, 1969, 1963). Every 3-connected planar graph has a convex embedding in
the plane.

Remark (Fact). K2,n for n ⩾ 4 has no convex representation.

Theorem 4.46 (Tutte). If G is 3-connected with no Kuratowski subgraph, then G has a convex
embedding in the plane.
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Proof. Induction on |G|. If |G| ⩽ 4, then G = K4 and K4 has a convex embedding. Assume
|G| ⩾ 5. Assume the statement holds for all graphs with fewer vertices. By previous Lemma, there
exists e = xy with G/e 3-connected. Let z be the vertex resulting from contracting e. Previous
lemma implies that G/e has no Kuratowski subgraph. So by inductive hypothesis, there exists a
convex embedding of G′ = G/e. Consider removing all edges in G′ incident with z. The resulting
graph has a face containing z. A cycle of G′−z bounds the face. There exists straight line segments
from z to each of its neighbors on C. Some connect x to C. Some connect y to C. Let x1, . . . , xk

be the neighbors of x in order on C.
Case 1: All neighbors of y lie between xi and xi+1 for some 1 ⩽ i ⩽ k− 1 or between x1 and xk.
Case 2: Consider subcases (2a) and (2b). We claim that both of these subcases allow us to

conclude that we have a Kuratowski subgraph.

(2a) y shares 3 neighbors with x. Then we have a K5 subdivision.

(2b) y has two neighbors u and v in C (breaking C into two segments) and x has two neighbors u′

and v′ that are in different segments of C. Then we have a K3,3 subdivision.

Remark (Interesting Fact). Excluded minors characterization for our planar graphs: K4 and K2,3.

Theorem 4.47.
2∥G∥ =

∑
i

l(Fi).

Lemma 4.48 (Euler’s formula,1258). If G is planar and connected with n vertices, m edges and l
faces, then

n−m+ l = 2.

Corollary 4.49. A simple 2-connected planar graph has at most 3|G| − 6 edges.

Proof. Let G has n vertices, m edges and l faces. Since G is simple and 2-connected, every face
has length at least 3. Hence 2m =

∑
i l(Fi) ⩾ 3l. Also, by Euler’s formula, 3m = 3n + 3l − 6 ⩽

3n+ 2m− 6. Thus, m ⩽ 3n− 6.

Remark (Exercise). Use this to show K5 is not planar.

Corollary 4.50. Let G be a planar, simple and 2-connected. Then the average degree of G

d(G) =

∑
v d(v)

n
=

2∥G∥
n

=
2m

n
⩽

6n− 12

n
= 6− 12

n
< 6.

We conclude that every simple 2-connected planar graph has a vertex of degree ⩽ 5.
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Chapter 5

Coloring

Remark. How many colors do we need to color the countries of a map in such a way that adjacent
countries are colored differently? How many days have to be scheduled for committee meetings of a
parliament if every committee intends to meet for one day and some members of parliament serve
on several committees? How can we find a school timetable of minimum total length, based on the
information of how often each teacher has to teach each class?

Definition 5.1. A (vertex) coloring of a graph is an assignment of colors to vertices. Specifically,
let G = (V,E). Let S be the set of colors and be finite. A vertex coloring of G is a map

c : V ! S.

A coloring is proper if c(v) ̸= c(u) when v ∼ u.

Definition 5.2. An edge coloring of G = (V,E) is map c : E ! S with c(e) ̸= c(f) for any adjacent
edges e, f .

Remark. Clearly, every edge coloring of G is a vertex coloring of its line graph L(G), and vice
verce; in particular,

χ′(G) = χ(L(G)).

Remark. Often S = {1, . . . , k}. If there is a coloring using only elements in [k], we say G is
k-colorable and the associated coloring is a k-coloring .

Definition 5.3. Let χ(G) be the chromatic number of G, which is the smallest integer k so that
G is k-colorable.

Definition 5.4. Let χ′(G) be the edge chromatic number of G or called chromatic index of G,
which is the smallest integer k so that G is k-edge-colorable.

Remark. If χ(G) ⩽ k, we say G is k-colorable. If χ(G) = k, we say G is k-chromatic.

Remark. Note that a k-coloring is nothing but a vertex partition into k independent sets, now
called color classes. The non-trivial 2-colorable graphs, for example, are precisely the bipartite
graphs.

39
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Remark. How many colors are needed to color the regions of a planar graph? Equivalent to the
vertex coloring problem of the dual. Find χ(G∗).

Theorem 5.5 (4 color theorem). For any planar graph G, χ(G∗) = 4.

Proof. Refer to the following:

• 1976, Appel, Haken

• 1997 Robertson, Sanders, Seymour, Thomas

• 1879 Kempe

Kempe’s ideal helped prove a weaker theorem, Heawood 1890.

Theorem 5.6. For any planar graph G, χ(G) ⩽ 5, i.e., every planar graph is 5-colorable.

Proof. Let G be planar graph. Use induction on |G|. If |G| ⩽ 5, done. Let n = |G| ⩾ 6 and
m = ∥G∥. Assume that any planar graph with less than n vertices is 5-colorable. Let v be a vertex
with d(v) ⩽ 5 and H := G−v. By inductive hypothesis, H has a coloring c : V (H) ! {1, 2, , 3, 4, 5}.
If c uses at most 4 colors for the neighbors of v, we can extend it to a 5-coloring for the neighbors
of v and done. Assume, therefore, that v has exactly 5 neighbors {v1, . . . , v5} and let c(vi) = i for
i = 1, . . . , 5. Let D be an open disc around c, so small that it meets only those five straight edge
segments of G that contain v. Let us enumerate these segments according to their cyclic position
in D as s1, . . . , s5. Let vvi be the edge containing si for i = 1, . . . , 5.

We first show every v1-v3 path P ⊆ H−{v2, v4} separates v2 from v4 in H. Clearly, this is the case
if and only if the cycle C := vv1Pv3v separates v2 from v4 in G. We prove this by showing that
v2 and v4 lie in different faces of C. Let x2 be an inner point of s2 in D and x4 be an inner point
of s4 in D. Then in D ∖ (s1 ∪ s3) ⊆ R2 ∖ C, every point can be linked by a polygonal arc to x2

or to x4. This implies x2 and x4 (and hence also v2 and v4) lie in different faces of C, otherwise,
D would meet only one of the two faces of C, which would contradict the fact that v lies on the
frontier of both these faces since by Jordan Curve Theorem for Polygons, any neighbor sets of a
point in the boundary will meet two faces of a polygon. Let Hij be the subgraph of H induced by
vertices colored i or j for i, j ∈ {1, 2, 3, 4, 5}. We may assume that the component C1 containing v1
of H1,3 also contains v3. Indeed, if we interchange the colors 1 and 3 at all the vertices of C1, we
obtain another 5-coloring of H; if v3 ̸∈ C1, then v1 and v3 are both colored 3 in this new coloring,
and we may assign remaining color 1 to v and done. So H13 contains a v1-v3 path P ∈ H13.
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As shown above, P separates v2 from v4 in H. Since P ∩ H2,4 = ∅, v2 and v4 lie in different
components of H2,4. In the component containing v2, we now interchange the colors 2 and 4, thus
recoloring v2 with color 4. Now v no longer has a neighbor colored 2 and we may give it this
color.

Theorem 5.7. Every graph G with m edges satisfies χ(G) ⩽ 1/2 +
√

2m+ 1/4

Proof. Let c be a vertex coloring of G with k = χ(G) colors. Then G has at least one edge between
any two color classes: if not, we could have used the same color for both classes. So lettingm = ∥G∥,
we have m ⩾

(
k
2

)
= k(k−1)

2 , i.e., 2m ⩾ k(k − 1) = (k − 1/2)2 − 1/4, i.e., k ⩽ 1/2 +
√

2m+ 1/4.

Theorem 5.8 (Another easy bound).

χ(G) ⩽ ∆+ 1,

where ∆ = ∆(G) = maxv∈V (G) d(v).

Proof. We can establish this bound algorithmically. Greedy method: list the vertices of G in any
order v1, . . . , vn. Color v1 with 1 and at step i, color vi with the smallest color (positive integer)
not used so far by any neighbor of vi among v1, . . . , vi−1. In this way, we never use more than
∆(G) + 1 colors.

Remark. Can we do better? and how can we make our algorithm better with the same idea?
Consider Cn with n odd and for any n,

∆(Kn) = n− 1.

When we come to color the vertex vi in the above algorithm, we only need a supply of dG[v1,...,vi](vi)+
1 rather then dG(vi) colors to proceed and the algorithm ignores any neighbors vj of vi with j > i.
Hence in most graphs, there will be scope for an improvement of the ∆ + 1 bound by choosing
a particularly suitable vertex ordering to start with: one that picks vertices of large degree early
(when most neighbors are ignored) and vertices of small degree last.

Definition 5.9. The last number k such that G has a vertex enumeration in which each vertex is
preceded by fewer than k of its neighbors is called the coloring number col(G) of G.

Proposition 5.10.
col(G) = max

H⊆G
δ(H) + 1.

Proof. The enumeration we just discussed shows that col(G) ⩽ maxH⊆G δ(H)+ 1. But for H ⊆ G,
clearly col(G) ⩾ col(H) ⩾ δ(H) + 1.

Theorem 5.11. Every graph satisfies

χ(G) ⩽ 1 + max
H⊆G

{δ(H)} = col(G).

Proof. Since the ‘back-degree’ of the last vertex in any enumeration of H is just its ordinary degree
in H, which is at least δ(H).

Remark. It is tight for G not regular.
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Corollary 5.12. Every k-chromatic graph G has a k-chromatic subgraph with minimum degree
at least χ(G)− 1.

Proof. Given G with χ(G) = k, let H ⊆ G be minimal with χ(H) = k. If H had a vertex v of
degree dH(v) ⩽ k − 2, we could extend a (k − 1)-coloring of H − v to one of H, contradicting the
choice of H.

Remark. What can we say when G is regular? If G = Cn with n odd or Kn for any n ∈ N, then

χ(G) = ∆+ 1.

Remark. For G connected and not regular, χ(G) ⩽ ∆.

Theorem 5.13 (Brooks 1941). If G is connected and neither an odd cycle or not a complete graph,
then

χ(G) ⩽ ∆.

Proof. Induction on |G|. If ∆(G) ⩽ 2, then G is a path or a cycle, and the assertion is trivial.
Assume ∆(G) ⩾ 3 and that the assertion holds for graphs of smaller order. Suppose χ(G) > ∆(G).
Let v ∈ G be a vertex and H := G − v. Then χ(H) ⩽ ∆(G). Also, every component H ′ of
H satisfies χ(H ′) ⩽ ∆(H ′) ⩽ ∆(G) unless H ′ is complete or an odd cycle, in which case since
every vertex of H ′ has maximum degree in H ′ and one such vertex is also adjacent to v in G,
we have χ(H ′) = ∆(H ′) + 1 ⩽ ∆(G). Since H can be ∆(G)-colored but G connot, we have the
following: Every ∆(G)-coloring of H uses all the colors 1, . . . ,∆ on the neighbors of v; in particular,
d(v) = ∆(G).

(a) Given any ∆-coloring of H, let us denote the neighbor of v colored i by vi for any i = 1, . . . ,∆.
For all i ̸= j, let Hi,j denote the subgraph of H spanned by all the vertices colored i or j. For all
i ̸= j, the vertices vi and vj lie in a common component Ci,j of Hi,j .

(b) Otherwise we could interchange the colors i and j in one of those components; then vi and vj
would be colored the same, contrary to (a). Ci,j is always a vi-vj path.

(c) Indeed, let P be a vi-vj path in Ci,j . Since ∆(H ′) + 1 ⩽ ∆(G), dH(vi) ⩽ ∆ − 1 and then the
neighbors of vi have pairwise different colors: otherwise we could recolor vi (interchange the color
i and the color of its neighbor at all vertices of H), contrary to (a). Hence the neighbor of vi on
P ∈ Ci,j is its only neighbor in Ci,j , and similarly for vj . Thus if Ci,j ̸= P , then P has an inner
vertex with three identically colored neighbors in H; let u (clearly not vi or vj) be the first such
vertex on P . Since at least 3 neighbors of u have the same color, at most ∆(G) − 2 colors are

used on the neighbors of u and so we may recolor u. But this makes P
o
u into a component of Hi,j ,

contradicting (2).
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For distinct i, j, k, the paths Ci,j and Ci,k meet only in vi.

(d) For if vi ̸= u ∈ Ci,j ∩ Ci,k, then u has two neighbors colored j and two colored k, so we may
recolor u. In the new coloring, vi and vj lie in different components of Hi,j , contrary to (b).

The proof of the theorem now follows easily. If the neighbors of v are pairwise adjacent, then each
has ∆(G) neighbors in N(v)∪{v} already, so G = G[N(v)∪{v}] = K∆(G). As G is complete, there
is nothing to show. We may thus assume that v1v2 ̸∈ G, where v1, . . . , v∆(G) derive their names
from fixed ∆-coloring c of H. Let u ̸= v2 be the neighbor of v1 on the path C1,2; then c(u) = 2.
Interchanging the colors 1 and 3 in C1,3, we obtain a new coloring c′ of H; let v′i, H

′
i,j , C

′
i,j etc. be

defined with respect to c′ in the obvious way. As a neighbor of v1 = v′3, our vertex u new lies in

C ′
2,3, since c′(u) = c(u) = 2. By (d) for c, however, the path

o
v1C1,2 retained its original coloring,

so u ∈ o
v1C1,2 ⊆ C ′

1,2. Hence u ∈ C ′
2,3 ∩ C ′

1,2, contradicting (d) for c′.

Theorem 5.14 (Erdös 1959, 1961). For every positive integer k, there exists a graph G having
girth g(G) > k and chromatic number χ(G) > k.

Definition 5.15. A k-chromatic graph G is critically k-chromatic or k-critical if χ(G− v) < k for
every v ∈ V (G). (Obviously, χ(G− v) = k − 1 for any v ∈ V (G).)

Theorem 5.16. Let G be a k-critical graph with a 2-vertex cut {u, v}. Let C1 and C2 be the
components of G− {u, v}. For i = 1, 2, let Gi = G[V (Ci) + {u, v}]. Then

(a) G = G1 ∪G2, and G1 and G2 are (k − 1)-colorable.

(b) One of G1 and G2, say G1 has c(u) = c(v) in all k − 1-colorings. G2 has c(u) ̸= c(v) in all
k − 1-coloring.

(c) H1 := G1 + e, where e = uv and H2 := (G2 + e)/e are each k-critical.

v1 v2

v3v4
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Proof. (1)(2) Clearly, Each component of G− {u, v} is k − 1-colorable. In fact, χ(G1) = χ(G2) =
k− 1. (Hint: glue). If there exists a k− 1-coloring of G1 and G2 where the colors of u and v agree,
then glue to get a k − 1 coloring of G, a contradiction.

(3) Adding uv forces chromatic number of G1 up by 1 and similarly for G2. Exer: show that the
result is k-critical.

Proposition 5.17. If G is k-critical, then G does not contain a cut set consisting of pairwise
adjacent vertices.

Proof. Let S be a cut set. Let H1, . . . ,Ht be the components of G − S. Since each Hi ∪ S is a
proper subgraph, Hi∪S is (k−1)-colorable. Suppose S is a clique, then one can permute the colors
such that G is (k − 1)-colorable, a contradiction. So S is not a clique.

Theorem 5.18 (Dirac.). Every graph G with χ(G) ⩾ 4 contains a K4-subdivision.

Proof. Induction on n = |G|. If n = 4, then G = K4. Assume n > 4 with χ(G) ⩾ 4 and we can let
H be a 4-critical subgraph of G. By previous proposition, H has no cut vertex.

Case 1: κ(H) = 2. Let {x, y} be a cut vertex. x ∼ y, let G1 and G2 be as in the lemma. By
previous lemma, χ(G1 + xy) = 4.By induction, H1 = H1 + xy has a K4-subdivision.

If necessary, remove xy from this subdivion and replace it with any x-y path in G2.
Case 2: H is 3-connected. Select a vertex x ∈ V (G). Since H − x is 2-connected, it has a cycle

C of length at least 3. By the Fan version of Menger’s theorem, there exists an x, V (C)-Fan of size
3 in H. So we have our K4 subdivision.
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Remark (Question). Can the invariant x have a direct structural effect on a graph in terms of
forcing a specific substructure? Hadwiger 1943, Famous conjecture: For every r ∈ Z+,

χ(G) ⩾ r =⇒ G ⩾ Kr,

i.e., every graph G with χ(G) ⩾ 5 has a K5 minor. r = 4: r = 5: r = 6: r ⩾ 7:

5.1 k-edge coloring

Theorem 5.19 (kónig 1916). For a bipartite graph G, χ′(G) = ∆(G).

Proof. Induction on m = ∥G∥. If ∥G∥ = 0. Done. Assume ∥G∥ ⩾ 1 and the assertion holds for
graphs with fewer edges. Let ∆ := ∆(G). Pick xy ∈ E(G), by inductive hypothesis, there exists a
coloring of the edge of G−{xy} using the colors {1, . . . ,∆}. In G− xy, each of x and y is incident
with at most ∆ − 1 edges. So there exists α, β ∈ {1, . . . ,∆} such that no edge in N(x) is colored
α and no edge in N(y) is colored β. If α = β, we can color the edge xy with this color and are
done, so assume α ̸= β. In fact, y is incident with an α edge and x is incident with a β edge. Let
us extend this edge to a maximum walk W from x whose edges are colored β and α alternatively.
Since no such walk contains a vertex twice, W exists and is a path. Moreover, W does not contain
y: if it did, it would end in y on an α-edge (by the choice of β) and thus have even length, so
W + xy would be an odd cycle in G. We now recolor all the edges on W , swapping α with β. By
the choice of α and the maximality of W , adjacent of G− xy are still colored differently. We have
thus found a ∆-edge-coloring of G−xy in which neither x nor y is incident with a β-edge. Coloring
xy with β, we extend this coloring to a ∆-edge-coloring of G.

Remark. If G is an odd cycle, it needs ∆ + 1 colors, so χ′(G) = ∆+ 1.

Theorem 5.20 (Vizing 1964). Every simple graph G satisfies ∆ ⩽ χ′(G) ⩽ ∆+ 1.

Proof. Induction on ∥G∥. If ∥G∥ = 0. Done. Let ∆ := ∆(G) > 0 and assume the assertion is true
for all graphs with fewer edges. Instead of ‘(∆+1)-edge-coloring’ let us just say ‘coloring’. Suppose
there is not ∆+1 coloring of G. Let e = xy and color G−xy with {0, 1, . . . ,∆}. A color is missing
at x, wlog., let this missing color be 0. There exists a missing color at y. Not 0, call it 1, this is a
1 edge at x, let xy be colored 1. Something missing at y. If this ”, color is 0, else down-shifting,
i.e., coloring xy1 with 0 and xy0 with 1. So the missing color is neither 0 nor 1, wlog., let it be 2.
x is incident with a 2-edge, (else recolor xy with 2 and ‘downshift’ coloring xy0 with 1). Continue
in this way. But we have only ∆ + 1 colors. At some point, the missing color has already been
used-let k be the smallest index where this happens. yk is missing 0, (else coloring ykx with 0 and
down-shift from yk.) Let pi =maximal and path of edges using 0 and i. Case 1: p reaches yi along
a 0 edge. Then continues to x and stops. Down-shift from y and switch on P and coloring yix with
0. Case 2: p doesn’t reach yi but dows reach yi−1. So stop at yi − 1 since no i at yi−1. Downshift
from yi−1, switch on P and color xyi−1 . Case 3: P reaches neither yi nor yi−1. So then P also
avoids x (P can only arrive at x via i through y.) Now down-shift from yk, then switch on P and
color xyk with 0.

Definition 5.21. A lattice square is an n× n array with n different symbols such that no row or
column has 2 of the same symbols.
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Example 5.22. Consider lattice squares

A =

 1 2 3
2 3 1
3 1 2

 B =

 a b c
b c a
c a b

 .

Then AB is also a lattice square.

5.2 List coloring

Definition 5.23. Suppose we are given a graph G = (V,E), and for each vertex of G, a list of
colors permitted at that particular vertex: when can we color G so that each vertex receives a color
from its list? More formally, let (Sv)v∈V be a family of sets. We call a vertex coloring c of G with
c(v) ∈ Sv for all v ∈ V a coloring from the lists Sv. The graph G is called k-list-colorable, or
k-choosable, if for every family (Sv)v∈V with |Sv| = k for all v, there is a vertex coloring of G from
the lists Sv. The least integer k for which G is k-choosable is the list-chromatic number or choice
number ch(G) of G.

Definition 5.24. The least integer k such that G has an edge coloring from any family of lists of
size k is the list-chromatic index ch′(G) of G; formally, we just set ch′(G) := ch(L(G)).

Theorem 5.25 (Dinitz Conjecture,1979). Given an n× n square array and n2 arbitrary sets Aij

with 1 ⩽ i, j ⩽ n and |Aij | = n, it is aways possible to pick aij ∈ Aij such that each row and each
column has all n vertices distinct.

Remark. Given G = (V,E) and put a set of allowable colors Sv on each vertex v, can we properly
color V (G) so that every vertex gets a color from its list?

Lemma 5.26.
ch(G) ⩾ χ(G).

Lemma 5.27. ch(G) ⩾ χ(G).

Remark. Nobody knows a case where ch′(G) > χ′(G).

Example 5.28. L(K3,3,)

11′ 12′ 13′

21′ 22′ 23′

31′ 32′ 33′

Theorem 5.29 (List coloring conjecture). ch′(G) = χ′(G) for all G.

Remark. Dinitz problem can be seen as a special case of LCC. Same graph as above. Every ceil
has set Aij . Define G: Let V (G) be the cells (n2 of them). (i, j) ∼ (i, j′) for all j′ ̸= j. (i, j) ∼ (i′, j)
for all i′ ̸= i. We want to show that G is n-choosable. Note: G is the line graph of Kn,n. So Dinitz
conjecture ⇐⇒ ch′(Kn,n) = n. Also, recall that χ′(G) = ∆(Kn,n) = n. So Dinitz conjecture ⇐⇒
LCC for Kn,n. F.Galvin 94, LCC holds for all bipartite graphs, ch(L(G)) = χ(L(G)) for all G. An
orientation of a graph means we put a direction on each edge. ij: i ! j.
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Definition 5.30.
N+(v) = {w ∈ V (G) : v ! w}.

d+(v) =
∣∣N+(v)

∣∣.
Definition 5.31. An independent set U ⊆ V (D) is a kernel of D if for every v ∈ D − U , there is
a w ∈ U so that v ! w.

Definition 5.32 (Property X). D has this property, for every non-empty induced subgraph D′ of
D, D has a kernel.

Lemma 5.33. Let H be a graph and let {Sv} be a collection of sets. If H has an orientation D so
that

(a) |Sv| ⩾ d+(v) for any v;

(b) D has property X.

Then H can be colored from the lists Sv.

Proof. Induction on |H|. If |H| = 0, no color needed. Induction step: let H be a graph with
orientation D as stated. Pick any color α.

Definition 5.34. Let U ⊆ D, if for any v ̸∈ D − U , there exists w ∈ U with v ! w, then U is a
kernel of D.

Lemma 5.35. Let H be a graph and {Sv}v∈V be a collection of sets. If H has an orientation D
with

(a) |Sv| ⩾ d+(v) for any v ∈ V .

(b) Every nonempty induced subgraph D′ at D has a kernel.

Then H can be colored from the lists (sets) {Sv}v∈V .

Theorem 5.36 (Galvin 94). LCC holds for all bipartite graph.
List chromatic conjecture: ch′(G) = χ′(G) fo any G.

Proof. Let G be bipartite with bipartition {x, y} and let χ′(G) = k. We know that ch′(G) ⩾ k. We
will show ch′(G) ⩽ k, i.e., we will show L(G) is k-colorable. Let c be a k-edge coloring of G with
c : E(G) ! [k]. We need an orientation D of the line graph of G satisfying

(a) d+(e) ⩽ k for any e ∈ E(G).

(b) Every nonempty induced subgraph of D has a kernel.

Define D as follows. If e and e′ meet at X and c(e) < c(e′), then e′ ! e. If e and e′ meet at Y and
c(e) < c(e′), then e ! e′. Let c(e) = i. For every e′ ∈ N+(e) meeting e in X, c(e′) ∈ {1, . . . , i− 1}
and for every e′ ∈ N+(e) meeting e in Y , c(e′) ∈ {i + 1, · · · .k}. None of these can be the same.
d+(v) = |N+(v)| ⩽ k − 1 < k. Let D′ be a nonempty induced subgraph of D. Interpret direction
in D as a preference. e <v e′ if e ! e′. Let M be a stable matching in the graph (X ∪ Y, V (D′)),
then for every edge e ∈ E(D′)∖M , there exists f ∈ M such that they have a common vertex with
e <v f , i.e., for which e ! f , i.e, M is a required kernel.
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Chapter 6

Hamilton Cycles

Definition 6.1. When does a graph G contain a closed walk that contains every vertex of G exactly
once? If |G| ⩾ 3, then any such walk is a cycle: a Hamilton cycle of G.

Definition 6.2. A Hamilton path in G is a path in G containing every vertex of G.

Definition 6.3. If G has a Hamilton cycle, it is called Hamiltonian. If G has a Hamilton path, it
is called traceable.

Definition 6.4. Define the number of component of H as c(H).

Remark. Look for some sufficient and necessary conditions. Easy necessary conditions: δ(G) ⩾ 2.
If G = Km,n, then m = n. A necessary condition for Hamiltonicity is c(G − S) ⩽ |S| for every
separator S.

Remark. Consider this example. Not Hamiltonion. Hint: remove the white vertex, then we left
with 4 components.

Definition 6.5. A graph G is tough if c(G− S) ⩽ |S| for every separator S.

Definition 6.6. For t ∈ R>0, G is t-tough if c(G− S) ⩽ |S|
t for every separator S.

Remark (Conjecture 1973). There exists t ∈ Z+ so that every t-tough graph is Hamiltonion.

Theorem 6.7 (Dirac 1952). Every graph with n ⩾ 3 vertices and δ(G) ⩾ n/2 is Hamiltonion.

Lemma 6.8. Let G = (V,E) be simple. Let u, v ∈ V and u ̸∼ v. If d(u) + d(v) ⩾ n, then G is
Hamiltonion if and only if G+ uv is Hamiltonion.

Theorem 6.9. Let G = (V,E) be simple. Let u, v ∈ V . If d(u) + d(v) ⩾ n for all u ̸∼ v, then G is
Hamiltonion.

Theorem 6.10 (Bondy and Chóatal 1970). A simple graph is Hamiltonion if and only if its closure
is Hamiltonion.

Theorem 6.11. Every graph G with |G| ⩾ 3 and α(G) ⩽ κ(G) has a Hamilton cycle.

49
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Chapter 7

Extremal Graph Theory

How many edges can G of order n have and be triangle free?

Theorem 7.1 (Mantel 1907). The maximal number of edges a simple triangle free graph G can

have is
⌊
n2

4

⌋
, where n = |G|.

Proof. Idea:

(a) Show a simple triangle free graph G has ∥G∥ ⩽
⌊
n2

4

⌋
, where |G| = n.

(b) Exhibit a triangle free graph G with ∥G∥ =
⌊
n2

4

⌋
.

(a) Let G be a simple and triangle free. Let ∆(G) = k. Pick u with degG(u) = k. graph:... Since
G is triangle free, N(u) is an independent set. So every edge is incident with at least one vertex in
V (G)−N(u). Hence ∥G∥ ⩽ |G−N(u)| · k = (n− k)k. Therefore, ∥G∥ ⩽ maxk(n− k)k, where the

equality is attained for n = 2k and n(n− k) = n2

4 .

(b) The graph we need is K⌈n/2⌉,⌊n/2⌋.

Remark (Bipartite Kn,m). Multipartite graphs k-partite graph. We denote a complete k-partite
graph by Kn1,...,nk

, where ni is cardinality of the ith part. All edges between distinct parts,

Kl
r = Kr,...,r,

where the number of r’s is l.

Definition 7.2. The Turan graph T r(n) is the unique n-vertex, complete r-partite simple graph
whose partite sets differ in cardinality by at most 1.

Example 7.3.
T 3(8) = K3,3,2.

Proposition 7.4. Let n, r ∈ N and n ⩾ r and choose l and 0 ⩽ j < r so that n = rl + j. Then
the Turan graph T r(n) is defined as follows. T r(n) = Kl,...,l,l+1,...,l+1, where there are j l + 1 and
r − j l.
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Definition 7.5.
T 1(n) = Kn,

which are n isolates.

Remark (Question). Given n, r, can we find an r-partite graph having more edges than T r(n)?

Lemma 7.6. Among all n-vertex simple r-partite graphs, T r(n) has the maximum number of
edges.

Proof. Say G is r-partite with |G| = n and ∥G∥ ⩾ ∥T r(n)∥. Then there are parts L and S with
|L|−|S| ⩾ 2. Pick v ∈ L and move it to S. Then the number of edges changes by |L|−|S|−1 ⩾ 1.

Remark. Denote
∥T r(n)∥ = tr(n).

Remark. Note that T 2(n) is K3 free. In general, T r−1(n) is Kr free. Each complete graph has at
most 1 vertex in each part.

Remark. Is tr(n) Best possible? Is it the largest size of a graph of order n having no Kr subgraph?
Is T r−1(n) the only such graph? That is, what is the largest size for a graph G of order n with
G ̸⊇ Kr. More generally, let H be a graph with |H| < n. What is the largest size for a graph G on
n vertices having G ̸⊇ H? Such a graph is called extremal for n and H. Its size is ex(n,H).

Remark (Question). Is ex(n,Kr) = tr−1(n) and is T r−1(n) is the only graph that is extremal for
n and Kr?

Theorem 7.7 (Turan 1941). For all integers r, n with r > 1, every G ̸⊇ Kr with n vertices and
ex(n,Kr) edges is T r−1(n).

Proof. Let G ̸⊇ Kr of order n. We will construct an r− 1 partite graph H with V (H) = V (G) and
show that ∥G∥ ⩽ ∥H∥. Then the result will follow from the lemma (∥H∥ ⩽ tr−1(n)). Induction
on r. r = 2. If |G| = n and G ̸⊇ K2, then G = Kn. So let r ⩾ 3. Let k = ∆(G) and pick u
with dG(u) = k. Let G′ = G[NG(u)]. Since G ̸⊇ Kr, G′ ̸⊇ Kr−1. By induction, there exists an
(r − 2)-partite graph H ′ with V (H ′) = NG(u) and ∥G′∥ ⩽ ∥H ′∥. Construct H as follows. · · · .

Remark. Uniquely so,
∥∥T r−1(n)

∥∥ = tr−1(n). This generates Mantel’s Theorem.

Definition 7.8. For a graph H with |H| ⩽ n, ex(n,H) is the largest number of edges of a graph
G of order n, can have and still not contain a subgraph H. Such a graph G is called extremal in n
and H.

Definition 7.9. Let |G| = n. Let density of a graph G be ∥G∥
(n2)

, where n = |G|. If ∥G∥ is of order

n2, then G is dense. Otherwise, G is sparse.

Remark. Turan graphs are dense. Specifically,

tr−1(n) ⩽
1

2
n2 r − 2

r − 1
,

with equality when r − 1 | n.
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Proof. Hint: choose k and i so that n = (r− 1)k+ i, where 0 ⩽ i < r− 1. When i = 0, the number
of edges in T r−1(n) is (

r − 1

2

)
k2 =

(r − 1)(r − 2)

2

n2

(r − 1)2
=

1

2
n2 r − 2

r − 1
.

For i ̸= 0, show that

tr−1(n) =
1

2

r − 2

r − 1
(n2 − i2) +

(
i

2

)
<

1

2
n2 r − 2

r − 1
.

Remark. What happens when we add edges to T r−1(n)? Surprising answer: Just a few more
edges not only forces a Kr but forces many copies of Kr in the form of a subgraph Kr

s = Ks,...,s

for some s. Any set of vertices with exactly one vertex in each part induces a Kr. Specifically: fix
ϵ ∈ Rr, fix s ∈ Z+, then there exists r0 so that for any n ⩾ n0, adding ϵn2 edges to T r−1(n) forces
a Kr

s .

Theorem 7.10 (Erdós Stone). For all r ⩾ 2 and s ⩾ 1 and every ϵ ∈ R+, there exists an integer
n0 so that every graph with n ⩾ n0 vertices and at least tr−1)(n) = ϵn2 edges contains Kr

s as a
subgraph.

Definition 7.11. Given a graphH with |H| ⩽ n, hn = ex(n,H)

(n2)
, a critical number. This is maximum

edge density that an n-vertex graph can have without containing H as a subgraph.

Remark. What happens to this critical number as n ! ∞. It converges to a number that depends
only on χ(H).

Lemma 7.12.

lim
n!∞

tr−1(n)(
n
2

) =
r − 2

r − 1
.

Corollary 7.13. For every graph H with at least one edge,

lim
n!∞

ex(n,H)(
n
2

) =
χ(H)− 2

χ(H)− 1
.

Proof. Let H be a graph with at least one edge. Let r := χ(H).

• Note H ̸⊆ T r−1(n) for any n ∈ N. Otherwise, H would be (r − 1)-colorable. Since T r−1(n)
has no H-subgraph, tr−1(n) ⩽ ex(n,H)

• Note H ⊆ Kr
s for sufficiently large s. So ex(n,H) ⩽ ex(n,Kr

s ) for sufficiently large s.

• Fix such an s. By Erdós Stone, ex(n,Kr
s ) < tr−1(n) + ϵn2 for n big enough. Hence

tr−1(n)/

(
n

2

)
⩽ ex(n,H)/

(
n

2

)
⩽ ex(n,Kr

s )/

(
n

2

)
<

tr−1(n)(
n
2

) +
ϵn2(
n
2

)
=

tr−1(n)(
n
2

) +
2ϵn2(

n
2

) =
tr−1(n)(

n
2

) + .
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Remark (Conjecture Hadwiger 1993). For every r ∈ N and every graph G, if χ(G) = r, then
G ⩾ Kr. r = 1, 2, 3, 4 has been proved.

• r = 1: G contains a vertex.

• r = 2: G contains a edge.

• r = 3: G contains a cycle, which implies Ks minor.

• r = 4: need a few work.

Proposition 7.14. A graph G with |G| ⩾ 3 is edge-maximal with no K4 minor if and only if it
can be considered by recursively pasting triangles. (Note any subgraph has 2|G| − 3 cycles.)

Proof. ⇐= Exercise (For |G| > 3).
=⇒ WTS if G is maximal with no K4, then G is triangle-pasted. Induction on |G|. If |G| = 3,

done. Let |G| ⩾ 4 and G is maximal with noK4 minor but not triangle-pasted. If G is not complete,
done. Let S be a separator with |S| = κ(G). Case 1: κ(G) ⩾ 3. Graph. There exists P1, P2, P3,
G− {v1, v2, v3} is connected. There exists a shorstest path P connected two of P1, P2, P3. Graph.
K4 minor. So κ(G) ⩽ 2. Use fact K4 minor ∼= TK4. (Lemma 4.4.4)

Corollary 7.15. Hadwiger holds for r = 4. Graph. χ(G) = max(χ(G1), χ(G2)).

Proof. Use induction on |G| and Thm 7.3.1 to show all edge maximal graphs.



Chapter 8

Ramsey Theory for Graphs

Remark. We’ve see that tr(n) edges forces a Kr in G for |G| = n. What if we want to know how
to force a Kr or a Kr.

Theorem 8.1 (Ramsey 1930). For every r ∈ N , there exists n ∈ N so that if |G| ⩾ n, then G
contains either Kr or Kr as a subgraph.

Remark. Trivial for r ⩽ 1. Let n = 22r−3 and |G| = n. Define a sequence of subsets of V (G)
V1, . . . , V2r−2 with V1 ⊇ V2 ⊇ · · · ⊇ V2r−2 and with vi ∈ Vi − Vi−1 as follows: pick V1 ⊆ V (G) with
|V1| = 22r−3 and let v1 ∈ V1. Let A = N(v1) ∩ V1 and B = (V1 − {v1})−A. Then A or B contains
at least 22r−4 vertices. Let V2 be 22r−4 of the vertices in that set. So either v1 ∼ w for any w ∈ V2

or w ̸∼ w for any w ∈ V2. Pick v2 arbitrary. Continue the process, |V3| = 22r−5. Pick v3. So
Vi = 22r−2−i and vi−1 is either adjacent to all vertices in Vi or vi ̸∼ w for any w ∈ Vi. Among the
vertices v1, . . . , v2r−2, at least r− 1 showed the same behavior when viewed as vi−1 when choosing
Vi. So this set of r − 1 vertices together with the last one either induces a Kr or a Kr.

Definition 8.2. Define R(r) to be the least number n so that |G| ⩾ n so that G ⊇ Kr or G ⊇ Kr.
We showed that R(r) ⩽ 22r−3, can’t say much more. We’ll show that R(r) ⩽ 2r/2 using probabilistic
method.

Definition 8.3. Define R(H1, H2) to be the least number n so that |G| ⩾ n so that G ⊇ H1 or
G ⊇ H2.

Remark.
R(r) = R(Kr,Kr).

Remark. Trees-an exception-not so hard.

Theorem 8.4. Let s, t be positive integers and let T be a tree of order s. Then R(T,Ks) =
(s− 1)(t− 1) + 1.

Proof. Prove part of this. Consider the graph G build as the disjoint union of s − 1 copies of
Kt−1. Then G ̸⊇ T . Graph. s − 1 of these because the largest component of G has order t − 1.
G ̸⊇ Ks (if and only if G ̸⊆ Ks) because the largest independent set of G has cardinality s− 1. So
R(T,Ks) > (s − 1)(t − 1). To show R(T,Ks) = (s − 1)(t − 1) + 1, consider a graph G containing
no Ks, then show that G ̸⊇ T . Hint: consider a proper coloring with χ(G) colors.
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Chapter 9

Random Graph

Remark. Intuitively, we build a random graph G on n vertices by performing an experiment for
each possible edge e in G. Fix 0 < p < 1, let P (e ∈ E(G)) = p and P (e ̸∈ E(G)) = 1− p.

Remark. A latter model by Erdós-Renyi, G(n,m). Think of this as a process. Start with Gn,0

with no edges. At step we add 1 more edge so that all possible new edges are equally likely.

Gn,0 ⊆ Gn,1 ⊆ · · · ⊆ Gr,(r2)
.

What kind of questions can we answer?

(a) Deterministic question.

• What is a better bound on R(r)? (2r/2).

• What is a bound on the number of crossings in a graph with ∥G∥ ⩾ 4|G| ?

(b) Erdó-Renyi.
How big should m be to ensure Gn,m is Hamiltonian? Same question because ∆(Gn,m) = 2?

Theorem 9.1 (Erdós 1947). For every integer k ⩾ 3, R(k) > 2k/2.

Proof. For k = 3, the statement is R(3) > 23/2. R(3) = 6 > 23/2. So let k ⩾ 4, let k ⩽ 2k/2. We
will show there exists a graph of order n with no Kk or Kk subgraph. Take a random graph on n
vertices G(n, p). Let p = 1/2. P (α(G) ⩾ k) and P (ω(G) ⩾ k) are each since 1/k! < 1/2k,

⩽

(
n

k

)(
1

2

)(k2)
<

nk

2k
2−

1
2k(k−1)

(
n(n− 1) · · · (n− k + 1)

k!
<

nk

2k

)
⩽

(2k/2)k

2
2k(k−1)

= 2k
2/2−k−k2/+k/2 = 2−k/2 < 1/2.

So P (α(G) ⩾ k) or P (ω(G) ⩾ k) < 1/2 + 1/2 = 1. Then the probability that a graph G(n, p) has
either a Kk or Kk subgraph is less than 1. So there exists a graph of order n having no Kk or Kk

subgraph. Thus, R(k) > 2k/2.

Remark (Backgraph). We have

57



58 CHAPTER 9. RANDOM GRAPH

• Euler’s formula: For planar graph, n−m+ l = 2.

• For a planar graph, m ⩽ 3n− 6.

• We can embed. any graph in the plane so that each crossing point is incident with at least 2
edges.

• Linearity of expectation E(X + Y ) = E(X) + E(Y ).

• From any graph G, we can construct a new graph H: Assume G is emdeded in plane. V (H) =
V (G)+crossing points. E(H) = all pieces of the original edges. N(H) = n+cr(G). E(H) =
m+2 cr(G). Som+cr(G) ⩽ 3(n+cr(G)−6). Hence cr(G) ⩾ m−3n−6. Thus, cr(G)−m−3n ⩾
6 > 0.

Theorem 9.2. If G is simple with n vertices and m edges, where m ⩾ 4n, then cr(G) ⩾ 1
64

m3

n2 .

Proof. Let 0 < p < 1. Start with a graph G drawn in the plane with cr(G) crossings. Generate
Gp: Pick vertices independently with probability p and consider the resulting induced subgraph.
Let np be the number of Gp and mp be the number of edges of Gp and Xp be the number of
crossing points of Gp. By previous result, E(Xp −mp + 3np) ⩾ 0, E(np) = pn, E(mp) = p2m and
E(Xp) = p4 cr(G). We get

0 ⩽ E(Xp)− E(mp) + 3E(np),

i.e.,
0 ⩽ p4 cr(G)− p2n+ 3pn,

i.e.,

cr(G) ⩾
p2m− 3pn

p4
=

m

p2
− 3n

p3
.

Hence where we pick p = 4n
m , plugging in it, we get

cr(G) ⩾
1

64

m3

n2
.
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