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Chapter 1

Introduction to Module Theory

Let R be a ring.

1.1 Basic Definitions and Examples

Definition 1.1. An left R-module is an additive abelian group M equipped with a scalar multi-
plication

u:RxM—M
(r,m) — rm,
where u satisfies that for all ;s € R and m,n € M,
(a) r(sm) = (rs)m,
(b) (r+ s)m =rm+ sm,
(¢) r(m+n) =rm+rn.
If R has multiplicative identity 1, then also assume 1-m =m for m € M. (“M is unital”.)

Remark. If R is commutative and M is a left R-module, we can make M into a right R-module
by defining mr = rm for m € M, r € R.

Example 1.2. Let F be a field.
(a) An F-module is a F-vector space and and vice versa.
(b) An Z-module is an additive abelian group.
(¢) The left ideal of R is a left R-module.
1
(d) R* = : T1,...,7n € R 3 is a left R-module by defining addition and multiplication

T'n
componentwisely. If R = F| F™ is called affine n-space over F'. We make F™ into a vector space
by defining addition and scalar multiplication componentwisely.

1
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Remark. Let M be an abelian group and write Endg., (M) for the set of group homomorphisms
from M to M. Then Endg,, (M) is a ring where (f+g)(m) = f(m)+g(m) and (fog)(m) = f(g(m))
for f,g € Endg,p,(M) and m € M.

Now assume we have a ring homomorphism ¢ : R — Endg,, (M) that sends 1 to the identity
map in Endgp(M). Set rm = ¢(r)m. Then this makes M into an R-module since M is abelian.

Conversely, now assume we are given an R-module M. We obtain a ring homomorphism ¢ :
R — Endg,, (M) by setting ¢(r)(m) = rm.

Thus, we see an R-module is nothing more than an abelian group M along with a ring homo-
morphism R — Endg,,(M).

1.2 Submodules

Let M be a left R-module.

Definition 1.3. A submodule of M is an additive subgroup N C M such that scalar multiplication
on M makes N into a left R-module, i.e., for r € R,n € N, we have rn € N.

Remark. Submodules of M are therefore just subsets of M which are themselves modules under
the restricted operations. Every R-module M has the two trivial submodules M and 0.

Example 1.4. Q is an Z-module and Q[z] is an Q-module.
Since 2 - % Z7Z,and 1 -2z & Q, Z is not a Q-module and Q is not a Q[z]-module.

Example 1.5. Let F be an field.

(a) F can be considered as an 1-dimensional F-vector space over itself. A submodule of an F-
module is a subspace of an F-vector space.

(b) A submodule of a left Z-module is an additive abelian subgroup.
(¢) The submodules of R are precisely the left ideals of R.
Proposition 1.6. Let I < R, then IM = {37 a;m; | a; € I,m; € M} < M.

Proof. Since I, M # (), there exists a € I and m € M such that am € IM and so IM # (. Also,
(a1m1+~~~+akmk)—(bln1+~~~+bml) =aymi+---+agmp—bng—---—---bny € IM. So IM
finite

is a subgroup of M. Let r € Rand ¢ =),

K3
each i, rc = r (S0 gm; ) = S5 (ra,)m,; € TM. At last, the distributive law and associative
law on IM are inherited from M. O

a;m; with a; € I and m; € M, then since ra; € I for

Proposition 1.7 (Submodule test). Let N C M. The followings are equivalent.

i) N is a submodule of M.

(
(ii) N is a left R-module via the additive and scalar multiplication on M.
(iii) N is and additive subgroup that absorbs scalar multiplication.

(

iv) (Assume R has 1.) N # ) and for r € R and for n,n’ € N, we have n+rn’ € N.
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Proof. “(i))=>(iv)”. Assume N is a submodule of M. Since N is an abelian group, N # (). For
r € R and for n,n’ € N, we have rn’ € N and then n+rn’ € N.

“(iv)==(i)”. Assume (iv). Since n —n’ =n+ (—=1)n’ € N, N is an additive abelian subgroup.
Also, rn’ = 0p7 + 1m0’ € N. At last, the distributive law and associative law on N are inherited
from M. O

Proposition 1.8. (a) If Nx < M for A € A, then (., Na < M.
(b) If C is a chain of submodules of M, N = J; . L is also a submodule of M.

(c) Ny, ..., Ny < M, then 30 Nj = Ny+---+ Ny = {ny+---4n | n; € Njy,Vi=1,...,t} < M.
This is the smallest submodule of M containing Ule N;. For L < M, ZZ:I N; C L if and only if
Uf:l N; € L.

(d) If My,..., My are left R-modules, then so is My X - -x M, with 7(mq,...,my) = (rmy,...,rmy).

Proof. (b) Any L € C is an additive subgroup, so (J; . is also an additive subgroup. Let r € R
and n € N, then there exists L € C such that n € L C N. Sorn € L C N. At last, the distributive
law and associative law are inherited from M.

(c) Since 7(ny + - +ny) = (rng) 4+ -+ (rng) € Ny 4 -+ Niy Sov_ Ni < M. Note S0, N; is
an additive subgroup of M containing Uzzl N¢. For any additive subgroup G of M, 25:1 N, C @
if and only if U§:1 N; C G. L is an additive group for L < M. So Zle N; C L if and only if
Ul_, N; C L. Hence 3_'_, N; smallest submodule containing |J!_, N;. O

Remark. Let G be an additive abelian group. There exists commutative ring with identity R such
that G is a left R-module. If R is an arbitrary ring, G may or may not have an R-module structure.

1.3 Quotient and Homomorphism

Let M, N be left R-modules.

Definition 1.9. A function f : M — N is an R-module homomorphism if for all m,n € M and
reR, f(m+m') = f(m)+ f(m') and f(rm) =rf(m).

Remark. Note R is an R-module. However, R-module homomorphisms need not be ring homo-
morphisms and ring homomorphism need not be R-module homomorphisms. For example, the
Z-module homomorphism Z — Z given by x — 2z is not a ring homomorphism.

Let F be a field. We have a ring homomorphism ¢ : F[z] — F|z] given by f(z) — f(2?) with
(f +9)(@) = (f + 9)(2?) = f(2?) + g(*) and (fg)(z) — (fg)(s?) = f(z*)g(x?). But it is not an
F[z]-module homomorphism since 2% = ¢(z) = ¢(z - 1) = z¢(1) = x, a contradiction.

Example 1.10. (a) Let F be a field, then an F-module homomorphism is a linear transform.

(b) Let R be commutative, M an R-module and r € R, then u, : M — M given by m +— rm is an R-
module homomorphism (multiplicative map, “homothety”) since for any s € R and any m,m’ € M,
up(m+m') =r-(m+m') =r-m+r-m’ = u,(m)+u,.(m') and u,(sm) =r-sm = s-rm = s-u,(m).
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(c) Let R = Z. The action of ring elements (integers) on any Z-module amounts to just adding
and substracting within the additive abelian group structure of the module so that in this case the
second condition of a homomorphism is implied by the first one. For example, ¢(2z) = ¢(x + ) =
o(x)+(x) = 2¢(x), ete. Tt follows that Z-module homomorphisms are the same as additive abelian
group homomorphism.

Definition 1.11. Define

Hompg(M, N) := { R-module homomorphisms f: M — N}.
Proposition 1.12. Let f,g € Homgr(M, N) and h € Hompg(L, M).
(a) If N < M, then the natural map N — M is an R-module homomorphism.
(b) Define f+¢g: M — N by (f +g)m+— f(m)+ g(m). Then f + g € Homg(M, N).
(¢) fohe€Hompg(L,N).

(d) If R is commutative and r € R, then rf : M — N given by (rf)(m) — r- f(m) = f(rm) is an
R-module homomorphism.

Proof. Let r,s € R and m € M.

(b) (f +9)(rm) = f(rm) + g(rm) = rf(m) +rg(m) = r(f(m) + g(m)) = r ((f + g)m).

(d) rf(sm) =r-(s- f(m)) = (rs) - f(m) = (sr)f(m) = 5 - (r- f(m)) = s - ((rf)(m)). 0
Proposition 1.13. (a) Hompg(M, N) is an additive abelian group.

(b) If R is commutative, then Homp (M, N) is a (left) R-module.

Proof. (a) Note addition is well-defined on Homp(M, N) by Proposition 1.12 (b). Since N is an
abelian group, f+g =g+ f, for g, f € Homgr(M, N). Let f € Homg(M, N), define 0: M — N by
m+— 0 and define —f : M — N by (—f)(m) — —(f(m)). Then —f =0+ (—f) € Homgr(M, N) by
Proposition 1.12 (b). Also, (f + (=f))(m) = f(m) + (—=f)(m) = f(m) — f(m) =0(m) = 0.

(b) By Proposition 1.12 (d), we can define R x Hompg (M, N) — Homg (M, N) by (r, f) — rf. By
Proposition 1.12 (d), for r,s € R and f € Hompg(M, N), we have (rs)f, r(sf) € Hompg(M, N).
Then for m € M, (rs) - f(m) = ((rs)f)(m) = (r(s/))(m) = - (sf)(m) = r - (s - f(m)). So
(rs)f =r(sf), etc. O

Definition 1.14. Let R be a commutative ring with identity. An R-algebra is a ring A equipped
with a ring homomorphism ¥ : R — A such that Im(¥) C Z(A).

Remark. If A is an R-algebra, then it is easy to check that A has a natural left and right (unital)
R-module structure defined by r-a = a-r = ¥(r) - a. This tells me how to scalar multiply.

Example 1.15. Define ¥ : Z — A by n — nly. For a € A, we have (nla)a = na = an =
(an)la = a(nla). So U(Z) C Z(A). So every ring A with 14 is an Z-algebra.

Example 1.16. (a) For any ring A with 1, if R is a subring of the center of A containing 1, then A
is an R-algebra. In particular, a commutative ring with identity A is an R-algebra for any subring
R of A containing 1. For example, the polynomial ring R[x] with commutative ring with identity
R is an R-algebra.
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(b) If A is an R-algebra, then the R-module structure of A depends only on the subring ¥(R)
contained in Z(A). If we replace R by its image ¥(R), we see that “up to a ring homomorphism”,
every algebra A arises from a subring of the center of A that contains 14.

(¢) A special case of the previous example occurs when R = F'is a field. In this case F is isomorphic
to its image under ¥ # 0, so we can identify F itself as a subring of A. Hence, saying that A is an
algebra over a field F' is the same as saying that the ring A contains the field F' in its center and
the identity of A and of F' are the same.

Example 1.17. Let F be a field and n > 1. Then M, «,(F) is a ring with identity I,,. Note
M« is an F-algebra with U : F — M, «,(F) given by A — X-I,, = diag(}, ..., A). Then Im(¥) =
Z (Man<F>) For A€ Fand A = (aij) S Man(F), /\(aij) = ()\aij), ie, AA = \If()\>A = ()\[n)A

Example 1.18. (a) Hompg(M, M) is a ring with identity.

(b) If R is a commutative ring with identity, then Hompg(M, M) is an R-algebra with ¥ : R —
Homp(M, M) given by 7 +— r -idps := u, = -r.

Proof. (a) We already showed it is an additive abelian group. Composite (multiplication) is well-
defined and we have the associativity for composition. Note idy;of = f = foidy. For x € M,

(f+g)oh(z) =(f+9) (h(x)) = f(h(z)) + g(h(x)) = (f o h)(x) + (g o h)(x) = (f o h + g o h)(x).
Similarly, ho (f+g) =ho f+hog.

(b) We have showed ¥ is well-defined. Let r, s € R and « € M. Since (rs)x = r-(sx) and (r+s)z =
rx + sz, i.e., Ups = Uy 0 ug and Upys = Uy + ug, we have U(rs) = U(r)¥(s) and ¥(rs) = ¥(r)¥(s).
Also, ¥(1) = uy = idps. So ¥ is a ring homomorphism. Let f € Homg(M, M). Since f is R-linear,
u-(f(x)) =rf(x) = frz) = f(u.-(z)). Sou, o f = fou,. Hence Im(¥) C Z (Homg(M,M)). O

Proposition 1.19. Let N < M. Then we can make the additive abelian group M/N an R-module
by defining r(m + N) = (rm) + N, or rm = 7m. The natural surjection 7 : M — M /N given by
m — m+ N is an R-module homomorphism.

Proof. Let m+ N = m/ + N. Then m —m/ € N. Since N < M, rm —rm’ = r(m —m’) € N.
So (rm) 4+ N = (rm/) + N. Hence scalar multiplication is well-defined. Next, (rs)(m + N) =
((rsym)+N =r(sm)+ N =r(sm+N) =r(s(m+N)) and w(rm) = rm+N =r(m+N) = r-w(m),
etc. O

Theorem 1.20 (Isomorphism theorem). Let A, B < M.
(a) (The first isomorphism theorem). Let ¢ € Homp (M, N). Then Ker(¢) < M and
¢ : M/Ker(¢) = Im(¢) < N.

m— ¢(m).
Then ¢ is an R-module isomorphism.
(b) (The second isomorphism theorem).
- A _A+B
"ANnB B
a— a+0.
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(¢) (The third isomorphism theorem). If A C B, then
T:M/A— M/B
m+A—m+ B.

is a surjective abelian group homomorphism and T is R-linear with Ker(t) = B/A. So the first
isomorphism theorem implies it is an R-module isomorphism.

M/A M

B/A ~ B
(m+A)+ B/A—m+ B.

(d) (The fourth isomorphism theorem,).
{T<M/A} =2{U<M|ACU}
T — 7 YT)
ufA —u
Tiur— mfA

Proof. All results are known for additive abelian group. So we just need to show all maps are
R-linear. For (b), a(ra) = a(fa) =ra+0=r(a+0) =ra + 0 = ra(a). O

1.4 Generators, Direct sums and Free modules

Let R be a ring with identity and M be an R-module.

Definition 1.21. (a)
(A)=RA= (] N<MVACM.
N<M,ACN

If N < M such that N = RA, then N is (left) generated by A and A is a generating set of N.
(b) Let A= {a1,...,an} C M,
RA = R{a1,...,an} = R(ay,...,ay).

(¢) f N=R(ay,...,a,) < M with a,...,a, € M, then N is a finitely generated R-module.
(d) If N < M such that there exists a € M such that N = R(a), then N is cyclic.
Definition 1.22. Define the restricted vectors by

RO\ = {(z)) | #x € R with 2, = 0 for almost all A € A}.

Fact 1.23. R®% is a free module under componentwise addition and scalar multiplication with a
standard basis which consists of the vectors e,, whose A" component is the value of the Kronecker
delta function, i.e.,
1 ifA=p
ey = (0un), where 6,y = { 0 if A £
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Convention 1.24. If A has a finite number n of elements, then R®* is often written R” and called
the direct sum of n copies of R.

Remark. The free module R®* has the following UMP: given a module M and elements my € M
for A € A, there is a unique R-module homomorphism « : R®* — M given by ey — my, i.e.,

(x2) =D zrex — D xamy.
We have

(a) « is surjective if and only if the m) generate M.
(b) « is injective if and only if my is linearly independent.

(¢) « is an isomorphism if and only if the m) form a free basis.

Proposition 1.25. (a) For AC M, RA = {Zgglﬁf Tal

raeR}gM.

If A={, then RA = {0}.
(b) R(ai,...,an) ={> i ra;|ri € R} = Raj + -+ Ray,.

(¢) For A C M, RA is the smallest submodule of M containing A.
For N < M, RA < N if and only if A C N. Note it is not the same as ideals.

(d) For ay,...,a, € M and N < M, R(ay,...,a,) < N if and only if a1,...,a, € N.

Remark. Let Ny,...,N, < M. Ny +---+ N, = R(U"_;N,,) and is the smallest submodule of M
containing N; fori =1,...,n.
If N;=RA;fori=1,...,n, Ny+---+ N, = R(U"A,).

Remark. A submodule N of M may have many different generating sets. If N is finitely generated,
then there is a smallest nonnegative integer d such that N is generated by d elements. Any
generating set consisting of d elements will be called a minimal set of generators for N. If N
is not finitely generated, it need not have a minimal generating set.
The process of generating submodules of an R-module M by taking subsets A of M and forming
all finite “R-linear combinations” of elements of A will be our primary way of producing submodules.
Submodules of a finitely generated module need not be finitely generated. For example, let

M = R := Flz1,z2,---] = R(1) but F(xy,xg,---) is not finitely generated, where F' is an field.
0
T1 :
Example 1.26. Let R" = r,...,tn €Rp, and e; = |1 (ith.spot) fori =1,...,n.
'T‘n . .
0

Since 1 € R, R" = R(ey,...,e,) = Re; + -+ + Re,. So R" is finitely generated over R.
Proposition 1.27. Let N < M. If M is a finitely generated R-module, then so is M/N.

If M is cyclic, then so is M/N.
Proposition 1.28. Let R be a commutative ring with identity and f € R[z] be monic of degree

n > 1. Then M = % is an R[z]-module and M = R(1,7,72,...,72"1).
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Proposition 1.29. If M = Ray + -+ - + Ray, for some aq,...,a, € R, then there exists N < R"
such that M = R™/N.

Proof. Define ¢ : R™ — M by (r1,...,7r,) +— 1101 + -+ + rpay,. Then ¢ is a surjective R-module
homomorphism and so M = R"/Ker(¢). O

Proposition 1.30. Let m € M. Then
(a) Anng(m)={re R|rm=0}= (0g:m) < R.

(b) Since 1 € R = Rm by 7 — rm.

R
' Anng(m)

(¢) ¢ : R— M give by r — rm is a well-defined R-module homomorphism with Im(¢) = Rm and
Ker(¢) = Anng(m).

1.4.1 Direct Sum
Let M be a left R-module.

Definition 1.31. Let Ny, ..., N be a collection of R-modules. The collection of k-tuples (n1, ..., ng)
where n; € N; for i = 1,...,k with addition and action of R defined componentwise is called the
direct product of N1,..., N denoted by Ny X --- x N, which is also an R-module.

Theorem 1.32. Define w: Ny X -+ X Ny — Ny + -+ Ny by (n1,...,ny) —nyg +---+ng. Then

Ny N, 2 Sz,

Example 1.33. 7 usually not 1-1. Let M = R:=Z and 7 : 2Z x 3Z — 22+ 3Z = (2,3)Z = Z, we
have (6,—6) =(2-3,3-(-2)) — 6+ (—6) =0.

Proposition 1.34 (Set-up as in Theorem 1.32 with ¢ = 2.). Define § : Ny N N3 — N; x N by
2+ (x,—x). Then § is R-module homomorphism and 1-1 and Ny N Ny 2 Im(d) = Ker (7).

Proof. § is a well-defined R-module homomorphism. Let 0 = ¢(x) = (x, —z), then z, —x = 0 and
so ¢ is 1-1. Next,

Ker(m) = {(x,y) € N1 x Ny | w(z,y) =0} = {(z,y) € N1 Xx Na) |z +y =0}
{(.’E,y) € N1 x N2) | y:_l'}:{(.'lf,—it) eEMN XNQ) |.’E€N1,—$€N2}
{

(.’E,—QE)GNl XNQ) |£L'€N1 QNQ}:IH’I((S) O

Corollary 1.35 (same set up, t = 2). 7 : Ny X No — Nj + N3 is an isomorphism if N; N Ny = 0.

Corollary 1.36. We have an exact sequence 0 — Ny N Ny LN Ny X Ny = Ny + Ny — 0.

Example 1.37 (“Eilenberg Swindle”). Assume R # 0, M = {(r1,r2,--+) | r1,72,--- € R}. Then
MnM =M # 0. Note M xM =2 M+ M = M given by ((r1,re, ), (s1,82,-+)) —
(7’1,81,7’2,52,"’).

Proposition 1.38 (same setup, t > 2). The followings are equivalent.

(a) = is an isomorphism.
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(b) Njﬂ(Nl+"'+Nj,1+Nj+1+"'+Nt):OfOYj:1,...,t.
(¢) For € Ny + --- + Ny, there exists unique n; € N; for i = 1,...,¢ such that z =n; + -+ 4+ ng.
Proof. Let K; = {(nl,...,nt)ENl x--.th\nj:fzi#m} for j = 1,...,t. Then K, —

o= K = Ker(m).
Let Kj = {(nl,...,n]—,hnjﬂ,nt) € Ny--- X Nj,1 X Nj+1 - Ny | Z#Jm S NJ} Define 5j :

Kj — N1 X oo X Nt by (nl,...,nj,l,anrl,...,nt) — (nl,...7nj,1,—Z#jni,anrl,...,nt) for
j=1,...,t. Then Im(¢;) = Ker(m) for j =1,...,t. O

Remark. If Nlﬁ(NQ-i-Ng) =0, NQﬁ(Nl +N3) =0 and Ngﬁ(Nl +N2) =0, then NN NN N3 = 0.

However, N1 N Ny N N3 = 0 does not imply (N7 + Na) N N3 = 0 since we may have N3 = Ny + N.
~ 5 T .

Corollary 1.39. We have an exact sequence K; = Ny x---x Ny = Ni+---+N; —» 0,Vj =1,... ¢

Definition 1.40. Let M = Ny+- -+ Ny, where Ny, ..., N; are R-modules satisfying the equivalent
conditions of the Proposition 1.38, then M is said to be the (internal) direct sum of Ny,..., Ny,
written M = N,y @ --- @ N, = @'_, Ni.

1.4.2 Free Modules

Assume R has an identity.
Definition 1.41. Let M be a left R-module and A C M.

(a) If whenver ria;+---,rpa, =0forry,...,7 € Rand aq,...,a; € A, wehaver; =--- =r, =0,
then A is free or linearly independent.

(b) If for any m € M ~ {0}, there exist unique distinct ay,...,a; € A and unique r1,...,7 € R\0
such that m = ria; + -+ + ray, i.e., A is free and A generates M, then A is an R-basis for M.
Write M = @, 4 Ra.

M is free on R if it has an R-basis.
Example 1.42. R" is free on R with standard basis {e1,...,e,}.

Example 1.43. Let F be a field and R = F[X,Y] and M = (X,Y). Then the ideal M is
an R-module. Note {X,Y} a generating set for M over R, but not linearly independent since
YX—-XY =0andY, X € R. M is a vector space over F with a basis {X"Y7 | i, € Zx¢,i or j > 0}.

Proposition 1.44. If R is commutative ring with identity and every R-module is free, then R is
a field.

Proof. Let m < R be maximal and M = R/m. Claim. m = 0. Suppose not. Since R/m is an R-
module and every R-module is free, R/m has a basis A. Let r+me AC R/mand 0 # 2 € m C R.

LI
Then in R/m, 0 # z(r + m) = 2r + m = m = 0, a contradiction. O

Lemma 1.45. For any set A, there is a free R-module F' with A as a basis. When A is the finite
set {ay,...,an}, F = Ray @ --- & Ra, = R".
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Theorem 1.46 (UMP). Let F be free R-module with basis A. Then for any left R-module M
and map ¢ : A — M, there exists a unique R-module homomorphism ® : F — M such that
D(a) = ¢(a) := mg for a € A.

N

M

Proof. Existence: Since A is a basis, for x € F, x = Zgzje rq - a for some r, € A for any a € A.

Define ®(z) = Zggj‘e TeMg. Let Zgzlj‘e o0 = Zgzlj‘e Sqa, then r, = s, for any a € A since A is
linearly independent. So @ is well-defined. Note ®(rx) = ¢(r Zggff Te-a) = @(Zgglﬁ‘e(rm)a) =

ZﬁnitC(TTQ)ma - Zﬁnitc TaMe = r@(l’)7 etc.

acA acA
Uniqueness: Suppose ® : F' — M is another R-module homomorphism such that ®(a) = m,
for a € A. Then ®(z) = (X027, - a) = L0 1, @(a) = S0 rym, = ®(z). O

Corollary 1.47. Let F' and G be a free R-modules with bases A and B.
(a) If |A| = |B| < o0, then FF = G.

(b) For any bijective function p : A — B, there exists a unique isomorphism ® : F' — G given by
a— p(a).

Proof. (b) Existence. Define ¢ : A — G given by a — p(a). Since p is bijection, there exists
p~t:B — A. Define ¢ : B— F by b+ p~1(b).

DoW

Y F—22—F
> dr

] 27 L = q
g L7 —1 .

AL B2 54 A—14 4

By uniqueness, we have W o ® = idp. Similarly, ® o ¥ = idg. So ® is an isomorphism. Also, since
the diagram commutes, ®(a) = ¢(a) = p(a) for any a € A.

The uniqueness follows from UMP.
(a) It follows from (b). O
Corollary 1.48. Let F be a free R-module with basis A and |A| =n < oo, then F' = R".

Proof. R™ has a basis of size n, then by Corollary 1.47(a), F = R". O

Theorem 1.49 (IBP: Invariant Basis property). Let R be a commutative ring with identity and
k,n € Z>g. If R* = R", then k = n.
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Proof. Let m < R be maximal. Then (R/m)" £ =~ RF/mRF = R"/mR" = (R/m)". Since R/m is a
field, (R/m)" is a vector space over R/m. O

Theorem 1.50. Let R be a ring with identity. If F and G are free R-modules with bases A and B
and F = G and |A| < oo, then |A| = |B|. (Hungerford, IV.2.6)

Theorem 1.51. For any set A, there exists an R-module F with basis B such that |B| = |A].

Proof. If |A| =n < oo, let F'= R" and B = {e1,...,ep}.
In general, F' := {functions f : A — R : f(a) = 0}, where f(a) = 0 for all but finitly many
a € A, ie., f =0 almost everywhere. For example, let A = Z>1, f : Z>1 — R represented by
(1

f), £2 )f(3)7"')- Note

finite

(f(]-)af(2)7aovovov):f(l)(17070a07)+f() (0100 Zf el

€11

Operation on F are pointwise: for any a € A, (f + g)(a) = f(a) £ g(a); 0(a) = 0 and (rf)(a) :=
r - f(a). Check this makes F' into an R-module. f(a) =0 and g(a) = 0 almost everywhere implies
(f +9)(a) = 0 almost everywhere and 04+0 =0 and r-0 = 0. So “4+” and scalar multiplication “.”
are well-defined. Then axioms follow from axioms of R.

1 ifa=c
0 ifa#c
X1 “:”(17 07 07 Oa 07 e ) = “61” and X2 “:”(07 1) 07 07 07 T ) = “62”

Need to show

For any ¢ € A, define x.: A — R as x.(a) = . For example, let A =Z>;. Then

(a) {x.} are linearly independent.
(b) {xc} are a generating set.

(c) Al = Kxa:a € A} :={B}.

(

c) If a # d/, then xq(a) =17# 0= xa(a) and so x4 # Xa- Hence A — B given by a — X, is 1-1,
and onto by definition of B.

(b) Let f € F. Since f =0 a.e., r(f) = {a € A: f(a) # 0} is a finite subset of A. Note r(f) is
the “support of f”. Claim. f = Zcer(f) f(¢) - xe, which is finite sum and so well-defined. Note

cer(p) F(€) - xet A— R. Need to show > .y f(c) - xc(a) = f(a) for any a € A.

(1) Case 1: Let a € r(f). Then 3 ., s f(c) xe(a) = f(a) - Xa(@) + X sa, cer(y) F(€) - Xela) =
f(a) 14 Zc;ﬁa, cer(f) f(C) 0= f(a‘)

(2) Case 2: Let a & r(f). Then 3_ ., ¢ f(c) - xe(a) = 0= f(a).
(a) Let Z?gf‘e reXe = 0. Then 0 = ngfle reXe(a) = raxa(a) = r, for any a € A. O
Corollary 1.52. Let M be a left R-module.
(a) There exists a free R-module F' and N < F such that M & F/N.

(b) If M is finitely generated, then there exist n € Z>q and N < R" such that M = R"/N.
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Proof. (a) Let S C M be any generating set for M. Let F' be a free R-module with basis B such that
|B| = |S|. By the proof of previous theorem, there exists a 1-1 and onto function ¢ : B — S C M.

B —=— F
l@b\ \3'<I>
S -S4 M
Letm € M. Since S is generating set for M, m = Y2006 rys = S0 144y 0(b) = S gty 1oy d(b) =

ggge o) P(b) = O( bﬁgi;e Tow)b). So @ is onto. By the first isomorphism theorem, there exists
N = Ker(®) < F such that M = F/N.

(b) Choose S finite, say S = {s1,...,8,}. Then use F' = R". O

1.5 Noetherian Modules

Remark. In a d-dimensional vector space, every subspace is at most d-dimensional. However
(a) a submodule of a finitely generated module need not be finitely generated.

(b) Even if a submodule of a finitely generated module is finitely generated, the minimal number
of generators of the submodule is not bounded above by the minimal number of generators of the
original module.

Example 1.53. Let R = F[X;, X2, -], then R = R(1), but I = (X7, Xo,---) is not finitely
generated.

Example 1.54. Let R be the ring of entire functions on C, i.e., R consists of power series with
complex coeflicients and infinite radius of convergence. It turns out that every finitely generated
ideal in R is a principal ideal, but that does not mean all ideals in R are principal: one example
of an ideal in R that is not finitely generated is the ideal of entire functions vanishing on all but
finitely many indexes.

Example 1.55. The property of being finitely generated is not well-behaved on passage to sub-
modules, so we will give a name to the modules in which every submodule is finitely generated.
Emmy Noether was the first mathematician to make a systematic study of this property, so these
modules are named after her.

Definition 1.56. Let R be a commutative ring. An R-module is called Neotherian if every sub-
module is finitely generated.

Example 1.57. A finite-dimensional F-vector space is a Noetherian F-module.
Theorem 1.58. FEvery submodule of a Noetherian R-module is a Noetherian R-module.
Proof. Tt follows from a submodule of a submodule is a submodule. O

Theorem 1.59. If M is a Noetherian R-module, then for N < M, M/N s a Noetherian R-module.
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Proof. Every submodule of M/N has the form L/N, where N < L < M.
Since M is a Noetherian R-module, L is a finitely generated R-module and so L/N is a finitely
generated R-module. O

Theorem 1.60. Let M be an R-module and N < M. Then M is a Noetherian R-module if and
only if N and M /N are Noetherian R-modules.

Theorem 1.61. If M and N are Noetherian R-modules, then M ® N is a Noetherian R-module.
Theorem 1.62. If R is a PID, then every finitely generated R-module is a Noetherian R-module.

Proof. Let my,...,my € M such that M = R(my,...,mg). Then there is a surjective R-linear
map f : R¥ — M given by (c1,...,cx) — cimy + -+ + cgmy. So M = RF/Ker(f). Since R is
PID, R is a Noetherian R-module. So R* is a Noetherian R-module and hence R*/Ker(f) is a
Noetherian R-module. O

Remark. When R is a PID. the number of generators in a finitely generated R-module behaves
like vector spaces: if M is a module over a PID with n generators, then very submodule of M needs
at most n generators.

1.5.1 Finitely Generated Modules over a Noetherian Ring

Theorem 1.63. If R is a Noetherian ring , then an R-module is Noetherian if and only if it is
finitely generated.

Proof. “=>". By definition.

“«<=". Suppose M is a finitely generated R-module. Then by the proof of the previous theorem,
M is a quotient module of some RF. Since R is a Noetherian R-module, R* is a Noetherian R-
module. So M is a Noetherian R-module. O

1.6 Tensor Product of Modules

Let R be a nonzero ring with identity.

Remark. Formation of the tensor product is a general construction that, loosely speaking, enables
one to form another module in which one can take “products” mn with m € M and n € N.

Remark. Let M be a left R-module. Note u: R x M — M by (r,m) — rm is not a R-module
homomorphism since p ((r,m) + (s,n)) = pu(r+s,m+n) = (r+s)-(m+n) =rm+rn+sm+sn #
rm + sn = u(r,m) + u(s,n). Tensor product “fix this”, which gives you at minimum an abelian

group R ® M and additive group homomorphism R ® M £ M. We may have the UMP

RxM -5 ReM
xlﬂ
M

Notation 1.64. Write My if M is a right R-module and write g M if M is a left R-module.



14 CHAPTER 1. INTRODUCTION TO MODULE THEORY

Definition 1.65. Let Mg, gN and zL. A function f: M x N — L is “middle linear” over R or
“R-balanced” if for all r € R, my,ma € M and ny,ns € N, f(mi4+ma,n1) = f(my,n1)+ f(ma,n1),
flmi,ny +n2) = f(my,n1) + f(mi,n2) and f(myr,ny) = f(mq,rny), where r can not be pulled
out since L is not necessarily an R-module.

Example 1.66. (a) If gV, we have the R-balanced multiplicative map p: R x N — N given by
(r,x) — rz.

(b) If Mg, we have the R-balanced multiplicative map u: M x R — M given by (a,r) — ar.

Definition 1.67. Let Mi and gN. A tensor product of M and N over R is an additive abelian
group T equipped with the R-balanced function p : M x N — T such that for any R-balanced
function ¢ : M x N — L with zL, there exists a unique additive group homomorphism (;3 T — L
such that the diagram commutes, i.e., qASo p=o¢.

MxN 25T

DN

w

! !(23
L
Write it as T'= M ®r N after we define it.

Example 1.68. For any gkN, “R®r N =2 N 7. Then N is a tensor product of R and N over R
using the middle-linear map p: R x N — N by (r,n) — r-n.

Proof. Let L and ¢ : R x N — L be middle linear.

Rx N

e 2
&

Define c;AS(n) :=¢(1,n) forn € N. Since ¢ is middle linear, qg(ery) =o¢(1,z+y) = o(1,2)+o(1,
d(x) + d(y) for z,y € N. So ¢ is an additive group homomorphism. Note ¢ (u(r,n)) = o(r
d(1,rn) = ¢(1-r,n) = ¢(r,n) for r € R and n € N. So the diagram commutes. Let é: N — Lbe
another additive group homomorphism such that ¢ o i = ¢. Then (;NS(n) = &(1 -n) = (;NS(;L(L n))

o(1,n) = ¢(n) for n € N. So it is unique.

y) =
n)

oo

Corollary 1.69. If ;G, Z ®z G = G.

Theorem 1.70. Let Mgi and RN. Then a tensor product of M and N over R is unique up to
additive group isomorphism.

Proof. Assume T and T’ are tensor products with universal middle-linear maps p and p’. Since p’
and p are R-balanced functions,
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! AAGH ! AAGH
7 AAGH g ! AAGH, 'y

M x N
Then we have a UMP for T" and p.

d'op!

S A

M x N

Similarly, we have a UMP for T” and p’,

o’ 0¢’

M x N

So ;’ and (Z’ are the inverse isomorphisms. Thus, T = T” as additive group isomorphism. Therefore,

there exists an isomorphism
T = T
\ / -
p o

M x N
Theorem 1.71. For any Mr and rN, there exists a tensor product of M and N over R.

Proof. By previous theorem, we can find a free zF with a basis B = {e,, | a € M and z € N},
where e, , should be selected carefully with |B| = |M]|N|.

€(atbr) ~ C(a,z) ~ E(bx) Va,be M
Let D = €(a,24y) — Cla,x) — €(ay) Va,y € N ) as Z-module. Then F/D is an
€(ar,) ~ €(a,ra)s Clara) ~ TC(a) VreR

additive abelian group. Since zF is free on B, p1 : M x N — B C F given by (a,x) — €(44), is
bijective. Let ¢ : M x N — L be an R-balanced function.

M><N4>B*>F

¢Opf1l
e 3'¢

Since zI' is free and 7L, by the UMP for free modules, there exists a unique Z-module homo-
morphism ¢ such that the right diagram commute. It is straightforward that the left diagram
commutes. Then we have a UMP
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Let ® := ¢. Then ®(e(4,0)) = P(a, ) for e, ) € B. Since ¢ is an additive group homomorphism

and ¢ is middle-linear, ® (e(a7x+y) €(a,x) — e(a,y)) P (e(a7x+y)) d (e(a@)) P (e(ayy)) ola, x+
y) — ¢(a,z) — ¢(a,y) = 0. Similarly, for any other generator £ of D, ®(¢) = 0. So D C Ker(®).
Then there exists a unique additive abelian group homomorphism ® such that the right diagram
commutes.

MxN-—*" L, F

Leté:z@andp:zﬂom,we have a UMP
MxN —~ F/D

X 39

L
Then qﬁ(e(a,m)) = ¢(a,x). Let eqtb,2) = €(ae) — €be) € D, then p(a+b,x) = mopi(a+b,x) =
T(€(atb,z)) = Catba) = €(a) T €(ba) = Eaw) + Cba) = pla,x) + p(b,x), etc, we have p is R-

balanced. Let ¢ : F/D — L be another additive abelian group homomorphism such that the
diagram commutes. Then

MxN —— F/D
Xb
L

Note qg(m) = ¢(a,z) = d(pla,z)) = %(m) for €., € F/D. Let § € F/D, then =
Z?:ISGMXJ\, M (a,2)€(a,) Z?;;eeMxN M(q,2)€(a,z), Where m(a, x) € Z. Since ¢ and ¢ are Z-linear,

( )= (Z?:,lyz‘)seMxN M(a,2)€(ay0)) = Z?ZiSGMme(ayx) (e(a x) ) Z?am;eeMxN (a m)¢( €(aw)) =
a(Z?:,iiieMxN M(a,0)€(a,a)) = 5(5) O
Definition 1.72. The tensor product of M and N is defined by M @ g N := F/D.

Definition 1.73. Let a € M,z € N, we have a simple tensor a @ x := p(a,r) = €4, €T =
M ®gr N.

Remark. QB (e(a;v)) = q@(p(a,x)) = ¢( ) For any ﬁ € M®RN B Zﬁufu;()eeMxN m(a,w) (0, & J))
Since €(a+b,x) ~C(a,x) " C€(bx) € D, (a+b)®:v = €(at+b,z) = €(a,x) T €(b,x) = €(a,z) TE(b,z) = aRr+bRx,
etc.

Proposition 1.74. M @z N = (a®x | a € M,z € N) as Z-module. This is why linear maps on
tensor products are in practice described only by their values on elementary tensors. It is similar
to describing a linear map between finite free modules using a matrix. The matrix directly tells
you only the values of the map on a particular basis, but this information is enough to determine
the linear map everywhere.

Warning 1.75. (a) Arbitrary element of M ®p N is not ususally a simple tensor.
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(b) Simple tensors not usually independent.

(c) Frequently, define M ®pr N YL by saying (a ® &) = --- since 1 is usually an AAGH and
simple tensors are generators.

(d) @ ® = is not an arbitrary element of M ®gr N, but defining ¢ on a ® x and knowing that

1 is well-defined and linear respect linear combinations: %(§) = Z?:IS Ma,z)P(a @ x) for § =

finite
Z(aw)GMxN m(a,m)(a ® x).

Remark. Since each m ®n represents a coset in some quotient group, we may have m®@n = m’' @n’
when m # m/ and n # n’/. More generally, an element of M ® N may be expressible in many different
ways as a sum of simple tensors. In particular, care must be taken when defining maps from M ®g N
to another group or module, since a map from M ® N which is described on the generators m x n
in term of m and n is not well-defined unless it is shown to be independent of the particular choice
of m ® n as a coset representative.

Theorem 1.76. Restate UMP: for middle linear p and ¢,

MxN—""45MagN a®x
X \LH!AAGH I
AAG ¢(a, x)

Proposition 1.77. Let Mgz and gN. Then for all a,b € M and z,y € N,

(a) (a+b) @z =a®rc+bQz, a®(r+y) =a®zr+a®yand (ar) ®z = a® (rz). So
(Sl a0 @ (S)o ) = S0 Xy (@i @ 25) for ar, ..y € M and @y, 5y € N;

(b) a® (nz) =n(a®x) = (na) ® x for n > 0;

() 0®@zr=0=a®0;

) e (~2) = ~(a® 2) = (~0) ® 23

(e) (Zﬁnite a) ® (Zﬁnite 33) _ Zﬁnite(a ® ).

Proof. (c¢) Since 0@x+0®x=(0+0)®@z =0®2 = (0®z)+0, by the cancellation law of abelian
group, we have a ® 0 = 0;

(d) Note 0 = (—a)®z+a®z. O

Remark (Discussion). Let Mr and gN. M ® N is AAG but the R-module structure has been
lost in general. If R is not commutative, then Hompg (M, N) is “only” an AAG.

Definition 1.78. An SR-bimodule M is an AAG that is also a left S-module, a right R-module
and is associative: (sa)r = s(ar). Notation: ¢Mpg.

Example 1.79. (a) If Mr and gN, then zMp and rNy.

(b) rRR.
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(¢) If R is a commutative ring with identity and Mp and Ng, then RMg and grNg.

Proof. (¢) Since R is commutative, gM with ra =: ar for r € R and a € M. So (ra)r’ =r'(ra) =
(r'r)a = (rr')a = r(r'a) = r(ar’) for r,7’ € R and a € M, we have gpMpg. Similarly, gk Ng. O

Example 1.80. Let R % S be homomorphism of commutative ring with identity’s, sM and Ng.
Since we can define a - r := ¢(r)-a and r -z := x - p(r) for a € M and z € N, we have gMp and
rINs. Also, since gSg, we have §Sg and rSs.

Lemma 1.81. Let o : M — M}, be a right R-module homomorphism and 5 : gkN — grN’ be a
left R-module homomorphism.

(a) There exists a unique AAGH, denoted by a ® 3, mapping M ®z N into M’ @r N’, i.e.,
a®@pf: M&rN — M'®@rN' given by > . a;®@x; — >, ala;)®p(x;) (or given by a®z — a(a)®B(x)).

(b) There exists a well-defined AAGHa @ N: M@ N — M’ ®g N given by a ® z — a(a) Q x.
(¢) There exists a well-defined AAGHM @B : M QN — M ®gr N’ given by a ® x — a ® 5(x).
Proof. (a) Definea x 8: M x N — M’ — N’ by (a,z) — (a(a), 5(z)). Use UMP for M ®r N.

Mx N =225 pp o N7

i”/

M QR N’
Define M x N (i),@) M’ ® N' by (a,z) — ala) ® 8(z). Note ¢p(a,z +y) = ala) ® Bz +y) =
plo(ax

a(a) @ (B(z) + A(y)) = ala) @ f(x) +ala) ® B(y) = ¢(a, ) + ¢(a,y), and ¢(ar, z) = a(ar) ® f(z) =
(a(a) 1)@ B(z) = ala) @ (r- B(x)) = afa) @ B(rx) = ¢(a,rx), etc, so ¢ is middle-linear. Hence

MxN—5 MaN

X J{a! AAGH ¢

M/®N/

UMP implies a ® 8 := gi; and by the definition of ¢, we have the definition for a ® .
(b) Special case of (a).
(c) Special case of (a). O

Theorem 1.82. If \: M’ — M" and p: N’ — N" are R-module homomorphisms, then (A ® p) o
(p@9)=Aop)@(noy).

Proof. 1t follows from the uniqueness of UMP. O
Proposition 1.83. If Mg and gNt, e.g. S=7Z or T =Z, then

(a) For any s € S, there exists a well-defined AAGH s : M®rN — M®N given by a®z — (sa)®z.
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(b) For any t € T, there exists a well-defined AAGH v, : MQrN — M®N given by a®x — a®(xt).

Proof. (a) Since sMpg, ¢s : M — M given by a — sa is a homomorphism of right R-modules. Then
by lemma 1.81(b), s :=¢s @ N : M @r N — M ®@pr N is given by a @ z — ¢s(a) ® x = (sa) ® x.

(b) Similarly. O
Example 1.84. 0@ N - 0 given by 0@ n+— 0 and >0 ®n — 0.

Theorem 1.85. Let sMpg and gNp. Then s(M ®gr N)r such that s(a ® ) := (sa) ® x and
(a®2)t:=a® (at).

Proof. By Proposition 1.83, operations are well-defined. It is straightforward that ¢(M ®z N) and

(M &g N)r, e.g., (20 @ w)t)t" = (32, a0 @ (wit))t" = 33, i @ ((wat)t') = 32 ai ® (w(tt')) =
(>, a; ® x;)(tt’) after distributive law is showed. Note (s(3°,a; ® z;))t = (3, s(a; ® x;)t)

2oi(sai) ® (wit) = 325 s(ai @ (it)) = (32, @i © (wit)) = s(32;(ai @ 2i)t) = s((32; ai ® w:)t).
Corollary 1.86. (a) S =Z: If Mp and rNy, then (M ®g N).

o

(b) T=7: If ¢Mg and gN then s(M ®g N).

Corollary 1.87. If R is a commutative ring with identity and M and N are left R-modules with
canonical RR-bimodule structure, then (M ®pr N)g such that r(a ® ) = (ra) @z = ar @ x =
a® (rr)=a® (zr) = (a@z)r forr e Rand a®x € M Qg N.

Corollary 1.88 (extension of scalars). Let ¢ : R — S be homomorphism of commutative ring
with identity’s and let g N. Then (S ®g N).

Proof. Note gSg. Then it follows from Corollary 1.86 (b). O

Corollary 1.89. Let My and gN. Then R®pr N = N, which is an isomorphism of left R-module
and M ®r R = M, which is an isomorphism of right R-module.

Proof. We first show é:Ror N — N given by r @ n — rn is a well-defined isomorphism of AAG.
Since ¢ : R x N — N given by (r,n) — rn is middle-linear, we have the UMP:

RxN —235 Rep N
x lﬂ!AAGH¢
N

Furthermore, since R has 1 and there is a AAGH ¢ : N — R®pg N given by n — 1® n. Since
(Yod)(rox) = Y(re) = 1ore = r@z and (o) (z) = ¢(1®x) = 1-z = x, ¢ is a bijection and then
an isomorphism. Note ¢("f) (b( (Doimi®m;)) = é(zz (ri®wz;)) = QE(ZI-(TTZ)@)CL}) = (rri)z; =
Doir(rirs) =1y iy = TQAS(ZI T Q) = rg?)({) forre Rand§é=),ri®z; € R®gr N. O

Theorem 1.90. Let o : Mp — lez be a right R-module homomorphism and 8 : RN — rN' be
a left R-module homomorphism. If sMp, sMp and o is also an S-module homomorphism, then
a® B is a left S-module homomorphism. In particular, if R is commutative, then a ® B is always
an R-module homomorphism.
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Proof. Since gM and ¢M’, we have (M ® N) and (M’ ® N’). Since « is an S-module homomor-
phism, (a® f)(s(m®@n)) = (a® B)(sm@n) = a(sm) ® B(n) = sa(m) @ B(n) = s(a(m) ® B(n)) =
s(a®@B)(m@n) forse Sand m®@n e M ®g N. O

Proposition 1.91. Let R be a commutative ring with identity and g M and rN with canonical
RR-bimodule structure. Let B C M and Y C N be a generating set over R, respectively. Let
S={byeMrN|be B,y<cY}. Then S is a generating set for M ® g N as an R-module.

Proof. Set H={a®@x € Mg N |a € M,z € N}. We know M ®r N := zH, which means a
generating set over Z by H. Since (M ®r N) DS, M @r N O RS. Let a € M and z € N, then
a=>;rb withr; € R,b; € Band x =}, s;y; with s; € R,y; € Y. Then (a®x) = (3_;7:bi) ®

(Zj Sjy]) = Zz Zj(nbl)@)(slyj) = Zz’ Zj TiSjbi®yj €RS. SoM®r N =72HC rHCRS. O

Corollary 1.92. Let R be commutative ring with identity and g M,r N are both finitely generated
over R. Then M ®p N is finitely generated over R.

Definition 1.93. Let ¢Mg and g N7 and sLp. A function f: M x N — L is ST-bilinear if
(a) f is middle-linear.

(b) f respects S-module structure: sf(a,z) = f(sa,z) for all s € S, a € M and = € N.
(c) f respects T-module structure: f(a,z)t = f(a,xt) forallt € T, a € M and x € N.
Or it is ST-bilinear if

(a) f(s1a1 + s2a2,n) = s1f(a1,x) + saf(ag, ) for all s1,s2 € S, a1,a2 € M and n € N.
(b) fla,x1ty + xata) = fa,x1)t1 + f(a,x2)ts for all t1,t5 € T, x1,29 € N and a € M.
Proposition 1.94. Let ¢Mpz and gN7 and gL7.

(a) p: M x N — M ®pg N is a ST-bilinear.

(b) f: Rx N — N given by (r,x) — rz is RT-bilinear.

(¢) g: M x R— M given by (a,r) — ar is SR-bilinear.

Proof. (a) The universal middle-linear is from definition of tensor product: p(a,z) := a ® z for
(a,x) € M x N. Since Sy, sp(a,z) = s(a ® x) = (sa) ® ¢ = p(sa,x), etc.

(b) Clearly, f is middle-linear. Note 7' f(r,z) = r'(rz) = (r'r)z = f(r'r,z), etc. O

Theorem 1.95 (UMP for ST-bimodule). If sMp, rNt and gLz, for any ST-bilinear map ¢ :
M x N — L, there exists a unique ST-bimodule homomorphism ¢ such that

Mx N —2— (M ®g N)p

|
| | Y -
ST—bilim ‘LEI.ST bimodule hom. ¢

sLt
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Proof. We need to show that ¢ is an ST-bimodule. ¢(s(a ® z)) = ¢((sa) ® z) = ¢(p(sa,x)) =
d(sa,z) = sp(a,z) = sd(p(a,z)) = sp(a ® x), then extend to s¢ = s> a @z € M x N using
linearity. Similarly, for £t.

The uniqueness follows from the original UMP. O

Corollary 1.96. Let R be a commutative ring with identity, g M and r/N, implying p is RR-linear,
evoke a canonical RR-bimodule structures for any RR-bilinear map ¢ : M x N — L, there exists a
unique R-module homomorphism such that

MxN—25 MopN

|
i R-module hom. q@
RR-bilinear ¢ +

L

Example 1.97. Let a® b € Z/2Z ®77Z/3Z. Since 3a =a,a®@b=3a®@b=a®3b=a®0=0. So
Z/27. ® Z/3Z = 0. Thus, there are no nonzero bilinear maps from Z/2Z ® Z/3Z to abelian groups.

Example 1.98. In general, Z/mZ ®z Z/nZ = 7/dZ, where d = (m,n).

Proof. Let a®b € Z/mZQZ/nZ. Then a®b = (ab)®1 =ab(1®1). So Z/mZ @y 7Z/nZ is a cyclic
group with 1®1 as generator. Since m(1®1) = m®1 =0®1 = 0 and similarly n(1®1) = 1®n =0,
we have d(1 ® 1) = 0. So the cyclic group has order dividing d. Since d divides both m and n, we
have a well-defined map ¢ : Z/mZ x Z/nZ — Z/dZ given by (a + mZ,b+ nZ) — ab+ dZ, which is
clearly ZZ-bilinear. Then the induced map ¢ : Z/mZ ®z Z/nZ — Z/dZ maps 1 ® 1 to 1 € Z/dZ,
which is an element of order d. In particular, Z/mZ ®z 7 /nZ has order at least d. Hence 1 ® 1 is
an element of order d and ¢ gives an isomorphism Z/mZ @z Z./nZ = 7./ dZ. O

Example 1.99. Let I < R and M be a left R-module, then there is a unique R-module isomorphism
(R/I) g M = M/IM given by ¥ ® m — 7m. In particular, taking I = (0), as R-module,
R®r M =M by r®@m — rm.

Proof. Start with ¢ : R/I x M — M/IM given by (7,m) — 7m, which is well-defined and middle-
linear. Then by UMP of tensor product, we get a unique AAGH map ¢ making the following
diagram commute, where ¢ : R/I ® g M — M/IM is given by 7 ® m +— Fm.

R/IxM —%5 R/T®or M

X ‘LEIIQS

M/IM

Define ¢ : M — R/I®r M by m — 1®m, which is AAGH. Let m = 2?21 a;m; € IM with a; € 1
and m; € M. Then o(m) =1@m =1 jam; = > 1®@am; = > 8 @m; =
i, 0®m; = 0. So IM C Ker(p). Similarly, Ker(¢) C IM by considering the R-generators

{am | a €I and m € M} of IM. Then we get a AAGH 3 : M/IM — R/I ®p M by m — 1@ m.

Let m € M/IM, then ¢(p(m)) = ¢(I @ m) = m. In R/I @z M, any simple tensor has the form

F®@m = 1®rm, so sums of elementary tensors are 1®> ", m;. Note p(¢(1@m)) = ¢p(m) =1@m. O

Theorem 1.100. Let ¢ : R — S be a ring homomorphism of commutative ring with identity’s and
rN and sL. Then we have an R-module isomorphism Homg(S ® g N, L) =2 Hompg(N, L).
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Proof. Since S ®p N is an left S-module and S is commutative, Homg(S ® g N, L) is an S-module.
So Homg(S®pg N, L) is an R-module by restriction of scalars. Also, L is an R-module by restriction
of scalars. Define r x s := ¢(r)s and r x| := p(r)l for r € R,s € S and | € L.

Let f € Hompg(N,L), then (rf)(xz) := rf(z) = f(rz). Let r,’ € R. Since ¢ is a ring
homomorphism, (r+71') = p(r)+¢(r'). Also, since p(rr') = @(r)p(r’) = r+p(r’), we have ¢ is an
R-module homomorphism. Also, since R is commutative, ¢ ® N is an R-module homomorphism.
Claim. there exists an R-module homomorphism v : N — S ®g N compatible with the left
R-module isomorphism v : N 2 R®pg N defined by v(n) =1 ® n.

N il S®r N
x
\‘ A\,
R®gr N

Define v := (¢ ® N) owv. Since v and ¢ ® N are R-module isomorphisms, 7 is an R-module
isomorphism. Let o € Hompg(N,L) and define ¢ : S x N — L by (s,r) — s-«a(z). Since
d(ss’,x) = (ss)a(x) = s(s'a(x)) = so(s’,x), etc, we have ¢ is SR-bilinear. By the UMP for
S R-bimodule, there exists a unique SR-bimodule homomorphism (ﬁ : S®r N — L such that

SxN —— S ® N S®x
i 3!SR-bimod. hom. I
X i ¢
L s-a(x)
commutes. Consider

N 2 S®N

Ila

L
So we can set a = dg Suppose there is another SR-bimodule w : S ® g N — L such that

N%S@R

\ J{SR bimod. hom. w

commutes. Then w(s @ z) = w(s- (1@z)) =s-w(l®z) =sw(y(x)) =s-a(z) = d(s @ x).
Thus, there exists a unique S-module homomorphism & : S ®g N — L such that



1.6. TENSOR PRODUCT OF MODULES 23

N —— S®r N

13a

~

L

[e3

commutes. So we have a well-defined map

Homg(S ®r N, L) = Homp(N, L) : 0
B Bory

a

To show 6(ra) = rf(«), it is equivalent to show ra =r-a. Let s@ z € S ® N. Since ra(s ® x)

s [(ra)(z)] = s- [ a(z)] = slp(r) - a(z)] and (r-a)(s @ z) = r+[a(s @ ¥)] = rx[s - a(z)]
@(T)[s a(x)] = [e(r) - s]-a(z) = s[gp(rw)], we have ra = r - a. Similarly, to show 6(a + o)
0(c) + 0(a), it is equivalent to show o+ o/ = & + o/. Assume O(a) = 6(ca/). Then & = &'. So
a=aoy=a oy :/gi. Hence 6 is 1-1. Let 8 € Homg(S ®r N, L). Since S ® N is an S-module,
6(8o)(s®) = Bor(s @) = s+ [For(a)] = 5+ [3(x(2))] = 5- (1@ 2) = Bls(1 @) = B(s @),
So 6(B o~) = 8. Hence, 6 is onto. O

Remark. This is a special case of “Hom-tensor adjoint”.
Homg(A ®g B, C) = Homg (B, Homg(A4,C)).
(@(b),c) = (b, ®*(c))-
Let A=S, B= N and C = L, then Homg(S ®g N, L) = Hompg(N, Homg(S, L)) = Homg(N, L).
Let R, S,T,U be rings with 1.

Theorem 1.101. Let sMg, gNr and rPy. s(s(M ®r N)p @7 P),; and s(M@rp(N @1 P)y)u
and we have an S-module isomorphism

(M®rN)@r P —— M ® (N ® P)
f
(a®r)®@p'T—— a® (xQp)
f(s€) = sf(§),
f(&u) = f(§u.
Theorem 1.102. Let M and M’ be SR-bimodules. Let N and N’ be RT-bimodules. Then

s(M@® M), ®r rNr = (M ®r N)® (M'®g N)
(a,d )@z (a@z,d ® )
(a,0) @z + (0,d)®y — (a@x,d @y),

Similarly, M @ (N @ N') = (M ®r N)® (M @ N').

Remark. @ and ® behave like + and - on ring. (element of class of modules.)
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Corollary 1.103. If ¢ : S — R is homomorphism of commutative ring with identity’s, then
S®pr (R") = (S®r R)" = 5™

Proof. Note S and R" > R&---® R. O

Corollary 1.104. Let R # 0 be commutative ring with identity. Then (R™) ®g (R") = (R ®r
(R™))™ = (R™)™ = R™™. A basis of R™ is {e1,...,en} and a basis of R" is {f1,..., fn}. A basis
of R"@R"is{e; @ fj |i=1,....m, j=1,...,n}.

Theorem 1.105. If R is commutative ring with identity and rpM and rpN, then we have an R-
module homomorphism M @r N =2 N Qr M given by

aQri—r®a

Proof. The map ¢ : M x N — N ® M defined by ¢(m,n) =n®m is R-balanced. Hence it induces
a unique homomorphism ¢ from M ® N to N @ M with ¢(m®@n) =n®@m for m®@n € M Qg N.

MxN — M®N

T

NeoM

Similarly, we have a unique homomorphism ¢ from N @ M to M ® N with ¢(n ® m) = m @ n
for n®m € N ® M, giving the inverse of f, and both maps are easily seen to be R-module
isomorphism. O

Theorem 1.106. Let R be a commutative ring with identity. Let A and B be R-algebras. Then
the multiplication (a ® b)(a’' ® b') = ad’ @ b is well-defined and makes A @ B into an R-algebra.

Proof. Define ¢ : R —- AQrBbyr—r-(1®1)=r®l=10r=(1®1)r. So (R) C Z(A® B).
Let a € A;b € B and define pg : A — A by @ — aa and p, : B — B by 8 — b5. Then
e @y : AQ B — A® B is well-defined and R-linear. Let a® f € A®g B, then (1, ® up)(a® 8) =
ta () ® up(B) = (acr) ® (bB). So this is independent of representatives of o ® 3.

0

A®rB Homp(A®r B,A®pg B)

a®b§ Ua®,ub

(a,b)
Ax B
Let R be commutative ring with identity.

Definition 1.107. A subset U C R is multiplicatively closed if it is closed under multiplication.
U is multiplicatively closed; if U is multiplicatively closed and 1 € U.

Example 1.108. (a) R* C R is multiplicatively closed.
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(b) NZD(R) = {non zero divisor of R} = {r € R |Vs € R:rs =0 = s = 0} is multiplicatively
closed; and R* C NZD(R).

(¢) If U is strong multiplicatively closed, then U is multiplicatively closed and U C NZD(R).

(d) If P < R is prime, then P # R, 1 ¢ P and for any a,b € R— P : ab ¢ P, i.e., R— P is
multiplicatively closed;.

(e) If A € A, Uy C R is multiplicatively closed;, then (], Ux is also multiplicatively closed;.

(f) If P\ < R is prime for any A € A, then by De. Morgan law, ((,oy (R — Px) = R — J,cp Pa is
multiplicatively closed;.

(¢) If U C R is multiplicatively closed, then U U {1} is multiplicatively closed;.

Remark. An ideal P of a commutative ring R is prime if and only if its complement R — P is
multiplicatively closed.

Let gN and U C R be multiplicatively closed;.

Definition 1.109 (Construction). Define ~ on U x N by (u,z) ~ (v,y) if there exists w € U such
that w(uy — vx) = 0.

Remark. If U is strongly multiplicatively closed;, then this is the same relation as uy — vz = 0.
Check this is an equivalence class.

Definition 1.110. U~'N := Y& = {equiv classes under “~"}, with elements z/u = £ = [(u,z)] €
U~N, where [(u,z)] is the equivalent class.

Example 1.111. Let R = F([))((Y};] and let # = X € R, y =Y € R. By the third isomorphism

theorem, P = R < R is prime. Let y € U := R — P, then in U 'R, = % = % = % =0.
Example 1.112. Let s € R and U = {1,s,52,53,---}, define U"'R =: R,, U"!N =: N,. Let
P < Rprimeand U =R — P, define U"'R=: Rp, U"'N =: Np.

Theorem 1.113. (a) U™'R is commutative ring with identity. With r/u,s/v € U™'R, we have
£+§:vr+us r.,s _ rs OZQ:QandlleE
u v 1 u 1

uv T ou v uv’ u”

(b) The function ¢ : R — U~'R given by r — 7/1 is a well defined homomorphism of commutative
ring with identity’s.

Proof. (a) Assume ~ = Z; and 2 = f)—i Then there exist w,w’ € U such that w(ur’ —u'r) =
'U/

u u’
’ v
0 and w'(vs'—v's) = 0. WTS: 2tus — v1b0s Tt suffices to show ww' [uv(v'r’ +u's") — u'v' (vr + us)] =
0. But LHS = ww/uvv'r’ —ww'v'v'vr + ww'uvu’s’ —ww'v'v'us = ww'vv’ (ur’ — u'r) + ww'uu’ (vs' —

v's) =0 = RHS. So + is well-defined. Similarly, we have - is well-defined. O

Theorem 1.114. (a) UIN is an R-module and a U~*R-module. With x/u,y/v € UTIN and

-1 T 4 Yy . vrtuy —0_0 pz _ra .5 _ 18
r/u,s/v € UT'R, we have £ 4% = 220 =3 = = rZ =1I% gng L .2 = I8,

(b) U™'N has two R-module structures: (i) r% = 2. (ii) Restriction of scalar along ¢ : R — U™'R
defined by @(r) =r/1, i.e., r* L. They are the same.
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§ = Claim, U~ IN=0LL el e UR=0.1f0 €U,

16 If U7'R =0, then 2 =0 = 2. So there exists w € U
—-1-0)=0. HenceO—wEU. O

Proof. Note rx* ¥ =

then & = 2=z
u Ou

Remark. Converse for (1) fails in general. Let R = Z and U = {1 7,7%,---} and N = Z/7Z.
Then 7- N =0 and for x € N and a € Z3o, U™ NB—:%: marr = 0.

Theorem 1.115.

L U 'R,R 1
(UT'Ry@p N = UTIN
T o T

1z
SR — = ——
u u u

Proof. By UMP, there exists ® : (U"'R) g N — U~!N given by & ® x + ZF, which is onto.
Since R is commutative, ® is an R-module homomorphism. We have shown in homework that the
element of (U™'R) ®g N is of the form £ ® 2. Suppose ¢ ( 2) =0. Then Z£ =0 = 9. So there
exists v € U such that v-rz = 0. Then 5®x = ;’T R U—@m’x = —®O = O So @ is 1 1. Hence
@1 (2) = Lo Simce @ (5 (200) =0 (1 F) 00) D0 (2 oa) =2 = 1= = e (2 0u).
we have ® is U~ 'R linear. O

Definition 1.116 (“Functor”). Let R and S be commutative ring with identity. “A functor from
the category of R-modules” to the category of S-modules is a rule of assignment F such that
for any R-module N, F(N) is an S-module and for any R-module homomorphism ¢ : M — N,
F(¢): F(M) — F(N) is an S-module and F(¢ o)) = F(¢) o F(¢) and F(idn) = idr(n)

Example 1.117. If ¢ : R — S is a ring homomorphism, then

F(N): S®rN

(a) F@): S®é }}'S@Rfunctor;

(b) restriction of scalars gives from category of S-modules to category of R-modules. G(N) = U~ !N
is a functor from category of R-mods to category of U ! R-modules.



Chapter 2

Introduction to Homological
Algebra

Let R is commutative ring with identity. When we say a homomorphism, we mean it is a R-module
homomorphism.

2.1 Exact Sequences

T1
How to understand R-modules ? “understand” R™ = : T1y...,"n € R
T'n

More generally, R™™ is a free R-module with a basis A. More generally, via generators and
relations.

Example 2.1. Let R = k[X,Y]/(X2,Y3) and x = X,y =Y € R. Let M = (z,y) < R. The
generators are: {x,y} and relations are: z-x = 0, y?-y = 0. These relations generate all the relations.
Define R? =5 M by e; + x and es — . There exists a unique 7 such that 7(e;) = z and 7(e3) =y
by UMP for free modules. 7 is onto with Ker(7) = (ze;,y%e2). So M = R?/(xey,y%es). There
exists more i, i.e., relations on the relations x - xe; = 0, y - y?es = 0. Note Ker(7) = R?/{zf1,yfa),

where f; = ( (1) ) , fo= < (1) > Encode this, using homomorphism.

z 0
0 y?
N S A

Im | R? R? | = (ze1,y%e2) = Ker(1) C R,

27
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where image is span of columns. Im <R2 (=), R) =(x,y) =M CR.

T

<ac 0) (m O)
0 92 0
Ker |22~V gl |2 Y

We see the sequence

= (zf1,yf2) C R*.

MY

(33 O) (a: O)
2
AV Y) e NV e

T

0.

In most of examples we began first with a given B and then determined some of its basic
properties by constructing a homomorphism ¢ (often given implicity by the specification of Ker ¢ C
B) and examining both Ker ¢ and the resulting quotient B/ Ker .

We now consider in some greater detail the reverse situation, namely whether we may first
specify the “smaller constiuents”. More precisely, we consider whether, given two modules A and
C, there exists a module B containing (an isomorphic copy of) A such that the resulting quotient
module B/A is isomorphic to C' in which case B is said to be an extension of C' by A. It is then
natural to ask how many such B exist for a given A and C, and the extent to which properties of
B are determined by the corresponding properties of A and C.

To say that A is isomorphic to a submodule of B, is to say that there is an injective homomor-
phism ¢ : A — B, so then A 2 ¢)(A) C B. To say that C is isomorphic to the resulting quotient is
to say that there is a surjective homomorphism ¢ : B — C with Ker ¢ = 1(A). In particular this

gives us a pair of homomorphisms: A Y, B % C with Im(v) = Ker .

Definition 2.2. A sequence A L, B % C of R-module homomorphism is ezact if Im(f) = Ker(g).

More generally,

di di di—
XSS X

sequence of R-module homomorphism is ezact if Im(d; 1) = Ker(d;) for i € Z.
Remark. Im(f) C Ker(g) if and only if go f = 0.
Example 2.3. If A = B/C, then
C =B A=B/C
is exact since Ker(7) = C = Im(i). We have

0-CSBLA=B/C—0

is also exact.

Example 2.4. If ¢ : X — Y is an R-module homomorphism, then the sequence
nat. proj.
———

0— Ker(¢) => X &V
J

is exact, where Coker(¢) = Y/Im(¢) is the cokernel of ¢.

Y/Im(¢) — 0
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Proposition 2.5. (a) A sequence of R-module homomorphism 0 — U %V is exact if and only
if o is 1-1.

(b) V By W — 0 is exact if and only if 3 is onto.

()0 —-USV oW = 0'is exact if and only if a is 1-1, 8 is onto and Im(«) = Ker(p).

Definition 2.6. A short exact sequence (SES) is an exact sequence of form
0-ULviLwoo

Remark. SES: extension of “W by U”.

Remark. Any exact sequence can be written as a succession of short exact sequences since to say

X %Y 2, Z is exact at Y is the same as saying that the sequence
0—a(X) =Y 5 Y/Ker(8) — 0

is a short exact sequence.

Example 2.7. Note

0—-USUaWEZW-—=o0
u+— (u,0)

(u, w) — w

is a “trivial” SES. In particular, it follows that there always exists at least one extension of C' by

A.
A special case, consider two Z-modules U = Z and W = Z/nZ with n € Z. Then

0-ZSZa2/nZ L 7/nZ —0
gives one extension of Z/nZ by Z.
Example 2.8. Another extension of Z/nZ with n € Z by Z is given by the SES
0—-2Z%7257/nZ — 0,

n(x) = nz for x € Z and 7 is the natural projection.
Note Z % 7 & Z/nZ since in Z & Z/nZ, (0,1) is annihilated by n, but Z has no such element.

Example 2.9. If ¢ : B — C is is a homomorphism, we may form an exact sequence
0 — Ker(p) SBY Im(p) — 0.

If ¢ is onto, 0 — Ker(yp) = B %> ' — 0 is a SES.

For a fixed A and C|, in general there may be several extensions of C' by A. To distinguish
different extensions we define the notion of a homomorphism (and isomorphism) between two exact
sequences.



30 CHAPTER 2. INTRODUCTION TO HOMOLOGICAL ALGEBRA

Definition 2.10. A homomorphism of SES’s is a triple «, 3,y of module homomorphism such that
the following diagram commutes:

0 A-t.p 9.0 0
bbb
0 A B - 0

Furthermore, this homomorphism is an isomorphism if «, 3,7 are all isomorphisms, in which
case the extensions B and B’ are said to be isomorphic extensions.

This is an equivalence of SES if A = A’, C = C’, a = id4 and v = id¢. Note 8 must be an
isomorphism by the following short five lemma. In this case the corresponding extensions B and
B’ are said to be equivalent extensions of C.

Example 2.11. (a) Let k,n € Z.

0 Z—" 7 —" 5 7/nZ —— 0
J» I I-
0 ZJkZ —" T/nkZ —— Z/nZ — 0

where p, ¢ are the natural projections, n below maps (emod k) to (namodnk), and 7 is the nat-
ural projection of Z/nkZ onto its quotient (Z/nkZ)/(nZ/nkZ). One easily check that this is a
homomorphism of short exact sequences but not isomorphic.

(b) Let 0 — Z 5 Z 55 Z/nZ — 0 be the short exact sequence of Z-module. Map each module to
itself by  — —x, then this triple of homomorphisms gives an isomorphism of the exact sequence
with itself.

(¢) Consider the maps

0 — 2)22 ——— 7)20. 6 2,)20 —— 7,/27 — 0

— (,0) (z,y) ——

I i B

—— (0, ) (y,x) ——

0 —— Z)2L ——— /UL OL)2L ——— L2 — 0
%)

Then this diagram is seen to commute, hence giving an equivalence of the two exact sequences.

(d) We exhibit two isomorphic but inequivalent Z-module extensions.
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0—2/22 — Y 7/4707/2Z #1 7.)27.6 27 — 0
1+—— (2,0) (xmod4,ymod2) — (zmod 2,y mod 2)
LT - | ! i
1+—— (2,0) (rmod4,ymod2) — (ymod 2, zmod ?2)

0 — Z/2Z ——— L/AL &S L/2L

— Z/2L & 2L — 0

Suppose it is an equivalent extension. Since ¢1(0,1) = (0, 1), any equivalence =, 8, = from the first
sequence to the second must map (0,1) € Z/4Z & Z/27Z to either (1,0) or (3,0) in Z/4Z & Z/2Z,
since these are the two possible elements mapping to (0,1) by ¢o. This is impossible, however,
since the isomorphism S cannot send an element of order 2 to an element of order 4.

Theorem 2.12 (The short five lemma). Let a, 8,7 be a homomorphism of short exact sequences.
(a) If « and vy are 1-1, then (B is 1-1.

(b) If « and v are onto, then B is onto.

(c) If @ and v are isomorphisms, then [ is an isomorhism.

Proof. (b) Consider a homomorphism of SES. Start with b = 0.

0 A B C 0
A R
0 Y/ AN AN o4 0
0=d 0+ 0
Assume « and « is onto. Start with b’ € B’.
0 A ! B g C 0
ar—y b——c
o I I A
a—b -z z— c
0 A’ - B’ - c’ 0
f g

b ¢

Let ¢'(t') = /. Since v and g are onto, we can assume y(c) = ¢’ and g(b) = ¢. Assume S(b) = =.
Since the right diagram commutes, ¢’(z) = ¢/. Since ¢’ is a homomorphism, ¢'(0' —2) = ¢ —¢' =0,
ie, v —z € Ker(¢') = Im(f’). So there exists ' € A’ such that f'(a’) = ¥’ — z. Since a and
f are onto, we can assume a(a) = a’ € A’ and f(a) = y € B. Since the left diagram commutes,
Bly) =b —x. So p(y+b) =5y) +B(b) =0 —x+x=1V. Thus, 5 is onto. O
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Remark. It is an easy exercise to see that composition of homomorphisms of short exact sequence
is also a homomorphism. Likewise, if the triple «, 3,7 is an isomorphism (or equivalence) then
a1, 371 471 is an isomorphism (equivalence, respectively) in the reverse direction. It follows that
“isomorphism” (or equivalence) is an equivalence relation on any set of short exact sequences.

Definition 2.13. ASESL=(0— A LpLo- 0) is split if and only if it is equivalent to
0-A5SAaC L C—0,ie., if and only if there exists a commutative diagram

!

0—a—ton—tsC—0
- el [
0 — AT ApC =5 C —— 0

So 3 is an isomorphism and then B= A& C.

Theorem 2.14. Given a SES (= (0 — A LBso- 0). The followings are equivalent.
(i) ¢ splits.

(i) C splits on the left, i.e., there exists a homomorphism h: B — A such that ho f =ida.

O%A%B

h

(iii) ¢ splits on the right, i.e., there exists a homomorphism k : C — B such that go k = id¢.

B%{O%O.

k

(iv) There exists a submodule C' C B such that B = f(A) & C".

Proof. “(1)=(ii)”. Assume ( splits. Then there exists a commutative diagram.

R T S
-l= el -l
0 — A3 ApC =5 C —— 0

Set h=p'0o8:B— A Thenhof=p ofof=poe=ida.

“(i)==(iii)”. Similarly, use k = 8=t o¢.

“(iif)==(i)”. Assume there exists k : C' — B such that g o k = id¢. Define § : A® C — B by
(a,¢) — f(a)+ k(c). By homework 641 from MATHS8520, ¢ is a homomorphism and the following
diagram commutes.

A—— AeC +—C



2.1. EXACT SEQUENCES 33

0 A ! B g C 0
a—— f(a) fla)+k(c) —— ¢
- ] T I I _
a — (a,0) (a,¢) —— ¢
0 A - A C 5 C 0

Then by the short five lemma, & is an isomorphism. Check: 3 = §~! makes the diagram in the
definition of the splitting commute.

“(ii)==(i)”. Similarly. Define 8(b) = (h(b), g(b)).

“(ii)==(iv)”. Assume there exists homomorphism h : B — A such that ho f = id4. Claim.
B=f(A)@ . Let z € f(A) NKer(h). Then there exists a € A such that x = f(a) € Ker(h). So
0= h(z) = h(f(a)) =ida(a) = a. Hence z = f(a) = 0. Next, let b € B. Then h(b — f(h(D))) =
h(b) — (ho f)(h(b)) = h(b) — h(b) = 0. So b= f(h(b)) + c € f(A) + Ker(h) for some ¢ € Ker(h).

“(iv)=>(ii)”. Assume B = f(A) & C’ for some C' C B. Let b € B. Since f is 1-1, there
exists a unique x € f(A) and ¢ € C’ such that b = x 4+ ¢/. Since f is 1-1, there exists a unique
a € A such that f(a) = z. Define h(b) = h(f(a) + ¢') := a. By construction, since f(a) € f(A)
and 0 € C, h(f(a)) = h(f(a) +0) = a. Hence ho f = id4. Let h(b) = a and h(b1) = a1 with
b= f(a)+ and by = f(a1) +¢}. Then b+ by = f(a) + far1) + +¢y = fla+a1) + + . So
h(b+b1) = a+ay = h(b) + h(b1). Let r € R. Then rb = f(ra) +rc’. So h(rb) = ra = r - h(b).
Hence h is a homomorphism. O

Example 2.15. ( = (0 — Z/2Z 2 Z7JAZ T 7.)27 — 0) is exact but not split since Z/47Z % 7./27x
Z/QZ Set M = @;ﬁl(Z/QZ@Z/ﬁlZ) =Zo®Ly Dl DlyDH- - = 24@(22@24@22@' . ) =7ZsDM.
Then Zo & M =2 M = 7,4 ® M. Consider

(77)

0—Zy —>ZsPOPM ———— 75 H M — 0.
a — (2a,0)
(b,¢) (m(b),c).

Although B = Z4@M it 24@22@24@22@ - 22@22@22@24@22@ e ZQ@(ZQ@M) = A@C,
we can check this is exact but not split. Suppose ( split on the left, then there exists h : Z4®M — Zo
such that h o (2,0) = idz,. By homework 6 Exercise #1, we have h(a,b) = hi(a) + h2(b). Then
a = h((2,0)(a)) = h(2a,0) = hi1(2a) + h2(0) = hi(2a), a contradiction since we cannot find a
homomorphism sending 2 to 1.

Theorem 2.16. Let

B2 cC 0)

K o~

k

be a SES such that C is free with a basis A. Then ( splits.

Proof. UMP for free modules C — B demonstrates right-splitting (where to send basis). Since g
is onto, for A € A, there exists by € B such that g(by) = A for A € A. Define k : C — B to be
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the unique R-module homomorphism such that k(A) = by for A € A. Let Zi‘gf ax\ € C. Since

g (k ( f;nite a,\/\>) = inite axg (k(N)) = f;nite axg(by) = f;nite axA, we have go k = id¢. O

2.2 Functor

Let M, N be R-modules.

Theorem 2.17 (Functor). Let f : M — M’ be an R-module homomorphism and N be an R-
module. Then there exist R-module homomorphisms

f+« = Hompg(N, f) : Homg (N, M) — Hompg(N, M’)
g—foyg

/¥ =Homg(f,N) : Homg(M', N) — Hompg(M, N)

h— hof
N2 Mm M
s _hof
fog \\g lf fj/ \\\A
M’ M’ T> N

Example 2.18. Let M and N be R-modules and € R. Define f : M = M by m +— rm. Note
f+ : Homp (N, M) 5 Homp(N, M’)
g fog=r-g
Then f (g(z)) =7 g(z) = (rg)(z) for x € N. Note
f* : Homg(M',N) & Homp (M, N)
h—hof=r-h
Then h(f(x)) = h(rz) =r - h(z) = (rh)(z) for x € M.

Notation 2.19.
(—)« : preserves order.

(—)* : reverses order.

Theorem 2.20. Let A % B 2 C be R-module homomorphism and N be an R-module. The
operations (—). = Homg(N, —) and (—=)* = Hompg(—, N) are functors, where input and output are
R-module homomorphism, and respects to identities and compositions.

(B o)y = Py« oay : “covariant”

(Boa)* =a*of*: “contracovariant”
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Proof. Note

o : Homp (B, N) — Hompg(A, N)
h— hoa
Let r € Rand h, k € Homg(B, N). Then a*(h+k) = (h+k)oa = (hoa)+(koa)) = a*(h)+a*(k). To
show a*(rh) = ra*(h), we need to show: (rh)a = r(hoa), it is obvious since (rh)a(z) = r-h (a(x)).
So a* is an R-module homomorphism. Note (3o a)*(h) =ho(foa)=(hoB)oa=a*(hof) =
a* (6*(h)) = (a* o §*)(h). Diagrammatically, we have the following commutative diagrams

A—2+ B

b

(=)» Hompg(N,A) —**~ Homg(N, B)

X) iB*

Hompg(N, C)

(=)* Hompg(A,N) «+>— Hompg(B, N)

T I

Homp(C, N) O
Example 2.21. Homg(R, —) & (). “natural isomorphism.”, “isomorphism of functors”, i.e., for
an R-module A,
HOIHR(]%7 A) =2 A
¥ = P(1)
Let o: A — B.
Hompg(R, A) = A

Theorem 2.22 (Left exactness of Hom., I). Given evact sequence 0 — A % B L, C. Then the
induced sequence 0 — Hom(N, A) == Hom(N, B) LR (N,C) is exact.

Proof. Let f € Ker(a.). Then a.(f) = ao f =0. So from N to B, it is a 0 map by commutativity.
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Since « is 1-1, we have f(z) =0 for all x € N, i.e., f = 0. Hence o* is 1-1.

Since Byoay, = (o), = 0, =0, Im(vy) C Ker(fs). Let ¢ € Ker(B,). Then 0 = SB.(v)) = o),
So Im(¢)) C Ker(8) = Im(a). Also, since « is 1-1, for € N, there exists a unique a, € A such
that a(a;) = ¥(x). Define ¢ : N — A by ¢(z) = a,. Then o (¢(x)) = ala,) = ¢(z) for z € N. So
Y = ao ¢ = a.(¢). Besides, we can show ¢ is a homomorphism using lifting argument as before.
Hence ¢ € Im(a,). Thus, Im(a.) D Ker(5,).

N
BN
C 3 B

[
N
a— A 0 ]

Example 2.23 (Hom. not short exact, I). Let ¢ : Z — Z/2Z be the natural projection. Use
Homy(Z/2Z,—). Then ¢, : Homgz(Z/2Z,Z) — Homz(Z/2Z,Z/27). Let v € Homgz(Z/2Z,Z).
Then 2¢(1) = ¥(2-1) = (0) = 0. Since Z is an integral domain, (1) = 0. Hence ¢ = 0.
Moreover, since Homy (Z /27, 7./27) = 7Z/27Z, @, is not onto.

Definition 2.24. Fix an element r € R. Let u : M — M be given by m — rm. Such a
“multiplication-map” is a homothety.

Proposition 2.25. For r, s € R,
M®RN'

,LL7]"V[ ®R :u‘]sv = Hrs
In particular, pM ®r N = pMOrN,

Proof. Let m®gn € M ®r N. Then
(WM @5 1) (m @5 n) = p (m) @r 1 (n) = (rm) @ (sn) = (rs)(m @ 0) = &8N (m @5 ).

In particular,
pt op N = p) @pidy = ) @p pp’ = p' &N, [

Example 2.26 (Hom. not short exact, I). Let p% : Z — Z be a homothety. Use (—)®77Z/2Z. Then
u% ®z L/27 = u§®z/2z 1 Z Qg Z)27 — 7 ®z 7/27 is the zero map because ME/QZ 2 2)27 — 7.)27
is the zero map.

Let Hom(—, *) denote all R-module homomorphisms from — to .

Theorem 2.27. Given the SES ( = (0 A% Bloo 0), then following are equivalent.

(i) C is split.
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(ii) For R-module N, the induced sequence 0 — Hom(N, A) == Hom(N, B) L, Hom(N,C) — 0
18 exact.

(iii) The sequence 0 — Hom(C, A) 2% Hom(C, B) LN Hom(C, C) — 0 is ezact.

(iv) For R-module N, B, : Hom(N, B) — Hom(N, C) is onto.

(v) B« : Hom(C, B) — Hom(C, C) is onto.

Proof. We have proved

(i1) <= (iv)

I

(ii1) — (v)
“(i)==(iv)”. Assume ( splits. Then there exists v : C'— B such that o~y = idc.
¢c—-B

N gﬂ

Use Hom(N, —).

Hom(N, C) - Hom(N, B)
§ ——— 7.(0)

NN

]

Hom(N, C)
Note e (7(8)) = (8 07)+(6) = id, () = idod = & for & € Hom(N, C). So B, is onto.
“(v) = (i)”. Assume S, is onto. Then there exists § € Hom(C, B) such that ide = B.(d) =
B od. So ¢ splits on the right, and hence splits. O

Theorem 2.28 (left exactness of Hom. II). Let A B B, ¢ = 0 be evact. Then the induced
sequence 0 — Hom(C, N) £, Hom(B, N) o, Hom(A, N) is ezact.

Example 2.29 (Hom. not short exact, II). Since a* is not necessarily onto, we have
0 — Hom(C, N) 25 Hom(B, N) 2> Hom(A, N) — 0
may not be a SES.
Theorem 2.30. Given the SES ( = (0 —~AaxBloo 0), then the following are equivalent.

(a) C is split.
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(b) For R-module N, the induced sequence 0 — Hom(C, N) £, Hom(B, N) ~, Hom(A,N) — 0
18 ezact.

(¢) The sequence 0 — Hom(C, C) £, Hom(B,C) o, Hom(A, C) — 0 is exact.

(d) For R-module N, a* : Hom(B, N) — Hom(A, N) is onto.

(e) o : Hom(B, C) — Hom(A, C) is onto.

Proof. Tt is similar. O
Theorem 2.31. Let g N. The followings are equivalent.

(i) Hompg(N, —) transforms epimorphisms into epimorphisms.

(i) Homp(N, —) transforms SES’s into SES’s.

(iii) Homp(N, —) transforms exact sequences into exact sequences.

(iv) Every SES0 — A — B — N — 0 splits.

(v) For R-modules B and C, if B S0 S 0is exact, then every R-module homomorphism from
N to C lifts to an R-module homomorphism into B, i.e., give ¢ € Hompg(N,C), there is a lift
¥ € Hompg(N, B) making the following diagram commute:

N
3 -~
o |
L’/B

B——C——0.
(vi) There exists an RN’ such that N @& N’ is free, i.e., N is a summand of a free R-module.

Proof. (i)==(ii) Let 0 - A % B 2, ¢ = 0 be a SES. By left exactness of Hom., I, we have 0 —
Hom(N, A) 2% Hom(N, B) L, Hom(N, C) is exact. Also, by assumption, we have Hom(N, B) LR
Hom(N, C) is onto.

(ii)==(iii) Consider the exact sequence A = B Z c.

0 0 0
N NS
Ker(a) , Im(3) .
N ZN

A & B C
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The A’s commute and the diagonal sequences are SES’s. Apply Hom(N, —).

0 0 0
Hom (N, Ker(a)) I;I,om(N, Im(B))
\QT * Cu

Hom (N, Im()) Hom (N, Coker(8))

N \

0 0 0

Since Syroa, = (Boa)s = 0. =0, Im(av.) C Ker(B.). Let r € Ker(B,). Then f3,(r) = Bi(r) = for =
0. Since C, is actually C w.r.t. new subsets, r € Hom(N,Im(«a)). So there exists a € Hom(N, A)
such that ay(a) = o (a) = r. Hence Im(a,) 2 Ker(B4).

(iii)==(i) Done.

(i)=>(v) Since 8 : B — C is onto, B, : Hom(N, B) — Hom(N, C) is onto. Let ¢ € Hom(N, C).
Then there exists ¥ € Hom(NV, B) such that ¢ = S.(v) = S o).

N
Iy 7 Lﬁ
L///B
B—(C——0
(v)==(i) (v) says that Hom(N, B) — Hom(N, C) is onto.
(v)=(iv) Let 0 - A % B Z, N = 0 be exact. Then

N
Iy 7.
e id
K’ ‘L "
0 A—23B N 0
Hence
o B
0 A B ; > N 0
Y

Thus, it splits on the right and hence splits.
(iv)==(vi) Fact: every R-module N is homomorphic image of a free R-module, i.e., there exists
a free R-module F' and epimorphism 7 : F' — N such that

0 — Ker(r) —— F —T% N 0

is a SES. So by assumption, F' = N @ Ker(7).
(vi)=(v)
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Let X be the basis of F'. Since S is onto, for x € X, there exists b, € B such that 8(b,) = ¢ (p(x)).
By UMP, there exists a unique homomorphism ¢ : F' — B such that {(x) = b, for x € X. Define
1 :=(oi. Then
N
ip/// lqﬁopoi:q&
](
B——C——0 O

Theorem 2.32 (Long exact sequence). Given an evact sequence 0 — M; = My L, Ms(— 0),
there exists an exact sequence

0 —— Hom(N, M;) —— Hom(N, Ms) —— Hom(N, M3) j

L Ext'(N, M;) —— Ext'(N, My) —— Ext'(N, Ms) j

[» Ext*(N, M) —— -

0 — Hom(Ms, N) —2 Hom(Mz, N) — 2 Hom(M;, N) U

L Ext!(Ms, N) —2s Ext'(Ms, N) —— Ext!(Mi, N) U

[» Ext?(Ms, N) —— -

Then
1 o Ker(05)
Ext!(Ms, N) = Gk
Ext?(My, N) = 01)
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Remark. Ext}(Ms, N) is the first measure of failure of the second sequence to be exact on the
right—in fact it can be extended to a short exact sequence on the right if and only if the connecting
homomorphism 05 is the zero homomorphism. In particular, if EXt}%(Mz;, N) = 0 for all R-modules
Ms3, then it will be exact on the right for every exact sequence. Then this implies the R-module N
is injective.

Remark. Slogan: Ext measures the lack of right exactness of Hom..

Remark. It is hard to calculate the cokernel without prior complete understanding. Sometimes
you can calculate Ext' (N, M;) or Ext!(Ms, N) without understanding anything about a, or 3.

Definition 2.33. gNN is projective if it satisfies any of the equivalent conditions of Theorem 2.31.
Remark. In the proof of (iv)==(v) in Theorem 2.31, we have free modules are projective.
Theorem 2.34. An R-module N is projective if and only if Extk(N,—) =0 forn > 1.
Theorem 2.35. An R-module N is injective if and only if Exty(—, N) =0 forn > 1.

Example 2.36. Assume R; and Ry are commutative rings with identity such that R = Ry X Ra,
N; = Ry x0 and N = 0 X Ry. Then N7 & Ny &£ R. So Ny and N, are both projective. If
Ri1, Ry # 0, then Ny, N are not free R-modules since (0,1)(1,0) = 0. So projectiveness does not
imply freeness.

Definition 2.37. Given R-module N, there exists a projective R-module P and an R-linear sur-
jection 7: P — N

Remark. Slogan: Every R-module is a homomorphic image of a projective R-module.
free = nice! projective = pretty nice!

Lemma 2.38. For every set A, there exists free module R with basis B such that |B| = |A].
Frequently denoted R™) with basis vectors denoted ey, VA € A.

Lemma 2.39. P is projective if and only if there exists P’ such that P @ P’ = R®) for some A.
Example 2.40. A Z-module is projective if and only if it is free. So Z/2Z is not projective.
Remark. P = N — 0 can be thought of as approximating N by the projective module P. Error
approximation is Ker(7). 0 — Ker(7) S, P I N — 0s exact. Since Ker(7) is an R-module, there

exists a projective R-module P; such that P; — Ker(7). Note Ker(r) 5, Py := P is an R-module
homomorphism. Let 9; = 7. Then Im(0;) = Im(r;) = Ker(7). Repeat this process, we have

0 0 0 0
N N
Ker(rs) Ker(7) 0
SN N /
Py . Py : P : Py T N =0
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Definition 2.41. An augmented free (resp. projective) resolution of M is an exact sequence

05 0; i O, 7]
Pf=...2p, 2 p%..Pp2P 5P M0,

of R-modules and R-module homomorphism such that P; is free (resp. projective) as a R-module
for ¢ > 0.

Lemma 2.42. Every R-module M has a projective resolution over R.

Construction 2.43. We use the fact that every module is a homomorphic image of a free module
to construct free resolution of the R-module M. Take Fj to be a free module that maps onto M, and
we have non-isomorphic choices there; for example, choose Fj to be the free R-module generated
by the elements of M, we then take F; to be a free module that maps onto Ker(Fy — M), giving
an exact sequence F; — Fy — M — 0; after which we may take F5 to be a free module that maps
onto Ker(F; — Fy), etc.

Definition 2.44. The associated (truncated) projective resolution of M is a complex
Oit2 Oit1 0; 02 o1
P.::(-~-—> i+1—>Pi_’"'P2—>P1—’PO_)0)a

where 0; are the differentials of the resolution. Let

(2

a; ax ar R
P} =Hom(P,,N) := <O_>p8< -4 P 2P, _1>p,*L>...)’

which is usually not exact, where P* = Hompg(FP;, N) for i > 0 and 9F = Hompg(9;, N) for i > 1.
Also,

o7 o) o a5
Hom(P), N) := (0 — Homp(M,N) — P} =% P} = ... P} | — P 5 )

7 (2

Let P, be projective resolution of M.
Theorem 2.45. Since 9}, 0 0f = (0; 0 0;41)* = 0* =0, we have Im (89}) C Ker (0;,,).
Definition 2.46. For ¢ > 1, define

Ker (0,4)

Ext% (M, N) := NG

Theorem 2.47. Ext%(M, N) := 5O ~ Ker(ay),

Lemma 2.48. 0 — A % B — 0 is exact if and only if « is an isomorphism.
0 — C — 0 is exact if and only if C' = 0.

Theorem 2.49 (Hom. cancellation). Let R be commutative ring with identity, then
Homp(R,N) = N
g 9(1)

X =y T
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Proof. Let ¢ € Ker(®). Then ¢(1) = 0. Since ¢ € Hompg(R, N), we have ¢ = 0. So ® is 1-1. Let
x € N. Define ¢ € Hompg(R, N) by ¢(1) = z. Then & is onto. O

Theorem 2.50.

Homp(R/I,N) = (0 :x I)
¢ ¢(1)

Proof. Let ¢ € Hompg(R/I,N). For any x € I, we have ¢(1)z = ¢(Z) = ¢#(0) = 0. So it is
well-defined. The rest is similar. O

Theorem 2.51.
N, ifi=0

Ext;(R,N)g{ 0 ifi>1

Proof. Note R is projective. The augmented projective resolution of R is
P = (oiRELRHo),
where Py = R and M = R. The associated projective resolution of R is
01
Po= (02 R—0).
Since P; =0 for ¢ > 1, we have P = Hompg(P;, N) =0 for i > 1. So

Pr= (OHPJ:HomR(RN)i0—>0—>0--->.

So Ext%(R, N) = Ker(d;) = Homg(R, N) = N. When i > 0, Exth(R, N) := Ker0i) _ g, O

Example 2.52. Let A be a nonzero commutative ring with identity and R = A[X]. Let a = (X)R.
Then R/a = % = A. So A is an R-module. Then

; A, ifi=1
Exti(A, R) = { 0 ifi#l
i A, ifi=0,1
Bxti(4, 4) = { 0 ifi>2
Proof. Note
X T ~
0 xr=A

RK%R%R
o/ \o
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where uX () = rX for r € R. Since R - & = A, we have
XR

P,*z(---O—>O—>Ri>R—>A—>O)7

P.:(~-~0—>O—>Ri>R—>O).

Pr = 0 —— Homg(R, R) > Homp(R,R) —— 0 — -
0 R X R 0
P P Py

When i > 2, Exth(A,R) = 0. Since X is NZD, Ext%(4,R) = Ker(R -5 R) = 0. Also,

Exth(4, R) = K20 R o~ 4
xtp(4, ) m(Ror)  XE

Similarly, apply Hompg(—, A),
Pr e (oﬁAiA_)0_>0_>...).

Let r + XR € 52 = A. Since X(r + XR) = (Xr)+ XR =0+ XR = XR, we have (-X) = 0.
When i > 2, Extiy(A, A) = 0. Also, Ext%(4, A) 2 Ker(A L A) = A and Exth(A, 4) = Xed=0 _

Im(A->A)
A ~Y
4y O
Proposition 2.53. Ext%(M, N) = Homg(M, N).
Proof. Let
pj:(...a_%pla_l,PoLMHO).
Since Hom. is left exact,
0 — Homp(M, N) "> Homp(Py, N) 25 Hompg(P,, N),
is exact. So Ext% (M, N) = Ker(87) = Im(7*) = Hogeﬁgﬁfv)N ) — Homr(LN) o Homp(M, N). O

Question 2.54. (a) Is Ext well-defined? i.e., is it independent of the choice of P,"?

(b) How to build the long exact seque?

2.3 Depth

Remark. It is good for induction.
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Definition 2.55. Let M be an R-module. An element z € R is a non-zero divisor (NZD) on M if
0— M5 M

is exact.

Remark. x € R is a NZD on M, meaning for m € M, if xm = 0, then m = 0.

Definition 2.56. z is M -regular if x is NZD on M and =M # M.

Definition 2.57. A sequence z = x1,...,x, € R is M-regular if z; is M-regular and z; is

M L
m—regular, for ¢ = 27 N

Theorem 2.58.
M/(ml,...,xi,l) o M/(.’El,...,l'ifl)M M

~

xi-M/(xl,...,mi_l)M B (xl,...,l'i)M/<.’I,‘1,---.’L‘i_l)M o (1‘1,...,.1‘1‘)M.

Lemma 2.59. If R is Noetherian and a < R such that aM # M, then there exists a maximal
M-regular sequence in a, i.e., an M-regular sequence £ = x1,...,2, € a such that for y € a, the
sequence x1i,..., Ty, Yy is not M-regular.

Definition 2.60. Let a < R such that aM # M. The length n of a maximal M-regular sequence
in a, is called the depth of a on M, denoted n = depth(a; M). If R is local, write n = depth(M).
The depth of a ring means the depth of R as an R-module.

Question 2.61. Is the depth independent of the choice of maximal M-regular sequence? Answer:
Yes, if M is finitely generated.

Proof. Use Ext. All the Ext},(R/a, M), Extp(R/a, M), Exty(R/a, M), -+, Extl, ' (R/a, M) are 0
and Ext},(R/a, M) is not 0. Then depth(a; M) = min {i > 0 | Exty(R/a, M) # 0} = n. O
2.4 Localization problem for regular local rings
Assume (R, m, K) is a local Noetherian, i.e., R has a unique maximal ideal m and K = R/m.
Definition 2.62 (Krull dimension).

dim(R) =sup{n 20| Jpo S p1 S p2 & - -pn & R s.b. p; € Spec(R),Vi=1,...,n},
which measures the size of R.

Lemma 2.63. If R is local Noetherian, then dim(R) < oco.
Definition 2.64 (Embedding dimension).

edimp := dimg (m/m?) < co.

Proof. m/m? is an R-module such that m - (m/m?) = 0. So it is R/m-module, i.e., it is K-vector
space. Hence it is a finite dimensional vector space over K. O

Remark. (a) The Krull dimension is the supremum of the lengths of chains of prime ideals of R.
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(b) The embedded dimension may also be described as the least number of generators of the
maximal ideal m.

Theorem 2.65. depthy(m; R) < dim(m; R) < edim(R).

Definition 2.66. A local ring (R, m; K) is regular (RLR) if dim(R) = edim(R).
(R,m; K) is Cohen-Macaulay (CM) if depthy(m; R) = dim(R).

Theorem 2.67. If (R,m,K) is RLR, then it is CM.

Example 2.68. Assume that R is local Noetherian with unique maximal ideal m = (X3,..., X,,)R.
R = K[X1,..., Xu](x,,...x,)- Geometrically, R represents K", e.g., R" or C". dim(R) = n =
edim(R). So R is RLR.

Example 2.69. Let R = R[X,Y]/(Y2 — X2(X +1)). Let V = {(z,y) € R? | y?> = 2%(z + 1)}.
Let p = (a,b) € V and m, = (X —a,Y — b)R. (R)n, is a local ring. If p is smooth on the
curve, (R)n, is RLR. Note all rings (R)n, has Krull dimension 1 because it is a curve. Since

edim((R)m,) = dim(tangent space through p), we have edim((R)m,) = 2, (R)n, is not regular.

Remark. Localization: “zoom in” on some neighborhood of your points. Localization should make
the singularity not worse. nonsingular — singular.

Remark. If R is RLR and p < R prime. Must R, also be RLR? A: Yes. (Can usually control
dim(Ry) vs dim(R), but edim(Ry) is dim(R)?) hard. (Is it for p in K[z,y, 2](s,y,-) or K|z,y, 2].)

(z,y,

Theorem 2.70 (Auslander-Buchsbaum and Serre). R is RLR if and only if for all R-modules M
and N,Exts(M,N) = 0 for i > dim(R) if and only if Exti;m(R)H(K, K) =0 if and only if there
exists d > 0 such that Ext& (K, K) = 0.

Corollary 2.71. Let R be RLR and p € Spec(R). Then R, is RLR.

Proof. It is enough to show Extf,l%p (Rp/pRy, Ry /pRy) = 0 for some d > 0. The ring R, is local with
residue field R, /pRy = (R/p),. Since R is RLR, Ext%(R/p, R/p) = 0 for d > dim(R).

Ext% (Ry/pRy, Ry/pRy) = Exty (R/p)y, (R/p)p) = Exth(R/p, R/p), = 0,Vd > dim(R).

So R, is RLR. 0
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Localization

Let R be a nonzero commutative ring with identity and M, N be an R-modules.

Definition 3.1. A subset U C R is multiplicatively closed if 1 € U and uv € U for u,v € U.

Example 3.2. If s € R, then S = {1,s,s% ---} C R is multiplicative closed.

Example 3.3. If p < R is prime, then R \ p is multiplicative closed.

Let U C R be multiplicative closed.

Definition 3.4. The equivalent relation on M x U: (m,u) ~ (n,v) if there exists w € U such that

w(vm —un) = 0.

Remark. Want to define U"'M = {2 | m € M,u € U}. Note 2
(vu)m.

Definition 3.5.

U~'M = {equivalent classes from M x U under ~}.

Denote the equivalent class of (m,u) as ™ or m/u.

vm

VU

is ok because u(vm) =

Remark. If 0 € U, then U~ M = 0 since we can always take w = 0 in the definition.

Example 3.6. U~ R is a commutative ring with identity. =
OTR = (1’—}’: and ly-1p = 5 = % There exists a ring homomorphism
Yv:R—U'R
roour
re - =—.
1 U

UMP for ¢: Given any ring homomorphism ¢ : R — S such that for u € U, ¢(u) € S*. Then there
exists a unique ring homomorphism ¢ : U"'R — S such that the following diagram commutes
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Note ¢(u) =% € (U7'R)* and (¥)™' =1 foru e U.

Theorem 3.7. In general, U"'M s

vm-+tun
uv

Oy _ Ou.
1R7 u

(a) an additive abelian group ™ + 2 = and Og—1 3 =

(b) an R-module. r -2 = T,

1=

(¢c) a U 'R-module. © - =

u U

Example 3.8. Let R be an integral domain. Let p € Spec(R). Then U = R \ p is multiplicative
closed and (R~ {0})7'R is field of fractions of R. (R~ {0})"'M is a vector space over field of
fractions since it is a (R . 0)~!R-module.

Definition 3.9. Let f: M — N be a homomorphism, then

Ulf.U'M - U"IN

is a well-defined U ~! R-module homomorphism.

Proof. Let ot = ™. Then there exists v € U such that vu/m = vum’. So f(vu'm) = f(vum’). Since

U is multlphcatlve closed and M is an R- module vu’f( ) = vuf(m'). So by definition, @ =
f(:f )| Thus, U™ 1f is well-defined. Since (U~ )( )= (U 1f)(wm+w) = wf(ml);uf(x) =

(m) + f(m =U ' f(2)+ U f(2) and UL f(Z ”) f z) = ;f(:), U=1f is a U"!R-module
homomorphlsm O

Definition 3.10 (Notation). If s € R and S = {1, s, s } then M, := S’ M. If p € Spec(R)
and U = R\ p, then we have the localization M, = U~ =(R~p)!

Remark. U~! eats modules or homomorphisms, it’s a covariant functor (respect the order of
arrows).

Theorem 3.11. Let f : M — N, g : N — P be R-module homomorphisms. Then U 1(go f) =
(U tg) o (ULf), i.e

vim Y

—y
— 5 U-IN
U-1

U’l(gof)\ l 7
u-lp

M%

commute and U~ (idps) = idy-1p.

e =2

Theorem 3.12. U~1(—) is exact, i.e., U~(—) respects short exact sequences.

Proof. Let 0 — M LN P 0 be exact. Consider

U—l

—1
0T Ly N ptp L uio) =o.
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Since (U™'g) o (U1 f) =U"go f) =U1(0) =0, Im(U ' f) C Ker(U 'g). Let 2 € Ker(U'g).
Then 0 = (U 'g)(2) = g— So there exists v € U such that 0 = v - g(n) = g(vn). Slnce Ker(g) C

Im(f) then there existsm € Msuch that f(m) = vn. Since & € UM and( ) = fi(ZL) =
o — I we have ¥ € Im(U™'g). So Ker(U~'g) C Im(U~'f). Hence Im(U~' f) = Ker(U™'g).
Let ZL ceU™ 1M. Then 2 € Ker(U~'f) if and only if 2 =0 = (U~ f)(2) = i m) if and only if

there exists v such that v-1- f(m) =0 = f(vm) if and only if vm = 0 since f is 1 1 if and only if

%—”mzvu_o So U~tf is 1-1.
Let 2 € U~'P. Since g is onto, then there exists n € N such that p = g(n). Since (U~'g)(2) =
g(vn) =2 U~ lg is onto. O

Theorem 3.13 (Graphical proof). Consider an arbitrary exzact sequence X 2y % 7. Want an
exact sequence

vix -ty Y iy

Proof. Since 10 ¢ = 0, we have U o U 1¢p =U"1(p o p) = U10. So Im(U~1¢) C Ker(U~ ).

o~ @/0 N (/ |

N TN,
4 \Ker 7 \;kerw)/
NN

Then we have a graph with the same structure and U~!() putting on each map.
Let £ € Ker(U '¢). Since U~'(—) respects SES, U~'(¢) is onto and U~'j is 1-1. Note
that (U 17/1)(y = 0. Then there exists ¢ € U~'Ker(¢) such that U~'j(%¢) = £, etc. By the

commutativity of the lower left diagram, there exists £ € U~'X such that £ = (U~'¢)(2). So
Ker(U=1y) C Im(U~1(¢)). O

Theorem 3.14 (UMP for localization of modules). Given an R-module homomorphism f: M — N
on which the elements of U act by multiplication as automorphism, there is a unique R-module
homomorphism UM — N such that the following diagram commutes:

M —— UM

|
13le
¥

N

Theorem 3.15. For R-module homomorphisms o : M — N, U~ (Ker(a)) = Ker(Uta), we have
U~ (Coker(a)) = Coker(U ') and U~ (Im(a)) = Im(U~1a).
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Proof. Consider

0 — U tKer(a) — UM Ula UIN — U~ Coker(a) — 0

| |
13! J: J: 131
4 4

0 — Ker(U 'a) —— U~'M U la U~'N —— Coker(U~'a) — 0

We have a ring homomorphism f : Ker(a) — Ker(U 'a) given by a +— 7. We claim that

Ker(U~'M) % Ker(U~' M) is a well-defined automorphism for any v € U. Let m/v € Ker(U~*M),
then U~ ta(m/v) = 0, m/v = u(m/uv) and U ta(m/uv) = (1/u)a(m/v) = 0, so it is onto. As-
sume u(m/v) = 0, then there exists w such that (wu)m = 0, implying m/v = 0, and hence it is
1-1. Then by UMP for localization of modules, we have the following commutative diagram:

Ker(a) —— U~ ! Ker(a)

I
\ }3!4,0
~

Ker(U o)

It is straightforward to check that the middle left diagram commutes. So ¢ is 1-1. It is onto since
the first horizontal sequence is exact. We have U~!(Im(a)) — Im(Uta) is 1-1 since U~ Im(a) —
U='B and Im(U 'a) — U~ B is 1-1. Similarly, it is onto. O
Theorem 3.16 (Prime correspondence under localization).
{prime ideals of U"'R} = {prime ideal q < R | qNU = 0}
QY (Q) ={r e R|¥(x) €Q}
(¢/1|z€qU 'R=q(U 'R) —q.
Theorem 3.17.
U™'R/(q-U™'R) = U~ (R/q)
(U'R)qu-1r = Ry

A

z/1 =z

KN

z/v uz
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Example 3.18. Let U = R\ p.

Spec(Ry) = {q € Spec(R)} | q € p}
Rp/aRy = (R/q),
(Rp)qu = Ry
So R, has a unique maximal ideal pR,. Note R,/pR, = (R/p),, which is the field of fractions of
the integral domain R/p.

Remark. As we have seen, one way to “simplify” the study of ideals in a ring R is to pass to a
quotient ring R/I: this has the effect of “cutting” off the bottom of the ideal lattice by keeping
only ideals J D I.

The localization effects the opposite kind of simplification: given p < R and the canonical map
¢:R— Ry, ¢*: Spec(Ry) — Spec(R) is 1-1 with Im(¢) = {q € Spec(R) | q C p}.

Theorem 3.19.
Homp (H MA,N> = H Homp(My, N).
€A €A
Proof. Define

¢ : Homp <H MA,N> — | [ Homg(My, N)

AEA A€EA
fr=(fex) = (ex(f));

where ey : My — [] AEA M, are the natural injections. Then ¢ is an R-module homomorphism.
Let (fa) € [[nepa Homg(My, N). Define an R-module homomorphism 6 : [T ., Mx — N by
0(a) = > yca [r(ax). Then (0) = (fex) = (fr). So ¢ is surjective.

[Thea My —2— N

o] /

M

Let f € Homp(JJycp Mx, N). Claim. If fey = 0 for each A € A, then f = 0. Suppose f # 0.

Then f(a) # 0 for some a € [[ycp Ma. Then 0 =3\, 0(ax) = > \cp fex(an) = [ screnlar) =
f(a) # 0, a contradiction. So Ker(yp) = {f € HomR(H}\EA My, N) | (fex) =0} = {0}. Thus, ¢ is
injective. O

Theorem 3.20.

Homp (M, H NA> =~ H Homp (M, Ny).

AeA AEA
Proof. Define

o : Hompg (M, H N,\> — H Homp(M, Ny)

AEA AEA

fr=(oaf) = (o)),
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where py : [[yca Na — Ny are the natural projection. Then ¢ is an R-module homomorphism.
Let (fx) € [Incp Homgr(M, Ny). Define an R-module homomorphism 6 : M — [[ ., Na by

0(a) = (fa(a)). Then p(0) = (pr0) = (fr). So ¢ is surjective.

[Taea Na 2— M

ml/4{

N,

Let f € Homp(M,[[ycp Na). Claim. If pyf = 0 for each A € A, then f = 0. Suppose f # 0.
Then (by) := f(a) # 0 for some a € M and so by # 0 for some A € A. Hence 0 = 0(a) = prf(a) =
by # 0, a contradiction. So Ker(p) = {f € Hompg(M,[[ cp Nx) | (paf) = 0} = {0}. Thus, ¢ is
injective. O

Corollary 3.21. w : Homp(M & M’, N) = Hompg(M, N) & Homp(M’, N).
Proof. Let

Me== MeM == M
I

N
Let w(th) = (o e, 0 ¢') = (€ (1), (1)) for v € Homp(M & M’, N).

0— M s MaM "~ M ——0
‘\_/ ~_

T ’
€

Note Toe =1idys and 7/ o€/ =idy.

Method 1. Since the above sequence splits, €* is onto. So Homg(M @ M’, N) =2 Homg (M, N)®
Hompg(M',N).

Method 2. Since €¢* o 7% = (7 0 €)* = (idy)* = idnomp(m,N), € is surjective since it has
right inverse and thus the above sequence is a SES. (The other way around is also a SES). So
Homp(M @ M',N) = Homg(M,N) ® Homgr(M', N).

0 —— Homp(M’,N) ——— Homp(M & M, N) —— Homp(M,N) —— 0

\/\/

1% *

€ T

Method 3. Check w is a well-defined homomorphism since €* and €* are well-defined homomor-
phisms.

0 — Hompg(M',N) = Hompz(M & M',N') ——<— Homp(M,N) — 0
a+— aoT Y ——— poe
ar—— (0,a) (Yoepoe) —— tpoe

0 — Homp(M',N) £ Hompz(M & M',N') —— L Homp(M,N) — 0
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since (0,a) = (a0’ 0oe,a07 0€’) = w(awo 7). So the squares commutes. Thus, by short 5-lemma
or snake lemma or diagram chase, we have w is an isomorphism. O]

Corollary 3.22.

n n
wy, : Hompg (@ Mi,N> — @HomR(Mi,N)

i=1 =1

€1(v)

where

Example 3.23.

wy, : Homg(R", R) — R"

Y(er)
P — :
¥(én)
where €7, ..., €, is standard basis on R™. It is a special case. of previous corollary. Or we can prove

it by induction. If n = 1, Homg(R, R) — R given by ¢ — 1(1)

Example 3.24. Let R" 2, R™ be an R-module homomorphism. Let A € Mat,,x,. For j =
1,...,n, let the j*® column of A be ¢(%;), where {#;} is the standard basis of R". Then Az =
[6(2)] (0,1 or 2251 (Az); = ¢(z) for = € R". Apply Hompg(—, R),

Hompg(R™, R) +1) Hompg(R"™, R)

>—>é?0¢
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Note Hompg(R™, R) = R™ and Hompg(R™, R) is free with dual basis €7, ..., €}, where € (€;) = d;;
e;(er)

for 1 < 4,5 < m. Let’s check commutativity on generators (basis). Note w,,(€]) = =g
€7 (€m)

fori=1,...,m. Notefori=1,...,mand j=1,...,n,

(& 0 @) (@) = & (&(5))) = & (j™ col. of A) = -(Zakje*k>=aij=fh entry of i col. of AT
k=1

So wy,(€f 0 ¢) = : is the i*" column of AT, i.e., the i*" row of A.
(€5 0 ) (V)
Remark. When R on right was changed to N, the similar conclusion also holds.
Lemma 3.25. Consider commutative diagram of R-modules and R-module homomorphism.

A%B%C

Lol

A/ B/ Cl
Assume go f =0, so ¢’ o f/ = 0. Then there exists a well-defined isomorphism.

7. Ker(g) = Ker(g')
CIm(f)  Im(f)
b+Im(f) = B(b) + Im(f’)

or b B(b).
Proof. Sketch:
A ! B g C
f 7
0 —— Im(f) - &£ Ker(g) — If;lr((]f’)) 0
~la i \ / i 3 i =~y
| 0 | |
’ £ : B’ : g C’
7 L i !
+ 4 v
0 —— Im(f") - &£ Ker(g') — Iflir((fg,)) 0
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Theorem 3.26.

Theorem 3.27.

m, o
. / U +— .
My, o

Remark. The two above isomorphisms are R-linear and U ~! R-linear.
Remark. Since U™}(R") = (U~1R)™, there is no ambiguity to write U ' R".

Theorem 3.28. Let R™ M R™. Then we have the following commutative diagram.

U-1Rm U™ (aij) U-1R"

EoL b

(s o
(U 1R) (a—,]))(U 1R)

3.1 homomorphism and localization

Theorem 3.29. (a) For% € U 'Hompg(M, N), the map

bu UM - UIN
m_ ¢(m)

v uv

is a well-defined U ' R-module homomorphism.
(b) The function

Ou.m.n : U Hompg(M, N) — Homy -1 z(U*M,U"'N)
¢

7'_>¢u
u

is a well-defined U~'R module homomorphism.

(c) If M is finitely presented, i.e., there erists an exact sequence R™ ER R L M — 0, then

Ou,m,N is an isomorphism.
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(d) If R is noetherian and M is finitely generated, then
Ou.n : U  Homp(M, N) = Homy—1 (UM, U N).

Proof. (a) Step 1: for u € U and ¢ € Homp (M, N), we have ¢, (7) = % = LU e) () =

((mult. o by 2)o(U~1¢))(), where multiplication o by L and U~'¢ is a well-defined U~ R-module
homomorphism and so the composition is a well-defined U ~! R-module homomorphism.

Step2: Let % = %: Then Ju” € U such that uu”¢’ = v'u’"¢. So (wu”¢')(m) = (u'u”¢p)(m).

Then w - ¢/(m) = w'u” - $(m). So ¢, (%) = Lo — wuZfln) — wzgln — o — ¢ (=),
Hence ¢, = ¢/,,.

(b) Part (a) implies Oy, as,n is well-defined. Note Oy v respects addition. Oy n (7 - %) =

@U,M,N(%) = (r¢)w and %@U,M,N(%) = 7 ¢u. Since ¢, is an U~!R-module homomorphism,

(ré)ea() = "t = “Hi and (5 6u)(5) = § - du(%) = § - 252, we have Ouarn(f - §) =
i

tuv v t uv u
(r)ew =5 - bu = %GU,M,N(%).
(c) Step 1. Oy mems,nN is an isomorphism if and only if Oy ar,n and Oy ar v are both isomor-

phisms. NTS: Oy pgnr,v is an isomorphism if and only if Oy a v ® Ou a v is an isomorphism.
NTS: the following diagram commutes.

@UJWGDM’,N

U~!Homp(M & M', N) Homy -1 g(U~Y(M & M), U~!N)

U_lwlg l’yfl*

U~ (Hompg(M, N) ® Homp(M’, N)) Homy 1 g(U~'M) ® (U~'M"), U~ N)

=|r =|o

Ou,m, NDPO ’
U~ Homp(M,N)® U~ Homp(M', N) ——2"Z0M N Homp -1 p(U~M,U~'N)®
HomU—lR(U_lM', U_IN)

The corresponding map is

v du
wszb) — (woe;boe ) Yy oy
(Yo, voc'y (Yuoy toj oy toy)

’

(Ou,m,n(229), Oy ar N (E25))
I
((w © 6)ua (w o el)u)
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where U~1M L (UM)s (U M) 3%, U~'M’. Recall the definitions

MSMaeM S,

Note (thoe), (1) = Lealm) _ wlelm) _ 2(m0) (4, on=10f)(2) = ¢, (v (j(22))) = (v~} (2,0)) =

v

Pu(yH (2 Q)) = ¢u(w) = ¥mO) g, (Yoe€)y=1yov toj.

v v uv’
Step 2: Oy, @i, M;, N is an isomorphism if and only if ©¢ ar,, v is an isomorphismVi =1,...,n.
Check this by inducting on n and using step 1 several times.

Step 3: Oy g N is an isomorphism. By step 2, it suffices to show Oy g n is an isomorphism.

U~ Homp (R, N) —""" s Homy 1 p(U~'R, N)

where f: Homp(R, N) =N given by ¥ — 1(1).
Step 4: Assume ($:)R™ L, R" 2 M — 0 is exact. Then
Hompz($,N) : 0 — Homp(M, N) 2> Homg(R", N) 1 Hompz(R™, N)
is exact. Since U~!(—) is exact,
U~ Homp(+, N): 0 — U Homg(M, N) L9 U~ Homp(R", N) XL U~ Homp(R™, N)
and Hom U5 (U~ (), U~1(N)):
0 — Homy 1 z(U M, U *N) — U ' Homy 1 g(U'R",U'N) — Homy 1 zg(U'R™ U'N)
are exact.

—1_x 1
0 —— U~'Hompg(M,N) ——%— U~ Homz(R", N) ——— U~ Hompg(R™, N)

l@u, M,N EleU,R",N eU,Rm,ng

0 — Homy-1z(U~'M,U~'N) — Homy-1z(U" R", U~'N) — Homy-1 p(U~'R™ U~1N)
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As before, it implies O s x is an isomorphism. (=) := Homgy-15(—, U~ N).
(d) If R is noetherian and M is f.g., then exercise implies there exists an exact sequence
>R S RI S R™ - R"— M — 0.

So R™ — R"™ — M — 0 is exact and then M is finitely presented. Thus, by part (c), Oy, a,n is an
isomorphism.

O



Chapter 4

Associated Primes and Support of
Modules

Let R be nonzero commutative ring with identity, M, N, M’ be R-modules and I < R.
Definition 4.1. The prime spectrum of R is
Spec(R) = {prime ideals of R}.
V(1) = {p € Spec(R) | I C p}.
rad(/) ={z € R|3In > 1s.t. " €I},
which is the radical of I.
Notation 4.2. rad(I) = r(I) = V1.

Example 4.3. Let R be a PID, then a UFD. For non-unit « € R ~ {0} (if exists), there exists
prime element pi,...,p, € R and ey,...,e, > 1 such that z = pi* ---pS», where p;R # p;R for
1 <i4,j <nwithi#j. Let I = zR. Then V(I) = {p1R,...,p, R}, essentially because for a
prime p € R, we have p | z if and only if p ~ p; for some i € {1,...,n} (i.e.,, pR = p;R). Then
rad() = rad(py" - pi"R) = p1---ppR.

“2”. Let e = max{e1,...,en}. Then (p1---pn)® =0 05 € p7* - p5»R. So p1-+pn €
rad(]). Since rad(I) is an ideal, p; - - - pp R C rad(I).

“C”. Let y € rad(I). Then y™ € I for some n > 1. So x | y™. Hence p1---p, | y.

Example 4.4. Let x = 2513719 € Z. Then V(2513'719Z) = {2Z, 3Z,19Z} and rad(2°131719Z) =
2-13-19Z.

Remark. Let I < R.

(a) rad(I) < R.

(b) If J < R such that J C I, then rad(J) C rad([).
(c) rad(rad(l)) = rad(1).

59
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Theorem 4.5. rad(!) =,y () P

Proof. Note V(I) = if and only if [ = R.

“C”. If x € rad(I), then 2™ € I for some n. Let p € V(I). Then 2™ € I C p. So x € p. Hence
rad(I) C p.

“D”, Let x € R~rad(l). Let S = {1,2,22,---} be multiplicative closed. Since ¢ rad(I), we
have S Nrad(l) = 0. So S~'rad(I) < S7'R. Then S™!'R has a maximal ideal S~'m containing
S~'rad(I). Hence m € Spec(R) satisfying m NS = () and rad(I) C m. So m € V(rad(I)) = V(I).
Since mN S = 0, we have x ¢ m. Thus, z & ),y () P- O

Definition 4.6. Let m € M, the annihilator of m is
Anng(m) ={r € R|rm = 0}.
Definition 4.7. The annihilator of M is

Ammp(M)={reR|rM=0}={reR|rm=0,Yme M} = ﬂ Anng(m).
meM

Definition 4.8. The support of M is
Supp (M) = {p € Spec(R) | M; # 0}  Spec(R).

Remark. (a) Let U C R be multiplicatively closed. For m € M, we have % =0=2ecU'Mif

and only if there exists u € U such that um = 0 if and only if U N Anng(m) # 0.

(b) Assume M is finitely generated. Then UM = 0 if and only if there exists u € U such that
uM = 0 if and only if U N Anng(M) # 0.

Proof. (b) If u € U such that uM = 0, then um = 0 form € M. Thenin U~'M, = = vm = 0 —
for @ € U7'M. So U'M = 0. Assume M = (my,...,my) for my,...,m, € M and U"'M = 0.
Since 7t € U~'M = 0, by (a), there exists u; € U such that u;m; = 0 for i = 1,...,n. So
ui=up Uy € U satisfying um; =0 for i = 1,...,n. Thus, uM = 0. O

Theorem 4.9. Anng(m), Anng(M) < R.
Theorem 4.10. Suppy(R) = Spec(R).

Proof. “C”. By definition.
“D”. Let p € Spec(R). Since 1 € p, 0 1 € R,. So R, # 0. Hence p € Suppg(R). O

Theorem 4.11. Suppp(R/I) = V(I).

Proof. Let p € Spec(R) = Suppg(R). Then R, # 0. Note I, C R, if and only if TN (R~ p) =10
if and only if p D I if and only if p € V(I). Since 0 - I — R — R/I — 0 is exact and
localization is exact, we have 0 — I, — R, — (R/I), — 0 is also exact. So (R/I), = R, /I,. Thus,
p € Suppr(R/I) if and only if (R/I), # 0 if and only if R, /I, # 0 if and only if I, C R, if and

only if p € V(I). O
Remark. Suppr(R/I) = V(I) = V(rad(I)) = Suppg(R/rad(1)).
Theorem 4.12. If M is finitely generated, then Suppr(M) = V(Anng(M)).
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Proof. Since M is finitely generated, 0 = M, = (R~ p)~'M if and only if (R~ p) N Anng(M) # 0.
Then p € Suppr(M) if and only if M, # 0 if and only if (R \ p) N Anng(M) = 0 if and only if
p € V(Anng(M)). O

Example 4.13. Let k be a field and R = k[X,Y].

(a) Let f € R, then Suppg(R/fR) = V(fR) = {p € Spec(R) | f € p}.

(b) Let m,n € N. Then Suppgz(R/(X™, Y")R) = {(X,Y)R} = Suppr(R/((X,Y)R)™).
(c) Suppr(R/(X? XY)R) = V(XR) = Suppgr(R/XR) and rad((X? XY)R) = XR.

Proof. (b) For the first equality, it suffices to show V((X™, Y™")R) = {(X,Y)R}. Let p € Spec(R).
Then p € V((X™,Y™)R) if and only if (X™, Y™)R C p if and only if X™ Y™ € p if and only if
X,Y epifandonly if (X, Y)R C p < Rifand only if (X,Y)R = p since (X,Y)R € m-Spec(R). O

Remark. Let k be a field and R = k[X,Y]. Then (X™, Y™)R := {(a,b) | a > X™,b > Y"}. By
binomial theorem,

(X, Y)R)™ = (X", X" Y,.... Y ) R=X"R+ (X" 'V)R+--- +Y™R.
Definition 4.14. p € Spec(R) is associated to M if there exists m € M such that p = Anng(m).

Assp(M) = {p € Spec(R) | p is a associated to M}

= {Anng(m) < R | m € M} N Spec(R)
= {Anng(m) < R|m € M and Anng(m) € Spec(R)}.
. R ifrep
Example 4.15. Let p € Spec(R) and r+p € R/p with r € R. Then Anng(r+p) = b oifrdp

since R/p is an integral domain with Og/, = p and 7 # Og/,. So Anng(R/p) =, .5 Ann(7) = {p}
and Assg(R/p) = p.

Example 4.16. Assume R is UFD and [ = xR.
(a) If z € R*, then zR = R and R/xR = 0. So Assgr(R/zR) = Assg(0) = 0.

(b) If x = 0, then R = 0 and R/zR = R. Since R is an integral domain, Assg(R/zR) =
Assp(R) = {0}.

(¢c) Let x € R~ {R*UO0}. Let z = pi*---p% such that pi,...,p, are distinct primes and
e1,...,e, = 1. Claim Ass(R/zR) = {mR,...,p,R}. “D". Let 2’ = p?—lpgz ---pS. Since R
isa UFD, pR={r € R|ra’ € 2R} = {r € R| r(¢' + 2R) = Ogp/,p} = Anng(z’ + zR). So
p1R € Ass(R/xR). By symmetry, p;R € Assg(R/zR) for i =1,...,n. “C". Let p € Ass(R/xR).
Then there exists § € R/xR with y € R such that p = Anng(3) € Spec(R). Also, since R is UFD,
Amng(y) ={r € R|ry € zR} = p;R for some i € {1,...,n}.

Remark. Let k be a field and R = k[X,Y].

(a) Claim. Assgp(R/(X™,Y™)R) 2 {(X,Y)R}, where we have actually equal sign by later theorem.
Since X,Y € Anng(X™ Y"1 4 (X™ Y")R) and 1 € Anng(X™ Y"1 + (X™ Y")R), we have
Anng(X™ Y"1 4 (X™, Y™)R) = (X,Y)R.
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(b) Assr(R/((X,Y)R)?) D {(X,Y)R} since Anng(XY + ((X,Y)R)3) = (X,Y)R,

(c) Assr(R/(X%, XY)R) D {XR,(X,Y)R} since Anng(Y + (X%, XY)R) = XR and Anng(X +
(X2, XY)R) = (X,Y)R.

Remark.

Proposition 4.17. We have p € Assp(M) if and only if there exists R/p — M.

Proof. Let p € Assg(M). Then there exists m € M such that p = Anng(m). Note pp, : R — M
given by r — rm is a well-defined R-module homomorphism. By the 1IT, there exists a 1-1
R-module homomorphism fi,, = R/p — M. Conversely, if ¢ : R/p — M is a 1-1 R-module
homomorphism, then (1) =: m satisfies Anng(m) = p. O

Theorem 4.18. (¢) Assp(M) C Suppp(M).
Assume R is noetherian and M # 0.

(a) Assr(M) # 0.
(b) ZDR(M) := {zero divisors on M in R} = Uycassp(ar) P

Proof. (c) Let p € Assp(M). Then there exists 1-1 R-module homomorphism R/p — M. So
(R/p)y — M,. Then since (R/p), = R,/pp = Q(R/p) is a field, 0 # Q(R/p). So M, contains a
non-zero submodule. Then M, # 0. So p € Suppy(M).

(b) Let Ar(M) := {Anng(m) | m € M ~ {0}} be a set of ideals of R. Then ZDg(M) =
UJEAR(M) J. Since Og -m = 0, for m € M, Ar(M) # 0. Since R is noetherian, Ag(M) has
a maximal element I := Anng(m) for some m € M ~ {0}. Since M # 0, I # R. Let a,b € R
such that ab € I. Assume a € I. Then am # 0. So I = Anng(m) C Anng(am) € Agr(M). Since
I is an maximal element, I = Anng(m) = Anng(am) € Ar(M). Also, since ab € I, abm = 0. So
b€ Anng(am) = I. Thus, I € Spec(R). O

Remark. (a) implies every element of Ag(M) is contained in an associated prime of M. So for
0 # m € M, there exists p € Assg(M) such that Anng(m) C p.

Theorem 4.19. Let k be a field and R := [, k = {(a1,a2,--+) | a; € k}. Then R is commutative
ring with identity under componentwise operations and 1p = (1,1,1,---). Let I := EB;’; k =
{(ar,a2,--+) € [I;=1k | a; = 0,Vi >> 0}. Then I < R. Let m; = {(a1,a2,---)R | a; = 0} €
m-Spec(R) since p; : R — k given by (a1,az,...,) — a; is a ring epimorphism and Ker(y;) = m;
fori=1,...,m. Note I £ m; fori>1. Also, since I # R, there exists M € m-Spec(R) such that
I CM#m; fori > 1.

Question 4.20. Describe M explicitly.
Remark. (a) Since I is not finitely generated, R is not Noetherian.

(b) Assg(R/I) =0 evenif R/I # 0.
Moral: Previous theorem says if R is noetherian, then Assg(R/I) # (. Also, if M = 0, then
Assp(M) = 0.

Proof. If p € Assp(M), then 0 £ R/p — M. So M # 0. O
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Example 4.21 (Exer). If R is not necessarily noetherian, but M is noetherian over R, then if

M # 0, then Assg(M) = () since R/ Anng(M) is noetherian given M is noetherian.

Remark (Goal). If R is noetherian and M is finitely generated, then |Assp(M)| < oo. (Usually,
[Suppp(M)| = o0.)

Theorem 4.22. Consider a SES 0 — M’ NG VRSN 0.
(a) Suppgr(M) = Suppr(M’) U Suppg(M").
(b) Assp(M) C Assgp(M') U Assp(M").

Proof. (a) Fact: if 0 = A’ - A — A” — 0 is exact, then A = 0 if and only if A’ = 0= A", and
A # 0 if and only if A" # 0 or A” # 0. Let p € Spec(R). Then 0 — M, — M, — M, — 0 is
exact. Note p € Suppy(M) if and only if M, # 0 if and only if M, # 0 or M, # 0 if and only if
p € Suppr(M’) or p € Suppr(M"”) if and only if p € Suppr(M’) U Suppr(M”).

(b) Let p € Assg(M’'). Then there exists R/p — M’ <, M. So there exists R/p — M. Hence
p € Assgp(M).

Let q € Assg(M). Then there exists N C M such that R/q = N. Let « € R/q = N such that
a # 0r/q. Then Anng(a) = g.

Case 1: Assume N NIm(f) # {0}. Then then there exists o € N NIm(f). So f(8) = o # 0 for
some 3 € M'. Since f is monomorphism, Anng(8) = Anng(a) = g. Since 8 € M’, q € Assr(M’).

Case 2: Assume N NIm(f) = {0}. Then Ker(g|ny : N — M") = NNKer(g) = NNIm(f) = {0}.
So g|n is 1-1. Hence R/q = N = g(N) C M". So q € Assp(M"). O

Lemma 4.23. Assume there exists a finite filtration 0 = My C My C M; C --- C M,, = M. Then
(a) Suppg(M) =i, Suppg(M;/M;—1).
(b) Assg(M;) C Assgr(M) C Ui, Assgp(M;/M;_1).

Proof. (a) Induct on n. Base case: n = 0,1, trivial. Assume n > 2 and result holds for any module
with filtration of length n—1. Since M,,_1 has filtration of lengthn—1: 0 = My C M; C --- C M,,_1,
inductive hypothesis implies Suppr(M) = U?;ll Suppp(M;/M;_1). Since 0 — M,y — M, —
M, /M,_1 — 0 is exact, by previous Theorem, Suppp(M) = Suppr(M,) = Suppgr(M,_1) U
Supp (M /My 1) = Ui, Suppp(Mi/M;_1) U Supp (M /My _1) = U, Suppg(M;/M; ).

(b) Similarly. O
Corollary 4.24. If M’ — M, then Assp(M') C Assr(M).

Lemma 4.25. Let M = [[_, M; = @, M;. Then

(a) Suppg(M) = Ui, Suppp(M;).

(b) Assp(M) = ;_, Assgr(M;).
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Proof. (b) Note there exists a finite filtration 0 =: My C [[/_, My C --- C ]_["71 M; CIl, M; =
M. By the 1IT H‘iilMi_ = Mj for j = 1,...,n. So Assg(M) C Uj_, Assg (UJ 11\1;[[) =
Uj= Assr(M;). For j = 1,...,n, define M, — [Ij=; Mj = M by m; — (0,...,0,m;,0,...,0).
By the previous corollary, AssR(M ) C Assp(M). So UJ 1 Assp(M;) C Assp(M )

(a) It is similar. O



Chapter 5

Prime Filtration

Let R be commutative ring with identity.

Theorem 5.1. Assume R is Noetherian and M is finitely generated over R. Then there exists
finite (prime) filtration 0 = Mo C My C --- C M,, = M such that there exists p; € Spec(R) such
that Mi/Mi,1 = R/pl fO?”i =1,... , M.

Proof. It M = 0, use n = 0 (empty filtration). Assume now M # 0. Then there exists p; €
Assg(M). So there exists submodule M; C M such that My /My = My = R/p;. If My = M, then
stop and n = 1. If My # M, then M/M; # 0 and so there exists po € Assg(M/Mj). So there exists
submodule M; C My C M such that My/My = R/py. If My = M, stop and n = 2. Otherwise,
continue the process. Process terminates in finite number of steps since M is Noetherian given R
is Noetherian and M is finitely generated. O

Theorem 5.2. Assume M has a prime filtration 0 = My C My C --- C M, = M such that there
exists p; € Spec(R) such that M;/M;_1 = R/p; fori=1,...,n. Then

(a) Assp(M) C{p1,...,pn} C Suppr(M). So |Assgr(M)| < cc.

(b) Letp € Spec(R). Then p € Suppr(M) if and only if there exists i € {1,...,n} such that p; C p,
i.e., Suppr(M) = UiZ; V(pi).

Proof. (a) Note Assg(M) C Ui, Assgr(M;/M,;_1) = U], Assg(R/pi) = {p1,...,pn}. Note for
i=1,...,n, 0 # (R/pi)p, = (M;/M;_1),, = (&Miig:l, so 0 # (M;)p, € M,,, hence My, # 0 and
thus p; € Suppr(M).

(b) Suppg(M) = U, Suppg(Mi/M;-1) = UiZy Suppr(R/pi) = Uiz, V(pi)- =
Corollary 5.3. Let R be Noetherian and M be finitely generated, then |Assp(M)| < oco.

Remark. M must be finitely generated for this to hold. Fact: Let k be a field and R = k[X]
or R =17Z. Let M = @;2, R/p; such that p1,ps, - € Spec(R) are distinct. Then Assg(M) D

{plaan' }

Example 5.4. Let R be UFD and « € R~ {R* UO0}. Let = p; - - - p,, such that p; is prime in R
fori=1,...,n. Then Assg(R/zR) = {p1R,...,pnR}.
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Proof. “C”. Method 1. Note (0) = (p1---pn)R/zR C (p1-+-pn—1R)/zRC --- T p1R/cR C R/zR
is a prime filtration of R/xR since for i =1,...,n —1,

pi-piR/rR | pi---piR , R

(p1---pis1R)/xR  p1---pisiR piyaR

pi i T

So by previous theorem, Assg(R/rR) C {p1R,...,pnR}.
Method 2. Claim.

R b2 R b1 R R
Do — 5 oo < < = —
pi R prpn—2R  proopnaR O p1,...,pnR xR

T = pnT

is a prime filtration of R/xR. Since Im(¢1) = (p,) and ¢ is 1-1, RI;I/]?}‘I‘II]‘:i?R = ﬁf]éz/);;:?;fR

)
% ~ R/p,R. Similarly, %fpj ~ R/p:R for i = 1,...,n. So Assp(R/zR) C

1

{p1R,...,pnR}. o
“2". For ¢ = 1,...,n, set p; = x/p;, and define R/p;R — R/xR by 7 +— pir. This is a
well-defined monomorphism. So Assg(R/rR) 2 {;mR,...,p,R}. O

Example 5.5. Let k be a field and R = k[X,Y]. Then Assg(R/(X™,Y™")R) = {(X,Y)R} =
Assgp(R/((X,Y)R)™) for m,n > 1.

Proof. Methodl. Since q := (X™,Y"™)R is a primary ideal and rad(q) = (X,Y)R, we have that
Assg(R/(X™ Y™R) = {(X,Y)R}. O

Proof. Note that

0C (melynfl)R/(vayn)R C <Xm—1yn—2> C <Xm—2yn—3> c...C <Xm—1yn—27Xm—2yn—1>.

Define R % (Xm=1yn=1) by r s r Xm=1Yn=1 Since (Xm-1Yn-1) £ 0, (X,Y)R C Ker(r;) € R.
Also, since (X,Y)R € m-Spec(R) , (X,Y)R = Ker(my) € R. Moreover, 71 is onto, by the 1IT,

0+#R/(X,Y)R ;_1> Xm=1yn—1 given by 7 +— r X™~1Y"~1  Simiarly, 0 # 7% é 7()(71;”,)1%.
As before, R 2+ (Xm=1Y"=2) given by 7+ X" 1Y~ 2 with Ker(rz) = (X,Y)R. Continue with
back filtration and use induction on m to show R/(X™Y™) has filtration with m, n terms and each

quotient in the filtration is isomorphic tp R/(X,Y)R. Since <Xm_1<;:jl’§:;;>yn_l>

Xm-2yn—1 ¢ (Xm=1Y"=2) e have this generator is not 0. Note R 2 <Xm7g(::_z{fr:;)ynil)

given by 7 +— rX™=1Y"=2 is onto b/c generators and Ker(y) = (X,Y)R. O

is cyclic and

Remark. In general, if I C k[X,Y] = R and [ is generated by some monomials X*Y7 with 4,5 > 1
and X™, Y™ € I for some m,n > 1, then basis for R/I as k-vector space is finite and the number
of basis vector is the area of A under graph representation. Also, you can use the diagram to
build a prime filtration of R/I with A terms such that each subsequent quotient is isomorphic to
R/(X,Y)R.
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Proof. By induction on A. Assume I # R, then Assgr(R/I) = {(X,Y)R}. Let J := (X%, XY)R C
R =Ek[X,Y]. Since (X,Y)R = Anng(X+J) and XR = Anng(Y+J), (X,Y)R, XR € Assg(R/J).
The prime filtration 0 C (X 4+ J) C R/J. As before, (X +J) = R/(X,Y)R. By 1IT, (XL% =
R/XR. Prime filtration with p; = (X,Y)R and po = XR. So Assg(R/J) C {(X,Y)R, XR}.
Hence Assr(R/J) = {(X,Y)R, XR}. Note for n > 1, Anng(Y"™ + J) = XR. Note 0 é (Y"+J) C
Yrly)C - C{Y+J)C(X+JY +J)C(1+J)=R/J has n+ 2 terms, and n + 1 of the

subsequent quotients are isomorphic to R/(X,Y )R and 1 of the subsequent quotients is isomorphic
to R/XR (*). O

Theorem 5.6. Let R # 0, M is an R-module and U C R is multiplicatively closed.

(a) Suppy -1 p(UTM) = {U~1p | p € Supp (M) and p N U = 0}.

(b) Assy-1r(U™'M) 2{U ' p | p € Assp(M) and pNU = 0}.

(c) If R is Noetherian, then Assy—1r(U1M) ={U"tp|p € Assg(M) and pNU = 0}.

Proof. (a) Note Spec(U*R) = {U'p | p € Spec(R) and U Np = 0}. Since (U M)y-1, = M,,
we have (U~'M)y-1, # 0 if and only if M, # 0 if and only if p € Suppy(M).

b) Let p € Assp(M) and UNp # 0. Then R/p — M. So Y2E = U~Y(R/p) — U~'M. Thus,
U—1p
U~'p € Assp(U~'M).

(c) Assume R is Noetherian and let U~1p € Assy-1z(U~*M). Since R is Noetherian, p is finitely
generated. Let p = (x1,...,2,)R for some x1,...,2, € p. Let m/u € UM such that x;/1 €
U™'p = Amng-1g(m/u) for i =1,...,n. Then % .2 = ( for i = 1,...,n. So there exists u; € U
such that w;z;m = 0 for ¢ = 1,...,n. Let v’ = uy---u,. Then z;u'm = 0 fori =1,...,n. So

R/p 2 M given by r + p — ru’'m is well-defined. Note we have a commutative diagram:

Rlp —*— M

I b

U-Y(R/p) L% UM

Note U~1p = Anny-1z(m/u) = Anng-1z(u'm/1) since “/Tm = “T“/% and “T“/ € (U7'R)*. Since 3

and U~ la is 1-1, we have yo o = (U a) o B is also 1-1. So a is 1-1. Thus, p € Assg(M). O
Remark. Ideals generated by one variable or one linear factor is always prime.

Definition 5.7.

Min(Assg(M)) := sets of minimals of Assg(M).
Example 5.8. Let R = C[X]. Then R is UFD. Let M = X(Xfl)((c)[()ilz)(xfzs)' By previous example,
Assp(M) ={XR,(X —1)R, (X —2)R, (X —3)R}. Since (X —i)RZ (X —j)R for 0 < 4,j < 3 with
i # j, we have Min(Assr(M)) = Assg(M).

Example 5.9. Let k be a field, R = k[X,Y] and M = R/(X? XY)R. Then Assgp(M) =
{XR,(X,Y)R}. So Min(Assg(M)) = {XR}.
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Corollary 5.10. Let q € Spec(R). Then

(a) Suppg, (M) = {pq | p € Suppr(M) and p C q}.

(b) Assr,(Mg) D {pq | p € Assp(M) and p C q}.

(c) If R is Noetherian, then Assgr, (My) = {pq | p € Assg(M) and p C q}.

Proof. Let U = R~ q. Then Xq = (R~ q)"'X = U 'X. Then pN (R~ q) = 0 if and only if
pCa. O

Theorem 5.11. Let 0 # R be Noetherian and 0 # M is a finitely generated R-module with prime
filtration 0 = My C My C --- C M, = M and M;/M;_1 = R/p; fori=1,...,n.

(a) Min(Assg(M)) = Min{p1,...,pn} = Min(Suppg(M)). (Note the equality Min(Assg(M)) =
Min(Suppg(M)) does not need the prime filtration condition.)

(b) Forp € Suppr(M), there exists p’ € Min(Suppg(M)) such that p’ C p and |[Min(Suppg(M))| <
0.

(c¢) Forp € Spec(R), there exists p’ € Min(Spec(R)) such that p’ C p and |Min(Spec(R))| < co.

Proof. (a) Assume p € Min(Suppy(M)). Then p € Suppr(M) and so M, # 0. Also, there exists
q € Assp(M) such that q C p. Since R is Noetherian, R, is also Noetherian. So Assg, (M,) # (.
Then q, € Assg,(M,). Note q € Assp(M) C Suppg(M). By the minimality of p in Supppg(M)
and q C p and q € Supppr(M), we have p = q € Assg(M). Claim. p € Min(Assg(M)).

Since R is Noetherian and M is finitely generated, we have |Assp(M)| < co. Then there
exists p’ € Min(Assg(M)) such that p’ C p. Note p’ € Suppg(M). By the minimality of p in
Min(Suppr(M)) again, we have p = p’ € Min(Assr(M)). Thus, we have our first conclusion that
Min(Suppr(M)) € Min(Assg(M)). Claim. Min{py,...,pn} C Min(Suppr(M)).

Let p; € Min{p1,...,pn} C {p1,-..,pn} C Suppr(M) since we have shown in previous proof
that M,, # 0 for i = 1,...,n. Suppose p’ € Suppy (M) such that p’ C p;. By theorem 5.2, we have
there exists p; € {p1,...,pn} such that p; C p’ C p;. By the minimality of p,;, we have p; C p; C
p’ Cp;. Sop’ =p; =p,. Thus, p; € Min(Suppp(M)). Claim. Min(Assg(M)) C Min{p1,...,pn}.

Let p; € Min{py,...,pn}. By just previous argument, we have p € {p1,...,pn}. Then p = p;
for some ¢ € {1,...,n}. Since |[{p1,...,pn}| < 00, we have there exists p; € Min{p1,...,p,} such
that p; C p; = p. By what we have shown, we have p; € Min{pi,...,p,} C Min(Suppp(M)) C
Min(Assr(M)) 3 p, i.e., p;,p € Min(Assg(M)). By the minimality of p, we have p; = p;, = p.

(b) Let p € Suppg (M), by theorem 5.2, we have there exists p; C p for some ¢ € {1,...,n}. Since
Min(Suppp(M)) = Min{pi,...,p,}, we have there exists p; for some j € {1,...,n} such that
p’ :==p; Cp; Cp. So [Min(Suppp(M))| = Min{p1,...,pp}| < n < o0.

(¢) Take M = R. O

Definition 5.12. Let 0 # R be Noetherian and 0 # M is a finitely generated R-module with
prime filtration 0 = My € My C --- C M,, = M and M;/M;_1 = R/p; for i = 1,...,n. Let
Ming(M) := Min(Assg(M)). Then p € Ming(M) is a minimal prime of M or an associated prime
of M. If q € Assr(M) ~ Ming(M), then q is an embedded prime of M. Fact: If p C q, then
V(g) € V(p). So Suppr(M) =U;Z, V(p:) = Up.emingpr.opnt V) = Uy, emin(suppr(ary) V(Pi)-



Chapter 6

Prime Avoidance and Nakayama’s
Lemma

Let R be a nonzero commutative ring with identity.

Lemma 6.1 (Prime avoidance). Let I1,...,I,,J < R. Assume one of the followings:
(a) R contains an infinite field as a subring;

(b) The ideals Iy,...,I,_2 € Spec(R).

Then if J C JI, I;, then J C I; for some i € {1,...,n}, ie, if J € I; for i = 1,...,n, then
Jg UZ‘I=1 I;.

Corollary 6.2. Let R be Noetherian and 0 # M a finitely generated R-module. If J < R such
that J C ZD(M), then there exists p € Assg(M) such that J C p.

Proof. Since R is Noetherian and M is finitely generated, O # Assg(M) = {p1,...,pn} for some
P1,...,Pn € Spec(R). Then J C ZD(M) = UpGAssR(M) p=p1U---Up,. So by Prime avoidance,
J Cp; for some i € {1,...,n}. O
Corollary 6.3. Let R be Noetherian and 0 # M be finite R-module. Then m € m-Spec(R) contains

a non-zero divisor on M if and only if m & Assg(M), i.e., m consists entirely of zero-divisors on M,
ie., m C ZD(M)) if and only if m € Assr(M).

Proof. “=". Assume m C ZD(M). Then by previous corollary, there exists p € Assg(M) such
that m C p. Since m € m-Spec(R), m = p.
“<=". Assume m € Assr(M), then m = Anng(m) for some 0 #m € M,som CZD(M). O

Example 6.4. For I < R, there exists M # 0 such that I C ZD(M). For example, M = R/I.
Definition 6.5. Let I < R and M is an R-module. Then the submodule of M

finite
IM={imeM|icTandme M}=3 > im;|ijc€l,mjeM
J
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Fact 6.6. M/IM is an R/I-module. (r +I)(m +IM) = (rm)+ IM or 7 -m = 7m.
Definition 6.7. R is local if it has a unique maximal ideal m, “(R, m) is a local ring”.

Fact 6.8. R is local if and only if R~ R* < R. If this is true, then m = R~ R*. So if R is local,
then forx em, 1 —z,1+x € R* sinceif xr e mand 1 ¢ m, then 1 + = & m.

Lemma 6.9 (Nakayama’s lemma, N.K.A.). Assume (R, m) is local and M is a finitely generated
R-module. Then TFAE.

(i) M =0.
(ii) M =mM.
(iii) M/mM = 0.

Proof. “(i)=(iii)==(ii)” is straightforward.

“(ii)==(i)”. Assume M = mM. Since M is finitely generated, mM = M = m(mq,...,m,,) for
some my, ..., My, € M. Suppose no proper subsequence of mq, ..., m, generates M. Since m, € M,
there exist 71,...,7, € msuch that my =Y, rimy, e, (L—ri)my =Y i o rim; € (ma,...,my).
Since 1—r; € R*, we have my € (mg,--+ ,myp). So M = (mq,...,my,) C (ma,...,myp) C M. Thus,
M = (mg, - -my), which is contradicted by the minimality of generating sequence mq,...,m,. O

Example 6.10. Let K be a field and set R = K x K. Define R = K x K 2% K by (a,b) — b.
Then @9 is an epimorphism. Note m = Ker(yz) = K x 0 is a maximal ideal of R. Let M =0 x K
be a cyclic R-module generated by (0,1). Note mM = (K x0)-(0x K) ={(0,0)} =0. Let n = M.
Then nM = (0x K)-(0x K) =0x K = M, but M # 0, so in order to use a maximal ideal in
N.A K., R must be local.

Fact 6.11. If A is a ring and p € Spec(A), then A, is local with unique maximal ideal p,. Also,
if A is an integral domain and U C A is multiplicatively closed such that 0 € U, then U~ 'A4 is an
integral domain; moreover, U1 A C Q(A) a field of fraction.

Example 6.12. Let R be an integral domain, local but not a field. For example, Z, or K[X]x).
Let M = Q(R). Since R is not a field, m # 0. So m - Q(R) = Q(R), but Q(R) # 0. So in order
to use a maximal ideal in N.A. K., M must be finitely generated.

Corollary 6.13. If (R, m) is local, Noetherian and not a field, then m? < m.

Proof. Since R is Noetherian, m is finitely generated. If m?> = m, then m = 0 by NK.A., a
contradiction since R is not a field. O

Corollary 6.14. Assume R is Noetherian and 0 = M is a finitely generated R-module.

(a) If R is local and not a field with maximal ideal m and m & Assg(M), then m \ m? containsa a
non-zero divisor on M.

(b) m € m-Spec(R) such that m? # m and m & Assg(M), then m \ m? contains a non-zero divisor
on M.
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Proof. (b) Since R is Noetherian and 0 # M is a finitely generated R-module, §) # Assgr(M) =
{p1,...,pn} for some pi1,...,p, € Spec(R). Prime avoidance: pi,...,p,, m?, where py,...,p, are
primes and m? is not prime. Since m ¢ Assr(M), m € p; for i = 1,...,n. Also, since m # m?,
mZp;U---Up, Um? by N.K.A.. So there exists z € m ~ m such that x & p; U---Up,, = ZD(M)
since R is Noetherian and M # 0.

(a) It follows from part (b). O

Corollary 6.15. Let (R, m) be local and M be an R-module. Let N C M be a submodule such
that M/N is finitely generated over R. If M = N + mM, then M = N.

Proof. Note m- £ = ®MEN — M By NAK., M/N =0. So M = N. O

Definition 6.16. Let M be a finitely R-module. A minimal generating sequence for M is a
generating sequence mi, ..., m, such that no proper subsequence generates M.

Example 6.17. Let R = K[X,Y], then {X,Y} is mininal generating sequence for (X,Y).

Corollary 6.18. Let (R, m) be local and K = R/m. Let M be a finitely generated R-module and
mi,...,My € M.

a) M/mM is a finitely generated vector space over K via scalar multiplication (r4+m)(m+mM) =
rm) +mM, ie., 7 - M = Fm.

(
(
(b) M = R(myq,...,my) if and only if my,..., M, € M/mM spans M/mM as a K-vector space.
(

c) my,...,my, € M is a minimal generating sequence for M if and only if m4,...,m, € M/mM
is a basis for M /mM over K. In particular, every minimal generating sequence for M has the same
number of elements, namely, dim g (M/mM).

Proof. (a) Check scalar multiplication is well-defined. Then K-vector space axioms follow directly
from R-module. For example, 7#(3-m) = 7-35m = r(sm) = (rs)m = 75-m = (F-35)m. Let
M = R(m},...,m]) for some m},...,m, € M. Then m},...,m,, spans M/mM over K clearly.

(b) “==". Done by (a).

“<=". Assume my,..., M, spans M/mM. Claim M = R(mq,...,my,)+mM. “27. It is clear.
“C”. Let m € M. Then there exists 71,7, € K such that m = Y | 7;-m; = > ., rym; in
M/mM. Som—Y__ rim; € mM. Thenm € R(my,...,my)+mM. So M C R(my,...,my,)+mM.
Thus, M = R(mq,...,my) + mM = R(mq,...,mp).

(¢) “=”. Assume mg,...,m, is a minimal generating sequence for M. By (b), m1,...,m, is
a spanning set for M/mM over K. Suppose my,...,m, is not a basis. We can rearrange m;’s
if necessary to assume mMmy,...,M,_1 also spans M/mM. By (b) again, we have my,...,m,_1

generate M over R, which is contradicted by the minimality of the original generating sequence.

“«<=". Similarly, apply (b) twice. O

Corollary 6.19. Let (R, m) be local and P is a finitely generated projective R-module. Then P
is free and P = R™, where n := dimg (P/mP).
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Proof. Let K = R/m. Then P/mP is a n-dimensional vector space over K. So by previous corollary,
there exist p1,...,p, € P such that it is a minimal generating sequence for P. Note P/mP = K™.
Define 7: R" — P by e; —p; fori=1,...,nand > ., rie; — > . rip;. Then 7 is a well-defined

R-module epimorphism with Ker(r) =: H. So the sequence 0 — H S R" I P - 0 is exact.

It suffices to show H = 0. Since P is projective, the sequence splits. So R* =2 H@® P = H,
where 7 is the natural surjection. Since R" is a free R-module, H is finitely generated over R.
Then (R/m)* & R"/mR" = (H @ P)/m(H & P) ¥ H/mH & P/mP = H/mH & K". Since
isomorphic vector spaces have the same vector space dimension, we have n = dimg (H/mH) + n.
So dimg (H/mH) = 0. Hence H/mH = 0. Thus, H = mH. Since (R, m) is local and H is finitely
generated R-module, by N.A.K., we have H = 0. O

Lemma 6.20. Let R be Noetherian, 0 # M, N be finitely generated R-modules and I < R such
that Suppg(N) = V(I). If I C ZD(M), then Homg (N, M) # 0.

Proof. Since I C ZD(M), there exists p € Assg(M) such that I C p by previous Corollary. Claim
Homp, (Ny, My) # 0. Since p € Assr(M), there exists R/p — M. So R,/pp = (R/p)y — M,.
Since I C p, p € V(I) = Suppr(N). So N, # 0. Since N is finitely generated over R, we have
0 # N, is a finitely generated R,-module. Since (R,,p,) is local, 0 # N, /p, N, is a vector space
over R, /py. So there exists surjection 7 such that

Np/ppNp —— Ry /pp

[

Ny ——— M,
commutes. So 0 # Hompg, (Ny, M) = Hompg(N, M). Thus, Homg(N, M) # 0. O

Corollary 6.21. Let R be Noetherian and 0 # M be a finitely generated R-module and I < R. If
depth(I; M) = 0, then Hompg(R/I, M) # 0.

Proof. Since depth(I; M) = 0, I C ZD(M). Since M = 0, I # R. N = R/I # 0 is finitely
generated. Also, Suppr(N) = Suppg(R/I) = V(I). So Homg(N, M) # 0. O

Lemma 6.22. Let M, N be finitely generated R-modules, then Assg(Hompg (M, N)) = Suppg(M)N
Assg(N).

Proof. If M = 0, then Homgr(M,N) = 0. So Assg(Homgr(M,N)) = 0 = 0 N Assg(N) =
Suppr (M) N Assg(M). Similarly, if N = 0, then done. Assume now M, N # 0.

“C”. Let p € Spec(R). If p & Suppg(M), then M, = 0. So (Homg(M, N)), 2 Hompg, (M, N,) =
0. Then p & Suppg(Hompg (M, N)). So p &€ Assg(Homp(M, N)). Thus, if p € Assgr(Hompg(M, N)),
then p € Suppp(M). Since M is finitely generated, there exists ¢ > 1 such that R® — M. Then
Hompg(M,N) — Hompg(R', N) = N* Thus, Assgp(Hompg(M, N)) C Assgp(N') = Assgr(N).

“D”. Let p € Suppgp(M) N Assg(N). Claim 1: Hompg(M,R/p) # 0. Since M is finitely
generated, p € Suppr(M) = V(Anng(M)). So Anng(M) C p. Then Anngr(M) - R/p = 0. So
Anng(M) C ZD(R/p). Thus, Homg(M, R/p) # 0. Claim 2. Let 0 # o € Hompg(M, R/p), then
Anng(a) =p. “27. z €pifand only if z- R/p = 0 if and only if z-«(m) = 0 for m € M if and only
if (za)(m) =0 for m € M if and only if zaw = 0, i.e., x € Anng(a). “C”. Let y € Anng(a. Since
a # 0, 3m € M such that Og/, # a(m) € R/p. Then 2 - a(m) = 0,V € p. Since p is prime, (no
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other r € R~ p such that r - a(m) = 0) Anng(a(m)) =p. Since y -« = 0, we have (y - «)(m) =0,
ie, y-alm) =0. Soy € Anng(a(m)) = p. Next, let 0 # o € Hompr(M, R/p). Define R 2,
Homp(M, R/p) by r +— ra. Then Ker(¢) = Anng(a) = p. By the 1IT, R/p — Homp(M, R/p) by
7+ ra. Since p € Assg(N), there exists R/p — N. So

Homp(M, R/p) —— Homp(M,N)

| =

R/p
Thus, p € Assp(Homp(M, N)). O
Example 6.23. Let K be a field, then

Suppp Assp
R=K[X,Y] Spec(R) {0}
A=R/(X. V)" [{(XV)} | {(XY)}
B=R/X"Y") [{(X,V)} | {X,V)}
C=R/(X%XY)| V(XR) | {XR,(X,Y)}
}

Regard sets as elements in big sets, we have {(X,Y)} N {0} = 0. Then Assg(Hompg(A, R)) =
Suppp(A4) N Assgp(R) = {(X,Y)} N {0} = 0. Claim Hompg(A,R) = 0. Let 8 € Hompg(A, R).
Note (X,Y)"- A =0and (X,Y)" - R # 0. Assume 8 # 0. Then there exists a € A such that
Bla) =r € RN0. So0# (X, Y)"-r=(X,Y)" - B(a) =B((X,Y)"-a) = B(0) =0, a contradiction.
Thus, 8 = 0. Next, Assg(Hompg(B,C)) = Suppr(B) NAssg(C) = {(X,Y)R} N{XR,(X,Y)R} =
{(X,Y)R} # 0.
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Chapter 7

Regular Sequences and Ext

Let R be a nonzero commutative ring with identity.

Definition 7.1. Let M be an R-module. Then x € R is M -regular if
(a) x € NZD(M),

(b) aM # M.

Remark. (a) is understood in terms of Assp(M).

Remark. Observe if (R, m) is local, z € m and M # 0 is finitely generated, then by N.A.K, we
have xM # M.

Definition 7.2. Let I < R. Then a sequence aq,...,a, € I is M-regular if
(a) a1 € NZD(M),

(b) a; € NZD(M/(a1,...,a;—1)M) fori=2,...,n,

(c¢) (a1,...,an)M # M.

An R-regular sequence is called simply a regular sequence.

Remark. If IM # M, then (aq,...,a,)M CIM C M, and then (c) is automatic. For example, if
(R,m) is local and M finitely generated and M # 0 and I C m < R, then by N AK., IM CmM C
M, and then (c) is automatic.

Remark (Reasoning). Note for i = 2,...,n, we have — %//((2112711)) i en Mé (;l]lw(;lfl()lM 7 &
v i e R
(al,...,ai)IW'

Example 7.3. X, Y (1-X), Z(1—X) is aregular sequence in C[X,Y, Z] while Y (1-X), Z(1-X), X
is not a regular sequence.

Definition 7.4. Let I < R. Then aq,...,a, € I is a mazximal M -regular sequence in I if ay,...,a,
is a M-regular sequence such that for b € I, aq,...,a,,b is not a M-regular sequence.

(6]
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Example 7.5. Let k be a field. Then X;,..., X, is k[X1,..., X, ]-regular (actually only need k
be a nonzero commutative ring with identity).

Proof. Note X, € k[X1,...,X,] is a NZD and % ~ k[X,,...,Xn] # 0. Induct on n and

note (X1, ..., Xn)k[X1,..., Xn] # k[X1,..., X O

Example 7.6. Let R = Z and n > 2, then n is Z-regular. Note n is non-zero, non-unit in the
integral domain Z. Note Z does not have any regular sequences of length 2.

Proof. Suppose m,n is Z-regular with m € Z. Then m is non-zero and non-unit. If ged(m,n) =1,
then since nZ + mZ = ged(m,n)Z = Z, we have n - Z/mZ = (m,n)Z/mZ = Z/mZ. So n is not
Z/mZ-regular. If ged(m,n) = d > 2, then 7,5 € Z. Since n - (% + mZ) = m - 5 + mZ = Oz/mmz,
we have n € ZD(Z/mZ). So n is not Z/mZ-regular. O

Example 7.7. A field k£ has no regular sequence since a € k is either 0 or a unit.

Example 7.8. Let R = k[X]/(X?). If a,b € k with b # 0, then (aYJrB)(er%) = 1. So non-units
of k[X]/(X?) are aX,a € k. Note aX - X = 0. So aX € ZD(k[X]/(X?)). Thus R has no regular

sequences.

Theorem 7.9. If R is noethrian and M is any R-module, then M has a maximal regular sequence.
Moreover, every M-reqular sequence in I extends to maximal M -reqular sequence in I.

Proof. Suppose (a1)M C (a1,a2)M C (a1,a2,a3)M C ---. Then we have (a1)R € (a1,a2)R

= =

C
(a1,az2,a3)R C - - -, contradicting that R is noetherian. O]

Remark (Algorithm). Let R be noetherian and local with maximal ideal m and 0 # M is a finitely
generated R-module. Find a maximal M-regular sequence in m. Note (c) is automatic.
(a) If m € Assp(M), then m C ZD(M), so § is maximal M-regular sequence and we stop.

(b) Assume m ¢ Assg(M). Since m is the unique maximal ideal, ZD(M) = U,cpss,(ar) & M- SO
there exists 1 € m \ ZD(M). Then x; € m ~\ p for p € Assg(M).

(c) Repeat with the module M/z1M. If m € Assgr(M/x1 M), then m C ZD(M/x1M). So z; is
maximal M-regular sequence and we stop. If m € Assg(M/x1 M), find x2 € m~p for p € Assg(M).

(d) Repeat with M/(z1,22)M.

Since R is noetherian, I contains a maximal M-regular sequence. So process terminates in finite
number of steps.

Lemma 7.10. Let R be noetherian and I < R. Then
(a) rad(I) = Npeviry P = Npeassp(r/n P = Nperting(r/1) P-

(b) If I = i, p; for some n € N and p; € Spec(R) for i = 1,...,n, then Assg(R/I) =
Ming(R/I) = Min{p1,...,pn}.

C If 1 1S an lntereCthH Of leIIle ldealb, tllell lt 1S an llltereCtloll Of a ﬁIllte IlllIIlbeI Of leIIle
. . . . . . . . .
ldeals.
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Proof. (a) By definition, Ming(R/I) = Min(Assg(R/I)). Claim. p € Suppp(R/I) if and only if
there exists q € Ming(R/I) such that q C p. Since R is noetherian, R is a R-module and then
R is finitely generated. So M := R/I is finitely generated. Hence there exists prime filtration
0=My C M; C--- C M, =M such that for i = 1,...,n, there exists p; € Spec(R) such that
M;/M;_1 = R/p;. Then by theorem 5.11, Ming(R/I) = Min{p,...,pn} = Ming(Suppr(R/I)),
p € Suppgp(R/I) if and only if there exists ¢ € Ming(R/I) such that ¢ C p. Thus, rad(l) =

Mpevin® = Npesuppp(r/n P € Noeassnr/n P € Npeming(r/n P S Npesuppp(r/1) P-

(b) Reorder the p;’s if necessary to assume that {pq,...,p;} = Min{p1,...,p,}. So I = ﬂgzl ;.
By theorem 5.11(a), p1,...,p; € Ming(R/I) = Min(Suppg(R/I)) = Min(V(])). It suffices to show
p; € Min(V(I)) for i = 1,...,5. Since I =(\;_, pr C p;, we have p; € V(I). Suppose p € V(I) and
p C p;. By the definition of prime ideal, p; ---p; C ﬂi:l pr =1 C p. So there exists k € {1,...,j}
such that pr C p C p;. Since p; € Min{py,...,pn}, we have p; C pr Cp C p;. So pr = p,;. Hence
p = p;. Thus, Min{p1,...,pn} = {p1,...,p;} € Ming(R/I). Claim. Assr(R/I) C {p1,...,p;},
then done with (b) since we will have Ming(R/I) C Assg(R/I) C Min{p1,...,pn} € Ming(R/I).
Let p € Assg(R/I). Then there exists 0 # & € R/I such that p = Anng(%Z). Then x € R\ I,
p-xCIl= ﬂgzl p;. Since = & ﬂle pi, we have there exists k € {1,...,7} such that z & px. Then
p-xC ﬂ;::l pi C pi. Since x & pi, p C pi. Subclaim. py, € Assp(R/(i_y ps) for k=1,...,n. Let
(existence?) = € [, p; but @ & py.. Then = & [V, pi. So pr - C pr N (N Pi) = iz pi- Note
pr iy Pi © iy pi- Hence pr(z+ (i, pi) = pr-x+pr (V;—; pi = 0. Thus, pj, € Assp(R/ N, pi)
for k=1,...,n. Since p,py € Assgp(R/I) and py € Min((V(I)), we have p = py.

(c) Since I is an intersection of prime ideals, then by (a), I = rad(I) = Nyening(r/) P- O
Example 7.11. Let k be a field, and R = K[X,Y]x y) is local with m = (X,Y)R. Let M =

R/(XY)R. Since (X,Y)R = (XR) N (YR) and Min{zR,yR} = {zR,yR} by previous lemma,
we have Assp(M) = {zR,yR}. Need a1 € (z,y)R ~ (xkRUyR), e.g. a1 = fx + gy such that

R/(zxzy)R ~ ~ R/(x—y)R
x{ar and y {a;. eg a; =z —y. Then M/a;M = (zfy;(Rz/JZmy)R = (miyiy)R = my_g(/(m2>y)R.
Note R/(x — y)R = % & K(z](y), i-e., killing x — y is the same as setting y = .

Note m €

~ ~ xTr— ~ Kz
Also, zy - R/(xz — y)R = (2*)K|[z] (). So M/(z —y)M = w%(/(wﬁ)ﬁR = ($2)[K][(w])<m). Nc

Assp(M/(x —y)M). Claim. Anng(Z € M/(zx —y)M) = (z,y)R =m. “D”. z-T =22 =01in
%. Also, zy = 2T = 07 “C”. Since z € 2*K|[x,y], we have 0 # T € K(z](y)/(2?)K[z]().
So Anng(z) # R. But since max’l m C Anng(Z) € R, m = Anng(z). Thus, (z — y) is a maximal
M-regular sequence in m.

Fact 7.12. Let f : A — A" and g : A — B’ be R-module homomorphism. Then for i > 0,
there exists R-module homomorphism Ext (A, g) : Exth(A, B) — Exth(A, B') and Extiy(f, B) :
Ext%(A’, B) — Exth(A,B). If f': A’ — A” and ¢’ : B’ — B” are also R-module homomorphism,
then the following diagram commutes.

Exty (A, B) 59 g4, BY)

. Ext}(4,9")
Ext;(m l R

Ext% (A, B")
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So Ext’(A, ¢ 0 g) = Extih(A,g') o Extih(A4, g). Also

Extly (A", B) 2R2U5B) i (47, B)

Exti (f,B
Ext%(fm) l ()

Ext% (A, B)
So Extzk(f’ of,B)= Extﬁz(f, B)o Extzé(f', B). Also, the following diagram commutes.

f/

A 9 B’ A A
Qlokt lq f"o\ Tf
B A

Thus, Ext% (A, —) and Ext%(—, B) respect composition.

Fact 7.13. When f and g are 0 maps, i.e., f = Oﬁ, and g = Og,, we have Extlé(A,Og,) =0=
Ext% (04, B).

Proof. Since 04, = 09, o 0!, we have

/02\’
A +——0

commutes. So Ext’(04,, B) = Ext% (04, B)oExt%(09,, B) = 0. Our byproduct is that the following
diagram commutes.

) Ext% (0%,,B )
Extin (4, B) 220 B poii 0, By = 0

DA lExtg(Og‘,B) O
EXtR(OA,,B):O

Ext(A, B)

Fact 7.14. Let a € R. Then p? : B %% B given by b + ab is an R-module homormophism.
Since Ext%(A,uf) : Ext%(A,B) =, Eth{(AvB); we have Ethﬁ(Avl%aB) _ ,uaExt;%(AyB).
Ext% (us, B) : Exti(A, B) %5 Ext% (A, B), we have Exth(us, B) = MaExtg(A,B).

Since

Fact 7.15. Let 1 € R and id4 : A — A and idg : B — B. Then Ext(id4, B) = Ext’h(uf', B) =

Ext% (A,B . i . i Exti (A,B .
1 tRAE) - idpxei, (4,p) and Extp(A,idp) = Exty(A, p7’) = 1 B - idgxiz, (4,8)-

Lemma 7.16. Let M and N be R-module Then Anng(M)U Anng(N) C Anng(Exty (M, N)) for
i >0, i.e., if z € R such that zM =0 or N = 0, then z - Extz (M, N) = 0 for i > 0.

Exth (M,N)

Proof. Let * € R. Assume M = 0. Then p¥ = 0. Note pg : = Exth(uM, N) =
Ext% (04, N) = 0. Assume zN = 0. Then pY = 0. Note NEX%(M’N) = Exth(M,pul) =

Ext's(M,08) = 0. O
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Example 7.17 (Previously). Let d = ged(m,n). Since Anng(Z/mZ) U Anng(Z/nZ) = mZ U nZ,
we have Ext}(Z/mZ,Z/nZ) = 7./ dZ.

Remark. Anng(M) + Anng(N) C AnnR(Ext’}é(M, N)) for ¢ > 0. Note in general, it is C. For
example, since Ext3(Z/mZ,7Z/nZ) = 0, we have Anng(Ext3(Z/mZ,7Z/nZ)) = Z. But in gen-
eral, Annz(Z/mZ) + Annz(Z/nZ) = mZ + nZ = gcd(m,n)Z # Z. So Anng(M) + Anng(N) C
Nizo Anng(Exty (M, N)).

Theorem 7.18. Assume R noetherian and I < R and M f.g. R-mod. such that IM # M. Let
n € Ng. Then the followings are equivalent.

(a) BExtls(N, M) =0 fori <n for finitely generated R-module N such that Suppz(N) C V(I).
(b) Exto(R/I, M) =0 fori < n.
(c) Ext(N, M) =0 fori < n for some finitely generated R-module N such that Suppg(N) = V(I).

(d) Every M -reqular sequence in I of length < n can be extended into an M -regular sequence in I
of length n.

(e) M has a regular sequence of length n in I.

Proof. “(i)==(ii)==(iii)” since Suppr(R/I) = V(I).

“(iii)==(iv)”. Assume N is f.g. R-mod. with Suppg(N) = V(I) such that Exth(N, M) =
0 for i < n. If n = 0, results are trivial. Assume n > 1. Since Ext%(N, M) = 0, we have
Homp (N, M) = 0. By lemma ??, there exists a; € NZD(M). Now induct on n € N. If n = 1,
then done since start with a M-regular sequence of length 0 or 1 can be extended to a M-regular
sequence of length 1. Inductive step: Assume n > 2 and result holds for any finitely generated N’
such that Ext'(N’, M) = 0 for i < n— 1. Start with a M-regular sequence ay, ..., ax € I such that
k < n. If kK = n, then done. If k = 0, then by previous argument, there exists M-regular a; € I.
Assume 1 <k <n—1. Since 0 > M 25 M — M/ayM — 0 is exact, the long exact sequence in
Exth (N, —) is

0 ——— Homp(N, M) —**— Homp(N, M) —— Homp(N, M/a; M) U

[» ExtL(N, M) —— 5 ...

0 = Exth(N, M) —— Exto(N, M/a; M) U

[» 0= Extif (N, M) —— -

where i <n —1 <n. Soi+1 < n. Hence Exth(N, M/ayM) = 0 for i <n — 1. Since ag, ..., a
is a M /a; M-regular sequence in I of length k — 1 < n — 1, by inductive hypothesis, we can extend
it into a M-regular sequence as,...,ak,...,a, of length n — 1. Thus, a1,...,ax, - an € [ is a
M-regular sequence of length n. (Check: if IM # M and a; € I, then I - M/a1M # M/a1M.)

“(iv)=(v)”. Assume (iv). Then the empty sequence can be extended to an M-regular sequence
in I of length I.



80 CHAPTER 7. REGULAR SEQUENCES AND EXT

“(iv)=(v)”. Assume M has a regular sequence ay,...,a, € I. Let N be a finitely generated R-
module such that Suppy(N) C V(I). NTS Ext% (N, M) = 0 for i < n. By induct on n. Base case:
n = 1. NTS Hompg(N, M) = 0. Since N is finitely generated, V(Anng(N)) = Suppg(N) C V(I).
So I C Anng(N)j. Since a; € I, a} € I' C T C Anng(N) fort > 1. Soa!N =0 for t > 1.
Since 0 — M % M — M/a;M — 0 is exact, we have 0 — Homp(N, M) “% Hompg(N, M)

and for t > 1, 0 — Hompg(N, M) ESR Hompg(N, M) are exact. Since a!N = 0 for ¢t > 1, we have
Hompg (N, M) = 0. Inductive step: Assume n > 2 and I contains a M-regular sequence aq, ..., a,—1
of length n — 1. By inductive hypothesis, Ext’ (N, M) = 0 for i < n— 1, and I contains a M /a; M-
regular sequence ag, ..., a, of length n — 1. Then by inductive hypothesis, ExtE(N, M/a1M) =0
for i < n —1. NTS Ext}y '(N,M) = 0. Since 0 — M 5 M — M/a;M — 0 is exact, the long
exact sequence in Exth (N, —) is

0 —— Homp(N, M) —2— Hompg(N, M) ———— Hompg(N, M/a, M) U

[» Extp(N,M) ———— ---

i 0 =Ext} %(N,M/a; M) U

L Extly (N, M) —= Ext% (N, M)

Thus, Ext}; ' (N, M) = 0. O



Chapter 8

Homology

8.1 Chain complexes and homology

Definition 8.1. A chain complex of R-modules and R-module homorphisms (R-complex, R-cplx,
R-cx or R-cpx) is a sequence

M GH ZH oM M,
; ; ; M
(Mo,0,") =+ ——= Miys — M; =— M;_y — ---

of R-modules and R-module homorphisms such that 92 o 6‘%_1 = 0 for n € Z, where the dot
differentiates the complex from a module, and d, denotes the collection of all the 9;’s.

Let (M,,0M) be a chain complex.

Definition 8.2. 9M is the i*® differential of the chain complex. 9} is called the differential of the
complex.

Definition 8.3. M, is bounded below if M; = 0 for all sufficiently small (megative) 4; a complex is
bounded above if M; = 0 for all sufficiently large (positive) i; a complex is bounded if M; = 0 for all
sufficiently large |i|.

For complexes bounded below we abbreviate “0 — 0 — 0 — 0 — ---” to one zero module, and
similarly for complexes bounded above.

Definition 8.4. Define the i*" homology module by

~ Ker(oM)

H;(M,) = Im(a»]‘f_l)

Vi e Z,

which is the i*" homology module of M.
Lemma 8.5. H;(M,) measures how far M, is from being exact at M;.

Definition 8.6. M, is exact at the i*" place if H;(M,) = 0. M, is exact if and only if H;(M,) = 0
for all ¢ € Z.

81
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Remark. If M, is exact, then it decomposes into short exact sequences

0 — Ker(0M,) — M;—; — Im(0™,) — 0
[

0 — Ker(0M) — M; — Im(0M) —— 0

0— Ker(@%l) — M1 — Im(az‘]\f-l) —0

etc.

Definition 8.7. M, is free (resp. flat, projective, injective) if all the M;’s are free (resp, flat,
projective, injective).

Remark. Free, projective, flat resolution are not uniquely determined, in the sense that free
modules and the homomorphisms are not uniquely defined, not even up to isomorphisms.

ar ay af

Example 8.8. Let M be R-module. Let Pl = ... = P, =25 P, - Py 5 M — 0 be an
augmented projective resolution of M. Then P is a chain complex with H;(P,”) = 0 for i € Z.
P P P
Note P, = --- %, P %, P 4, Py — 0 is also a chain complex since 9} o ﬁipﬂ =0fori>1,
Of 00f =000 =0and 87 00, =0-0, =0forie Z<". SoH;(P,) =0 forieZ {0} and
_ Ker(Py—0) _ P, _ P ~ _
Ho(P,) = Im(P10—>P1) = Im(gf’) = Rer(r) = Im(7) = M.
g g e

Theorem 8.9. If the compler Qo = -+ — Q2 — Q1 — Qo — 0 is projective and H;(Qs) = 0
fori € Z~ {0}, then Q. is a projective resolution of Ho(Q).

Proof. Note Ho(Q,) = Kelr(%’;;o) =: ?(,;’Q). Let m: Qo — Qo/Im(A7) be the natural projection.

m{dy m(0;

Q

a9 ) o - .
Then QF : - == Q2 2 Q1 — Qp — — 0 is exact. O

Qo
Im(87)
Remark. A complex might be naturally numbered in the opposite order:

(M.’a.):ﬂMlilﬂMli}

we call it co-complex. The i** cohomology module is

we) = S0 yie g

~ Im(0i1)
If (M*,0°) is a co-complex, then

80

—2 —1 1 2 3
M2 N 0 O 2 2 2y 2

After renaming N,, = M~"™ and d,, = 0~", we convert the co-complex into the complex:

d? d—t

1 0
—>N1d—>N0d—>N*1

d73

—2
N2 N21L N,
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The naming can be even shifted: F,, = M~"%2 and e,, = 0~ "2 converts the co-complex into the
following complex:

-3

2_ 40 1 0 —1 _2
P =N S PO e L Pl L

- F%(= N9
Similarly, any complex can be converted into a co-complex, possibly with shifting.

Definition 8.10. Let NV be an R-module.

(a)

H (N,0M,) H (N,0M ) H N,oM
Homp(N, My) = -+ - ZomatGite) Homp (N, M; 1) SomRrUN i) Homp(N, M;) Homp(N.07) ,
or denote it as
(0}2)- i oM,
My, = —25 Mg, M, s
(b)
H M N H M N H oM N
Homp(Ma, N) = -~ 20D o p(Mi_y, N) 2225 O0N), om0, Ny om0
or denote it as
oM. oM 041"
MP=- == (M) 2 M

Theorem 8.11. M,, and M} are R-cpz.

Proof. M 0dM, = (0ModM ), =0.=0foriec Zand 0M 00M," = (0}, 00M)* = 0* =0 for

1ok

i € 7. O
Notation 8.12. (a) Let (M.); = M;,. Then 0™ _: M;, — M;_1,, which is 8Z-M* :(My); — My

So M+ = 9M .

(b) Let (M*), = M_,”. Then a¥n+1* cM_,* — M_, 1" Also, M : (M*),, — (M*),_1. So
87]2/[ = aﬁ/[nJrl .

Theorem 8.13. Let M be an R-cx and N an R-module
(¢) If N is projective, then H;(Hompg(N, M,)) = Hompg (N, H;(M,)).

Slogan: Homming with projection in 15¢ slot commutes with taking homology.
(d) If N is injective, then H;(Homp(M,, N)) = Homgr(H_;(M,), N).

Slogan: Homming with injection in 2™ slot commutes with taking homology, as long as you are
careful with the indices.

Proof. (c) . Let i € Z. Consider the following diagram



84 CHAPTER 8. HOMOLOGY

0 0 0
Ker(9M,) Im(OM) —=— Ker(0M,)
glel”rl 9; glﬁfl
0741 oM

Mi+1 Mz . Mifl

J{fswl € [C
0 —— Im(9M,) == Ker(0M) —"— Hy(M,) — 0

0

0

Note 7; is canonical surjection and let §; be induced by M, i.e., §;(m) = OM(m) for m € M;. All
the three vertical sequences are exact, as is the lower horizontal sequence. Also, the above diagram
commutes. (Hint: lower horizontal sequence in part (d) is 0 — Im(0™ ) % Ker(oM)

H_;(M,) — 0.) Consider the following diagram

0 0
Ker(aﬁl)* Im(9}M).. — Ker(9}M,).

Jf:':rl . Ei—l*l
M oM
+

8%+1* ik
Miyq, M, ————— M;_1,

5i+1*l €ix
Ti

0 —— m(0M,). 22 Ker(0M), —= H;(My). — 0
0

By the left exactness of homorphism, (—), transforms monomorphism into monomorphism. Since
N is projective, (—), also transforms epimorphims into epimorphism. So all the three vertical
sequences are exact, as is the lower horizontal sequence. Similarly, since «; is a monomorphism, we
have «;, is a monomorphism. Also, the diagram above commutes. Claim 1. Ker(8;,) = Ker(oM ).
Let « € Ker(d;,). Then 6;,(z) = 0. Since «;, and €;_1, are monomorphisms, we have €;_1, o oy,
is also a monomorphsim. Since the above diagram on the right commutes, M (z) = €;_1, o a;, ©
Sin(m) = €i—1, 0 @, (8, (7)) = €1, 0 @;,(0) = 0. So z € Ker(9M ). Hence Ker(d;,) C Ker(dM ).
Let y € Ker(9M ). Assume d;,(y) = 2. Since the above diagram on the right commutes, we have
0=0M (y) =€i—1,00:,00;,(y) = €;i—1,00;,(2). Since €;_1, 0, is a monomorphism, z = 0. Then
y € Ker(9;.). Hence Ker(d;,) D Ker(0M ). Thus, Ker(d;,) = Ker(9},). Claim 2. Im(0M,). =

Im(@%l*). Since the above diagram on the left commutes, €;, 0 ajy1, 0 0iy1, = 8%1*. Since avy1,

0

and €;, are monomorphisms and &;11, is an epimorphism, Im(8%,). = Im(6;11,) = Im(dX, ). We
need to show H;(M,,) = H;(M,).. Consider the following diagram
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i1,
0 —— Im(9M,)« —= Ker(0M), —=— H;(M,), —— 0

gl@ %va =] : 36

0 —— Tm(M, ) —=— Kex(0M,) — H;(M,,) — 0

3

N

0 —— Im(8M) —=— Ker(dM*) —— H;((M.)s) —— 0

Since N is projective, we have (—). transforms SES into SES. So the first horizontal sequence

. : : . e, o, ",
in the above diagram is exact. Since M,, = -+ —— M1, M;, .-+, we have
H;(M,,) = Ker(dM,)/Im(d}, ). So the second horizontal sequence in the above diagram is

exact. Let v(z) := €,(z) for z € Ker(OM).. Since Ker(5;,) = Ker(0M,), we have Im(y) =
Im(e;,) = Ker(8;,) = Ker(dM,). So v : Ker(dM), — Ker(9M,) is a well-defined epimorphism.
Also, €;, is a monomorphism, so 7 is an isomorphism. Let § be defined as the isomorphism
B Im(d}). =Im(8Y,,). By one of our homework, H;(M,), = H;(M,,). O

8.2 Ext modules

Theorem 8.14. Let M and N be R-modules and P, is a projective resolution of M. Then
Exth(M,N) =H_;,(Hompg(P., N)) =H_;(Py) foric Z.

Proof. P} :0— Py — P} — Py —---— P — ... is exact and has degree 1 -0 — -1 — —2 —

oo —i— .-+ and (P}); = P*,. )

Theorem 8.15 (Slogan: Ext(M, N) is independent of choice of proj. resol.). If Py and Qe are
proj. resol. of M, then H_;(Hompg(P,, N)) 2 H_;(Hompg(Q., N)).

Theorem 8.16. (a) Ext’% (M, N) =0 fori < 0.

(b) Exth(M,0) =0 fori € Z.

(c) Ext(0,N) =0 foric Z.

Proof. (a) Since (P})_; =0 for —i > 0, we have Extsy (M, N) =H_;(P;) =0 for i <0.

(b) Since Homp(P,,0)_; = Homg(P;,0) = 0 for i € Z, have Exths(M,0) = H_;(Homg(P,,0)) =
HOHlR(P.,O)_i =0 fori € Z.

(c) The projective resolution of M = 0is Pt = -+ -0 — 0 — 0 — 0. Then P, = 0 = P;",

Hompg(P,, N) = Homp(0, N) = 0, Ext'(M,0) = H_;(Homg(P,, N)) = H_;(0,) =0 for i € Z. [
Theorem 8.17. Ext% = Hompg(M, N).

Proof. By left-exactness of Hom- proved earlier. O
Theorem 8.18. (a) If M is projective, then Extzh(M, N) =0 foriz>1.

(b) If N is injective, then Ext's(M,N) =0 fori > 1.
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Proof. (a) Since M is projective, the projective resolution of M is Pl = -+ - 0 —-0 —> M i<
M — 0 — --- which has degree --- -2 —-1—-0——-1—--2—---. Note P, =---—0—0—
M—-0—--. Then P =---—-0—-0— M*— 0 — ---, where M, corresponds to first M.

Since the stuff after M* is 0, Ext’% (M, N) = H_;(Py) =0 for i > 1.

(b) Since H;(P,) = 0 for i > 1 and Hy(P,) = M, we have Ext, (M, N) = H_;(Hompg(P,, N))
Hom (H,(P.), N) = Homp(0, N) = 0 for i > 1.

O IR

Theorem 8.19. Assume R is noetherian and M, N are both finitely generated R-modules, then
ExtR (M, N) are finitely generated for any 1.

Proof. Since R is noetherian and M is finitely generated, M has projective resolution of form
Py=---— R% — RA — RP> - 0 with 3; € Z>°. Note Homg(R%, N) = Homg (R, N)% = NP,
Since N is finitely generated R-module, N is also finitely generated R-module. Then since R is
noetherian, N is also noetherian. Since Ker(@ﬁ_l*) C NP we have Exth(M,N) = H_;(P}) =

Ker(&ip *) * * * *
ﬁ. (Actually, 97 ," = 0F; and 87" = 0%, ,.) O
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Chain maps

Definition 9.1. Let M, and N, be R-cxs. Chain maps are commutative ladder diagram F, =
Mo — N,, i.e.,

M
81’

M, - M; M; 4
PR
aN
N, <Ny —— Ni

commutes, i.e., a sequence {F; : M; — N;|i € Z} of R-modules making the above diagram commute.
(An isomorphism from M, — N, is a chain map F'; M, — N, such that each F; is an isomorphism.)
Then there exists induced map (R-mod. hom.) on homology, H;(F,) : H;(M,) — H;(N,)m = F;(m)
for m € Ker(oM).

Theorem 9.2. Let Fy : My — N4 be a chain map.
(a) F;(Ker(0M)) C Ker(dN).
(b) F;(Im(0M,) € Im(8Y,).

(c) F; induces a well-defined R-module homomorphism H;(F,) : H;(M,) — H;(N,) given by m —
Fi(m), i.e., m +Im(d};) — F;(m) + Im(d} ;).

Proof. (a) and (b) is from the community of F;. Note

0 —— Im(9M,) —— Ker(dM) —— H;(M,) — 0

J{%ﬂ J{ﬂi iﬂlHi(F-)

0 —— Im(8Y,) SN Ker(9)) —— H;(Ns) —— 0
where «; is induced by F; by (b) and 3; is induced by F; by (a). O
Example 9.3. Let R = Z/12Z. Consider

87



88 CHAPTER 9. CHAIN MAPS

M, o S 710 2 7122 8 /122 25 -
[ | s |2
N, s z2z s 7127 2 7122 s -
Since
—
[
—2, 0

we have each diagram commutes. So F, is a chain map. Let the degree of the middle module Z/127Z

6 4
be 0. Then Ho(M,) = w = 22 = 2Z >~ 7/57 and Ho(N,) = Ktz 200) 4212 o
m(Zy12—7Z12) Im(Z12—7Z12)

S8 ~7/27. Let

H()(F.) : Ho(M.) — Ho(N.)
2212 3 3712
—
LYAD) 6712
2n+— 3-2n =6n = 0.

So Ho(F,) = 0. Let

Hl(F,) : Hl(M.) — Hl(N,)
—
6Z12 LYAD)
-3n = 6k
=0
=2

ol
|

o] w

cor |

o

I 11

O

So Ho(Fs) = 0. Since 3 is gen. for H;(M,) and 2 is gen. for Hy(N,), we have H;(F,) is an
isomorphism.

Remark. Review
(a) There exists induced maps on Ext.

(b) Maps induced by multiplicative maps are themselves multiplication maps.
(¢) L.E.S’s.

Remark. Let f : M — MI and g : N N N/ and EXt}{(M,N) EXt}?‘(M,g)

Exth (M, N) Extalf), Ext(M’,N). These will come from chain maps on corresponding CXS

used to define the Ext. Hompg(P., N) Homz(Pe.9), Homp(P., N') and Hompg(P,, N) Homa(Fe.N),
Hompg(P,, N), where F, is not f, P, is a projection resolution of M and P, is a projetive resolution
of M', and F, : P, — P, is a "lift” of f, i.e.,

Ext (M, N’), and
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Pf=... P P, M 0
;Fl %Fg lf
(P./)+ = ... P pé M’ 0

commutes, i.e., Fy is a chain map such that

Ho(F%) Ho(F%) Ho(Py)
M—L
Note
P=-.. P P 0
lFl lF“
Pl=.. P P, 0

also commutes. Need to show Hompg(P,, g) and Hompg(F,, N) are chain maps.

P *

* Bf* * * 8i+1 *
Homp(Ps, N) : 0 B Py b P
" . b
or” o,
Homp (P, N’): 0 Py Py P Py

Hompg(Pi,g)
—_—

where P} g, P is actually Homp(P;, N) Homp(P;, N’). Let ¢ € PF. Then

ol (Z)oai]il

I !

gog —— (9°¢)°a{11:9°(¢oaﬁ-1)

Extyy(M,g) = H_i(Homp(Ps, g)) and Extyy(M,g)(é) = Homp(Ps,g)-i(¢) = Homp(P;,9)(¢) =
g o ¢. Next, consider Ext(f, N). Hompg(Fe, N) : Homg(P,, N) — Hompg(P,, N).

a1PI)|< 631/1*
Hompg(P,,N): 0 Pj* P* P/ P{L
|, ] e, e
ar* b,
Hompg(P,,N): 0 Py Py Py Pr

where P* 2. P is actually Homp(P/, N) 2omafe),

K2 K2

Hompg(P;, N). Let ¢ € P!*.

P Yol

I !

Yo, —— (¢0Fi)08£_1:(¢08£1)oFi+1
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since F, is a chain map and then by the community of the following diagram,

Qit1
c—— P —— B ——

J/FH»I le‘

oA
/ 1+1 /
- — Fz’ 1 F

NTS these are independent of choices of P,, P, and F,. The existence of F, is already been showed.
ExtR(f, N)(¢) = Hompg(Fe, N)_;(¢)) = ¢ o F;. Review of goal 1. Yes. Review of goal 2. Let r € R.
MM”“ M s M. If L, is an R-cx, note that

L
Le=--- L; 0 L; 4
J/MLi,r J/MLi_l,r
oL
L, = Li —— L

Let [ € L;. Then

l— 9k()

l I

rl —— OF(rl) = r- 0F(1)

since &F is an R-module homomorphism. So pl*” is a chain map. Furthermore, H;(ul*") =
itesT since H; <" () = 5T =7l =7l = i(Le)sr (7). alm. Xti T =
il (é )T H, (pPem)(1) pEor (1) i i pti (Ls) (). 1 E R(:uM ,N)
PSRN — Bty (M, ). Since u7 (9(x)) = 5(e) — (r6)(a), we have 4¥ 0 6 —
Extl (M, pN) (@) = N7 0 ¢ = ¢ = rd = pFxtr(L, N> (¢>) For Ext% (4", N), need to find F.

J/MPj’,y- J/“Pur' J{MPO.’V' J/#M,r

commutes, where F; := ", So Ext'(u™" N)(¢)) = o pPir =rip =1 -4p = uEXtiR(M’N)’T(@).

9.1 Liftings of resolutions

Lemma 9.4. Consider diag. with exact rows.

0 M —2sp-"5 M 0
lf
0 N —25Q—23N 0

such that P is projective and f is an R-module homomorphism. Then there exists commutative
diagram
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0 M —2sp-"3 M 0
3]" 3F lf
0 N %5 Q-—2%N 0

Proof. 3F. version 1:

7 for
el

Q———>N—70

JF. version 2: since P is projective, Hompg(P,—) is exact. Then 0 — Hompg(P,N') —

Homp(P, Q) Homr(Bo)=0., Homp(P,N) — 0 is exact. So o, is onto. Thus, there exists F €
Homp(P, Q) such that foy=0.(F)=00F.

3f. Let m’ € M’'. Then o(F(a(m’))) = f(v(a(m'))) = f(0) = 0. So F(a(M')) C Ker(o) =
Im(d) (=2 N’). Since ¢ is 1-1, for m’ € M’, there exists a unique n’ € N’ such that F'(a(m’)) = d(n').
Then define f/'(m’) = n’/, which is well-defined. Check f’ is an R-module homomorphism. Let
m’ € M’ and r € R. Then there exists n’ € N’ such that F(a(m’)) =d(n’). So é(rn') =r-6(n') =
rF(a(m’)) = F(a(rm’)), i.e., rm’ «— rn/. Hence f'(rm’) = rn’ = rf’(m’). The additive of f’ is
verified similarly. O

Theorem 9.5. Let P;" be a proj. resol. of M and QF be “a lift resolution of N7, i.e., QF =
- — Q1 — Qo — N — 0 is exact but Q; may or may or be projective. Then for any R-module
homomorphism f: M — N, there exists commutative diagram

P P, Py M 0
iFl ng lf
QT - Q1 —— Qo —2> N 0

Proof. Proof using the previous lemma.

Example 9.6. Let R = Z/127 = Z12, and M = Z¢, M’ = Zs.

Pfooo 25 Ty~ Zyg 25 Ty —% Ty —T Zg 0
S L N A
Qf - 2 Ty 2 Ty —2 Ty 2 Ty — Zg 0

where 7, p, m are natural surjections @ — @.

P, o 2 Ty 8 Ty 2 Ty s 7y 0
I~ [
Qe e A Ty B Ty A Ty 2 Ty 0

Compute induced map Extz,,(—,Z12). Note



92

CHAPTER 9. CHAIN MAPS
0 P 0 0 P 0
i ",
gt b,
.,
" .// k\-l. .//
.'1- |r:.: '1- |r'| - ]
“I/// .II -._\L"R ”///r ] '-_\:” /.-
L W A ar Ve art A" A
F = Py = F . M 0
-|. [l '|. '\_‘ e g /f 'l. [l '|. '\_\ n o Y
fl I| Il \‘\k ."/ I'. I| I'. \H\k .""'/ I_I
y \ \ M, \ \ \ M, b
| ) A | ) Vo y
. s e \ . LT L h
' A S VNG Y
] i < k a i i “ 5 4
" ) ] § \ ] ) § ] § \ ] |
.'_ Fa ' .'_ o] .I. .'_ Fy ' ! Fa Il.l W
i ] |. '. i 1] i '_l |
Voo ! I'f“ f Lo oo !
| . \ i ' i - ! ! W 4
! N i <N L [ \ .. i - fn 4
[} '\-5,_\ g // ] 5 : ] ""L g /./ [} -:J Il
' N 3 | y | v_l | l.II .:I 0
! _ . ! v Ao b \ !
. .I:(/ “\_‘"-'*.l. | 1 i |// k\_:: | :I :l /
A TS as LT Y . 1
] - s - = (N = (g II} = N 0
: ' o e in
N B .S
Yy N
Na Nu
f"{ ™~ /”{ \\\
~ ., - £y
] ] ] ]
EXt%lz (p, Z12) : EXt%u (Z3,212) ———— EXt%m (Ze,Z12)
H_i (HOHIZ12 (F., Zlg)) :
H_;(Fy

Hi (HomZm (Qoa Zl?)) — H, (HomZm (pv Zl?))
)

H_i(Q3)
H_; (HOHIZIQ (F°7 Zl?)(q_s) =¢oF;

H_;(Py)
, where

Note
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P.* 0——r I‘IOIHZ12 (Zlg,Zlg) L I‘IOIHZ12 (Zlg,Zlg) L> I‘IOIHZ12 (212,212) L} cee
1 dl |
Qi 0 —— HOHlle (Zlg,Z12) i} HOIIlle (le,le) L} HOHIle (2127212) i} s
which is
Py 0 Ziz —2 Ziy —2— Zyy —°
I
Qs 0 Ziz —2 Ziy —2— Zyy —>

Since 62 = 12 and 3 -4 = 12, we have H_;(P}) = 0 = H_;(Q}) for i > 1. So Ext}, (Zs,Z12) =
0 = Ext}, (Z3,Z12) for i €> 1. Hence Ext}, (p,Z12) = 0 for i > 1. Claim. Ext} (Z3,Zs) = 0 =
Ext%12 (Z3,Zy4) for i > 1 since (3,2) = 1 = (3,4). Since 2-Z = 0 = 3Z3, we have 2~Ext%12 (Zs,Z9) =
0=3- Exté12 (Zs3,Z5). Since 1 = 3 — 2 also kills EX‘U%12 (Zs3,7Z5), we have EXtiZm(Zg,ZQ) = 0.
Similarly, we have Ex‘c%12 (Z3,Z4) = 0.

Example 9.7. Let R =Z/127 = Z12, M = Zg and M' = Z3.

P 2572y =0 75 25 76 5% 26 —— Zs 0
L
Qf - —1 Zg —2 L — L —— Ls —— Ls 0
Similarly,
P 0 Zo =0 74 — 2, 7, —6=0

I

3 Z6 4 ZG 3

QO
® %
s}
N
<)

0 3
Note Ho(Py) = SaeBel = Zo o 75 H(Qq) = Kjntez2e) = 220 = 9. 75 > 7. Then

s

o(PF) —— Zg

1 4

Ho(Q%) —— 2Ze

So Ext%12 (p,Z12) = Ho(F}) = Ho(Homg,,(Fe,Zs)) : Ho(Q%) — Ho(P{) is non-zero 1-1 but not

2 4=-2
onto. Note H_(Py) = Kxe2%) _ 3Le3 o 7, = 7, and H_(Q;) = K= —"%) o 3Zs o~

Im(Z6—>7Z) Im(Zs-576) 3-Zs
0. So Extj (p,Z¢) = H_1(F;) = 0. Periodicity implies Ext? *'(p,Zg) = 0 for k > 1. Note
3
H_1(Q}) = w = 3:—%2 ~ 0. So Ext%w(p, Z¢) = H_o(F¥) = 0. Periodicity implies

Im(Zs ———Zs)

ExtZ" (p,Z¢) = 0 for k € N. Thus, Ext}, (p,Zg) =0 for i > 1.

12
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Example 9.8. Let R =7Z/127 = 712, M = Z3 and M' = Z3.

pr... =4z, =% 7,227, =07, T .7, 0
iQ:—l ll l2:—1 ll ip
Qf ... A=l g, 350, 7, 4=l g 80,5 7 g 0
Similarly,
p; 0 75 =% 7, 2="% 7, 6=0
J 2:71T J
Qi 0 Z3 3=0 Zg 4=1 Z3 3=0

Similarly, we can show EXt%u (p,Z3) =0 for i > 1.



Chapter 10

Long Exact sequence

Definition 10.1. A short exact sequence of chain complexes is a diagram
0— M. 2% M, 25 M o,

where f, and g, are chain maps, each row
0— M/ 50 25 MY — o

is exact and each square in the following diagram commutes.

0 M —T s M s M 0
0 —— M/, TN M, S My 0

Let m} € M/. Then

m; —— m}

T

mp_, — 82M(mz) — 0

Theorem 10.2. Given a S.E.S. of R-cxs 0 — M| ELN My 25 M — 0. For any i € Z, there exists
R-module homomorphism 0; : H;(M]) — H;_1(M.), making the following long exact sequence

) Hi—1(fe)

2 Hy () S H (ML) S B () 25 Haa (M)

with 3; being the “connecting homomorphisms” and d;(ml) = m/_,.

95
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Proof. (a) Claim. m}_, € Ker(dM}). Let m! € Ker(dM") C M/’ Since m} e Ker(dM"), we have
OM" (m!) = 0. Since g, is onto, there exists m; € M; such that g;(m;) = m!. Let m;_ := 0M(m;).
Since Ker(g;—1) = Im(f;—1), there exists m;_; € M/_; such that f;_1(m}_;) = m;_1. Since the
columns are chain complexes, M, (m;_1) = 0. Let GZM 1(m}_;) =: *. Since the diagram commutes
fi—2(¥) = 0. Since f;_5 is 1-1, ¥ = 0. So m}_, € Ker(9,). Hence m/_, makes sense as an element

_ n _ Ker(dM)
of Hz_l(M. ) = W

(b) Claim. 9; is well-defined, i.e., independent of choices pf m; and m}_,. Let m! n} € Ker(fﬁf‘/ll)
such that m? = n/ in H;(M/). NTS: m_| =n} | in H; (M:)7 ie., m§71 —nl_=mi_,—ni_, =
0=0,ie,m;_,— ; 1 € Im(@H_l) Note m/ —n! € Im(97). Then there exists 2, , € M/, such
that 8%_1( xy ) = —n}. Since g; is onto, there exists x; € M; such that g;(z;) = m{ —n} =
gi(m;) — gi(n;) = g; (mZ —mn;). Then (m; —n;) — x; € Ker(g;) = Im(f;). So there exists y, € M/
such that f/(y.) = m; — n; — x;. Since diagrams on the left side commute and

1
Tipr " Tjq

| I

x; — my —n}

|

0

we have fi_1 (0! (y)) = OM (fi(y}) = OM (my — ni — ;) = miy —miy = 0= fia(mj_y —nj_y),
Since f;_y is 1-1, m}_; —n\_, = dM (y}) € Im(OM").

(c) Claim. 0; is an R-module homomorphism. Let » € R and mZ , pZ € H;(M"). Use the Symbol
from part (a). Then g;(m; + pi) = gi(mi) + gi(ps)) = mi +pj. gi(rms) = 7 - gi(m;) = rmj. So
0i(my +pj') = 0i(mi +p)) = mi_y +p;_y = mi_y +p;_y = 0i(m) + 0i(py) and 0;(rm ) =
0;(rm{) = rm}_, =rm}_, = rd;(mY).

(d) Claim. H;(ge)oH;(fo) = 0. Hy(ge)(Hi(fo)(m])) = Hi(ge)(fi(my)) =
0. Quick proof. Since H;(ge © fo) = gi © fi = 0, we have H;(gs) © H (fe)

g( i(m ))—glofl(m/{):
= (g.of.)—O

(e) Claim. 9; o H;(gs) = 0. Let m; € H;(M,). Since f;—1 is 1-1,

m; —— m)

|

0 ,=0——0

So 8;(H;(ge) (7)) = 0i(gi(mi)) = 8i(m])) = 0;_; = 0.

(f) Claim. H;_1(fs)0d; = 0. Since M € Im(9M), we have H;_1(fo)(0;(m7)) = H;_1(fo)(m]_|) =
fioa(m}_y) = m—1 = 0M(m;) = 0.
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(g) Claim. Ker(H;(gs)) C Im(H;(f,)). Let

) Hl(f') ) Hi(g')

H;(M,) — H;(M)

m; — 0

H; (M,

Then m; € Ker(H;(go)) C H;(M,). So 0 =H;(gs)(7%;) = gi(m. ) in H;(M}). Hence m} := g;(m;) €
Im(@%;’). Then there exists mj’,, € M/, such that 8%/1/( i11) = mj. Since g;;1 is onto, there
exists z41 € My such that g;1(zi11) = mj ;. Then z; : 8]‘_/{ (Zz+1) € Im(aH_l) We have

1"
Zi4l > mMi1

[

zi —— m)

Let m} € M/ such that f;(m.) = m; — z;. Then Hl(f.)(j) = film)) =m;—z =m; — 7z =
(h) Claim. Ker(d;) € Im(H;(gs)). Let m! € Ker(d;). Then m! € Ker(dM") such that m/

T
9;(m!) = 0 in H;_1(M}). So m}_, € Im(&M"). Then there exists 2} € M! such that M (x})
m}_,. We have

-1 =
/
7

x m; ——— m}

! ! !
m;_q ¢ my;_—1 + 0

Let @; := fi(«}). Then 0M(m; — xi) = 0M(m;) — OM(x;) = 0} (my) — oM (fi(x})) = M (my) —
Fia (M (2h)) = OM (my) — fia(m!_)) = M (m;) — M (m;) = 0. So m; — x; € Ker(dM). Hence
m; —x; € H;j(M,). Also, since gz(mz 7) = gi(m;) — gi(z:) = m/i/ - gz(fz(x;)) = m;/7 we have
H;(ge)(m; — x;) = gi(m; — x;) =m}. Som] € Im(H;(ga)).

(i) Claim. Ker(H;_1(f,)) C Im(d;). Letm _; €Ker(H;—1(fo)) C H;—1(M]). Then 0 = H;_1(fo)(
fici(ml_y) in Hy—1(M,). So fi—1(m}_;) € Im(dM). Let m;—q1 := fi_1(m}_;). Then there exists
m; € M; such that M (m;) = m;_1. Also note g;—1(m;_1) = 0. Let m/ := g;(m;). We have

m; —— m}

[

/ ! !
m;_q ¢ mi—q1 ¢ 0

Since the diagram commutes, OM"(m!) = 0. So m! € Ker(dM"). Then m! e H;(M]) satisfying
9;(mf) =m}_,. Som}_, € Im(9,). O

3

Corollary 10.3 (Snake Lemma). Consider a commutative diagram with exact rows.

mzfl)
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0 VLS A TN Vi 0
la; ial la;’
0 M T My 2 My 0

Then there exists exact sequence

0 — Ker(9]) —— Ker(d;) — Ker(9") 7

[» Coker(9;) —— Coker(d;) —— Coker(9y) —— 0

Proof. The given commutative diagram extends to the following short exact sequence of chain maps:
0— M. 2 My E5 MY — 0, where

0 0 0

0 (LR Y S RN Y i 0
la; o la;’

0 M, s My —2s MY 0
0 0 0

The long exact sequence is

")

[» Hy(M}) —— Hy(My) —— Hy (M)

[» Ho(M]) —— Ho(M,) —— Ho(M])

Lo

The desired exact sequence of kernels and cokernels is precisely the long exact sequence guaranteed

91
by previous theorem. For instance, Hy (M,) = Kefél%lﬁgj‘)) = Keréal) =~ Ker(d;) and Ho(M,) =
Ker(Mo—0) _ Imj\(4§1) = Coker(al)_ OJ

91
Im(M, —>My)

Remark. If 9f is 1-1, then 0; is 1-1 if and only if 97 is 1-1. In terms of Long exact sequence, if
0 — Ker(97) — Ker(9;) — Ker(97) = 0, then Ker(9]) = 0 if and only if Ker(d,) = 0. Similarly, if
01 is onto, then 0 is onto if and only if 97 is onto.
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10.1 LES in Ext

Theorem 10.4. Let L be an R-module and let 0 — N’ SN N S 0beaSES. of R-modules.
Then there exists L.E.S. associated to Ext% (L, —).

0 —— Homp(L,N') —— Hompg(L, N) —— Homg (L, N")

[» Exth(L, N') ——— Extp(L,N) —— Extk(L, N") U
L Ext’y '(L,N") j

L Ext% (L, N') —— Bxth(L,N) ——— Ext% (L, N") U

L Exti (L, N') ———— ---
where

Exth(L,«)

Exts (L, N') 22289, gogi ) Ny BteBA),

Ext% (L, N").

Proof. Let P, be a projective resolution for L. Then Homp(P,, N') is an R-cx and so are Hompg(Pe, N)
and Hompg(P., N"). Since

0 0 0
0 — Hompg(Py, N') —* Homg(Py, N) —— Homp(Py, N") — 0

laf * laf’ * laf *

0 — Homp(P1, N') —* Homp(P1, N) —— Homp(P,,N") —— 0

l i i

0 — Homp(P, N') —* Homp(P;, N) —— Homp(P;, N") — 0

i i i

have exact rows and commute by associated of composition, we have
Hompg(P,,—): 0 — Hompg(Pe, N') — Hompg(Ps, N) — Hompg(Ps, N") — 0,

is a SES of R-cxs. Since the associated LES has this "sneak” shape and H_;(Hompg(P,, N') =
Ext% (L, N'), we have the result. O
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Theorem 10.5. What about Ext»(—, L) LES?

0 —— Homp(N",L) —— Hompg(N,L) —— Hompg(N

L Ext'>'(N', L)

[» Exth(N",L) —— Exth(N, L) — Exth(N’, L U
[» Ext’%(N”,L) — Exth(N, L) —— Exto(N', L U

L Extd (N, L) ———— ---
Let QU,Q., Q. be a projective resolution of N”, N, N, respectively, then

Ext(N", L) = H_;(Homg(QY, L)),
Extly (N, L) = H_;(Homp(Q., L)),

Ext%(N',L) = H_;(Homg(Q., L)).
Need a S.E.S. of R-cxs
0 — Hompg(QY,L) — Hompg(Q., L) — Hompg(Q., L) — Homg(Q,, L) — 0.

i.e., want a S.E.S of R-cxs 0 — Q) — Q¢ — QU — 0 (%) such that Homp(—, L) is exact. Note if
there exists S.E.S of R-cxs (*), then Hompg(—, L) is automatically ezact.

Proof. The i*® row of (*) is (¥;)e : 0 — Q) — Q; — Q! — 0. Since @/ is projective, this sequence
split, then Hompg(*;, L) is split exact, and so exact. Need: given SES 0 — N’ — N — N” — 0,
construct S.E.S. of projective resolution 0 — Q) — Q. — Q. — 0. Recall. Lifting lemma can
lift a to chain map Q) 4, Q., and lift 8 to chain map Q, Z, QY. Bad news: the sequence

0— Q. EN Qe RN Q. — 0 will not be exact in general. For remaining L.E.S. in Ext., need the
following lemma. O

Lemma 10.6. Given a S.E.S. of R-module 0 — M’ & M % M — 0, and given projective

resolutions P, and P) for M’ and M", respectively, there exists projective resolution for M and

exists S.E.S. of R-cx 0 — P, L p, S P} — 0 such that the following diagram commutes.
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0 P P P 0
0 ];Lé Py Py 0
0 1\5 Ty M —2s M” 0
R
Proof. Proved later. O

Example 10.7. Let p be prime and R = Z. Let 0 - Z — Z — Z/pZ — 0 be a S.E.S. of R-module.
Then P, = (0 »Z —0) =P, and P! = (0 = Z 25 Z — 0). So 0 — P, — P, — P! — 0 is

O+—N<+—o+—o
O+—N<+—o+—oO
OCH—N+—N+——o

But the exact rows are not possible. To get horseshoe diagram in this example, use given P, and
Py

0 0 0
I
0 0 z—1 7 0
b l”’
0 zZ 7z 0,7 0
1 %7\':(1) 1) JT
0 7P, T Z/pZ —— 0
|
0 0 0

Note



102 CHAPTER 10. LONG EXACT SEQUENCE

So 7 is onto. It is easy to see Ker(m) = << -1 >> C 72. Note Z — Ker(m) given by a —
a .
p

Example 10.8. Let R = Zy. Let 0 — Zs 1=2 Z4 = 7o — 0 be S.E.S. of R-module with f(0) = 0,
f(1) =2 and 7(a) = a. Consider

! Jz
0 Zy 0 Zy 0
J2 |2
0 Zy 0 Zy 0
J2 |2
0 Zy Zy Zy 0
Pl
0 Zo Zy ——— Zo 0
[
0 0 0
But the exact rows are not possible.
Lemma 10.9. Given a diagram of R-mod. homs.
P’ p”
ook
0 M’ M~ M 0
| |
0 0

with exact rows and exact columns such that P” is projective, then there exists R-module homo-
morphism P’ @ P” ©» M making the next diagram commute.



10.1. LES IN EXT

0 M —L 2
| | |
0 0 0

Moreover, the middle column is also exact.

Proof. We have

P//

o

M2 M ——0

/
with &« = go 7”. Define 7 : P& P” — M by ( ;/, ) — f(r'(2") + az").

103

So 7 is actually

(f o7, a). Check 7 is an R-module homomorphism. It is easy to verify the diagram commutes.

By Sneak lemma, 7/ and 7" surjection implies 7 is also surjective. So middle column is exact.

O

Lemma 10.10. Given a S.E.S. of R-module 0 — M’ L M % M” — 0 and given projective
resolutions P, and P. for M’ and M", respectively, there exists projective resolution for M and

exists S.E.S. of R-cx 0 — P! X2, P, SGe, P 0 such that the following diagram commutes.

0 P P, P,
|

0 P} P, Py
l f

0 M M —2 M
|
0 0 0

Proof. We have
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P Py
L
0 M M —2L 5 M 0
| |
0 0

By previous lemma,

0—— P -2 papr S pr — 0

Lol b

0 M M—2 5 M 0
| | |
0 0 0

with Fy = < (1) > and Gp = (0, 1). The Snake Lemma shows that the following commutative

diagram has exact rows and exact columns.

0 0

1 1 i

0 —— Ker(7) LN Ker(r) —£— Ker(7") —— 0

glell gle ! glal/

Fo Go

0 P Pjo P} Py 0
0 M—1 sy 0
0 0 0
where f; is the restriction of Fy and g; is the restriction of Gy. We have
Py P/
b ;

0 —— Ker(7') LI Ker(7) LN Ker(7") —— 0

| |

where 7/ is the restriction of &F" and 7/’ is the restriction of 87" and note Im(dF") = Ker(') and
Im(0F") = Ker(7"). By previous lemma,
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F1 Gl

=)
e,

g Pl @ P

’ "
| | .

0 —— Ker(7) AN Ker(r) —2— Ker(7") —— 0

CT

0

0
commutative diagram with exact rows and exact columns

with F} = ( 1 ) and G; = (0, 1). Splice these two diagrams above together to obtain the next

O%P{LP{@P{'LP{/—M)

laf/ l@f:el oT1 laf”

0—— P -2 prapr S pr— 0

ool b

0 M M—2 5 M 0
| | |
0 0 0

with Ker(8F") = Ker(7}). Similarly, for 87 and 8F". Continue inductively to build the desired
diagram one floor per level at a time. The middle column is exact since we build it using our
algorithm for constructing projective resolution.

surjective projective; take kernel; surjective projective; take kernel; - - -.

Recall: direct sum of projective modules is projective. O



	Introduction to Module Theory
	Basic Definitions and Examples
	Submodules
	Quotient and Homomorphism
	Generators, Direct sums and Free modules
	Direct Sum
	Free Modules

	Noetherian Modules
	Finitely Generated Modules over a Noetherian Ring

	Tensor Product of Modules

	Introduction to Homological Algebra
	Exact Sequences
	Functor
	Depth
	Localization problem for regular local rings

	Localization
	homomorphism and localization

	Associated Primes and Support of Modules
	Prime Filtration
	Prime Avoidance and Nakayama's Lemma
	Regular Sequences and Ext
	Homology
	Chain complexes and homology
	Ext modules

	Chain maps
	Liftings of resolutions

	Long Exact sequence
	LES in Ext


