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Chapter 1

Extension Fields

1.1 Commutative Rings

Definition 1.1. Let R be a commutative ring and a,b € R with b # 0.

(a) a is said to be a multiple of b if there exists 2 € R such that @ = bx. In this case, b is said to
divide a or be a divisor of a, written b | a.

(b) A greatest common divisor of a and b is 0 # d € R such that

(1) d|aandd|b,
(2) if d' |a and d' | b, then d’ | d.

A greatest common divisor of a and b will be denoted by ged(a, b).

Remark. In a commutative ring R, b | a if and only if a € (b) if and only if (a) C (b). Then
d = ged(a, b) with a,b € R if and only if

(a) (a,b) C (d),
(b) if (a,b) C (d'), then (d) C (d').
Thus, d = ged(a, b) is a generator for the unique smallest principal ideal containing a and b.

Proposition 1.2. Let R be a commutative ring. If 0 # a,b € R such that (a,b) = (d), then
d = gcd(a, b). In particular, d can be written as an R-linear combination of a and b.

Proof. Since (a,b) C (d), d| aand d | b. Let d' | a and d' | b. Then (d) = (a,b) C (d'). Sod' | d. O

Remark. Note the the condition in previous proposition is not a necessary condition. For example,
since in R = Z[z], (2,) is maximal not principal, we have R = (1) is the unique principal ideal
containing both 2 and z. Thus, 1 = gcd(2, ) up to units.

Proposition 1.3. Let a,b € R. The followings are equivalent.

(a) (a) = (b).
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(b) a|bandb|a.
(c) There exists u € R* such that b = ua.

In particular, if d and d’ are both greatest common divisors of a and b, then d' = ud for some
u € R*.

Proof. (a),(b) and (c) follow from R is an integral domain.
Since d | &’ and &' | d, (d) C (d') and (d') C (d). 0

Theorem 1.4. Let F be a field ¢ : F' — R be a ring homomorphism with F field, then ¢ =0 or ¢
15 1-1.

Proof. If ¢ is 1-1, it is trivial. Otherwise, there exist z,y € F with x # y such that 0 = ¢(z)—¢(y) =

¢(z —y). Since z #y, 0= ¢(1/(z —y))p(z —y) = ¢(1). So ¢(2) = ¢(1p - 2) = z- ¢(1r) = 0 for
any z € F,ie., o =0. O

1.2 Maximal and Prime Ideals

Definition 1.5. A maximal ideal of a ring R is a proper ideal M of R such that there is no proper
ideal N of R such that M C M.

Example 1.6. pZ is a maximal ideal of Z.

Theorem 1.7. Let R be a commutative ring with identity. Then M is a maximal ideal of R if and
only if R/M is a field.

Proof. By the fourth isomorphism theorem for rings,
{ideals of R/I} = {ideals J < R|I C J}
J/I —J.

So R/I is a field if and only if {ideals of R/I} = {0, R/I} if and only if {J < R|I C J} = {I, R}
if and only if I is maximal. O

Definition 1.8. A proper ideal N of a commutative ring R is a prime ideal if ab € N implies that
either a € N or b € N for a,b € R.

Theorem 1.9. Let R be a commutative ring with identity and N a proper ideal of R. Then N is
a prime ideal of R if and only if R/N is an integral domain.

Proof. Note that N < R is prime if and only if ab ¢ N for any a,b € R~ N if and only if
(a+N)(b+N) # N for any a+ N,b+ N # N in R/N if and only if R/N is an integral domain. [

Example 1.10. (a) {0} is a prime ideal in Z since Z/{0} = Z.
(b) Z x {0} is a prime ideal of Z x Z since (Z x Z)/(Z x {0}) = Z.
Corollary 1.11. Every maximal ideal in a commutative ring R with ideal is a prime ideal.

Proof. If M is a maximal ideal in R, then R/M is a field, hence an integral domain, and therefore
M is a prime ideal. O
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Theorem 1.12. If R is a ring with unity 1, then the map
¢0:7Z— R
n—mn-1
is a ring homomorphism.

Corollary 1.13. If R a ring with unity and char(R) = n > 1, then R contains a subring isomorphic
to Z,. If R has characteristic 0, then R contains a subring isomorphic to Z.

Theorem 1.14. A field F is either of prime characteristic p and contain a subfield isomorphic to
Z, or of characteristic 0 and contains a subfield isomorphic to Q.

Definition 1.15. Let F be a field. A prime subfield K of F' is the subfield of F' generated by 1p:
If char(F) = 0, then

-1
sz{m i ’m,neZandn#O}%Q.
n-].p

If char(F) = p is prime, then
KF:{m-1F|m6Zp}%IFp.

1.3 P.IL.D.

Definition 1.16. Let R be a commutative ring with identity. An ideal N of R is a principal ideal
(P.I1.D.) if N = (a) for some a € R.

Definition 1.17. A Principal Ideal Domain (P.1.D.) is an integral domain in which every ideal is
principal.

Proposition 1.18. Let R be a P.I.D.. Let 0 # a,b € R. Then (a,b) = (d), where d = ged(a,b)
and d is unique up to units. In particular, d can be written as an R-linear combination of a and b.

Proposition 1.19. Every nonzero prime ideal in a P.I.D. is a maximal ideal.

Proof. Let 0 # (p) < R be prime and m € R such that (p) C (m). Then p = rm for some r € R,
ie., (p) = (rm). Since (p) is prime and rm € (p), r € (p) or m € (p). If m € (p), then (p) = (m).
If r € (p), then r = ps for some s € R and so p = rm = psm; since p # 0 and R is an integral
domain, sm =1, i.e., m € R*, thus, (m) = R. O

Corollary 1.20. If R is any commuative ring such that R[z] is a PID, then R is a field.

Proof. Since R[z] is an integral domain, R is also an integral domain. Also, since R[x]/(z) & R,
(x) < R[z] is a nonzero prime ideal. Thus, 0 # (z) is maximal ideal. O

Theorem 1.21. If F is a field, then F[z] is a P.I.D..
Definition 1.22. Let R be a ring.

(a) Let » € R~ {R* UO0}. Then r is called irreducible in R if whenever r = ab with a,b € R,
a € R* or b € R*. Otherwise, r is said to be reducible.
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(b) 0 #£ p € R is called a prime in R if (p) < R is prime. In other words, p is a prime if
p € R~ {R* U0} and whenever p | ab for any a,b € R, either p | a or p | b.

Proposition 1.23. In an integer domain R, p € R prime is always irreducible.

Proof. Since p is prime, (p) # 0. Let p = ab. Then ab =p € (p). Then a € (p) or b € (p). Without
loss of generality, assume a € (p). Then a = pr for some r € R. So p = ab = prb. Since p # 0 and
R is an integral domain, rb = 1, i.e., b € R*. Thus, p is irreducible. O

Proposition 1.24. In a P.I.D. R, p € R is a prime if and only if it is irreducible.

Proof. Let p be irreducible. Assume (p) C (m) for some m € M. Then p = rm for some r € R.
Since p is irreducible, r € R* or m € R*, i.e., (p) = (m) or (m) = 1. So (p) is a maximal ideal and
hence a prime ideal. O

Corollary 1.25. In a P.I.D. R, an ideal (p) of R is maximal if and only if p is irreducible.

1.4 Euclidean Domain

Definition 1.26. Any function N : R — Zyo with N(0) = 0 is called a norm on R. If N(a) > 0
for a # 0, N is called a positive norm.

Definition 1.27. R is said to be a Fuclidean Domain (or posses a Division Algorithm) if there is
a norm N on R such that for a,b € R with b # 0, there exist ¢, € R with r =0 or N(r) < N(b)
such that a = ¢gb + r, where q is called the quotient and r is called the remainder.

Example 1.28. (a) Z is a Euclidean Domain with norm given by N(a) = |al, the usual absolute
value. The existence of a Division Algorithm in Z (the familiar “long division” of elementary
arithmetic) is verified as follows. Let a,b € Z ~ {0}. Suppose first that b > 0. The half open
intervals [nb, (n + 1)b),n € Z partition the real line and so a € [kb, (k + 1)b) for some k € Z. Let
g =k, then a — gb =: r € [0,b) and so N(r) < N(b). If b < 0, then there exists ¢ € Z such that
a = q(—=b) +r with » < 0 and |r| € [0,]b]) and so a = (—q)b + r satisfies the requirement of the
Division Algorithm for a and b.

Moreover, note if bt a, there are always two possibilities for the pair ¢, r. For example for b > 0
and ¢,r are as above with r > 0, then a = ¢'b+ v’ with ¢ = ¢+ 1 and ' = r — b also satisfy the
conditions of the Division Algorithm applied to a,b. Thus, 5 =2-2+4+1 =3-2 — 1 are the two
ways of applying the division Algorithm in Z to ¢ = 5 and b = 2. The quotient and remainder are
unique if we require the remainder to be nonnegative.

(b) If F is a field, then Fz] is a Euclidean Domain with N(p) = deg(p) for 0 # p € Flz]. In
order for a polynomial ring to be a Euclidean Domain, the coefficients must come from a field since
the division algorithm ultimately rests on being able to divide arbitrary nonzero coefficients. For
example, in Z[z], = q - 2 + r for deg(q) > 0, then r =0, ¢ = /2 & Z]x].

Proposition 1.29. Every ideal in a Euclidean Domain is principal. More precisely, if I is any
nonzero ideal in the Euclidean Domain R, then I = (d), where d is any nonzero element of I of
minimum norm.
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Proof. If I = 0, it is trivial. Assume now I # 0. Let d = argmin{N(a) | 0 # a € I}, d is well-
defined by the Well ordering of (Z", <) and d exists since I # 0. Then (d) C I. Let a € I. Since
f # 0, by Division Algorithm to write a = gd +r with r =0 or N(r) < N(d). Thenr =a—qd € I.
By the minimality of d, we have r = 0, i.e., a = qd € (d). So I = (d). O

Example 1.30. Since (2, ) < Z[x] is not principal (but maximal), Z[x] is not a Euclidean Domain.

Theorem 1.31. Let R be a Euclidean domain and 0 # a,b € R. Let d = r, be the last nonzero
remainder in the Fuclidean Algorithm for a and b. Then

(a) d = ged(a,b),
(b) (d) = (a,b).

Proof. Since R is a PID, (a,b) = (d) for some d € R, by previous proposition, d = gcd(a, b).

Sicne 7np—1 = Gny17n, Tn | rn—1. Clearly, 7, | 7. By induction from index n downwards to index 0,
assume 7, | rg41 and 7, | 7 for some 0 < k < r—1. Since 75—1 = @17k + rit1, We have rg | rp_q.
So ry, | band 7, | a. Hence (a,b) C (d). Note rg = a—qob € (a,b) and r1 = b—qir9 € (b,79) C (a,b).
By induction, d = r,, € (a,b). O

1.5 Factorization of Polynomials over a Field

Theorem 1.32 (Division algorithm for polynomial rings). Let f,g € F[z]. Then there are unique
polynomials q,r € F[z] such that f(x) = g(x)q(x) +r(x), where either r(x) = 0 or deg(r) < deg(g).

Theorem 1.33 (Factor Theorem). An element a € F is a zero of f(z) € Flx] if and only if x — a
is a factor of f(x) in Flx].

Proof. = Suppose that for a € F we have f(a) = 0. By the division algorithm, there exist
q,r € F[z] such that

f(x) = (z —a)q(x) + r(z),
where either r(z) = 0 or deg(r) < 1. Then we must have r(x) = ¢ for some ¢ € F, and so
f(@) = (@ — a)g() +c.

Since f(a) =0, we have that ¢ = 0. Then f(x) = (z — a)q(z), so © — a is a factor of f(x).
< If x — a is a factor of f(x) in F[z], then f(z) = (x — a)q(z) for some ¢ € Flz], thus
fla) =0. O

Corollary 1.34. A nonzero polynomial f(z) € F[z] of degree n can have at most n zeros in a field
F.

Proof. The factor theorem shows that if a; € F' is a zero of f(x), then

f(@) = (z —a1)q(2),

where deg(q1) =n — 1. A zero as € F of gi(x) then results in a factorization

f(@) = (2 — a1)(@ - az)q (@)
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Continuing this process, we arrive at

f(x) = (@ —a1)---(z - ar)gr(2),

where ¢, has no further zeros in F. Since deg(f) = n, at most n factors (x — a;) can appear on the
right-hand side of the preceding equation, so r < n. Also, if b € F and b # a; for i = 1,...,r, then

f0) = (b—a1)---(b—ar)g(b) #0,

since F' has no divisors of 0 and none of b — a; or ¢.(b) are 0 by construction. Hence ay,...,a, are
all the zeros in F of f(z). O

Corollary 1.35. Let F be a finite field. Then the group (F*,-) is cyclic.

Proof. Since F* is finite and abelian, G = Z;, X --- x Z;, for some n € N and d; is a power of a

prime. Let m :=lem(dy,...,d,) < dy---d,. Then o™ =1 for all « € F*, and so every element of
G is a zero if 2™ — 1. But |[F*| =d; X --- x d, while 2™ — 1 can have at most m zeros in the field
F,som>dy---d,.. Hence m = d; - - - d,, so the primes involved in the prime powers d,...,d, are
distinct, and the group G = Z,,. O

Definition 1.36. A polynomial f € F[z] \ F is irreducible over F or is an irreducible polynomial
in F[x] if whenever f = gh with g,h € Flx], g € F or h € F. Otherwise f(x) is reducible over F.

Remark. The units in Flz] are (Flz])* = F* = F ~ {0}.

Theorem 1.37. Let f € Flz]| and deg(f) =2 or 3. Then f(x) is reducible over F if and only if it
has a zero in F.

Proof. = If f(x) is reducible so that f(z) = g(z)h(z), where deg(g), deg(h) < deg(f), then since
deg(f) < 3, either deg(g) = 1 or deg(h) = 1. If, say, deg(g) = 1, then except for a possible factor
in F, g is of the form x — a. Then f(a) = g(a)h(a) =0, so f(x) has a zero in F.

<= The factor theorem shows that if f(a) =0 for a € F, then z — a is a factor of f(x), so f(z)
is reducible. O

Theorem 1.38. If f € Z[x], then f(x) factors into a product of two polynomials of lower degrees
r and s in Q[z] if and only if it has such a factorization with polynomials of the same degrees r and
s in Z[x).

Corollary 1.39. If f(z) = 2™ + ap_12" "' + - +q is in Z[z] with ag # 0, and if f(z) has a zero
in Q, then it has a zero m in Z, and m | ao.

Proof. If f(x) has a zero a in Q, then f(x) has a linear factor  — a in Q[z]. But then by Theo-
rem 1.38, f(z) has a factorization with a linear factor in Z[x], so for some m € Z we must have

f@) = (@ =m)(@" ™" + - +ao/m)
Thus ag/m € Z, so m | ap. O

Theorem 1.40 (Eisenstein Criterion). Let p € Z be prime. Suppose that f(x) = apa™ +---+ag €
Z[x] and ap # 0 (mod p) but a; = 0 (mod p) for all i < n, with ag #Z 0 (mod p?). Then f(z) is

1rreducible over Q
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1.6 Introduction to Extension Fields

Notation 1.41. Let E be a field. We use F' < E to denote that F' is a subfield of E.
Definition 1.42. A field FE is an extension field of a field F if F < E.

Theorem 1.43 (Kronecker’s Theorem). Let F be a field and f € Flx| with d := deg(f) > 0. Then
there ezists an extension field E of F' and an « € E such that f(a) = 0.

Proof. Let K := Flx]/(f). Without loss of generality, assume that f is irreducible. Since Fx] is
a P.ID., f is prime in F[z]. Since deg(f) > 0 and F'[z] is P.I.D., 0 # (f) < F[z] is maximal and
so K is a field. The canonical projection 7 : F[z] — K restricted to F gives a homomorphism
¢ =m|p: F — K. Since F is a field and p(1) = 1, ¢ is 1-1 and then F = p(F). We identify F
with its isomorphic image in K and view F as a subfield of K. (Idenfitying a € F with a + (f) in
K.) Let f = Z?;()laixi with ag,...,a4-1 € F and § := z + (f) € K , then

d d
FO)=) aib' = ailz+ (/)" =D (ai+ (H@+(f)
=0 =0 i

d
(Z x) +HN=F+N=h=0. =

Example 1.44. Let F = R and f(z) = 2% + 1, which is irreducible over R. Then R[z]/{z? + 1)
is a field. Identifying r € R with » + (22 + 1) in R[z]/(z? + 1), we can view R as a subfield of
E =Rlz]/(z? +1). Let a = x + (22 4+ 1). Computing in R[z]/(z? + 1), we find

P+1l=(r+@*+1))+(1+@*+1) = (@ + @+ 1)+ 1+ @*+1)) = (22 + 1)+ (z* +1) = 0.
Thus, « is a zero of z2 + 1.

Example 1.45. Let F = Q, and consider f(x) = 2* — 522 +6 = (22 — 2)(2? — 3), where 2% — 2
and z2 — 3 are both irreducible over Q. We can start with 22 — 2 and construct an extension field
E of Q containing « such that a? — 2 = 0, or we can start with 2 — 3 and construct an extension
field E of Q containing 3 such that 82 — 3 = 0.

Definition 1.46. An element « of an extension field E of a field is algebraic over F if f(a) =0
for some nonzero f(x) € F[z]. If o is not algebraic over F, then « is transcendental over F.

Example 1.47. We have that Q < R.

(a) V2 is an algebraic element over Q since v/2 is a zero of 2 — 2. Also, i is an algebraic element
over Q, being a zero of 2 + 1.

(b) Tt is well known that 7 and e are transcendental over Q.

Example 1.48. We have that R < C. 7 is algebraic over R, for it is a zero of (x — ) € Rx].

Example 1.49. /1 + /3 is algebraic over Q. For a? = 14++/3, then o> —1 = /3 and (a®—1)%? = 3.
Therefore, a* —2a% — 2 =0, so « is a zero of #* — 222 — 2 € Q[z].

To connect these ideas with those of number theory, we give the following definition.
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Definition 1.50. An element of C is algebraic over Q is an algebraic number. A transcendental

number is an element of C that is transcendental over Q.

Theorem 1.51. Let E D F be a field extension and o € E. Let ¢y, : F[x] — E be the evaluation
of Flz] into E. Then ¢ is a ring homomorphism such that ¢o(a) = a for a € F and ¢ (z) = a.
Then « is transcendental over F if and only if ¢o is 1-1.

Proof. « is transcendental over F' if and only if f(a) # 0 for all nonzero f(z) € F[z], if and only if
¢o(f(x)) # 0 for all nonzero f(x) € F[z] if and only if

Ker(¢a) = {g € Flz] | palg) = 0} = {g € Flz] | g(a) = 0} = {0},
if and only if ¢, is 1-1. O
Theorem 1.52. Let E D F be a field extension and o € E algebraic over F'. Then
(a) There exists a unique monic irreducible my, € F[x] such that mq(a) = 0.
(b) Let f € Flz], then f(a) =0 if and only if mq | f.

Proof. (a) Let m, be monic with minimal degree such that m,(a) = 0. We claim that m, is
irreducible. Suppose m, = ¢g-h and g, h € F[z] have smaller degree. Then 0 = mq(a) = g(a)h(a).
Since F is a field, g(a) = 0 or h(a) = 0, contradicting the minimality of the degree of m,. The
uniqueness follows from (b).

(b) = Let g € F[z] such that g(a) = 0. By the Euclidean Algorithm in the Euclidean domain
F[z], there exist ¢,r € F[z] such that g = gm, + r with deg(r) < deg(ma(z)). Then g(a) =
g(a)mq (@) + r(a) € E. Since mq(a) = 0 = g(a), we have r(«) = 0. Then by the minimality of
mq(x), 7 = 0. Hence m,, divides any polynomial g in F[z] having « as a root.

< is straightforward. ]

Definition 1.53. Let E C F be a field extension and « € E algebraic over F. The unique monic
polynomial m, having the property described in Theorem 1.52 is the irreducible polynomial for o
over F' and will be denoted by irr(«, F'). The degree of irr(a, F) is the degree of a over F, denoted
by deg(a, F).

Example 1.54. (a) irr(v/2,Q) = 22 — 2.
(b) irr(v/143,Q) = 2* — 222 — 2.
(c) irr(v2,R) = 2 — V2.

Discussion 1.55. Le and a € E. Let ¢, : Flx] — E be the evaluation homomorphism of F[z]
into K.

Case I Suppose that « is algebraic over F. Then

Ker(¢a) = {g € Flz] | palg) =0} = {g € Flz] | g(a) = 0} = {g € Flz] : irr(e, F') | g} = (irr(, F))
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where the last to the second equality follows from Theorem 1.52(b). By Corollary 1.25, (irr(«, F'))
is a maximal ideal of F[z]. Therefore, F[x]/(irr(a, F)) is a field and

o

Flz]/{r(a, F)) — ¢a(F[z])
f(@) + (ir(a, F)) — f(a)

ci(z + (irr(a, F)))* —s Zcio/

K3

by the first isomorphism theorem. This subfield ¢,(F[z]) of F is then the smallest subfield of E
containing F' and a. We will denote this field by F(«).

n

1

Case IT Suppose that « is transcendental over F. Then by Theorem 1.51 ¢, (F[z]) is an integral
domain but not a field. We will denote this domain by F[a]. E contains a field of quotients of F[a],
which is thus the smallest subfield of E containing F' and «. As in Case I, we denote this field by
F(a).

Example 1.56. Since 7 is transcendental over Q, the field Q(w) = Q(z). Thus from a struc-
tural viewpoint, an element that is transcendental over a field F' behaves as though it were an
indeterminate over F.

Definition 1.57. An extension field E of a field F' is a simple extension of F if E = F(«) for some
acE.

Theorem 1.58. Let E be a simple extension of F(a) of a field F and « algebraic over F. Let
n = deg(a, F) > 1. Then F(a) is an n-dimensional F-vector space with a basis {1,c,...,a" 1}

Proof. It suffices to show that § € E' = F(a) can be uniquely expressed in the form
B=by+bia+-+b, 10",
where the b;’s are in F. For the usual evaluation homomorphism ¢, every element of F(a) =
o (F(x)) is of the form ¢, (f(x)) = f(a), a formal polynomial in a with coefficients in F. Let
p(z) ==irr(a, F) = 2" + ap_ 12" + -+ ap.
Then p(a) = 0, so

a” = —ap_1a" "t — - —ag.

This equation in F(«) can be used to express every monomial o™ for m > n in terms of powers of
a that are less than n. Thus, if 5 € F(a), 8 = h(a) for some h € F|x], and so /5 can be expressed
in the required form

ﬂ =by+bjax+---+ bn,la"_l.

For uniqueness, if
bo+bia+ - +b, "t =) +blat -+ b, ot
for b; € F, then
(bo — b) + (by — W)+« + (buoy — by )a" " = g(a) € F(a),

and g(a) = 0. Then irr(a, F) | g. By the degree argument, we have that g = 0. Therefore,
by = bl O
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Remark.

F(a) = ¢a(Flz]) = {f(a) | f € Fla]} ={f(a) | f € Flz] and deg(f) <n —1}.

Example 1.59. The polynomial p(z) = 22 + z + 1 in Zy[z] is irreducible over Zs, since neither
0 nor 1 of Zs is a zero of p(x). Then there is an extension field E of Zy containing a zero « of
22 + 2 + 1. By Theorem 1.58, Z5(a) has as elements 0 + Oa, 1 + Oc, 0+ le, and 1 + la, that is,
0, 1, a, and 1 4 «. This gives us a new finite field, of four elements. To compute (1 + a)(1 + @) in
Zy(ar), we observe that since p(a) = o + a+1 =0, then a? = —a — 1 = a + 1. Therefore,

A+a)(l+a)=1l+at+a+a’=1+a’=14+a+1=a.

Example 1.60. We saw in Example 1.44 that we can view R[z]/(z? + 1) as an extension field of
R. Let
a=z+ (2% +1).

Since irr(a, F) = 22 + 1, we have that R(a) = ¢ (F[z]) = R[z]/(2? + 1) by Discussion 1.55 Case L.
By Theorem 1.58, R(«) consists of all elements of the form a+ ba for a,b € R. But since a?+1 = 0,
we see that « plays the role of ¢ € C, and a + ba plays the role of (a + bi) € C. Thus, R(a) = C.

Theorem 1.61. Let F C F and o € E algebraic over F. Then every element 8 of F(«) is algebraic
over F, and deg(53, F) < deg(a, F).

Proof. Let n := deg(a, F'). Consider the elements

175’527._.,/871‘.

Since F'(«) is an n-dimensional F-vector space, the elements are linearly dependent over F. So
there exists b; € F not all 0 such that

bo + 018+ boB2 + - +b,8" = 0.

Hence f(z) :=bpz™ + -+ bix + by is a nonzero element of F[z] such that f(8) = 0. Therefore,
is algebraic over F' and deg(5, F') < n. O

1.7 Algebraic Extensions

Fact 1.62. Let E O F be a field extension, then the multiplication defined in E makes F into
a vector space over F. For example, the scalar product ¢ - v with ¢ € F and v € F is the usual
multiplication in F.

Definition 1.63. The degree (or index) of a field extension F D F, denoted [E : FJ, is the
dimension of E as a vector space over F'. The extension is said to be finite if [K : F)] is finite and
is said to be infinite otherwise.

Remark. [E: F| = lifand only if E = F if and only if E = F(1) because deg(1, F) = deg(x—1) =
1.

Remark. Let E be a simple extension of F'(«) of a field F' and « algebraic over F. Then
[Fla] : F] = deg(a, F).
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Definition 1.64. An extension field F of a field F' is an algebraic extension of F if every element
in E is algebraic over F'.

Theorem 1.65. A finite extension field E of a field F' is an algebraic extension of F'.

Proof. Let o € E. Assume that [E : F] =n. Then 1, a,...,a™ are linearly dependent, and so there
exists a; € F not all 0 such that

apa” + -+ ara+ag = 0.
Then 0 # f(z) = apz™ + -+ a12 + ag € Flz] and f(a) = 0. Therefore, « is algebraic over F. [

Theorem 1.66 (Tower law). Let K O E D F be field extensions. Then [K : F] = [K : E][E : F).
In particular, [K : F| < oo if and only if [K : E] < 0o and [E : F] < co.

Proof. (a) Assume [K : E] =:m < oo and [K : F] =:n < oo. Let {a1,...,qn,} be basis for K/E
and {f1,...,Bn} be basis for E/F. We claim that {a;5; |i=1,...,m, j=1,...,n} is a basis of
K/F. Let v € K. Then there exists a1,...,a, € E such that v = > a;a;. For i =1,...,m,
there exists b;1,...,b;, € F such that a; = Z?:l b;jBj. Hence v = > 1", Z;.Lzl bij; ;. Thus,

{aij|i=1,...,m, j=1,...,n} spans K as a vector space over F.
Suppose vy = >, Z?Zl ¢ joif; =0with ¢;; € F. Fori =1,...,m, set d; = Z;’:l ¢.;B; € E.
Then Y " d;o; = 0. For i = 1,...,m, since {a1,...,a;} is a basis for K over E, we have that

d; =0, so Z;L:1 ¢i;jB; =0, and thus ¢; ; =0 for j =1,...,n since {f1,...,B,} is a basis for E over
F'. Therefore, it is a basis and has size mn.

(b) Assume [K : E] = oo. Then there exist oy, ag, -+ € K such that they are linearly independent
over E. So a1, aq,- - are linearly independent over F' and then [K : F| = oo.

(c) Assume [E : F] = oco. Then there exist aj,as,--+ € E C K such that they are linearly
independent over F' and so [K : F] = occ.

(d) If [K : F] = o0, then [K : E] =00 or [E : F] = oo by Case (a). O
Corollary 1.67. If F; is a field for i = 1,...,7 and F;;1 is an extension of Fj, then

[Fy: Byl = [Fy : Frq[Froq s Frog] -+ [Fy : F.
Corollary 1.68. If [E : F| < co and a € E, then deg(a, F) | [E : F].

Proof. By Theorem 1.58, deg(«, F') = [F () : F]. Then it follows from [F : F] = [E : F(a)][F(a) :
F)=[E: F(a)]deg(a, F). O

Corollary 1.69. If E is an extension field of F', a € F is algebraic over F, and 8 € F(«), then
deg(B, F) | deg(a, F).

Proof. By Theorem 1.58, deg(a, F) = [F(«) : F] and deg(8,F) = [F(B) : F]. Since F C F(8) C
F(a), we have that [F(B) : F] | [F(c) : F] by Theorem 1.66. O

Example 1.70. Suppose there is an element 3 of Q(v/2) that is a zero 8 of 3 —2. Then deg(, Q) |
deg(v/2,Q). Since irr(3,Q) = z3 — 2 and irr(e,Q) = 22 — 2, we have that deg(8,Q) = 3 and
deg(a, Q) = 2, contradicting deg(3, Q) | deg(v/2, Q).



12 CHAPTER 1. EXTENSION FIELDS

Remark. Let E O F be a field extension and ay,as € F, not necessarily algebraic over F. We
consider the case that a; and «q are algebraic over F. By definition,

Flon) ={f(ea) | f € Flz]}
={f(en) | f € F[z] and deg(f) < deg(as, F) — 1}
is the smallest subfield of E that contains F' and ay. Note that
F(on)(a2) ={g(a2) | g € F(on)ly]}

= {f(alon) | .f € F[Ji,y]}
= {g(a1) | g € F(a2)[z]}

= F(QQ)(Oél).
We denote this field by F'(ay, az), which can be characterized as the smallest subfield of E containing
F, oy and ao. Similarly, for «; € FE, F(aq,...,q,) is the smallest extension field of F' in E
containing all the a; for i =1,...,n. We claim that

Fla,...,a,) = ﬂ{G | F C G C E are field extensions and o; € G,Vi=1,...,n}.

Proof. C Let G be a field such that FC G C F and ; € G fori=1,...,n. Since F(q,...,qa,) is
the smallest subfield of E containing F' and all the «; for i = 1,...,n, we have that F(q,...,a,) C
G.

D follows from that F'(aq,...,q,) is in the intersection since F' C F(a,...,a,) C E are field
extensions and o; € G fori =1,... n. O

Example 1.71. Consider Q(v/2). Then {1,+/2} is a basis for Q(v/2) over Q. Note that irr(v/2 +
V3,Q) = 22 —102%+1, then v2+v/3 ¢ Q(v/2), and so v/3 & Q(+/2). Consequently, deg(v/3, Q(v/2)) >
2, so irr(v/3, Q(v/2)) = 22 — 3, and thus {1,/3} is a basis for Q(v/2)(v/3) = Q(v/2,v/3) over Q(+/2).
The proof of Theorem 1.66 shows that {1,v/2,v/3,/6} is a basis for Q(v/2,v/3) over Q.

Example 1.72. Consider Q(2'/3). Then {1,2'/3,22/3} is a basis for Q(2'/3) over Q We have that
2172 ¢ Q(2'/3) because deg(2'/2,Q) = 2 and 21 3 = deg(2'/3, Q). Hence irr(2'/2,Q(2'/3)) = 2® -2,
and so {1, 2'/2} is a basis for Q(21/3)(2/2) = Q(2'/2,2%/3) over Q(2'/?). The proof of Theorem 1.66
shows that {1,21/3,21/2,22/3 95/6 97/6} is a basis for Q(v/2,v/3) over Q.

Because 27/6 = 2(21/6) we have that 21/ € Q(2'/2,2!/3). By Eisenstein’s criterion with p = 2,
28 — 2 is irreducible over Q. Thus, irr(21/6, Q) = 2% — 2. By the tower law,

6=[Q(2"2,2"/%): @ = [Q(2"/%,2"/%) : Q(2/)][Q(2""°) : Q] = [Q(2"/%,2'%) : Q(2"/*)J6.
Therefore, [Q(2'/2,2/3) : Q(21/6)] = 1, and so Q(2'/2,2'/3) = Q(2'/9).

Theorem 1.73. Let E O F be an algebraic extension. Then there exists a finite number of elements
a1,...,0p i E such that E = F(a,...,a,) if and only if [E : F] < oo.

Proof. = Suppose that E = F(ay,...,a,). Since E is an algebraic extension of F, each «; is
algebraic over F, so each «; is algebraic over every extension field of F'in E. Thus, F(ay) is algebraic
over F, and in general, F(a,...,a;) = F(aa,...,aj_1)(;) is algebraic over F(aq,...,a;_1) for
7 =2,...,n. Hence

[F(ozl,...,ozj_l,ozj) : F(Oq,...,Oéj_l)] = deg(aj,F(ozl,...,ozj_l)) < OO,V] = 1,. .o, n,
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where ag := 1. Therefore, by the tower law and E = F(ay,...,a,),

[E: F] = H[F(al,...,aj_l,aj) D F(a,...,05-1)] < 0.

<= Suppose that [E: F] < oco. If [E: F] =1, then E = F(1) = F, and we are done. If E # F,
let oy € ENF. Then [F(ay) : F] > 1. If F(ay) = E, we are done; if not, let ag € E, where
ag & F(aq). Continuing this process, we see from the tower law that since [E : F] is finite, we must
arrive at a,, such that F(aq,...,a,) = E. O

Theorem 1.74. Let E O F be a field extension. Then

Fg={a € E |« is algebraic over F}
is a subfield of E, the algebraic closure of F in E.

Proof. Let a, 3 € F. Then [F(a) : F] < co and [F(a, 8) : F(a)] < oo, and so [F(a,f) : F] < oo
by the tower law. Hence F' C F(«, 8) is an algebraic extension by Theorem 1.65. Since o, § € E,
F(a,B) C E, so F(a,3) € Fg. Thus, Fg contains a + 3, a8, a — 3, and also contains /3 for
B #0, so Fg is a subfield of E. O

Corollary 1.75. The set of all algebraic numbers forms a field.

Proof. Tt follows immediately from Theorem 1.74, because
The set of algebraic numbers = {«a € C | « is algebraic over Q} = Qc. O

Definition 1.76. A field F is algebraically closed if every nonconstant polynomial in F[z] has a
zero in F.

Remark. Note that it is possible that F' = Fg for some field extension E O F, without F being
algebraically closed. For example, Q = Qg, but Q is not algebraically closed because z2 + 1 has no
zero in Q.

Theorem 1.77. A field F is algebraically closed if and only if every monconstant polynomial in
F[z] factors in Flx] into linear factors.

Proof. = Let F' be algebraically closed and f(x) a nonconstant polynomial in F[z]. Then f(z)
has a zero a € F. By Theorem 1.33, z — a is a factor of f(x), so f(z) = (x — a)g(x) for some
g(z) € Flz]. Then if g(x) is nonconstant, it has a zero b € F, and we have f(z) = (z—a)(z—b)h(z)
for some h(z) € F[z]. Continuing, we get a factorization of f(z) in F[z] into linear factors.

<= Suppose that every nonconstant polynomial of F[z] has a factorization into linear factors.
If ax — b is a linear factor of f(x), then b/a is a zero of f(z). Thus, F is algebraically closed. [

Corollary 1.78. An algebraically closed field F' has no proper algebraic extensions, that is, no
algebraic extension E with F' C F.

Proof. Le be an algebraic extension. Let o € E. Since F is algebraically closed, irr(a, F) = x — «
by Theorem 1.77. Thus, a € F', and so F = F. O



14 CHAPTER 1. EXTENSION FIELDS
Definition 1.79. An algebraic closure F of F is an algebraic field extension F C F such that F is
algebraic closed.

Proposition 1.80. An algebraic closure F of F contains all the algebraic elements over F.

Proof. Let a be algebraic over F, then f(a) = 0 for some nonconstant f € F[z]. By Theorem 1.33,
x —a is a factor of f(x). But f factors into linear factors in F[z] by Theorem 1.77, thusa € F. O

Theorem 1.81. FEvery field F' has an algebraic closure.
Proof. Refer to the textbook. O
Remark. An algebraic closure of F' is unique up to isomorphism.

We will prove later using Galois theory the following result.

Theorem 1.82 (Fundamental Theorem of Algebra). C is algebraically closed.

1.8 Finite Fields

We shall show that for every prime p and positive integer n, there is exactly one finite field (up to
isomorphic) of order p™.

Theorem 1.83. Let F' D E be a finite extension of [E : F] =n < co. If |F| = q, then |E| = ¢".

Proof. Let {a,...,a,} be a basis for F as a vector space over F. Then every § € E can be
uniquely written in the form
B:b1a1+"'+bnan

for b; € F. Since each b; may be any of the ¢ elements of F', the total number of such distinct linear
combinations of the «; is ¢". O

Corollary 1.84. If F is a finite field of characteristic p, then E contains exactly p™ elements for
some n € N.

Proof. Let F be a finite field. Define a function ¢ by

p:Z— F

m——m-1

Then ¢ is a ring homomorphism with Ker(p) = mZ, where m = char(F). Then Z/mZ = ¢(Z)
embeds as a subring of F, and so m has to be a prime number, say p. Viewing F as a vector space
over Z/pZ and let n := dimg,pz(E). By theorem 1.83, |E| = p". O

Theorem 1.85. Let I be a field of |E| = p" (p prime and n € N) contained in an algebraic closure
Zy of Z,. Then the elements of I are precisely the zeros in Z, of the polynomial " —z in Zy[x].

Proof. The set E* of nonzero elements of E forms a multiplicative group of order p™ — 1 under the
field multiplication. Then for o € EX, o?"~! =1, i.e., a?" = a. Therefore, every element in E is
a zero of 2" — x. Since 2P — z can have at most p” zeros, we see that E contains precisely the
zeros of 2" — x in Zp. O
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Definition 1.86. Let n € N. An element a of a field is an n root of unity if o™ = 1. It is a
primitive n™ root of unity if o =1 and o™ # 1 for 0 < m < n.

Remark. Let F be a field of |E| = p™. Then the elements of E* are all (p” — 1)*" roots of unity.
Theorem 1.87. (F*,-) of nonzero elements of a finite field F is cyclic.

Proof. Tt follows from Corollary 1.35. O

Corollary 1.88. A finite extension E of a finite field F' is a simple extension of F'.

Proof. Assume that [F : F] = d < oo and E = F(ay,...,aq) for some ay,...,aq € E*. Since
|F| < oo and [E : F] < o0, |E| < co. Then there exists « € E such that (E*,:) = (a) by
Theorem 1.87. Then for i =1,...,d, a; = o™ for some n; € Z, so F(a) C E = F(a™,...,a™) C
F(a), and thus E = F(«). O

Example 1.89. Consider the finite field Z1;. Then (Z}9, ) is cyclic. Let us try to find a generator
of Z3 by brute force and ignorance. We start by trying 2. Since |Z;]| = 10 and |2| ‘ 12341, 12|
is either 2, 5 or 10. Now 22 =4 # 1,2 =42 =5 # 1, and 2° = (2)(5) = 10 = —1 # 1. Thus,
|2| = 10, and so 2 is a primitive 10*® root of unity in Z;;. All the generators of Z/{ are of the form
2", where ged(n, 10) = 1. These elements are

2l =92, 28=8 27T=7 2°=6.

2]

th
5 ged(m,10)

The primitive roots of unity in Z;; are of the form 2™ with |2™| = = 5, ie.,
ged(m, 10) = 2, that is,

22=4, 2t=5 20=9 28=3.

The primitive square roots of unity in Zj; are of the form 2™ with ged(m,10) = 5, that is 2° =
10 = —1.

Proposition 1.90. Let F be a field with algebraic closure F. Let a € F be a root of f. The
followings are equivalent.

(i) « is a multiple root of f.

(ii) « is a root of the derivative of f’

(iil) irr(ey, F) | f7.

Proof. (ii)=-(iii) follows from the definition of irr(a, F').

(iii)==(i) Assume irr(a, F) | f. Write f = (z — a)%q(z) + r(z) for some q,r € Flx] with r =0
or deg(r) < 2. Then f’ = 2(z — a)q(z) + (x — a)?¢/(x) + 7/(z). Since irr(e, F) | f'(z), f'(a) =0
and then (o) = 0. Since r = 0 or deg(r) < 2, there exist a,b € F such that » = ax + b. Since
a = r'(a) = 0, we have r = b and then f = (v — a)?q(x) + b(x). Since 0 = f(a) = b, we have
f=(x —a)? So f has a multiple root.

(i)=(ii) Write f = (z — a)?g(x) for some g € F[z]. Then f' = 2(z — a)g(z) + (z — a)?¢'(z)
and so « is a root of f’. O

Lemma 1.91. If F'is a field of prime characteristic p with algebraic closure F, then zP" — z has
p™ distinct zeros in F.
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Proof. Because F is algebraically closed, z?" —z factors F into a product of linear factors z — a, so
it suffices to show that f has no multiple roots over F. Since char(F) =p, [’ = praP Tl -1 =1,
and so f has no multiple roots over F' by Proposition 1.90. O

Lemma 1.92. If F is a field of prime characteristic p, then (o + §)?" = o?” + 87" for all o, € F
and all possible n € Z>.

Proof. Let o, 8 € F and n € Z>(. Then

n

p n
(a+ B = Z (771 )apn—iﬁi

=0

pt—1
_< > pﬂ0+zoap —zﬁz ( )aOﬁp"
=a?" + 7", O
Theorem 1.93. A finite field GF(p™) of p" elements exists for every prime power p™.

Proof. Let Z, be an algebraic closure of Z,, and
K = {zeros of P —x in Z,} C Z,,.
Let a, 8 € K. Then by Lemma 1.92,
(a+B)" =a + 5" =a+p,

implying that a+ 3 € K. The equation (a8)?" = a?" 7" = a3 shows that a8 € K. From o?" = a,
we obtain (—a)?" = (=1)?"a. If p is odd, then (—1)?" = —1, if p = 2, then (—1)?" =1 = —1.
Thus, (—a)?” = —a. Now 0,1 € K. For a # 0, o®" = « implies that (1/a)?" = 1/a. Any other
laws inherit from the ones of the field Zp since K C Zp. Thus, K is a subfield of Zp. Therefore, K
is the desired field of p” elements, since Theorem 1.85 showed that #?" — z has p" distinct zeros in
Z O

p-

Remark. For a € Z, since <pr, -y is a group, a” = a. Therefore, every element in Z, is a zero
of 2P — x. For a € Zp,

aP = (ap )p — ((ap )P)P == (- (aP)P "')P = a.
Thus, Z, C K.

Corollary 1.94. If F' is any finite field, then for every positive integer n, there is an irreducible
polynomial in F[z] of degree n.

Proof. By Corollary 1.84, we can let F have ¢ = p” elements, where p = char(F'). By Theorem 1.93,
there is a subfield K of F consisting precisely of the zeros of P —z and K = |p"™|. Every element
of F is a zero of " — x by Theorem 1.85. Using the fact that for o € F' we have a?” = o, we see
that for o € F,

o = (@ = (@ == @) =
Thus, F < K. Since |F| = p", |K| = p™ and [K : F] € N, the proof of Theorem 1.83 show that
[K : F] = n. By Corollary 1.88, K = F() for some 8 € K. Therefore deg(irr(5, F')) = deg(8, F) =
n. O
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Theorem 1.95. Let p be a prime and n € N. If E and E' are fields of order p", then E = E'.

Proof. Both E and E’ have Z,, as prime field, up to isomorphism. By Corollary 1.88, E is a simple
extension of Z, of degree n, so there exists an irreducible polynomial f(z) of degree n in Z,[x] such
that E = Z,[z]/(f(x)). Let a € Z, be such that f(a) = 0. Since irr(a, F) = f/a,, where a,, is the
leading coefficient of f(x), by Discussion 1.55 Case I, we have that

Fa) = Zy[z]/(ier(e, ) = Zp[x]/(f/an) = Zp[]/(f(z)) = E,

and so a € E. Because the elements of E are zeros of 2" — 2 by Theorem 1.85 and all zeros of
f are in E, we see that f(z) is a factor of 27" — x in Z,[z]. Because E’ also consists of zeros of
2" —x and f | 27" — 2, we see that E’ also contains zeros of irreducible f(x) in Z,[z]. Let a € Z,,

~

be a zero of f(z), then Z,[z]/(f(z)) = F(a) C E’. Because E’ also contains exactly p” elements,
E'= Zy[2]/(f (@) O
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Chapter 2

Automorphisms and Galois Theory

2.1 Automorphisms and fields

From now on in our work, we shall assume that all algebraic extensions and all elements algebraic
over a field F' under consideration are contained in one fixed algebraic closure F' of F.

Definition 2.1. Let E be an algebraic extension of a field F'. Two elements «, 5 € E are conjugate
over F if irr(o, F') = irr(f, F), that is, if a and f are zeros of the same irreducible polynomial over
F.

Remark. If we understand that by conjugate compler numbers we mean complex numbers that
are conjugate over R.

Example 2.2. If a,b € R and b # 0, the conjugate complex numbers a + bi and a — bi are both
zeros of 2% — 2ax + a® + b?, which is irreducible in R[x].

Theorem 2.3 (The Conjugation Isomorphisms). Let F' be a field, and o, B algebraic over F with
deg(a, F) =n. The map

Va5 1 Fa) — F(B)
n—1 n—1
Z ¢t —s Z e
i=0 i=0

is an field isomorphism if and only if a and B are conjugate over F.

Proof. => Assume that 1, g is an field isomorphism. Let irr(a, F) = """ a;z° for a; € F. Then
> gaiat =0, and so

0 = waﬁ(O) = Qﬁaﬁ (Z CLiOéi> = ZalﬁL
i=0 i=0
Then 8 is zero of irr(a, F) € Flz], and so irr(8, F) | irr(a, F') by Theorem 1.52(b). A similar

argument using the isomorphism (¢4,5) " = 15« shows that irr(a, F) | irr(8, F). Therefore, since
both polynomials are monic, irr(c, F') = irr(3, F), so « and 3 are conjugate over F'.

19
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<= Assume that irr(a, F) = f(z) = irr(5, F). Then

Fla) = F/ify = F()
Sideal d Y le @4 () S Sl

Also, with evaluation maps ¢, : F[z] — F(a) and ¢ : Flz] — F(8), we have a commutative
diagram:

F(a) N (z)/{f) T’ F(B)

Let 1a.5 = g 095", Then for Y1) ;0 € F(a),

n—1 n—1 n—1 n—1
VYa,p (Z a) = g0t (Z a> = (Z ci (z + <f>>i> => " ap'.
1=0 1=0

i=0 i=0
Thus, 14,5 is the map defined in the statement of the theorem. O

The following corollary is the cornerstone of our proof of the important Isomorphism Extension
Theorem of next section and of most of the rest of our work.

Corollary 2.4. Let « be algebraic over a field F. Every isomorphism ¢ mapping F(«) onto a
subfield of F such that t|r = id maps a onto a conjugate 3 of a over F. Conversely, for each
conjugate 3 of a over F, there exists exactly one isomorphism 1 of F'(a) onto a subfield of F such
that ¢¥(a) = 8 and ¢|F = id.

Proof. = Let v be an isomorphism of F(«) onto a subfield of F such that ¢|r = id for a € F.
Let irr(a, F) = Y1 a;2® for a; € F. Then ) ., a;a’ = 0, and so

0=1(0) = (Z aio/) =Y v(a)y(a’) = ai(a)’.
1=0 i=0 i=0

Thus, irr(¢(«), F) = irr(a, F'), and so 8 = ¥(a) is a conjugate of a.

<= Existence: For each conjugate 8 over F', the conjugation isomorphism 1), s of Theorem 2.3
is an isomorphism with the desired properties.

Uniqueness: Method 1: Since F(a) is an F-vector space with a basis {1,a,a?,...,a" !}, an
isomorphism ¢ of F(«) is completely determined by its values on 1 € F' and its value on « because
o(a’) = p(a)’. Thus, ¢, s is the only such isomorphism.

Method 2: Let ¢ : F(a) — E C F be an field isomorphism such that p(a) = 8 and ¢(a) = a
for a € F. Then for v = > " cia’ € F(a),

o) = (Z a) = S ple)pla) = 3 et =t <Z a) — G p().

=0 1=0 =0 =0

This implies that E = ¢(F(«)) = ¢a,8(F () = F(5). Thus, ¢ = 14 . O
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Corollary 2.5. Let f € Rlz]. If f(a+ bi) = 0 for (a + bi) € C, where a,b € R, then f(a —bi) =0
also. Loosely, complex zeros of polynomials with real coefficients occur in conjugate pairs.

Proof. We have seen that C = R(4). Now irr(i,R) = 22 + 1 = irr(—i,R). so i and —i are conjugate
over R. By Theorem 2.3, the conjugation map

i i:C—C
a+bi— a—bi
is an isomorphism. Assume that f(z) = > | ¢;a' for ¢; € F. Then, if f(a + bi) = 0, then
0=1;,—i(0) = ¥ —i(f(a+bi)) = —; <Z ci(a+ bi)’)

=0
= Zq/}iy,i(ci)wi_’,i(a + bl)l = Zci(a — bl)l = f(a - bl) O]

i=0 =1

Example 2.6. Consider Q(\@) over Q. The zeros of irr(\/i, Q) = 2% — 2 are V2 and —v/2, so V2
and —+/2 are conjugate over Q. According to Theorem 2.3 the map

bz vz QAV2) — Q(V2)
a+bv/2—a—bV2, a,beQ
is an isomorphism of Q(1/2) onto itself.
Definition 2.7. An isomorphism of a field onto itself is an automorphism of the field.

Definition 2.8. Let E be a field. Define the set Aut(E) by
Aut(F)={o: E — F | o is an automorphism}.

Definition 2.9. If ¢ is an isomorphism of a field E onto some field, then an element a of F is left
fized by o if o(a) = a. A collection S of isomorphisms of E leaves on a subfield F' of E fized if each
a € F is left fixed by every o € S. If {c} leaves F fixed, then o leaves F fized.

Example 2.10. Let F = Q(v/2,+/3). The map
c:FE— F

a+bV2+cevV3+dV6— a+bvV2—cV3—dV6, a,beQ
(a+bV2) +V3(c+dV2) — a+ V2 —V3(c+dV?2), a,beQ

is an automorphism of E; it is the conjugation isomorphism ¢ 5 _ =z of E onto itself if we view F

as Q(v/2)(v/3). We see that o leaves Q(v/2) fixed.

It is our purpose to study the structure of an algebraic extension E of a field F' by studying the
automorphisms of F that leave fixed each element of F'.
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Definition 2.11. Let E be a field. Let S := {0, | i € I} C Aut(E). Define the set Eg by alla € E
by
Es={a€ E|o;i(a) =a,Viel}

The field Eg is the fized field of S. For a single automorphism o, we shall refer to E, as the fized
field of o.

Example 2.12. Consider the automorphism ) V3,—3 of Q(v/2) given in Example 2.6. Then

Q(V?2) ={a+bV2|a,beQand ¢ 5 _ s5(a+bvV2) =a+bV2}
={a+bvV2|a,bcQanda—bvV2=a+0bV2}
={a+bvV2|a,beQandb=0}

={alacQ}

=Q.

Theorem 2.13. Let E be a field and S :={o; | i € I} C Aut(E). Then Es < E.

Yz —vz

Proof. Let a,b € Eg. Then o;(a) = a and o;(b) = b for all ¢ € I. Then for all ¢ € I, since o; is
a field homomorphism, o;(a — b) = 0;(a) — 0;(b) = a —b, so a — b € Eg. Since the o; are field
homomorphism, we have that ¢;(0) = 0. Hence Es # (. By subgroup test, (Es, +) < (E, +).

Let a,b € Eg ~ {0}. Then for all ¢ € I, o;(a/b) = oi(a)/oi(b) = a/b, so a/b € Eg. Since
the o; are field homomorphism, we have that o;(1) = 1. Hence Es ~ {0} # (). By subgroup test,
(Eg ~{0},") < (E~{0},).

The distributive laws of Fg inherit from the ones in E. Thus, Fs < F. O

Theorem 2.14. Let E be a field. Then Aut(E) is a group under function composition.

Proof. Note that Aut(E) C Sg, where Sg is the permutation group of E. The identity permutation
id: E — E is in Aut(E). Also, for 0,7 € Aut(E), o7~ € Aut(E). Thus, by subgroup test,
Aut(E) < Sg. O

Definition 2.15. Let E D F' be a field extension. Define G(E/F') by
G(E/F) ={o € Aut(E) | o|r = id}.

The group G(E/F) is the group of automorphism of E leaving F fized, or more briefly, the group
of E over F.

Example 2.16. Consider the field Q(v/2,v/3). Since irr(v/2, Q(v/3)) = 22 — 2 = irr(—v/2, Q(+/3)),

we have an automorphism
bz, vz QAV3)(V2) — Q(V3)(V2)
a+bvV2— a—bv2, a,be Q(V3),

and Q(V3)y , , = Q(V3). Since irr(v3,Q(v2)) = 2 - 3 = irr(—=v3,Q(v2)), we have an

automorphism
bos s QV2)(V3) — Q(vV2)(V3)
a+bV3+—a—bV3, a,b e Q(V?2),
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and (@(\/ﬁ)wﬁ’_¢§ = Q(v/2). Then Vs _vilya 3 € Aut(Q(v/2,/3)).

Let id : Q(v/2,v3) — Q(v/2,v/3) be the identity automorphism, o = Yz _vi 02 =Y 53
and 03 =¥ 5 _ 55 _ 3 One can check that o109 = 090;. Let G = {id, 01,09,03,04}. Then G

is a Klein 4-group and G < Aut(Q(v/2,/3)). For example,
0301 = 010901 = 0’%0’2 =id oy = 0s.

Thus, Q < Q(\/ﬁ, \/g)g < Q(\/ﬁ, \/ﬁ) by Theorem 2.13. Since {1,\/5, V3, \/6} is a Q-basis for
Q(\/i7 \/§>7 0’1(\/5) = _\/57 0—1(\/6) = _\/67 and 0‘2(\/5) = _\/37 we ha.Ve that

QW2,V3)g ={a:=a+bV2+cV3+dV6 | a,b,c,d € Q, and o(a) = a,Vg € G}
={a|acQ}
- Q.

Thus, G < G(Q(v2,v3)/Q). Let 0 € G(Q(v/2,v3)/Q). Then o € Aut(Q(v/2,v/3)), and so

o(v/2) € {£v/2} by Corollary 2.4 and by considering o : Q(v/3)(v2) = Q(v/3)(v2) € Q(v/3), and
o(v/3) € {£V/3} similarly. Since {1,/2,/3,v/2v/3} is a Q-basis for Q(v/2,v/3) and Q(+/2,/3) is a

Q-algebra, we have that o is determined by its values on v/2 and v/3,

V3 3 V3 2 V3 3 Vi V2
SRV I OV Rl 2% {uils

Now G gives all possible combinations of values on V2 and /3. Hence ¢ € G. Thus, G <

G(Q(v2,v3)/Q) € G, and so G(Q(v2,V3)/Q) = G.

Theorem 2.17. Let E D F be a field extension. Then G(E/F) < Aut(E). Furthermore, F' <
Ece/r-

Proof. Note that id € G(E/F). Let 0,7 € G(E/F). Then 0,7 € Aut(E), and so o7~ € Aut(E).
Also, 0(a) = a and 7(a) = a for a € F, and so o7 !(a) = o(a) = a for a € F. Hence o7~ ! €
G(E/F). Thus, by subgroup test, G(E/F) < Aut(E).

Note that Eqg/ry = {a € E | 0(a) = a,Vo € G(E/F)}. Let b € F. Then o(b) = b for any
o € G(E/F). Hence b € Eg(g/r), and so I' C Eqg/F)- O

Theorem 2.18. Let F' be a finite field of char(F) = p. Then

op: ' — F

a+— a?

is an automorphism, the Frobenius automorphism, of F. Also, Fi,} = Z).

Proof. Let a,b € F. Taking n =1 in Lemma 1.92, we see that (a + b)? = aP 4 bP. Thus, we have
opla+b) = (a+b)P =aP +b° = op(a) + op(b).

Of course,
op(ab) = (ab)? = a"B = 0y (a)ory (),
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so o is a field homomorphism. Note that
Ker(op) ={a € F|o,(a) =0} ={a € F | a® =0} = {0},

since F' has no nonzero zero divisors. Hence o, is 1-1. Finally, since F' is finite, o, is onto. Thus,
op is a field automorphism.

By the proof of Corollary 1.84, Z, is contained (up to isomorphism) in F, since char(F) = p.
For ¢ € Z,, we have o,(c) = ¢? = ¢, by Little Theorem of Fermat. Since the polynomial z? — x has
at most p zeros in I, the elements of Z,, are the zeros of 27 — . Therefore,

Fiopy={a€F|opla)=a} ={ac F|a’ =a} = Z, 0

2.2 The isomorphism extension theorem

Theorem 2.19. Let E be an algebraic extension of a field F'. Let o be an isomorphism of F' onto
a field F'. Then o can be extened to an isomorphism 7 : E — 7(E) C F' such that 7(a) = o(a) for
alla e F.

Corollary 2.20. If £ O F is an algebraic extension and «, 8 € E are conjugatione over F', then
the conjugation isomorphism 9,5 : F(a) — F(B) can be extended to an isomorphism of £ onto a
subfield of F'.

Proof. Since F C F and 8 € E C F, we have that F(3) C F. Hence F C F(8) C F, so F(8) =F.
The remaining follows from Theorem 2.19. O

Corollary 2.21. Let F and F’ be two algebraic closures of F.. Then there exists a field isomorphism
7: F — F’ such that 7(a) = a for a € F.

Proof. By Theorem 2.19, the identity isomorphism of id : F' — F C F’ can be extended to an
isomorphism 7 : F — 7(F) C F' = F’ such that 7|r = id.

F/

N

e
2\*‘
A
g
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We need only show that 7 is onto F. By Theorem 2.19, the map 771 7(F) — F can be extended
to an isomorphism « : F/ — «a(F') C F.

Using proof by contradiction and diagram chase, 7(F) = F'. O

Theorem 2.22. Let E be a finile extension of a field . Let o be an isomorphism of F' onto a field
F'. Then the number of extensions of o to an isomorphism T of E onto a subfield of F' satisfying
7(a) = o(a) for any a € F, is finite, and independent of F', F', and o, completely determined by
E and F.

Proof. Consider two field isomorphisms o1 : F' — F| and o5 : F — Fj. Note that oo0; " : F| — F}
is an field isomorphism. By Corollary 2.21, there is an field isomorphism A : F; — F% such that
ANp = o907 . Note that A~! : Iy — F is an field homomorphism such that A g =)' =
(o907 ) ™t = 0105t

By Theorem 2.19, there is an field isomorphism 71 : E — 71(F) such that 71|p = o7. Let
7o := A711. Then 7(E) = A (F). Since 71, A are field homomorphisms and 1-1, 75 is 1-1 and
an field homomorphism onto 75(E) = Am(E). Hence 71 is a field isomorphism. Also, ma|p =
ATi|p = Aoy = 0207 Loy = 09, where the second to last equality follows from that Al Fl = 0207 !
and Im(oy) C Fy.

F} A » FY

‘ Extends 020'1_1

m(E) «— 1 E RN o(E)

/ g1
Fl

By Theorem 2.19, there is an field isomorphism 75 : F — 7»(F) such that m|p = o2. Let
71 := A" '7y. Since 75, A™! are field homomorphisms and 1-1, 7; is 1-1 and an field homomorphism
onto 71(E) = A'(E). Hence 73 is a field isomorphism. Also, 71|r = A in|p = A7log =
o1 02_102 = 01, where the second to last equality follows from that A ™! \Fé = 0102_1 and Im(o9) C Fj.

o< At jali
17 2

‘ Extends o1 0'2_1

Ly —1
n(E) «t 2o p B o (E)
Fi oL F 72 F}
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Thus, we have a 1-1 correspondence between 1 : E — F'} and 7 B — F!y. In view of this 1-1
correspondence, the number of 7 extending o is independent of F/, F’, and o.
Since [E: F] < o0, E = F(ay,...,a,) for some a1, ...,a, € E by Theorem 1.73. Assume that

irr(q;, F) = 2™ + -+ + apnx + aio, aix € F.

Then "' + -+ +aj1a; + a0 = 0, s0 7(a;)™ + - + o(ai1)7(a;) + o(ai) = 0, hence 7(a;) must be
one of the zeros in F’ of

™+ -+ o(an)r + o(ap) € F'[z].

Thus, there are at most m; possible candidates for the images 7(a;) in F’. (Since F is algebraically
closed, irr(a;, F) factors in F[z] into linear factors, but irr(a;, F') may have multiple roots in F'.)
By a similar proof to the tower law and by inductive argument, there exists an F-basis B of the
F-vector space E such that each element in B is of the form o' ...a%. Also, E is an F-algebra,
hence the linear transformation 7 : £ — 7(F) is determined by 7(a1),...,7(as). Therefore, the
number of mappings extending o is finite. O

Definition 2.23. Let E be a finite extension of a field F. The number of isomorphisms 7 of £
onto a subfield of F' leaving F fixed is the index {E : F}, i.e.,

{E:F}:ﬁ{T’T:EiT(E)gFandTh?:id}.

Remark. By Theorem 2.22, {E : F'} is also the number of isomorphisms of E onto a subfield of F
satisfying 7|p = o where 0 : F — F” is a given field isomorphism.

Corollary 2.24. If F< E< K and [K : F] < oo, then {K : F} ={K : E}{E : F}.

Proof. Tt follows from Theorem 2.22, that each of the {F : F'} isomorphisms 7; of F onto a subfild
of F leaving F fixed has the same number of extensions to an isomorphism A of K onto a subfield
of F. When condering the identity field isomorphism 7; = id : E — E, the number of extensions to
an isomorphism of K is {K : E}. O

Example 2.25. Consider E = Q(v/2,v/3) over Q. Assume 7 : F — 7(F) C Q is an field isomor-
phism leaving Q(v/2) fixed. Since E = Q(v/2)(v/3) and irr(v/3,Q(v/2)) = 2% — 3, 7(v/3) is a root
of 22 — 3, by the proof of Theorem 2.22. Hence 7(+/3) have two choices: /3 and —/3, hence {F :
Q(v2)} = 2. Similarly, {Q(v/2) : Q} = 2. Thus, {E: Q} = {F: Q(v2)H{Q(?2) : Q} = 2(2) =4
by Corollary 2.24.

2.3 Splitting fields

Theorem 2.26. If an algebraic extension E of a field F is such that

{r|7:E S 7(E)CF and 7|p = id} C Aut(E),

then for every a € E, all conjugates of a over F must be in E also.
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Proof. Proof by contrapositive argument. Suppose that 3 € F is a conjugate of o over F and 3 ¢ E.
By Theorem 2.3, there is a conjugation isomorphism ¢, g : F(a) — F(8) such that ¢, g|r = id.
By Corollary 2.20, 1, 5 can be extended to an field isomorphism 7 : E — 7(E) C F such that
T|r(a) = ¥(, B). Then 7|r = ¢ (a, B)|F = id. Since

F(B) = tap(F(a)) = T|p@) (F(a)) = 7(F(a)) € 7(E).
we have that 8 € 7(E). Since 8 ¢ E, we have that 7(E) # E. Thus, 7 € Aut(E). O

Definition 2.27. Let F be a field. Let {f;(z) |i € I} C F[z]. A field E < F is the splitting field
of {fi(z) | i€ I} over F if E is the smallest subfield of F' containing F' such that each f; factors
in E[z] into linear factors.

A field K < F is a splitting field over F if it is the splitting field of some set of polynomials in

Proposition 2.28. If E < F is the splitting field of {fi(x)|i € I} over F, and ay, ..., oy, are all
the zeros of {fi(z) |i € I} over F (or over E). Then F = F(ay,...,0n).

Proof. DO follows from FF C E andgl, ..,y €F.
C Note that F(ay,...,am) C F contains F' and each f; factors in F'(a1,. .., ay,)[z] into linear
factors. Since F is the smallest subfield of F' satisfying these conditions, we have that £ C K. [

Proposition 2.29. Let F be a field and o, ..., 0y, € F. Then

F(alv"'aan): {M f’geF[xla"'vxm] and g(ala"'aam)#o}

:{f(ala~~~7aﬂ’I)‘feF[‘rlv"'7$m]}7

Proof. Tehe first equality follows from that F'(ay, ..., a,) is a field. Now we prove the second equal-
ity. By the finite-case proof of the tower law, we get a F-basis for the F-vector space F(aq, ..., Qm):

{adt - aim i, =0,...,deg(og, Fou,...,00-1)),Yk=1,...,m},

where o can be chosen to be any element in F', then F(«g) = F. Thus, an element of F'(aq, ..., ay,)
is of the form f(a1,...,am) with f € Flx1,..., 2] O

Example 2.30. We see that Q(v/2,1/3) is a splitting field of {z? — 2,22 — 3} over Q, and also of
{z* — 522 + 6} over Q.

Theorem 2.31. Let F' < E < F. Then E is a splitting field over F if and only if for each
o € G(F/F), we have that o|g € G(E/F).

Proof. = Let E be a splitting field over F of {f;(z) |i € I'}. Let 0 € G(F/F). Let {ay,...,amn}
be all the zeros of {f;(z) | i € I} in F. Then E = F(ay,...,q,) by Proposition 2.28. Since
(o]g)|r = o|r = id, the field isomorphism o|g : E — o|g(FE) is a linear transformation. Hence by
Proposition 2.29, o|g is determined by its action on the F-basis

{adt - alm i =0,... deg(ag, F(ai,...,an_1)),Yk=1,...,m}.

Since o|g is a field homomorphism, o| g is completely determined by a|g(1r), o|g(a1), ..., o|p(am).
But by Corollary 2.4, o|g(«;) is a zero of irr(«, F'). Assume that «; is a zero of f;(z) over F.. Then by
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Theorem 1.52, irr(a;, F) | fi(x). Hence over o|g(a;) is a zero of f;(z) in F[z], and so o|g(a;) € E.
Also, o|g(1F) = 1r € E. Thus, o|g(E) C E. Since 0 € G(E/F) is arbitrary, 0 ~!|g(E) C E. Then
for a € E, we have that

a=0(c""(a) =olp(c™ |p(a)) € o|p(E).

Therefore, E C o|g(F), and so o|g(E) = E. Thus, o|g € Aut(E), and so o|g € G(E/F).

<= Let g € Flx] be irreducibles with o € E a zero. Let  be any zero of g(x) over F.
Then there is a conjugation isomorphism ¢, g : F(a) — F(8) with 9, g|r = id. Note that 1, g
can be extended to an field isomorphism 7 : F — 7(F) C F such that 7|p() = %a,s. Then
T|F = Ya,glF = id.

F(B)=F
F = Fla) —Z— 7(F)
Fla) —222— F(B)

Then 77! : 7(F) — F can be extended to an isomorphism \ : ' — \(F) C F.

F=F

=

F—2— 5 \P)

Cc ‘ =
F

By diagram chase, 7(F) = F. Thus, 7 € G(F/F). Then by assumption, 7|z € G(E/F). Then
B =tap(@) =7lp@(a) =7(a) = 7|p(a) € E.

Hence all zeros of g(x) in F are in E. Thus, if {gr(z)} is the set of all irreducible polynomials in
F[z] having a zero in E, then E is the splitting field of {gi(z)} by Proposition 2.28. O

Definition 2.32. Let E > F be a field extension. A polynomial f € Flx] splits in E if it factors
into a product of linear factors in E|x].

Example 2.33. The polynomial 2 — 522 + 6 in Q[z] splits in the field Q[v/2] into (x — v/2)(z +
V2)(z = V3)(x + V).

Corollary 2.34. If E < F is a splitting field over F, then every irreducible polynomial in F[z]
having a zero in E splits in F.

Proof. If E is a splitting field over F in F, then for each o € Aut(F) with o|r = id, we have that
olg € Aut(FE), where (o|g)|r = o|r =id. T he second half proof of Thereom 2.31 showed precisely
that E is also the splitting field over F' of the set {gr(z)} of all irreducible polynomials in F[z]
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having a zero in E. Thus an irreducible polynomial f € Fi:r] having a zero in E has all its zeros in
F in E. Therefore, its factorization into linear factors in F[x] actually takes place in E[z], so f(z)
splits in F. [

Corollary 2.35. F < F is a splitting field over F if and only if for every field isomorphism
o0:E — o(F)C F with o|p = id, we have that 0 € G(E/F). In particular, if E is a splitting field
over F and [E : F] < oo, then

{E:F} =|G(E/F)|.

Proof. = Let 0 : E — o(E) C F be with o|p = id. By Theorem 2.19 and the second half of the
proof of Theorem 2.31, we can extend o to an 7 € G(F/F) with 7|g = o. Since F is a splitting
field over F', 0 = 7|g € G(E/F) by Theorem 2.31. Hence

{0 ‘ 0:EZ o(E)CF and o|p = id} C G(E/F).
It is clear that N B

{a ‘ 0:E 2 o(E)CF and o|p = id} > G(E/F).
Since [E : F] < o0,

(E:F) =t {a ‘ 0:EZ o(E)CF and o|p = id} = |G(B/F)|.
—Leto: F = o(F) C F be with o|g = id. Then o|g : E — o(E) C F with (¢|g)|r = o|r =
id. Hence o|g € G(E/F) by assumption. Thus, E is a splitting field over F' by Theorem 2.31. O
Example 2.36. We know that Q(v/2,v/3) is the splitting field of {22 — 2,22 — 3} over Q. Exam-
ple 2.16 showed that G(Q(v/2,v/3)/Q) = {id, 61,02, 03}. Then
{Q(v2,v3) : Q} = |G(Q(V2,V3)/Q)| = 4.

In fact, if 0 € Aut(Q(v/2,v/3)), then o|g = id since Q is the prime subfiel of Q(v/2,1/3). Hence
Aut(Q(\/E, \/g)) = {ld7 g1,02, 0'3}.

Example 2.37. Note that 2> —2 doesn’t split in Q(v/2). By the factor theorem, 2% —2 = (z—/2) f,
where f € Q(+/2)[z] is irreducible of deg(f) = 2 Let E be a splitting field of 2® — 2 over Q. (Then

E is also a splitting field of f over Q(v/2)). Let o := a + bi be a root of f over Q(v/2) = Q. Then
a@=a—bi=a+2acQ(V2,a)since a € Q(v/2) and b € Q. Hence E = Q(v/2,a,a) = Q(V/2, a).
Since irr(a, Q(/2)) = f, we have that

[E: Q(V2)] = [Q(V2)(a) : Q(V2)] = deg(a, Q(V/2)) = deg(irr(c, Q(V/2))) = deg(f) = 2.
Then

[E:Q]=[E:Q(V2)][Q(V2): Q] = 2(3) = 6.
Note that the zeros of 2 — 2 in Q is

—14iV3 —1—4V3
\3/57 \:75%7 \3/5 2 .
Thus the splitting field E of 23 — 2 over Q is
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2.4 Separable extensions

Definition 2.38. Let f € F[x]. A zero a € F of f is of multiplicity v if
VZIH&X{?TLEN‘ (x —a)™| finF[m]}.

Theorem 2.39. Let f € F[z] be irreducible. Then all zeros of f(x) in F have the same multiplicity.

Proof. Let a, B be zeros of f(x) in F. Then by Theorem 2.3, there is a conjugation isomorphism
Ya,p : F(a) — F(B) with ¢, s|r = id. By Corollary 2.20, 9, s can be extended to an isomorphism
7: F — F. Define the natural map 7, by

7y Flz] — Flx]

We will show that 7, is a field homomorphism.

Let Y7 a;zt, >0 bjz? € Flz]. By adding some corresponding zero terms, we can assume
that m = n. Then it is straightforward to show that 7, is an additive group homomorphism.

Let Y7 gai’, Y7 o bja? € Fla]. Assume that a; = 0 when m +1 < i < m+n and b; = 0
when n+1 <5 <m+n. Then

m n m+n k
(Z aiaji> ijxj Ta (Z Zagbk_gxk>
i=0 =0

k=0 ¢=0
m+n k
=2 D rlabr-ea)
k=0 ¢=0
m+n k
=D D mlacbi—s
k=0 ¢=0
m+n k
= 7(ag)T(bp—g)z"
k=0 ¢=0
m n
= Zv(ai):ﬁ) > (b))’
=0 7=0

Hence 7, is a multiplicative group homomorphism.
Note that for i € N 7((—a)") = Ya.5((—a)") = (Yo s(—a))’ = (—tha g(a))" = (=B)". Let v be
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the multiplicity of « in f. Since 7, is an additive group homomorphism,

= (- B)"

Since 7|p = (T|p(a))|F = Ya,8|F = id, we have that 7, (f(z)) = f(z). Write f = (z — a)”g(z) with
g € Flz]. Then since 7, is a multiplicative group homomorphism,

f(@) = m(f(2) = ((x — @) g(2)) = 7a((x — a)")7(g(2)) = (z = B)"72(9(2)).

Thus, the multiplicity of 8 in f(z) is greater than or equal to the multiplicity of a. A symmetric
argument gives the reverse inequality, so the multiplicity of «a equals that of 3. O

Corollary 2.40. If f € F|x] is irreducible, then f(z) has a factorization in F[z] of the form
a H(m — ;)"

where the o; are the distinct zeros of f(x) in F and a € F.
Proof. 1t is immediate from Theorem 2.39.

Example 2.41. Let E = F,(y), where y is an indeterminate. Let ¢ = y? and F = F,(¢)
Now E = F(y) is algebraic over F, for y is a zero of (2P —t) € Fp(t)[z] = Flz]. Since y
irr(y, F) > 2. Since char(E) = p, we have that in E,

< E.
¢ F,
P —t=2aP —y? = (x —y)*.

By Theorem 1.52(b), irr(y, F') | 2P — ¢ in F|z], and so irr(y, F) | (z — y)P in E[z]. Thus, irr(y, F) =
(x —y)? in E for some 2 < ¢ < p, so y is a zero of irr(y, F) of multiplicity > 1.

Remark. Show that irr(y, F) = aP — t.

Theorem 2.42. Let o € F be algebraic over F. Then
{F(a) : F} = t{distinct zeros of irr(a, F) in F}.
Proof. Note that

(F(a): F} =t {T ] 7 F(a) 2 7(F(a)) C F and 7|r = id} .
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Let a := ay,...,q, be distinct zeros of irr(a, F) in F. By Theorem 2.3, we have n distinct field
isomorphisms: 94, @ F(a) = F(o;) C F and 7|p = id. Hence {F(a) : F} > n. Corollary 2.4

shows that for each T such that 7 : F(«) =N 7(F(a)) C F and 7| = id, we have that 7(a) = o
for some i. Then 7 = y.a,. Thus, {F(a): F} =n. 0

Recall 2.43. A finite field extension is an algebraic extension.
Theorem 2.44. If E > F is a finite field extension, then {E : F} | [E : F].

Proof. By Theorem 1.73, E = F(ay,...,qy) for some a; € F. Set ag € F. Fori = 1,...,n,
we assume that irr(ay, F'(a1,...,a;—1)) has n; distinct zeros, each of which is of multiplicity v; by
Theorem 2.39. Then by Theorem 1.66,

n

[E:F]l=][][F(en, .. cic1,0i) : Flon,...,0i1)]

i=1

= Hdeg(ai, Flag,...,a;—1))
i=1

= anyz
i=1
By Corollary 2.24,
{E : F} = H{F(Oll, . ,ai,l,ai) : F(ah N ,042'71)}
=1
i=1
Thus, {E: F} | [E: F]. O

Definition 2.45. A finite field extension E of F'is a separable extension of Fif {E: F'} = [E: F].
An element « € F is separable over F if F(«) is a separable extension of F'.

Example 2.46. The field E = Q[v/2,1/3] is separable over Q since we saw in Example 2.36 that
{E:Q}=4=[FE:Q)]

Definition 2.47. An irreducible polynomial f € F[x] is separable over F' if every zero of f(x) in
F[z] is of multiplicity 1.

Theorem 2.48. o € F is separable over F if and only if irr(«, F) is separable over F.

Proof. o € F is separable if and only if F(a) is a separable extension of F' if and only if {F(«) :
F} =[F(«): F] if and only if

# {distinct zeros of irr(a, F) in F} = {F(a): F} = [F(a) : F] = deg(irr(a, F))

if and only if each zero of irr(«, F) is of multiplicity 1 if and only if irr(«, F') is separable over F. [
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Theorem 2.49. If K > E > F are finite field extensions, then K is separable over F if and only
if K is separable over E and E is separable over F.

Proof. Note that [K : F]=[K : E|[E: F]and {K : F} ={K: E}{FE: F}.

= Assume that K is separable over F'. Then [K : F] ={K : F'},and so [K : E|[E : F] ={K :
F}y={K:EW{E:F}. Since {K:E}|[K:E]and {E: F} | [E: F] by Theorem 2.44, we have
that {K : E} = [K : E] and {E : F} = [E : F|. Hence K is separable over E and E is separable
over F'.

<= Assume that K is separable over E and E is separable over F. Then {K : E} = [K : E]
and {E : F'} = [E : F]. Hence

[K:F|=[K:FE|[E:F|={K:E{FE:F}={K:F}.
Thus, K is separable over F'. O

Corollary 2.50. If E > F is a finite field extension, then F is separable over F' if and only if each
«a € F is separable over F.

Proof. = Let aw € E. Then F < F(a) < E. Hence F(a) is separable over F' by Theorem 2.49,
and so « separable over F'.
<= Since [E : F] < oo, there exist a, ..., o, such that

F < F(loq) < Flaj,az) <--- < E=F(aq,...,an).

Since «; is a zero of irr(oy;, F') € F(aq, ..., a;—1)[z], we have that irr(a;, F(oq, ..., 0;—1)) | irr(ag, F)
by Theorem 1.52. Now since «; is separable over F, «; is separable over F(ay,...,a;—1). Thus,
F(aq,...,q;) is separable over F(aq,...,a;—1). Therefore E is separable over F' by Theorem 2.49,
extended by induction. O

Lemma 2.51. Let B
f@)=a"+an12" "+ + a1z + ag € Fla]

If there exists m € N with m - 1p # Op such that (f(z))™ € F[z], then f(z) € F[z].

Proof. 1t is equivalent to show that a,_, € F for r = 1,... ,n. We proceed by induction on r, to
show that a,,_, € F.
Base case: When r = 1, we have that

because
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Then (m - 1p)a,—1 € F. Since m - 1p # Op, we have that m~11F € F, hence
1 " (m-1r) " f(m- 1e)a, ] € F
Op_1=1pa,_1 = m- Ap_1 = m- Gy .
n—1 Fln—1 m~1F F n—1 m~1F F)Un—1
Induction step: Suppose that a,_, € F for » = 1,...,k. Then the coefficient of z™"~(*+1) in
(f(x))™ is of the form
(M- 1p)an— (k1) + Grs1(@n_1,n_2,. .., Gn_p),

where gr11(an-1,an-2,...,0,—k) is a formal polynomial expression in a,_1,a,—2,...,6,—k. By
the induction hypothesis that we just stated, grq1(an—1,an-2,...,0n—) € F, 50 ap_(441) € F,
since m - 1p # Op. O

Definition 2.52. A field is perfect if every finite field extension is a separable extension.
Theorem 2.53. Every field of characteristic zero is perfect.

Proof. Let F be a field of char(F) = 0. Let E > F be a finite field extension. Let o € E. Then by

Corollary 2.40 in F[x]
irr(a, F) = H(x —a;) = (H(x — ozi)> .

where «; are the distinct zeros of irr(«, F), and, say, &« = ayq. Since char(F) = 0, we have that
v-1p # Op, so [[,(x — o;) € F[z] by Lemma 2.51. Since o = oy is a zero of [[,(z — a;) € Flz], we

have that y
<H<x - ao) = irr(e. F) | [J(@ o)

by Theorem 1.52(b). Hence v = 1. Thus, « is separable over F'. Therefore, F is separable over F
by Corollary 2.50. 0

Theorem 2.54. Every finite field is perfect.

Proof. Let F be a finite field of char(F') = p, where p is prime. Let E > F be a finite extension. Let
a € E. We need to show that « is separable over F'. Now we assume that irr(o, F) = [[,(z — ;)"
where the «; are the distinct zeros of f(z), and, say, a = a;. Write v = p'e, where p { e. Then

Flz] 3 irr(o, F) = H(m —q;) = (H(m - ai)pt> .
Since e - 1p # Op, [[;(x — ;)P € Flz] by Lemma 2.51. (Since irr(a, F) is of minimal degree over
F having « as a zero, we must have e = 1.) Note that
Flz] > H(x - ozi)pt = H(x”t - aft)
by Lemma 1.92 since char(F) = p. Let g(z) := [[,(z — ozft). Then g(z) € F[z] since g(z) can be

obtained from Hi(mpt —af t) by lowering the degree of the corresponding terms of irr(«, F') while
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keeping the coefficients. Since 2P — ot = (x — a)pt, we see that « is the only zero of a2 — o
in F. Now g(z) is separable over F with distinct zeros o . Then irr(a?’, F) = irr(a’l’t,F) | g(z),
and so irr(apt,F) is separable. Hence o? s separable over F' by Theorem 2.48. Then F(apt) is
separable over F'.

Since [F : F| < oo, a € F is algebraic over F. Then [F(«) : F| < oo, so F(«a) is algebraic over
F', hence aP’ s algebraic over F. Thus, F(oﬁ’t) is a finite-dimensional vector space over the finite
field F, so F(a?") must be a finite field of cardinality p™ for some n € N. Then char(F(a?")) = p
by Corollary 1.84. Hence by Theorem 2.18, 0, € Aut(F(ar")), where

op F(apt) — F(ozpt)

a+— aPl.
Consequently, (0,,)" € Aut(F(a?")) by Theorem 2.14, where

(0p)! : F(a?') — F(a?)

b— bP'

Since (0,)" is onto and a?" € F(a?"), there exists 8 € F(a?') such that o?" = (0,,)!(8) = 4?". Thus,
B = a. Since 8 € F(a?"), we have F(8) C F(a?') C F(a) = F(B). Hence F(a) = F(a?'). Since
F(a?") was separable over F, we now see that F(«) is separable over F. Therefore « is separable
over F. (Lemma 1.92 implies t = 0 .) Thus, « is a separable extension of F' by Corollary 2.50. O

Theorem 2.55 (Primitive element theorem). If E O F is a finite and separable extension, then
E = F(0) for some o € E. (Such an element o is a primitive element.)

Proof. Assuem that |F| < co. Then |E| < oo, and so E* = (a) for some a € E by Corollary 1.35.
Clearly, E = F(«).

Assume that |F| = co. It is enough to show that for o, 8 € E, F(«a,) = F(0) for some
0 € E. Let 8 = ay,...,a, be the roots of irr(a, F) and Si,...,8s be the roots of irr(S, F)
over F. Since F is infinite, we can choose ¢ € F such that g;:a # —cfori =1,...,r and
j=2,...,s. Hencea+c¢(B8—Bj) # s fori =1,...,rand j =2,...,s. Let § := o+ ¢f and
f(z) :=irr(a, F)(0 — cx) € F(0)[z]. Then

F(8) = inr(a, F)(0 — cf) = irr(a, F) (@) = 0.
Since o +¢(f — B;) #a; fori=1,...,rand j = 2,...,s, we have that

f(B;) =1irr(a, F)(0 — cf;) = irr(a, F)(a+ (B — 55)) #0,Vji=2,...,s.

This implies f and irr(8, F)) only have one root § in common. Since f(8) = 0 and f € F(0)[z],
irr(8, F(0)) | f. Since irr(8, F)(8) = 0 and irr(5, F) € F(0)[x], we have that irr(8, F(9)) | irr(5, F).
Since E D F is separable, we have that F(3) is separable over F, and so irr(5, F') is separable
over F. Then F(0)[z] > irr(8,F(0)) = u(z — B) for some u € F(#)*. Hence u=' € F(f) and
uB € F(0), so B3 =u"'(uB) € F(A). Then a = 0 — cB € F(A), and so F(«a,3) C F(0). Also, since
0=a+cfeFla,p), F(0) C F(a,B). Therefore, F(0) = F(a,0). O

Corollary 2.56. A finite extension of a field of characteristic 0 is a simple extension.
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Proof. Tt follows from at once from Theorem 2.53 and 2.55. O

Example 2.57. Q(v/2, \/3) =Q(V2+V3).
Proof. Q(v/2,v/3) is a simple extension of Q. Indeed,

Vi (V2HV3+(VB-V2)  V2+V3 1 c QW2+ V3),

2 2 a3+ B)
_ VIV +(V2-VE) _VEEVE 1
V2 = 5 = 2(\/§+\/§)EQ(\/§+\/§). O

2.5 Galois Theorem
Recall 2.58. (a) If F < E, then

G(E/F) = {0 € Awt(E) | o|p = id}.

(b) Let F < E < F and 0 € G(E/F). Then for any a € E, o(a) = 3 for some conjugate 3 of «
over F.

(¢c) Let F < E. For any S C G(E/F),
Es={ec E|o(e) =¢,Vo €S}
Also, F' < Eg(p/r) < Es for any S C G(E/F).

(d) E is a splitting field over F if and only if for each o € G(F/F), we have that o|r € G(E/F) if

and only if for cach o : E — o(E) C F with | = id, we have that o € G(E/F). If [E : F] < 0o
and F is a splitting field over F, then |G(E/F)| ={E : F'}.

(e) Let [E : F] < co. Then E is separable over F if and only if {F : F} = [E : F]. Also, E is
separable over F' if and only if irr(«, F) has all zeros of multiplicity 1 for every a € E.

(f) If [E : F] < oo, then F is a separable spliting splitting field over F' if and only if |G(E/F)| =
{E:F}=[E:F].

We are going to be interesed in finite extensions K of F' such that for every o : K = o(K)CF
with o|p = id, we have that 0 € G(E/F), and such that [K : F] = {K : F}. In view of results (d)
and (e), these are the finite extensions of F' that are separable splitting fields over F.

Definition 2.59. A finite extension K of F is a finite normal extension of F if K is a separable
splitting field over F.

Theorem 2.60. Let K be a finite normal extension of F and F < E < K < F. Then K is
finite normal extension of E and G(K/E) < G(K/F). Moreover, for o,7 € G(K/F), we have that
olg =7l|g if and only if c G(K/E) = 1 G(K/E) in G(K/F)// G(K/E).
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Proof. Assume that K is the splitting field of a set {f;(z) | i € I} C F[z]. Then K is the splitting
field of {f;(z) | i € I} C Elx], so K is a splitting field over E. Since [K : F| < oo and K is separable
over F', K is separable over ' by Theorem 2.49. Thus, K is a finite normal extension of F.

Let 0 € G(K/E). Then o € Aut(K) and o|g = id. Hence o|p = (o|p)|r = ([d|g)|r = id|F,
and so o € G(K/F). Thus, G(K/E) C G(K/F). Since G(K/FE) is a group, G(K/E) < G(K/F).

Note that 0 G(K/E) = 7 G(K/E) if and only if 770 € G(K/E) if and only if ¢ = 7y for some
we€ G(K/E).

= Assume that o = 7 for some p € G(K/E). Then

ole = (Tl = Tmp)tle = Tleid = 7[5
<= Assume that o|g = 7|g. Then 770 € Aut(K) and
(r7'0)E =7 im(elx)01E = T im(r|)7|E = idE .
Thus, 7710 € G(K/E). O

Corollary 2.61. Let K be a finite normal extension of ' and F < F < K < F. Then we have a
bijection

L

v:GK/F)]/]G(K/E) — {0 ’ o:F
g :=0G(K/E) — o|g.

o(E)C F and o|p = id}

If F is also a splitting field over F', then we have a bijection

p:G(K/F)/|G(K/E) — G(E/F)
g :=0G(K/E) — o|g.

Proof. Theorem 2.60 shows that ¢ is a well-defined 1-1 map. Let o : E —» o(E) C F be with o|p =

id. Since K D E is an algebraic extension, by Theorem 2.19 we can extend o to 7 : K =N T(K)CF
such that 7|z = 0. Note that 7|p = (7|g)|F = o|r = id. Then by Corollary 2.35, 7 € G(K/F).
Since ¢(7) = T7|r = 0, we have that ¢ is onto.

If F is a splitting field over F', then by the proof of Corollary 2.35,

{U‘U:Eia(E)QFanda|F:id}:G(E/F). O

Remark. F is a finite normal extension of F' if and only if G(K/E) < G(K/F). In this case, we
have a group isomorphism

¢: G(K/F)/G(K/E) — G(E/F)
7 :=0G(K/E) — ol|g.

Example 2.62.

Definition 2.63. If K is a finite normal extensionf of a field F, then G(K/F) is the Galois group
of K over F.
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Theorem 2.64 (Main Theorem 1 of Galois Theory). Let K be a finite normal extension of a field
F. Then we have a 1-1 correspondence:

{E|F<E<K}— {H|H<G(K/F))

E+% G(K/E)
Ky <~ H

Proof. 1t is straightforward to show that ¢ is well-defined.

We then show that for F with F < E < K, yoAE) =E, ie., Kgk/p) = E.

D follows from Theorem 2.17.

C It is equivalent to show that K \ £ C K \ Kg(k/p). Let « € K\ E. Since K 2 F is a
finite normal extension, we have that K O FE is a finite normal extension by Theorem 2.60. Hence
irr(e, ) is separable, so there is a zero § € irr(o, F) with 8 # a. Let o5 : E(o) — E(B)
be the conjugation isomorphism. By isomorphism extension theorem, ¢, g can be extended to an
isomorphism 7 : K — 7(K) C E such that 7|g(a) = ta,g. Since K 2 E is a finite normal extension,
7 € G(K/E) by Corollary 2.35. However, T7(a) = tq,s(e) = 8 # @, s0

ag{ac K|o(a)=a,Voe€GK/E)} = Kqk/p)

Finally, we show that for H with H < G(K/F), Aoy(H) = H, i.e.,, G(K/Kg) = H.

D Let 7€ H< G(K/F). Then 7 € Aut(K). Since Ky = {a € K | 0(a) = a,Vo € H}, we have
that 7|k, =id. Thus, 7 € G(K/Kpg).

C Suppose that H < G(K/Kp). Since K D F is a finite normal extension and F' < Ky < K,
we have that K O Ky is a finite normal extension by Theorem 2.60. Then

|H| <|G(K/Kp)| ={K: Kp}=[K: Kyl

Also, K = Kg(a) for some a € K by Theorem 2.55. Assume that H = {01,..., 05|} and consider

the polynomial
|H|

f@) =[x = oi(a)) € Ka].
i=1
Now the coefficients of each power of x in f(x) are symmetric expressions in the o;(«). Let o € H.
Then we can replace each o; with oo; for each occuring o; in the coefficients of all terms in f,

resulting in
|H| |H|

[[@@~ (eoi)(@)) = [z — 0i(a)) = f(2).

i=1 i=1

Since o is a field homomorphism, each coefficient in the term of Hliﬂl (z — (00;)(a)) can be written
o(a), where a is the coefficient of the corresponding term in lell (x—0i(«)). Hence these coefficients
are invariant under each o; € H, so f € Ky[x]. Since H < G(K/F), we have that o; = id for some

i€ {l,...,|H|}. Hence o;(c) = , and so f(a) = 0. Therefore we would have
deg(a, Kp) < deg(f) = |[H| < [K : Kn] = [Ku() : K] = deg(a, Kp),

which is impossible. O
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Theorem 2.65 (Main Theorem 2 of Galois Theory). Let K be a finite normal extension of a field
F. Then

(a) [K: E]l = |G(K/E)| and [E: F] = |G(K/F)// G(K/E)|.
(b) E is a finite normal extension of F if and only if G(K/E) < G(K/F). In this case,
G(E/F)2G(K/F)/G(K/E).

(c) The diagram of subgroups of G(K/F) is the inverted diagram of intermediate fields of K over
F.
Proof. (a) Since K is a finite normal extension of E, [K : E] = {K : E} = |G(E/F)| by Deffini-
tion 2.45 and Corollary 2.35. Since K is a separable extension over F', E is a separable extension
over I’ by Corollary 2.50. Then

[E:F]:{E:F}:{a‘J:EiJ(E)QFandU\F:id}.

Since K is a finite normal extension of F' and F < F < K < F, by Corollary 2.61
{o ‘ 0B = o(E) CF and ofp =id} = |G(K/F)// G(K/E)|.
Thus, [E: F] =|G(K/F)// G(K/E)|.
(b) We showed that F is a finite separable extension of F'. So it is equivalent to show that F
is a splitting field over F' if and only if G(K/E) < G(K/F). Since K is normal over F', every
isomorphism ¢ : ' — ¢(E) C F' can be extended to 7 € G(K/F) with 7|g = 0. Hence G(K/F)
induces all possible isomorphisms of F onto a subfield of F' leaving F' fixed. Thus, by Theorem 2.31
E is a splitting field over I if and only if for all 0 € G(K/F), o|g € G(E/F). Since E = Eqk/E)
by Theorem 2.64,
Vo e G(K/F),o|lg € G(E/F)
<= Vo eGK/F),Too|g=o0|g, V7 € G(K/E)
<= o0 1ol =id,Yo € G(K/F) and V7 € G(K/E)
<=0 'or00€G(K/E),Yo € G(K/F) and V7 € G(K/E)
— G(K/E)dG(K/F).
Assume that E is a finite normal extension of F. Then for 0 € G(K/F), o|p € G(E/F). We
have a group homomorphism

¢:G(K/F) — G(E/F)
o+— ol|g.

Let 7 € G(E/F). Then 7 can be extend to 7" € G(K/F) with 7'|g = 7 since K D F is a splitting
extension. So ¢ is onto. Note that

Ker(9) = {o € G(K/F) ‘ olp = id} = G(K/E).
Therefore, by the Fundamental Isomorphism Theorem,

G(E/F) = G(K/F)/ G(K/E). O



	Extension Fields
	Commutative Rings
	Maximal and Prime Ideals
	P.I.D.
	Euclidean Domain
	Factorization of Polynomials over a Field
	Introduction to Extension Fields
	Algebraic Extensions
	Finite Fields

	Automorphisms and Galois Theory
	Automorphisms and fields
	The isomorphism extension theorem
	Splitting fields
	Separable extensions
	Galois Theorem


