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Chapter 0

Preliminary

0.1 Notations of sets

Definition 0.1. Let S be a set. We use s ∈ S to denote that s is an element of S. We use ∅ to
denote the empty set.

Notation 0.2. The following are the most commonly used sets.

Z := the set of integers,

Q := the set of rational numbers,

R := the set of real numbers,

C := the set of complex numbers,

where by convention, “:=” means “is defined by”.

Notation 0.3 (Set-builder notation). Let S be a set.

{x | P (x)} := the set of all elements x such that the statement P (x) about x is true,

{x ∈ S | P (x)} := the set of all elements x in S such that the statement P (x) about x is true.

Example 0.4.

S := {2, 4, 6, . . . , 100} = {2x | x = 1, . . . , 50},
2Z := {. . . ,−4,−2, 0, 2, 4, . . . } = {2x | x ∈ Z},
A := {10, 11, 12, . . . } = {x ∈ Z | x ⩾ 10}.
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2 CHAPTER 0. PRELIMINARY

Example 0.5.

N := {1, 2, 3, . . . } = {x ∈ Z | x > 0},
N0 := {0, 1, 2, 3, . . . } = {x ∈ Z | x ⩾ 0},

Z>0 := {x ∈ Z | x > 0} = N,
Q>0 := {x ∈ Q | x > 0},
R>0 := {x ∈ R | x > 0},
Z⩾0 := {x ∈ Z | x ⩾ 0} = N0,

Q⩾0 := {x ∈ Q | x ⩾ 0},
R⩾0 := {x ∈ R | x ⩾ 0}.

Definition 0.6. We say a set A is a subset of a set B, denoted by A ⊆ B or B ⊇ A, if a ∈ B for
any a ∈ A. We use A ⊊ B or B ⊋ A to denote that A is a proper subset of B, that is, A ⊆ B but
A ̸= B.

Definition 0.7. We define the Cartesian product of sets A and B by

A×B = {(a, b) | a ∈ A and b ∈ B}.

Example 0.8. Let A = {1, 2} and B = {5, 6, 9}. Then

A×B = {(1, 5), (1, 6), (1, 9), (2, 5), (2, 6), (2, 9)}.

0.2 Relations between sets

Definition 0.9. A relation between sets A and B is a subset R of A×B. For (a, b) ∈ R, we write
aR b.

Example 0.10. Consider the sets A and B in Example 0.8. Since {(1, 5), (1, 9), (2, 6)} ⊆ A × B,
we have that it is a relation between A and B. The relation R = {(a, b) ∈ A × B | b − a = 4} =
{(1, 5), (2, 6)} makes more sense.

Example 0.11 (Equality Relation). The equality relation = on a set S is defined by

= := {(x, x) | x ∈ S}.

If S = {1, 2}, then =︸︷︷︸
a set

= {(1, 1), (2, 2)}. Since (1, 1) ∈ =, we write 1 = 1.

Definition 0.12. A function or a map ϕ mapping a set X into a set Y , written as ϕ : X −! Y

or X
ϕ−−! Y , is a relation between X and Y such that each x ∈ X appears as the first member of

exactly one ordered pair (x, y) in ϕ, i.e., ϕ = {(x, ϕ(x)) | x ∈ X}. If (x, y) ∈ ϕ, we write ϕ(x) = y
or x 7−! y.
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Example 0.13. Let X = {−1, 1, 2}, Y = N and the function ϕ be

ϕ : X −! Y

−1 7−! 1

1 7−! 1

2 7−! 4

Note that ϕ can also be written as

ϕ : {−1, 1, 2} −! N
x 7−! x2

Definition 0.14. Let ϕ : X ! Y , then X is called the domain of ϕ, and Y is called the codomain
of ϕ. The image or range of ϕ is

Im(ϕ) := ϕ(X) = {ϕ(x) | x ∈ X}.

Example 0.15. In Example 0.13, we have that Im(ϕ) = {1, 4}.

Definition 0.16. The cardinality of a set X, denoted by |X|, is the number of elements in X. If
X = ∅, then |X| = 0. If X is an infinite set, then let |X| = ∞.

Definition 0.17. Let ϕ : X ! Y .

(a) ϕ is called one-to-one or an injection if ϕ(x1) = ϕ(x2) with x1, x2 ∈ X implies that x1 = x2.

(b) ϕ is called onto or a surjection if Im(ϕ) = Y .

(c) ϕ is called one-to-one correspondence or a bijection if ϕ is both one-to-one and onto. In this
case, X and Y are said to have the same cardinality, i.e., |X| = |Y |.

Remark. If |X| = ∞ = |Y |, then often one cannot say that |X| = |Y | since we cannot compare
two infinities, except for that there is a 1-1 correspondence between X and Y . For example,
|Z| = |N| = |Q| (countable). Note that R is uncountable.

Definition 0.18. Let ϕ : X ! Y be 1-1. We defined the inverse function ϕ−1 by

ϕ−1 : Im(ϕ) −! X

ϕ(x) 7−! x

ϕ−1 is well-defined, because if there is ϕ(x̃) ∈ Im(ϕ) with x̃ ̸= x such that ϕ(x̃) = ϕ(x), then x̃ = x
since ϕ is 1-1, a contradiction. Note that ϕ−1 is always a 1-1 correspondence.

Remark. If ϕ is a 1-1 correspondence, then Im(ϕ) = Y and so

ϕ−1 : Y −! X

ϕ(x) 7−! x

Definition 0.19. A partition of a set S is a collection of nonempty subsets of S such that every
element of S is in exactly one of the subsets. The subsets are called the cells of the partition.
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Convention 0.20. When discussing a partition of a set S, we denote by x the cell containing the
element x of S. Thus, x = y if and only if x and y are in the same cell.

Example 0.21. The collection {2Z, 2Z+ 1} forms a partition of Z.

2Z := {2x | x ∈ Z} = {. . . ,−4,−2, 0, 2, 4, . . . } = −4 = −2 = 0 = 2 = 4 = · · · ,

2Z+ 1 := {2x+ 1 | x ∈ Z} = {. . . ,−5,−3,−1, 1, 3, 5 . . . } = −5 = −3 = −1 = 1 = 3 = · · · .

When considering the partition {2Z, 2Z + 1} of Z, we use 0 and 1 to represent the cells 2Z and
2Z + 1, respectively. When consider the partition {3Z, 3Z + 1, 3Z + 2} of Z, we use 0, 1 and 2 to
represent the cells 3Z, 3Z+ 1, and 3Z+ 2, respectively.

In general, for an integer n ⩾ 2, we can partition Z into n cells 0, 1, 2, · · · , n− 1 according
to whether the remainder is 0, 1, 2, . . . , n− 1 when an integer is divided by n. They are called the
residue classes module n in Z.

Fact 0.22. Each partition of a set S yields a relation R on S naturally: let xR y ((x, y) ∈ R) if
and only if and only if x = y (x and y are in the same cell).

Definition 0.23. An equivalence relation ∼ on a set S is one that satisfies these three properties
for all x, y, z ∈ S.

• (Reflexive) x ∼ x.

• (Symmetric) If x ∼ y, then y ∼ x.

• (Transitive) If x ∼ y and y ∼ z, then x ∼ z.

Theorem 0.24. The relation R corresponding to a partition of a set S is an equivalence relation.

Proof. It follows from Convention 0.20 and Fact 0.22: Let x, y, z ∈ S.

(Reflexive) Since x = x (x and x are clearly in the same cell), we have that xRx.

(Symmetric) If xR y, then x = y, so y = x, and thus yRx.

(Transitive) If xR y and yR z, then x = y and y = z, hence x = z and so xR z.

Theorem 0.25. An equivalence relation ∼ on a set S yield a natural partition of S, where the

a = {x ∈ S | x ∼ a}.

Proof. Let a ∈ S. Since a must be in the “cell” a by the reflexive condition, the left is to show that
if a ∈ b, then a = b.

⊆ Let x ∈ a. Then x ∼ a. But a ∈ b, so a ∼ b. Thus, x ∼ b by the transitivity, and so x ∈ b.
⊇ Let y ∈ b. Then y ∼ b. But a ∈ b, so a ∼ b, and then b ∼ a by symmetry. Hence y ∼ a by

the transitivity, and so y ∈ a.

Definition 0.26. Each cell in the partition arising from an equivalence relation ∼ on a set S is an
equivalence class. For x ∈ S, we have that the equivalence class containing x is x = {y ∈ S | y ∼
x} = {y ∈ S | x ∼ y} by Theorem 0.25 and symmetry.



Chapter 1

Groups

1.1 Binary operations

Definition 1.1. A binary operation ∗ on a set S is a function ∗ : S × S ! S. We write

∗ : S × S −! S

(a, b) 7−! a ∗ b := ∗(a, b)

Example 1.2. The usual addition on R:

+ : R× R −! R
(a, b) 7−! a+ b

and the usual multiplication on Z:

· : Z× Z −! Z
(a, b) 7−! a · b = ab

are binary operations. The matrix addition on m× n matrices Matm×n(R):

+ : Matm×n(R)×Matm×n(R) −! Matm×n(R)
(M,N) 7−!M +N

and the matrix multiplication on n× n square matrices Matn(R):

· : Matn(R)×Matn(R) −! Matn(R)
(M,N) 7−!M ·N

are binary operations.

Fact 1.3. The usual + and the usual · are binary operations on Z, Q, R and C, respectively.

Definition 1.4. Let ∗ : S × S ! S and H ⊆ S. The subset H is closed under ∗ if a ∗ b ∈ H for all
a, b ∈ H, that is to say, {a ∗ b | a, b ∈ H} ⊆ H. In this case, the binary operation on H given by
restricting ∗ to H is the induced operation of ∗ on H, that is to say, we have a binary operation ∗
on H:

∗ : H ×H ! H.

5
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Example 1.5. Let · : R×R ! R be the usual multiplication. The subset Z of R is closed under ·
since a · b ∈ Z for any a, b ∈ Z. So we have an induced operation · on Z:

· : Z× Z −! Z
(a, b) 7−! a · b

Example 1.6. Let R∗ := R∖{0}. We have that R∗, as a subset of R, is not closed under + because
−2, 2 ∈ R∗ but −2 + 2 = 0 ̸∈ R∗. This also means that + : R∗ × R∗ ! R∗ is not well-defined.

Example 1.7. Let H := {n2 | n ∈ N} ⊆ Z. Then H = {1, 4, 9, 16, . . . }.

(a) H is not closed under + since 1, 4 ∈ H but 1 + 4 = 5 ̸∈ H.

(b) H is closed under · because for any n2,m2 ∈ H with m,n ∈ N, we have that nm ∈ N and
n2 ·m2 = (nm)2 ∈ H by the associativity and commutativity (defined later) of · on Z

Definition 1.8. Let F = {f : R ! R}, i.e., F is the set of functions from R to R. For any f, g ∈ F ,
define

f + g : R −! R
x 7−! f(x) + g(x),

f − g : R −! R
x 7−! f(x)− g(x)

f · g : R −! R
x 7−! f(x) · g(x),

f ◦ g : R −! R
x 7−! f(g(x)).

Then f + g, f − g, f · g, f ◦ g ∈ F for any f, g ∈ F . So we have binary operations +, −, · and ◦ on
F . For example,

+ : F × F −! F

(f, g) 7−! f + g : R −! R
x 7−! f(x) + g(x)

Remark. Let f, g be two functions. Then f ◦ g is well-defined if and only if Im(g) ⊆ D(f), where
D(f) is the domain of f . In particular, if f : Y ! Z and g : X ! Y , then Im(g) ⊆ Y = D(f) and
so

X
g−−! Y

f−−! Z.

Definition 1.9. A binary operation ∗ on a set S is commutative if and only if a ∗ b = b ∗ a for all
a, b ∈ S.
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Definition 1.10. A binary operation on a set S is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c).

Remark. If ∗ is associative, then the longer expression such as a ∗ b ∗ c are not ambiguous.

Example 1.11. Define a relation ∗ on Z by

∗ : Z× Z −! Z
(a, b) 7−! ab+ 2

Then ∗ is commutative since a ∗ b = ab+2 = ba+2 = b ∗ a for any a, b ∈ Z, but ∗ is not associative
since for any a, b, c ∈ Z with a ̸= c, we get (a ∗ b) ∗ c ̸= a ∗ (b ∗ c) by showing that

(a ∗ b) ∗ c = (ab+ 2) ∗ c = (ab+ 2)c+ 2 = abc+ 2c+ 2,

a ∗ (b ∗ c) = a ∗ (bc+ 2) = a(bc+ 2) + 2 = abc+ 2a+ 2.

Theorem 1.12. Let S be a set and H = {f : S ! S}. Then ◦ is associative on H.

Proof. Let f, g, h ∈ H. We want to prove (f ◦ g) ◦ h = f ◦ (g ◦ h). Note that

S
h−−! S

g−−! S
f−−! S︸ ︷︷ ︸

f◦g︸ ︷︷ ︸
(f◦g)◦h

, S
h−−! S

g−−! S︸ ︷︷ ︸
g◦h

f−−! S

︸ ︷︷ ︸
f◦(g◦h)

.

So (f ◦ g) ◦ h : S ! S and f ◦ (g ◦ h) : S ! S. This shows that they have the same domain and
codomain. Next, for x ∈ S, we have that

(f ◦ g) ◦ h(x) = (f ◦ g)(h(x)) = f(g(h(x))),

f ◦ (g ◦ h)(x) = f((g ◦ h)(x)) = f(g(h(x))).

Since x ∈ S is arbitrary, we have that f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Example 1.13. The following table defines a binary operation ∗ on S = {a, b, c} by the following
rule:

(ith entry on the left) ∗ (jth entry on the top)

= (entry in the ith row and jth column of the table body).

Table 1.1

∗ a b c

a b c b

b a c b

c c b a

Since a ∗ b = c and b ∗ a = a, we have that ∗ is not commutative. Since (a ∗ b) ∗ c = c ∗ c = a
and a ∗ (b ∗ c) = a ∗ b = c, we have that ∗ is not associative.

A binary operation defined by a table is commutative if and only if the table is symmetric about
the diagonal.
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1.2 Isomorphic Binary Structures

Table 1.2

∗ a b c

a b c b

b a c b

c c b a

Table 1.3

⋆ x y z

x y z y

y x z y

z z y x

There are 3 × 2 × 1 = 6 one-to-one correspondence functions from S to T . (First, the image of a
has 3 choices, then the image b has 2 choices, and finally the image of c has 1 choice.)

S
f−−! T S

g−−! T S
h−−! T S

i−−! T S
j−−! T S

k−−! T

a 7−! x a 7−! x a 7−! y a 7−! y a 7−! z a 7−! z

b 7−! y b 7−! z b 7−! x a 7−! z b 7−! x b 7−! y

c 7−! z c 7−! y c 7−! z c 7−! x c 7−! y c 7−! x

The 1-1 correspondence f is what we are most interested in, because you can check that

f(α ∗ β) = f(α) ⋆ f(β),∀α, β ∈ S.

For example,

f(a ∗ a) = f(b) = y = x ⋆ x = f(a) ⋆ f(a),

f(a ∗ b) = f(c) = z = x ⋆ y = f(a) ⋆ f(b),

f(a ∗ c) = f(b) = y = x ⋆ z = f(a) ⋆ f(c).

Definition 1.14. Define a binary algebraic structure ⟨S, ∗⟩ to be a set S together with a binary
operation ∗ on S.

Definition 1.15. Let ⟨S, ∗⟩ and ⟨T, ⋆⟩ be binary algebraic structures. A homomorphism of S with
T is a function ϕ : S ! T such that

ϕ(x ∗ y) = ϕ(x) ⋆ ϕ(y),∀x, y ∈ S.

A homomorphism ϕ : S ! T is an isomorphism if ϕ is a 1-1 correspondence. S and T are
isomorphic binary structures, denoted by S ∼= T , if there is an isomorphism ϕ : S ! T .

Example 1.16. Let R+ := {x ∈ R | x > 0}. Let us show that

⟨R,+⟩ ∼= ⟨R+, ·⟩.

Define

ϕ : R −! R+

x 7−! ex.
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Since ex > 0 for any x ∈ R, we have that ϕ is well-defined. Since ϕ(x+y) = ex+y = ex·ey = ϕ(x)·ϕ(y)
for any x, y ∈ R, we have that ϕ is a homomorphism. Let x, y ∈ R be such that ϕ(x) = ϕ(y). Then
ex = ey. Since e(·) : R ! R+ is a strictly monotonic (increasing) function, we have that x = y.
Hence ϕ is 1-1. Let y ∈ R+. Then ϕ(ln y) = eln y = y, and so ϕ is onto.

Example 1.17. Let n ∈ N. Let Z/nZ := {0, 1, · · · , n− 1} be the residue classes module n in Z,
and

Un := {z ∈ C | zn = 1} = {ei2πm/n | m = 0, 1, . . . , n− 1}

be the nth roots of unity. Note that for x ∈ Z/nZ,

x = {y | x ∼ y}
= {y | x and y are in the same cell}
= {y | n divides (x− y)}
= {y | x ≡ y (mod n)}.

We define an operation + on Z/nZ by

+ : Z/nZ× Z/nZ −! Z/nZ
(m, k) 7−! m+ k

We check that the operation + is well-defined. Let (m1, k1) = (m, k), then m1 = m and k1 = k.
Then n | (m1 −m) and n | (k1 − k), and so m1 = na+m and k1 = nb+ k for some a, b ∈ Z. Hence
m1+k1 = n(a+ b)+ (m+k), i.e., n(a+ b) = (m1+k1)− (m+k), and so n | ((m1+k1)− (m+k)).
Thus, m1 + k1 = m+ k. This means that +(m, k) = +(m1, k1) or m+ k = m1 + k1.

Define

ϕ : ⟨Z/nZ,+⟩ −! ⟨Un, ·⟩
m 7−! ei2πm/n.

First, we check that ϕ is well-defined. Let m = k in Z/nZ. Then n | (m − k) and so m = na + k
for some a ∈ Z. Hence

ϕ(m) = ei2πm/n = ei2π(na+k)/n = ei2πa · e2πk/n = ei2πk/n = ϕ(k).

So ϕ is well-defined. Since

ϕ(m+ k) = ϕ(m+ k) = ei2π(m+k)/n = ei2πm/n · ei2πk/n = ϕ(m) · ϕ(k),∀m, k ∈ Z/nZ,

we have that ϕ is a homomorphism. ϕ is clearly onto. Next, we show that ϕ is 1-1. Suppose that
m, k ∈ Z/nZ be such that ϕ(m) = ϕ(k). Then ei2πm/n = ei2πk/n, so ei2π(m−k)/n = 1, implying that
(m− k)/n is an integer, so n | (m− k), and thus m = k.

Fact 1.18. Let ⟨S, ∗⟩ and ⟨T, ⋆⟩ be binary algebraic structures.

(a) If there is not 1-1 correspondence between S and T , then S ̸∼= T . For example, if |S| <∞ but
|T | = ∞, then S ̸∼= T . If |S| = ∞ = |T |, and S is countable but T is uncountable, then S ̸∼= T .
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(b) If ∗ is commutative on S, but ⋆ is not on T , then S ̸∼= T . (We cannot find any ϕ : S ! T such
that ϕ is a homomorphism.)

(c) Let ϕ : S ! T , if there are x, y ∈ S such that x ∗ y = y ∗ x but ϕ(x) ⋆ ϕ(y) ̸= ϕ(y) ⋆ ϕ(x), then
ϕ is not a homomorphism.

(d) Let ϕ : S ! T , if there are x, y ∈ S such that x ∗ x = x, but ϕ(x) ⋆ ϕ(x) ̸= ϕ(x), then ϕ is not
a homomorphism.

Definition 1.19. Let ⟨S, ∗⟩ be a binary structure. An element e of S is an identity element for ∗
if e ∗ s = s = s ∗ e for all s ∈ S.

Theorem 1.20. If a binary structure ⟨S, ∗⟩ has an identity element, then it is unique.

Proof. Suppose that we have two identity elements e and f . Then

e
f is id.
====== e ∗ f e is id.

====== f.

Theorem 1.21. Suppose ⟨S, ∗⟩ has an identity element e. If ϕ : S ! T is a surjective homomor-
phism of ⟨S, ∗⟩ and ⟨T, ⋆⟩, then ϕ(e) ∈ T is an identity element for ⋆.

Proof. Let t ∈ T . Since ϕ is surjective (onto), we have that there exists s ∈ S such that ϕ(s) = t.
We have that

ϕ(e) ⋆ t = ϕ(e) ⋆ ϕ(s) = ϕ(e ∗ s)︸ ︷︷ ︸
ϕ is a homo.

= ϕ(s) = t,

t ⋆ ϕ(e) = ϕ(s) ⋆ ϕ(e) = ϕ(s ∗ e) = ϕ(s)︸ ︷︷ ︸
e is an id. elt.

= t.

Thus, ϕ(e) is an identity element on T .

Example 1.22. We have that ⟨Q,+⟩ ≁= ⟨Z,+⟩.

Proof. Suppose that ϕ : Q ! Z is an isomorphism. Then ϕ is onto. So for 1 ∈ Z, there is an x ∈ Q
such that ϕ(x) = 1. Since x/2 ∈ Q, we have that 2ϕ(x/2) = ϕ(x/2) + ϕ(x/2) = ϕ(x/2 + x/2) =
ϕ(x) = 1, but 2y = 1 has no solution in Z, a contradiction. Thus, there is no isomorphic function
from ⟨Q,+⟩ to ⟨Z,+⟩.

Example 1.23. We have that ⟨C, ·⟩ ≁= ⟨R, ·⟩.

Proof. Suppose that ϕ : C ! R is an isomorphism. Then ϕ is onto. So for −1 ∈ R, there is an
x ∈ C such that ϕ(x) = −1. Since

√
x ∈ C, we have that (ϕ(

√
x))2 = ϕ(

√
x) ·ϕ(

√
x) = ϕ(

√
x ·

√
x) =

ϕ(x) = −1, but y2 = −1 has no solution in R, a contradiction. Thus, there is no isomorphic function
from ⟨C, ·⟩ to ⟨R, ·⟩.
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1.3 Groups

Why define groups? 2x = 1 has no solution in ⟨Z, ·⟩, but 2 + x = 1 has one in ⟨Z,+⟩.

Definition 1.24. A group is a binary structure ⟨G, ∗⟩, such that the following axioms are satisfied:

G1: For all a, b, c ∈ G, we have that

(a ∗ b) ∗ c = a ∗ (b ∗ c). associativity of ∗

G2: There is e ∈ G such that for all a ∈ G,

e ∗ a = a = a ∗ e. identity element e for ∗

G3: Corresponding to each a ∈ G, there is an element ã ∈ G such that

ã ∗ a = e = a ∗ ã. inverse ã of a

Remark. If ⟨G,+⟩ is a group, then we write −a for the inverse of a ∈ G.
If ⟨G, ·⟩ is a group, then we write a−1 for the inverse of a ∈ G.

Example 1.25. (a) ⟨Z,+⟩, ⟨Q,+⟩, ⟨R,+⟩, ⟨C,+⟩ are groups with the (additive) identity 0.

(b) ⟨Q∗, ·⟩, ⟨R∗, ·⟩, ⟨C∗, ·⟩ are groups with the (multiplicative) identity 1.

(c) ⟨Q>0, ·⟩, ⟨R>0, ·⟩ are group with the (multiplicative) identity 1.

Example 1.26. (a) ⟨Z, ·⟩, ⟨Q, ·⟩, ⟨R, ·⟩, ⟨C, ·⟩ are not groups.

(b) ⟨N,+⟩, ⟨N, ·⟩ are not groups.

(c) ⟨Z∗,+⟩, ⟨Z∗, ·⟩ are not groups.

Example 1.27. ⟨nZ,+⟩ is a group for each n ∈ Z.

Example 1.28. (a) Let n ⩾ 2. Then ⟨Z/nZ,+⟩ is a group with the (additive) identity 0, and for
any a ∈ Z/nZ, the (additive) inverse of a is −a := n− a, because

a+ (−a) = a+ n− a = n = 0.

Note that you may say that Zn := {0, . . . , n − 1} under addition modulo n is a group with the
(additive) identity 0 and the inverse n− a for each a ∈ Zn.

(b) Let p ∈ N be a prime number. ⟨(Z/pZ)×, ·⟩, is a group, where (Z/pZ)× = {1, 2, . . . , p− 1} and
a · b = a · b (or ab = ab) for any a, b ∈ (Z/pZ)×. Note that you may say that Z×

p := {1, 2, . . . , p− 1}
under multiplication modulo p is a group with the (multiplicative) identity 1.

In fact, for prime number p, we have that Fp := Zp is a (finite) field, because ⟨Fp,+⟩ is an
(additive) group and ⟨F×

p , ·⟩ is a (multiplicative) group.

Remark. Let p ∈ N be prime and a ∈ (Z/pZ)×. By Euclidean Algorithm, we can find x, y ∈ Z
such that ax+ py = gcd(a, p) = 1. So ax = ax+ 0 = ax+ 0y = ax+ py = 1, thus, a−1 = x.
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Definition 1.29. A group ⟨G, ∗⟩ is abelian if its binary operation ∗ is commutative.

Example 1.30. (a) ⟨Z,+⟩, ⟨Q,+⟩, ⟨R,+⟩, ⟨C,+⟩ are abelian groups.

(b) ⟨Q∗, ·⟩, ⟨R∗, ·⟩, ⟨C∗, ·⟩ are abelian groups

(c) ⟨Z/nZ,+⟩ is an abelian group.

(d) ⟨Matn×m(R),+⟩ is an abelian group.

(e) The general linear group of degree n

GLn(R) := {M ∈ Matn(R) |M is invertible}

is a group under · for n ∈ N, but not abelian under · when n ∈ Z⩾2. Note that ⟨GL1(R), ·⟩ = ⟨R∗, ·⟩.

(f) ⟨{f : R ! R},+⟩ is an abelian group.

(g) For any R-vector space ⟨V,+, ·⟩, ⟨V,+⟩ is an abelian group.

Theorem 1.31. If ⟨G, ∗⟩ is a group, then for all a, b, c ∈ G,

a ∗ b = a ∗ c =⇒ b = c, left cancellation law

b ∗ a = c ∗ a =⇒ b = c. right cancellation law

Proof. We have that

a ∗ b = a ∗ c G3==⇒ ã ∗ (a ∗ b) = ã ∗ (a ∗ c)
G1==⇒ (ã ∗ a) ∗ b = (ã ∗ a) ∗ c
G2==⇒ e ∗ b = e ∗ c
G2==⇒ b = c.

Corollary 1.32. If ⟨G, ∗⟩ is a group, then for a, b ∈ G, the linear equations a ∗ x = b and y ∗ a = b
have unique solutions x and y in G.

Proof. Method 1. Existence. Since a ∗ (ã ∗ b) = (a ∗ ã) ∗ b = e ∗ b = b, we have that x = ã ∗ b is a
solution of a ∗ x = b. Uniqueness. Suppose that there exists x1, x2 ∈ G such that a ∗ x1 = b and
a ∗ x2 = b. Then a ∗ x1 = a ∗ x2, and so x1 = x2 by the left cancellation law.

Method 2. If a ∗ x = b, then x = ã ∗ b by observing that

x = e ∗ x = (ã ∗ a) ∗ x = ã ∗ (a ∗ x) = ã ∗ b.

Theorem 1.33. If ⟨G, ∗⟩ is a group, then e ∈ G is unique. For each a ∈ G, ã ∈ G is unique.

Proof. Since ⟨G, ∗⟩ is a binary structure, we have that e ∈ G is unique by Theorem 1.20. Suppose
there exist ã, â ∈ G such that ã ∗ a = e = a ∗ ã and â ∗ a = e = a ∗ â. Then ã ∗ a = â ∗ a, and so
ã = â by the right cancellation law.

Corollary 1.34. If ⟨G, ∗⟩ is a group, then ˜̃a = a for any a ∈ G.
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Proof. Since ã ∗ a = e = a ∗ ã, we have that a ∗ ã = e = ã ∗ a, and so a is the inverse of ã. Since ˜̃a
is the inverse of ã by definition/notation, we have that ˜̃a = a by Theorem 1.33.

Corollary 1.35. Let ⟨G, ∗⟩ be a group. For all a, b ∈ G, we have that the (unique) inverse of a ∗ b
is b̃ ∗ ã, i.e., ã ∗ b = b̃ ∗ ã.

Proof. Since

(b̃ ∗ ã) ∗ (a ∗ b) = b̃ ∗ (ã ∗ a) ∗ b = (b̃ ∗ e) ∗ b = b̃ ∗ b = e,

and (a ∗ b) ∗ (b̃ ∗ ã) = e, we have that ã ∗ b = b̃ ∗ ã.

Remark. If ⟨G,+⟩ is a group, then we write that −(a+ b) = (−b) + (−a) for any a, b ∈ G.
If ⟨G, ·⟩ is a group, then we write that (ab)−1 = b−1a−1 for any a, b ∈ G.

Definition 1.36. A semigroup ⟨S, ∗⟩ is an binary structure such that ∗ is associative.
A monid is a semigroup ⟨S, ∗⟩ that has an identity element for the binary operation ∗.

We have an equivalent definition (via left axioms) for groups.

Definition 1.37. A group is a binary structure ⟨G, ∗⟩, such that the following axioms are satisfied:

GI: For all a, b, c ∈ G, we have that

(a ∗ b) ∗ c = a ∗ (b ∗ c). associativity of ∗

GII: There is e ∈ G such that for all a ∈ G,

e ∗ a = a. (left) identity element e for ∗

GIII: Corresponding to each a ∈ G, there is an element ã ∈ G such that

ã ∗ a = e. (left) inverse ã of a

Remark. We proved the equivalence:

Proof. Condition GI is the same as G1. Clearly, we have that G2 =⇒ GII and G3 =⇒ GIII. The
remaining is to show the following:

GII =⇒ G2 For a ∈ G,

a ∗ e = e ∗ (a ∗ e) = (˜̃a ∗ ã) ∗ (a ∗ e) = ˜̃a ∗ (ã ∗ a) ∗ e = (˜̃a ∗ e) ∗ e
= ˜̃a ∗ (e ∗ e) = ˜̃a ∗ e = ˜̃a ∗ (ã ∗ a) = (˜̃a ∗ ã) ∗ a = e ∗ a = a.

GIII =⇒ G3 For a ∈ G,

a ∗ ã = e ∗ (a ∗ ã) = (ã ∗ ã ∗ (a ∗ ã)) ∗ (a ∗ ã) = ã ∗ ã ∗ ((a ∗ ã) ∗ (a ∗ ã))

= ã ∗ ã ∗ (a ∗ (ã ∗ a) ∗ a) = ã ∗ ã ∗ ((a ∗ e) ∗ ã) = ã ∗ ã ∗ (a ∗ ã) = e.

By symmetry, we can define groups via right axioms.
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1.4 Finite groups

Example 1.38. (a) If G := {e} is a group, then e is the identity.

(b) Assume that G := {e, a} is a group under ∗. Then

∗ e a

e e a

a a

=⇒

∗ e a

e e a

a a e

Suppose that a∗a = a, then a = e by multiplying by ã on both sides, contradicting a ̸= e. Hence
a∗a = e. Hence the structure of groups of 2 elements are uniquely determined, up to isomorphism,
and so ⟨G, ∗⟩ ∼= ⟨Z2,+2⟩. Recall that if ϕ : ⟨S, ∗⟩ ! ⟨T, ⋆⟩ is a homomorphism, then ϕ(e) is the
identity element of T by Theorem 1.21. Thus, we have a unique isomorphism given by

⟨G, ∗⟩
∼=−! ⟨Z2,+2⟩

e 7−! 0

a 7−! 1

Proposition 1.39. When giving a table for a finite group ⟨G, ∗⟩, each element a ∈ G must appear
once and only once in each row and each column of the table.

Proof. Let x ∈ G. Define a map by

λx : G −! G

a 7−! x ∗ a

Let a, b ∈ G such that φx(a) = φx(b), i.e., x ∗ a = x ∗ b. Then a = b by the left cancellation law. So
φx is 1-1. By Pigeonhole Principle (PHP), φx is onto, which implies φx is a permutation map. Or
we can check the onto-ness directly: for b ∈ G, letting a := x−1b ∈ G, we have that

φx(a) = φx(x
−1 ∗ b) = x ∗ (x−1 ∗ b) = (x ∗ x−1) ∗ b = e ∗ b = b.

Hence for the row whose first element is x, elements in the table body of that row is a permutation.
Since x ∈ G is arbitrary, we have that each row in the table body is a permutation of G. Similarly,
each column in the table body is a permutation of G.

Fact 1.40. Let ⟨G, ·⟩ be an arbitrary group and x ∈ G. Then similar to the proof of Proposi-
tion 1.39, we have a 1-1 correspondence

λx : G −! G

a 7−! xa

So we get that
xG = {xa | a ∈ G} = Im(λx) = G.
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For a, b ∈ G, λ(ab) = x(ab) = xab and λx(a)λx(b) = (xa)(xb) = xaxb, hence in general, λx is not
an isomorphism. Check that the σx defined below is an isomorphism.

σx : G
∼=−! G

a 7−! xax−1.

Fact 1.41. When giving a table for a finite binary structure ⟨G, ∗⟩ such that each element a ∈ G
must appear once and only once in each row and each column of the table, then G is a group if and
only if the associative law holds.

Example 1.42. Let G := {e, a, b} be a group under ∗.

∗ e a b

e e a b

a a

b b

=⇒

∗ e a b

e e a b

a a b e

b b e a

where a ∗ a = b because b cannot occur in the 3rd row and in the 3rd column. So the table is
uniquely determined for a group consisting of 3 elements. Thus, we say that there is only one group
of 3 elements, up to isomorphism, and so ⟨G, ∗⟩ ∼= ⟨Z3,+3⟩. Note that there are two isomorphisms
between them:

G
∼=−! Z3 G

∼=−! Z3

e 7−! 0 e 7−! 0

a 7−! 1 a 7−! 2

b 7−! 2 b 7−! 1

1.5 Subgroups

Convention 1.43. We use 0 to denote an additive identity for a group ⟨G,+⟩, and 1 to denote a
multiplicative identity for a group ⟨G, ·⟩.

If we say that G is a group, we usually mean that the operation is ·, and then a−1 is used to
denote the inverse of a ∈ G.

Definition 1.44. Let ⟨G,+⟩ be a group, a ∈ G, and n ∈ N, define

0a = 0,

na = a+ · · ·+ a︸ ︷︷ ︸
n times

,

−na = (−a) + · · ·+ (−a)︸ ︷︷ ︸
n times

= n(−a).
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Example 1.45. ⟨Z,+⟩ is a group. Then for m ∈ Z,

m(1) = (−m)(−1) = m = 1(m) = (−1)(−m).

For m ∈ Z, since m+ (−m) = 0 = (−m) +m, we have that −(−m) = m. Note that

(−0)(−1) = 0(−1) = 0.

For m ∈ N,
m(1) = 1 + · · ·+ 1︸ ︷︷ ︸

m times

= m,

1(m) = m︸︷︷︸
1 time

= m,

(−m)(−1) = m(−(−1)) = m(1) = m,

(−1)(−m) = 1(−(−m)) = 1(m) = m,

and for m ∈ Z<0,
m(1) = −(−m)(1) = (−1) + · · ·+ (−1)︸ ︷︷ ︸

(−m) times

= m,

1(m) = m︸︷︷︸
1 time

= m,

(−m)(−1) = (−1) + · · ·+ (−1)︸ ︷︷ ︸
(−m) times

= m,

(−1)(−m) = 1(−(−m)) = 1(m) = m.

More generally, we can prove that (−m)(−k) = mk = (−k)(−m) for m, k ∈ Z. From now on, you
can directly use these results when working inside ⟨Z,+⟩.

Definition 1.46. Let ⟨G, ·⟩ be a group, a ∈ G, and n ∈ N, define

a0 = 1,

an = a · · · a︸ ︷︷ ︸
n times

,

a−n = a−1 · · · a−1︸ ︷︷ ︸
n times

= (a−1)n.

Theorem 1.47. Let ⟨G, ·⟩ be a group and a ∈ G. Then aman = am+n for m,n ∈ Z.

Proof. If mn = 0, it is trivial. If mn > 0, it holds by definition. If mn < 0, then without loss of
generality assume that m > 0 and n < 0, and so

aman = a · · · a︸ ︷︷ ︸
m times

a−1 · · · a−1︸ ︷︷ ︸
−n times

=


a · · · a︸ ︷︷ ︸

m−(−n) times

if m ⩾ |n|

a−1 · · · a−1︸ ︷︷ ︸
−(m+n) times

otherwise

=

{
am+n if m ⩾ |n|

a−(−(m+n)) otherwise
=

{
am+n if m ⩾ |n|
am+n otherwise

= am+n.
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Corollary 1.48. Let ⟨G, ·⟩ be a group, then

(an)−1 = a−n = (a−1)n,∀n ∈ Z

and so
(a−n)−1 = an = (a−1)−n,∀n ∈ Z.

Proof. For each n ∈ Z, since

ana−n = an+(−n) = a0 = 1 = a0 = a(−n)+n = a−nan,

we have that (an)−1 = a−n.
If n = 0, then a−0 = a0 = 1 = (a−1)0. If n > 0, then a−n = (a−1)n. If n < 0, then

a−n = (an)−1 = (a−(−n))−1 = ((a−1)−n)−1 = (a−1)n.

Hence a−n = (a−1)n for each n ∈ Z.

Definition 1.49. Let G be a group, then |G| is called the order of G.

Definition 1.50. If ⟨G, ∗⟩ and ⟨H, ∗⟩ are groups and H ⊆ G, then H is a subgroup of G, denoted
by H ⩽ G or G ⩾ H. G itself is an improper subgroup of G. If H ⊊ G, then H is a proper subgroup
of G, denoted by H ⪇ G or G ⪈ H. {e} ⩽ G is the trivial subgroup of G.

Example 1.51. (a) nZ ⩽ Z ⪇ Q ⪇ R ⪇ C under +, where n ∈ Z. In particular, nZ = Z if
n = ±1, and nZ < Z if n ∈ Z ∖ {±1}.

(b) Q>0 ⪇ Q∗ ⪇ R∗ ⪇ C∗ and Un ⪇ C∗ under ·.

(c) Let n ∈ Z⩾2 and H =: {(0, a2, . . . , an) | a2, . . . , an ∈ R}. Then H ⪇ Rn under the coordinate-
wise addition.

Remark. Rn is a group under component-wise addition with identity (0, . . . , 0). For the inverse of
(a1, . . . , an) ∈ Rn is (−a1, . . . ,−an). Check that Rn is closed under component-wise addition and
the operation is associative.

We have a natural isomorphism

H
∼=−! Rn−1

(0, a2, . . . , an) 7−! (a2, . . . , an).

Example 1.52. Let G be a group of |G| = 4. Then either G ∼= (Z4,+4), or G ∼= (Z2
2 ,+2). We call

⟨Z2
2 ,+2⟩ the Klein 4-group with the operation given by (a1, b1) +2 (a2, b2) = (a1 +2 a2, b1 +2 b2).

Table 1.4

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 3 0 1 2

3 0 0 0 0

Table 1.5

+2 (0, 0) (0, 1) (1, 0) (1,1)

(0, 0) (0, 0) (0, 1) (1, 0) (1,1)

(0, 1) (0, 1) (0, 0) (1, 1) (1,0)

(1, 0) (1, 0) (1, 1) (0, 0) (0,1)

(1,1) (1,1) (1,0) (0,1) (0,0)
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Since 1 + 1, 3 + 3 ̸= 0 modulo 4, but (0, 1) + (0, 1), (1, 0) + (1, 0), (1, 1) + (1, 1) = (0, 0) modulo
2, we have that 2x = 0 has 2 solutions in Z4, but 2y = (0, 0) has 4 solutions in Z2

2 . Thus, Z4 ̸∼= Z2
2 .

Remark. The dihedral group of order 6 is the smallest finite non-abelian group.

It is often useful to draw a subgroup diagram of the subgroups of a group. In such a diagram,
a line running downward from a group G to a group H means that H is a subgroup of G. Thus,
the larger group is placed nearer the top of the diagram.

Z4

{0, 2}

{0}

Figure 1.1

Z2
2

{(0, 0), (0, 1)} {(0, 0), (1, 0)} {(0, 0), (1, 1)}

{(0, 0)}

Figure 1.2

Example 1.53. Since Z4 is 1 nontrivial subgroup and Z2
2 has 3 nontrivial subgroups, we have that

Z4 ̸∼= Z2
2 .

Example 1.54. Under the function addition, we have the following subgroup diagram:

{f : R ! R}

{f : R ! R | f is continuous}

{f : R ! R | f is differentiable}

Theorem 1.55 (Subgroup test 1). Let G be a group and H ⊆ G. Then H ⩽ G if and only if

(a) H is closed under the binary operation of G,

(b) the identity element 1G ∈ H, and

(c) a−1 ∈ H for all a ∈ H.

Proof. =⇒ Assume that H ⩽ G. Then clearly Condition (a) holds. Let 1H be the identity element
of H. Then 1H = 1H1H . View the equation as one in G, we see that

1−1
H 1H = 1−1

H (1H1H) =⇒ 1G = (1−1
H 1H)1H =⇒ 1G = 1G1H =⇒ 1G = 1H ∈ H.

Hence Condition (b) holds. Let a−1
H be the inverse of a in H. Then 1G = 1H = aa−1

H . View the
equation as on in G, we have that

a−11G = a−1(aa−1
H ) =⇒ a−1 = (a−1a)a−1

H =⇒ a−1 = 1Ga
−1
H =⇒ a−1 = a−1

H ∈ H.
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⇐= Condition (a) implies that H is a binary structure. By Condition (b) we have at once that
G2 is satisfied. Also G3 is satisfied by Condition (c). For a, b, c ∈ H, we have that (ab)c = a(bc)
when viewed as an equation in G. So (ab)c = a(bc) in H and thus G1 holds. Therefore, H ⩽ G.

Theorem 1.56 (Subgroup test 2). Let G be a group and ∅ ≠ H ⊆ G. Then H ⩽ G if and only if

(a) H is closed under the binary operation of G, and

(b) a−1 ∈ H for all a ∈ H.

Proof. By Theorem 1.57, it is enough to show that the identity element 1G ∈ H from the forward
direction. For a ∈ H, we have that a−1 ∈ H by (b), and so 1G = aa−1 ∈ H by (a).

Combining Conditions (a) with (b) in Theorem 1.57, we have another elegant subgroup test
criterion given below. The proof is left as an exercise.

Theorem 1.57 (Subgroup test 3). Let G be a group and ∅ ̸= H ⊆ G. Then H ⩽ G if and only if
ab−1 ∈ H for a, b ∈ H.

Fact 1.58. The proof of Theorem 1.55 provides us some byproducts about the relationship between
elements of H and G when H ⩽ G:

(a) H and G share the same identity element.

(b) For a ∈ H, G and H share the same inverse a−1.

Example 1.59. Let n ∈ N. Define the special linear group of degree n by

SLn(R) = {M ∈ GLn(R) | det(M) = 1}.

Note that SLn(R) ⊆ GLn(R), then SLn(R) ⩽ GLn(R) under · by subgroup test:

(a) For M,N ∈ SLn(R), MN ∈ SLn(R) because det(MN) = det(M) det(N) = 1 > 0.

(b) For the identity matrix (element) In ∈ GLn(R), det(In) = 1, and so In ∈ SLn(R).

(c) For M ∈ SLn(R), det(M−1) = 1/ det(M) = 1/1 = 1 > 0, and so M−1 ∈ SLn(R).

1.6 Cyclic subgroups

Theorem 1.60. Let G be a group and a ∈ G. Then H := {an | n ∈ Z} ⩽ G. If a ∈ K ⩽ G, then
H ⩽ K.

Proof. Subgroup test:

(a) Let am, an ∈ H. Then aman = am+n ∈ H.

(b) 1 is the identity element of G and 1 = a0 ∈ H.

(c) For an ∈ H, we have that in G the inverse of an is a−n, but a−n ∈ H.
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Therefore, H ⩽ G.
Assume that a ∈ K ⩽ G. Then K is a group and, so a0 = 1 ∈ K and a−1 ∈ K by Fact 1.58.

Since K is closed under ·, we have that am, a−k ∈ K for all m, k ∈ N. Hence an ∈ K for any n ∈ Z,
implying that H ⊆ G. We just showed that H ⩽ K, so H is a group, and thus H ⩽ K.

Definition 1.61. Let G be a group and a ∈ G. Then the subgroup ⟨a⟩ := {an | n ∈ Z} of G is
called the cyclic subgroup of G generated by a.

Remark. If ⟨G,+⟩ is a group, then ⟨a⟩ := {na | n ∈ Z}.

Definition 1.62. If G is a group and G = ⟨a⟩ for some a ∈ G, then G is cyclic, and we say that a
generates G or a is a generator for G.

Example 1.63. Z4 = ⟨1⟩ = ⟨3⟩, but Z2
2 is not cyclic, because ⟨(0, 0)⟩ = {(0, 0)}, ⟨(0, 1)⟩ =

{(0, 0), (0, 1)}, ⟨(1, 0)⟩ = {(0, 0), (1, 0)}, and ⟨(1, 1)⟩ = {(0, 0), (1, 1)}.

Example 1.64. Z = ⟨1⟩ = ⟨−1⟩, and ⟨n⟩ = nZ < Z for n ∈ Z ∖ {±1}. Note that for m ∈ Z, by
Example 1.45, we have that m = (−m)(−1) ∈ ⟨−1⟩, and so Z = ⟨−1⟩.

Example 1.65. For n ∈ N, Zn = ⟨1⟩ = ⟨n− 1⟩, because for m = 0, . . . , n− 1,

(n− 1) + · · ·+ (n− 1)︸ ︷︷ ︸
(n−m)times

= (n−m)(n− 1) = n2 − n−mn+m = n(n− 1−m) +m ≡ m (mod n).

Example 1.66. Un = ⟨ζ⟩ = ⟨ζn−1⟩, where ζ = ei2π/n, because for m = 0, . . . , n− 1,

(ζn−1)n−m = (e2πi(n−1)/n)n−m = e2πi(n−m)(n−1)/n = e2πi(n(n−1−m)+m)/n = e2πim/n = ζm.

This actually follows from Z ∼= Un through m↔ ζm for all m.
For a ∈ {z ∈ C

∣∣ |z| = 1} =: S1, multiplying a by ζn−1, i.e., ζn−1a = ei(n−1) 2π
n a is equivalent to

rotating the a along the unit circle S1 counterclockwise by (n−1) 2πn = 2π− 2π
n , and this is equivalent

to rotating that element along the circle clockwise by 2π
n . For example, we get that ζn−1a = ζn−3

when a = ζn−2. This can also be seen from that ζn−1 = ζ−1 and ζn−2 = ζ−2 = (ζ−1)2, etc.
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1.7 Properties of cyclic groups

Definition 1.67. Let G be a group and a ∈ G. The order of a is

|a| := |⟨a⟩|.

Remark. We will see in this section that if |⟨a⟩| <∞, then

|a| = min{n ∈ N | an = 1}.

Cyclic groups are fundamental to the understanding of groups.

Theorem 1.68. Every cyclic group is abelian.

Proof. Let G be a group and a ∈ G such that G = ⟨a⟩. Let am, an ∈ G with m,n ∈ Z. Then
aman = am+n = anam. Thus, G is abelian.

Proposition 1.69 (Division Algorithm). If m ∈ N and n ∈ Z, then there exists unique integers q
and r such that

n = mq + r, 0 ⩽ r < m.

In particular, if m ∤ n, then 0 < r < m.

Proof. Existence. Let q0 := max{q ∈ Z | mq ⩽ n}. Then m(q0 + 1) > n, i.e., m > n −mq0 =: r0.
Then n = mq0 + r0 and 0 ⩽ r0 < m.

Uniqueness. Suppose that there exist another r1, q1 ∈ Z such that n = mq1+r1 and 0 ⩽ r1 < m.
Then mq0 + r0 = mq1 + r1, i.e., m | (r1 − r0). Since −m < r1 − r0 < m, we have that r1 = r0. This
implies that mq0 = mq1, i.e., m(q0 − q1) = 0. Since Z has no nonzero zero divisors and m ∈ N, we
have that q0 = q1.

Definition 1.70. In the notation of the division algorithm, we regard q as the quotient and r as
the nonnegative remainder when n is divided by m.

Example 1.71. (a) Find the quotient q and reminder r when n = 38 is divided by m = 7. By the
division algorithm, q = max{q ∈ Z | 7q ⩽ 38} = 5, then r = n−mq = 38− 7(5) = 3.

(b) Find the quotient q and reminder r when n = −38 is divided by m = 7. By the division
algorithm, q = max{q ∈ Z | 7q ⩽ −38} = −6, then r = n−mq = −38− 7(−6) = 4.

Theorem 1.72. A subgroup of a cyclic group is cyclic.

Proof. Let G = ⟨a⟩ be a cyclic group and H ⩽ G. If H = {1}, then H = ⟨1⟩ is cyclic. Assume
now that H ̸= {1}, then ak ∈ H for some k ∈ Z ∖ {0}. Since aka−k = a0 = 1 and H is a
group, we have that a−k = (ak)−1 ∈ H. This implies that am ∈ H for some m ∈ N. Let
m := min{m ∈ N | am ∈ H}. We claim that H = ⟨am⟩. Let b ∈ H ⊆ G. Then b = an for some
n ∈ Z. Find q, r ∈ Z such that

n = mq + r, 0 ⩽ r < m.

Then b = an = amq+r = (am)qar, and so ar = (am)−qan. Since am ∈ H, similarly, we have that
(am)−q ∈ H. Also, since an = b ∈ H and H is a group, we have that ar ∈ H. By the definition of m
and the fact that r ∈ {0, . . . ,m− 1}, we have that r = 0. Hence n = mq, and thus b = an = (am)q.
Therefore, H = ⟨am⟩ since b ∈ H is arbitrarily chosen. (Note that the definition of m also works
for H = {1}.)
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Corollary 1.73. If H ⩽ Z, then H = nZ for some n ∈ Z.

Proof. By Theorem 1.72,

H = ⟨n⟩ = {mn | m ∈ Z} = {nm | m ∈ Z} = nZ,

where the third equality follows from that · in Z is commutative.

Definition 1.74. Let a ∈ Z ∖ {0} and b, c ∈ Z such that b ̸= 0 or c ̸= 0.

(a) If a | b and a | c, we say that a is a common divisor of b and c.

(b) The largest common positive divisor of b and c is called the greatest common divisor of b and
c, denoted by gcd(b, c).

(c) Analogously define gcd(b1, . . . , bn) for n ∈ Z⩾3.

Convention 1.75. For b, c ∈ Z, when we write gcd(b, c), we mean that b ̸= 0 or c ̸= 0.

Theorem 1.76. Let b, c ∈ Z. Then

gcd(b, c) = min{bx+ cy > 0 | x, y ∈ Z}.

Proof. Let D = {bx+ cy > 0 | x, y ∈ Z}. Then D ̸= ∅. Let d := minD, then d = bx+ cy for some
x, y ∈ Z. Suppose that d ∤ b. Since d > 0, we can write b = dq + r with 0 < r < d. Then

r = b− dq = b− (bx+ cy)q = b(1− qx) + c(−yq) ∈ D,

contradicting 0 < r < d = minD. So d | b. Similarly, d | c. Hence 0 < d ⩽ gcd(b, c) =: g. Note that
b = gB and c = gC for some B,C ∈ Z. Then

d = bx+ cy = (gB)x+ (gC)y = g(Bx+ Cy),

and so g | d. Thus, g = d.

Corollary 1.77. If b, c,m, n ∈ Z is such that bm+ cn = 1, then

gcd(b, c) = gcd(b, n) = gcd(m, c) = gcd(m,n) = 1.

Corollary 1.78. Let b, c ∈ Z and n ∈ Z. Then

gcd(b, c) = gcd(c, b) = gcd(−b, c) = gcd(b, c+ bn).

Proof. Note that

gcd(b, c) = min{bx+ cy > 0 | x, y ∈ Z} = min{cy + bx > 0 | y, x ∈ Z} = gcd(c, b),

gcd(b, c) = min{bx+ cy > 0 | x, y ∈ Z} = min{−bx+ cx > 0 | y, x ∈ Z} = gcd(−b, c).

Next,

gcd(b, c+ bn) = min{bx+ (c+ bn)y > 0 | x, y ∈ Z} = min{b(x+ ny) + cy > 0 | x, y ∈ Z}.

To show that gcd(b, c) = gcd(b, c+ bn), it suffices to show that {(x+ ny, y) | x, y ∈ Z} = Z2. This
is true because for (s, t) ∈ Z2, letting x := s− ny and y := t, we have that (x+ ny, y) = (s, t).
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Definition 1.79. If b, c ∈ Z such that gcd(b, c) = 1, then a and b are relatively prime.

Theorem 1.80. If c | ab and gcd(b, c) = 1, then c | a.

Proof. Since gcd(b, c) = 1, we have that there existm,n such that 1 = bm+cn. Then a = abm+acn.
Since c | ab and c | ac, we have that c | abm and c | acn. Thus, c | a.

Theorem 1.81 (Euclidean Algorithm). Let b ∈ Z and c ∈ N. Repeat applying the division algo-
rithm, write

b = cq1 + r1, 0 < r1 < c,

c = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

...

rn−2 = rn−1qn + rn, 0 < rn < rn−1,

rn−1 = rnqn+1.

Then rn = gcd(b, c). (As r1 > r2 > · · · > rn−1 > rn > 0, the algorithm terminates after finite
steps.)

Proof. Note that

gcd(b, c) = gcd(b− cq1, c) = gcd(r1, c) = gcd(r1, c− r1q2) = gcd(r1, r2)

= · · · = gcd(rn−1, rn) = gcd(rn−1 − rnqn+1, rn) = gcd(0, rn) = rn.

Remark. This allows us to solve the linear Diophantine equation bx+ cy = gcd(b, c) = rn, i.e.,

rn = rn−2 − rn−1qn = (rn−4 − rn−3qn−2)qn−1 − (rn−3 − rn−2qn−1)qn = · · · = bx+ cy,

i.e., continue to let rj = rj−2 − qjrj−1 for j = n, . . . , 3, r2 = c− r1q2, and r1 = b− cq1.

Example 1.82. Find integers x, y such that 95x+ 432y = 1. Note that

432 = 95(4) + 52,

95 = 52(1) + 43,

52 = 43(1) + 9,

43 = 9(4) + 7,

9 = 7(1) + 2,

7 = 2(3) + 1,

2 = 1(2).

Hence gcd(95, 423) = 1. Then

1 = 7− 2(3) = 7− (9− 7)3 = −9(3) + 7(4) = −9(3) + (43− 9(4))4 = 4(43)− 19(9)

= 4(43)− 19(52− 43(1)) = −19(52) + 23(43) = −19(52) + 23(95− 52(1))

= 23(95)− 42(52) = 23(95)− 42(432− 95(4)) = 95(191)− 432(42).
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Theorem 1.83. Let G be a cyclic group.

(a) If |G| = ∞, then G ∼= Z.

(b) If |G| = n, then G ∼= Zn.

Proof. Assume that G = ⟨a⟩ with a ∈ G.

(a) Define

ϕ : G −! Z
an 7−! n

Let h, k ∈ Z be such that ah = ak. Suppose without of loss of generality that h < k. Then
ak−h = aka−h = aha−h = a0 = 1. Let m := k − h ∈ N. We claim that

G = {ak | k = 0, . . . ,m− 1} =: H.

Let an ∈ G with n ∈ Z. Then by the division algorithm, n = mq + r for some q, r ∈ Z such
that 0 ⩽ r ⩽ m − 1, and so an = amq+r = (am)qar = 1qar = ar ∈ H. Hence G ⊆ H ⊆ G, so
|G| = |H| ⩽ m, contradicting |G| = ∞. Thus, h = k, and so ϕ is well-defined. Let m = n, then
am = an, and so ϕ is 1-1. The onto-ness is clear. Also, ϕ(ahak) = ϕ(ah+k) = h+ k = ϕ(ah)+ϕ(ak)
for ah, ak ∈ G, so ϕ is a binary structure (group) homomorphism. Therefore, ϕ is an isomorphism.

(b) Assume that |G| = n. Then there exists h, k ∈ Z with h < k such that ah = ak. Then ak−h = 1
with k − h ∈ N. Let m := min{i ∈ N | ai = 1}. Similar to the proof of the part (a), we have
that G = {ak | k = 0, . . . ,m− 1}. Suppose without loss of generality that there exist i, j ∈ Z with
0 ⩽ i < j ⩽ m− 1 such that ai = aj . Then aj−i = 1, contradicting the definition of m and the fact
that j − i ∈ {1, . . . ,m− 1}. Thus, the elements a0, a1, . . . , am−1 are all distinct, and so

G = {a0, a1, . . . , am−1}.

Since |G| = n, we have that m = n. Define

ψ : G −! Zn

ai 7−! i.

Then ψ is well-defined. The 1-1ness and onto-ness are clear. Let ai, aj ∈ G. Then i+ j = nq+ r for
some q, r ∈ Z such that 0 ⩽ r ⩽ m− 1. Hence i+n j = r and ai+j = anq+r = (an)qar = 1qar = ar,
and so

ψ(aiaj) = ψ(ai+j) = ψ(ar) = r = i+n j = ψ(ai) +n ψ(a
j).

Therefore, ψ is a binary structure (group) homomorphism, and thus ψ is an isomorphism.

Corollary 1.84. Let G be a group. If a ∈ G such that |a| <∞, then

|a| = min{m ∈ N | am = 1}.

Proof. In the proof of Theorem 1.83(b), take G to be H := ⟨a⟩, to get that H = {a0, . . . , am−1},
where m = min{i ∈ N | ai = 1}. Then

|a| = |⟨a⟩| = |H| =
∣∣{a0, . . . , am−1}

∣∣ = m = min{m ∈ N | am = 1}.
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1.8 Cyclic subgroups of finite order

Proposition 1.85. Let G be a group, a ∈ G, and n ∈ Z. Then an = 1 if and only if |a|
∣∣ n.

Proof. =⇒ By the division algorithm, we have that ⟨a⟩ = {ak | k = 0, . . . , |n| − 1}. Then |a| =
|⟨a⟩| < ∞. Let m := |a| = min{m ∈ N | am = 1} by Corollary 1.84. Then am = 1. Write
n = mq+ r with q, r ∈ Z such that 0 ⩽ r < m. Then 1 = an = amq+r = ar. By the definition of m
and the fact that r ∈ {0, . . . ,m− 1}, we have that r = 0. Hence n = mq = |a|q, and so |a|

∣∣ n.
⇐= is straightforward.

Theorem 1.86. Let G be a group and a ∈ G. If |a| = n, then for m ∈ Z, |am| = n
gcd(m,n) .

Proof. Since (am)
n

gcd(m,n) = a
nm

gcd(m,n) = (an)
m

gcd(m,n) = 1, we have that |am|
∣∣ n

gcd(m,n) by Proposi-

tion 1.85. On the other hand, Since am|am| = (am)|a
m| = 1, we have that n

∣∣ (m|am|) by Proposi-

tion 1.85. Hence n
gcd(m,n)

∣∣ m|am|
gcd(m,n) . Since gcd( n

gcd(m,n) ,
m

gcd(m,n) ) = 1, we have that n
gcd(m,n)

∣∣ |am|
by Theorem 1.80. Thus, |am| = n

gcd(m,n) .

Corollary 1.87. Let G be a group and a ∈ G. If |a| = n, then for m ∈ Z, ⟨a⟩ = ⟨am⟩ if and only
if gcd(m,n) = 1.

Proof. Since ⟨am⟩ ⩽ ⟨a⟩, we have that

⟨a⟩ = ⟨am⟩ ⇐⇒ |⟨a⟩| = |⟨am⟩|
⇐⇒ |a| = |am|

⇐⇒ n =
n

gcd(m,n)

⇐⇒ gcd(m,n) = 1,

where the last to the third equivalence follows from Theorem 1.86.

Example 1.88. Let n ∈ N.

(a) Zn = ⟨m⟩ if and only if m ∈ {0, . . . , n−1} is such that gcd(n,m) = 1. (In particular, for n ⩾ 2,
Zn = ⟨1⟩ = ⟨n− 1⟩. This is consistent with Example 1.65.) For n ⩾ 2, by Corollary 1.87, there are
φ(n) such m’s, where

φ(n) = |{0 ⩽ m ⩽ n− 1 | gcd(m,n) = 1}|
= |{1 ⩽ m ⩽ n | gcd(m,n) = 1}|

is called the Euler’s ϕ function. When n ∈ N,

φ(n) = |{1 ⩽ m ⩽ n | gcd(m,n) = 1}|.

(b) Un = ⟨ζm⟩ if and only if m ∈ Z is such that gcd(m,n) = 1.

Remark. Let n ∈ N. Define

Z×
n = {m ∈ Zn | m has a · inverse modulo n}.



26 CHAPTER 1. GROUPS

Then ⟨Z×
n , ·⟩ is a group for n ∈ Z⩾2. Let a ∈ {1, . . . , n− 1}. Then

a ∈ Z×
n ⇐⇒ ∃b ∈ Z×

n s.t ab ≡ 1 (mod n)

⇐⇒ ∃b, k ∈ Z s.t ab+ nk = 1

⇐⇒ gcd(a, n) = 1.

Note that if ab + nk = 1 with b, k ∈ Z, then ab ≡ 1 (mod n), write b = nq + r such that q, r ∈ Z
and 0 ⩽ r ⩽ n − 1, then ar = a(b − nq) = ab − naq ≡ 1 (mod n), thus, there exists r ∈ Z×

n such
that ar ≡ 1 (mod n).

Therefore, for n ⩾ 2, ∣∣Z×
n

∣∣ = φ(n).

Example 1.89. Note that Z12 = ⟨1⟩ with |1| = 12. Let a := 1.

For ma ∈ Z12, ⟨ma⟩ = ⟨a⟩ if and only if gcd(m, |a|) = 1

⇐⇒ For m ∈ Z12, ⟨m⟩ = ⟨1⟩ if and only if gcd(m, 12) = 1.

Such m’s are 1, 5, 7, 11, and so

⟨1⟩ = ⟨5⟩ = ⟨7⟩ = ⟨11⟩ = Z12.

Starting with b := 2, where |b| = |2| = |2a| = 12
gcd(2,12) = 6,

⟨2⟩ = {0, 2, 4, 6, 8, 10}.

We characterize all subgroups of ⟨2⟩.

For mb ∈ {0, 2, 4, 6, 8, 10} = ⟨b⟩, ⟨mb⟩ = ⟨b⟩ if and only if gcd(m, |b|) = 1

⇐⇒ For 2m ∈ {0, 2, 4, 6, 8, 10} = ⟨2⟩, ⟨2m⟩ = ⟨2⟩ if and only if gcd(m, 6) = 1

⇐⇒ For m ∈ {0, 1, 2, 3, 4, 5} = ⟨2⟩, ⟨2m⟩ = ⟨2⟩ if and only if gcd(m, 6) = 1.

Such m’s are 1, 5, and so

⟨10⟩ = ⟨5b⟩ = ⟨b⟩ = ⟨2⟩ = {0, 2, 4, 6, 8, 10}

Similarly, with c := 4, where |c| = |4| = |4a| = 12
gcd(4,12) = 3, we have that

⟨8⟩ = ⟨2c⟩ = ⟨c⟩ = ⟨4⟩ = {0, 4, 8},

for d := 6, where |d| = |6| = |6a| = 12
gcd(6,12) = 2, we have that

⟨6⟩ = {0, 6}.

Thus, we find all “descendants” of ⟨2⟩. For e := 3, where |e| = |3| = |3a| = 12
gcd(3,12) = 4, we have

that
⟨9⟩ = ⟨3e⟩ = ⟨e⟩ = {0, 3, 6, 9}.

The subgroup diagram for these subgroups of Z12 is given in the following:
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⟨1⟩

⟨2⟩ ⟨3⟩

⟨4⟩ ⟨6⟩

⟨0⟩

Figure 1.4

Proposition 1.90. Let G = ⟨a⟩ be a cyclic group with |a| = n. For m ∈ N such that m | n, there
is a unique subgroup H ⩽ G of order m. This subgroup is H = ⟨an/m⟩.

Proof. By Theorem 1.86,
∣∣⟨an/m⟩

∣∣ =
∣∣an/m∣∣ = n

gcd(n/m,n) = n
n/m = m. Let H ⩽ G such that

|H| = m. Then H = ⟨ai⟩ for some i ∈ Z (e.g, i = min{j ∈ N | aj ∈ H} by the proof of
Theorem 1.72). Then m = |H| =

∣∣ai∣∣ = n
gcd(i,n) by Theorem 1.86, so n

m = gcd(i, n), and thus n
m | i.

Hence ai ∈ ⟨an/m⟩, and so H ⩽ ⟨an/m⟩. Also, |H| = m =
∣∣⟨an/m⟩

∣∣, so H = ⟨an/m⟩.

Theorem 1.91. Let G = ⟨a⟩ be a cyclic group with |a| = n. Then ⟨as⟩ = ⟨at⟩ if and only if
gcd(s, n) = gcd(t, n).

Proof. Note that

⟨as⟩ = ⟨at⟩ ⇐⇒ |as| =
∣∣at∣∣

⇐⇒ n

gcd(s, n)
=

n

gcd(t, n)

⇐⇒ gcd(s, n) = gcd(t, n),

where the first equivalence follows from proposition 1.90 and the second equivalence follows from
Theorem 1.86.

Example 1.92. In Example 1.89, with 2 = 2a and 10 = 10a, we have that gcd(2, 12) = 2 =
gcd(10, 12), and so ⟨2⟩ = ⟨2a⟩ = ⟨10a⟩ = ⟨10⟩.
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Chapter 2

Permutations, Cosets and Direct
Product

2.1 Permutations and Dihedral groups

Let A be a nonempty set.

Definition 2.1. A permutation of A is a bijective function ϕ : A! A. Define the set SA by

SA := {permutations of A}.

Proposition 2.2. (SA, ◦) is a group.

Proof. Let σ, τ ∈ SA. Then σ : A ! A and τ : A ! A are functions, and so we can write
στ := σ ◦ τ as A

τ
−! A

σ
−! A. Since compositions of bijective functions are bijective, we have that

σ ◦ τ ∈ SA. Hence (SA, ◦) is a binary structure. Note that the function composition is associative.
Let idA : A ! A be the identity map. Then idA acts as the identity element of SA. The function
inverse σ−1 serves as inverse of σ under ◦ since σ ◦ σ−1 = idA = σ−1 ◦ σ.

Definition 2.3. We call the permutation composition ◦ in SA the permutation multiplication.

Definition 2.4. SA is called the symmetric group on A. In particular, when n ∈ N and A =
{1, . . . , n}, the symmetric group on A is denoted by Sn, the symmetric group of degree n.

Proposition 2.5. |Sn| = n! = n(n− 1) · · · (2)(1).

Proof. Let σ ∈ Sn. We can define σ(1) = i for i = 1, . . . , n (n choices), then σ(2) ∈ {1, . . . , n}∖ {i}
(n − 1 choices). In general, σ(i) has n − i + 1 choices for i = 1, . . . , n. Thus, there are n(n −
1) · · · (n− (n− 1) + 1)(n− n+ 1) = n(n− 1) · · · (2)(1) = n! elements in Sn.

Notation 2.6. Let A = {1, 2, 3, 4, 5}. For σ ∈ SA such that σ(1) = 4, σ(2) = 2, σ(3) = 5, σ(4) = 3,
and σ(5) = 1, we use

σ =

(
1 2 3 4 5
4 2 5 3 1

)
29
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to denote it. Let

τ =

(
1 2 3 4 5
3 5 4 2 1

)
.

Then

στ =

(
1 2 3 4 5
4 2 5 3 1

)(
1 2 3 4 5
3 5 4 2 1

)
=

(
1 2 3 4 5
5 1 3 2 4

)
.

For example, multiplying in right-to-left order,

(στ)(1) = σ(τ(1)) = σ(3) = 5.

Proposition 2.7. If |A| = |B|, then SA
∼= SB .

Proof. Since |A| = |B|, there exists a bijection f : A! B. Define a map ϕ by

ϕ : SA −! SB

σ 7−! f ◦ σ ◦ f−1.

For σ ∈ SA, since B
f−1

−−! A
σ
−! A

f
−! B is a composition of bijective functions, we have that

f ◦ σ ◦ f−1 : B ! B is a bijection and then a permutation of B. So ϕ is well-defined. Define a map
ϕ−1 : SB ! SA by

ϕ−1 : SB −! SA

τ 7−! f−1 ◦ τ ◦ f.

Note that

ϕ ◦ ϕ−1(τ) = ϕ(ϕ−1(τ)) = ϕ(f−1 ◦ τ ◦ f) = f ◦ (f−1 ◦ τ ◦ f) ◦ f−1 = τ,∀τ ∈ SB ,

ϕ−1 ◦ ϕ(σ) = ϕ−1(ϕ(σ)) = ϕ−1(f ◦ σ ◦ f−1) = f−1 ◦ (f ◦ σ ◦ f−1) ◦ f = σ, ∀σ ∈ SA,

so that ϕ ◦ ϕ−1 = idSB
and ϕ−1 ◦ ϕ = idSA

. Hence ϕ is bijective. Also, ϕ is a binary structure
(group) homomorphism since

ϕ(στ) = f ◦ (στ) ◦ f−1 = (f ◦ σ ◦ f−1)(f ◦ τ ◦ f−1) = ϕ(σ)ϕ(τ),∀σ, τ ∈ SA.

Thus, ϕ is an isomorphism.

Example 2.8. For A = {1, 2, 3} and B = {a, b, c} and the function f : A! B defined as f(1) = a,
f(2) = b, and f(3) = c, ϕ maps

σ :=

(
1 2 3
3 2 1

)
into

(
a b c
c b a

)
= f ◦ σ ◦ f−1 =: σ̃,

where, for example, σ̃(a) = f ◦ σ ◦ f−1(a) = f ◦ σ(1) = f(3) = c. Thus, any map in SA becomes a
map in B after renaming the elements of A by elements in B under f . Therefore, we can take Sn

to be a prototype for the symmetric group of finite a set of n elements.

Theorem 2.9. Sn is not abelian for n ∈ Z⩾3.



2.1. PERMUTATIONS AND DIHEDRAL GROUPS 31

Proof. Since (
1 2 3
2 1 3

)(
1 2 3
3 2 1

)
=

(
1 2 3
1 3 2

)
,

but (
1 2 3
3 2 1

)(
1 2 3
2 1 3

)
=

(
1 2 3
1 2 3

)
,

we have that S3 is not abelian. Define a map

ϕ : S3 −! Sn(
1 2 3
m1 m2 m3

)
7−!

(
1 2 3 4 · · · n
m1 m2 m3 4 · · · n

)
Let (

1 2 3
m1 m2 m3

)
,

(
1 2 3
k1 k2 k3

)
∈ S3

be such that (
1 2 3 4 · · · n
m1 m2 m3 4 · · · n

)
=

(
1 2 3 4 · · · n
k1 k2 k3 4 · · · n

)
.

Then m1 = k1, m2 = k2 and m3 = k3, and so(
1 2 3
m1 m2 m3

)
=

(
1 2 3
k1 k2 k3

)
.

This proves that ϕ is 1-1. Let(
1 2 3
m1 m2 m3

)
,

(
1 2 3
k1 k2 k3

)
∈ S3.

Assume that (
1 2 3
m1 m2 m3

)(
1 2 3
k1 k2 k3

)
=

(
1 2 3
x1 x2 x2

)
,

where x1, x2, x3 are determined by m1,m2,m3 and k1, k2, k3. Then

ϕ

((
1 2 3
m1 m2 m3

)(
1 2 3
k1 k2 k3

))
= ϕ

((
1 2 3
x1 x2 x3

))
=

(
1 2 3 4 · · · n
x1 x2 x3 4 · · · n

)
=

(
1 2 3 4 · · · n
k1 k2 k3 4 · · · n

)(
1 2 3 4 · · · n
x1 x2 x3 4 · · · n

)
= ϕ

(
1 2 3
m1 m2 m3

)
ϕ

(
1 2 3
k1 k2 k3

)
.

Thus, ϕ : S3 ! Sn is an injective binary structure homomorphism. Also, restricting the codomain
of ϕ we have that S3 ! Im(φ) is onto, so S3

∼= Im(φ). Since S3 is not abelian and the binary
structure isomorphism preserves the commutativity, we have that the permutation multiplication
on ϕ(S3) is not commutative. Therefore, Sn is not abelian as ϕ(S3) ⊆ Sn.
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Remark. We utilized the fact that if ϕ is a binary structure homomorphism, then Im(ϕ) is a binary
structure. In fact, we will prove soon that Im(ϕ) ⩽ Sn, so that S3 ! Im(φ) is a group isomorphism.
Thus, we regard S3 a subset (subgroup) of Sn. For comparison, we regard R a subset (subfield) of
R2 since R is isomorphic to any line in the plane R2: for k, b ∈ R,

φ : R −! R2,

r 7−! (r, kr + b),

where Im(φ) ∼= R is the line y = kx+ b in R2, and for c ∈ R,

ψ : R −! R2,

r 7−! (c, r),

where Im(ψ) ∼= R is the line x = c in R2.

Notation 2.10. We use the following to denote elements of S3.

ρ0 =

(
1 2 3
1 2 3

)
ρ1 =

(
1 2 3
2 3 1

)
ρ2 =

(
1 2 3
3 1 2

)

1 2

3

rotatation of 0 radians

counterclockwise

3 1

2

rotatation of π/3 radians

counterclockwise

2 3

1

rotatation of 2π/3

counterclockwise

and

µ0 =

(
1 2 3
1 3 2

)
µ1 =

(
1 2 3
3 2 1

)
µ2 =

(
1 2 3
2 1 3

)

1 3

2

reflection on the line through

1 and the center of the 3-gon

3 2

1

reflection on the line through

2 and the center of the 3-gon

2 1

3

reflection on the line through

3 and the center of the 3-gon.

Definition 2.11. For n ∈ Z⩾3, the nth dihedral group Dn, is the set of symmetries of a regular
n-gon, which includes rotations and reflections.
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Example 2.12. Using ρi for rotations, µi for mirror images in perpendicular bisectors of sides,
and δi for diagonal flips.

1 2

34

µ1

µ2

δ1 δ2

Figure 2.1

ρ0 =

(
1 2 3 4
1 2 3 4

)
, ρ1 =

(
1 2 3 4
2 3 4 1

)
, ρ2 =

(
1 2 3 4
3 4 1 2

)
, ρ3 =

(
1 2 3 4
4 1 2 3

)
,

µ1 =

(
1 2 3 4
2 1 4 3

)
, µ2 =

(
1 2 3 4
4 3 2 1

)
, δ1 =

(
1 2 3 4
3 2 1 4

)
, δ2 =

(
1 2 3 4
1 4 3 2

)
.

Fact 2.13. From for example the table for D4, we get the subgroup diagram of D4.

D4

{ρ0, ρ2, µ1, µ2} {ρ0, ρ1, ρ2, ρ3} {ρ0, ρ2, δ1, δ2}

{ρ0, µ1} {ρ0, µ2} {ρ0, ρ2} {ρ0, δ1} {ρ0, δ2}

{ρ0}

Figure 2.2
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2.2 Cayley’s Theorem

Lemma 2.14. Let G and G′ be groups and ϕ : G ! G′ 1-1 such that ϕ(xy) = ϕ(x)ϕ(y). Then
Im(ϕ) ⩽ G′ and G ∼= Im(ϕ).

Proof. Let x′, y′ ∈ Im(ϕ). Then there exist x, y ∈ G such that ϕ(x) = x′ and ϕ(y) = y′. Then
x′y′ = ϕ(x)ϕ(y) = ϕ(xy) ∈ Im(ϕ). So Im(ϕ) is closed under the operation · of G′. Let e′ be
the identity element of G′. Then e′ϕ(e) = ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e). Cancellation in G′ shows
that e′ = ϕ(e) ∈ Im(ϕ). Since e′ = ϕ(e) = ϕ(xx−1) = ϕ(x)ϕ(x−1) = x′ϕ(x−1), we have that
x′−1 = ϕ(x−1) ∈ Im(ϕ). Thus, Im(ϕ) ⩽ G′. Restricting the codomain of φ, we get a bijection
φ : G ! Im(ϕ) because ϕ is 1-1. Also, φ is a binary structure (group) homomorphism since
ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G.

Theorem 2.15 (Cayley’s Theorem). If G is a group, then G is isomorphic to a group of permu-
tation.

Proof. Let x ∈ G. Define λx : G ! G by g 7! xg. Similar to the proof of Proposition 1.39, λx is
bijective and so λx ∈ SG. Define a map ϕ by

ϕ : G −! SG

x 7−! λx.

Let x, y ∈ G be such that ϕ(x) = ϕ(y). Then λx = λy, and so x = xe = λx(e) = λy(e) = ye = y.
Hence ϕ is 1-1. Let x, y ∈ G. Then

ϕ(xy)(g) = λxy(g) = (xy)g = x(yg) = λx(yg) = λx(λyg) = λxλy(g) = ϕ(x)ϕ(y)(g),∀g ∈ G,

and so ϕ(xy) = ϕ(x)(y). Thus, by Lemma 2.14,

G ∼= Im(ϕ) = {λx | x ∈ G} ⩽ SG.

Definition 2.16. The map G ! SG by x 7! λx is the left regular representation of G. The map
G! SG by x 7! ρx is the right regular representation of G, where ρx : G! G is given by g 7! gx.

Example 2.17. Given a group table

Table 2.1

e a b

e e a b

a a b e

b b e a

we have that

λe =

(
e a b
e a b

)
, λa =

(
e a b
a b e

)
, λb =

(
e a b
b e a

)
.



2.3. OBITS, CYCLE AND ALTERNATING GROUPS 35

The group table of the group {λe, λa, λb} is

Table 2.2

λe λa λb

λe λe λa λb

λa λa λb λe

λb λb λe λa

The table for this representation is just like the original table with x renamed λx.

2.3 Obits, Cycle and Alternating Groups

Definition 2.18 (equivalence relation (1)). Let σ ∈ SA. For a, b ∈ A, we write a ∼σ b if b = σn(a)
for some n ∈ Z.

Remark. The equivalence relation (1) is an indeed an equivalence relation. Let a, b, c ∈ A.

(Reflexive) Clearly a ∼σ a since a = idA(a) = σ0(a) and idA ∈ SA.

(Symmetric) If a ∼σ b, then b = σn(a) for some n ∈ Z. But then a = σ−n(b) with −n ∈ Z, and so
b ∼ a.

(Transitive) Assume that a ∼σ b and b ∼σ c, then b = σn(a) and c = σm(b) for some n,m ∈ Z.
Note that c = σm(b) = σm(σn(a)) = σm+n(a) with m+ n ∈ Z, so a ∼σ c.

Definition 2.19. Let σ ∈ SA. The equivalence classes in A determined by the equivalence relation
(1) are the orbits of σ.

Example 2.20. The orbits of idA are the one-element subsets of A, i.e., for any a ∈ A, the cell
a = {a} is an orbit.

Example 2.21. Consider the permutation

σ =

(
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
∈ S8.

Note that

σ−1 =

(
1 2 3 4 5 6 7 8
6 8 1 5 7 3 4 2

)
.

To find the orbit 1, we apply σ repeatedly, obtaining symbolically

1 3 6 1 6 3 1.σ σ σ σ−1 σ−1 σ−1

Hence 1 = {1, 3, 6} = 3 = 6. Similarly, 2̄ = {2, 8} = 8 and 4 = {4, 5, 7} = 5 = 7.

2 8 2 8 2σ σ σ−1 σ−1
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4 7 5 4 5 7 4.σ σ σ σ−1 σ−1 σ−1

Thus, the complete list of orbits of σ is

{1, 3, 6}, {2, 8}, {4, 5, 7}.

Definition 2.22. For an orbit i of σ ∈ Sn, defines

µσ
i (x) =

{
σ(x) if x ∈ i,
x otherwise.

Example 2.23. In Example 2.21, the orbit 1 corresponds to the permutation

µσ
1 =

(
1 2 3 4 5 6 7 8
3 2 6 4 5 1 7 8

)
∈ S8.

The complete list of orbits of µσ
1 is

{1, 3, 6}, {2}, {4}, {5}, {7}, {8}.

Similarly, the complete list of orbits of µσ
2 and µσ

4 are, respectively,

{2, 8}, {1}, {3}, {4}, {5}, {6}, {7}.

and
{4, 5, 7}, {1}, {2}, {3}, {6}, {8}.

Definition 2.24. σ ∈ Sn is a cycle if it has at most one orbit containing more than one element.
The length of a cycle is the number of elements in its largest orbit.

Example 2.25. In Example 2.23, µσ
1 , µ

σ
2 , and µ

σ
4 are cycles.

Definition 2.26 (cyclic notation). For a cycle σ ∈ Sn, we use (a1 a2 · · · am−1 am) to denote
the permutation which sends ai to ai+1 for i = 1, . . . ,m − 1 and sends am to a1, while fixing any
b ∈ {1, . . . , n}∖ {a1, . . . , am}. In particular, we use (1) to denote the id{1,...,n}.

Example 2.27.

(1 3 5 4) =

(
1 2 3 4 5
3 2 5 1 4

)
Observe that with different starting numbers,

(1 3 5 4) = (3 5 4 1) = (5 4 3 1) = (4 1 3 5).

Remark. Use the cyclic notation, it is easy to see that the map ϕ in the proof of Theorem 2.9 is
an injective homomorphism:

ϕ : S3 ↪−! Sn

(1) −! (1)

(1, 2) −! (1, 2)

(1, 3) −! (1, 3)

(2, 3) −! (2, 3)

(1, 2, 3) −! (1, 2, 3)

(1, 3, 2) −! (1, 3, 2).
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Definition 2.28. Two cycles of Sn are called disjoint if they have no numbers in common.

Example 2.29. In Example 2.21,

σ =

(
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
= (1 3 6)(2 8)(4 7 5) = µσ

1µ
σ
2µ

σ
4 .

Reading in right-to-left order, 4 is sent to 7 (7 is sent to 7, and 7 is sent to 7).

Theorem 2.30. Each σ ∈ Sn is a product of disjoint cycles. The representation is unique up to
the order of the factors.

Proof. Let a1, · · · , ar be the orbits of σ. Then σ = µσ
a1

· · ·µσ
ar
. Since the orbits (equivalence classes)

a1, · · · , ar forms a partition of {1, . . . , n}, we have that the cycles µσ
a1
, . . . , µσ

ar
are disjoint. The

second statement is straightforward.

Example 2.31.

σ =

(
1 2 3 4 5 6
6 5 2 4 3 1

)
= (1 6)(2 5 3)= (2 5 3)(1 6)︸ ︷︷ ︸

rarely used

.

Example 2.32 (cycles are not disjoint).

(1 4 5 6)(2 1 5) =

(
1 2 3 4 5 6
6 4 3 5 2 1

)
and

(2 1 5)(1 4 5 6) =

(
1 2 3 4 5 6
4 1 3 2 6 5

)
̸= (1 4 5 6)(2 1 5).

Neither of these permutations is a cycle.

Definition 2.33. A cycle of length 2 in Sn is a transposition.

Proposition 2.34. Let n ⩾ 2. Then any σ ∈ Sn is a product of transpositions.

Proof. For (1) ∈ Sn, (1) = (1 2)(2 1). Let (a1 a2 · · · am) ∈ Sn. Then

(a1 a2 · · · am) = (a1 am)(a1 am−1) · · · (a1 a3) (a1 a2).

For a1, it is sent to a2 by the last transposition, and a2 is fixed by the remainingm−2 transpositions,
so a1 is sent to a2. For a2, it is sent to a1 by the last transposition, then a1 is sent to a3 by the
second to last transposition, and a3 is fixed by the remaining m − 3 transpositions. Then the
statement follows from induction.

Remark. Naively, this corollary just states that any rearrangement of n objects can be achieved
by successively interchanging pairs of them.

Example 2.35. We have that σ := (1 6)(2 5 3) = (1 6)(2 3)(2 5) by the proof of Proposition 2.34.

Theorem 2.36. Let σ ∈ Sn. If τ1, . . . , τk, γ1, . . . , γℓ are transpositions in Sn such that τ1 . . . τk =
σ = γ1 · · · γℓ, then (−1)k = (−1)ℓ, i.e., the parity of the number of factors of any σ is well-defined.
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Proof. Refer to the proof 1 from textbook.

Definition 2.37. A permutation of a finite set is even or odd according to whether it can be
expressed as a product of an even number of transpositions or the product of an odd number of
transpositions, respectively.

Example 2.38. Since

σ := (1 4 5 6)(2 1 5) = (1 6)(1 5)(1 4)(2 5)(2 1),

we have that σ is an odd permutation.

Definition 2.39. Let n ∈ Z⩾2. Let An be the set of even permutations in Sn and Bn the set of
odd permutations.

Proposition 2.40. Let n ∈ Z⩾2. |An| = |Bn| = n!/2.

Proof. Let τ = (1 2) ∈ Sn. Define a function λτ |An,Bn
from λτ : Sn ! Sn by

λτ |An!Bn : An −! Bn

σ 7−! τσ.

For σ ∈ An, σ can be expressed as a product of a even number of transpositions, then τσ = (1 2)σ is
add, so τσ ∈ Bn, and hence λτ is well-defined. We have that λτ is 1-1, so λτ |An,Bn

is 1-1. Let ρ ∈ Bn.
Then τ−1ρ = (1 2)ρ ∈ An and λτ |An,Bn

(τ−1ρ) = τ(τ−1ρ) = ρ. So λτ |An,Bn
is onto. Thus, λτ |An,Bn

is a bijection, and so |An| = |Bn|. Also, An ⊔Bn = Sn, hence |An| = |Bn| = |Sn|/2 = n!/2.

Lemma 2.41. Let

σ = τ1 · · · τk = (a1,1 a1,2 · · · a1,t1−1 a1,t1) · · · (ak,1 ak,2 · · · ak,tk−1 ak,tk).

Then

σ−1 = τ−1
k · · · τ−1

1 = (ak,1 ak,tk · · · ak,2) · · · (a1,1 a1,t1 · · · a1,2).

Hence σ and σ−1 have the same parity.

Example 2.42. If σ = (1 2 4 3 )(6 7) = (1 3)(1 4)(1 2)(6 7), then

σ−1 = (6 7)−1(1 2 4 3 )−1 = (6 7)(1 3 4 2) = (1 3 4 2)(6 7) = (1 2)(1 4)(1 3)(6 7).

Theorem 2.43. Let n ⩾ 2. Then An ⩽ Sn.

Proof. Let σ1, σ2 ∈ An. Then σ1σ2 is even, and so σ1σ2 ∈ An. Since id{1,...,n} = (1 2)(1 2),
id{1,...,n} is even, and then id{1,...,n} ∈ An. Let σ ∈ An. Then σ−1 ∈ An by Lemma 2.41. Hence
An ⩽ Sn by subgroup test.

Definition 2.44. Let n ⩾ 2. An is the alternating group on n letters.
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2.4 Cosets and the theorem of lagrange

Definition 2.45. Let H ⩽ G. Define the relation ∼L on G by a ∼L b if a−1b ∈ H. Define the
relation ∼R on G by a ∼R b if ab−1 ∈ H.

Theorem 2.46. ∼L and ∼R are both equivalence relations on G.

Proof. We prove that ∼L is an equivalence relation on G. Let a, b, c ∈ G.

(Relexive) We have that a−1a = e ∈ H since H ⩽ G. Hence a ∼L a.

(Symmetric) Let a ∼L b. Then a−1b ∈ H. Then b−1a = (a−1b)−1 ∈ H since H ⩽ G. Hence
b ∼L a.

(Transitive) Let a ∼L b and b ∼L c. Then a
−1b ∈ H and b−1c ∈ H. Hence a−1c = (a−1b)(b−1c) ∈

H since H ⩽ G, and so a ∼L c.

Remark. Let H ⩽ G. The equivalence relation ∼L defines a partition of G, as described in
Theorem 0.25. For a ∈ G,

a = {x ∈ G | a ∼L x}
= {x ∈ G | a−1x ∈ H}
= {x ∈ G | a−1x = h for some h ∈ H}
= {x ∈ G | x = ah for some h ∈ H}
= {ah | h ∈ H}
=: aH.

Similarly, the equivalence relation ∼R defines a partition of G: for a ∈ G,

a = Ha := {ha | h ∈ H}.

Theorem 2.47. Let H ⩽ G. Then for a ∈ G, |aH| = H = |Ha|.

Proof. We have a well-defined injective map

λa|H : H −! G

h 7−! ah.

Since Im(λa|H) = {ah | h ∈ H} = aH, we have that |H| = |aH|.

Remark. aH ⩽ G if and only if a = 1 since only the cell 1 = H contains 1.

Definition 2.48. Let H ⩽ G. Let the subset aH = {ah | h ∈ H} of G be the left coset of H
containing a, and

G//H := {aH | a ∈ G}.

Let the subset Ha = {ha | h ∈ H} of G be the right coset of H containing a, and

G\\H := {Ha | a ∈ G}.
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Remark. Let H ⩽ G. Since 1H = H = H1, H is always a left and right coset (containing 1).
If G is abelian, then aH = Ha for any a ∈ G. So the partition of G into left cosets G//H of H

and the partition into right cosets G\\H are the same.

Example 2.49. Recall Example 0.20. For 3Z ⩽ Z, we have that Z//3Z = {3Z, 1 + 3Z, 2 + 3Z},
and they form a partition of Z into left cosets of 3Z. Since Z is abelian, we have that Z\\3Z =
{3Z, 3Z+ 1, 3Z+ 2} = Z//3Z.

Let n ∈ Z⩾2. Then nZ ⩽ Z, and Z//nZ = {a | a ∈ Z} with

a = {x ∈ Z | a ∼L x}
= {x ∈ Z | a ∼R x}
= {x ∈ Z | a+ (−x) ∈ nZ}
= {x ∈ Z | a− x ∈ nZ}
= {x ∈ Z | n | (a− x)}
= {x ∈ Z | a ≡ x (mod n)}.

Thus, the partition of Z into cosets of nZ is the partition of Z into residue class modulo n. For
that reason, we often refer to the cells of this partition Z//nZ as cosets modulo nZ. We have that

Z//nZ = {0, 1, . . . , n− 1}.

Example 2.50. The group Z6 is abelian and H := {0, 3} ⩽ Z6. Find Z6//H. One coset is H
itself. The coset containing 1 is 1 + {0, 3} = {1, 4}. The coset containing 2 is 2 + {0, 3} = {2, 5}.
Note that 0 = H, 1 = 1 +H, and 2 = 2 +H are all cosets of H.

Remark. We will see a corollary, says that if G is abelian and H ⩽ G, then the cosets of H forms
a group G/H under the binary operation (aH)(bH) = (ab)H or ab = ab. For example, nZ ⩽ Z
with n ⩾ 2, then the cosets of nZ form the group Z/nZ under the operation a+ b = a+ b.

Example 2.51. S3 is not abelian. Let H := ⟨µ1⟩ = {ρ0, µ1} = {(1), (2 3)} ⩽ S3. Then

ρ1H = {ρ1ρ0, ρ1µ1} = {ρ1, (1 2 3)(2 3)} = {ρ1, (1 2)} = {ρ1, µ3},

ρ2H = {ρ2ρ0, ρ2µ1} = {ρ2, (1 3 2)(2 3)} = {ρ2, (1 3)} = {ρ2, µ2}.
All right cosets of H are H,

Hρ1 = {ρ0ρ1, µ1ρ1} = {ρ1, (2 3)(1 2 3)} = {ρ1, (1 3)} = {ρ1, µ2} ≠ ρ1H,

Hρ2 = {ρ0ρ2, µ1ρ2} = {ρ2, (2 3)(1 3 2)} = {ρ2, (1 2)} = {ρ2, µ3} ≠ ρ2H.

Consider the set of left cosets S3//H := {H, ρ1H, ρ2H} = {1, ρ1, ρ2}. We try to define a map

ϕ : S3//H × S3//H −! S3//H

(a, b) 7−! ab.

Note that

ρ1ρ2 = ρ1ρ2 = (ρ1ρ2)H = {ρ1ρ2ρ0, ρ1ρ2µ1} = {(1 2 3)(1 3 2), (1 2 3)(1 3 2)(2 3)} = {(1), (2 3)},
µ3µ2 = µ3µ2 = (µ3µ2)H = {µ3µ2ρ0, µ3µ2µ1} = {(1 2)(1 3), (1 2)(1 3)(2 3)} = {(1 3 2), (1 3)}.

Since (ρ1, ρ2) = (µ3, µ2) but ρ1ρ2 ̸= µ3µ2, we have that ϕ is not well-defined. Thus, S3//H is not
a group under ab = ab. An alternative proof for this result is from S3//H ̸= S3\\H.
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Theorem 2.52 (Lagrange’s Theorem). Let |G| <∞ and H ⩽ G. Then |H|
∣∣ |G|.

Proof. Since |G| <∞, we have that |G//H| <∞. Without loss of generality, assume that G//H =
{a1H, . . . , arH}. Then a1H, · · · , arH are mutually disjoint and their union is G. By Theorem 2.47,
we have that

|G| =
r∑

i=1

|aiH| =
r∑

i=1

|H| = r|H|.

Thus, |H|
∣∣ |G|.

Corollary 2.53. If G is a group of |G| = p with p prime, then G is cyclic.

Proof. Let a ∈ G∖ {1}. Then {1, a} ⊆ ⟨a⟩, and so |⟨a⟩| ⩾ 2. Since |a| ⩽ G, we have that |⟨a⟩|
∣∣ p

by Theorem 2.52. Hence |⟨a⟩| = p = |G|, and so G = ⟨a⟩.

Corollary 2.54. If G is a group of |G| = p with p prime, then G ∼= Zp.

Proof. It follows from Theorem 1.83(b) and Corollary 2.53.

Remark. This says that there is only one group structure, up to isomorphism, of a given prime
order p.

Corollary 2.55. Let |G| <∞ and a ∈ G. Then |a|
∣∣ |G|.

Proof. It follows from |a| = |⟨a⟩| and Theorem 2.52.

Corollary 2.56. Let |G| <∞ and H ⩽ G. Then

|G//H| = |G|
|H|

.

Definition 2.57. Let H ⩽ G. Define the index [G : H] of H in G by

[G : H] = |G//H|.

Remark. [G : H] = |G\\H|.

Theorem 2.58. Let |G| <∞ and H ⩽ G. Then

[G : H] =
|G|
|H|

.

Theorem 2.59. Let K ⩽ H ⩽ G. Then

[G : K] = [G : H][H : K].

Proof. The proof that [G : H] and [H : K] are finite is left as an exercise.
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2.5 Direct product and finitely generated abelian groups

Notation 2.60. The Cartesian product is denoted by either S1 × · · · × Sn or by
∏n

i=1 Si.

Theorem 2.61. Let G1, . . . , Gn be groups. Then
∏n

i=1Gi is a group under componentwise multi-
plication.

Proof. Let (a1, . . . , an), (b1, . . . , bn) ∈
∏n

i=1Gi. Then for i = 1, . . . , n, ai, bi ∈ Gi, and so aibi ∈ Gi

since Gi is a group. Hence (a1, . . . , an), (b1, . . . , bn) = (a1b1, . . . , anbn) ∈
∏n

i=1Gi.
The associative law in

∏n
i=1Gi follows from the associative law of G1, . . . , Gn. Check that

(e1, . . . , en) is the identity of
∏n

i=1Gi if ei is the identity of Gi for i = 1, . . . , n. Finally, the inverse
of (a1, . . . , an) ∈

∏n
i=1Gi is (a

−1
1 , . . . , a−1

n ).

Remark. If each Gi is additive, then we often use
⊕n

i=1Gi or G1 ⊕ · · · ⊕Gn in place of
∏n

i=1Gi.

Fact 2.62. Let G1, . . . , Gn be groups. Then∣∣∣∣∣
n∏

i=1

Gi

∣∣∣∣∣ =
n∏

i=1

|Gi|.

Theorem 2.63. Let G,G′ be groups. Then we have a group isomorphism

G×G′ ∼=−! G′ ×G

(a, a′) 7−! (a′, a).

Theorem 2.64. Let G1, . . . , Gn be groups and Hi ⩽ Gi for i = 1, . . . , n. Then

H1 × · · · ×Hn ⩽ G1 × · · · ×Gn.

Proof. By Theorem 2.61, H1 × · · · × Hn is a group under ·. It is straightforward to see that
H1 × · · · ×Hn ⊆ G1 × · · ·Gn. By definition of the subgroups, H1 × · · · ×Hn ⩽ G1 × · · · ×Gn.

Definition 2.65. Let n ∈ Z⩾2, and r1, . . . , rn ∈ Z ∖ {0}.

(a) We say b ∈ Z is a common multiple of r1, . . . , rn if ri | b for i = 1, . . . , n.

(b) The least common multiple of r1, . . . , rn is the smallest positive common multiples, denoted by
lcm(r1, . . . , rn).

Theorem 2.66. Let G1, . . . , Gn be groups. Let (a1, . . . , an) ∈
∏n

i=1Gi be such that |ai| <∞ in Gi

for i = 1, . . . , n. Then
|(a1, . . . , an)| = lcm(|a1|, . . . , |an|).

Proof. For i = 1, . . . , n, since |ai|
∣∣ lcm(|a1|, . . . , |an|), we have that a

lcm(|a1|,...,|an|)
i = 1 by Proposi-

tion 1.85. Then

(a1, . . . , an)
lcm(|a1|,...,|an|) = (a

lcm(|a1|,...,|an|)
1 , . . . , alcm(|a1|,...,|an|)

n ) = (e1, . . . , en).

Hence |(a1, . . . , an)| ⩽ lcm(|a1|, . . . , |an|) by the minimality of |(a1, . . . , an)|.
Suppose that there is an s ∈ N with s < lcm(|a1|, . . . , |an|) such that (a1, . . . , an)

s = (e1, . . . , en).
Then (as1, . . . , a

s
n) = (e1, . . . , en). Then for i = 1, . . . , n, |ai| | s by Proposition 1.85. Hence s ⩾

lcm(|a1|, . . . , |an|), contradicting s < lcm(|a1|, . . . , |an|). Thus, |(a1, . . . , an)| ⩾ lcm(|a1|, . . . , |an|).
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Example 2.67. (a) The order of (1, 1) in the group Z2×Z3 is lcm(2, 3) = 2(3) = 6 since the order
of 1 in Z2 is 2 and the order of 1 in Z3 is 3, because Z2 = ⟨1⟩ and Z3 = ⟨1⟩.

(b) The order of (1, 1, 1) in the group Z3 × Z4 × Z35 is

lcm(|1|, |1|, |1|) = lcm(3, 4, 35) = 3(4)(35) = 420.

(c) The order of (8, 4, 10) in the group Z12 × Z60 × Z24 is

lcm(|8|, |4|, |10|) = lcm

(
12

gcd(8, 12)
,

60

gcd(4, 60)
,

24

gcd(10, 24)

)
= lcm(3, 15, 12) = 60.

by Theorem 1.86.

Theorem 2.68. The group Zm × Zn
∼= Zmn if and only if gcd(m,n) = 1.

Proof. =⇒ Suppose that gcd(m,n) ̸= 1. Let (a, b) ∈ Zm × Zn with a ∈ Zm and b ∈ Zn. Then
|a|

∣∣ m and |b|
∣∣ n by Corollary 2.55. Then lcm(m,n)(a, b) = (lcm(m,n)a, lcm(m,n)b) = (0, 0) by

Proposition 1.85. Sice (0, 0) is the identity of Zm × Zn, we have that every element of Zm × Zn

has order at most lcm(m,n), but lcm(m,n) < mn. Thus, Zm × Zn is not cyclic, contradicting
Zm × Zn

∼= Zmn.
⇐= Let gcd(m,n) = 1. Then by Theorem 2.66, |(1, 1)| = lcm(|1|, |1|) = lcm(m,n) = mn. So

Zm × Zn = ⟨(1, 1)⟩ is cyclic. Thus, Zm × Zn
∼= Zmn by Theorem 1.83(b).

Example 2.69. (a) Z2 × Z3
∼= Z6.

(b) |Z3 × Z3| = |Z3| × |Z3| = 3(3) = 9, and Z3 × Z3 ̸∼= Z9.

Corollary 2.70. The group
∏n

i=1 Zmi
∼= Zm1···mn

if and only if gcd(mi,mj) = 1 for all i, j with
i ̸= j.

Example 2.71. (a) Z2 × Z3 × Z5
∼= Z30.

(b) Z2 × Z32
∼= Z18.

(c) Z2 × Z3 × Z3 ̸∼= Z18 since gcd(3, 3) ̸= 1.

Corollary 2.72. Assume that n ∈ Z⩾2 and n = (p1)
n1 · · · (pr)nr such that p1, . . . , pr are different

primes and n1, . . . , nr ∈ N, then

Zn
∼= Z(p1)n1 × · · · × Z(pr)nr .

Example 2.73. Z72
∼= Z8 × Z9.

Example 2.74. The group Z×Z2 is generated by (1, 0) and (0, 1) because (n, 0) = n(1, 0) for any
n ∈ Z and (m, 1) = m(1, 0) + (0, 1) for any m ∈ Z. We write that Z× Z2 = ⟨(1, 0), (0, 1)⟩.

Definition 2.75. Let G1, . . . , Gn be groups. For i = 1, . . . , n, define a subgroup Gi of
∏n

i=1Gi by

Gi = {(e1, . . . , ei−1, ai, ei+1, . . . , en) | ai ∈ Gi}.

We consider
∏n

i=1Gi to be the internal direct product of these subgroups Gi, and
∏n

i=1Gi is called
the external direct product of the groups Gi.
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Remark. We shall usually omit the words external and internal and just say direct product.

Proposition 2.76. We have a natural (group) isomorphism

Gi

∼=−! Gi

(e1, . . . , ei−1, ai, ei+1, . . . , en) 7−! ai.

Definition 2.77. Let G be a group and A ⊆ G. Define the subgroup of G generated by A by

⟨A⟩ = {ar11 · · · arnn | n ∈ N, ai ∈ A, ri ∈ Z}.

If G = ⟨a1, . . . , ak⟩ for some k ∈ N and a1, . . . , ak ∈ G, then G is finitely generated (by a1, . . . , ak).

Remark. If G is finite, then G is finitely generated as G = ⟨G⟩.

Definition 2.78. Let m ∈ Z⩾0. Then Zm is the free abelian group of rank m.

Remark. (a) By convention, Z0 = {0}.

(b) If m ∈ N, then Zm = ⟨e1, . . . , er⟩, where ei ∈ Zm with ei,j = δij =

{
1 if i = j
0 otherwise

. For

example, Z2 = ⟨(1, 0), (0, 1)⟩ with e1 = (1, 0) and e2 = (0, 1), where e1,1 = δ11 = 1, e12 = δ12 = 0
and e2,1 = δ11 = 1, e22 = δ22 = 0.

Theorem 2.79 (Fundamental Theorem of Finitely Generated Abelian Groups). Let G be a finitely
generated abelian group, then

G ∼= Zm × Zp
r1
1

× · · · × Zprn
n

for some m ∈ Z⩾0 and n ∈ N, p1, . . . , pn primes and r1, . . . , rn ∈ Z⩾0. The direct product is unique
except for possible rearrangement of the factors. The number m is the Betti number of G.

Proof. We omit the proof of existence. The uniqueness follows from Theorem 2.63.

Remark. If G = {1}, then since Z1 = {0},

G = {1} ∼= {0} ∼= {0} × {0} = Z0 × Z1 = Z0 × Zp0
1
.

Example 2.80. Find all abelian groups, up to isomorphism, of order 360.
Since |G| = 360 <∞, we have that the Betti number m of G is 0. Then G ∼= Zp

r1
1

× · · · × Zprn
n

for some n ∈ N, p1, . . . , pn primes and r1, . . . , rn ∈ Z⩾0 such that pr11 · · · prnn = 360. Note that
360 = 23325. Hence we get as possibilities

Z2 × Z2 × Z2 × Z3 × Z3 × Z5,

Z2 × Z4 × Z3 × Z3 × Z5,

Z8 × Z3 × Z3 × Z5,

Z2 × Z2 × Z2 × Z9 × Z5,

Z2 × Z4 × Z9 × Z5,

Z8 × Z9 × Z5.

Thus, there are 6 different abelian groups (up to isomorphism) of order 360.
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Definition 2.81. A group G is decomposable if G = H ×K with {1} ⪇ H,K ⪇ G. Otherwise G
is indecomposable.

Theorem 2.82. Let G be a finite abelian group. Then G is indecomposable if and only if G ∼= Zpr

for some p prime and r ∈ Z⩾0.

Proof. =⇒ Since G is finite and abelian, we have that G ∼= Zp
r1
1

× · · · × Zprn
n

for some n ∈ N,
p1, . . . , pn primes and r1, . . . , rn ∈ Z⩾0. Since G is indecomposable, n = 1.

⇐= Let {1} ⪇ H ⪇ G. Since G is cyclic, we have that H is cyclic by Theorem 1.72. Since
|H|

∣∣ |G| by Theorem 2.52 and |G| = pr, we have that |H| = pi for some i ∈ N with i < r.
Hence H ∼= Zpi by Theorem 1.83(b). Suppose that Zpr ∼= Zpi × Zpj with i, j ∈ N and i + j = r.
Without loss of generality, assume i ⩽ j. Let (a, b) ∈ Zpi × Zpj . Then pj(a, b) = (pja, pjb) =
(pj−i(pia), pjb) = (0, 0) by Corollary 2.55. So every element in Zpi × Zpj would have an order at
most pj < pi+j = pr, contradicting Zpi × Zpj

∼= Zpr .

Theorem 2.83. Let G be a finite abelian group. If m
∣∣ |G|, then there exists an H ⩽ G of |H| = m.

Proof. By Theorem 2.79, G ∼= Zp
r1
1

× · · · ×Zprn
n

for some n ∈ N, p1, . . . , pn primes and r1, . . . , rn ∈
Z⩾0. Since |G| = pr11 · · · prnn and m

∣∣ |G|, we have that m = ps11 · · · psnn with 0 ⩽ si ⩽ ri. For

i = 1, . . . , n, in the cyclic group Zp
ri
i
, |1| = prii , so

∣∣⟨pri−si
i ⟩

∣∣ = ∣∣pri−si
i

∣∣ = p
ri
i

gcd(p
ri−si
i ,p

ri
i )

= psii by

Theorem 1.86. Let
H := ⟨pr1−s1

1 ⟩ × · · · × ⟨prn−sn
n ⟩.

Then |H| =
∣∣⟨pr1−s1

1 ⟩
∣∣ · · · ∣∣⟨prn−sn

1 ⟩
∣∣ = ps11 · · · psnn = m. For i = 1, . . . , n, ⟨pri−si

i ⟩ ⩽ Zp
ri
i

since

pri−si
i ∈ Zp

ri
i
. Thus, H ⩽ G by Theorem 2.64.

Theorem 2.84. Let G be an abelian group of |G| = m such that m ∈ N is square free, then G is
cyclic.

Proof. By Theorem 2.79, G ∼= Zp
r1
1

× · · · ×Zprn
n

for some n ∈ Z, p1, . . . , pn primes and r1, . . . , rn ∈
Z⩾0. Then m = pr11 · · · prnn . Since m is square free, ri = 1 for all i, and p1, . . . , pn are distinct.
Thus, G ∼= Zp1 × · · · × Zpn

∼= Zp1···pn by Corollary 2.70.
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Chapter 3

Homomorphisms and Quotient
Groups

3.1 Homomorphisms

Definition 3.1. Let ϕ : G ! G′ be a map of groups. ϕ is a group homomorphism if ϕ(ab) =
ϕ(a)ϕ(b) for all a, b ∈ G.

Remark. If ϕ(a) = 1G′ for all a ∈ G, then ϕ is the trivial group homomorphism.

Example 3.2. Let ϕ : G! G′ be a surjective group homomorphism. If G is abelian, then G′ is also
abelian since one can show that if ϕ : ⟨S, ∗⟩ ! ⟨T, ⋆⟩ be a surjective binary structure homomorphism
and ∗ is commutative, then ⋆ is also commutative.

Example 3.3. Let ϕ : Sn ! Z2 be defined by ϕ(σ) = 0 if σ ∈ An and ϕ(σ) = 1 if σ ∈ Bn. Let
σ, µ ∈ Sn.

(a) If σ, µ ∈ An, then σµ ∈ An, so ϕ(σµ) = 0 = 0 +2 0 = ϕ(σ) + ϕ(µ).

(b) If σ, µ ∈ Bn, then σµ ∈ An, so ϕ(σµ) = 0 = 1 +2 1 = ϕ(σ) + ϕ(µ).

(c) If σ ∈ An and µ ∈ Bn, then σµ ∈ Bn, so ϕ(σµ) = 1 = 0 +2 1 = ϕ(σ) + ϕ(µ).

(d) If σ ∈ Bn and µ ∈ An, then σµ ∈ Bn, so ϕ(σµ) = 1 = 1 +2 0 = ϕ(σ) + ϕ(µ).

Thus, ϕ is a group homomorphism.

Example 3.4. Let F := ⟨{f : R ! R},+⟩. Then F is a group. Let c ∈ R and ϕc : F ! R be
the valuation map defined by ϕc(f) = f(c). Then ϕc is a group homomorphism since ϕc(f + g) =
(f + g)(c) = f(c) + g(c) = ϕc(f) + ϕc(g) for all f, g ∈ F .

Example 3.5. Let A ∈ Matm×n(R). Let ϕ : Rn ! Rm be defined by ϕ(v) = Av. Then ϕ is a
group homomorphism since ϕ(v +w) = A(v +w) = Av +Aw = ϕ(v) + ϕ(w) for all v,w ∈ Rn.

Example 3.6. Let det : ⟨GLn(R), ·⟩ ! ⟨R∗, ·⟩. Then det is a group homomorphism since
det(AB) = det(A) det(B) for all A,B ∈ GLn(R).

47
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Homomorphisms of a group G into itself are often useful for studying the structure of G.

Example 3.7. Let r ∈ Z and ϕr : Z ! Z be define by ϕr(n) = rn. Then ϕr is a group homomor-
phism since ϕr(m + n) = r(m + n) = rm + rn = ϕr(m) + ϕr(n) for all m,n ∈ Z. Note that ϕ0 is
the trivial group homomorphism, ϕ1 = idZ, and ϕr is onto if and only if r = ±1.

Example 3.8. Let G1, . . . , Gn be groups. For i = 1, . . . , n, the projection map πi : G1×· · ·×Gn !
Gi defined by πi(a1, . . . , an) = ai is a group homomorphism since

πi((a1, . . . , an)(b1, . . . , bn)) = πi(a1b1, . . . , anbn) = aibi = πi(a1, . . . , an)πi(b1, . . . , bn)

for all (a1, . . . , an), (b1, . . . , bn) ∈ G1 × · · · ×Gn.

Example 3.9. Let F = ⟨C[0, 1],+⟩, where C[0, 1] = {f : [0, 1] ! R | f is continuous}. Then F is a

group. Let ϕ : F ! R be defined by ϕ(f) =
∫ 1

0
f(x)dx. Then ϕ is a group homomorphism, for

ϕ(f + g) =

∫ 1

0

(f + g)(x)dx =

∫ 1

0

(f(x) + g(x))dx =

∫ 1

0

f(x)dx+

∫ 1

0

g(x)dx = ϕ(f) + ϕ(g),

for all f, g ∈ F .

Example 3.10. Let n ∈ N and ϕ : Z ! Zn be given by ϕ(m) = r, where m = nq + r for some
q, r ∈ Z such that 0 ⩽ r ⩽ n − 1 by division algorithm. Let s, t ∈ Z. Then s = q1n + r1 and
t = q2n + r2, where qi, ri ∈ Z such that 0 ⩽ ri ⩽ n − 1 for i = 1, 2. Write r1 + r2 = q3n + r3 for
some q3, r3 ∈ Z such that 0 ⩽ r3 ⩽ n− 1 by division algorithm. Then s+ t = (q1 + q2 + q3)n+ r3,
so that ϕ(s+ t) = r3 = r1 +n r2 = ϕ(r1) +n ϕ(r2). Thus, ϕ is a group homomorphism.

Proposition 3.11. If ϕ : G ! G′ and φ : G′ ! G′′ are group homomorphisms, then φ ◦ ϕ is a
group homomorphism.

Definition 3.12. Let ϕ : X ! Y and B ⊆ Y . The inverse image of B in X is

ϕ−1(B) = {x ∈ X | ϕ(x) ∈ B}.

Fact 3.13. Let ϕ : X ! Y and B ⊆ Y . Then x ∈ ϕ−1(B) if and only if ϕ(x) ∈ B. In particular,
for b ∈ Y , x ∈ ϕ−1({b}) if and only if ϕ(x) = b.

Theorem 3.14. Let ϕ : G! G′ be a group homomorphism.

(a) ϕ(1) = 1G′ .

(b) ϕ(a−1) = ϕ(a)−1 for all a ∈ G.

(c) If H ⩽ G, then ϕ(H) ⩽ G′.

(d) If K ′ ⩽ G′, then ϕ−1(K ′) ⩽ G.

Proof. (a) It follows from Theorem 1.21.

(b) For a ∈ G, 1G′ = ϕ(1) = ϕ(aa−1) = ϕ(a)ϕ(a−1) since ϕ is a group homomorphism. Hence
ϕ(a−1) = ϕ(a)−1.
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(c) Let ϕ(a), ϕ(b) ∈ ϕ(H) with a, b ∈ H. Since H ⩽ G, we have that ab ∈ H. Also, since ϕ is a
group homomorphism, we have that ϕ(a)ϕ(b) = ϕ(ab) ∈ ϕ(H). Since H ⩽ H, 1 ∈ H. Then by (a),
1G′ = ϕ(1) ∈ ϕ(H). Since H ⩽ G, a−1 ∈ H. Then by (b), ϕ(a)−1 = ϕ(a−1) ∈ ϕ(H).

(d) Let a, b ∈ ϕ−1(K ′). Then ϕ(a), ϕ(b) ∈ K ′. Since ϕ is a group homomorphism, we have that
ϕ(ab) = ϕ(a)ϕ(b) ∈ K ′ as K ′ ⩽ G. Hence ab ∈ ϕ−1(K ′) by Fact 3.13. By (a), ϕ(1) = 1G′ ∈ K ′ since
K ′ ⩽ G′. Hence 1 ∈ ϕ−1(K ′) by Fact 3.13. By (b), ϕ(a−1) = ϕ(a)−1 ∈ K ′ since ϕ(a) ∈ K ′ ⩽ G.
Hence a−1 ∈ ϕ(K−1) by Fact 3.13.

Definition 3.15. Let ϕ : G! G′ be a group homomorphism. The kernel of ϕ is

Ker(ϕ) = ϕ−1({1G′}) = {a ∈ G | ϕ(a) = 1G′}.

Remark. By Theorem 3.14(d), Ker(ϕ) ⩽ G.

Example 3.16. In Example 3.5, Ker(ϕ) is the null space of A.

Theorem 3.17. Let ϕ : G! G′ be a group homomorphism and H = Ker(ϕ). Then for a ∈ G,

ϕ−1({ϕ(a)}) = {x ∈ G | ϕ(x) = ϕ(a)} = aH = Ha.

Consequently, G//H = G\\H.

Proof. The first equality follows from Fact 3.13. Note that for a ∈ G,

{x ∈ G | ϕ(x) = ϕ(a)} = {x ∈ G | ϕ(a)−1ϕ(x) = 1G′}
= {x ∈ G | ϕ(a−1)ϕ(x) = 1G′}
= {x ∈ G | ϕ(a−1x) = 1G′}
= {x ∈ G | a−1x ∈ ϕ−1({1G′})}
= {x ∈ G | a−1x ∈ Ker(ϕ)}
= {x ∈ G | a−1x ∈ H}
= aH.

where the second equality follows from Theorem 3.14(b), the third equality follows from that ϕ is
a group homomorphism, the fourth equality follows from Fact 3.13, and the last equality follows
from the remark after Theorem 2.46.

Example 3.18. Let |·| : C∗ ! R>0 be given by |z| =
√
zz. Then |·| is a group homomorphism,

and Ker(|·|) = {z ∈ C
∣∣ |z| = 1} = S1, which is the unit circle in the complex plane. The cosets of

S1 are of the form

z′S1 = z′{z ∈ C
∣∣ |z| = 1} = {z′z | z ∈ C and |z| = 1} = {z ∈ C

∣∣ |z| = |z′|},

i.e., the cosets of S1 are circles with center at the origin.

Example 3.19. Let D := ⟨D(R),+⟩, where D(R) = {f : R ! R | f is differentiable}. Let
F = ⟨{f : R ! R},+⟩. Then D,F are groups. Let ϕ : D ! F be defined by ϕ(f) = f ′. Then ϕ is
a group homomorphism since ϕ(f + g) = (f + g)′ = f ′ + g′ = ϕ(f) + ϕ(g) for all f, g ∈ F .

Note that Ker(ϕ) = {f ∈ D | f ′ = 0} = {f : R ! R | f is constant} := C. Then the set of
functions in D mapped to x2 is

ϕ−1({x2}) = ϕ−1({ϕ(x3/3)}) = x3/3 + C.
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Corollary 3.20. Let ϕ : G ! G′ be a group homomorphism. Then ϕ is 1-1 if and only if
Ker(ϕ) = {1}.

Proof.
ϕ is 1-1 ⇐⇒ for a ∈ G, ϕ(a) = 1G′ if and only if a = 1 ⇐⇒ Ker(ϕ) = {1}.

Remark. Let H ⩽ G. We will see that if gH = Hg for all g ∈ G, then G//H forms a group under
(aH)(bH) = (ab)H, and then we write (G//H, ·) as G/H. Let ϕ : G ! G′ be a group homomor-
phism and H := Ker(ϕ). Then G/H is a group, and there is a natural group homomorphism

ϕ : G −! G/H

a 7−! aH.

Definition 3.21. H is a normal subgroup of G, written as H ⊴G, if H ⩽ G, and gH = Hg for all
g ∈ G.

Corollary 3.22. If ϕ : G! G′ is a group homomorphism, then Ker(ϕ)⊴G.

Proof. It follows from Theorem 3.17.

Remark. For a group homomorphism ϕ : G ! G′, Ker(ϕ) and Im(ϕ) are two primary important
things. We will show in the next setion that there is a well-defined isomorphism

G/Ker(ϕ)
∼=−! Im(ϕ)

a 7−! ϕ(a).

3.2 Factor groups

Definition 3.23. Let ϕ : G ! G′ be a group homomorphism with H = Ker(ϕ). Then the cosets
of H form a factor group, G/H := {aH | a ∈ G}, where (aH)(bH) = (ab)H or ab = ab.

Remark. We will prove the binary operation is well-defined in Theorem 3.26, i.e., the coset mul-
tiplication is independent of the choices a and b from the cosets.

Example 3.24. Let n ∈ N. Define a map

ϕ : Z −! Zn

m 7−! r,

where m = nq + r for some q, r ∈ Z such that 0 ⩽ r ⩽ n − 1 by division algorithm. Then ϕ is a
homomorphism by Example 3.10, with

Ker(ϕ) = {m ∈ G | ϕ(m) = 0} = {nm | m ∈ Z} = nZ.

Hence Z/nZ is a factor group.

Example 3.25. In Z/5Z, (2+5Z)+(4+5Z) = (2+4)+5Z = 6+5Z = 1+5Z. Note that 27 ∈ 2 =
2+ 5Z and −16 ∈ 4 = 4+ 5Z (or because 2 ≡ 27 (mod 5) and 4 ≡ −16 (mod 5) by Example 2.49),
but (27+ 5Z) + (−16+ 5Z) = (27− 16) + 5Z = 11+ 5Z = 1+ 5Z, or 27+−16 = 27− 16 = 11 = 1.
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Remark. In the factor group Z/nZ,

a+ nZ = b+ nZ ⇐⇒ a ≡ b (mod n)

⇐⇒ a− b ∈ nZ
⇐⇒ n | (a− b)

⇐⇒ n | (b− a).

We prove that the coset multiplication is independent of the choices a and b from the cosets of
H when H ⊴G.

Theorem 3.26. Let H ⩽ G. Then left coset multiplication is well-defined by the equation (aH)(bH) =
(ab)H if and only if H ⊴G.

Proof. =⇒ Let a ∈ G. We claim that aH = Ha. “⊆”. Let x ∈ aH. Choose representatives
x ∈ aH and a−1 = a−11 = a−1H, we have that (xH)(a−1H) = (xa−1)H. On the other hand,
choosing representatives a ∈ aH and a−1 ∈ a−1H, we see that (aH)(a−1H) = 1H = H. Using our
assumption that left coset multiplication by representatives is well-defined, we must have xa−1 = H
and so xa−1 = h for some h ∈ H. Then x = ha ∈ Ha. Hence aH ⊆ Ha. “⊇” is left as an exercise.
Thus, H ⊴G.

⇐= Assume that H ⊴ G. Suppose we wish to compute (aH)(bH). Due to our hypothesis, we
can simply say cosets, omitting left and right. Choosing a ∈ aH and b ∈ bH, we obtain the coset
(ab)H. Choosing different representatives ah1 ∈ aH and bh2 ∈ bH with h1, h2 ∈ H, we obtain the
coset (ah1bh2)H. We need to show that (ab)H = (ah1bh2)H. Now h1b ∈ Hb = bH, so h1b = bh3
for some h3 ∈ H. Thus,

ah1bh2 = a(h1b)h2 = a(bh3)h2 = (ab)(h3h2) ∈ (ab)H.

Corollary 3.27. Let H ⊴G. Then the cosets of H form a group G/H under the binary operation
(aH)(bH) = (ab)H.

Proof. By definition, the operation is closed. The associativity in G/H follows from associativity
in G. Because (aH)(1H) = (a1)H = aH = (1a)H = (1H)(aH), we see that 1H = H is the identity
element in G/H. Finally, (a−1H)(aH) = (a−1a)H = 1H = (aa−1)H = (aH)(a−1H) shows that
a−1H = (aH)−1.

Remark. Let H ⊴G. Then (aH)−1 = a−1H for aH ∈ G/H.

Definition 3.28. Let H ⊴G. Then G/H is the factor group (or quotient group) of G by H.

Example 3.29. Since Z is an abelian group, nZ ⊴ Z. Then Z/nZ is a factor group, and we will
see Z/nZ ∼= Zn from Example 3.33.

Theorem 3.30. Let H ⊴G. Then we have a surjective homomorphism

γ : G −! G/H

a 7−! aH

with Ker(γ) = H.
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Proof. Let a, b ∈ G. Then

γ(ab) = (ab)H = (aH)(bH) = γ(a)ϕ(b).

Note that
Ker(γ) = {a ∈ G | γ(a) = H} = {a ∈ G | aH = H} = H.

Proposition 3.31. We have the following.

(a) Let H ⩽ G. Then aH = bH if and only if a−1b ∈ H if and only if b−1a ∈ H.

(b) Let H ⊴G. Then aH = bH if and only if ab−1 ∈ H if and only if ba−1 ∈ H.

Proof. (a) =⇒ If aH = bH, then ah1 = bh2 for some h1, h2 ∈ H, so a−1b = h1h
−1
2 ∈ H because

H ⩽ G.

⇐= If a−1b ∈ H, then a−1b = h for some h ∈ H, so b = ah ∈ aH, and hence aH = bH.

(b) The proof is similar to the proof of (a) with the condition that Ha = aH for each a ∈ G when
H ⊴G.

Remark. Let H ⩽ G and a ∈ G. Then aH = H if and only if a−1 ∈ H if and only if a ∈ H.

Theorem 3.32 (The Fundamental Homomorphism Theorem). Let ϕ : G ! G′ be a group homo-
morphism with H = Ker(ϕ). Then we have a natural group isomorphism

µ : G/H
∼=−! Im(ϕ)

aH 7−! ϕ(a).

Let γ : G ! G/H be the natural group homomorphism given by γ(a) = aH, then the following
diagram commutes:

G Im(ϕ)

G/H

ϕ

γ µ

i.e., ϕ = µγ, i.e., ϕ(a) = µγ(a) for each a ∈ G.

Proof. Let aH = bH ∈ G/H. Then a−1b ∈ H = Ker(ϕ) by proposition 3.31(a). Since ϕ is a group
homomorphism, we that 1G′ = ϕ(a−1b) = ϕ(a−1)ϕ(b) = ϕ(a)−1ϕ(b). Then ϕ(a) = ϕ(b). Hence µ is
well-defined. Let aH, bH ∈ G/H. Then

µ((aH)(bH)) = µ((ab)H) = ϕ(ab) = ϕ(a)ϕ(b) = µ(aH)µ(bH),

and so µ is a group homomorphism. Note that

Ker(µ) = {aH ∈ G/H | µ(aH) = 1G′}
= {aH ∈ G/H | ϕ(a) = 1G′}
= {aH ∈ G/H | a ∈ Ker(ϕ)}
= {aH ∈ G/H | a ∈ H}
= {H}
= {1G/H}.

The ontoness of µ is straightforward. At last, for a ∈ G, µγ(a) = µ(aH) = ϕ(a).
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Example 3.33. In Example 3.24, since ϕ is surjective, we have an isomorphism

µ : Z/nZ
∼=−! Zn

m+ nZ 7−! ϕ(m) = m (mod n).

m (mod n) is the remainder of m divided by n, For example, when n = 5, µ(19) = µ(19 + 5Z) =
ϕ(19) = 19 (mod 5) = 4, since 19 = 3(5) + 4.

Example 3.34. Classify the group (Z4 × Z2)/({0} × Z2). We have a projection map

ϕ : Z4 × Z2 −! Z4

(x, y) 7−! x.

Then ϕ is a surjective group homomorphism with

Ker(ϕ) = {(x, y) ∈ Z4 × Z2 | ϕ(x, y) = 0} = {(x, y) ∈ Z4 × Z2 | x = 0} = {0} × Z2.

Hence (Z4 × Z2)/({0} × Z2) ∼= Z4.

Theorem 3.35. Let G,G′ be groups. We have a group isomorphism

µ : (G×G′)/G′ ∼=−! G

(a, a′)G′ 7−! a,

where G′ = {1} ×G′ = {(1, a′) | a′ ∈ G′}. Similarly, (G×G′)/G
∼=−! G′ in a natural way.

Proof. We have a surjective group homomorphism (projection map)

ϕ : G×G′ −! G

(a, a′) 7−! a

with

Ker(ϕ) = {(a, a′) ∈ G×G′ | ϕ(a, a′) = 1} = {(a, a′) ∈ G×G′ | a = 1} = {1} ×G′.

Hence (G×G′)/({1} ×G′) ∼= G by Theorem 3.32.

Lemma 3.36. Let H ⩽ G. Then for g ∈ G,

gH = Hg ⇐⇒ gHg−1 = H.

Also,
gHg−1 ⊆ H,∀g ∈ G⇐⇒ H ⊆ gHg−1,∀g ∈ G.

Proof. Note that for g ∈ G,

gH = Hg ⇐⇒ {gh | h ∈ H} = {hg | h ∈ H}
⇐⇒ {gh | h ∈ H}g−1 = {hg | h ∈ H}g−1

⇐⇒ {ghg−1 | h ∈ H} = {hgg−1 | h ∈ H}
⇐⇒ {ghg−1 | h ∈ H} = {h | h ∈ H}
⇐⇒ gHg−1 = H.
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Also,

gHg−1 ⊆ H,∀g ∈ G⇐⇒ {ghg−1 | h ∈ H} ⊆ {h | h ∈ H},∀g ∈ G

⇐⇒ g−1{ghg−1 | h ∈ H}g ⊆ g−1{h | h ∈ H}g,∀g ∈ G

⇐⇒ {g−1ghg−1g | h ∈ H} ⊆ {g−1hg | h ∈ H},∀g ∈ G

⇐⇒ H ⊆ {g−1hg | h ∈ H},∀g ∈ G

⇐⇒ H ⊆ {ghg−1 | h ∈ H},∀g ∈ G

⇐⇒ H ⊆ gHg−1,∀g ∈ G,

where all the equivalences holds for a fixed g ∈ G except for the fifth one.

Remark. The following are direct results of Lemma 3.36.

gH = Hg, ∀g ∈ G⇐⇒ gHg−1 = H,∀g ∈ G

⇐⇒ gHg−1 ⊆ H,∀g ∈ G

⇐⇒ H ⊆ gHg−1,∀g ∈ G.

Theorem 3.37. Let H ⩽ G. The following conditions are equivalent.

(a) H ⊴G.

(b) gH = Hg for all g ∈ G.

(c) gHg−1 = H for all g ∈ G.

(d) gHg−1 ⊆ H for all g ∈ G.

(e) gHg−1 ⊇ H for all g ∈ G.

The condition (c) is often taken as the definition of a normal subgroup H of a group G.

Proof. (a)⇐⇒(b) follows from the original definition of the normal subgroup, i.e., Definition 3.21.
The remaining equivalence follows from Lemma 3.36.

Corollary 3.38. If G is abelian and H ⩽ G, then H ⊴G.

Proof. It follows from that

gHg−1 = {ghg−1 | h ∈ H} = {gg−1h | h ∈ H} = {h | h ∈ H} = H.

Definition 3.39. An isomorphism ϕ : G ! G of a group G with itself is an automorphism of

G. The automorphism ig : G ! G, where ig(x) = gxg−1, is the inner automorphism of G by g.
Performing ig on a is called conjugation of x by g.

Remark. Let H ⩽ G. The equivalence of conditions (b) and (c) in Theorem 3.37 shows that
gH = Hg for all g ∈ G if and only if Im(ig) = H for all g ∈ G, that is, if and only if H is invariant
under all inner automorphisms of G. Thus,

{H | H ⊴G} = {H ⩽ G | ig(H) = H,∀g ∈ G}.

Definition 3.40. Let H,K ⩽ G. Then K is a conjugate subgroup of H if K = ig(H) = gHg−1

for some g ∈ G.

Remark. If H ⊴G, then H is the only conjugate subgroup of H by Theorem 3.37.
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3.3 Factor group computations and simple groups

Example 3.41. N = {0} ⊴ Z since {0} is the trivial subgroup of Z and Z is abelian. Compute
Z/{0}.

Method 1. Since N = {0} has only one element, every coset of N has only one element. That
is, the cosets are of the form {m} for m ∈ Z. Thus, there is a natural (well-defined) bijection

id : Z/{0} −! Z
{m} 7−! m.

Each m ∈ Z is simply renamed {m} in Z/{0}.
Method 2. W have a surjective (and injective) group homomorphism

id : Z −! Z
m 7−! m,

with Ker(id) = {0}. Then by Theorem 3.32,

µ : Z/{0}
∼=−! Z

m+ {0} 7−! m

or {m} 7−! m.

Remark. In general, we have a surjective (and injective) group homomorphism

id : G −! G

g 7−! g,

with Ker(id) = {1}. Then by Theorem 3.32,

µ : G/{1}
∼=−! G

g{1} 7−! g

or {g} 7−! g.

Moreover,

ϕ : G −! G

g 7−! 1,

is a group homomorphism with Ker(ϕ) = G and Im(ϕ) = {1}. Then by Theorem 3.32,

µ : G/G
∼=−! {1}

gG 7−! 1

or G 7−! 1.

This implies that G/G = {G}.

Theorem 3.42. Let |G| <∞ and N ⩽ G. Then N ⊴G is of |G/N | = 2 if and only if |G| = 2|N |.
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Proof. =⇒ Since G/N = {aN | a ∈ G} and |G/N | = 2, we have that G/N = {N, aN} for some
a ∈ G∖N . Since |N | = |aN | and aN ⊔N = G, we have that |G| = 2|N | (and aN = G∖N).

⇐= Note that for all a ∈ G ∖ N , aN ∩ N = ∅, and so aN = G ∖ N since G is finite and
|aN | = |N | = 1

2 |G|. Hence by definition of G/N , |G/N | = 2. Similarly, for all a ∈ G ∖ N ,
Na = G ∖ N = aN . Also, for all a ∈ N , aN = N = Na. Thus, aN = Na for all a ∈ G, and so
N ⊴G.

Example 3.43. Let n ∈ Z⩾2. Because An ⩽ Sn, |Sn| = n! < ∞, and |Sn| = 2|An| by Proposi-
tion 2.40, we see that An ⊴ Sn. Let σ ∈ Bn = Sn ∖ An so that Sn/An = {An, σAn}. Using the
definition of the operation (aAn)(bAn) = (ab)An in Sn/An, we get the following table:

Table 3.1

An σAn

An An σAn

σAn σAn An

Note that (σAn)(σAn) = σ2An = An since σ2 ∈ An. Renaming the element An “even” and the
elements σAn “odd”, the multiplication shown in above table becomes

Table 3.2

even odd

even even odd

even odd even

This example illustrates that while knowing the product of two cosets in G/N does not tell us
what the product of two elements of G is, it may tell us that the product in G of two types of
elements is itself of a certain type.

Example 3.44 (Falsity of the converse of the theorem of Lagrange). |A4| = 1
2 (4!) = 12, and 6 | 12,

but A4 contains no subgroup of 6. Suppose that H ⩽ A4 is of |H| = 6 = 1
2 |A4|. Then H ⊴ A4,

|A4/H| = 2, and A4/H = {H,σH} with σ ∈ A4 ∖H by Theorem 3.42. Since A4/H is a group of
|A4/H| = 2, we have that A4/H ∼= Z2 by Example 1.38(b). Hence A4/H = ⟨σH⟩, and so for each
α ∈ σH, we have that

α2H = (αH)(αH) = (σH)(σH) = 1A4/H = H,

and so α2 ∈ H. For each α ∈ H, we must have (α2H) = (αH)(αH) = HH = H, and so α2 ∈ H.
Thus, for each α ∈ A4, we have that α2 ∈ H. But in A4, we have that (1 2 3) = (1 3 2)2 ∈ H,
(1 3 2) = (1 2 3)2 ∈ H. A similar computation shows that

(1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3) ∈ H.

This shows that |H| ⩾ 8, contradicting |H| = 6.
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Lemma 3.45. Let N ⊴G and g ∈ G. Then (gN)n = gnN for all n ∈ Z.

Proof. Note that G/N is a group since N ⊴G, with gN ∈ G/N . If n = 0, then (gN)0 = N = 1N =
g0N . If n > 0, then (gN)n = gN · · · gN︸ ︷︷ ︸

n times

= gnN . If n < 0, then

(gN)n = (gN)−1 · · · (gN)−1

︸ ︷︷ ︸
−n times

= (g−1N) · · · (g−1N)︸ ︷︷ ︸
−n times

= (g−1N)−n = (g−1)−nN = gnN,

where the fourth equality follows from the discussion of the case n > 0 and the last equality follows
from Corollary 1.48.

Theorem 3.46. Let N ⊴G.

(a) If G is abelian, then so is G/N .

(b) If G = ⟨g1, . . . , gk⟩, then G/N = ⟨g1N, · · · , gkN⟩. In particular, if G is cyclic, then so is G/N .

Proof. (a) For gN, hN ∈ G/N , (gN)(hN) = (gh)N = (hg)N = (hN)(gN), where the second
equality follows from that G is abelian.

(b) Let g ∈ G = ⟨g1, . . . , gk⟩, then g = gn1
1 · · · gnk

k for some n1, . . . , nk ∈ Z by Defintion 2.77. Hence

gN = (gn1
1 · · · gnk

k )N = (gn1
1 N) · · · (gnk

k N) = (g1N)n1 · · · (gkN)nk ∈ ⟨g1N, · · · , gkN⟩,

where the third identity follows from Lemma 3.45.

Example 3.47. Let us compute the factor group (Z4 × Z6)/⟨(0, 1)⟩, where

H := ⟨(0, 1)⟩ = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)} = {0} × Z6 = Z6.

Since |H| = 6, we have that all cosets of H must have 6 elements. Also,

|(Z4 × Z6)/H| = |Z4 × Z6|
|H|

=
|Z4||Z6|

6
=

4(6)

6
= 4.

Method 1. From Proposition 3.31, for (a1, a2) + H, (a′1, a
′
2) + H ∈ Z4 × Z6/H, we know that

(a1, a2)+H ̸= (a′1, a
′
2)+H if and only if −(a1, a2)+(a′1, a

′
2) ̸∈ H if and only if (a′1−a1, a′2−a2) ̸∈ H

if and only if a′1 − a1 ̸= 0 if and only if a′1 ̸= a1. Thus, the cosets of H are

(0, 0) +H, (1, 0) +H, (2, 0) +H, (3, 0) +H.

Method 2. Similar to the proof of Theorem 3.35, we have a surjective group homomorphism,

ϕ : Z4 × Z6 −! Z4

(a1, a2) 7−! a1,

with

Ker(ϕ) = {(a1, a2) ∈ Z4 × Z6 | ϕ(a1, a2) = 0} = {(a1, a2) ∈ Z4 × Z6 | a1 = 0} = {0} × Z6 = H.
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Then by Theorem 3.32, we have a group isomorphism

µ : (Z4 × Z6)/H
∼=−! Z4

(a1, a2) +H 7−! a1,

Since |Z4| = 4, we have that |Z4 × Z6/H| = 4. For each a1 ∈ Z4, we have a corresponding coset
(a1, a2) +H, where a2 ∈ Z6 can be arbitrarily chosen.

Example 3.48. Let us compute the factor group (Z4 × Z6)/⟨(0, 2)⟩, where

H := ⟨(0, 2)⟩ = {(0, 0), (0, 2), (0, 4)} = {0} × {0, 2, 4} = {0} ×K,

where K := {0, 2, 4}⊴ Z6 since Z6 is abelian and K ⩽ Z6.
Method 1. Similar to Example 3.10, there is a surjective group homomorphism,

ϕ : Z4 × Z6 −! Z4 × Z2

(a1, a2) 7−! (a1, a2 (mod 2))

with
Ker(ϕ) = {(a1, a2) ∈ Z4 × Z6 | (a1, a2 (mod 2)) = 0} = {(0, 0), (0, 2), (0, 4)}.

Then by Theorem 3.32, we have a group isomorphism

µ : (Z4 × Z6)/H
∼=−! Z4 × Z2

(a1, a2) +H 7−! (a1, a2 (mod 2)).

Method 2. Since the surjective group homomorphism

φ : Z6 −! Z2

a 7−! a (mod 2)

has Ker(φ) = {0, 2, 4} = K, we have that Z6/K ∼= Z2 by Theorem 3.32. By the following remark,
we have that

(Z4 × Z6)/({0} ×K) ∼= Z4/{0} × Z6/K ∼= Z4 × Z2,

where the fact that if G ∼= G1 and G′ ∼= G′
1, then G×G′ ∼= G1×G′

1, is used in the last isomorphism.

Remark. In fact, if N ⊴G and N ′ ⊴G′, then we have a surjective group homomorphism

ϕ : G×G′ ∼=−! G/N ×G′/N ′

(g, g′) 7−! (gN, g′N ′),

with

Ker(ϕ) = {(g, g′) ∈ G×G′ | (gN, g′N ′) = (N,N ′)}
= {(g, g′) ∈ G×G′ | gN = N and g′N ′ = N ′}
= {(g, g′) ∈ G×G′ | g ∈ N and g′ ∈ N}
= {(g, g′) ∈ N ×N ′}
= N ×N ′.
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Thus, by Theorem 3.32, we have a group isomorphism

µ : (G×G′)/(N ×N ′)
∼=−! G/N ×G′/N ′

(g, g′)(N ×N ′) 7−! (gN, g′N ′).

Summary 3.49. Let m,n ∈ N. Let us compute the factor group Zm × Zn/⟨0, k⟩, where k ∈ Zn.
Note that we have a surjective group homomorphism

φ : Zn −! Zgcd(k,n)

a 7−! a (mod gcd(k, n)).

We claim that Ker(φ) = kZn = ⟨k⟩ = {(ik) (mod n) | i ∈ Z} =: K. The second and third equalities
follows from definitions.

⊆ Let a ∈ Ker(φ). Then a (mod gcd)(k, n) = 0, so a = j gcd(k, n) for some j ∈ N, and hence
a = j(kx + ny) for some x, y ∈ Z by Theorem 1.76. Thus, a = jxk + njy ≡ jxk (mod n). Take
i := jx ∈ Z, since 0 ⩽ a ⩽ n− 1, we have that a = (jxk) (mod n) = (ik) (mod n) ∈ K.

⊇ Let r := (ik) (mod n) ∈ K for some i ∈ Z. Then r ∈ Z with 0 ⩽ r ⩽ n− 1 and there exists
q ∈ Z such that ik = nq + r. Then r = ik − nq. Since gcd(k, n) | k and gcd(k, n) | n, we have that
gcd(k, n) | r. Hence r (mod gcd)(k, n) = 0, and so r ∈ Ker(φ).

Therefore, Zn/K ∼= Zgcd(k,n) by Theorem 3.32. By the above remark, we have that

Zm × Zn/⟨0, k⟩ = (Zm × Zn)/({0} ×K) ∼= Zm/{0} × Zn/K ∼= Zm × Zgcd(k,n).

In particular, if gcd(k, n) = 1, then

Zm × Zn/⟨0, k⟩ ∼= Zm × Zgcd(k,n) = Zm × Z1 = Zm × {0} ∼= Zm.

Example 3.50. Let us compute the factor group (Z4 × Z6)/⟨(2, 3)⟩. Since H := ⟨(2, 3)⟩ =
{(0, 0), (2, 3)}, we have that |((Z4 × Z6)/⟨(2, 3)⟩)| = 24

2 = 12.
Method 1. The possible abelian groups of order 12 are Z4 × Z3 and Z2 × Z2 × Z3. Note that

the element (1, 0) ∈ Z4 × Z3 is of |(1, 0)| = lcm(|1|, |0|) = lcm(4, 1) = 4. We claim that no element
in Z2 × Z2 × Z3 has order 4. Suppose that (a, b, c) ∈ Z2 × Z2 × Z3 is of |(a, b, c)| = 4, then
lcm(|a|, |b|, |c|) = 4, so |a| = 4 or |b| = 4 or |c| = 4, contradicting |a| ⩽ 2, |b| ⩽ 2, and |c| ⩽ 3. Thus,
the claim holds. Note that in (Z4×Z6)/H, by Lemma 3.45, 4((1, 0)+H) = 4(1, 0)+H = (0, 0)+H,
and n((1, 0) +H) = n(1, 0) +H = (n, 0) +H ̸= (0, 0) +H when 1 ⩽ n ⩽ 3. Hence |(1, 0) +H| = 4.

Method 2. Similar to Example 3.10, there is a surjective group homomorphism

ϕ : Z4 × Z6 −! Z4 × Z3

(a1, a2) 7−! ((3a1 + 2a2) (mod 4), a2 (mod 3))

with

Ker(ϕ) = {(a1, a2) ∈ Z4 × Z6 | (3a1 + 2a2) (mod 4), a2 (mod 3)) = (0, 0)} = {(0, 0), (2, 3)} = H.

Then by Theorem 3.32, we have a group isomorphism

µ : (Z4 × Z6)/H
∼=−! Z4 × Z3

(a1, a2) +H 7−! ((3a1 + 2a2) (mod 4), a2 (mod 3)).



60 CHAPTER 3. HOMOMORPHISMS AND QUOTIENT GROUPS

Method 3. It follows from that Z4 ×Z3
∼= Z12 and that we have a surjective group homomorphism

ϕ : Z4 × Z6 −! Z12

(a1, a2) 7−! (3a1 + 2a2) (mod 1)2

with

Ker(ϕ) = {(a1, a2) ∈ Z4 × Z6 | (3a1 + 2a2) (mod 1)2 = (0, 0)} = {(0, 0), (2, 3)} = H.

Remark. Sine Z/nZ ∼= Zn for all n ∈ N, to check ϕ is a group homomorphism, an easy way is to
check the following map is a group homomorphism:

ϕ : Z4 × Z6 −! Z/Z4 × Z/Z3

(a1, a2) 7−! (3a1 + 2a2, a2).

It is straightforward since for (a1, a2), (b1, b2) ∈ Z4 × Z6,

ϕ((a1, a2) + (b1, b2)) = ϕ(a1 + b1, a2 + b2)

= (3(a1 + b1) + 2(a2 + b2), a2 + b2)

= ((3a1 + 2a2) + (3b1 + 2b2), a2 + b2)

= (3a1 + 2a2 + 3b1 + 2b2, a2 + b2)

= (3a1 + 2a2, a2) + (3b1 + 2b2, b2)

= ϕ(a1, a2) + ϕ(b1, b2).

Definition 3.51. A group G is simple if |G| ⩾ 2 and the only normal subgroups of G are {1} and
G.

Theorem 3.52. The alternating group An is simple for n ⩾ 5.

Theorem 3.53. Let ϕ : G ! G′ be a group homomorphism. If N ⊴ G, then ϕ(N) = Im(ϕ|N ) ⊴
Im(ϕ) = ϕ(G). Also, if N ′ ⊴G′, then ϕ−1(N ′)⊴G.

Remark. ϕ(N) may not be a normal subgroup of G′ even though ϕ is a group homomorphism
and N ⊴G. In Example 2.51, we showed that for H = {ρ0, µ1} ⩽ S3, ρ1H ̸= Hρ1. Hence H ⋬ S3.
Consider the map A

ϕ : Z2 −! S3

0 7−! ρ0

1 7−! µ1.

Then ϕ is a group homomorphism. We have Z2 ⊴ Z2, but ϕ(Z2) = H ⋬ S3.

Definition 3.54. M ⊴G is maximal if M ⊊ G and there is no N ⊴G such that M ⊊ N ⊊ G.

Fact 3.55. Let G be a group. Then G is simple if and only if {1}⊴G is maximal.

Lemma 3.56. Let N ⊴G and consider the natural group homomorphism

γ : G −! G/N

g 7−! gN.
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(a) If N ⊆M and M ⊴G is maximal, then γ(M)⊴G/N is maximal.

(b) If X ⊴G/N is maximal, then N ⊆ γ−1(X), and γ−1(X)⊴G is maximal.

Proof. By Theorem 3.53, we just need to prove the maximalities.

Theorem 3.57. M ⊴G is maximal if and only if G/M is simple.

Proof. =⇒ Consider the natural group homomorphism

γ : G −! G/M

g 7−! gM.

Since M ⊆ M and M ⊴ G is maximal, we have that {M} = γ(M) ⊴ G/M is maximal by
Lemma 3.56(a). So G/M is simple by fact 3.55.

⇐= By Fact 3.55, {M} ⊴ G/M is maximal. Then M = γ−1({M}) ⊴ G is maximal by
Lemma 3.56(b).

Example 3.58. nZ⊴ Z is maximal if and only if Z/nZ ∼= Zn is simple if and only if n is prime.

Definition 3.59. Let G be a group. Then the center Z(G) is defined by

Z(G) = {z ∈ G | zg = gz for all g ∈ G}.

Remark. We have that 1 ∈ Z(G). If Z(G) = {1}, we say that the center of G is trivial.

Fact 3.60. Let G be a group. Then G is abelian if and only if Z(G) = G.

Theorem 3.61. Let G1, · · · , Gn be groups. Then

Z(G1 × · · · ×Gn) = Z(G1)× · · · × Z(Gn).

Proof.

(g1, . . . , gn) ∈ Z(G1 × · · · ×Gn) ⇐⇒ (g1, . . . , gn)(h1, . . . , hn) = (h1, . . . , hn)(g1, . . . , gn),

∀(h1, . . . , hn) ∈ G1 × · · · ×Gn

⇐⇒ (g1h1, . . . , gnhn) = (h1g1, . . . , hngn),

∀(h1, . . . , hn) ∈ G1 × · · · ×Gn

⇐⇒ g1h1 = h1g1, · · · , gnhn = hngn,

∀h1 ∈ G1, · · · , hn ∈ Gn

⇐⇒ g1 ∈ Z(G1), · · · , gn ∈ Z(Gn)

⇐⇒ (g1, . . . , gn) ∈ Z(G1)× · · · × Z(Gn).

Hence Z(G1 × · · · ×Gn) = Z(G1)× · · · × Z(Gn).

Corollary 3.62. Let G1, · · · , Gn be groups. Then G1×· · ·×Gn is abelian if and only if G1, . . . , Gn

are abelian.

Theorem 3.63. If G is a nonabelian group of order pq with p, q primes, then Z(G) = {1}.
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Example 3.64. Since S3 is nonabelian of |S3| = 6 = 2(3), we have that Z(S3) = {ρ0}. Conse-
quently,

Z(S3 × Z5) = Z(S3)× Z(Z5) = {ρ0} × Z5
∼= Z5.

Theorem 3.65. Let G be a group. Then Z(G)⊴G and Z(G) is abelian.

Definition 3.66. Let G be a group. An element [a, b] = aba−1b−1 is called a commutator of
a, b ∈ G. Define [G,G] = ⟨[a, b] | a ∈ G, b ∈ G⟩, the commutator subgroup of G.

Proposition 3.67. Let a, b ∈ G. Then [a, b]ba = ab = ba[a−1, b−1].

Theorem 3.68. Let G be a group. Then [G,G]⊴G.

Proof. By definition, [G,G] is a group. Also, since [G,G] ⊆ G, we have that [G,G] ⩽ G. Let
[a, b] ∈ [G,G]. Then for g ∈ G,

g[a, b]g−1 = gaba−1b−1g−1

= gaba−1(g−1b−1bg)b−1g−1

= (gaba−1g−1b−1)(bgb−1g−1)

= ((ga)b(ga)−1b−1)(bgb−1g−1)

= [ga, b][b, g]

∈ [G,G],

since [G,G] is a group and [ga, b], [b, g] ∈ [G,G]. Let x ∈ [G,G] = ⟨[a, b] | a ∈ G and b ∈ G⟩. Then
by Definition 2.77, x = [a1, b1][a2, b2] · · · [an, bn] for some n ∈ N and [ai, bi] ∈ [G,G]. Note that

gxg−1 = g[a1, b1][a2, b2] · · · [an, bn]g−1

= g[a1, b1](g
−1g)[a2, b2](g

−1g) · · · (g−1g)[an, bn]g
−1

= (g[a1, b1]g
−1)(g[a2, b2]g

−1) · · · (g[an, bn]g−1)

∈ [G,G],

since g[ai, bi]g
−1 ∈ [G,G] for all i and [G,G] is a group. Hence g[G,G]g−1 ⊆ [G,G], and so

[G,G]⊴G by Theorem 3.37.

Theorem 3.69. If N ⊴G, then G/N is abelian if and only if [G,G] ⩽ N .

Proof. =⇒ Let [a, b] ∈ [G,G]. Then a, b, a−1, b−1 ∈ G. Since G/N is abelian, (a−1N)(b−1N) =
(b−1N)(a−1N), i.e., (a−1b−1)N = (b−1a−1)N . Hence [a, b] = aba−1b−1 = (b−1a−1)−1(a−1b−1) ∈ N
by Proposition 3.31(a).

⇐= Let aN, bN ∈ G/N . Then

(aN)(bN) = (ab)N = (ba[a−1, b−1])N = (ba)([a−1, b−1]N) = (ba)N = (bN)(aN),

where the the third equality follows from Proposition 3.67 and the fourth equality follows from that
[a−1, b−1] ∈ [G,G] ⊆ N .

Example 3.70. Since ρ1 = [ρ2, µ1] ∈ [S3, S3] and ρ2 = [ρ1, µ1] ∈ [S3, S3], we have that A3 =

{ρ0, ρ1, ρ2} ⊆ [S3, S3]. By Example 3.43, A3 ⊴ S3. But |S3/A3| = |S3|
|A3| = 2, so S3/A3

∼= Z2, and

hence S3/A3 is abelian. Thus, [S3, S3] ⊆ A3 by Theorem 3.69. Therefore, [S3, S3] = A3.
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3.4 Group action on a set

Definition 3.71. Let X be a set and G a group. An action of G on X is a map

∗ : G×X −! X

(g, x) 7−! ∗(g, x) = g ∗ x

such that

(a) 1 ∗ x = x for all x ∈ X,

(b) (g1g2) ∗ x = g1 ∗ (g2 ∗ x) for all x ∈ X and all g1, g2 ∈ G.

Under these conditions, X is a G-set.

Example 3.72. Let X be a set and H ⩽ SX . Consider the map

∗ : H ×X −! X

(σ, x) 7−! σ(x).

Note that

(a) idX ∗x = idX(x) = x for all x ∈ X,

(b) (σ1σ2) ∗ x = (σ1σ2)(x) = σ1(σ2(x)) = σ1 ∗ (σ2 ∗ x) for all x ∈ X and all g1, g2 ∈ G, where the
second equality follows from that permutation multiplications are function compositions.

Thus, X is a H-set.

Theorem 3.73. Let X be a G-set. For each g ∈ G, define

σg : X −! X

x 7−! g ∗ x.

(a) σg ∈ SX for g ∈ G.

(b) The function

ϕ : G −! SX

g 7−! σg

is a group homomorphism with

Ker(ϕ) = {g ∈ G | g ∗ x = x, ∀x ∈ X}.

Proof. (a) For x ∈ X,

(σg−1σg)(x) = σg−1(σg(x)) = g−1 ∗ (g ∗ x) = (g−1g) ∗ x = 1 ∗ x = x = idX(x),

where the third equality follows from that X is a G-set. Hence σg−1 ◦ σg = idX . Interchange the
role of g and g−1 to obtain σg ◦ σg−1 = idX . Thus, σg : X ! X is a bijection and hence σg ∈ SX .
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(b) By (a), σg ∈ SX , so ϕ is well-defined. Let g1, g2 ∈ G. Then for x ∈ X,

ϕ(g1g2)(x) = σg1g2(x) = (g1g2) ∗ x = g1 ∗ (g2 ∗ x) = σg1(σg2(x)) = (σg1σg2)(x) = (ϕ(g1)ϕ(g2))(x),

where the third equality follows from that X is a G-set and the fifth equality folows from that
permutation multiplications are function compositions. Hence ϕ(g1g2) = ϕ(g1)ϕ(g2), and so ϕ is a
group homomorphism.

Ker(ϕ) = {g ∈ G | σg = id} = {g ∈ G | σg(x) = idX(x),∀x ∈ X} = {g ∈ G | g ∗ x = x, ∀x ∈ X}.

Remark. From Theorem 3.73, we have that

∗ : G×X −! X

(g, x) 7−! g ∗ x = σg(x).

So actions of G on X is essentially the action of ϕ(G) on X, where ϕ(G) = {σg | g ∈ G} ⩽ SX .

∗ : ϕ(G)×X −! X

(σg, x) 7−! σg(x).

By Example 3.72, X is also a ϕ(G)-set. When studying the set X, actions using subgroups of SX

suffice. However, sometimes a set X is used to study G via a group action of G on X.

Remark. By Theorem 3.32, with N = Ker(ϕ) we have a group isomorphism

µ : G/N
∼=−! ϕ(G)

gN 7−! σg.

Hence we can regard X as a G/N -set, where

∗ : G/N ×X −! X

(gN, x) 7−! σg(x) = g ∗ x.

Definition 3.74. Let X be a G-set. We say that G acts faithful on X if

{g ∈ G | g ∗ x = x, ∀x ∈ X} = {1}.

We say a group G is transitive on X if for each x1, x2 ∈ X, there exists g ∈ G such that g ∗x1 = x2.

Remark. G acts faithful on X if and only if Ker(ϕ) = {1} in Theorem 3.73.

Proposition 3.75. Let X be a G-set. G is transitive on X if and only if ϕ(G) is transitive on X
in Theorem 3.73.

Example 3.76. G is itself a G-set, where

∗ : G×G −! G

(g1, g2) 7−! g1 ∗ g2 = λg1(g2) = g1g2.

If H ⩽ G, then G is also an H-set, where

∗ : H ×G −! G

(h, g) 7−! hg
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Example 3.77. Let H ⩽ G. Then G is an H-set under conjugation, where

∗ : H ×G −! G

(h, g) 7−! hgh−1.

(a) 1 ∗ g = 1g1−1 = g for all g ∈ G,

(b) For all g ∈ G and all h1, h2 ∈ H,

(h1h2) ∗ g = (h1h2)g(h1h2)
−1 = h1(h2gh

−1
2 )h−1

1 = h1(h2 ∗ g)h−1
1 = h1 ∗ (h2 ∗ g).

Example 3.78. Let V be an F -vector space, where F is R or C. Then V is an F ∗-set, where

∗ : F × V −! V

(r,v) 7−! rv.

It follows from the two axioms

(rs)v = r(sv),∀r, s ∈ F and ∀v ∈ V

and
1v = v,∀v ∈ V.

Example 3.79. Let H ⩽ G. Then G//H is a G-set, where

∗ : G×G//H −! G//H

(g, xH) 7−! (gx)H.

Let (g, xH), (g, yH) be such that (g, xH) = (g, yH). Then xH = yH, so y = xh for some h ∈ H,
and hence

∗(g, yH) = g ∗ (yH) = (gy)H = (gxh)H = (gx)(hH) = (gx)H = g ∗ (xH) = ∗(g, xH).

Thus, the action ∗ is well-defined.

(a) 1 ∗ (xH) = (1x)H = xH for all xH ∈ G//H,

(b) For all xH ∈ G//H and all g1, g2 ∈ G,

(g1g2) ∗ (xH) = (g1g2x)H = (g1(g2x))H = g1 ∗ ((g2x)H) = g1 ∗ (g2 ∗ (xH)).

Example 3.80. Let G be the group D4 = {ρ0, ρ1, ρ2, ρ3, µ1, µ2, δ1, δ2} of symmetries of the square.
In Figure 3.1, we show the square with vertices 1,2,3,4 as in Figure 2.1. We also label the sides
s1, s2, s3, s4, the diagonals d1 and d2, vertical and horizontal axes m1 and m2, the center point C,
and midpoints Pi of the sides si. Recall that ρi corresponds to rotating the square counterclockwise
through πi/2 radians, µi corresponds to flipping on the axis mi, and δi to flipping on the diagonal
di. We let

X = {1, 2, 3, 4, s1, s2, s3, s4,m1,m2, d1, d2, C, P1, P2, P3, P4}.
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Then X can be regarded as a D4-set in a natural way. Table 3.3 describes completely the action
of D4 on X and is given to provide geometric illustrations of ideas to be introduced. We should be
sure that we understand how this table is formed before continuing.

1 2s1

3

s2

4
s3

s4

P1

P3

m1

P4 P2m2

C

d1 d2

Figure 3.1

Table 3.3

1 2 3 4 s1 s2 s3 s4 m1 m2 d1 d2 C P1 P2 P3 P4

ρ0 1 2 3 4 s1 s2 s3 s4 m1 m2 d1 d2 C P1 P2 P3 P4

ρ1 2 3 4 1 s2 s3 s4 s1 m2 m1 d2 d1 C P2 P3 P4 P1

ρ2 3 4 1 2 s3 s4 s1 s2 m1 m2 d1 d2 C P3 P4 P1 P2

ρ3 4 1 2 3 s4 s1 s2 s3 m2 m1 d2 d1 C P4 P1 P2 P3

µ1 2 1 4 3 s1 s4 s3 s2 m1 m2 d2 d1 C P1 P4 P3 P2

µ2 4 3 2 1 s3 s2 s1 s4 m1 m2 d2 d1 C P3 P2 P1 P4

δ1 3 2 1 4 s2 s1 s4 s3 m2 m1 d1 d2 C P2 P1 P4 P3

δ2 1 4 3 2 s4 s3 s2 s1 m2 m1 d1 d2 C P4 P3 P2 P1

Definition 3.81. Let X be a G-set. Let x ∈ X and g ∈ G. Let

Xg = {x ∈ X | g ∗ x = x} and Gx = {g ∈ G | g ∗ x = x}.

Example 3.82. For the D4-set X in Example 3.1, we have

Xρ0
= X, Xρ1

= {C}, Xµ1
= {s1, s3,m1,m2, C, P1, P3}.

Also, with G = D4,

G1 = {ρ0.δ2}, Gs3 = {ρ0, µ1}, Gd1
= {ρ0, ρ2, δ1, δ2}.

Theorem 3.83. Let X be a G-set. Then Gx ⩽ G for each x ∈ X.
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Proof. Let x ∈ X and g1, g2 ∈ Gx. Then g1∗x = x = g2∗x, and (g1g2)∗x = g1∗(g2∗x) = g1∗x = x,
and hence g1g2 ∈ Gx. Thus, Gx is a binary structure. Since 1 ∗ x = x, we have that 1 ∈ Gx. If
g ∈ Gx, then g ∗x =, so g−1 ∗x = g−1 ∗ (g ∗x) = (g−1g)∗x = 1∗x = x, and consequently g−1 ∈ Gx.
Thus, Gx ⩽ G.

Definition 3.84. Let X be a G-set and x ∈ X. The subgroup Gx is the isotropy subgroup of x.

Theorem 3.85. Let X be a G-set. For x1, x2 ∈ X, let x1 ∼ x2 if and only if there exists g ∈ G
such that g ∗ x1 = x2. Then ∼ is an equivalence relation on X.

Proof. (Reflexive) For x ∈ X, we have that 1 ∗ x = x.

(Symmetric) Assume that x1 ∼ x2. Then g ∗ x1 = x2 for some g ∈ G, and so g−1 ∗ x2 =
g−1 ∗ (g ∗ x1) = (g−1g) ∗ x1 = 1 ∗ x1 = x1, and hence x2 ∼ x1.

(Transitive) If x1 ∼ x2 and x2 ∼ x3, then g1 ∗ x1 = x2 and g2 ∗ x2 = x3 for some g1, g2 ∈ G. Then
(g2g1) ∗ x1 = g2(g1 ∗ x1) = g2 ∗ x2 = x3, and so x1 ∼ x3.

Definition 3.86. Let X be a G-set. Each cell in the partition of the equivalence relation described
in Theorem 3.85 is an orbit in X under G. If x ∈ X, the cell x containing x is the orbit of x. We
let this cell be G ∗ x i.e.,

G ∗ x = x = {g ∗ x | g ∈ G}.

The relationship between the orbits in X and the group structure of G lies at the heart of the
applications that appear in next section.

Theorem 3.87. Let X be a G-set and x ∈ X. Then |G ∗ x| = [G : Gx]. If |G| <∞, then |Gx|
∣∣ |G|.

Proof. Define

ϕ : G ∗ x −! G//Gx

g ∗ x 7−! gGx.

Let g ∗ x, h ∗ x ∈ G ∗ x. Then

g ∗ x = h ∗ x⇐⇒ h−1 ∗ (g ∗ x) = h−1 ∗ (h ∗ x)
⇐= h−1g ∗ x = x

⇐⇒ h−1g ∈ Gx

⇐⇒ gGx = hGx.

So ϕ is well-defined and is 1-1. The ontoness is straightforward. Thus, φ is bijective.

Corollary 3.88. Let X be a G-set and x ∈ X. For h ∈ G,

{g ∈ G | g ∗ x = h ∗ x} = hGx.

Proof. By the proof of Theorem 3.87,

g ∗ x = h ∗ x⇐⇒ gGx = hGx ⇐⇒ g ∈ hGx.
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Remark. When h = 1, it is the form of the definition of Gx.

Corollary 3.89. Let X be a G-set and x ∈ X. For y ∈ G ∗ x,

G ∗ y = G ∗ x.

Proof. Note that y = g1 ∗ x for some g1 ∈ G. Then

G ∗ y = {g ∗ y | g ∈ G}
= {g ∗ (g1 ∗ x) | g ∈ G}
= {(gg1) ∗ x | g ∈ G}
= {g ∗ x | g ∈ G}
= G ∗ x,

where the fourth equality follows from that ρg1 : G! G given by g ! gg1 is a bijection.

Example 3.90. Let X be the D4-set in Example 3.80. With G = D4, we have G ∗ 1 = {1, 2, 3, 4}
and G1 = {ρ0, δ2}. Since |G| = 8, we have that |G ∗ 1| = [G : G1] =

|G|
|G1| =

8
2 = 4.

3.5 Application of G-sets to counting

Theorem 3.91 (Burnside’s Formula). Let G be a finite group and X a finite G-set. If r :=
|{G ∗ x | x ∈ X}|, i.e., r is the number of orbits in X under G, then

r · |G| =
∑
g∈G

|Xg|.

Proof. Let
N = |{(g, x) ∈ G×X | g ∗ x = x}|.

Then ∑
g∈G

|Xg| = N =
∑
x∈X

|Gx| =
∑
x∈X

|G|
|G ∗ x|

= |G|
∑
x∈X

1

|G ∗ x|
,

where the third equality follows from Theorem 3.87. Now 1
|G∗x| has the same value for all y in the

same orbit G ∗ x, then ∑
y∈G∗x

1

|G ∗ x|
= 1.

Let x1, . . . , xr be the representatives of the r orbits, then by Corollary 3.89, X =
⊔r

i=1G ∗ xi, i.e.,
X is the disjoint union of the G ∗xi’s. Thus, by splitting the summation over x into r parts, we get∑

g∈G

|Xg| = |G|
∑
x∈X

1

|G ∗ x|
= |G|

r∑
i=1

∑
y∈G∗xi

1

|G ∗ xi|
= |G|

r∑
i=1

1 = r · |G|.

Corollary 3.92. If G is a finite group and X a finite G-set, then

|{G ∗ x | x ∈ X}| = 1

|G|
∑
g∈G

|Xg|.
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Example 3.93. Suppose that we wish to count how many distinguishable ways the six faces of a
cube can be marked with from one to six dots to form a die. Let us distinguish between the faces of
the cube for the moment and call them the bottom(bm), top(tp), left(lt), right(rt), front(ft), and
back(bk). Then the bottom can have any one of six marks from one dot to six dots, the top any
one of the five remaining marks, and so on. There are 6! = 720 ways the cube faces can be marked
in all. We consider X to be the set of these 720 possible ways. Some markings yield the same die
as others, in the sense that one marking can be carried into another by a rotation of the marked
cube.

There are 24 possible positions of a cube on a table, for any one of six faces can be placed down,
and the any one of four to the front, giving 6(4) = 24 possible positions. Let

G =



{bm, ft}, {bm, lt}, {bm, rt}, {bm, bk},
{tp, ft}, {tp, lt}, {tp, rt}, {tp, bk},
{lt, ft}, {lt, bm}, {lt, tp}, {lt, bk},
{rt, ft}, {rt, bm}, {rt, tp}, {rt, bk},
{ft, lt}, {ft, rt}, {ft, bm}, {ft, tp},
{bk, lt}, {bk, rt}, {bk, bm}, {bk, tp}


.

For an element (a, b) in G, the first spot denotes that we put the face a to the bottom and put the
face b to the front. We consider two markings to give the same die if one can be carried into the
other under action by an element of G. For example, we have a marking x that 6 is on the bottom,
2 is toward the font, 3 is on the left, 4 is on the right, 5 is on the back, and 1 is on the top, then
it can be carried into the marking that 1 is on the bottom, 2 is toward the font, 3 is on the left, 4
is on the right, 5 is on the back, and 6 is on the top under {tp, ft}. In other words, we consider
each orbit in X under G to correspond to a single die, and differentiable orbits to give differentiable
dice. We have that |Xg| = 0 for g ∈ G∖ {1}, and |X1| = 720. Thus,

♯ orbits =
1

24
720 = 30.

Example 3.94. How many distinguishable ways can seven people be seated at a round table,
where there is no distinguishable “head” to the table? There are 7! ways ti assign to the different
chairs. A rotation of people achieved by asking each person to move one place to the right results
in the same arrangement. Such a rotation generates a cyclic group G of order 7, which we consider
to act on X in the obvious way. We have that |Xg| = 0 for g ∈ G∖ {1}, and |X1| = 7!. Thus,

♯ orbits =
1

7
7! = 6! = 120.

Example 3.95. Let us find the number of distinguishable ways the edges of an equilateral triangle
can be painted if four different colors of paint are available, assuming only one color is used on each
edge, and the same color may be used on different edges.

There are 43 = 64 ways of painting the edges in all. We consider X to be the set of these 64
possible painted triangles. The group G acting on X is the group symmetries of the triangle, which
is isomorphic to S3, and which we consider to be S3. Note that |Xρ0

| = 64, |Xρ1
| = 4 = |Xρ2

|,
because to be invariant under ρi for i = 1, 2, all edges must be the same color, and there are 4
possible colors. |Xµ1 | = 16 = Xµ2 = Xµ2 , since the edges that are interchanged must be the same
color (4 possibilities) and the other edge may also be any of the colors (times 4 possibilities). Then∑

g∈S3

|Xg| = 64 + 4 + 4 + 16 + 16 + 16 = 120.
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Thus,

♯ orbits =
1

6
120 = 20,

so there are 20 distinguishable triangles.

Example 3.96. We repeat Example 3.95, with the assumption that a different color is used on
each edge. The number of possible ways of painting the edges is then 4(3)(2) = 24, and we let X
be the set of 24 possible painted triangles. Again, the group acting on X can be considered to be
S3. Since all edges are a different color, we see that |Xρ0

| = 24 while |Xg| = 0 for g ∈ S3 ∖ {ρ0}.
Thus,

♯ orbits =
1

6
24 = 4,

so there are four distinguishable triangles.



Chapter 4

Rings and Fields

4.1 Rings and fields

Definition 4.1. A ring ⟨R,+, ·⟩ is a set R together with two binary structures ⟨R,+⟩ and ⟨R, ·⟩
such that the following axioms are satisfied:

(a) R1: ⟨R,+⟩ is an abelian group.

(b) R2: · is associative.

(c) R3: For all a, b, c ∈ R, the left distributive law a · (b + c) = (a · b) + (a · c) and the right
distributive law (a+ b) · c = (a · c) + (b · c) hold.

Example 4.2. ⟨Z,+, ·⟩, ⟨Q,+, ·⟩, ⟨R,+, ·⟩, and ⟨C,+, ·⟩ are rings.

Remark. It is customary to denote multiplication in a ring by juxtaposition, using ab in place
of a · b. We shall also observe that the usual convention that multiplication is performed before
addition in the absence of parentheses, so the left distributive law, for example, becomes

a(b+ c) = ab+ ac,

without the parentheses on the right side of the equation. Also, as a convenience analogous to our
notation in group theory, we shall somewhat incorrectly refer to a ring R in place of a ring ⟨R,+, ·⟩,
provided that no confusion will result. In particular, from now on Z will always be ⟨Z,+, ·⟩, and
Q, R, and C will also be the rings in Example 4.2.

Example 4.3. Let R be a ring and Matn(R) the collection of all n×n matrices having elements of
R as entries. Since ⟨R,+⟩ is abelian, we have that Matn(R) is abelian. The associativity of matrix
multiplication and the two distributive laws in Matn(R) follow from the same properties in R. In
particular, we have the rings Matn(Z), Matn(Q), Matn(R), and Matn(C). Note that multiplication
is not a commutative operation in any of these rings for n ⩾ 2.

Example 4.4. (a) Let F = {f : R ! R}. Then ⟨F,+, ◦⟩ is a ring, where ◦ on F is the function
composition.

71
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(b) Let F = {f : R ! R}. Then ⟨F,+, ·⟩ is a ring, where for f, g ∈ F ,

fg : R −! R
x 7−! f(x)g(x).

Example 4.5. ⟨nZ,+, ·⟩ is a ring, because ⟨nZ,+⟩ is an abelian group, ⟨nZ, ·⟩ is a binary structure,
and the associative and distributive laws inherit from the ones in Z since nZ ⊆ Z and Z is a ring.

Example 4.6. Let n ∈ N. The cyclic group ⟨Zn,+, ·⟩ is a ring, where

a · b = (ab) (mod n).

From now on, Zn will always be the ring ⟨Zn,+, ·⟩.

Definition 4.7. Let R1, . . . , Rn be rings. The direct product R1 × · · · × Rn of rings Ri is a ring
under addition and multiplication by components.

Remark. Continuing matters of notation, we shall always let 0 be the additive identity of a ring
R. The additive inverse of an element of a of a ring is −a.

Convention 4.8. For a ∈ R, and n ∈ N, define

0Z · a = 0R,

n · a = a+ · · ·+ a︸ ︷︷ ︸
n times

,

−n · a = (−a) + · · ·+ (−a)︸ ︷︷ ︸
n times

= n(−a).

Here m · a with m ∈ Z is not to be constructed as a multiplication of m and a in the ring R, for
the m may not be in the ring at all.

Theorem 4.9. If R is a ring, then for any a, b ∈ R, we have that

(a) 0a = a0 = 0,

(b) a(−b) = (−a)b = −(ab),

(c) (−a)(−b) = ab.

Proof. (a) Note that a0 + a0 = a(0 + 0) = a0 = 0 + a0, then by cancellation law for the additive
group (R,+), we have that a0 = 0. Likewise, 0a = 0.

(b) To prove a(−b) is the additive inverse of ab, it is enough to show that

a(−b) + ab = 0 = ab+ a(−b),

which is true since by the left distributive law and by (a),

a(−b) + ab = a(−b+ b) = a0 = 0 = a0 = a(b+ (−b)) = ab+ a(−b).
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(c) By (b),
(−a)(−b) = −(a(−b)) = −(−(ab)) = ab,

where the last equality follows from Corollary 1.34.

Definition 4.10. For rings R and R′, a map ϕ : R ! R′ is a ring homomorphism if the following
two conditions are satisfied for all a, b ∈ R:

(a) ϕ(a+ b) = ϕ(a) + ϕ(b),

(b) ϕ(ab) = ϕ(a)ϕ(b).

Remark. ϕ is 1-1 if and only if Ker(ϕ) = {0}. ⟨R/Ker(ϕ),+⟩ is a factor group. We will see that
⟨R/Ker(ϕ),+, ·⟩ is a factor ring.

Example 4.11. Let ⟨F,+, ·⟩ be the ring in Example 4.4(b) and a ∈ R. Then the evaluation homomorphism

ϕa : F −! R
f 7−! f(a)

is a ring homomorphism.

Example 4.12. The map

ϕ : Z −! Zn

a 7−! a (mod n)

is a ring homomorphism. By Example 3.10, it is enough to show that ϕ(ab) = ϕ(ab) for a, b ∈ Z.
Write a = q1n+ r1 and b = q2n+ r2 by the division algorithm. Then

ab = n(q1q2n+ r1q2 + q1r2) + r1r2 = n(q1q2n+ r1q2 + q1r2) + q3n+ r3,

where by division algorithm r1r2 = q3n+ r3. Hence

ϕ(ab) ≡ ab ≡ r3 ≡ r1r2 ≡ ϕ(a)ϕ(b) (mod n).

Example 4.13 (Projection Homomorphisms). Let R1, · · · , Rn be rings. For each i, the map

πi : R1 × · · ·Rn −! Ri

(r1, . . . , rn) 7−! ri

is a ring homomorphism, projection onto the ith component.

Definition 4.14. A ring isomorphism ϕ : R! R′ is a ring homomorphism that is bijective, written

as ϕ : R
∼=−! R′. The rings R and R′ are then isomorphic, written as R ∼= R′.

Remark. We will see that there are ring isomorphisms

Zn

∼=−! Z/nZ Z/Zn

∼=−! Zn

a 7−! a+ nZ a+ nZ 7−! a (mod n).
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Theorem 4.15. Let S be a collection of rings such that for any S, T ∈ S, we have that S ∼= T ,
then ∼= is an equivalence relation on S.

Example 4.16. The map

Z −! 2Z
x 7−! 2x

is a additive group isomorphism, but not a ring isomorphism because ϕ(xy) = 2xy ̸= (2x)(2y) =
ϕ(x)ϕ(y) for x, y ∈ Z∗.

Definition 4.17. {0} is the zero ring. Here 0 acts as multiplicative as well as additive identity.

Remark. Theorem 1.20 shows that if a ring has a multiplicative identity element 1, then it is
unique.

Remark. Let R be a ring and 1 ∈ R. Then 1 = 0 if and only if R is a zero ring.

Definition 4.18. A ring in which the multiplication is commutative is a commutative ring. A ring
with a multiplicative identity is a ring with unity; the multiplicative identity element 1 is called
“unity”.

Remark.
(1 + · · ·+ 1︸ ︷︷ ︸

n times

)(1 + · · ·+ 1︸ ︷︷ ︸
m times

) = 1 + · · ·+ 1︸ ︷︷ ︸
nm times

,

i.e.,
(n · 1)(m · 1) = (nm) · 1.

Example 4.19. Let r, s ∈ Z be such that gcd(r, s) = 1. Then

ϕ : Zrs −! Zr × Zs

n 7−! (n (mod r), n (mod s))

or n 7−! n · (1, 1)

is a ring homomorphism. Let m,n ∈ Zrs. Then

ϕ(m+ n) = (m+ n) · (1, 1)
= ((m+ n) · 1 (mod r), (m+ n) · 1 (mod s))

= (m · 1 (mod r),m · 1 (mod s)) + (n · 1 (mod r), n · 1 (mod s))

= m · (1, 1) + n · (1, 1)
= ϕ(m) + ϕ(n).

and

ϕ(mn) = mn · (1, 1)
= (mn · 1 (mod r),mn · 1 (mod s))

= ((m · 1)(n · 1) (mod r), (m · 1)(n · 1) (mod s))

= (m · 1 (mod r),m · 1 (mod r))(n · 1 (mod r), n · 1 (mod s))

= (m · (1, 1))(n · (1, 1))
= ϕ(m)ϕ(n)
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Fact 4.20. A direct product R1 · · · × · · · × Rn of rings is commutative or has unity if and only if
each Ri is commutative or has unity, respectively.

Definition 4.21. Let R be a ring with unity 1 ̸= 0. An element u in R is a unit of R if it has a
multiplicative inverse in R. If every nonzero element of R is a unit, then R is a division ring (or
skew field). A field is a commutative division ring. A noncommutative division ring is called a
“strictly skew field”.

Example 4.22. (a) Z is not a field because 2, for example, has no multiplicative inverse, so 2 is
not a unit in Z.

(b) Q, R, and C are fields.

Example 4.23. Let n ∈ N. The units in Zn are precisely thosem ∈ Zn∖{0} such that gcd(m,n) =
1 by the remark after Example 1.88. Thus, Zn is a field if and only if n is a prime.

Definition 4.24. A subring of a ring is a subset of the ring that is a ring under induced operations
from the whole ring; a subfield is defined similarly for a subset of a field.

4.2 Integral domains

Definition 4.25. If a and b are two nonzero elements of a ring R such that ab = 0, then a and b
are 0 divisors.

Remark. a ∈ R is a not a 0 divisor if and only if whenever ab = 0 for some b ∈ R, we have that
b = 0.

Remark. If a ∈ R is a unit, then a is not a 0 divisor because if ab = 0 for some b ∈ R, then

0 = a−10 = a−1(ab) = (a−1a)b = 1b = b.

Thus, a field has no 0 divisors.

Theorem 4.26. The 0 divisors of Zn are precisely those m ∈ Zn ∖ {0} such that gcd(m,n) ̸= 1.
Thus, Zn is a disjoint union of 0, units, and 0 divisors.

Proof. Let m ∈ Zn ∖ {0} be such that gcd(m,n) ̸= 1. Then n
gcd(m,n) ∈ Zn ∖ {0} and

m
n

gcd(m,n)
=

m

gcd(m,n)
n = 0,

and so m is a 0 divisor. For m ∈ Zn ∖ {0} such that gcd(m,n) = 1, we know that m is a unit by
Example 4.23.

Corollary 4.27. If p is a prime, then Zp has no 0 divisors.

Definition 4.28. The cancellation laws hold in R if ab = ac with a ̸= 0 implies that b = c, and
ba = ca with a ̸= 0 implies that b = c.

Theorem 4.29. The cancellation laws hold in a ring R if and only if R has no 0 divisors.

Proof. It is straightforward.
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Definition 4.30. An integral domain D is a commutative ring with unity 1 ̸= 0 and containing
no 0 divisors.

Remark. If the coefficients of a polynomial are from an integral domain, one can solve a polynomial
equation in which the polynomial can be factored into linear factors in the usual fashion by setting
each factor equal to 0.

Remark. Theorem 4.29 shows that the cancellation laws hold in integral domains.

Example 4.31. Z and Zp with p a prime, are integral domains. The direct product R× S of two
integral domains R and S is not an integral domain because (1R, 0)(0, 1S) = (0, 0), and 1R ̸= 0R
and 1S ̸= 0S .

Example 4.32. Mat2(Z2) is not an integral domain because[
1 0
0 0

] [
0 0
1 0

]
=

[
0 0
0 0

]
Theorem 4.33. Every field is an integral domain.

Proof. It follows from the second remark after Definition 4.25.

Theorem 4.34. Every finite integral domain is a field.

Proof. Let R be a finite integral domain. Then 0 ̸= 1 ∈ R and so we can find a ∈ R ∖ 0. Define a
map

φa : R −! R

r 7−! ar

Since R is an integral domain, cancellation laws implies that φa is 1-1. Since R is finite, φ is onto
by Pigeonhole principle. Since 1 ∈ R, there exists b ∈ R such that ab = 1.

Corollary 4.35. If p is a prime, Zp is a field.

Definition 4.36. Let R be a ring, if there exists n ∈ N such that n · a = 0 for all a ∈ R, then the
characteristic

char(R) = min{n ∈ N | n · a = 0,∀a ∈ R},

otherwise, char(R) = 0.

Example 4.37. For n ∈ N, char(Zn) = n, while char(Z) = char(Q) = char(R) = char(C) = 0.

Theorem 4.38. Let R be a ring with unity. If n ·1 ̸= 0 for all n ∈ N, then char(R) = 0. If n ·1 = 0
for some n ∈ N, then

char(R) = min{n ∈ N | n · 1 = 0}.

Proof. If n · 1 ̸= 0 for all n ∈ N, then we cannot have n · a = 0 for all a ∈ R for some n ∈ N, and so
char(R) = 0.

Suppose that there exists n ∈ N such that n · 1 = 0. Then for any a ∈ R, we have that

n · a = a+ · · ·+ a︸ ︷︷ ︸
n times

= a(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = a(n · 1) = a0 = 0.
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4.3 Fermat’s and Euler’s Theorems

Theorem 4.39 (Little Theorem of Fermat). If a ∈ Z and p is a prime, then for a ̸≡ 0 (mod p),
ap−1 ≡ 1 (mod p).

Proof. It is a special case of Euler’s Theorem.

Example 4.40. Let us compute the remainder of 8103 when divided by 13.

8103 ≡ (812)8(87) ≡ (18)(87) ≡ 87 ≡ (−5)7 ≡ (25)3(−5) ≡ (−1)3(−5) ≡ 5 (mod 13).

Example 4.41. Show that 211213 − 1 is not divisible by 11.

Proof. Since 210 ≡ 1 (mod 11), we have that

211213 − 1 ≡ (210)1121(23)− 1 ≡ 11121(23)− 1 ≡ 23 − 1 ≡ 8− 1 ≡ 7 (mod 11).

Definition 4.42. Primes of the form 2p − 1 where p is prime are known as Mersenne primes.

Example 4.43. Show that for every n ∈ Z, the number n33 − n is divisible by 15.

Proof. It is enough to show that 3 | n33 − n and 5 | n33 − n. Note that n33 − n = n(n32 − 1). If
3 | n, then 3 | n(n32 − 1).

If 3 ∤ n, i.e., n ̸≡ 0 (mod 3), then n2 ≡ 1 (mod 3), so

n32 − 1 ≡ (n2)16 − 1 ≡ 116 − 1 ≡ 0 (mod 3),

and hence 3 | n32 − 1.
If 5 | n, then 5 | n(n32 − 1). If 5 ∤ n, i.e., n ̸≡ 0 (mod 5), then n4 ≡ 1 (mod 5), so

n32 − 1 ≡ (n4)8 − 1 ≡ 18 − 1 ≡ 0 (mod 5),

and hence 5 | n32 − 1.

Theorem 4.44. Let R be a ring and R× the set of units in R. Then ⟨R×, ·⟩ is a group.

Proof. Let a, b ∈ R×. Then there exists a−1, b−1 ∈ R such that aa−1 = 1 = a−1a and bb−1 = 1 =
b−1b. Then

(ab)(b−1a−1) = a(bb−1)a−1 = aa−1 = 1,

(b−1a−1)(ab) = b−1(a−1a)b = b−1b = 1.

Hence ab ∈ R×, and so R× is closed under ·.

G1: The associativity of · on elements in ⟨R×, ·⟩ is inherited from the associativity of · on elements
in ⟨R,+, ·⟩.

G2: Since 1 ∗ 1 = 1, 1 ∈ R×.

G3: Let a ∈ R×. Then a has the multiplicative inverse a−1.
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Definition 4.45. Let n ∈ N, and define

Gn := Z×
n

= {a ∈ Zn ∖ {0} | a is a unit}
= {a ∈ Zn ∖ {0} | a is not a 0 divisor}
= {a ∈ Zn ∖ {0} | gcd(a, n) = 1}.

Corollary 4.46. For n ∈ Z⩾2, Gn is a group under multiplication modulo n.

Definition 4.47. Define the Euler phi-function φ : N ! N by

φ(n) = |{1 ⩽ m ⩽ n | gcd(m,n) = 1}|.

In particular, φ(1) = 1, and when n ∈ Z⩾2,

φ(n) = |Gn|.

Theorem 4.48 (Euler’s Theorem). Let n ∈ N. If a ∈ Z and gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Proof. If n = 1, then it is trivial. Assume now that n ∈ Z⩾2. By the division algorithm, a =
nq + r for some q, r ∈ Z with 0 ⩽ r < n. Since gcd(a, n) = 1, we have that r ̸= 0. Note that
gcd(r, n) = gcd(a − nq, n) = gcd(a, n) = 1, where the second equality follows from Corollary 1.78.
Hence r ∈ Gn, so |r|

∣∣ |Gn| by Corollary 2.55, and thus rφ(n) = r|Gn| ≡ 1 (mod n). Therefore,

aφ(n) = (nq + r)φ(n) =

φ(n)∑
i=0

(
φ(n)

i

)
(nq)irφ(n)−i ≡

(
φ(n)

0

)
(nq)0rφ(n)−0 = rφ(n) ≡ 1 (mod n).

Example 4.49. Let n = 12. Then φ(12) = 4. Since gcd(7, 12) = 1, we have that 74 ≡ 1 (mod 12).

Theorem 4.50. Let m ∈ N and a ∈ Zm be such that gcd(a,m) = 1. For each b ∈ Zm, the equation
ax = b has a unique solution in Zm.

Proof. Since gcd(a,m) = 1, a ∈ Gm, and then a is a unit in Zm. The unique solution is
a−1b (mod m).

Corollary 4.51. Let a,m, b ∈ Z be such that gcd(a,m) = 1, then ax ≡ b (mod m) has as solutions
all integers in precisely d reside class modulo m.

Theorem 4.52. Let m ∈ N and a, b ∈ Zm. Let d = gcd(a,m). The equation ax = b has a solution
in Zm if and only if d | b. When d | b, the equation has exactly d solutions in Zm.

Corollary 4.53. Let a,m, b ∈ Z be such that gcd(a,m) = d, then ax ≡ b (mod m) has a solution
if and only if d | b. When this is the case, the solutions are the integers in exactly d distinct residue
classes modulo m.

Example 4.54. Find all solutions of the congruence 15x ≡ 27 (mod 18).
Note that gcd(15, 18) = 3 and 3 | 27. We divide everything by 3 and consider 5x ≡ 9 (mod 6),

which amounts to solving the equation 5x ≡ 3 (mod 6). It has a unique solution 5−1(3) ≡ 5(3) ≡
3 (mod 6). Consequently, the solution of 15x ≡ 27 (mod 18) are the integers in the three residue
classes: 3 + 18Z, 3 + 6 + 18Z and 3 + 2(6) + 18Z, i.e., 3 + 18Z, 9 + 18Z and 15 + 18Z.
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4.4 The field of quotients of an integral domain

Let D be an integral domain in this section.

Definition 4.55. Let S be the subset of D ×D given by

S = {(a, b) | a, b ∈ D and b ̸= 0} = D ×D∗.

Definition 4.56. Two elements (a, b) and (c, d) in S are equivalent, denoted by (a, b) ∼ (c, d) if
and only if ad = bc.

Lemma 4.57. The relation ∼ in Definition 4.56 is an equivalence relation.

Definition 4.58. Define
F = {(a, b) | (a, b) ∈ S}.

Lemma 4.59. For (a, b) and (c, d) in F , the equations

(a, b) + (c, d) = (ad+ bc, bd)

and
(a, b)(c, d) = (ac, bd)

give well-defined operations of addition and multiplication on F .

Theorem 4.60. F is a field under the operations addition and multiplication, with unity (1, 1).

Remark. For (a, b) ∈ F ,

(a, b)(b, a) = (ab, ab) = (1, 1) = (ba, ba) = (b, a)(b, a),

we have that (a, b)−1 = (b, a), it can also be written as 1/(a, b) = (b, a).

Lemma 4.61. We have a ring isomorphism

i : D −! F

a 7−! (a, 1)

Thus, D can be regarded as a subring of F .

Example 4.62. We have a ring isomorphism

i : Z −! Q

a 7−! (a, 1) = a/1.

Since (a, b) = (a, 1)(1, b) = (a, 1)/(b, 1) = i(a)/i(b) clearly holds in F , we have now proved the
following theorem.

Theorem 4.63. Any integral domain D can be enlarged to (or embedded in) a field F such that
every element of F can be expressed as a quotient of two elements of D. (Such a field F is a
field of quotients of D.)
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Theorem 4.64. Let F be a field of quotients of D and L be any field containing D. Then there
exists 1-1 ring homomorphism

ψ : F −! L

a 7−! a.

Corollary 4.65. Every field L containing an integral domain D contains a field of quotients of D.

Corollary 4.66. Any two fields of quotients of an integral domain D are isomorphic.



Chapter 5

Ideals And Factor Rings

Theorem 5.1. Let ϕ : R! R′ be a ring homomorphism. Then

(a) ϕ(0) = 0R′ .

(b) ϕ(a) = −ϕ(a) for a ∈ R.

(c) If S is a subring of R, then ϕ(S) = Im(ϕ|S) is a subring of R′.

(d) If S′ is a subring of R′, then ϕ−1(S′) is a subring of R.

(e) If 1 ∈ R, then ϕ(1) is the unity for ϕ(R) = Im(ϕ).

Definition 5.2. Let ϕ : R! R′ be a ring homomorphism. The subring

Ker(ϕ) := ϕ−1(0R′) = {r ∈ R | ϕ(r) = 0R′}

is the kernel of ϕ.

Theorem 5.3. Let ϕ : R! R′ be a ring homomorphism, and H = Ker(ϕ). Let a ∈ R. Then

ϕ−1({ϕ(a)}) = a+H = H + a.

Corollary 5.4. A ring homomorphism ϕ : R! R′ is 1-1 if and only if Ker(ϕ) = {0}.

Theorem 5.5. Let ϕ : R! R′ be a ring homomorphism with Ker(ϕ) = H. Then R/H = {a+H |
a ∈ R} forms a ring, where for a+H, b+H ∈ R/H,

(a+H) + (b+H) = (a+ b) +H,

and
(a+H)(b+H) = (ab) +H.

Also, we have a ring isomorphism

µ : R/H −! Im(ϕ)

a+H 7−! ϕ(a).

81
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Example 5.6. Example 4.12 shows that

ϕ : Z −! Zn

a 7−! a (mod n)

is a ring homomorphism. Since Ker(ϕ) = nZ, we have that Z/nZ is a ring.

Theorem 5.7. Let H be a subring of the ring R. Multiplication of additive cosets of H is well-
defined by the equation

(a+H)(b+H) = ab+H

if and only if ah ∈ H and hb ∈ H for all a, b ∈ R and h ∈ H.

Definition 5.8. An additive subgroup N of a ring R satisfying the properties aN ⊆ N and Nb ⊆ N
for all a, b ∈ R is an ideal.

Example 5.9. We see that nZ is an ideal in the ring Z since we know it is a subring, because
s(nm) = n(sm) ∈ nZ and (nm)t = n(mt) ∈ nZ for all s, t ∈ Z and nm ∈ nZ.

Corollary 5.10. Let N be an ideal of a ring R. Then R/N = {a+N | a ∈ R} forms a ring, where
for a+N, b+N ∈ R/N ,

(a+N) + (b+N) = (a+ b) +N,

and
(a+N)(b+N) = (ab) +N.

Definition 5.11. The ring R/N in the preceding corollary is the factor ring (or quotient ring) of
R by N .

Theorem 5.12. Let N be an ideal of R. Then

γ : R −! R/N

x 7−! x+N

is a ring homomorphism with kernel N .

Theorem 5.13. Let ϕ : R ! R′ be a ring homomorphism with kernel N . Then Im(ϕ) is a ring,
and we have a ring isomorphism

µ : R/N
∼=−! Im(ϕ)

x+N 7−! ϕ(x)

Let γ : R ! R/N be the natural ring homomorphism given by γ(x) = x + N , then the following
diagram commutes:

R Im(ϕ)

R/N

ϕ

γ µ

i.e., ϕ = µγ, i.e., ϕ(x) = µγ(x) for each x ∈ R.
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