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Chapter 1

Matrix Algebra

1.1 Operation

Let 1⃗n be an n × 1 column vector of 1’s. Then 1⃗
T
n 1⃗n = n and 1⃗n1⃗

T
n = J , where J is an n × n

square matrix of 1’s.

Example 1.1. If A is n× p, then sums of lines and columns are, respectively,

1⃗
T
nA =

[∑n
i ai1 · · ·

∑n
i aip

]
and A1⃗p =


∑p

j=1 a1j
...∑p

j=1 anj

 .

Theorem 1.2. If A is n× p and B is p×m, then (AB)T = BTAT .

Proof. Let C = AB, then C = (cij) = (
∑p

k=1 aikbkj). Then (AB)T = CT = (cij)
T = (cji) =

(
∑p

k=1 ajkbki) = (
∑p

k=1 bkiajk) = BTAT .

Proposition 1.3. Let A be n×m and B be m× p so that A =

α⃗
T
1
...
α⃗T
n

 , B = (⃗b1, . . . , b⃗p). Then

α⃗
T
1 B
...

α⃗T
nB

 = AB =
[
Ab⃗1 . . . Ab⃗p

]
.

Remark. Ab⃗ is a linear combination of the columns of A, in which the coefficients are elements
of b⃗. The columns of AB are linear combination of the columns of A. The coefficients for the jth
column of AB are the elements of the jth column of B. We have the similar conclusion for the
rows.

Theorem 1.4. Let A be any n× p matrix. Then

(a) ATA is p× p and its elements are products of the columns of A.

1



2 CHAPTER 1. MATRIX ALGEBRA

(b) AAT is n× n and its elements are products of the rows of A.

(c) Both ATA and AAT are symmetric.

(d) If ATA = 0, then A = 0.

1.2 Quadratic form

Definition 1.5. If A is a symmetric n×n matrix in R and y⃗ is a n× 1 column vector, the product
x⃗TAx⃗ =

∑n
i=1 aiix

2
i +

∑
i̸=j aijxixj is called a quadratic form.

If A is a n × p matrix in R, and x⃗ is n × 1 and y⃗ is p × 1, the product x⃗TAy⃗ =
∑

ij aijxiyj is
called a bilinear form.

1.3 Rank

Theorem 1.6. Columns of A are linearly independent if and only if 0⃗ is the unique solution of
Ac⃗ = 0⃗.

Theorem 1.7. If there is a non-zero solution for Ac⃗ = 0⃗, then at least one of the column vectors
a⃗i can be expressed as a linear combination of the other column vectors in the set.

Theorem 1.8. The maximum possible rank of an n × p matrix A is min(n, p). In a non-square
matrix, the rows or columns are linearly dependent.

Example 1.9. The rank of A =

[
1 −2 3
5 2 4

]
is 2 since neither row is a multiple of the other. So

the columns are linearly dependent. Then there exists not all zero constants c1, c2 and c3 such that

c1

[
1
5

]
+ c2

[
−2
2

]
+ c3

[
3
4

]
=

[
0
0

]
. Rewrite it as

[
1 −2 3
5 2 4

]c1c2
c3

 =

[
0
0

]
or Ac⃗ = 0. The solution to

it is given by any multiple of c = (14,−11,−12)T . In this case, the product Ac⃗ is equal to 0⃗ even
though A ̸= 0 and c⃗ ̸= 0. This is possible because of the linear dependence of the column vectors
of A.

Remark. We can extend it to products of matrices. It is possible to find A ̸= 0 and B ̸= 0 such
that AB = 0. Each linear combination of the columns of A is 0⃗.

We can also exploit the linear dependence of rows or columns of a matrix to create expressions
such as AB = CB, where A ̸= C. Thus in a matrix equation, we cannot, in general, cancel a matrix
from both sides of the equation.

There are two exceptions to this rule:

(a) If B is a full-rank square matrix, then AB = CB implies A = C (multiply by B−1 on the
right);

(b) The other special case occurs when the expression holds for all possible values of the matrix
common to both sides of the equation; for example, if Ax⃗ = Bx⃗ for all possible values of x, then
A = B. To see this, let x⃗ = (1, . . . , 0). Then the first column of A equals the first column of B.
Continuing in this fashion, we obtain A = B.
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Theorem 1.10. (a) rank(AB) ⩽ rank(A), rank(B).

(b) If B and C are full-rank square matrices,

rank(AB) = rank(CA) = rank(A) = rank(CAB).

(c) rank(A) = rank(AT ) = rank(ATA) = rank(AAT ).

Proof. (a) AB = A(β1, . . . , βk) and AB = (αT
1 , . . . , α

T
m)TB = (αT

1 B, . . . , αT
mB)T .

(b) By (a), rank(A) = rank(ABB−1) ⩽ rank(AB) ⩽ rank(A). So rank(A) = rank(AB). Also,
rank(A) = rank(C−1CA) ⩽ rank(CA) ⩽ rank(A). So rank(A) = rank(CA).

(c) Assume there exists x such that ATAx⃗ = 0, then x⃗TATAx⃗ = 0, i.e., (Ax⃗)TAx⃗ = 0. So Ax⃗ = 0.
Thus, rank(A) ⩽ rank(ATA).

Definition 1.11. The column space C(A) = L(⃗a1, . . . , a⃗n) ⊆ Rm, where A = (⃗a1, . . . , a⃗n) ∈ Rm×n.
The null space N(A) = {x⃗ : Ax⃗ = 0} ⊆ Rn.

Theorem 1.12. C(AT ) ⊥ N(A) and C(A) ⊥ N(AT ).

Theorem 1.13 (Fundamental Theorem of Linear Algebra, Part I). Let A ∈ Rm×n with rank(A) =
r, then dim(C(A)) = r, dim(N(A)) = n− r, dim(C(AT )) = r and dim(N(AT )) = m− r.

1.4 Inverse

Theorem 1.14. If A is nonsigular, then AT is nonsingular and its inverse can be found as
(AT )−1 = (A−1)T .

Theorem 1.15. If A and B are nonsingular matrices of the same size, then AB is nonsingular
and (AB)−1 = B−1A−1.

Theorem 1.16. If A is symmetric and nonsingular and is partitioned as A =

[
A11 A12

A21 A22

]
and if

B = A22 −A21A
−1
11 A12, then provided A−1

11 and B−1 exists, the inverse of A is given by

A−1 =

[
A−1

11 +A−1
11 A12B

−1A21A
−1
11 −A−1

11 A12B
−1

−B−1A21A
−1
11 B−1

]
Theorem 1.17. If a square matrix of the form B + c⃗c⃗T is nonsingular, where c⃗ is a vector and B

is a nonsingular matrix, then (B + c⃗c⃗T )−1 = B−1 − B−1c⃗c⃗TB−1

1+c⃗TB−1c⃗
.

1.5 Positive Definite Matrices

Theorem 1.18. In general, any quadratic form y⃗TAy⃗ can be expressed as y⃗T
(

A+AT

2

)
y⃗, and thus

the matrix of a quadratic form can always be choosen to be symmetric and thereby unique.

Remark. We are usually only interested in symmetric p.d. or p.s.d..
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Remark. Ths sums of squares in regression and analysis-of-variance can be expressed in the form
y⃗TAy⃗, where y⃗ is an observation vector. Such quadratic forms remains positive (or at least non-
negative) for all possible values of y⃗.

Definition 1.19. If the symmetric matrix A satisfies y⃗TAy⃗ > 0 for all possible y⃗ except y⃗ = 0,
then the quadratic form y⃗TAy⃗ is said to be positive definite, and A is said to be a positive definite
matrix.

If the symmetric matrix A satisfies y⃗TAy⃗ ⩾ 0 for any y⃗, then the quadratic form y⃗TAy⃗ is said
to be positive definite, and A is said to be a positive semidefinite matrix.

Theorem 1.20. Let P be a nonsingular matrix.

(a) If A is positive definite, then PTAP is positive definite.

(b) If A is positive semidefinite, then PTAP is positive semidefinite.

Proof. (a) y⃗T (PTAP )y⃗ = (P y⃗)TA(P y⃗) = 0 if and only if P y⃗ = 0 if and only if y⃗ = 0.

(b) It is similar.

Corollary 1.21. Let A be a p× p positive definite matrix and B be a k× p matrix of rank k ⩽ p.
Then BABT is positive definite. In other cases, BABT is positive semidefinite.

Let A be a p× p positive definite matrix and B be a p× k matrix of rank k ⩽ p. Then BTAB
is positive definite. In other cases, BTAB is positive semidefinite.

Proof. y⃗TBABT y⃗ = (BT y⃗)TA(BT y⃗) > 0 unless BT y⃗ = 0. Also, BT y⃗ = 0 if and only if y⃗ = 0.

Theorem 1.22. A symmetric matrix A is positive definite if and only if there exists a nonsingular
matrix P such that A = PTP .

Corollary 1.23. A positive definite matrix is nonsingular and all eigenvalues are positive.

Theorem 1.24. Let B be an n× p matrix.

(a) If rank(B) = p, then BTB is positive definite.

(b) If rank(B) < p, then BTB is positive semidefinite.

Proof. (a) y⃗TBTBy = (By)T (By), which is a sum of squares and is thereby positive unless By⃗ = 0.

Also, By⃗ = y1b⃗1 + · · ·+ ypb⃗p = 0 if and only if y⃗ = 0.

(b) We can find y⃗ ̸= 0 such that By⃗ = y1b⃗1 + · · · + ypb⃗p = 0 since the columns of B are linearly
dependent. Hence yTBTBy ⩾ 0.

Remark. We have a similar result for BBT .

Theorem 1.25. If A is positive definite, then A−1 is positive definite.

Proof. A = PTP , where P is nonsigular. Then P−1 is nonsingular and A−1 = P−1(PT )−1 =
P−1(P−1)T .

Theorem 1.26. If A is positive definite, and is partitioned in the form A =

[
A11 A12

A21 A22

]
, where

A11 and A22 are square, then A11 and A22 are positive definite.

Proof. A11 =
[
I 0

]
A

[
I
0

]
, where I is the same size as A11. Since rank(I, 0) = # of rows < # of

columns, A11 is positive definite by Corollary 1.21.
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1.6 System of Equations

Definition 1.27. If the system of equations Ax⃗ = c⃗ has one or more solution vectors, it is said to
be consistent. If the system has no solution, it is said to be inconsistent.

Remark. To illustrate the structure of a consistent system of equations Ax⃗ = c⃗, suppose that A
is p× p of rank r < p. Then the rows of A are linearly dependent, and there exists some b⃗ ̸= 0⃗ such
that b⃗TA = b1α⃗1

T + · · · + bpα⃗p
T = 0⃗T . Since multiplication of Ax⃗ = c⃗ by b⃗T gives b⃗TAx⃗ = b⃗T c⃗,

i.e., 0⃗T = b⃗T c⃗, i.e., b1c1 + · · · bpcp = 0⃗. Hence, in order for Ax⃗ = c⃗ to be consistent, the same linear
relationships, if any, that exist among the rows of A must exist among the elements (rows) of c⃗.
This is formalized by comparing the rank of A with the rank of the augmented matrix (A, c⃗).

Theorem 1.28. The system of equations Ax⃗ = c⃗ has at least one solution vector x⃗ if and only if
rank(A) = rank(A, c⃗).

Proof. Suppose rank(A) = rank(A, c⃗), so that appending c⃗ does not change the rank. Then c⃗ is
a linear combination of the columns of A; that is; there exists x⃗ such that x1a⃗1 + · · · + xpa⃗p = c⃗,
which can be written as Ax⃗ = c⃗. Thus, x⃗ is a solution.

Conversely, suppose there exists x⃗ such that Ax⃗ = c⃗. In general, rank(A) ⩽ rank(A, c⃗). Then
rank(A, c⃗) = rank(A,Ax⃗) = rank[A(I, x⃗)] ⩽ rank(A). Hence rank(A) = rank(A, c⃗).

Theorem 1.29. We care about system of equations because we want to solve XTXb⃗ = XT y⃗. Since
C(XT ) = C(XTX), we have it has at least one solution.

1.7 Determinants

Theorem 1.30. Assume A is a n× n matrix.

(a) If A is singular, |A| = 0.

(b) If A is nonsingular, |A| ≠ 0.

(c) If A is positive definite, |A| > 0.

(d)
∣∣AT

∣∣ = |A|.

(e) If A is nonsingular,
∣∣A−1

∣∣ = 1
|A| .

(f) |cA| = cn|A|.

Theorem 1.31. If the square matrix A is partitioned as A =

[
A11 A12

A21 A22

]
. If A11 and A22 are

square and nonsingular, then |A| = |A11|
∣∣A22 −A21A

−1
11 A12

∣∣ = |A22|
∣∣A11 −A12A

−1
22 A21

∣∣.
Corollary 1.32. Suppose A =

[
A11 0
A21 A22

]
or A =

[
A11 A12

0 A22

]
, where A11 and A22 are square.

Then in either case |A| = |A11||A22|.

Theorem 1.33. If A and B are square and the same size, then |AB| = |A||B|.

Corollary 1.34. If A and B are square and the same size, thenn |AB| = |BA| and
∣∣A2
∣∣ = |A|2.
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1.8 Inner products, Orthogonal vectors and matrices

Let a⃗, b⃗ ∈ Rn, then

cos θ =
a⃗T a⃗+ b⃗T b⃗− (⃗b− a⃗)T (⃗b− a⃗)

2

√
(⃗aT a⃗)(⃗bT b⃗)

=
a⃗T a⃗+ b⃗T b⃗− (⃗bT b⃗+ a⃗T a⃗− 2a⃗T b⃗)

2

√
(⃗aT a⃗)(⃗bT b⃗)

=
a⃗T b⃗√

(⃗aT a⃗)(⃗bT b⃗)
=

⟨a, b⟩
∥a∥∥b∥

.

When θ = 90◦, a⃗T b⃗ = 0. So a⃗ and b⃗ are perpendicular.

A vector b⃗ can be normalized by c⃗ = b⃗√
b⃗T b⃗

. Then c⃗T c⃗ = 1.

Theorem 1.35. x⃗ ⊥ y⃗ if and only if ⟨x⃗, y⃗⟩ = 0.

Theorem 1.36. If x⃗1, · · · , x⃗k are all nonzero and mutually orthogonal, then x⃗1, . . . , x⃗k are linearly
independent.

Theorem 1.37 (Pythogorean Theorem). Let v⃗1, . . . , v⃗k be mutually orthogonal. Then∥∥∥∥∥
k∑

i=1

vi

∥∥∥∥∥
2

=

k∑
i=1

∥vi∥2.

Proof. ∥∥∥∥∥
k∑

i=1

v⃗i

∥∥∥∥∥
2

=

〈
k∑

i=1

v⃗i,

k∑
i=1

v⃗i

〉
=

k∑
i=1

k∑
j=1

⟨v⃗i, v⃗j⟩ =
k∑

i=1

⟨v⃗i, v⃗i⟩ =
k∑

i=1

∥v⃗i∥2.

Definition 1.38. A set of p × 1 vectors c⃗1, . . . , c⃗p that are normalized and mutually orthogonal
is said to be an orthonormal set of vectors. If the p × p matrix C = (c⃗1, . . . , c⃗p) has orthonormal
columns, C is called an orthogonal matrix. Then CTC = I = CCT . Thus, an orthogonal matrix C
has orthonormal rows as well as orthonormal columns. Moreover, if C is orthogonal, CT = C−1.

Remark. Multiplication of a vector by orthogonal matrix has the effect of rotating axes; that is,
if x⃗ is transformed to z⃗ = Cx⃗, where C is orthogonal, then the distance from the origin to z⃗ is the
same as the distance to x: z⃗T z⃗ = (Cx⃗)T (Cx⃗) = x⃗TCTCx⃗ = x⃗Ix⃗ = x⃗T x⃗. Hence, the transformation
from x⃗ to z⃗ is a rotation.

Theorem 1.39. If the p× p matrix C is orthogonal and if A is any p× p matrix, then

(a) |C| = 1 or −1.

(b)
∣∣CTAC

∣∣ = |A|.

(c) −1 ⩽ cij ⩽ 1, where cij is any element of C.

Proof. It follows from that CCT = 1 = CTC.
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1.9 Projections

Definition 1.40. The orthogonal projection of y⃗ onto a vector x⃗ is the vector ˆ⃗y such that ˆ⃗y = bx⃗,
for some b ∈ R such that (y⃗− ˆ⃗y) ⊥ x⃗. This implies x⃗T bx⃗ = ˆ⃗yT x⃗ = ⟨ˆ⃗y, x⃗⟩ = ⟨y⃗, x⃗⟩ = y⃗T x⃗. We denote
the projection of y⃗ onto x⃗ with p(y⃗|x⃗).

We get

b = (x⃗T x⃗)−1x⃗T y⃗ =

{
any constant, x⃗ = 0⃗,

y⃗T x⃗
|x⃗|2 , x⃗ ̸= 0.

1.9.1 Projection onto indicator vectors

Let V ⊆ Rn, A ⊆ {1, . . . , n} and define 1A = indicator vector of A.

Example 1.41. X =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 = (1S1
,1S2

,1S3
), where S1 = {1, 2}, S2 = {3, 4}, S3 = {5, 6}.

Let S ∈ {S1, S2, S3}. Consider p(y⃗|1S) = b1S . Then b = y⃗T
1S

∥1S∥2 =
∑

i∈S yi

|S| = yS . So p(y⃗|1S) =

yS1S .

Theorem 1.42. Let V ⩽ W and W ⩽ Rn, then V ⊥ = {x ∈ Rn : x ⊥ V } is the orthogonal
complement of V . V ⊥ ∩W is the orthogonal complement w.r.t. W and dim(V ) + dim(V ⊥ ∩W ) =
dim(W ).

Theorem 1.43 (Fundemental theorem of Linear Algebra, Part II). N(A) = C⊥(AT ), Or:N(AT ) =
C⊥(A).

Implication: This tells you exactly when Ax⃗ = b⃗ can be solved! Ax⃗ = b⃗ is solvable if and only if
if AT y⃗ = 0, then b⃗T y⃗ = 0⃗ for any y⃗.

Example 1.44. We are trying to solve y⃗ = Xβ⃗, X ∈ Rm×n with m > n. This is an overdetermined
system when y⃗ ̸∈ C(X).

We want to find ˆ⃗y ∈ C(X) that minimize
∥∥∥y⃗ − ˆ⃗y

∥∥∥2, that is, minβ⃗

{∥∥∥y⃗ −Xβ⃗
∥∥∥}. This is satisfied

when y⃗− ˆ⃗y |= C(X). So y⃗− ˆ⃗y ∈ C⊥(X) if and only if y⃗− ˆ⃗y ∈ N(XT ) if and only if XT (y⃗−X
ˆ⃗
β) = 0

if and only if XT y⃗ = XTX
ˆ⃗
β.

Definition 1.45. The projection of a vector y⃗ onto a subspace V ⊆ Rn is the vector ˆ⃗y ∈ V such
that (y⃗ − ˆ⃗y) ⊥ V . This condition is equivalent to (y⃗ − ˆ⃗y)T x⃗ = 0 for any x⃗ ∈ V if and only if

y⃗T x⃗ = ˆ⃗yT x⃗ for any x⃗ ∈ V . Also, such z⃗ is unique.

Theorem 1.46. If x⃗1, . . . , x⃗k are such that L(x⃗1, . . . , x⃗k) = V , then z⃗ = p(y⃗|V ) if ⟨z⃗, x⃗i⟩ = ⟨y⃗, x⃗i⟩
for i = 1, . . . , k.

Theorem 1.47. Let v⃗1, . . . , v⃗k be an orthogonal basis for a subspace V ⩽ Rn. Then p(y⃗|V ) =∑k
j=1 p(y⃗|v⃗j).
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Proof. Let y⃗ =
∑k

i=1 aiv⃗i for some a1, . . . , ak ∈ R. Then ⟨y⃗, v⃗i⟩ = ai⟨v⃗i, v⃗i⟩, so ai = ⟨y⃗,v⃗i⟩
∥vi∥2 for

i = 1, . . . , k. Hence y⃗ =
∑k

i=1 aiv⃗i =
∑k

i=1
⟨y⃗,v⃗i⟩
∥vi∥2 v⃗i =

∑k
i=1 p(y⃗|v⃗j).

Example 1.48. Consider Example 1.41 with V = L(1S1
,1S2

,1S3
) = C(X) ⊆ R6. Then

P (y⃗|V ) = p(y⃗|1S1) + p(y⃗|1S2) + p(y⃗|1S3) = yS11S1 + yS21S2 + yS31S3

=

(
y1 + y2

2
,
y1 + y2

2
,
y3 + y4

2
,
y3 + y4

2
,
y5 + y6

2
,
y5 + y6

2

)
.

Theorem 1.49. If v⃗1, . . . , v⃗k form an orthonormal basis for V , then p(y⃗|V ) =
∑k

i=1⟨y⃗, v⃗i⟩v⃗i.

Theorem 1.50. Every subspace has an orthogonal basis. One method for finding such a basis is
Gram-Schmidt process.

Assume x⃗1, . . . , x⃗k form a basis for a subspace V . Take

v⃗1 = x⃗1,

v⃗2 = x⃗2 − p(x⃗2|v⃗1),
v⃗3 = x⃗3 − p(x⃗3|v⃗1)− p(x⃗3|v⃗2),
...

v⃗k = xk −
k−1∑
i=1

p(x⃗k|v⃗i).

Proposition 1.51. Let V = L(x⃗1, . . . , x⃗k) = C(X), where X =
[
x⃗1 · · · x⃗k

]
. We want to project

y⃗ onto C(X), that is, ˆ⃗y = p (y⃗|C(X)). We need ˆ⃗y ∈ C(X) and ⟨y⃗, x⃗i⟩ = ⟨ˆ⃗y, x⃗i⟩ for i = 1, . . . , k. But
ˆ⃗y = β1x⃗1+ · · ·+βkx⃗k for some β1, . . . , βk ∈ R. So we need

∑k
j=1 βj⟨x⃗j , x⃗i⟩ = ⟨y⃗, x⃗i⟩ for i = 1, . . . , k.

Note that XTX =

x⃗
T
1
...
x⃗T
k

 [x⃗1 . . . x⃗k

]
=

x⃗
T
1 x⃗1 · · · x⃗T

1 x⃗k

...
...

...
x⃗T
k x⃗1 · · · x⃗T

k x⃗k

 and XT y⃗ =

x⃗
T
1
...
x⃗T
k

 y⃗ =

x⃗
T
1 y
...

x⃗T
k y

.
With β⃗ = (β1, . . . , βk)

T , the requirement to satisfy is XTXβ⃗ = XT y⃗.
Let X ∈ Rn×k with n > k. Since rank(XTX) = rank(X), XTX ∈ Rk×k is nonsingular if and

only if rank(X) = k. Then
ˆ⃗
β = (XTX)−1XT y⃗. So we can write ˆ⃗y = X

ˆ⃗
β = X(XTX)−1XT y⃗ = P y⃗,

where P is called the projection matrix onto C(X), P is also called the “hat matrix” denoted H.

Also, p (y⃗|C(X)) = argminβ⃗

∥∥∥y⃗ −Xβ⃗
∥∥∥2, which is the least square criterion.

Definition 1.52. A symmetrix matrix P is said to be an (orthogonal) projection matrix onto V if
P v⃗ = v⃗ for any v⃗ ∈ V and Pw⃗ = 0 for any w⃗ ∈ V ⊥.

Remark. A n× n matrix P is said to be an projection matrix onto Im(P ) =: V if P 2 = P . Then
Rn = Im(P )⊕Ker(P ) = V ⊕ V ⊥. If P is orthogonal, then PPT = I, so PT = IPT = PPPT = P .

Theorem 1.53. Let P = X(XTX)−1XT , then

(a) P is an orthogonal projection matrix onto X.
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(b) C(X) = C(P ).

(c) P is symmetric and idempotent.

Theorem 1.54. A matrix P is a projection onto C(P ) if and only if P is symmetric and idempo-
tent.

Theorem 1.55. Projection matrices onto V are unique.

We have seen that the projection onto C(X) can be obtained with X(XTX)−1XT . We can also
find the projection starting from any orthogonal basis for C(X).

Theorem 1.56. Let q1, . . . , qk be an orthonormal basis for V ⊆ Rn. Let Q = (q1, . . . , qk). Then

QQT =
∑k

i=1 qiq
T
i is the projection matrix onto V .

Example 1.57. Assume V = L(1n). Let Q = 1√
n
1n. Then PV = QQT = 1√

n
1n

(
1√
n
1
T
n

)
=

1
n1n1

T
n . So PV x⃗ =


∑n

i=1 xi

n
...∑n

i=1 xi

n

 = x1n. In this case verify: PV x⃗ = α1n, where α = ⟨x,1n⟩
∥1n∥2 = x.

Theorem 1.58. Let V ⊆ Rn be a vector space and let V0 be a subspace of V . Let P, P0 be the
corresponding projection matrices. Then PP0 = P0 and P0P = P0.

Theorem 1.59 (Orthogonal completement projection). Let P and P0 be projection matrices with
C(P0) ⊆ C(P ). Then

(a) P − P0 is the projection matrix (onto C(P − P0)).

(b) C(P − P0) = C⊥(P0) ∩ C(P ).

Example 1.60. Let V = L(1n). Then PV = 1
n1n1

T
n . So PV ⊥ = I − PV = I − 1

n1n1
T
n . Then

PV ⊥ x⃗ =
(
I − 1

n1n1
T
n

)
x⃗ = x⃗− x1n. Also,

∑n
i=1(xi − x)2 = (PV ⊥ x⃗)

T
PV ⊥ x⃗.

1.10 Direct Sum

Definition 1.61. Subspaces V1, . . . , Vk ⊆ Rn are linearly independent ( |= ) if
∑k

i=1 x⃗i = 0⃗ with

xi ∈ Vi for i = 1, . . . , k, then x⃗i = 0⃗ for i = 1, . . . , k.

Theorem 1.62. V1 |= V2 if and only if V1 ∩ V2 = {⃗0}.

Definition 1.63. Let V1, . . . , Vk ⊆ Rn be subspaces. Let

V =

{
x : x =

k∑
i=1

xi, xi ∈ Vi,∀ i = 1, . . . , k

}
,

then V = V1 + · · ·+ Vk, and if V1, . . . , Vk are linearly independent, V = V1 ⊕ · · · ⊕ Vk.

Example 1.64. Let V ⊆ Rn, since V ∩ V ⊥ = {⃗0}, we have V |= V ⊥ and then Rn = V ⊕ V ⊥.
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Theorem 1.65. Let V1, . . . , Vk ⊆ Rn be subspaces and x ∈ V = V1 + · · ·+ Vk. The representation
x =

∑k
i=1 xi, xi ∈ Vi is unique if and only if V1, . . . , Vk are linearly independent.

Theorem 1.66. Let {vi1, . . . , vini} be a basis for Vi for i = 1, . . . , k and V1, . . . , Vk be linearly
independent. Then {v11, . . . , v1n1 , . . . , vk1, . . . , vknk

} is a basis for V = V1 ⊕ · · · ⊕ Vk. So dim(V ) =∑k
i=1 dim(Vi).

Theorem 1.67 (Orthogonal decomposition). For any subspace V ⊆ Rn and any x⃗ ∈ Rn, there exist
unique x⃗1, x⃗2 such that x⃗ = x⃗1 + x⃗2, where x⃗1 ∈ V and x⃗2 ∈ V ⊥. More specifically, x⃗1 = p(x⃗|V )
and x⃗2 = p(x⃗|V ⊥).

Theorem 1.68. If V = V1 ⊕ V2, then V ⊥ = V ⊥
1 ∩ V ⊥

2 .

Theorem 1.69. If V = V1 ⊕ V2, then PV = PV1
+ PV2

if and only if V1 ⊥ V2.

Corollary 1.70. If V = V1 ⊕ V2 and V1 ⊥ V2, then PV1
= PV − PV2

.

Corollary 1.71. Let V0 ⩽ V ⩽ Rn, and V = V0 ⊕ V1, where V1 = V ∩ V ⊥
0 , since V0 ⊥ V1,

PV ∩V ⊥
0

= PV − PV0
.

Theorem 1.72. Let Rn ⊇ V = V1 ⊕ · · · ⊕ Vk, where V1, . . . , Vk are mutually orthogonal. Then for
x⃗ ∈ Rn, p(x⃗|V ) =

∑k
i=1 p(x⃗|Vi).

Example 1.73. 
y11
y12
y21
y22
y31
y32

 =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1



µ
a1
a2
a3

+ e⃗.

Note that R6 = C(X) ⊕ C⊥(X) and X is not column full rank. Since L(X⃗1) and L(X⃗2, X⃗3, X⃗4)
are not linearly independent,

C(X) = L(X⃗1) + L(X⃗2, X⃗3, X⃗4) = L(X⃗1)⊕
[
L(X⃗2, X⃗3, X⃗4) ∩ L⊥(X⃗1)

]
,

where

L(X⃗2, X⃗3, X⃗4) ∩ L⊥(X⃗1) =




b
b
c
c

−b− c
−b− c

 , b, c ∈ R


.

So

ˆ⃗y = p (y⃗|C(X)) = p
(
y⃗|L(X⃗1)

)
+ p

(
y⃗|L(X⃗2, X⃗3, X⃗4) ∩ L⊥(X⃗1)

)
= y1n +

(
PL(X⃗2,X⃗3,X⃗4)

− PL(X⃗1)

)
y⃗

= y1n +
(
PL(X⃗2)

+ PL(X⃗3)
+ PL(X⃗4)

)
y⃗ − y⃗X⃗1

= y1n + y1X⃗2 + y2X⃗3 + y3X⃗4 − y(X⃗2 + X⃗3 + X⃗4)

= y1n + (y1 − y)X⃗2 + (y2 − y)X⃗3 + (y3 − y)X⃗4.
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Also, R6 = L(X⃗1) ⊕
[
L(X⃗2, X⃗3, X⃗4) ∩ L⊥(X⃗1)

]
⊕ C⊥(X), I = PL(X⃗1)

+ PL(X⃗2,X⃗3,X⃗4)∩L⊥(X⃗1)
+

PC⊥(X), and multiply by y⃗ on both sides, we have y⃗ = ˆ⃗y1 + ˆ⃗y2 + e⃗1.

1.11 Trace

Theorem 1.74. (a) If A is n× p and B is p× n, then tr(AB) = tr(BA).

(b) If A is n× p, then tr(ATA) =
∑p

i=1 a⃗i
T a⃗i, where a⃗i is the i-th column of A.

(c) If A is n× p, then tr(AAT ) =
∑p

i=1 a⃗i
T a⃗i, where a⃗i

T is the i-th row of A.

(d) If A = (aij) is n× p, then tr(ATA) = tr(AAT ) =
∑n

i=1

∑p
j=1 a

2
ij.

(e) If A is any n× n matrix and P is any n× n nonsingular matrix, then tr(P−1AP ) = tr(A).

(f) If A is any n× n matrix and C is any n× n orthogonal matrix, then tr(C−1AC) = tr(A).

Proof. (e) tr(P−1AP ) = tr(APP−1) = tr(A).

1.12 Eigenvalues and Eigenvectors

Definition 1.75. For every square matrix A, a scalar λ and a nonzero vector x⃗ can be found such
that Ax⃗ = λx⃗. Note that, the vector x⃗ is transformed by A onto a multiple of itself, so that the
point Ax⃗ is on the line passing through x⃗ and the origin.

Definition 1.76. The eigenspace of A associated with eigenvalue λ is N(A − λI). Note the
eigenspace is a vector space.

Theorem 1.77. If det(A) = 0, then Av⃗ = 0⃗ for some v⃗ ̸= 0⃗, so λ = 0 is an eigenvalue of A.

1.12.1 Functions of a Matrix

If λ is an eignenvalue of A with corresponding eigenvector x, then for certain functions g(A), an
eigenvalue is given by g(λ) and x⃗ is the corresponding eigenvector of g(A) as well as of A.

(a) If λ is an eigenvalue of A, then cλ is an eigenvalue of cA, where c is an arbitrary constant such
that c ̸= 0. This is because cAx⃗ = cλx⃗. So x⃗ is also an eigenvector of cA corresponding to cλ.

(b) If λ is an eigenvalue of A and x⃗ is the corresponding eigenvector of A, then cλ+k is an eigenvalue
of the matrix cA+ kI and x⃗ is an eigenvector of cA+ kI, where c and k are scalars.

To see this, we add kx⃗ to the above equation, cAx⃗+kx⃗ = cλx⃗+kx⃗. Then (cA+kI)x⃗ = (cλ+k)x⃗.

(c) If λ is an eigenvalue of A, then λ2 is an eigenvalue of A2 since A(Ax⃗) = A(λx⃗), and then
A2x⃗ = λAx⃗ = λ(λx⃗) = λ2x⃗. This can be extended to any power of A: Akx⃗ = λkx⃗.

(d) If λ is an eigenvalue of the nonsingular matrix A, then 1/λ is an eigenvalue of A−1 since
A−1Ax⃗ = A−1λx⃗, i.e., x⃗ = λA−1x⃗, i.e., A−1x⃗ = 1/λx⃗.
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(e) If λ is an eigenvalue of A, then (A3 + 4A2 − 3A + 5I)x⃗ = A3x⃗ + 4A2x⃗ − 3Ax⃗ + 5x⃗ = λ3x⃗ +
4λ2x⃗− 3λx⃗+ 5x⃗ = (λ3 + 4λ2 − 3λ+ 5)x⃗.

Theorem 1.78. If λ is an eigenvalue of A, then 1 − λ is an eigenvalue of I − A. If I − A is
nonsingular, then 1/(1− λ) is an eigenvalue of (I −A)−1.

Proof. It is sufficient to show when all the eigenvalues of A satisfy −1 < λi < 1, then (I −A)−1 =∑∞
k=0 A

k. In the symmetric case, the spectral decomposition, I −A = µTµ− µTΛµ = µT (I −Λ)µ.
Then

(I −A)−1 = µT (I − Λ)−1µ = µTdiag

(
1

1− λ1
, . . . ,

1

1− λn

)
µ

= µTdiag

( ∞∑
k=0

λk
1 , . . . ,

∞∑
k=0

λk
n

)
µ = µT

∞∑
k=0

Λkµ =

∞∑
k=0

µTΛkµ =

∞∑
k=0

Ak.

In general, note that if −1 < λi < 1, then
∑∞

k=0 A
k < ∞. So (I − A)

∑∞
k=0 A

k =
∑∞

k=0 A
k −∑∞

k=0 A
k+1 = A0 = I. Thus, (I −A)−1 =

∑∞
k=0 A

k.

1.12.2 Symmetric matrices

Theorem 1.79. Let A be an n× n symmetric matrix.

(a) The eigenvalues λ1, . . . , λn of A are real.

(b) The eigenvectors x⃗1, . . . , x⃗k of A corresponding to distinct eigenvalues λ1, . . . , λk are mutu-
ally orthogonal. The eigenvectors x⃗k+1, . . . , x⃗n corresponding to the nondistinct eigenvalues can be
choose to be mutually orthogonal to each other and to the other eigenvectors.

(c) If the eigenvectors are normalized and placed as columns of a matrix C, then C is an orthogonal
matrix.

Definition 1.80. The number of times an eigenvalue λ in the characteristic poplynomial is the
algebraic multiplicity of λ.

The number of linearly independent e-vectors associated with an e-val λ is the geometric mul-
tiplicity of λ.

Theorem 1.81. In general, gemometric multiplicity is less than algeraic multiplicity.
If geometric multiplicity is equal to algeraic multiplicity, then A is said to be diagonalizable.

Theorem 1.82 (Spectral Theorem). If A is an n×n symmetric matrix with eigenvalues λ1, . . . , λn

and normalized eigenvectors x⃗1, . . . , x⃗n, then A can be expressed as A = CDCT =
∑n

i=1 λix⃗ix⃗
T
i ,

which is called the spectral decomposition of A, where D = diag(λ1, . . . , λn) and C is the orthogonal
matrix C = (x⃗1, . . . , x⃗n).

Proof. A = AI = ACCT = A(x⃗1, . . . , x⃗n)C
T = (Ax⃗1, . . . , Ax⃗n)C

T = (λ1x⃗1, . . . , λnx⃗n)C
T =

CDCT .

Remark. The eigenvalues and eigenvectors basiccally summerize the “information” contained in
a matrix A.

Since x⃗1, . . . , x⃗n are orthonormal basis of A, x⃗ix⃗
T
i = Pi is the projection onto the 1-dimensional

subspace L(x⃗i) for i = 1, . . . , n. Then A =
∑n

i=1 λiPi.
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Corollary 1.83. CTAC = D, i.e., C diagonalizes A.

Theorem 1.84. With the spectral decomposition, x⃗TAx⃗ = x⃗TCDCT x⃗ = y⃗TDy⃗, where y⃗ = CT x⃗.
Let yi = (CT x⃗)i, then y⃗TDy⃗ = λ1y⃗

2
1 + · · · + λny⃗

2
n. Note y⃗ = CT x⃗ rotates the axes of the space to

align with the eigenvectors.

Theorem 1.85. For A symmetric and positive definite, we have x⃗TAx⃗ = 1 defines an ellipsoid in
Rn.

1.12.3 Eigensystem of projection matrices

Theorem 1.86. Consider the projection matrix PV (onto V ). Then

(a) Every 0⃗ ̸= x⃗ ∈ V is an eigenvector of PV with eigenvalue 1.

(b) Every 0⃗ ̸= x⃗ ∈ V ⊥ is an eigenvector of PV with eigenvalue 0.

(c) λ = 1 has multiplicity dim(V ).

(d) λ = 0 has multiplicity dim(V ⊥) = n− dim(V ).

Thus, tr(PV ) =
∑n

i=1 λi = dim(V ) and rank(PV ) = tr(PV ) =
∑n

i=1 λi.

1.12.4 Positive Definite and Semidefinite Matrices

Theorem 1.87. Let A be n× n with eigenvalues λ1, . . . , λn.

(a) If A is positive definite, then λi > 0 for i = 1, . . . , n.

(b) If A is positive semidefinite, then λi ⩾ 0 for i = 1, . . . , n. The number of eigenvalues λi for
which λi > 0 is the rank of A.

Proof. (a) For i = 1, . . . , n, let xi ̸= 0 and x⃗i
TAx⃗i = λix⃗i

T x⃗i, we have λi =
x⃗i

TAx⃗i

x⃗i
T x⃗i

> 0.

Theorem 1.88. If a matrix A is positive definite, we can find a square root matrix A1/2 as follows.
Since the eigenvalues of A are positive and A = CDCT =

(
CD1/2CT

) (
CD1/2CT

)
, we have

A1/2 = CD1/2CT , where D1/2 = diag(
√
λ1, . . . ,

√
λn). The matrix A1/2 is symmetric and has the

property A1/2A1/2 = (A1/2)2 = A. Note A1/2 = CD1/2CT is the unique symmetric square root
matrix.

Remark. For positive semidefinite or positive definite matrix A, there exists a upper triangular B
such that A = BTB, such a factorization is called the Cholesky decomposition. A = LU = LLT =

LDLT =
(
LD1/2

) (
LD1/2

)T
. If A is positive definite, then the decomposition is unique.

1.12.5 Idempotent matrices

Definition 1.89. A square matrix A is said to be idempotent if A2 = A. Many of the sums of
squares in regression and analysis of variance can be expressed as quadratic forms y⃗TAy⃗. The
idempotence of A or of a product involving A will be used to establish that y⃗TAy⃗ (or a multiple of
y⃗TAy⃗) has a chi-square distribution.
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Theorem 1.90. The only nonsingular idempotent matrix is the identity matrix I.

Proof. If A is idenpotent and nonsingular, then A2 = A, and the inverse A−1 exists. Then A−1A2 =
A−1A and so A = I.

Theorem 1.91. If A is singular, symmetric, and idempotent, then A is positive semidefinite.

Proof. Since A = AT and A = A2, we have A = A2 = AA = ATA, which is positive semidefinite
since rank(AT ) < # of columns.

Theorem 1.92. If A is an n×n symmetric idempotent matrix of rank r, then A has r eigenvalues
equal to 1 and n− r eigenvalues equal to 0.

Proof. Since A2 = A, A2x⃗ = Ax⃗ = λx⃗. Also, A2x⃗ = λ2x⃗. So λx⃗ = λ2x⃗, i.e., (λ − λ2)x⃗ = 0⃗. Since
x⃗ ̸= 0, λ − λ2 = 0. (Or: Ak = (CDCT ) × · · · × (CDCT ) = CDkCT = CDCT = A if and only
if λi is 0 or 1.) The number of nonzero eigenvalues is equal to rank(A) according to the spectral
decomposition.

Corollary 1.93. If A is symmetric and idempotent of rank r, then rank(A) = tr(A) = r.

Theorem 1.94. If A is an n× n idempotent matrix, P is an n× n nonsingular matrix, and C is
an n× n orthogonal matrix, then

(a) I −A is idempotent.

(b) A(I −A) = 0 and (I −A)A = 0.

(c) P−1AP is idempotent.

(d) CTAC is idempotent.

1.12.6 Vector and matrix calculus

Theorem 1.95. Let u = a⃗T x⃗ = x⃗T a⃗, where a⃗T = (a1, . . . , ap) is a vector of constants. Then
∂u
∂x⃗ = a⃗.

Proof. Since ∂u
∂xi

=
∂(a1x1+···+apxp)

∂xi
= ai, and

∂u
∂x⃗ = ( ∂u

∂x1
, . . . , ∂u

∂xp
)T = (a1, . . . , ap)

T = a⃗.

Theorem 1.96. Let u = x⃗TAx⃗, where A is a symmetric matrix of constants. Then ∂u
∂x⃗ = 2Ax⃗.

1.13 Maximization or Minimization of a Function of a Vec-
tor

Consider a function u = f(x⃗) of the p variables in x⃗. Occasionally the situation requires the
maximization or minimization of the function u, subject to q constraints on x⃗. We denote the
constraints as h1(x⃗) = 0⃗, . . . , hq(x⃗) = 0⃗, or h⃗(x⃗) = 0⃗. We denote a vector of q unknown constants

(the Lagrange multipliers) by λ⃗, and let y⃗T = (x⃗T , λ⃗T ). We then let v = u+ λ⃗T h⃗(x⃗). The maximum

of minimum of u subject to h⃗(x⃗) = 0 is obtained by solving the equations ∂v
∂y⃗ = 0⃗.

Or, equivalently ∂u
∂x⃗ + ∂h⃗

∂x⃗ λ⃗ = 0⃗ and h⃗(x⃗) = 0⃗, where ∂h⃗
∂x⃗ =


∂h1

∂x1
· · · ∂hq

∂x1

...
...

∂h1

∂xp
· · · ∂hq

∂xp

.
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1.14 Generalized Inverses

Definition 1.97. A generalized inverse of an n × k matrix X is any k × n matrix X− such that
XX−X = X.

Remark. (a) A generalized inverse always exists.

(b) A generalized inverse, in general, is not unique.

(c) If X is nonsingular, then X− = X−1.

Example 1.98. If X = (1, 2, 3, 4)T , then the generalized inverses are X−
1 = (1, 0, 0, 0), X−

2 =
(0, 1/2, 0, 0), X−

3 = (0, 0, 1/3, 0) and X−
4 = (0, 0, 0, 1/4).

Theorem 1.99. Let X ∈ Rn×k with rank(X) = r. Then

(a) rank(X−X) = rank(XX−) = rank(X) = r.

(b) (X−)T is a generalized inverse of XT .

(c) X = X(XTX)−XTX.

Proof. (a) rank(X−X) ⩽ min (rank(X−), rank) ⩽ rank(X) = r. Since X = XX−1X, rank(X) ⩽
min (rank(X), rank(X−X)) ⩽ rank(X−X).

(b) XX−X = X implies XT (X−)TXT = XT .

(c) Let v ∈ Rn and v = v1+v2, where v1 ∈ C(X) and v2 ∈ C⊥(X). Then v1 = Xb for some b ∈ Rn,
and vTX(XTX)−XTX = vT1 X(XTX)−XTX = bTXTX(XTX)−XTX = bTXTX = vTX. Since
it is true for any v, we have X = X(XTX)−XTX.

Theorem 1.100. X(XTX)−XT is the projection matrix onto C(X).

Proof. Let v ∈ C
(
X(XTX)−1XT

)
= C(X). Then there exists b ∈ Rn such that v = Xb =

X(XTX)−XTXb = X(XTX)−XT b∗. Then v ∈ C
(
X(XTX)−XT

)
. So C(X) ⊆ C

(
X(XTX)−XT

)
.

Clearly, C
(
X(XTX)−XT

)
⊆ C(X). Thus, C(X) = C

(
X(XTX)−XT

)
.

1.14.1 How we do find a generalized inverse?

Theorem 1.101. Let A ∈ Rn×k with rank= r and A is partitioned as A =

[
A11 A12

A21 A22

]
, where

A11 ∈ Rr×r with rank r. Then a generalized inverse is A− =

[
A−1

11 0
0 0

]
.

Corollary 1.102. Let A ∈ Rn×k with rank= r and A is partitioned as A =

[
A11 A12

A21 A22

]
, where

A22 ∈ Rr×r with rank r. Then a generalized inverse is A− =

[
0 0
0 A−1

22

]
.

Theorem 1.103. In general, for A ∈ Rn×k with rank r. To find a generalized inverse,

(a) Find any non-singular r × r sub-matrix of A, say C (guranted to exist).
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(b) Find C−T =
(
C−1

)T
=
(
CT
)−1

.

(c) Replace elements of C w/ elements of C−T .

(d) Relace the rest of A with zero.

(e) Transpose the resulting matrix.

Theorem 1.104. Generalized inverses of symmetric matrices are not guranteed to be symmetric.
But a symmetric generalized inverse always exists. We will always assume the generalized inverse
is symmetric.

Theorem 1.105. If the system of equations Ax⃗ = c⃗ is consistent, then x∗ = A−c is a solution.

Proof. Since Ax⃗ = c⃗ and AA−Ax⃗ = Ax⃗, we have AA−c⃗ = c⃗. So Ax⃗∗ = c⃗.

Theorem 1.106. If Ax⃗ = x⃗ is consistent, then all possible solutions can be obtained via either of
the following

(a) Use a possible A−, x⃗∗ = A−c⃗. x⃗∗∗ = A−c⃗+(I−A−A)⃗h for all possible h since A(I−A−A)⃗h =
0.

(b) Use all possible A− in x⃗∗ = A−c⃗.

Theorem 1.107. The system of equations Ax⃗ = c⃗ has a solution if and only if for any generalized
inverse A−, it is true that AA−c⃗ = c⃗.

1.15 Examples

Example 1.108. Prove rank
(
PC(X)

)
= rank(X).

Proof. By commutativity of the trace operator,

rank
(
PC(X)

)
= rank

(
X
(
XTX

)−1
XT
)
= rank

((
XTX

)−1
XTX

)
= rank

(
XTX

)
= rank (X) .



Chapter 2

Random Vectors and Matrices

Definition 2.1. A random vector or random matrix is a vector or matrix whose elements are
random variables. Informally, a random variable is defined as a variable whose value depends on
the outcome of a chance experiment.

Remark. In terms of experimental structure, we can distinguish two kinds of random vectors:

(a) A vector containing a measurement on each of n different individuals or experimental units. In
this case, where the same variable is observed on each of n units selected at random, the n random
variables y1, . . . , yn in the vector are typically uncorrelated and have the same variance. Consider
the multiple regression model

yi = β0 + β1xi1 + · · ·+ βkxik + ϵi, i = 1, . . . , n.

If we treat the x variables as constants, in which case, we have two random vectors:

y⃗ =

y1...
yn

 and ϵ⃗ =

ϵ1...
ϵn


The yi values are observable, but the ϵi’s are not observable unless the β′

ks are known.

(b) A vector consisting of p different measurements on one individual or experimental unit. The
p random variables thus obtained are typically correlated and have different variances. Consider
regression of y on several random x variables. For the ith individual in the sample, we observe the
k + 1 random variables yi, xi1, · · · , xik which constitute the random vector

(yi, xi1, . . . , xik)
T .

In some cases, the k + 1 variables yi, xi1, . . . , xik are all measured using the same units or scale of
measurement, but typically the scales differ.

17
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2.1 Mean vector

The expected value of a p× 1 random vector y⃗ is defined as the vector of expected values of the p
random variables y1, . . . , yp in y⃗:

E(y⃗) = E

y1...
yp

 =

E[y1]
...

E[yp]

 =

µ1

...
µp

 = µ⃗.

2.2 Covariance matrix for random vectors

Let Z be a n× p random matrix. Then expected value of Z

E[Z] = E

z11 · · · z1p
...

...
zn1 · · · znp

 =

E[z11] · · · E[z1p]
...

...
E[zn1] · · · E[znp]

 .

Note that
Σ = E[(y⃗ − µ⃗)(y⃗ − µ⃗)T ] = E[y⃗y⃗T ]− µ⃗µ⃗T ,

where
(y⃗ − µ⃗)(y⃗ − µ⃗)T

is a random matrix, whose (ij)th element is (yi − µi)(yj − µj).

Definition 2.2. For random vector x⃗ ∈ Rk, y⃗ ∈ Rn, let Cov(xi, yi) = σij . Then (population)
covariance matrix of x⃗ and y⃗ is

Rk×n ∋

σ11 · · · σ1n

...
...

...
σk1 · · · σkn

 = Cov(x⃗, y⃗) := Σx,y.

Theorem 2.3.
Cov(x⃗, y⃗) = E

[
(x⃗− µ⃗x)(y⃗ − µ⃗y)

T
]
.

2.2.1 Correlation matrices

Theorem 2.4. Define
Vx⃗ = diag (Var(x⃗1), . . . ,Var(x⃗k)) .

Corr(x⃗i, x⃗j) =
Cov(x⃗i, x⃗j)√
Var(x⃗i)Var(x⃗j)

.

Then
Var(x⃗) = V

1/2
x⃗ Corr(x⃗)V

1/2
x⃗ .

Corr(x⃗) = V
−1/2
x⃗ Var(x⃗)V

−1/2
x⃗ .

Var(x⃗, y⃗) = V
1/2
x⃗ Corr(x⃗, y⃗)V

1/2
y⃗ .

Corr(x⃗, y⃗) = V
−1/2
x⃗ Var(x⃗, y⃗)V

−1/2
y⃗ .
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2.2.2 Generalized Variance

A measure of overall variability in the population of y⃗ variables can be defined as the determinant
of Σ:

Generalized variance = |Σ|.
If |Σ| is small, the y⃗ variables are concentrated closer to µ than if |Σ| is large. A smaller value of
|Σ| may also indicate that the variables y1, . . . , yp are highly intercorrelated, in which case the y⃗
variables tend to occupy a subspace of the p dimensions.

2.3 Partitioned random vectors

Let

v⃗ =

[
y⃗
x⃗

]
Then

Σ =

[
Σyy Σyx

Σxy Σxx

]
is a rectangular matrix.

2.4 Linear functions of random vectors

We often use lienar combinations of the variables y1, . . . , yp from a random vector y⃗. Let

a⃗ = (a1, . . . , ap)
T

be a vector of constants. Then the linear combination

z = a1y1 + · · ·+ apyp = a⃗T y⃗

is a random variable. Assume the mean of y⃗ is µ⃗. Then the mean of z is

µz = E [⃗aT y⃗] = a⃗TE(y⃗) = a⃗T µ⃗.

Suppose that we have several linear combinations of y⃗ with constant coefficients:

z1 = a11y1 + · · ·+ a1pyp = a⃗T1 y⃗

z2 = a21y1 + · · ·+ a2pyp = a⃗T2 y⃗

...

zk = ak1y1 + · · ·+ akpyp = a⃗ky⃗

These k linear functions can be written in the form

z⃗ = Ay⃗.

We often need A is full rank. Since y⃗ is a random vector, each zi is a random variable and then z⃗
is a random vector.
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Theorem 2.5. Suppose y⃗ is a random vector, X is a random matrix, a⃗ and b⃗ are vectors of
constants, and A and B are matrices of constants. Then

(a) E[Ay⃗] = AE[y⃗].

(b) E [⃗aTXb⃗] = a⃗TE[X ]⃗b.

(c) E[AXB] = AE[X]B.

Proof. (a) Assume A is n× p matrix.

E[Ay⃗] = E[(⃗a1, . . . , a⃗p)y⃗]

= E [⃗a1y1 + · · ·+ a⃗pyp]

= a⃗1E[y1] + · · ·+ a⃗pE[yp]

= (⃗a1, . . . , a⃗p)(E[y1], . . . , E[yp])
T

= AE[y⃗].

(b) Assume X is n× k matrix.

E [⃗aTXb⃗] = a⃗TE[Xb⃗]

= a⃗TE[(x⃗1, . . . , x⃗k )⃗b]

= a⃗T
(
E[x⃗1]b1 + · · ·+ E[x⃗T

k ]bk
)

= a⃗T (E[x⃗1], . . . , E[x⃗k])(b1, . . . , bk)
T

= a⃗TE[X ]⃗b.

Theorem 2.6. If a⃗ is a p× 1 vector of constants and y⃗ is a p× 1 random vector with covariance
matrix Σ, then the variance

Var(⃗aT y⃗) = a⃗TΣa⃗.

Proof.

Var(⃗aT y⃗) = E
[
(⃗aT y⃗ − a⃗T µ⃗)2

]
= E

[
(⃗aT )2(y⃗ − µ⃗)2

]
= E

[⃗
aT (y⃗ − µ⃗)⃗aT (y⃗ − µ⃗)

]
= E

[⃗
aT (y⃗ − µ⃗)(y⃗ − µ⃗)T a⃗

]
= a⃗TE

[
(y⃗ − µ⃗)(y⃗ − µ⃗)T

]
a⃗ = a⃗TΣa⃗.

Corollary 2.7. If a⃗ and b⃗ are p× 1 vectors of constants, then

Cov(⃗aT y⃗, b⃗T y⃗) = a⃗T Σ⃗b.

Theorem 2.8. Let z⃗ = Ay⃗ and w⃗ = By⃗, where A is a k × p matrix of constants, B is an m × p
matrix of constants, and y⃗ is a p×1 random vector with covariance matrix Σ. Assume Σ is positive
definite.

(a)
Cov(z⃗) = Cov(Ay⃗) = AΣAT ,

If rank(A) = k ⩽ p, AΣAT is positive definite. In other cases, AΣAT is positive semidefinite.
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(b)
Cov(z⃗, w⃗) = Cov(Ay⃗,By⃗) = AΣBT .

Theorem 2.9. Let y⃗ be a p×1 random vector and x⃗ be a q×1 random vector such that Cov(y⃗, x⃗) =
Σyx. Let A be a k × p matrix of constants and B be an h× q matrix of constants. Then

Cov(Ay⃗,Bx⃗) = AΣyxB
T .

Proof. Let v⃗ =

[
y⃗
x⃗

]
and C =

[
A 0
0 B

]
. Then

Cov

[
Ay⃗
Bx⃗

]
= Cov(Cv⃗) = C Cov(y⃗, x⃗)CT = C

[
Σyy Σyx

Σyx Σxx

]
CT =

[
AΣyyA

T AΣyxB
T

BΣxyA
T BΣxxB

T

]
.

So Cov(Ay⃗,Bx⃗) = AΣyxB
T . One have that Cov(Bx⃗,Ay⃗) = BΣxyA

T .

Theorem 2.10 (Expectation of bilinear form). Let E[x⃗] = µ⃗x, E[y⃗] = µ⃗y, Cov(x⃗, y⃗) = Σx⃗y⃗. Then

E[x⃗TAy⃗] = tr(AΣT
x⃗y⃗) + µ⃗xAµ⃗y.
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Chapter 3

Multivariate Normal Distribution

In order to make inferences, we often assume that the random vector of interest has a multivariate
normal distribution.

3.1 Multivariate normal density function

We begin with independent standard normal random variable z1, . . . , zp, with µi = 0 and σ2
i = 1

for any i ∈ [p] and σij = 0 for i ̸= j. Let

z⃗ = (z1, . . . , zp)
T ,

where
E[z⃗] = 0⃗ and Cov(z⃗) = I,

and
zi ∼ N(0, 1),∀ i ∈ [p].

We wish to transform z⃗ to a multivariate normal random vector

y⃗ = (y1, . . . , yp)
T

with E(y⃗) = µ⃗ and Cov(y⃗) = Σ, where µ is any p × 1 vector and Σ is any p × p positive definite
matrix. The (joint) pdf of z⃗

f(z⃗) = f(z1, . . . , zp)

= g1(z1) · · · gp(zp)

=
1√
2π

e−z2
1/2 · · · 1√

2π
e−z2

p/2

=
1(√
2π
)p e−∑p

i=1 z2
i /2

=
1(√
2π
)p e−zT z/2 =

1(√
2π
)p e−∥z∥2

2/2.

23
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We say
z⃗ ∼ Np(⃗0, I),

where p is the dimension of the distribution and corresponds to the number of variables in y⃗. To
transform z⃗ to y⃗ with arbitrary mean vector E[y⃗] = µ and arbitrary (positive definite) covariance
matrix Cov(y⃗) = Σ, we define the transformation

y⃗ = Σ1/2z⃗ + µ⃗,

where Σ1/2 is the (symmetric) square root matrix. Note that

E[y⃗] = E[Σ1/2z⃗ + µ⃗] = Σ1/2E[z⃗] + µ⃗ = µ⃗.

Cov(y⃗) = Cov(Σ1/2z⃗ + µ⃗) = Σ1/2Cov(z⃗)
(
Σ1/2

)T
= Σ1/2IΣ1/2 = Σ.

Note the analogy to
y = σz + µ.

The analogous expression for y⃗ = Σ1/2z⃗ + µ⃗ is

f(y⃗) = g(z⃗)
∣∣∣∣∣∣Σ−1/2

∣∣∣∣∣∣
︸ ︷︷ ︸
abs. det.

= g(z⃗)

∣∣∣∣∣∣∣Σ1/2
∣∣∣−1
∣∣∣∣,

which parallels the absolute value expression |dz/dy| = |1/σ| in the univariate case. The determi-
nant ∣∣∣Σ−1/2

∣∣∣
is the Jacobian of the transformation. Since Σ−1/2 is positive definite, we can dispense with the
absolute value and then

f(y⃗) = g(z⃗)
∣∣∣Σ−1/2

∣∣∣ = g(z⃗)|Σ|−1/2
.

In order to express z⃗ in terms of y⃗, we need to obtain

z⃗ = Σ−1/2(y⃗ − µ⃗).

Then

f(y⃗) = g(z⃗)|Σ|−1/2

=
1(√

2π
)p |Σ|1/2 e−z⃗T z⃗/2

=
1(√

2π
)p |Σ|1/2 e−[Σ−1/2⃗(y⃗−µ⃗)]

T
[Σ−1/2(y⃗−µ⃗)]/2

=
1(√

2π
)p |Σ|1/2 e−(y⃗−µ⃗)TΣ−1(y⃗−µ⃗)/2,

which is the multivariate normal density function with mean vector µ⃗ and covariance matrix Σ.
We say

y⃗ ∼ Np(µ⃗,Σ),
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where the subscript p is the dimension of the p-variate normal distribution and indicates the number
of variables, that is, y⃗ is p × 1 and µ⃗ is p × 1 and Σ is p × p. A comparison shows the standard
distance

(y⃗ − µ⃗)TΣ−1(y⃗ − µ⃗)

in place of
(y − µ)2

σ2

in the exponent and the square root of the generlized variance |Σ| in place of σ2 in the denominator.
A small value of |Σ| indicates that the y⃗’s are concentrated closer to µ⃗ than is the case when Σ is
large. A small value of |Σ| may also indicate a high degree of multicollinearity among the variables.
High multicollinearity indicates that the variables are highly intercorrelated, in which case the y⃗’s
tend to occupy a subspace of the p dimensions.

Example 3.1. If y⃗n ∼ N(µ⃗n,Σn×n) with Σn×n p.s.d., then

y⃗n
d
= An×pz⃗ + µ⃗n,

where AAT = Σ (e.g., Cholesky, then n = p), z⃗ = (z1, . . . , zp), and zi
iid∼ N(0, 1). If rank(A) = n,

then Σ is positive definite. Then |A| = Σ−1/2. If rank(A) ̸= n, then y⃗n is still said to have a multi-
variate normal distribution, but its density DNE. It is an overdetermined distribution (degenerate
case).

Theorem 3.2. Let µ⃗ ∈ Rn and Σ ∈ Rn×n be symmetric p.s.d.. Then there exists a multivariate
normal distribution with mean µ⃗ and Var-Cov matrix Σ.

Proof. For example, by Cholesksy, there exists B such that Σ = BBT . In this case, B is symmetric.
Take z⃗ ∼ N (⃗0, I), let

x⃗ = Bz⃗ + µ⃗.

Then x⃗ ∼ N(µ⃗,Σ).

3.2 Moment generating functions

Definition 3.3. The MGF for a univariate variable y is defined as

My(t) = E[ety]

provided E[ety] exists for every real number t in the neighorhood −h < t < h for some positive
number h. For the univariate normal N(µ, σ2), the MGF of y is given by

My(t) = eµt+t2σ2/2.

Definition 3.4. For a random vector y⃗, the MGF is defined as

My⃗ (⃗t) = E[et1y1+···+tpyp ] = E[et⃗
T y⃗].

By analogy, we have
∂My⃗ (⃗0)

∂t⃗
= E[y⃗],
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where
∂My⃗ (⃗0)

∂t⃗
indicates that

∂My⃗(t⃗)

∂t⃗
is evaluated at t⃗ = 0⃗. Similarly,

∂2My⃗ (⃗0)

∂tr∂ts
= E[yrys].

Theorem 3.5. If y⃗ is distributed as Np(µ⃗,Σ), its MGF is given by

My⃗ (⃗t) = eµ⃗
T t⃗+t⃗TΣt⃗/2.

Example 3.6. Let z⃗ ∼ N (⃗0, I), then

Mz⃗(t) = E
[
et⃗

T z⃗
]
= E

[
e
∑n

i=1 tizi
]
=

n∏
i=1

E
[
etizi

]
=

n∏
i=1

mzi(ti) =

n∏
i=1

e
t2i
2 = e

1
2 t⃗

T t⃗.

Let x⃗ = Az⃗ + µ⃗. Then

Mx⃗(⃗t) = E
[
exp

(
t⃗T (Az⃗ + µ⃗)

)]
= et⃗

T µ⃗E
[
exp

(
(AT t⃗)T z⃗

)]
= et⃗

T µ⃗mz⃗(A
T t⃗) = et⃗

T µ⃗e
1
2 t

TAAT t.

So z⃗ ∼ N(µ⃗, AAT ).

Corollary 3.7. If y⃗ is distributed as Np(µ⃗,Σ), the MGF for y⃗ − µ⃗ is

My⃗−µ⃗(⃗t) = et⃗
TΣt⃗/2.

Theorem 3.8. (a) If two random vectors have the same MGF, they have the same density.

(b) Two random vectors are independent if and only if their MGFs factors into the product of their
two seperate MGFs, that is, if y⃗T = (y⃗1

T , y⃗1
T ) and tT = (⃗tT1 , t⃗

T
2 ), then y⃗1 and y⃗2 are independnent

if and only if
My⃗ (⃗t) = My⃗1

(⃗t1)My⃗2
(⃗t2)

3.3 Properties of the multivariate normal distribution

Theorem 3.9. Let y⃗ ∼ Np(µ⃗,Σ). Let a⃗ be any p × 1 vector of constants, and let A be any k × p
matrix of constants with rank k ⩽ p. Then

(a)
z = a⃗T y⃗ ∼ N (⃗aT µ⃗, a⃗TΣa⃗).

Proof.

Mz(t) = E[etz] = E[eta⃗
T y⃗] = E[e(ta⃗)

T y⃗] = My⃗(t⃗a) = e(ta⃗)
T µ⃗+(ta⃗)TΣ(ta⃗)/2 = e(a⃗

Tµ)t+(a⃗TΣa⃗)t2/2.

(b)
Ay⃗ ∼ Nk(Aµ⃗,AΣAT ).
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Proof.

Mz⃗ (⃗t) = E[et⃗
T z⃗] = E[et⃗

TAy⃗] = et⃗
T (Aµ⃗)+t⃗T (AΣAT )t⃗/2.

Theorem 3.10. If y⃗ ∼ Np(µ⃗,Σ), then any r×1 subvector of y⃗ has an r-variate normal distribution
with the same means, variance, and covariances as in the original p-variate normal distribution.

Proof. Without loss of generality, let y⃗T = (y⃗T1 , y⃗
T
2 ), where y⃗1 is the r× 1 subvector of interest. Let

µ⃗ and Σ be partitioned accordingly:

µ =

[
µ⃗1

µ⃗2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Define A = (Ir, O). Then Ay⃗ = y⃗1. Since Aµ⃗ = µ⃗1 and AΣAT = Σ11, y⃗1 ∼ Nr(µ⃗1,Σ11).

Theorem 3.11. If y⃗ is p× 1 and x⃗ is q × 1 and

v⃗ =

[
y⃗
x⃗

]
∼ Np+q(µ⃗,Σ),

then y⃗ and x⃗ are independent if Σy⃗x⃗ = 0.

Corollary 3.12. If y⃗ ∼ Np(µ⃗,Σ) and Cov(Ay⃗,By⃗) = AΣBT = 0, then Ay⃗ and By⃗ are independent.

Lemma 3.13. Let y⃗ ∼ N(µ⃗,Σ),

y⃗ =

[
y⃗1
y⃗2

]
, µ⃗ =

[
µ⃗1

µ⃗2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where Σ21 = ΣT

12. Let y⃗2|1 = y⃗2 − Σ21Σ
−1
11 y⃗1. Then y⃗2|1 |= y⃗1 with y⃗1 ∼ Np(µ⃗,Σ11) and y⃗2|1 ∼

Nn−p(µ⃗2|1,Σ22|1), where

µ⃗2|1 = µ⃗2 − Σ21Σ
−1
11 µ⃗1,

Σ22|1 = Σ22 − Σ21Σ
−1
11 Σ12.

Proof. Let
y⃗1 = C1y⃗, C1 =

[
I 0

]
;

y⃗2 = C2y⃗, C2 =
[
−Σ21Σ

−1
11 I

]
.

Cov
(
y⃗1, y⃗2|1

)
= Cov (C1y⃗, C2y⃗) = C1ΣC

T
2 =

[
Σ11 Σ12

] [−Σ−1
11 Σ12

I

]
= 0.

Theorem 3.14. Let y⃗ ∼ N(µ⃗,Σ),

y⃗ =

[
y⃗1
y⃗2

]
µ⃗ =

[
µ⃗1

µ⃗2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where Σ21 = ΣT

12. Then

y⃗2|y⃗1 ∼ Nn−p

(
µ⃗2 +Σ21Σ

−1
11 (y⃗1 − µ⃗1),Σ22|1

)
.
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Proof. Since y⃗2|1 |= y⃗1, we have

y⃗2|1|y⃗1
d
= y⃗2|1 ∼ Nn−p

(
µ⃗2|1,Σ22|1

)
.

But y⃗2 = y⃗2|1 +Σ21Σ
−1
11 y⃗1, and Σ21Σ

−1
11 y⃗1|y⃗1 = Σ21Σ

−1
11 y⃗1. Then y⃗2|y⃗1

d
= y⃗2|1 +Σ21Σ

−1
11 y⃗1. So,

y⃗2|y⃗1 ∼ Nn−p(µ⃗
∗,Σ22|1),

where
µ⃗∗ = µ⃗2|1 +Σ21Σ

−1
11 y⃗1 = µ⃗2 +Σ21Σ

−1
11 (y⃗1 − µ⃗1).

Thus,
y⃗2|y⃗1 ∼ Nn−p

(
µ⃗2 +Σ21Σ

−1
11 (y⃗1 − µ⃗1)),Σ22 − Σ21Σ

−1
11 Σ12

)
.

3.4 Partial/Multiple Correlation

Example 3.15. Educational psychologist studies the relationship between height y1 and reading
ability y2 of children based on scores of a standard test. For 200 children in grades 3,4 and 5, he
measured y1 and y2, finding a sample correlation 0.56. Is there a linear association between height
and reading ability? Yes, but only because we are ignoring one (or more) “lurking variable”. Under
children with more years of schooling tend to taller. The partial correlation coefficient is a measure
of linear relationship between two variables with the linear affect of one or more variables removed.

Theorem 3.16. Let v⃗ ∼ Np+q(µ⃗,Σ),

v⃗ =

[
x⃗
y⃗

]
, Σ =

[
Σxx Σxy

Σyx Σyy

]
,

where Σyx = ΣT
xy, x⃗ = (v1, . . . , vp)

T and y⃗ = (vp+1, . . . , vp+q)
T . Then

Var(y⃗|x⃗) = Σy⃗y⃗ − Σy⃗x⃗Σ
−1
x⃗x⃗Σx⃗y⃗ := Σy⃗|x⃗.

Definition 3.17. Let σij|1,...,p = (Σy⃗|x⃗)ij . The partial correlation coefficient of yi and yj given x⃗
is given by

ρij|1,...,p =
σij|1,...,p

(σii|1,...,p)1/2(σjj|1,...,p)1/2
.

Like ordinary correlation, it is still true that

−1 ⩽ ρij|1,...,p ⩽ 1.

Example 3.18. If v1 = age, v2 = height, v3 = reading ability and set x⃗ = v1, y⃗ = (v2, v3)
T . Then

ρ23|1 is the partial correlation of height and reading ability after removing the linear effect of age.
We expect ρ23|1 ≈ 0.

The multiple correlation coefficient measures the linear association between one variable and a
group of others. Let v⃗ ∼ Np+q(µ⃗,Σ),

v⃗ =

[
x⃗
y

]
, Σ =

[
Σxx σx⃗y

σyx⃗ σyy

]
.

Then
E[y⃗|x⃗] = µy + σyx⃗Σ

−1
x⃗x⃗ (x⃗− µ⃗x) = µy|x⃗.
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Definition 3.19. The square multiple correlation coefficient between y and x⃗ is defined as

ρ⃗2yx⃗ =
Cov(µ⃗y|x⃗, y)

Var(µ⃗y|x⃗)1/2 Var(y)1/2
=

(
σyx⃗Σ

−1
x⃗x⃗σx⃗y

σyy

)1/2

.

It is still true that 0 ⩽ ρx⃗,y ⩽ 1.

Remark. Note that ρ2y,x⃗ gives the strength of linear association, but not direction. (It is the
correlation between y and E[y|x⃗].

Remark. The sample squared multiple correlation coefficient is called the coefficient of determi-
nation, denoted as R2.



30 CHAPTER 3. MULTIVARIATE NORMAL DISTRIBUTION



Chapter 4

Distribution of Quadratic Forms in
y⃗

In chapter 3 and 4, we discussed some properties of linear functions of the random vector y⃗. We
now consider quadratic forms in y⃗. We will find it useful in later chapters to express a sum of
squares as a quadratic form y⃗TAy⃗. In this format, we will be able to show that certain sums of
squares have chi-square distributions and are independent, thereby leading to F tests.

4.1 Sum of Squares

Example 4.1. Note
n∑

i=1

y2i = y⃗T y⃗ = y⃗T Iy⃗.

Since

y =
1

n

n∑
i=1

yi =
1

n
j⃗T y⃗ =

1

n
y⃗T j⃗,

we have

ny2 = n

(
1

n
y⃗T j⃗

)(
1

n
j⃗T y⃗

)
=

1

n
y⃗T j⃗j⃗T y⃗ = y⃗T

(
1

n
J

)
y⃗.

So
n∑

i=1

(yi − y)2 =

n∑
i=1

y2i − ny2 = y⃗T
(
I − 1

n
J

)
y⃗.

Hence
n∑

i=1

y2i =

(
n∑

i=1

y2i − ny2

)
+ ny2

can be written in terms of quadratic forms as

y⃗T Iy⃗ = y⃗T
(
I − 1

n
J

)
y + y⃗T

(
1

n
J

)
y⃗.

31
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Remark. The matrices of the three quadratic forms have the following properties:

(a) I =
(
I − 1

nJ
)
+ 1

nJ .

(b) I, I − 1
nJ and 1

nJ are idempotent.

(c)
(
I − 1

nJ
) (

1
nJ
)
= 0.

Using theorems given later in this chapter (and assuming normality of the yi’s), these three
properties lead to the conclusion that

n∑
i=1

(yi − y)2/σ2 and ny2/σ2

have chi-square distributions and are independent.

4.2 Mean and Variance of Quadratic Forms

Theorem 4.2. If E[y⃗] = µ⃗ and Var(y⃗) = Σ, and if A is symmetric matrix of constants, then

E[y⃗TAy⃗] = tr(AΣ) + µ⃗TAµ⃗.

Proof. Since Σ = E[y⃗y⃗T ]− µ⃗µ⃗T , we have

E[y⃗TAy⃗] = E
[
tr(y⃗TAy⃗)

]
= E

[
tr(Ay⃗y⃗T )

]
= tr

(
E[Ay⃗y⃗T ]

)
= tr

(
AE[y⃗y⃗T ]

)
= tr

(
A(Σ + µ⃗µ⃗T )

)
= tr

(
AΣ+Aµ⃗µ⃗T

)
= tr(AΣ) + µ⃗TAµ⃗.

Example 4.3. Assume yi’s are iid with E(y⃗) = µ⃗j and variance Cov(y⃗) = σ2I, then

E[s2] =
1

n− 1
E

[
y⃗T
(
I − 1

n
J

)
y⃗

]
=

1

n− 1

(
tr

((
I − 1

n
J

)
(σ2I)

)
+ µ⃗jT

(
I − 1

n
J

)
µ⃗j

)
=

1

n− 1

(
σ2(n− 1) + µ2

(
j⃗T j⃗ − 1

n
j⃗T j⃗j⃗T j⃗

))
= σ2.

Example 4.4. Assume xi’s are iid with E(x⃗) = µ1⃗n and variance Cov(x⃗) = σ2I. Consider

Q(x) =

n∑
i=1

(xi − x)2 = ∥PV ⊥ x⃗∥ = x⃗T (I − PV )x⃗,

where V = L(1n). Then

E[Q(x)] = E

[
n∑

i=1

(xi − x)2

]
= tr

(
(I − PV )(σ

2I)
)
+ µ1⃗T

n (I − PV )µ⃗1n

= σ2 tr(I − PV ) + µ
(
1⃗
T
n − 1⃗n

)
1⃗n = σ2(n− 1).
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Alternatively, define y⃗ = x⃗− x1n = (x1 − x, . . . , xn − x)T . Then y⃗ = PV ⊥ x⃗ and

Q(x⃗) =

n∑
i=1

(xi − x)2 = y⃗T Iy⃗.

Var(y⃗) = Var(PV ⊥ x⃗) = PV ⊥ Var(x⃗)(PV ⊥)T = σ2PV ⊥ .

So

E[Q(x)] = tr
(
I(σ2PV ⊥)

)
+ 0 = σ2(n− 1).

Theorem 4.5. If y⃗ ∼ Np(µ⃗,Σ), then the MGF of y⃗TAy⃗ is

My⃗TAy⃗(t) = |I − 2tAΣ|−1/2
e−µ⃗T [I−(I−2tAΣ)−1]Σ−1µ⃗/2.

Theorem 4.6. If y⃗ ∼ Np(µ⃗,Σ), then

Cov(y⃗, y⃗Ay⃗) = 2ΣAµ⃗.

Proof.

Cov(y⃗, y⃗TAy⃗) = E
[
(y⃗ − E[y⃗])(y⃗TAy⃗ − E[y⃗Ay⃗])

]
= E

[
(y⃗ − µ⃗)(y⃗TAy⃗ − µ⃗TAµ⃗− tr(AΣ)

]
= E

[
(y⃗ − µ⃗)

(
(y⃗ − µ⃗)TA(y⃗ − µ⃗) + 2(y⃗ − µ⃗)TAµ⃗− tr(AΣ)

)]
= 0 + 2ΣAµ⃗− 0,

since all third central moments of the multivariate normal are zero.

Corollary 4.7. If y⃗ ∼ Np(µ⃗,Σ), and B is k × p matrix of constants. Then

Cov(By⃗, y⃗TAy⃗) = 2BΣAµ⃗.

Theorem 4.8. Let v⃗ =

[
y⃗
x⃗

]
be a partitioned random vector with E =

[
y⃗
x⃗

]
=

[
µ⃗y

µ⃗x

]
and

Cov

[
y⃗
x⃗

]
=

[
Σ⃗yy Σyx

Σ⃗xy Σxx

]
.

Then

E(x⃗TAy⃗) = tr(AΣyx) + µ⃗T
xAµ⃗y.

4.3 Noncentral Chi-square Distribution

Recall if z1, . . . , zn are iid N(0, 1), then u =
∑n

i=1 z
2
i = z⃗T z⃗ ∼ χ2(n) and

f(u) =
un/2−1e−y/2

Γ(n/2)2n/2
, u > 0,



34 CHAPTER 4. DISTRIBUTION OF QUADRATIC FORMS IN Y⃗

where

Γ(α) =

∫ ∞

0

xα−1e−xdx,

Γ(α) = (α− 1)Γ(α− 1),

Γ(1/2) =
√
π.

E(u) = n,

Var(u) = 2n,

Mu(t) =
1

(1− 2t)n/2
.

Theorem 4.9. Let X ∼ N(µ, 1) and Y = X2, then

fY (y) =

∞∑
k=0

fχ2
2k+1

P (K = k),

where K ∼ Poi(µ2/2). Hierarchically,

Y |K ∼ χ2
2K+1,

K ∼ Poi(λ).

Theorem 4.10. To generate Y :

(a) Generate K ∼ Poi(λ);

(b) Generate 2K+1 χ2
1 random variables and add them up, that is Y . (i.e., a χ2 r.v. with random

df.)

Definition 4.11. Assume yi ∼ N(µi, 1), i ∈ [n] are independent, then

v =

n∑
i=1

y2i = y⃗T y⃗

is called the noncentral chi-square distribution and is denoted by

χ2(n, λ).

The noncentrality parameter λ is defined as

λ =
1

2

n∑
i=1

µ2
i =

1

2
µ⃗T µ⃗.

Then

E

[
n∑

i=1

(yi − µi)
2

]
= n,

E

[
n∑

i=1

y2i

]
=

n∑
i=1

E[y2i ] =

n∑
i=1

(µ2
i + 1) = n+ 2λ.
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Theorem 4.12 (additive). If v1, . . . , vk are independently distributed as

χ2(ni, λi),

then
k∑

i=1

vi ∼ χ2

(
k∑

i=1

ni,

k∑
i=1

λi

)
.

Proof. By Theorem 4.9.

Theorem 4.13. If v ∼ χ2(n, λ), then

E[v] = n+ 2λ,

Var(v) = 2n+ 8λ,

Mv(t) =
1

(1− 2t)n/2
e−λ[1−1/(1−2t)], t <

1

2
.

Proof. (?) Let K ∼ Poi(λ), then

E[v] = E [E[v|K]] = E[2K + n] = 2λ+ n,

Var(v) = Var (E[v|K]) + E [Var(v|K)]

= Var(2K + n) + E [2(2K + n)]

= Var(2K) + E[4K + 2n]

= 4λ+ 4λ+ 2n

= 2n+ 8λ.

Lastly, since the MGF of χ2
ν is

1

(1− 2t)ν/2
, t <

1

2
.

Mv(t) = E
[
etv
]
= E

[
E
[
etv
∣∣K]] = E

[(
1

1− 2t

) 2K+n
2

]
.

Remark. χ2(n, 0) = χ2(n) = χ2
n.

Theorem 4.14. If y⃗ ∼ Nn(µ⃗, I), then

∥y⃗ − µ⃗∥2 = (y⃗ − µ⃗)T (y⃗ − µ⃗) ∼ χ2
n.

4.4 Distribution of Quadratic Forms

Theorem 4.15. If y⃗ ∼ Nn(µ⃗,Σ), then

(y⃗ − µ⃗)TΣ−1(y⃗ − µ⃗) =
(
Σ−1/2(y⃗ − µ⃗)

)T (
Σ−1/2(y⃗ − µ⃗)

)
= z⃗T z⃗ ∼ χ2

n,

where z⃗ = Σ−1/2(y⃗ − µ⃗) ∼ N (⃗0, I).
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Theorem 4.16. If y⃗ ∼ Nn(µ⃗,Σ), then the MGF of C = y⃗TAy⃗ is

Mc(t) = |I − 2tAΣ|−
1
2 exp

{
−1

2
µ⃗T
[
I − (I − 2tAΣ)−1

]
Σ−1µ⃗

}
.

We saw previously that a projection PV onto a space V ⊆ Rn with dim(V ) = k, has k-evals 1
and n− k-evals 0. The idea can be extended to any idempotent matrix.

Theorem 4.17. If A ∈ Rn×n is idempotent of rank r, then A has r e-vals = 1 and n− r e-vals =
0.

Proof. Since rank(A) = r, then dim(C(A)) = r. So take {x⃗1, . . . , x⃗r} as a basis for C(A), then for
i ∈ [k], x⃗i = Az⃗, for some z⃗. Then

Ax⃗i = A(Az⃗) = Az⃗ = x⃗i.

So each x⃗i is an e-vect corresponding to λ = 1. But there are r LIN such vectors, so the gem. mult.
of λ = 1 is r, which is less than algebraic multiplicity. But rank (N(A)) = n − r, then λ = 0 has
alg. mult. of at least n− r. So A has r-vals = 1 and n− r e-vals = 0.

Corollary 4.18. If A is idempotent, by Theorem 4.17, rank(A) =
∑

i λi, so

rank(A) = tr(A).

Theorem 4.19. Let y⃗ ∼ Np(µ⃗,Σ), let A be a symmetric matrix of constants of rank r, and let
λ = 1

2 µ⃗
TAµ⃗. Then

y⃗TAy⃗ ∼ χ2(r, λ) ⇐⇒ AΣ idempotent.

Corollary 4.20. If y⃗ ∼ Np(⃗0, σ
2I), then

y⃗TAy⃗/σ2 ∼ χ2(r) ⇐⇒ A is idempotent of rank r.

Corollary 4.21. If y⃗ ∼ Np(µ⃗, σ
2I), then

y⃗TAy⃗/σ2 ∼ χ2(r, λ) ⇐⇒ A is idempotent of rank r,

where λ = µ⃗TAµ⃗
2σ2 .

Corollary 4.22. If y⃗ ∼ Np(µ⃗, σ
2I), and let PV be the projection matrix onto a subspace V ⊆ Rn

of dimension r ⩽ n. Then

y⃗TPV y⃗/σ
2 =

1

σ2
∥p(y⃗|V )∥2 ∼ χ2(r, λ).

where λ = µ⃗TPV µ⃗
2σ2 = 1

2σ2 ∥p(µ⃗|V )∥2.

Corollary 4.23. Suppose y⃗ ∼ Np(µ⃗,Σ) and let c⃗ ∈ Rp be arbitrary, then

(y⃗ − c⃗)TΣ−1(y⃗ − c⃗) ∼ χ2(n, λ),

where λ = 1
2 (µ⃗− c⃗)TΣ−1(µ⃗− c⃗).
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Example 4.24. Assume y⃗ ∼ Nn(µ⃗j, σ
2I), then

(n− 1)s2/σ2 ∼ χ2(n− 1).

Proof.

(n− 1)s2/σ2 =
1

σ2

n∑
i=1

(yi − y)2 = y⃗T
[
I − (1/n)J

σ2

]
y⃗.

Since I−(1/n)J
σ2 σ2I = I − 1

nJ is idempotent,

rank

(
I − (1/n)J

σ2

)
= rank (I − (1/n)J) = tr (I − (1/n)J) = n− 1,

and

λ =
µ⃗jT

(
I − 1

nJ
)
µ⃗j

2σ2
=

µ2(n− n)

2σ2
= 0,

we have (n− 1)s2/σ2 ∼ χ2(n− 1).

The classical linear model has the form y⃗ ∼ Nn(µ⃗, σ
2I), where

µ⃗ = Xβ⃗ ∈ V = L(x⃗1, . . . , x⃗k) = C(X).

We are interested in the statistical properties of ˆ⃗y = p(y⃗|V ) and function of the residual vector

y⃗ − ˆ⃗y = p(y⃗|V ⊥).

Theorem 4.25. Let V ⩽ Rn have dimension k, and let y⃗ ∈ Rn a random vector with mean
E[y⃗] = µ⃗. Then

(a)
E[p(y⃗|V )] = p(µ⃗|V ).

(b) If Var(y⃗) = σ2I, then
Var(p(y⃗|V )) = σ2PV ,

E
[
∥p(y⃗|V )∥2

]
= σ2k + ∥p(µ⃗|V )∥2.

(c) If further, y⃗ ∼ Nn(µ⃗, σ
2I), then

p(y⃗|V ) ∼ Nn

(
p(µ⃗|V ), σ2PV

)
,

1

σ2
∥p(y⃗|V )∥2 =

1

σ2
y⃗TPV y⃗ ∼ χ2

k

(
1

2σ2
∥p(µ⃗|V )∥2

)
.

Proof.
E[p(y⃗|V )] = E[PV y⃗] = PV E[y⃗] = PV µ⃗ = p(µ⃗|V ).

Var (p(y⃗|V )) = Var (PV y⃗) = PV (σ
2I)PT

V = σ2PV .

E
[
∥p(y⃗|V )∥2

]
= E

[
y⃗TPV y⃗

]
= tr(σ2PV ) + µ⃗TPV µ⃗ = σ2k + ∥p(µ⃗|V )∥2.
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Sample space Rn

{
Mutually orthogonal model space: V1, . . . , Vk.

Error space.

Theorem 4.26. Let V1, . . . , Vk be mutually orthogonal subspaces of Rn with dimensions d1, . . . , dk,
respectively. Let y⃗ ∈ Rn with mean E[y⃗] = µ⃗. Let

ˆ⃗yi = p(y⃗|Vi) = PVi
y⃗, ∀ i ∈ [k],

µ⃗i = p(µ⃗|Vi) = PVi µ⃗,∀ i ∈ [k].

(a) If Var(y⃗) = σ2I, then

Cov(ŷi, ŷj) = 0,∀ i ̸= j.

(b) If y⃗ ∼ Nn(µ⃗, σ
2I), then ŷ1, . . . , ŷk are independent with ŷi ∼ N(µ⃗i, σ

2PVi).

(c) If y⃗ ∼ Nn(µ⃗, σ
2I), then ∥ŷ1∥2, . . . , ∥ŷk∥2 are independent with

1

σ2
∥ŷi∥2 ∼ χ2

di

(
1

2σ2
∥µi∥2

)
.

Proof. (a) For i ̸= j,

Cov(ŷi, ŷj) = Cov(PVi
y⃗, PVj

y⃗) = σ2PVi
PVj

= 0,

since PVi
PVj

z⃗ = 0⃗ for any z⃗.

(b)

E[ŷi] = E[PVi y⃗] = PVi µ⃗ = µ⃗i.

Var(ŷi) = Var(PVi
y⃗) = PVi

σ2IPT
Vi

= σ2PVi
.

Example 4.27. Let y⃗ = Xβ⃗ + e⃗, where X ∈ Rn×p, rank(X) = p and e⃗ ∼ N(0, σ2I). Take

PV = I −X(XTX)−1XT ,

then SSE = y⃗TPV y⃗. Then

SSE

σ2
= y⃗T

(
I −X(XTX)−1X

σ2

)
y⃗.

But p(E[y⃗]|V ) = PV E[y⃗] = PV Xβ⃗ = 0. By Theorem 4.26(c), we have

SSE

σ2
∼ χ2

n−p.
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4.5 Independence of Linear Forms and Quadratic Forms

Lemma 4.28. If y⃗ ∼ Nn(µ⃗,Σ), then

Cov(y⃗, y⃗TAy⃗) = 2ΣAµ⃗.

Corollary 4.29. If B ∈ Rk×n be constant and y⃗ ∼ Nn(µ⃗,Σ), then

Cov(By⃗, y⃗Ay⃗) = 2BΣAµ⃗.

Theorem 4.30. Suppose that B is a k×p matrix of constants, A is a p×p symmetric of constants,
and y⃗ ∼ Np(µ⃗,Σ). Then

By⃗ |= y⃗TAy⃗ ⇐⇒ BΣA = 0.

Corollary 4.31. If A is p× p symmetric and y⃗ ∼ Np(µ⃗, σ
2I), then

By⃗ |= y⃗TAy⃗ ⇐⇒ BA = 0.

Example 4.32. Assume y⃗ ∼ Nn(µ⃗j, σ
2I). Since

s2 =

n∑
i=1

(yi − y)2/(n− 1) = y⃗T
(
I − 1

n
J

)
y⃗,

y = 1
n j⃗

T y and 1
n j⃗

T
(
I − 1

nJ
)
= 1

n j⃗
T − 1

n2 n⃗j
T = 0, (or: 1T

nPL⊥(1n) =
(
PL⊥(1n)1n

)T
= 0,) we have

y |= s2.

Theorem 4.33. Let A and B be symmetric matrices of constants. If y⃗ ∼ Np(µ⃗,Σ), then

y⃗TAy⃗ |= y⃗TBy⃗ ⇐⇒ AΣB = 0.

Corollary 4.34. Let A and B be symmetric matrices of constants and y⃗ ∼ Np(µ⃗, σ
2I), then

y⃗TAy⃗ |= y⃗TBy⃗ ⇐⇒ AB = 0. (or equivalently BA = 0.)

Example 4.35. Express
n∑

i=1

y2i =
n∑

i=1

(yi − y)2 + ny2

as

y⃗T y⃗ = y⃗T
(
I − 1

n
J

)
y⃗ + y⃗T

(
1

n
J

)
y⃗.

Assume y⃗ ∼ Nn(µ⃗j, σ
2I). Since JJ = nJ , we have

(
I − 1

nJ
) (

1
nJ
)
= 0. So

y⃗T
(
I − 1

n
J

)
y⃗ |= y⃗T

(
1

n
J

)
y⃗,

which is obvious since we have shown s2 |= y.
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4.6 Noncentral F and t Distribution

4.6.1 Noncentral F distribution

Recall if u ∼ χ2(p), v ∼ χ2(q) and u and v are independent, then

w =
u/p

v/q
∼ F (p, q).

Moreover
E(w) =

q

q − 2
,

Var(w) =
2q2(p+ q − 2)

p(q − 1)2(q − 4)
.

Definition 4.36. Suppose that u ∼ χ2(p, λ), while v ∼ χ2(q) with u and v independent. Then

z =
u/p

v/q
∼ F (p, q, λ),

the noncentral F distribution with noncentrality parameter λ, where λ is the same noncentrality
parameter as in the distribution of noncentral chi-square distribution.

E[z] =
q

q − 2

(
1 +

2λ

p

)
,

which of course, greater than E[w].

Remark. When an F statistic is used to test a hypothesis H0, the distribution will typically be
central if the (null) hypothesis is true and noncentral if the hypothesis is false. Thus the noncentral
F distribution can often be used to evaluate the power of an F test. The power of a test is the
probability of rejecting H0 for a given value of λ. If Fα is the upper α percentage point of the
central F distribution, then the power, P (p, q, α, λ) can be defined as

P (p, q, α, λ) = P (z ⩾ Fα),

where z is the noncentral F random variable.

Example 4.37. y⃗ = Xβ⃗ + e⃗, where e⃗ ∼ Nn(⃗0, σ
2I), then y⃗ ∼ Nn(X⃗β, σ2I),

SSEfull =

n∑
i=1

(yi − ŷi)
2 = y⃗T (I −X(XTX)−1XT )y⃗ = y⃗TAy⃗,

where A = I − PC(X). Then AX = 0. Let X = (X1, X2),

β⃗ =

[
β⃗1

β⃗2

]
.

Consider testing H0 : β⃗2 = 0⃗, then

H0 : Reduced model: y⃗ = X1β⃗1 + e⃗.
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So
SSEred = y⃗T

(
I −X1(X

T
1 X1)

−1XT
1

)
y⃗.

The extra SS is given by

SSH0 = SSEred −SSEfull = y⃗T
(
X(XTX)−1XT −X1(X

T
1 X1)

−1XT
1

)
y⃗ = y⃗TBy⃗,

where
B = PC(X) − PC(X1) = X(XTX)−1XT −X1(X

T
1 X1)

−1XT
1 .

Then AB = APC(X) −APC(X1). But APC(X) = (I − PC(X))PC(X) = 0. Also,

AX1 = AX

[
I
0

]
= 0.

So APC(X2) = 0. Thus, AB = 0. So SSH0 |= SSEfull. Hence we can use these independent SS. to

build approximate F -statistics to test H0 : β⃗2 = 0.

Theorem 4.38. Let y⃗ = Xβ⃗ + e⃗, where X ∈ Rn×k with rank r ⩽ k and e⃗ ∼ N (⃗0, σ2I). Let
V1 ⊆ C(X) be a subspace with dim(V1) = r1 ⩽ r. Let ŷ = p(y⃗|C(X)). Then

F =
∥p(y⃗|V1)∥2/r1∥∥∥y⃗ − ˆ⃗y

∥∥∥2/(n− r)
∼ Fr1,n−r

(
1

2σ2

∥∥∥p(Xβ⃗|V1)
∥∥∥2) .

Proof. y⃗ − ˆ⃗y = P (y⃗|C⊥(X)), so we know from previous example, Q1 = ∥p(y⃗|V1)∥2 and Q2 =∥∥p(y⃗|C⊥(X))
∥∥2 are independent r.v.’s and that since rank(PV1

) = r1,

Q1/σ
2 ∼ χ2

r1

(
1

2σ2

∥∥∥p(Xβ⃗|V1)
∥∥∥2) ,

Q2/σ
2 ∼ χ2

n−r.

4.6.2 Noncentral t Distribution

Recall if z ∼ N(0, 1) and u ∼ χ2(p) and z and u are independent, then

t =
z√
u/p

∼ t(p).

Definition 4.39. Suppose that y ∼ N(µ, 1) and u ∼ χ2(p) and y and u are independent. Then

t =
y√
u/p

∼ t(p, µ),

the noncentral t distribution with p degrees of freedom and noncentrality parameter µ.

Example 4.40. If y ∼ N(µ, σ2), then

t =
y/σ√
u/p

∼ t(p, µ/σ)

since y/σ ∼ N(µ/σ, 1).
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Theorem 4.41. Let y1, . . . , yn
iid∼ N(µ, σ2), then for any constant µ0,

T =
y − µ0

s/
√
n

∼ tn−1(λ),

where

λ =
µ− µ0

σ/
√
n
.

Proof. Let u = y−µ0

σ/
√
n
, then u ∼ N( µ−µ0

σ/
√
n
, 1). Note that

T =

y−µ0

σ/
√
n√

s2/σ2
=

u√
χ2
n−1/n− 1

.



Chapter 5

Simple Linear Regresssion

5.1 The Model

Definition 5.1. The simple linear regression model for n observations can be written as

yi = β0 + β1xi + ϵi, i = 1, . . . , n.

The designation simple indicates that there is only one x to predict the response y, and linear
means that the above model is linear in β0 and β1. In this chapter, we assume that yi and ϵi
are random variables and the values of xi are known constants, which means that the same values
of x1, . . . , xn would be used in repeated sampling. To complete the above model, we make the
following additional assumptions:

(a) E(ϵi) = 0 for i = 1, . . . , n, or equivalently, E[yi] = β0 + β1xi.

(b) Var(ϵ) = σ2 or i = 1, . . . , n, or equivalently, Var(yi) = σ2.

(c) Cov(ϵi, ϵj) = 0 for i ̸= j, or equivalently, Cov(yi, yj) = 0.

Remark. (a) Assumption 1 states yi depends only on xi and that all other variation in yi is
random.

(b) Assumption 2 asserts the variance of ϵ or y does not depend on the value of xi, known as the
assumption of homoscedasticity, homogeneous variance or constant variance.

(c) Assumption 3 says ϵ or y variables are uncorrelated with each other. (If we add a normality
assumption, the ϵ or y variables will be independent.)

5.2 Estimation of β0, β1 and σ2

Using a random sample of n observations y1, . . . , yn and the accompanying fixed values x1, . . . , xn,
we can estimate the parameters β0, β1 and σ2. To obtain the estimates β̂0 and β̂1, we use the
method of least squares, which does not require any distributional assumptions.

43
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In the least-square approach, we seek estimators β̂0 and β̂1 that minimize the sum of squares of
the deviations yi − ŷi of the n observed yi’s from their predicted values ŷi = β̂0 + β̂1xi.

ˆ⃗ϵT ˆ⃗ϵ =

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − β̂0 − β̂1xi)
2.

Note that the predicted value ŷi estimate E[yi], not yi; that is, β̂0 + β̂1xi estimates β0 + β1xi, not
β0 + β1xi + ϵi. A better notation would be Ê[yi], but ŷi is commonly used. By differentiating the
above formula, we have

β̂1 =

∑n
i=1 xiyi − nx · y∑n

i=1 x
2
i − nx2

=

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
,

where
β̂0 = y − β̂1x.

Note the three assumptions in section 1 were not used in deriving the least-square estimators. It is
not necessary that ŷi = β̂0 + β̂1xi be based on E[yi] = β0 + β1xi, that is, ŷi = β̂0 + β̂1xi can be fit
to a set of data for which

E[yi] ̸= β0 + β1xi.

However, if the three assumptions holds, then the least-square estimator β̂0 and β̂1 are unbiased
and have minimum variance among all linear unbiased estimators. Use the three assumptions, we
obtain the following means and variance of β̂0 and β̂1:

E[β̂1] = β1,

E[β̂0] = β0,

Var(β̂1) =
σ2∑n

i=1(xi − x)2
,

Var(β̂0) = σ2

[
1

n
+

x2∑n
i=1(xi − x)2

]
.

Note in discussing E[β̂1] and Var(β̂1), for example, we are considering random variation of β̂1

from sample for sample. It is assumed that n values x1, . . . , xn would remain the same in future
samples so that Var(β̂1) and Var(β̂0) are constant. Furthermore, we see that when

∑n
i=1(xi − x)2

is maximized, Var(β̂1) is minimized. By assumption 2 in section 1, σ2 is the same for each yi. Then

σ2 = E
[
(yi − E[yi])

2
]
for each i. Using ŷi as an estimator of E[yi], we estimate σ2 by an average

from the sample, that is

s2 =

∑n
i=1(yi − ŷi)

2

n− 2
=

∑n
i=1(yi − β̂0 − β̂1xi)

2

n− 2
=

SSE

n− 2
.

The deviation ϵ̂i = yi − ŷi is often called the residual of yi and SSE is called the residual sum of
squares. With n−2 in the denominator, s2 is an unbiased estimator of σ2. Intuitively, we divide by
n− 2 instead of n− 1 because ŷi = β̂0 + β̂1xi has two estimated parameters and should thereby be
a better estimator of E[yi] than y. Thus we expect SSE =

∑n
i=1(yi − ŷi)

2 <
∑n

i=1(yi − y)2. Using
some algebra, we indeed have

SSE =

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − y)2 −
[
∑n

i=1(xi − x)(yi − y)]
2∑n

i=1(xi − x)2
.
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5.3 Hypothesis Test and Confidence Interval for β1

Typically, hypothesis about β1 are of more interest than hypothesis about β0 since our first priority
is to determine whether there is a linear relationship between y and x. In order to obtain a test for
H0 : β1 = 0, we assume that yi ∼ N(β0 + β1xi, σ

2). Then

(a)

β̂1 ∼ N

(
β1,

σ2∑n
i=1(xi − x)2

)
.

(b)
(n− 2)s2/σ2 ∼ χ2(n− 2).

(c)

β̂1 |= s2.

(We can not use the distribution of β̂1 directly since σ is unknown.) From these three properties it
follows that

t =
β̂1

s/
√∑n

i=1(xi − x)2
=

β̂1/σ/
√∑n

i=1(xi − x)2√
(n− 2)s2/σ2/n− 2

∼ t(n− 2, δ),

where

δ =
E[β̂1]√
Var(β̂1)

=
β1

σ/
√∑n

i=1(xi − x)2
.

If β1 = 0, then t ∼ t(n − 2). For a two sided alternative hypothesis H1 : β1 ̸= 0, we reject
H0 : β1 = 0 if |t| ⩾ tα/2,n−2, where tα/2,n−2 is the upper α/2 percentage point of the central
t(n − 2) distribution and α is the desired significant level of the test (probability of rejecting).
Alternatively, we reject H0 if the p value p < α. For a two sided test, the p value is defined as twice
the probability that t(n− 2) exceeds the absolute value of the observe t. A 100(1−α)% confidence
interval for β1 is given by

β̂1 ± tα/2,n−2
s√∑n

i=1(xi − x)2
.

5.4 Coefficient of Determination

Definition 5.2. The coefficient of determination r2 is defined as

r2 =
SSR

SST
=

∑n
i=1(ŷi − y)∑n
i=1(yi − y)2

,

where SSR is the regression sum of squares and SST is the total sum of squares.

SST = SSR + SSE

Thus r2 gives the proportion of variation in y that is explained by the model or, equivalently,
accounted for by the regression on x.

We have labeled as r2 because it is the same as the square of the sample correlation coefficient
r between y and x

r =
sxy√
s2xs

2
y

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2x)2
∑n

i=1(yi − y)2
.
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Chapter 6

Multiple Regression: Estimation

6.1 Introduction

In multiple regression, we attempt to predict a dependent or response variable y on the basis of
an assumed linear relationship with several independent or predictor variables x1, x2, . . . , xk. In
addition to constructing a model for prediction, we may wish to assess the extent of the relationship
between y and the x variables. For this purpose, we use the multiple correlation coefficient R. In
this chapter, y is a continuous random variable and the x variables are fixed con- stants (either
discrete or continuous) that are controlled by the experimenter.

6.2 The model

y⃗ = Xβ⃗ + ϵ⃗.

The assumptions on ϵi and yi are

E [⃗ϵ] = 0 or E[y⃗] = Xβ⃗.

Cov(⃗ϵ) = σ2I or Cov(y⃗) = σ2I.

In summary, if ϵ⃗ ∼ Nn(0, σ
2I), then

y⃗ ∼ Nn(Xβ⃗, σ2I).

In multiple linear regression, the explanatory variables are usually LIN. So we assume rank(X) =
k + 1. Also, we assume n > k + 1, so the model involves data reduction (i.e., summerization). If
r = k + 1, there is no reduction, just transformation.

Remark. The β⃗ arguments are called (partial) regression coefficients. Mathematically, the partial
derivative of E[y⃗] w.r.t x1 is β1. Thus, β1 indicates the change in E[y⃗] with a unit increase in x1

when the other predictors are held constant. Statistically, β1 shows the effect x1 on E[y⃗] in the
presence of the other x’s. This effect would typically be different from the effect of x1 on E[y⃗] if
the other x’s were not present in the model. For example

y⃗ = β0 + β1x1 + β2x2 + ϵ

47
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will usually be different from β∗
0 and β∗

1 in y⃗ = β∗
0 + β∗

1x+ ϵ∗. If x⃗1 and x⃗2 are orthogonal, that is,
if x⃗T

1 x⃗2 = 0 or if (x⃗1 − x1In)
T (x⃗2 − x2In) = 0, then β0 = β∗

0 and β1 = β∗
1 .

Remark. If we are only interested in prediction, we usually only need to find ˆ⃗µ = X
ˆ⃗
β. Often, we

are interested in estimating
ˆ⃗
β.

6.3 Estimation of β⃗ and σ2

6.3.1 Least Squares Estimator for β⃗

6.3.2 Properties of the Least-Square Estimator
ˆ⃗
β

Theorem 6.1. If E[y⃗] = Xβ⃗, then β̂ is an unbiased estiamtor for β⃗.

Theorem 6.2. If Cov(y⃗) = σ2I, the covariance matrix for
ˆ⃗
β is given by σ2(XTX)−1.

Theorem 6.3. If ϵ⃗ ∼ MVN(⃗0, σ2I), then

ˆ⃗
β ∼ Nk+1

(
β⃗, σ2(XTX)−1

)
.

Remark. We will see that under certain conditions,
ˆ⃗
β is still asymptotically norm even when ϵ⃗ is

not normally distributed.

Theorem 6.4 (Gauss-Markov Theorem). If E[y⃗] = Xβ⃗ and Cov(y⃗) = σ2I, the least-squares

estimators β̂j for j = 0, . . . , k have minimum variance among all linear unbiased estimator (BLUE).

Theorem 6.5. Gauss-Markov does not depend on normality.
ˆ⃗
β is BLUE regardless of the error

distribution. If we add the normal errors assumptions, the LSE has minimum variance among all
unbiased estimators (UMVUE).

Proof. Consider the CLM

y⃗ = Xβ⃗ + e⃗, e⃗ ∼ N(0, σ2I).

Then

f(y⃗|β⃗, σ2) = (2πσ2)−
n
2 exp

(
− 1

2σ2
(y⃗ −Xβ⃗)T (y⃗ −Xβ⃗)

)
= (2πσ2)−

n
2 exp

(
− 1

2σ2

(
y⃗T y⃗ − 2β⃗T x⃗T y⃗ + β⃗TXTXβ⃗

))
= C(β⃗, σ2) exp

(
− 1

2σ2
y⃗T y⃗ +

β⃗T

σ2
XT y⃗

)

= C(β⃗, σ2) exp

θ1T1(y⃗) +

k+2∑
j=2

θjTj(y⃗)

 ,
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where θ1 = − 1
2σ2 , T1(y⃗) = y⃗T y⃗. θ2

...
θk+2

 =
1

σ2
β⃗,

 T2(y⃗)
...

Tk+2(y⃗)

 = XT y⃗.

So the density is an exponential family with complete sufficient statistic[
y⃗T y⃗
XT y⃗

]
.

Since a⃗T
ˆ⃗
β = a⃗T (XTX)−1XT y⃗ is a function of XT y⃗ and is unbiased for aT β⃗, a⃗T

ˆ⃗
β is UMVUE for

a⃗T β⃗. Further, s2 = 1
n−k−1 (y⃗ −X

ˆ⃗
β)T (y⃗ −X

ˆ⃗
β) is unbiased for σ2 and

s2 =
y⃗T y⃗ − y⃗TX(XTX)−1(XT y⃗)

n− k − 1
.

Thus, s2 is UMVUE for σ2.

Corollary 6.6. If E[y⃗] = Xβ⃗ and Cov(y⃗) = σ2I, the BLUE of a⃗T β⃗ is a⃗T
ˆ⃗
β, where

ˆ⃗
β is the least

squares estimator
ˆ⃗
β = (XTX)−1XT y⃗.

Remark. Take a⃗ = (0, 0, . . . , 1, . . . , 0)T to see that β̂j is the BLUE for βj .

Theorem 6.7.

Var(aT
ˆ⃗
β) = aT Var(

ˆ⃗
β) = σ2[aT (XTX)−1a].

So if the columns of X are mutually orthogonal, the elements of
ˆ⃗
β are uncorrelated. For a given

set of explanatory variables, the values at which they are observed affect the variance (precison) of
the resulting estimators.

Theorem 6.8. The predicted values ŷ is invariant to a full-rank linear transformation on the x’s.

Proof. Assume a full rank linear transformation of X is given by Z = XH, where H is square and
of full rank. In the orthogonal model,

µ̂ = X(XTX)−1XT y⃗ = PC(X)y⃗.

In the transformation model,

µ̂ = Z(ZTZ)−1ZT y⃗ = PC(Z)y⃗ = PC(XH)y⃗.

It is sufficient to show C(X) = C(XH).

Theorem 6.9. If x⃗ = (1, x1, . . . , xk)
T and consider rescaling the predictors z⃗ = (1, c1x1, . . . , ckxk)

T ,

then ŷ =
ˆ⃗
βT x⃗ =

ˆ⃗
βT
z z⃗, where

ˆ⃗
βz is the least square estimator from the regression of y on z⃗.

Proof. Take H = diag(1, c1, . . . , ck).
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6.3.3 An estimation for σ2

Theorem 6.10. If E[y⃗] = Xβ⃗ and Cov(y⃗) = σ2I, then

E[s2] = σ2.

Corollary 6.11. An unbiased estimator of Cov(
ˆ⃗
β) is given by

Ĉov(
ˆ⃗
β) = s2(XTX)−1.

6.4 Geometry of least squares

6.4.1 Parameter Space, data Space, and prediction space

β⃗ can be viewed as a single point in Rk+1, which is called the parameter space. y⃗ can be viewed as
a single point in Rn, which is called the data space. The columns of X = (1n, x⃗1, . . . , x⃗k) including
1n are points in the data space. Note that because we assumed that X is of rank k + 1, these
vectors are linearly independent. The set of all possible linear combinations of the columns of X
constitutes a subspace of the data space, which is called the prediction space (Rk+1), which is a
proper complete subspace of the data space Rn. Note that y⃗ is not in the prediction space, is known
and E[y⃗] is in the prediction space. Multiple linear regression can be understood geometrically as
the process of finding a sensible estimate of E[y⃗] in the prediction space and then determining the
vector in the parameter space that is associated with this estimate. The estimate of E[y⃗] is denoted

as ˆ⃗y, and the associated vector in the parameter space is denoted as
ˆ⃗
β. A reasonable geometric idea

is to estimate E[y⃗] using the point in the prediction space that is closest to y⃗. It turns out that
ˆ⃗y, the closest point in the prediction space to y⃗, can be found by noting that the difference vector
ˆ⃗ϵ = y⃗− ˆ⃗y must be orthogonal (perpendicular) to the prediction space (linear analysis). Furthermore,

because the prediction space is spanned by the columns of X, the point ˆ⃗y must be such that ˆ⃗ϵ is
orthogonal to the columns of X. We therefore seek ˆ⃗y such that

XT ˆ⃗ϵ = 0⃗,

or

XT (y⃗ − ˆ⃗y) = XT (y⃗ −X
ˆ⃗
β) = XT y⃗ −XTX

ˆ⃗
β = 0⃗,

which implies that XTX
ˆ⃗
β = XT y⃗.

6.5 Normal model

6.5.1 Maximum Likelihood Estimation

LS tells us how to estimate parameter β⃗, but doesn’t help much with other parameters (or other
distributional properties). ML provides a general criterion for finding estimators of unknown pa-
rameters. It provides access to a much broader class of estimators than LS at the expense of stronger
distribution assumptions.
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Definition 6.12. Assume a random vector y⃗ has pdf/pmf f(y⃗|r⃗), which depends on an unknown
r⃗ ∈ Γ ⊆ Rp. If Γ is an open set, then r̂ satisfies

∂l(ˆ⃗r)

∂r⃗
= 0.

In CLM, the parameters are β⃗ and σ2, i.e.,

r =

[
β⃗
σ2

]

Theorem 6.13. If y⃗ ∼ Nn(Xβ⃗, σ2I), where X ∈ Rn×(k+1) of rank k + 1 < n, the MLE of β⃗ and
σ2 are

ˆ⃗
β = (XTX)−1XT y⃗,

σ̂2 =
1

n
∥y⃗ − p (y⃗|C(X))∥2 =

1

n

∥∥p (y⃗|C⊥(X)
)∥∥2 =

SSE

n
.

Remark. A “better” estimator is

s2 =

∥∥∥y⃗ −X
ˆ⃗
β
∥∥∥2

n− rank(X)
,

even if X is not full rank. It can be shown that s2 is the best (quadratic) unbiased estimator of σ2

under the spherical error CLM, i.e., Var(⃗ϵ|X) = σ2I, where normality is not required.

Example 6.14. For the intercept only model, yi = β0 + ei, Xβ⃗ = 1nβ0. Then β̂0 = y. Since
rank(X) = 1,

s2 =
1

n− 1

∥∥∥y⃗ − ˆ⃗y
∥∥∥2 =

1

n− 1

n∑
i=1

(yi − y)2.

6.5.2 Properties of
ˆ⃗
β and σ̂2

Theorem 6.15. Assume y⃗ ∼ Nn(Xβ⃗, σ2I), then

(a)

ˆ⃗
β ∼ Nk+1

(
β⃗, σ2(XTX)−1

)
.

(b)

(n− k − 1)s2

σ2
∼ χ2

n−k−1.

(c)

ˆ⃗
β |= s2.
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6.6 Generalized Least-Squares: Cov(y⃗) = σ2V

In simple linear regression, larger values of xi may lead to larger values of Var(yi). In either simple
or multiple regression, if y1, . . . , yn accur at sequential points in time, they are typically correlated.
Then we use the model

y⃗ = Xβ⃗ + ϵ⃗, E[y⃗] = Xβ⃗, Var(y⃗) = Σ = σ2V,

where V is known positive definite matrix.

Remark. The model above is not a Gaussian-Markov model.

Example 6.16. Uncorrelated, hetoskedastic errors

yi = β0 + β1xi + ei, i = 1, . . . , n,

where ei’s are independent with E[ei] = 0 and Var(ei) = σ2xi. Then

Var(e⃗) = σ2V,

V = diag(x1, . . . , xn).

In this case, we might estimate β⃗ with

argminβ

n∑
i=1

(yi − β0 − β1xi)
2

xi
= argminβ

n∑
i=1

1

xi
(yi − β0 − β1xi)

2.

This is weighted least square (lower variance implies greater weight in the sum). Note that

n∑
i=1

1

xi
(yi − β0 − β1xi)

2 = (y⃗ −Xβ⃗)TC−1(y⃗ −Xβ⃗).

A simple transformation can make the model be a Gaussian-Markov model. Since V is known
p.d., then there exists a nonsingular Q such that

V = QQT .

Then
Q−1y⃗ = (Q−1X)β⃗ +Q−1e⃗.

Then E[Q−1e⃗] = 0 and Var(Q−1e⃗) = σ2I. Then the GLS criterion is

(Q−1e⃗)T (Q−1e⃗) = (Q−1y⃗ −Q−1Xβ⃗)T (Q−1y⃗ −Q−1Xβ⃗)

= (y⃗ −Xβ⃗)T (QQT )−1(y⃗ −Xβ⃗)

= (y⃗ −Xβ⃗)TV −1(y⃗ −Xβ⃗).

Remark. The GLS estimates β⃗ by minimizing squared statiscal distance instead of Euclidean
distance, i.e., it takes into account the covariances among yi’s. Most of time, V arbitrary =
“generalized least squares”, V diagonal = “weighted least square”.
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Theorem 6.17.

SSE =
(
Q−1y⃗ −Q−1X

ˆ⃗
β
)T (

Q−1y⃗ −Q−1X
ˆ⃗
β
)
= (Q−1y⃗)TP(Q−1X)⊥Q

−1y⃗.

Proof. It follows from

rank
(
P(Q−1X)⊥

)
= n− rank

(
Q−1X

)
= n− rank(X) = n− k − 1.

Theorem 6.18.
ˆ⃗
β |= SSE

Proof. Let X̃ = Q−1X. Since

ˆ⃗
β = (X̃T X̃)−1X̃

(
Q−1y⃗

)
= B

(
Q−1y⃗

)
,

we have

SSE =
(
Q−1y⃗

)T (
I − X̃

(
X̃T X̃

)−1

X̃T

)(
Q−1y⃗

)
=
(
Q−1y⃗

)T
A
(
Q−1y⃗

)
.

By the distribution of quadratic form, since B(σ2I)A = 0, we have

ˆ⃗
β |= SSE .

Theorem 6.19. (a) The BLUE of β⃗ is

ˆ⃗
β = (XTV −1X)−1XTV −1y⃗.

(b)

Var(
ˆ⃗
β) = σ2(XTV −1X)−1.

(c)

s2 =
(y⃗ −X

ˆ⃗
β)TV −1(y⃗ −X

ˆ⃗
β)

n− k − 1
=

y⃗T
[
V −1 − V −1X(XTV −1X)−1XTV −1

]
y⃗

n− k − 1
.

(d) If e⃗ ∼ N (⃗0, σ2V ), the MLE’s of β⃗ and σ2 are

ˆ⃗
β = (XTV −1X)−1XTV −1y⃗.

σ̂2 =
(y⃗ −X

ˆ⃗
β)TV −1(y⃗ −X

ˆ⃗
β)

n− k − 1
=

y⃗T
[
V −1 − V −1X(XTV −1X)−1XTV −1

]
y⃗

n− k − 1
.
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6.7 Model Misspecification

What happens if we use OLS when GLS is appropriate? Suppose the true model is GLS, then the
BLUE

ˆ⃗
β = (XTV −1X)−1XTV −1y⃗.

Var(
ˆ⃗
β) = σ2(XTV −1X)−1.

But we estimate β⃗ with
ˆ⃗
β∗ = (XTX)−1XT y⃗.

Then

E [⃗aT
ˆ⃗
β∗] = a⃗TE[(XTX)−1XT y⃗] = a⃗Tβ.

So
ˆ⃗
β and

ˆ⃗
β∗ are unbiased. However,

Var(
ˆ⃗
β∗) = (XTX)−1XTVar(y⃗)X(XTX)−1 = σ2(XTX)−1XTV X(XTX)−1.

Var(⃗aT
ˆ⃗
β∗) = σ2a⃗T (XTX)−1XTV X(XTX)−1a⃗.

Var(⃗aT
ˆ⃗
β) = σ2a⃗T (XTV −1X)−1a⃗.

Notice that

Var(⃗aT
ˆ⃗
β∗)−Var(⃗aT

ˆ⃗
β)

= σ2a⃗T (XTX)−1
[
XTV X − (XTX)(XTV −1X)−1(XTX)

]
(XTX)−1a⃗

= σ2a⃗T (XTX)−1XT
[
V −X(XTV −1X)−1XT

]
X(XTX)−1a⃗

= σ2a⃗T (XTX)−1XTV
1
2

[
I − V − 1

2X(XTV −1X)−1XTV − 1
2

]
V

1
2X(XTX)−1a⃗

= σ2a⃗T z⃗TPC(X̃)⊥ z⃗ ⩾ 0

where z = (XTX)−1XTV
1
2 and X̃ = V − 1

2X. What happens if we misspecify E[y⃗]? Consider the
special case, and partition the model

y⃗ = Xβ⃗ + e⃗ = (X1, X2)

[
β⃗1

β⃗2

]
+ e⃗ = X1β⃗1 +X2β⃗2 + e⃗.

If we leave out X2β⃗2 when it should be included, we are underfitting. If we include X2β⃗2 when it
doesn’t belong to the true model, we are overfitting.

6.7.1 Underfitting

We write the reduced model as
y⃗ = X1β⃗

∗
1 + ϵ⃗∗,

Var(e⃗∗) = σ2I.

Then the mean and Var-Cov of β∗
1 = (XT

1 X1)
−1XT

1 y⃗ are
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(a)

E[
ˆ⃗
β1] = β⃗1 +Aβ⃗,

where A = (XT
1 X1)

−1XT
1 X2.

(b)

Var(
ˆ⃗
β∗
1) = σ2(XT

1 X1)
−1.

This means that underfitting makes
ˆ⃗
β1 biased an amount that depends on both the excluded and

included explanatory variables.

Corollary 6.20. If XT
1 X2 = 0, that is, if columns of X1 are orthogonal to the columns of X2, then

E[
ˆ⃗
β∗
1 ] = β1.

Remark. σ2(XT
1 X1)

−1 is not equal to the corresponding block of Var-Cov matrix for
ˆ⃗
β obtained

from the full model.

Theorem 6.21. Let
ˆ⃗
β = (XTX)−1XT y⃗ from the full model be partitioned as

[
ˆ⃗
β1

ˆ⃗
β2

]
and let

ˆ⃗
β∗
1 =

(XT
1 X1)

−1XT
1 y⃗ be the estimator from the reduced model. Then

Var(
ˆ⃗
β1)−Var(

ˆ⃗
β∗
1) = AB−1AT ,

which is a p.s.d. matrix, where
A = (XT

1 X1)
−1XT

1 X2,

B = XT
2 X2 −XT

2 X1A.

Proof.

Var(
ˆ⃗
β) = Var

[
β⃗1

β⃗2

]
= σ2(XTX)−1 = σ2

[
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

]−1

= σ2

[
H11 H12

H21 H22

]−1

= σ2

[
H11 H12

H21 H22

]
We know

H11 = H−1
11 +H−1

11 H12B
−1H21H

−1
11 ,

where B = H22 −H21H
−1
11 H12. Also, we know

Var(
ˆ⃗
β∗
1) = σ2(XT

1 X1)
−1 = σ2H−1

11 .

Thus,

Var(
ˆ⃗
β1)−Var(

ˆ⃗
β∗
1) = σ2(H11 −H−1

11 )

= σ2
(
H−1

11 H12B
−1H21H

−1
11

)
= σ2

[
(XT

1 X1)
−1XT

1 X2B
−1XT

2 X1(X
T
1 X1)

−1
]

= σ2AB−1AT .

We can show AB−1A is p.s.d.
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Remark. Underfitting reduces te variance of regression parameter estimators, but introduces bias.
Overfitting proces unbiased estimators, but increases the variance of these estimators.

6.8 The model in centered form

It’s sometimes useful to “center” the explanatory variables when fitting the multple regression
model, for example, in expressing certain hypothesis tests.

yi = β0 + β1xi2 + · · ·+ βkxik + ϵi

= α+ β(xi1 − x1) + · · ·+ βk(xik − xk) + ϵi, i ∈ [n],

where

α = β0 + β1x1 + · · ·+ βkxk.

In matrix form,

y⃗ =
[
1n Xc

] [α
β⃗1

]
+ e⃗,

where

β⃗1 = (β1, . . . , βk)
T ,

Xc = (I − 1

n
J)X1,

where I − 1
nJ is sometimes called the centered matrix. The least square estimation:[

α̂
ˆ⃗
β

]
=

[[
1n

Xc

] [
1n Xc

]]−1 [
1
T
n

XT
c

]
y⃗

=

[
n 0⃗T

0⃗ XT
c Xc

]−1 [
1
T
n

XT
c

]
y⃗

=

[
n−1 0⃗T

0⃗ (XT
c Xc)

−1

] [
ny
XT

c y⃗

]
=

[
y

(XT
c Xc)

−1XT
c y⃗

]
.

Thus, α̂ = y and β̂1 = (XT
c Xc)

−1XT
c y⃗.

Remark. These estimators are the same as the usual least-squares estimators with the adjustment

β̂0 = α̂− β̂1x1 − β̂kxk = y − ˆ⃗
β1x⃗.

Then

Ê[yi] = α̂+ β̂1(xi1 − x1) + · · ·+ β̂k(xik − xk),

so the regression plane passes through the point (y, x1, . . . , xk.)
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6.9 SST,SSE,SSR,R2

Theorem 6.22. In general,

y⃗T (I − PC(X))y⃗ = SSE

= (y⃗ −Xβ̂)T (y⃗ −X
ˆ⃗
β)

= (y⃗ −X
ˆ⃗
β)T y⃗ − (y⃗ −Xβ̂)TX

ˆ⃗
β

= y⃗T y⃗ − ˆ⃗
β6TXT y⃗ − (XT y⃗ −XTX

ˆ⃗
β)T

ˆ⃗
β

= y⃗T y⃗ − ˆ⃗
βTXT y⃗.

Since

SST = y⃗T y⃗ − ny2 = y⃗T y⃗ − ˆ⃗
βTXT y⃗ +

ˆ⃗
βTXT y⃗ − ny2,

we have

y⃗T
(
PC(X) − PC(1n)

)
y⃗ = SSR =

ˆ⃗
βTXT y⃗ − ny2.

In the centered case,

SSE = y⃗T y⃗ − (α̂
ˆ⃗
βT
1 )(1n Xc)

T y⃗

= y⃗T y⃗ − ny2 − β̂T
1 X

T
c y⃗

= SST−SSR .

So

SSR = β̂T
1 X

T
c y⃗ = β̂1X

T
c Xc(X

T
c Xc)

−1XT
c y⃗ = β̂T

1 X
T
c Xcβ̂1 = (Xc

ˆ⃗
β1)

T (Xc
ˆ⃗
β1).

Definition 6.23.
SST: corrected total sum of squares,

which quantifies total variability in the data.

SSR: regression sum of squares,

which quantifies the variability in the data that can be explained by the regression terms.

Definition 6.24. The proportion of the total SS due to the regression,

R2 :=
SSR

SST
,

which is called the coefficient of determination. It is the sample estimation of the squared multiple
correlation coefficient.

Theorem 6.25 (Facts). (a)
0 ⩽ R2 ⩽ 1.

(b) If all the β̂j’s were 0, except for β̂0, R
2 would be 0. (This event has probability 0 for continuous

data). If all the y value fell on the fitted surface, that is, if yi = ŷi for i = 1, . . . , n, then R2 = 1.
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(c)

R =
√
R2 = ry⃗ ˆ⃗y,

which is the sample correlation between yi’s and the ŷi’s.

(d) Adding a variable x to the model cannot decrease the value of R2.

(e) If β1 = · · · = βk = 0, then

E[R2] =
k

n− 1
.

Note that the β̂j’s will not be 0 when the βj’s are 0.

Proof. Note that y⃗ ∼ Nn(β01n, σ
2I). We know

SSE

σ2
= y⃗T

(
I − PC(X)

σ2

)
y⃗ ∼ χ2

n−k−1,

SSR

σ2
= y⃗T

(
PC(X) − PL(1n)

σ2

)
y⃗ ∼ χ2

k,

and
SSE

σ2 |=

SSR

σ2
.

Now reall that if W ∼ χ2
m, V ∼ χ2

n and W |= V , then

W + V |=

W

W + V
.

Then

E[W ] = E

[
W

W + V
(W + V )

]
= E

[
W

W + V

]
E[W + V ].

So

E

[
W

W + V

]
=

E[W ]

E[W + V ]
.

Thus,

E[R2] =
E[SSR]

E[SSR + SSE]
=

k

n− 1
.

(f) R2 cannot be partitioned into k components, each of which is uniquely attributable to an xj,
unless the x’s are x’s are mutually orthogonal, that is,

n∑
i=1

(xij − xj)(xim − xm) = 0, for j ̸= m.

(g) R2 is invariant to a full rank linear transformation of x’s and to a scale change on y, but not
invariant to a joint linear transformation or [y, x].
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(h)
R = cos(θ),

where θ is the angle between mean-corrected y⃗ and mean-corrected ŷ.

R2 =

∥∥∥ˆ⃗y − y1n

∥∥∥2
∥y⃗ − y1n∥2

=
(Xβ̂)T y⃗ − ny2

y⃗T y⃗ − ny2
= cos2 θ.

Also,

SST = ∥y⃗ − y1n∥2 =
∥∥∥y⃗ − ˆ⃗y

∥∥∥2 + ∥∥∥ˆ⃗y − y1n

∥∥∥2.
We can see that if k is a relatively large fraction of n, it is possible to have a large value of R2

that is not meaningful. In this case, x’s that do not contribute to predicting y may appear to do
so in a particular example, and the estimated regression equation may not be a useful estimator of
the population model. To correct for this tendency, Ezekeil proposed a bias-corrected of R2.

R2
a =

(
R2 − k

n−1

)
(n− 1)

n− k − 1
=

(n− 1)R2 − k

n− k − 1
.

6.10 Examples

Example 6.26. In the linear model y⃗ = Xβ⃗ + e⃗, e ∼ N(0,Σ), show that the BLUE of β⃗ is equal
to the OLS estimator if and only if there exists a nonsingular matrix F such that

ΣX = XF.

In other words, show that (XTΣ−1X)−1XTΣ−1y⃗ = (XTX)−1XT y⃗ if and only if ΣX = XF .

Proof. “⇒”.(
XTΣ−1X

)−1
XTΣ−1 = (XTX)−1XT =⇒ XTX

(
XTΣ−1X

)−1
XTΣ−1 = XT

=⇒ Σ−1X
(
XTΣ−1X

)−1
XTX = X

=⇒ X
(
XTΣ−1X

)−1
XTX = ΣX.

“⇐”.

Σ−1XF = X=⇒FTXTΣ−1 = XT

=⇒ FTXTΣ−1X = XTX

=⇒
(
XTΣ−1X

)−1
F−T =

(
XTX

)−1

=⇒
(
XTΣ−1X

)−1
F−TXT =

(
XTX

)−1
XT .

Since XF−1 = Σ−1X, we have F−TXT = XTΣ−1.
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Chapter 7

Multiple Regression: Tests of
Hypotheses and Confidence
Intervals

We will assume throughout the chapter that

y⃗ ∼ Nn(Xβ⃗, σ2I),

where X is n× (k + 1) of rank k + 1 < n.

7.1 Test on a subset of the β’s

Testing linear hypothesis amounts to putting constraints on the model space and comparing the
constrained model vs the unconstrained model. Assume model

y⃗ = µ⃗+ e⃗,

where

µ⃗ = Xβ⃗ ∈ C(X), e⃗ ∼ N(0, σ2I).

Q: Is µ⃗ ∈ V0 ⊆ C(X)? For example, is µ ⊆ C(X0), where X0 consists of a subset of the columns of
X. Without loss of generality, arrange the linear model so the terms that we want to test appear
last in the linear predictor:

y⃗ = Xβ⃗ + e⃗ = X1β⃗1 +X2β⃗2 + e⃗,

whereX1 ∈ Rn×(k+1−h) andX2 ∈ Rn×h. Thus, β⃗1 = (β0, β1, . . . , βk−h)
T and β⃗2 = (βk−h+1, . . . , βk)

T .

Under H0 : β⃗2 = 0⃗,

y⃗ = X1β⃗
∗
1 , e⃗∗ ∼ N(0, σ2I).

The problem is to test

H0 : µ⃗ ∈ C(X1) vs H1 : µ⃗ ̸∈ C(X1),

61
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under the maintained hypothesis that

C⃗(X) = C ([X1, X2]) .

So we need a test statistic whose magnitude measures the strength of the evidence agaist H0. If the
test statistic is “large enough”, we reject H0. How large? It depends on the predictors. An α-level
test rejects if the p-value < α for some pre-specify α. Note: for hypothesis testing and confidence
intervals, we will need normality as well. Under RM, µ ⊆ C(X1) ⊆ C(X), so

RM true =⇒ FM true.

The least square estimators of µ⃗, PC(X1)y⃗ and PC(X)y⃗ estimate the same thing. Then

PC(X)y⃗ − PC(X1)y⃗ =
(
PC(X) − PC(X1)

)
y⃗

should be small under H0 : µ⃗ ∈ C(X1). Measure the size of
(
PC(X) − PC(X1)

)
y⃗ with∥∥(PC(X) − PC(X1)

)
y⃗
∥∥2 = y⃗T

(
PC(X) − PC(X1)

)
y⃗.

Note

E
[
y⃗T
(
PC(X) − PC(X1)

)
y⃗
]
= σ2 dim

(
C⊥(X1) ∩ C(X)

)
+ µ⃗T

(
PC(X) − PC(X1)

)
µ⃗

= σ2h+
(
PC(X)µ⃗− PC(X1)µ⃗

)T (
PC(X)µ⃗− PC(X1)µ⃗

)
.

Under H0, µ⃗ ∈ C(X1) ⊆ C(X), then

PC(X)µ⃗− PC(X1)µ⃗ = µ⃗− µ⃗ = 0⃗.

But under H1, µ⃗ ∈ C(X), but µ⃗ ̸∈ C(X1), so

PC(X)µ⃗− PC(X1)µ⃗ = µ⃗− µ⃗0 ̸= 0.

In other words,

E
[
y⃗T
(
PC(X) − PC(X1)

)
y⃗
]
=

{
σ2h, under H0

σ2h+ ∥µ⃗− µ⃗0∥2, under H1

This suggests the test statistic ∥∥∥ˆ⃗y − ˆ⃗y0

∥∥∥2/h
σ2

{
≈ 1, under H0

> 1, under H1
.

Typically, σ2 is unnknown and must be estimated under FM, the appropriate estimator is

s2 =

∥∥∥y⃗ − ˆ⃗y
∥∥∥2

n− k − 1
.

(s2 is valid under both H0 and H1.) So the test statistic is∥∥∥ˆ⃗y − ˆ⃗y0

∥∥∥2/h∥∥∥y⃗ − ˆ⃗y2
∥∥∥/(n− k − 1)

{
≈ 1, under H0

> 1, under H1
.



7.1. TEST ON A SUBSET OF THE β’S 63

Theorem 7.1. Suppose y⃗ ∼ Nn(Xβ̂, σ2I), where Xβ⃗ = X1β1 +X2β2. Let

ˆ⃗y = p(y⃗|C(X)) = PC(X)y⃗,

ˆ⃗y0 = p(y⃗|C(X1)) = PC(X1)y⃗,

µ⃗0 = p(µ⃗|C(X1)) = PC(X1)µ⃗ = PC(X1)(Xβ⃗).

Then

(a)
1

σ2

∥∥∥y⃗ − ˆ⃗y
∥∥∥2 =

1

σ2
y⃗T
(
I − PC(X)

)
y⃗ ∼ χ2

n−k−1.

(b)
1

σ2

∥∥∥ˆ⃗y − ˆ⃗y0

∥∥∥2 =
1

σ2
y⃗T
(
PC(X) − PC(X1)

)
y⃗ ∼ χ2

h(λ1),

where

λ1 =
1

2σ2

∥∥(PC(X) − PC(X1)

)
µ⃗
∥∥2 =

1

2σ2
∥µ⃗− µ⃗0∥2

=
1

2σ2

∥∥∥PC(X)(X1β⃗1 +X2β⃗2)− PC(X1)(X1β⃗1 +X2β⃗2)
∥∥∥2

=
1

2σ2

∥∥∥X1β⃗1 +X2β⃗2 −X1β⃗1 − PC(X1)X2β⃗2

∥∥∥2
=

1

2σ2

∥∥∥PC⊥(X1)X2β⃗2

∥∥∥2
=

1

2σ2
β⃗T
2 X

T
2 PC⊥(X1)X2β⃗2.

(c)
1

σ2

∥∥∥y⃗ − ˆ⃗y
∥∥∥2 |=

1

σ2

∥∥∥ˆ⃗y − ˆ⃗y0

∥∥∥2.
Proof. (c) ∥∥∥y⃗ − ˆ⃗y

∥∥∥2 =
∥∥p(y⃗|C⊥(X))

∥∥2,∥∥∥y⃗ − ˆ⃗y0

∥∥∥2 =
∥∥p(y⃗|C(X) ∩ C⊥(X1))

∥∥2,
and

C(X) ∩X⊥(X1) ⊆ C(X),

so it is mutually orthogonal projections.

Theorem 7.2. Let y⃗ ∼ Nn(Xβ⃗, σ2I) and define an F statistic as follows:

F =

∥∥∥ˆ⃗y − ˆ⃗y0

∥∥∥2/h
s2

=
y⃗T
(
PC(X) − PC(X1)

)
y⃗/h

y⃗T
(
I − PC(X)

)
y⃗/(n− k − 1)

=

{
Fn,n−k−1, underH0

Fn,n−k−1(λ1), underH1
.
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Proof. Under H0, λ1 = 0.

Remark. The α-level F -test for H0 : β⃗2 = 0⃗ vs H1 : β⃗2 ̸= 0⃗ is to reject H0 if F > Fn,n−k−1,1−α,
where Fn,n−k−1,1−α is the upper αth-quantile of Fn,n−k−1. Equivalently, rejectH0 if P (X > F ) < α,
where X ∼ Fn,n−k−1.

Theorem 7.3. The F test is always a right tail test.

Definition 7.4.∥∥∥ˆ⃗y − ˆ⃗y0

∥∥∥2 =
∥∥∥y⃗ − ˆ⃗y0

∥∥∥2 − ∥∥∥y⃗ − ˆ⃗y
∥∥∥2

= SSERM − SSEFM

= SSRFM − SSRRM

= SS(β⃗2|β⃗1)

= “extra” regression sum of squares due to β2 after counting for β1

= type I SS.

The difference in dfE ’s (dimension of error space) is

(n− (k + 1− h))− (n− (k + 1)) = h.

Then the test statistic can be written as

F =

SSERM−SSEFM

dfE(RM)−dfE(FM)

SSEFM/dfE(FM)
.

The test is summerized in an AVOVA table.

ANOVA Table

Source of Variation df Sum of Squares Mean Squares F

Due to β⃗2 adjusted for β⃗1 h SS(β⃗2|β⃗1) = y⃗TPC(X)∩C⊥(X1)y⃗ MS(β⃗2|β⃗1) = SS(β⃗2|β⃗1)/h
MS(β⃗2|β1)

MSE

Error n− k − 1 SSE = y⃗T
(
I − PC(X)

)
y⃗ MSE = SSE/(n− k − 1)

Corrected Total n− 1 SST =
∑

i(yi − y)2

An additional column is sometimes added to the AVOVA table for expected mean squares E(MS).

E
[
MS(β⃗2|β⃗1)

]
=

1

h
E
[
SS(β⃗1|β⃗1)

]
=

σ2

h
E

[
SS(β⃗2|β⃗1)

σ2

]

=
σ2

h
(h+ 2λ1)

= σ2 +
1

h
∥µ− µ0∥2.

Also, E[MSE] = σ2. Thus,

E[MS(β⃗2|β⃗1)]

E[MSE]
= 1,under H0.
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Note any mean square can be regarded as an estimate of its expected value. So MSE estimates
σ2 (always), and MS(β⃗2|β⃗ − 1) estimates σ2 under H0 and estimates σ2 + c, c > 0 under H1. F
behaves as

F

{
≈ 1, under H0

= 1, under H1
.

7.2 Test of Overall Regression

We note in last chapter that the probblem associated with both overfitting and underfitting mo-
tivates us to seek an optimal model. Hypothesis testing is a formal tool for, among other things,
choosing between a residual model and an associated full model. The hypothesis H0, expresses the
reduced model in terms of values of a subset of the βj ’s in β⃗. The alternative hypothesis, H1, is

associated with the full model. Partition β⃗ so that

β⃗1 = β0,

β⃗2 = (β1, . . . , βk)
T .

Then

y⃗ = X1β⃗1 +X2β⃗2 + e⃗.

In this case, H0 : β⃗2 = 0 is equivalent to

H0 : β1 = · · · = βk = 0,

which says that explanatory variables x1, . . . , xk have no linear effect (don’t predict) the response.
This is called the overall test. Under H0,

ŷ0 = p (y⃗|C(X1)) = p (y⃗|L(1n)) = y1n,

and h = k. So the numerator of the F -statistic is

1

k
y⃗T
(
PC(X) − PL(1n)

)
y⃗ =

1

k

(
y⃗TPL(1n)y⃗ − y⃗TPL(1n)y⃗

)
=

1

k

(
PC(X)y⃗

)T
y⃗ − y⃗TPT

L(1n)
PL(1n)y⃗

=
1

k

(
β̂TXT y⃗ − ny2

)
=

SSR

k
= MSR .

So the test statistic for the overall regression is

F =
SSR/k

SSE/(n− k − 1)
=

MSR

MSE
∼
{

Fk,n−k−1, under H0 : β1 = · · · = βk = 0
Fk,n−k−1(λ1), under H1.

,
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where

λ1 =
1

2σ2

∥∥∥(PC(X) − PC(1n)

) (
X11⃗n +X2β2

)∥∥∥2
=

1

2σ2

∥∥(PC(X) − PC(1n)

)
X2β2

∥∥2
=

1

2σ2

∥∥∥X2β⃗2 − PC(1n)X2β⃗2

∥∥∥2
=

1

2σ2
β⃗T
2 X

T
2 PL⊥(1n)X2β⃗2(

=
1

2σ2
β⃗T
2 X

T
c Xcβ⃗2.

)
ANOVA Table

Source of Variation df Sum of Squares Mean Squares F

Due to β⃗2 k SSR =
ˆ⃗
βT
1 y⃗ =

ˆ⃗
βTXT y⃗ − ny2 SSR/k MSR

MSE

Error n− k − 1 SSE = y⃗T
(
I − PC(X)

)
y⃗ SSE/(n− k − 1)

Total n− 1 SST =
∑

i(yi − y)2

7.3 F test in terms of R2

Theorem 7.5. The F statistic for testing H0 : β⃗2 = 0 in the full rank linear model y⃗ = X1β⃗1 +
X2β⃗2 + e⃗ can be written in terms of R2 as

F =

(
R2

FM −R2
RM

)
/h

(1−R2
FM)/(n− k − 1)

.

Proof. Exercise.

Corollary 7.6. The F statistic for overall regression can be written in terms of R2 as

F =
R2/k

(1−R2)/(n− k − 1)
.

Proof. For this hypothesis, h = dim(β⃗2) = k. Then it is sufficient to show that RRM = 0. The

reduced model is y⃗ = β01n + e⃗. Then (X
ˆ⃗
β)RM = y1n. So

R2
RM =

∥∥∥ˆ⃗y − y1n

∥∥∥2
∥y⃗ − y1n∥2

= 0.

7.4 The General Linear Hypothesis Tests for H0 : Cβ⃗ = 0⃗ and
Cβ⃗ = t⃗

7.4.1 The test for H0 : Cβ = 0⃗

The hypothesis H0 : Cβ⃗ = 0⃗, where C is a known q × (k + 1) coefficient matrix of rank q ⩽ k + 1,

is known as the general linear hypothesis. The alternative hypothesis is H1 : Cβ⃗ ̸= 0⃗.
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Example 7.7. The hypothesis H0 : β⃗2 = 0 in the overall regression can be expressed in the form
H0 : Cβ⃗ = 0⃗ as follows

H0 : Cβ⃗ = (⃗0, Ik)

[
β⃗1

β⃗2

]
= β⃗2 = 0⃗.

Similarly, the hypothesis H0 : β⃗2 = 0⃗ in the test on a subset of β⃗ can be expressed in the form
H0 : Cβ⃗ = 0⃗:

H0 : Cβ⃗ = (0, Ih)

[
β⃗1

β⃗2

]
= β⃗2 = 0⃗.

Example 7.8. H0 : β1 = β2 can be expressed as

H0 : β⃗1 − β⃗2 = 0 ⇐⇒ CT β⃗ = 0,

where C = (0, 1,−1, 0 · · · , 0)T .

Example 7.9. H0 : β1 = · · · = βk when k = 4 can be written as Cβ⃗ = 0, where

C =

0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 ,

or

C =

0 1 −1 0 0
0 1 0 −1 0
0 1 0 0 −1

 .

Example 7.10. The formulation H0 : Cβ⃗ = 0⃗ also allows for more general hypotheses such as

H0 : 2β1 − β2 = β2 − 2β3 + 3β4 = β1 − β4 = 0,

which can be expressed as follows:

H0 :

0 2 −1 0 0
0 0 1 −2 3
0 1 0 0 −1



β0

β1

β2

β3

β4

 =

00
0

 .

Remark. rank(C) = q ensures that we don’t have any redundant hypothesis in H0 : Cβ⃗ = t.

Remark. The test statistic for H0 : Cβ⃗ = 0⃗ is based on comparing C
ˆ⃗
β to its null value 0, using

squared statistical distance of the form

Q =
(
C
ˆ⃗
β − E0

[
C
ˆ⃗
β
])T (

V̂ar0

(
C
ˆ⃗
β
))−1 (

C
ˆ⃗
β − E0

[
C
ˆ⃗
β
])

=
(
C
ˆ⃗
β
)T (

V̂ar0

(
C
ˆ⃗
β
))−1

C
ˆ⃗
β,
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where 0 indicates that expectation is taken w.r.t. the null model. Since

ˆ⃗
β ∼ Nk+1

(
β⃗, σ2(XTX)−1

)
,

we have

C
ˆ⃗
β ∼ Nq(Cβ⃗, σ2C(XTX)−1CT ).

Estimating σ2 with s2 = SSE
n−k−1 , we obtain

V̂ar
(
C
ˆ⃗
β
)
= s2C(XTX)−1CT .

So

Q =
(
C
ˆ⃗
β
)T [

C(XTX)−1CT
]−1

C
⃗̂
β

=

(
C
ˆ⃗
β
)T [

C(XTX)−1CT
]−1

C
ˆ⃗
β

SSE/(n− k − 1)
.

To use Q as a test statistic, we need its distribution. We denote the sum of squares due to Cβ⃗
(due to hypothesis) as SSH, i.e.,

SSH =
(
C
ˆ⃗
β
)T [

C(XTX)−1CT
]−1

C
ˆ⃗
β = SS due to H0.

Theorem 7.11. If y⃗ ∼ Nn(Xβ⃗, σ2I) and C is q × (k + 1) of rank q ⩽ k + 1, then

(a)

Cβ̂ ∼ Nq[Cβ⃗, σ2C(XTX)−1CT ].

(b)

SSH

σ2
=

(
C
ˆ⃗
β
)T [

C(XTX)−1CT
]−1

C
ˆ⃗
β

σ2
∼ χ2(q, λ),

where

λ =
(Cβ)T

[
C(XTX)−1CT

]−1
Cβ⃗

2σ2
.

(c)
SSE

σ2
∼ χ2(n− k − 1).

(d)
SSH |= SSE .

Proof. (b) Since

C
ˆ⃗
β ∼ Nk+1[β⃗, σ

2C(XTX)−1CT ],

the result follows by the distribution of Quadratic form.
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(d) Since
ˆ⃗
β |= SSE, we have SSH = f(β⃗) |= SSE.

Theorem 7.12. Let y⃗ ∼ Nn(Xβ⃗, σ2I) and define the statistic

F =
Q

q
=

SSH /q

SSE /(n− k − 1)
=

(Cβ⃗)T [C(XTX)−1CT ]−1C
ˆ⃗
β/q

SSE /(n− k − 1)
,

where C is q × (k + 1) of rank q ⩽ k + 1 and
ˆ⃗
β = (XTX)−1XT y⃗. Then

F ∼

{
Fq,n−k−1, under H0 : Cβ⃗ = 0⃗

Fq,n−k−1(λ), under H1 : Cβ⃗ ̸= 0⃗
,

where

λ =
(Cβ⃗)T [C(XTX)−1CT ]−1Cβ⃗

2σ2
.

The F test for H0 : Cβ = 0⃗ is usually called the general linear hypothesis test. The degrees of
freedom q is the number of linear combinations in Cβ⃗.

Theorem 7.13. The F test in Theorem 7.12 for the general linear hypothesis H0 : Cβ⃗ = 0⃗ is a
full-reduced-model test.

Proof. Under H0, Cβ⃗ = 0,

C(XTX)−1XTXβ⃗ = 0⃗,

C(XTX)−1XTµ = 0,

TT µ⃗ = 0⃗,

where T = X(XTX)−1CT . Then under H0, µ = Xβ⃗ ∈ C(X) and µ ∈ C⊥(T ). Then

µ ∈ C(X) ∩ C⊥(T ) =: V0 ⊆ C(X).

Since under H1 : Cβ⃗ ̸= 0⃗, µ ∈ C(X), but µ ̸∈ V0. So the two hypothesis are nested. Test for nested
models is of the form

F =
y⃗T
(
PC(X) − PC(X1)

)
y⃗/h

SSE/(n− k − 1)
.

Replace PC(X1) with PV0 = PC(X) − PC(T ), and replace h with dim(C(X))− dim(V0), which is the
reduction of dimension of the model space in moving from FM to RM. Note

rank(T ) = rank(TT ) ⩾ rank(TTX) = rank
(
C(XTX)−1XTX

)
= rank(C) = q.

Also

rank(T ) = rank(TTT ) = rank
(
C(XTX)−1XTX(XTX)−1CT

)
= rank

(
C(XTX)−1CT

)
⩽ q.

So

rank(T ) = q = dim (C(X))− dim(V0).
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Thus, the FM vs RM F statistic is

F =
y⃗
(
PC(X) − PV0

)
y⃗/q

SSE/(n− k − 1)
=

y⃗
(
PC(X) −

(
PC(X) − PC(T )

))
y⃗/q

SSE/(n− k − 1)
=

y⃗TPC(T )y⃗/q

SSE/(n− k − 1)
,

where

y⃗PC(T )y⃗ = y⃗TT (TTT )−1TT y⃗

= y⃗TX(XTX)−1CT
[
C(XTX)−1XTX(XTX)−1CT

]−1
C(XTX)−1XT y⃗

=
ˆ⃗
βCT

[
C(XTX)−1CT

]−1
C
ˆ⃗
β.

Thus, this is the test for the general linear hypothesis.

7.4.2 The test for H0 : Cβ⃗ = t⃗

We assume that the system of equations Cβ⃗ = t⃗ is consistent, that is, rank(C) =rank(C, t⃗).

Theorem 7.14. If y⃗ ∼ Nn(Xβ⃗, σ2I) and C is q × (k + 1) of rank q ⩽ k + 1, then

(a)

C
ˆ⃗
β − t⃗ ∼ Nq(Cβ⃗ − t⃗, σ2C(XTX)−1CT ],

(b)

SSH

σ2
=

(C
ˆ⃗
β − t⃗)T [C(XTX)−1CT ]−1(C

ˆ⃗
β − t⃗)

σ2
∼ χ2(q, λ),

where

λ =
(Cβ − t⃗)T [C(XTX)−1CT ](Cβ⃗ − t⃗)

2σ2
.

(c)
SSE

σ2
∼ χ2(n− k − 1),

(d)
SSH |= SSE .

Theorem 7.15. Let y⃗ ∼ Nn(Xβ⃗, σ2I) and define the statistic

F =
SSH /q

SSE /(n− k − 1)
=

(Cβ⃗ − t⃗)T [C(XTX)−1CT ]−1(C
ˆ⃗
β − t⃗)/q

SSE /(n− k − 1)
,

where C is q × (k + 1) of rank q ⩽ k + 1 and
ˆ⃗
β = (XTX)−1XT y⃗. Then

F ∼

{
Fq,n−k−1, under H0 : Cβ⃗ = t⃗

Fq,n−k−1(λ), under H1 : Cβ⃗ ̸= t⃗
,

where

λ =
(Cβ⃗ − t⃗)T [C(XTX)−1CT ]−1(Cβ⃗ − t⃗)

2σ2
.
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7.5 Tesing on βj and a⃗T β⃗

Important special cases of the general linear test are H0 : βj = 0 or H0 : a⃗T β⃗ = 0, then

C = a⃗T and q = 1,

and

F =
(⃗aT

ˆ⃗
β)T [⃗aT (XTX)−1a⃗]−1a⃗T

ˆ⃗
β

SSE/n− k − 1
=

(⃗aT
ˆ⃗
β)2

s2a⃗T (XTX)−1a⃗
∼ F1,n−k−1, under H0 : a⃗T β⃗ = 0.

Since the F statistic has 1 and n− k− 1 degrees of freedom, we can equivalently use the t statistic

t =
a⃗T

ˆ⃗
β

s
√

a⃗T (XTX)−1a⃗
∼ tn−k−1 under H0.

A special case: a⃗ = (0, 0, . . . , 1, 0, . . . , 0)T , where 1 is in the (j + 1)th position. Then

a⃗T
ˆ⃗
β = β̂j ,

a⃗T (XTX)−1a⃗ = (XTX)−1
j+1,j+1.

Thus,

F =
β̂j

2

s2{(XTX)−1}j+1,j+1
,

and

t =
β̂j

s
√
{(XTX)−1}j+1,j+1

=
β̂j

SE(β̂j)
,

since Cov(
ˆ⃗
β) = σ2(XTX)−1.

7.6 Confidence Interval and Prediction Intervals

Hypothesis tests and confidence intervals are essentially two ways of approaching the same problem.
Recall

(a) For an α-level test of the form H0 : θ = θ0 vs H1 : θ ̸= θ0, a 100(1 − α)% confidence region
is “set of all values θ0 s.t. H0 would not be rejected at the α level”. In other words, it is the
acceptance region of the α-level test.

(b) θ0 is outside of a 100(1−α)% confidence region for θ if and only if an α-level test of H0 : θ = θ0
vs H1 : θ ̸= θ0 is rejected.

(c) In other words, we invert the statistical tests we have derived to obtain confidence region.
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7.6.1 Confidence Region for β⃗

Under H0,

F =
(Cβ⃗)T [C(XTX)−1CT ]−1C

ˆ⃗
β/σ2q

SSE /σ2(n− k − 1)
=

χ2
q/q

χ2
n−k−1/n− k − 1

∼ Fq,n−k−1.

The distribution of F is the same for all values of β⃗ and σ2, and thus a pivotal quantity, which we
can use to derive confidence regions

P


(
C
ˆ⃗
β − Cβ⃗

)T (
C(XTX)−1CT

)−1
(
C
ˆ⃗
β − Cβ

)
qs2

⩽ Fq,n−k−1,1−α

 = 1− α.

As a function of β⃗,(
C
ˆ⃗
β − Cβ⃗

)T (
C(XTX)−1CT

)−1
(
C
ˆ⃗
β − Cβ

)
qs2

= Fq,n−k−1,1−α,

is the equation of an ellipsoid centered at C
ˆ⃗
β, with orientation determined by C(XTX)−1CT .

Special cases:

(a) If C is equal to I, then t⃗ equal to β⃗ and q becomes to k + 1, we obtain

(
ˆ⃗
β − β⃗)TXTX(

ˆ⃗
β − β⃗)

(k + 1)s2
∼ Fk+1,n−k−1.

P
(
(
ˆ⃗
β − β⃗)TXTX(

ˆ⃗
β − β⃗)/(k + 1)s2 ⩽ Fα,k+1,n−k−1

)
= 1− α.

Then 100(1− α)% joint confidence region for β⃗ is

S = {β⃗ : (
ˆ⃗
β − β⃗)TXTX(

ˆ⃗
β − β⃗) ⩽ (k + 1)s2Fk+1,n−k−1,1−α}.

For k = 1, this region can be plotted as an ellipse in two dimensions. For k > 1, the ellipsoidal
region is unwieldy to interpret and report, and we therefore consider intervals for the individual
βj ’s or for a⃗

T β⃗.

(b) Let C = a⃗T , then t = a⃗T β⃗. (
a⃗T

⃗̂
β − a⃗T β⃗

)2
s2a⃗T (XTX)−1a⃗

∼ F1,n−k−1.

Then

a⃗T
ˆ⃗
β − a⃗T β⃗

s
√

a⃗T (XTX)−1a⃗
∼ tn−k−1.



7.6. CONFIDENCE INTERVAL AND PREDICTION INTERVALS 73

Then

P

tn−k−1,α2
⩽

a⃗T
ˆ⃗
β − a⃗T β⃗

s
√

a⃗T (XTX)−1a⃗
⩽ tn−k−1,1−α

2

 = 1− α.

Rearranging, we find a 100(1− α)% C.I. about α⃗T β⃗ is

α⃗T ˆ⃗
β ± tn−k−1,1−α

2
s
√

a⃗T (XTX)−1a⃗.

(c) Take a⃗ = (0, . . . , 1, . . . , 0), where 1 is in the jth position. Similarly, 100(1−α)% C.I. about α⃗T β⃗
is

β̂j ± tn−k−1,1−α
2
s
√
{(XTX)−1}j+1,j+1.

7.6.2 Confidence Interval for E(y0)

Let x⃗0 = (1, x01, . . . , x0k)
T denote a particular choice of x⃗ = (1, x1, . . . , xk)

T . Note that x⃗0 need
not be one of the x⃗T s in the sample; that is, x⃗T

0 need not be a row of X. If x⃗0 is very far outside
the area covered by the sample however, the prediction may be poor. Let y0 be an observation
corresponding to x⃗0. Then

y0 = x⃗T
0 β⃗ + e⃗,

where e⃗ ∼ N(0, σ2I), and β⃗ and σ2 are the same. Then E[y0] = x⃗T
0 β⃗. We wish to find a confidence

interval for E[y0], that is, for the mean of the distribution of y-values corresponding to x⃗0. The
minimum variance unbiased estimator of E[y0] is given by

Ê[y0] = x⃗T
0 β̂.

Since that are of the form a⃗T β⃗ and a⃗T
ˆ⃗
β, respectively, we obtain a 100(1− α)% confidence interval

for E[y0] = x⃗T
0 β⃗

x⃗T
0
ˆ⃗
β ± tα/2,n−k−1s

√
x⃗T
0 (X

TX)−1x⃗0.

Remark. We are sometimes interested in simultaneous intervals about several values of the ex-
planatory variables (or for the entire regression line.) Let

Ai = “event that ith interval captured the true mean response”.

For example, P (Ai) = 0.95 for i = 1, . . . , 4, then

P

(
4⋂

i=1

Ai

)
< 0.95.

So each interval needs to made wider to attain an overall C.I. level of 0.95. Let

Bi = “Type I error on ith test”.

Then

P (“at least one type I error”) = P

(
n⋃
i

Bi

)
⩽

n∑
i=1

P (Bi).
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Instead of α on an individual test, use

α∗ =
α

n
=

α

# of tests
.

Then

P

(
n⋃

i=1

Bi

)
⩽ nα∗ = α.

See chapter 8.67 in the textbook.

7.6.3 Prediction interval for a future observation y0

A “confidence interval” for a future observation y0 corresponding to x⃗0 is called a prediction interval.
We speak of a prediction interval rather than a condidence interval because y0 is an individual
observation and is thereby a random variable rather than a parameter. To be 100(1−α)% confident
that the interval contains y0, the prediction interval will clearly have to be wider than a condidence
interval for the parameter E[y0]. Since

y0 = x⃗T
0 β⃗ + ϵ⃗0,

we predict y0 by ŷ0 = x⃗T
0
ˆ⃗
β, which is also the estimator of E[y0] = x⃗T

0 β⃗. The random variables y0
and ŷ0 are independent because y0 is a future observation to be obtained independently of the n

observation used to compute ŷ0 = x⃗T
0
ˆ⃗
β. Hence

Var(y0 − ŷ0) = Var(y0 − x⃗T
0
ˆ⃗
β) = Var(x⃗0

T β⃗ + ϵ0 − x⃗T
0
ˆ⃗
β).

Since x⃗0
T β⃗ is a constant, this becomes

Var(y0 − ŷ0) = Var(ϵ0) + Var(x⃗T
0
ˆ⃗
β)

= σ2 + σ2x⃗T
0 (X

TX)−1x⃗0

= σ2[1 + x⃗T
0 (X

TX)−1x⃗0],

which is estimated by

s2[1 + x⃗T
0 (X

TX)−1x⃗0].

It can be shown that E[y0− ˆ⃗y0] = 0 and that s2 is independent of both y0 and ŷ0 = x⃗T
0
ˆ⃗
β. Therefore,

the t statistic

t =
y0 − ŷ0

s
√
1 + x⃗T

0 (X
TX)−1x⃗0

∼ t(n− k − 1).

A 100(1− α)% prediction interval is

ŷ0 ± t1−α/2,n−k−1s
√

1 + x⃗T
0 (X

TX)−1x⃗0,

which is wider than the C.I. of E[y0].



7.7. LIKELIHOOD RATIO TESTS 75

7.6.4 Confidence Interval for σ2

Since
(n− k − 1)s2

σ2
∼ χ2(n− k − 1),

we have

P

[
χ2
1−α

2 ,n−k−1 ⩽
(n− k − 1)s2

σ2
⩽ χ2

α/2,n−k−1

]
= 1− α,

where χ2
α/2,n−k−1 is the upper α/2 percentage point of the chi-square distribution.

7.7 Likelihood Ratio Tests

The tests in the previous sections were derived using informal methods based on finding sums of
squares that have chi-square distributions and are independent. These same tests can be obtained
more formlly by the likelihood ratio approch. We describe the likelihood ratio method in the simple
context of testing H0 : β⃗ = 0 vs H1 : β⃗ ̸= 0. For a random sample

y⃗ = (y1, . . . , yn)
T ∼ Nn(Xβ⃗, σ2I),

the likelihood function is given as

L(β⃗, σ2) =
1

(2πσ2)n/2
e−(y⃗−Xβ⃗)T (y⃗−Xβ⃗)/2σ2

.

The likelihood ratio method compares the maximum value of L(β⃗, σ2) restriced by H0 : β⃗ = 0⃗ to

the maximum value of L(β⃗, σ2) under H1 : β⃗ ̸= 0⃗, which is essentially unrestriced. We denote the

maximum value of L(β⃗, σ2) restriced by β⃗ = 0⃗ as

max
θ∈Θ0

L(β⃗, σ2)

and the unrestriced maximum as
max
θ∈Θ

L(β⃗, σ2).

If β⃗ is equal (or close) to 0⃗, then maxθ∈Θ0
L(β⃗, σ2) should be close to maxθ∈Θ L(β⃗, σ2). If not, we

would conclude that y⃗ = (y1, . . . , yn)
T apparently did not come from Nn(Xβ⃗, σ2I) with β⃗ = 0⃗.

Definition 7.16. The likelihood ratio test (LRT) statistic for testing H0 : θ⃗ ∈ Θ0 vs H1 : θ⃗ ̸∈ Θ0

is

λ(y⃗) =
supθ⃗∈Θ0

L(θ⃗|y⃗)
supθ⃗∈Θ L(θ⃗|y⃗)

It is clear that 0 ⩽ λ(y⃗) ⩽ 1. Smaller values of λ(y⃗) would favor H1 and larger values would favor
H0. We thus reject H0 if λ(y⃗) ⩽ c, where c is chosen to that P (λ(y⃗) ⩽ c) = α if H0 is true.

Theorem 7.17. If
y⃗ = X1β⃗1 +X2β⃗2 + e ∼ Nn(Xβ⃗, σ2I),

the F -test for H0 : β⃗2 = 0⃗ is equivalent to the LRT.
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Proof. We use the maximum likelihood estimators

ˆ⃗
β = (XTX)−1XT y⃗

σ̂2
FM =

(y⃗ −X
ˆ⃗
β)T (y⃗ −X

ˆ⃗
β)

n
=

SSEFM

n
.

Then

sup
σ2>0,β⃗∈Rk+1

L(β⃗, σ2|y⃗) = 1

(2πσ̂2)n/2
e−(y⃗−X

ˆ⃗
β)T (y⃗−X

ˆ⃗
β)/2σ̂2

= (2π)−
n
2 (σ̂2

FM)−
n
2 e−

n
2 .

For RM,

LRM(β⃗∗
1 , σ

2) = (2π)−
n
2 (σ2)−

n
2 exp

(
− (y⃗ −X1β⃗1)

T (y⃗ −X1β1)

2σ2

)
.

Similarly, we have
ˆ⃗
β∗
1 = (XT

1 X1)
−1XT

1 y⃗,

σ2
RM =

(y⃗ −X
ˆ⃗
β∗)T (y⃗ −X

ˆ⃗
β∗)

n
=

SSERM

n
.

Then

sup
σ2>0,β⃗∗

1∈Rk+1−h

L(β⃗∗
1 , σ

2|y⃗) = (2π)−
n
2 (σ̂2

RM)−
n
2 e−

n
2 .

Thus, the LRT statistic is

λ(y⃗) =
supθ⃗∈Θ0

L(β⃗∗
1 , σ

2|y⃗)
supβ⃗,σ62∈Θ L(θ⃗|y⃗)

=
(2π)−

n
2 (σ̂2

RM)−
n
2 e−

n
2

(2π)−
n
2 (σ̂2

FM)−
n
2 e−

n
2
=

(
SSEFM

SSERM

)n
2

.

Rejection region:
{y⃗ : λ(y⃗) ⩽ c}, c ∈ (0, 1).

λ(y) ⩽ c ⇐⇒ SSEFM

SSERM
⩾⩽ c

⇐⇒ SSERM

SSEFM
⩾ c−

2
n

⇐⇒ SSERM − SSEFM

SSEFM
⩾ c−

2
n − 1

⇐⇒ h

n− k − 1

y⃗
(
PC(X) − PC(X1)

)
y⃗

y⃗
(
I − PC(X)

)
y⃗/(n− k − 1)

⩾ c−
2
n − 1

⇐⇒ F ⩾
h

n− k − 1

(
c−

2
n − 1

)
,

where

F =
y⃗
(
PC(X) − PC(X1)

)
y⃗

y⃗
(
I − PC(X)

)
y⃗/(n− k − 1)

∼ Fh,n−k−1.

Thus, the LRT and that F test are equivalent.
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Theorem 7.18. If y⃗ ∼ Nn(Xβ⃗, σ2I), then the F test for Cb⃗eta = t⃗ is equivalent to the LRT.

Proof. To derive the LRT for the gen. lin. hypothesis H0 : Cβ⃗ = t⃗, we need to find

sup
σ2>0,β⃗:Cβ⃗=t

L(β, σ2).

We can do this with Lagrange multiplier,

ρ(β⃗, σ2) = l(β⃗, σ2) + λ⃗T (Cβ⃗ − t⃗)

= −n

2
log(2π)− n

2
log(σ2)− (y⃗ −Xβ⃗)T (y⃗ −Xβ⃗)

2σ2
+ λT (Cβ⃗ − t⃗).

Let

σ̂2 =
(y⃗ −X

ˆ⃗
β)T (y⃗ −X

ˆ⃗
β)

n
,

ˆ⃗
β = (XTX)−1XT y⃗.

Differentiating with respect to β⃗, λ⃗ and σ2, we obtain

∂ρ

∂β⃗
=

1

2σ2
(2XT y⃗ − 2XTXβ⃗) + CT λ⃗ = 0⃗,

∂ρ

∂λ⃗
= Cβ⃗ − t⃗ = 0⃗,

∂ρ

∂σ2
= − n

2σ2
+

1

2(σ2)2
(y⃗ −Xβ⃗)T (y⃗ −Xβ⃗) = 0.

From the first equation, we have

ˆ⃗
β0 = (XTX)−1XT y⃗ + σ̂2

0(X
TX)−1CT λ⃗.

Then

C
ˆ⃗
β0 = C

ˆ⃗
β + σ2C(XTX)−1CT λ⃗ = t⃗.

Then

λ = −
[
C(XTX)−1CT

]−1 C
ˆ⃗
β − t⃗

σ̂2
.

Solving for λ⃗ and plugging in

ˆ⃗
β0 =

ˆ⃗
β − (XTX)−1CT [C(XTX)−1CT ]−1(C

ˆ⃗
β − t⃗),

and

σ̂2 =
1

n
(y⃗ −X

ˆ⃗
β0)

T (y⃗ −X
ˆ⃗
β0)

=
1

n

(
y⃗ −X

ˆ⃗
β +X(XTX)−1CT

(
C(XTX)−1CT

)−1
(
C
ˆ⃗
β − t⃗

))T
· 1
n

(
y⃗ −X

ˆ⃗
β +X(XTX)−1CT

(
C(XTX)−1CT

)−1
(
C
ˆ⃗
β − t⃗

))
.
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Let

d⃗1 = y⃗ −X
ˆ⃗
β0,

d⃗2 = X(XTX)−1CT
(
C(XTX)−1CT

) (
C
ˆ⃗
β − t⃗

)
.

Then

d⃗T1 d⃗2 = (y⃗ −X
ˆ⃗
β0)

TX(XTX)−1CT
(
C(XTX)−1CT

)−1
(
C
ˆ⃗
β − t⃗

)
= (y⃗ −Xβ̂)(Xz⃗) = 0.

σ̂2
0 =

1

n
(d⃗1 + d⃗2)

T (d⃗1 + d⃗2) =
1

n

[
d⃗T1 d⃗1 + d⃗T2 d⃗2 + 2d⃗T1 d⃗2

]
=

1

n
d⃗T1 d⃗1 +

1

n
d⃗T2 d⃗2 = SSEFM +d⃗T2 d⃗2.

But

dT2 d2 =
(
C
ˆ⃗
β − t⃗

)T (
C(XTX)−1CT

)−1
C(XTX)−1XT ·

·X(XTX)−1CT
(
C(XTX)−1CT

) (
C
ˆ⃗
β − t⃗

)
=
(
C
ˆ⃗
β − t⃗

)T (
C(XTX)−1CT

)−1
C(XTX)−1CT

(
C(XTX)−1CT

)−1
(
C
ˆ⃗
β − t⃗

)
=
(
C
ˆ⃗
β − t⃗

)T (
C(XTX)−1CT

)−1
(
C
ˆ⃗
β − t⃗

)
= SSH0 .

Thus,

σ2
0 =

SSEFM

n
+

SSH0

n
.

Then the LRT statistic is and

λ(y⃗) =
supσ2>0,Cβ⃗=0⃗ L(β⃗, σ

2|y⃗)

supσ2>0,β⃗∈Rk+1 L(β⃗, σ2|y⃗)

=

(
SSEFM

SSERM

)n/2

=

(
SSEFM

SSEFM +SSH0

)n/2

=

(
1

1 + SSH0 / SSEFM

)n/2

=

(
1

1 + qF/(n− k − 1)

)n/2

,

where

F =
SSH /q

SSE /n− k − 1
.

Then λ(y⃗) ⩽ c, c ∈ (0, 1) is equivalent to F ⩾ Fq,n−k−1,1−α.
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