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Chapter 1

Fundamental Properties of
Monomial Ideals

Let A be a nonzero commutative ring with identity and R = A[X7,..., X4].

1.1 Monomial Ideals

Notation 1.1.
(nl,...,nd) :QGNS

_ xm ng
X=X X7
which is monomials in X1, ..., Xg.

Remark. A monomial is nonzero.

Definition 1.2. A monomial ideal I in R is an ideal generated by a set of monomials in I or R.

Denote this as I <,,, R.

Definition 1.3. If I <,,, R, then
[I] = {monomials in I} = I N[A[X1,...,X4] = I N[R].

Lemma 1.4. Let I <,,, R, then (I N[R]) = ([I]) =I.
Proof. Let I = (S), where S C [I]. Then I = (S) C ([I]) C I.
Theorem 1.5. Let I,J <,,, R. Then
(a) I CJ if and only if [I] C [J].
(b) I =Jif and only if [I] = [J].
Proof. (a) It folllows from I = ([I]) and J = ([J]).
(b) By (a), I =J ifand only if I C J and J C I if and only if [I] C [J] and [J] C [{].
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2 CHAPTER 1. FUNDAMENTAL PROPERTIES OF MONOMIAL IDEALS

Definition 1.6. The d-tuple n € N¢ is the ezponent vector of X™ =: f € [R].
Definition 1.7. Let f,g € [R]. f is monomial multiple of g if f = gh for some h € [R].
Remark (Notation). Let m,n € Nd. m = n means m; > n; fori =1,...,d.

Lemma 1.8. Let f = X™ g=X" € [R]and h € R. If f = gh, then h € [R], m > n and h = X2,
Whereg:m—@.

Proof. Let h = Y _\ o, X?, where A C Nf is finite and 0 # a,, € A for p € A. Then X™ =

PEA
f=gh=X" ZpGA ap Xt = ZpGA agiﬂ"’ﬁ. Since monomials in R are A-linear independent
l 1 if@+ﬂ;m _ f_ Ym _ YnYP _ ,YP G
as A-module, ap = { 0 ifntp#m forp e A. So gh = f = X* = X*XP = gXP. Since
X2 eNZD(R), h = X2 Alsoom=n+pi=nand p=m—n. O

Lemma 1.9. Let R = A[X},..., X, ] and f = X™ and g = X*™. The followings are equivalent.
(a) fegRr.

(b) f is a multiple of g.

(¢c) f is a monomial multiple of g.

(d) m

(e) m € (n) == {p € Njlp = n}.

Proof. (d)==(c) If m 3= n, then p:=m —n € N%. Let h = X2 then gh = X2 = X™ = f. So f

is a monomial multiple of g. O

Theorem 1.10. Let f, f1,...,fn € [R]. Then f € (f1,..., fn) if and only if f € (f;) for some
ie{l,...,n}.

Proof. <= 1t is straightforward.

= Let f € (f1,..., fn). Assume f=X"and f; = X" fori=1,...,n. Then f = Z?:lgifi,
where g; = Zﬁmte aipXP e R So X" =f=3%" gfi=>", ngte @; p X" 2. Hence there
exists i € {1,...,n} and p € N¢ such that f = X™ = X™T2 = f,XP O

Lemma 1.11. Let I < R. The followings are equivalent.
(a) I < R.
(b) For f € I, each monomial occuring in f is in I.
Example 1.12. If I <,, A[X,Y,Z] and X2+ XZ +YZ €I, then X2, XZ,YZ € I.
Definition 1.13. Let I <,,, R. The graph of I is
(1) = {n € N | X™ € I'} = {exponent vector for f € [I]} € N¢.

Theorem 1.14. If I = (X™ ..., X™), then T'(I) = (n1) U--- U (ny).
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Proof. m € T'(I) if and only if X™ € I if and only if X™ € (X", ..., X™) if and only if X™ € (X™%)
for some ¢ € {1,...,t} if and only if m = n, for some i € {1,...,t} if and only if m € (n;) for some
i€ {1,...,t} if and only if m € J_, (ni). O

Example 1.15. Let I = (X% X3Y,Y?) <, A[X,Y]. Then I'(I) = ((4,0)) U{(3,1))U{((0,2)) C N2

1.2 Generators of monomial ideals

Remark (Facts). Let R be a commutative ring with identity, S C R and I = (S). If T is finitely
generated over R, then there exist s1,...,s, € S such that I = (s1,...,8,).

Theorem 1.16 (Dickson’s lemma). Let I <,, R. Then I is finitely generated by a list of monomials.

Proof. Induct on d > 1. Base case: d =1. I <, R=A[X]. If I =0, then I = ({). Assume I # 0.
Let r = min{n > 0| X™ € I}. Then r < co. So X" € I and then (X") C I. Let X® € [I]. Then
r < s by the minimality of r. So X® € (X"). Hence [I] C (X"). Since I = ([I]) is the smallest
ideal containing [I], I C (X7).

Inductive step. d > 2. Let R’ = A[X1,...,X4-1] € R. Assume the statement is true for R'.
Let I <, R. Set S = {z € [R'] | 2X3 € I for some a € Ny} and J = (S)R’. Then J <,, R'.
By inductive hypothesis, there exist z1,...,2, € S such that J = (z1,...,2,)R’. Note there
exists e; € N such that 2, X" € I for i = 1,...,n. Let e = max{ey,...,e,}. Then 2, X5 € I
for i =1,...,n. Set S,,, = {z € [R] | 2XJ* € I} and J,, = (S)R for m = 0,...,e — 1.
(For e = 0, there are no S,,;’s nor J,,’s to consider.) Similarly, for m = 0,...,e;, there exist
Wiy Winon,, € Sm such that Jo, = (W1, .., Wimon,, )R Let

I'={zX3]i=1,....n} U{wm ;X' |m=0,....,e—1;i=1,...,n,}) R.

Then I’ <, R is finitely generated by monomials from I and I’ C I. Let X2 = X{* ... X704 € [I].
Assume pg > e. Since Xfln-Xgi’ll - XD e I, Xfln-Xgi’ll €S CJ= (2, -,20)R. So

X XPt € R for some i € {1,...,n}. Let X'  X}*]" = 2z for some z € R'. Since
pa = e, XB = XD XPOUXDD = 22 XEXPIT = (2,X5)(2X57°) € (2 X5)R C I'. Assume
pa < e. Since X' X[ XY e I, XTHo-XP € Sy, C© Jpy = (Wpgts oo Wy, )R
So XP...xP " € w,, ;R for some j € {1,...,n,,}. Let X7* - - X' " = w,, jw for some

w € R'. Since pg < e, we have w,, ;X}* € I'. Hence X2 = X'  X}'7' X! = wy,, jwXh =
(wpy,i X5 (w) € (wp, ; X§*)R C I'. Thus, in either case, [I] C I'. Similarly, we have I C I". O

Corollary 1.17. Let S C [R]. If I = (5), then there exist s1,...,, € Ssuchthat I = (s1,..., ).
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Proof By Dickson’s Lemma, there exists 41,...,4, € I such that (S) = I = (i1,...,in). So
Zk 1 SjkTik, Where r1,... 74, € Rfor j = 1,...,n. Hence I = ({s;r | j =1,...,n,k =
1,...,7’Lj}). L]

Theorem 1.18. (a) (ACC) Every ascending chain of monomials Iy C Is C I3 C -+ must stablize,
i.e., there N € N such that I, = Iy forn > N.

(b) Let ¥ # 0 be a set of monomial ideals in R. Then ¥ contains at least one mazimal element
with respect to C. Moreover, for I € 3, there exists J € ¥ mazimal such that I C J.

Proof. (a) Let I = J;2, ;. Since the I;’s form a chain, I < R. Moreover, I <,, R since I =
S L =U I = (U2, Si), where S; is a set of monomials generating I; for each i. Then by
Dickson’s lemma, there exists s1,...,s, € [I] such that I = (s1,...,5,). Since I = J;2, I;, there
exists p; such that s; € I, for j = 1,...,n. Let p = max(py,...,pn). Then s1,...,s, € I, C I.
Sol=(s1,...,8,) C I, CI41 C-- CI ie, I =1, Thus, I, =Ipt1 = Ipy1 =

(b) Let I € ¥. If I is maximal in 3, then done. Assume there exists Iy € ¥ such that I C I;. If I;
is maimal, then done. Otherwise, there exists I € ¥ such that I C I; C Io. ACC implies process

must terminate. So there exists p € N such that I C I, with I, € ¥ maximal. Hence ¥ # . O
Definition 1.19. Let 21,...,2, € [R] and I = (z1,..., 2z,). The generating sequence z1,..., z, is
redundant if there exists ¢ € {1,...,n} such that I = (21,...,2i—1, Zit1,.- -, 2n). 1t is irredundant
if it is not redundant, i.e., if for i =1,...,n, (21,...,2i—1, Zit1s---+2n) S (21, -+, 2n)-

Example 1.20. X3, X2Y, X?Y? V" is redundant since (X3, X?Y, X?Y2 Y5) = (X3, X2V, Y?).

Theorem 1.21. zy,...,zy, € [R] and I = (21,...,2m). The followings are equivalent.
(i) z; is not a monomial multiple of z; fori,5=1,...,m with i # j.

(ii) Fori=1,...,m, 2; € (21, Zim1, Zit1,- - > Zm)-

(#4i) 21,...,2m is an irredundant monomial generating sequence for I.

Proof. (1)=(ii) Assume (i). Suppose (ii) fails. Then there exists i € {1,...,m} such that z; €

(21,03 Zim1, Zit1y -+ -, Zm). S0 2; € z;R for some j € {1,...,i —1,i+1,...,m} and then z; is a
monomial multiple z;, a contradiction.

(il)=(iii) Note z; € I N (21, 2i—1,Zit1s---12m). S0 (21, ..y 2Zi—1,Zit1s--+,2m) & I for
i =1,...,m. Thus, it is irredundant.

(iii)==(i) Suppose (i) fails. There exists 7, j € {1,...,m} with i # j such that z; is a monomial
multiple of z;. So z; € (z1,...,%i—1,%i+1,---,%m). Then I C (z1,...,%—1,%it1,-..,2%m). Also,
ID (21, oy 2im1, Zitly - -5 Zm). S0 L = (z1,...,2i—1, Zit1,- - -, Zm), & contradiction. O
Remark. Divisibility order on [R]: z,w € [R], z < w if z | w, i.e., w is a monomial multiple of z.

This is a partial order: reflexive, transitive and antlsymmetrlc if z | w and w | z, then w = z.
¢ — [R] given by n lﬂ is 1-1 and onto. m = n if and only if X™ | Xm, partial order for
NG.

Remark (Criterion). If I = (f1,..., fn) <m R, then fi,..., f, is irredundant if and only if f; { f;
fori,j=1,...,n with i # j.

Theorem 1.22. Let I <,, R.
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(a) Every generating set S C [I] for I contains a finite irredundant monomial generating sequence.
(b) In particular, I have an irredundant monomial generating sequence.
(¢) Irredundant monomial generating sequence for I is unique up to reordering.

Proof. (a) Assume without loss of generality, S # (). By Dickson’s Lemma I = (s1,...,s,) for
some Si,...,8, € S. If s1,...,s, is irredundant, then done. If not, re-order s1,...,s, to assume
I = (s1,...,8,—1). If this is irredundant, then done, else, remove another generator. Process
terminates in at most n — 1 steps.

(b) By definition, I has a monomial generating set.

(¢) Let f1,...,fm and g1,...,g9, be two irredundant monoial generating sequences for I. Fix
t€{l,...,m}. Then f; € (f1,...,fm) =1 = (g1,-.-,9n). Since fi,g1,...,9, € [R], there exists
j € {l,...,n} such that f; € g;R. Similarly, there exists k € {1,...,m} such that g; € fzR. So
fr | gj and g; | fi. Hence fi | fi. Since f’s are irredundant, k = ¢. Then f; | g; and g; | fi.
So fi = g;. Define o : {1,...,m} — {1,...,n} by i — j such that f; = g; = g,(;). Suppose
g9; = fi = gi, Since gi,..., gy is irredundant, ! = j and then o is well-defined. Similarly, since
fis--+y fm is irredundant, o is 1-1. Reverse the process to get 7 : {1,...,n} — {1,...,m} is
well-defined and 1-1. By PHP, o and 7 are bijections.

Remark. Algorithms for finding an irredundant monomial generating sequence.

a) Start with a finite monomial generating sequence f1,..., fm.

b) If f; 1 f; for ¢ # j, then done, else, f; | f; for some i # j, let I = (f1,..., fi—1, fit1,-- -5 fm).
¢) Repeat with fi,..., fi—1, fj+1,- -+, fm-

d) Process terminates in at most m iterations.

Example 1.23. Since (X?Y, XY?, X?Y?) = (X?Y, XY?), X2V, XY? X2Y? is redundant.

Theorem 1.24. Let J = (S) with ® # S C [R]. Let A = {n, | 2 = X"> € S} C N¢ and
A" = {min. elts of A w.r.t=}.

(a) S":={X"™|ne A’} is an irredundant generating sequence for J.
(b) Thus, A is finite.
Proof. Note A has minimal elements. by well-ordering axiom.

(a) Since " C S, (8') € (S) = J. Let z = X"= € S, then n, = n, for some n,, € A’. So
X" e (X™) C (5'). Hence S C (5') and so (S) C (57). Thus, (S') = (S) = J. Then by
previous theorem, J = (z1,..., zy) for some irredundant generating sequence z1, ..., z, € S’. Let
z € 8" CJ, then z € z;R for some j € {1,...,m}. Since z,z; € S’ such that z; | z, z; = z. So

z€{z1,...,2m} Thus, {z1,...,2m} = S5".

(b) Since S’ is finite and A’ is bijective with S’, A’ is finite. O
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Chapter 2

Operations on Monomial Ideals

Let A be a nonzero commutative ring with identity and R = A[X7, ..., X4]

2.1 Intersections

Theorem 2.1. Let I1,..., I, <, R. Then I; N---NI, <, R and is generated by [[;]N---N[I,].
Also, [N I, =[L] NN [L].
Proof. Let J = (5), with S:=[L]n---N[L,]JCLN---NI, ThenJ=(S)CnN---NI,. Let
fehn---NI,, with f = Zrﬁlgﬁg ap X" €I, for j=1,...,n. Since I; <,,, R, X™ € [I;] whenever
an £0for j=1,...,n. So X% € [IL]N---N[I.] = S whenever a, # 0. Hence f € (S) = .J. Thus,
nn---nl,=J=L]N---N[L])-

Note [I[LN---L]J=TNn---NI)N[R] =L N[RD NN N[R]) =[L]n---Nn[L,] O

Remark. I'(ILN---N L) =T)N---NI(T,).

Definition 2.2. Let X™ X™ € [R]. Define LCM(X™, X™) = X2 where p; = max(m;,n;) for
i=1,....d

Remark. If R is UFD, then always true for any polynomial.

Example 2.3. In A[X, Y], to compute (XY?)N(XY?), it suffices to compute I'((XY2)N(X?Y)) =
L((XY?))NT'({X?Y)) by previous remark.
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Lemma 2.4. Let f,g € [R]. Then (f) N (g) = (LCM(f,g)).
If R is UFD, then always true for any polynomial.

Proof. “27. Let f = X™ and g = X™ for some m,n € N¢. Let X2 = LCM(f, g). Then p = m and
p=n. So X2 e (f) and X2 € (g). B

©“C”. Tt suffices to show [(f)] N [(9)] € (LCM(f,g)). Let X2 € [(f)] N [(9)]. Then X2 €
IHL 1)) So ¢q = m,n. Then ¢; > my,n; for i = 1,...,d. So ¢; > max(m;,n;) = p; for
i=1,...,d,ie., q = p Hence X2 € (X2) = (LCM(f,g)). O

Theorem 2.5. Let I = (f1,...,fm) and J = (g1,...,9n) with f1,..., fm,91,---,9n € [R]. Then
INJ=(LCM(fi,g;)|i=1,...,m, j=1,...,n) = (K).

Proof. “C”. Let f € [I]N[J]. Then f € [I],[J]. So f € (fi),(g;) for some ¢ € {1,...,m} and

j€{l,...,n}. Hence f € (f;) N (g;) = (LCM(fi,g;)) C (K).
“27. Since LCM(fi,g5) € (fi)N(g;) € INJ fori =1,...,mand j = 1,...,n, we have
KCInJ. So(K)cIndJ. 0

Example 2.6.
I:=(X*Y?)N(X?Y)=(LCM(X? X?),LCM(X?,Y),LCM(X?, Y?),LCM(Y,Y?))
= (X3 XY, X3Y3V3) = (X3, X2V, V).

P((X2,Y?)) P((X?%,Y)) (1)

One goal of this text is the following: given a monomial ideal I, to find simpler I1,..., I, <,, R
such that I =I;N---N1,.

I'(I) L((X2,Y?)) L((X%,Y))
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The two corners of the form 7 suggest the decomposition I := (X3, X2Y,Y?%) = (X3, Y?)N(X3,Y).

Lemma 2.7. (f1,..., fm,9h) = (f1,--+, fm,9) N (f1,..., fn,g), as long as g and h are “relative
prime”, i.e., LCM(f,g) = fg.

2.2 Monomial ideals

Remark. Radical of a monomial ideal may not be a monomial ideal. Let R = Z[z] > (z) =: I.

Since 22 =0 € I, 2 € rad(I). So rad(I) = (2,z) is not a monomial ideal. .
Definition 2.8. Define the nilradical of A by

Nil(A) = rad 4(0).
Definition 2.9. A ring A is reduced if f™ =0 for some n € N with f € A, then f = 0.
Theorem 2.10. A is reduced if and only if Nil(A) = 0.

Lemma 2.11. Let f = ap + a1x + - - apma™ € Alz]. Then f™ = 0 for some n € N if and only
if ak =0fori=1,...,mand k >> 0. Or f is nilpotent if and only if coefficients of f are all
nilpotent. Or f € Nil(A[z]) if and only if a4, ..., an € Nil(4). Or Nil(A[z]) = Nil(A)[x].

Proof. = Note 0 = " = (ap + a1z + -+ + amz™)” = aj +--- + apz™". So a}, = 0. Then
am € Nil(A) C Nil(A[z]) 3 f. Since Nil(A[z]) < A[z], Nil(A[z]) D f—amz™ = ag+- -+ am;_12™ L.
Induct on m to get ag, ..., am—1 € Nil(A). O
Example 2.12. If A is an integral domain, then A is reduced.
Definition 2.13. Let I <,,, R. Then the monomial radical of I is

m-rad(]) = (rad(I) N [R]).
Remark. m-rad(]) <,, R and [m-rad(I)] = rad(I) N [R].

Example 2.14. Let R = A[X,Y]. Then m-rad ((X°,Y7)) = (X,Y). “2”. Done. “C”. Since
1€ (X% Y7),1¢rad ((X? Y7)). Note rad ((X°,Y"))N[R] ={X*Y" |a>1o0rb>1}.

Example 2.15. m-rad ((X?,XY)) = (X, XY) = (X).

Theorem 2.16. Let I <,, R.

(a) m-rad(I) C rad(I).

(b) m-rad(I) =rad(l) if and only if rad(I) <, R.

(c) If A is a field, then m-rad(I) = rad(I). If A is reduced, then m-rad(I) = rad([).
Proof. (a) By definition of monomial radical.

(b) rad(I) = m-rad(I) <., R if and only if rad(I) = (rad(I) N [R]) <m R.
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(c) Assume A is reduced. Let 0 # f € rad(I). Let wy,...,w, € [R] be all the distinct monomials
occurring in f. Then there exist ai,...,a, € A~ {0} such that f = >"" | a;w;. We use induction
to show wy,...,w, € rad(l). Base case: n =1 and f = ajw; € rad(I). Then there exists m € N
such that a*w]* = f™ € I. If a}* = 0, then a; = 0 since A is reduced, contradicted by assumption
a; # 0. So af* # 0. Inductive step. Assume there exists ¢t € N such that f* € I. Reorder w;’s if
necessary to assume wi <jex W2 <lex *** <lex wn Claim. the largest monomial occurring in f? is
w! w.r.t. lex. Note f! induces (a,w,)! = a’w!. Since other monomials occuring in f! have form
w;, - w;,, where 1 < 43 < -+ < 4 < n and ¢; < n, we have w;, <1ex w,, and Wi; Klex Wn for
J=2,...,t Sow - w;, <iex w. Hence coefficients of w!, in ft is a’,. Since A is reduced, af, # 0.
Also, since f! € I <,, R, w!, € I. So w,, € rad([). Then Y /" 1 aw; = f1 = f —apw, € rad(I). By
induction, wy, ..., w,—1 € rad(I). So wy,...,w, € rad(I). Thus, rad(I) <,, R by previous lemma.
So m-rad(I) = rad(l) by (b). O

Theorem 2.17. Let I,J <,, R.
(a) J C m-rad(J).
(b) [m-rad(J)] = [R] Nrad(J).

(c) I C J implies m-rad(I) C m-rad(J).

() m-rad(m-rad(J)) = m-rad(J).
(¢) m-rad(J) = R if and only if J = R.
(f) m-rad(J) = 0 if and only if J = 0.
(9) mrad(T™) = m-rad(J).

Proof. (a) J=(JN[R]) C (rad(J) N [R]) = m-rad(J).

(b) “C”. Since [R] Nrad(J) C ([R]Nrad(J)) = m-rad(J) and [R] Nrad(J) C [R], we have
[RlNrad(J) C [R] Nm-rad(J) = [m-rad(J)]. “2”. [m-rad(J)] = [R] Nm-rad(J) C [R] Nrad(J).

(c) By definition.

(d) “2”. By (a), mrad(J) C m-rad(m-rad(J)). “C”. Let f € [m-rad(m-rad(J))] = [R] N
rad(m-rad(J)). Then there exists a € N such that f* € m-rad(I)N[R] = [m-rad(J)] = [R]Nrad(J).
So there exists b € N such that f2° = (f¢)® € J. Thus, f € rad(J) N [R] = [m-rad(J)]. O

Theorem 2.18. Let I,J, I,...,1, <,, R. Then

(a) m-rad(IJ) = m-rad(I N J) = m-rad({) N m-rad(J).
L - I,) = mrad(N?_ I;) = NI, m-rad(l;).
(¢) m-rad(I + J) = m-rad(I) + m-rad(J).

(d) m-rad(}. , I;) = >, m-rad(l;).

Proof. (a) Since rad(IJ) = rad(I N J) = rad(J) Nrad(J), [R] Nrad(IJ) = [R] Nrad(I N J) =
[R] Nrad(I) Nrad(J) = ([R] Nnrad(I)) N ([R] Nrad(J)). So [m-rad(IJ)] = [m-rad(I N J)] =
[m-rad(I)] N [m-rad(J)].
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(b) Induct on n.

(c) “D”. Since rad(I + J) = rad(rad(I) + rad(J)) 2 rad(I) + rad(J), we have [m-rad(I + J)] =
[R] nrad(I + J) 2 [R] N (rad(I) 4+ rad(J)). So

[m-rad(I) + m-rad(J)] = [m-rad(I)] U [m-rad(J)] = ([R] Nrad(l)) U ([R] Nrad(J))
= [R] N (rad(I) Urad(J)) C [R] N (rad(I) 4 rad(J))
C [m-rad(I + J)].

“C”. Exercise.

(d) Induct on n. O

2.3 Generators of monomial ideals
Example 2.19. m-rad((X3Y2, XV3,Y?)) = (XY, XY,Y) = (V).
Definition 2.20. Let f = X™ € [R]. The support of f is

supp(f) ={i e N[n; > 1} ={i e N[z, | f}.

The reduction of f is

i€supp(f) Xilf
Example 2.21. Supp(X7X3) = {1,3} and red( X} X3) = X; X3.
Lemma 2.22. Let J <, R and f € [R].
(a) There exists n > 1 such that red(f)" € (f);
(b) If f € J, then red(f) € m-rad(J).
Proof. (a) Let f = X™, then n := max(mq,...,mq) =m; fori=1,...,d. So f|red(f)".

(b) Since f € J, by (a), there exists n > 1 such that red(f)" € (f) C J. Sored(f) € m-rad(J). O

Theorem 2.23. Let S C [R] and J = (S), then m-rad(J) = (red(s) | s € S).

Proof. “27. Let s € S, then s € J. By previous lemma, red(s) € m-rad(J).

“C”. Let g € [m-rad(J)] = [R] Nrad(J). Then g™ € J for some n € N. Since g € [R],
g™ € [J] = [(S)]. So there exists s € S such that s | g". Hence red(s) | red(¢g™) = red(g) | g. So
g € (red(s)) C (red(t | s € S)). Hence [m-rad(J)] C (red(s) | s € S). O

Corollary 2.24. m-rad((X}',..., X")) = (Xi,,..., X;,).

21 )
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2.4 Colon’s of monomial ideals
Theorem 2.25. If I,J <,, R are monomial ideals, then (J : I) <,, R.

Proof. Special case: Let I = zR with z = X™ € R. Let f = Eigﬁi a,X™ € (J : z). Then
[z =2 cna an X® € J <, R So 2X% = X" ¢ J whenever a,, # 0, i.e., X2 € (J : zR)
whenever a,, # 0. So (J : z) < R.

General case: Let I = (s1,...,s,) = > ,(s;) for some s1,...,s, € [[]. Then (J : I) =

(J: Z?:1<5i>) = ﬂ?:1(<] 1 (si) = ﬂ?:1<‘] L 8i)- O

Remark. Let f € R=A[X,Y]and X = (X,Y). Then f € (I : X)ifand onlyif f € (I : X)N(I:Y)
if and only if X f, Y f € I.

Example 2.26. Consider the ideal I = (X3, X?Y,Y?3) with R = A[X,Y] and X = (X,Y).

(1) L((X2,Y?)) L((X?,Y))

The two corners of the form 7 show us where to find elements of (I : X) not in I. It is not difficult to
show that the monomials X2 and XY? are precisely the monomials in (I : X) \ I. Note that these

“corners” corresponding to the “corners” in the ideals (X2,Y?) and (X3,Y) in the decomposition
I=(X2Y3)N(X3Y).

. d N pi —qi, ifpi—¢q =0 . L
Remark (Notation). Let p,q € N®. Set (p —¢q);” = { 0, otherwise  — max(p; — ¢;,0)
fori=1,...,d.

Example 2.27. ((1,3) — (2,1))* = (0,2).

Theorem 2.28. ((X2) : (X%)) = (X@~97),

Example 2.29. ((X3Y): (XY2)) = (X2Y?) = (X?2).

Theorem 2.30. Let I = (z1,...,2,) and J = (wy, ..., wn) with z,w; € [R]. Then (J : I) =
iy (S () = (2) ).

Proof. Note for S C R, (I : (S)) = (I :S5). Case 1: n =1. NTS (J : I) = ((w1,...,wn,) :
z1) = Y5 ((wy) + z1). “D” Let f € ({(w1) : z1). Then fz; € (w1) C J. So f € (J : z1).
Then ((w > :z1) € (J ¢ #). Similarly, ((w1) : 2z;) € (J : z1) < Rfor j = 1,...,m. So
ZJ 1(wj) © z1) € (J + z1). “C”. We have showed ((w;) : z1) <, R for j = 1,...,m. So
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doimi((wy) + z1) <m R. Let f € [R] such that fz1 € J = (wi,...,wp). So fz1 € (w;) for some
j€{l,...,m}. Then f € ((w;) : z1). So f € >7L ((wy) : z1). Since I, J < R, (J : 1) < R
Hence (J: 1) C 377 ((wy) : 21).

General case:

(J:I):((wl,...,wm>:(zl,...,zn>):(wl, Zz,>

m Wiy .. n, W :zi):m (Z((wﬁzz)) . O

Example 2.31. (X3, Y4) 1 (X2, XY2)) = [((X3) : (X2Y)) + ((V4) : (X2Y )] N [((X3) : (XV2))
(Y (XY2)] = [(X) + (Y)]N[(X?) + (V)] = (X, V)N(X?,V?) = (X2, XV?, X?V3 V3) =
(X2, XY2Y3).

Theorem 2.32. Let I = (g1,...,9t) <m R. Let h € [R], then (I : h) =

< g1 gt >
ged(gi,h)? "7 ged(ge,h) /-

2.5 Bracket powers of monomial ideals

We know the power I" of an ideal I is not generated by the n'" powers of the generators of I. This
section investigates the ideal that is generated by powers of the generator of I.

Definition 2.33. Let I <,, R. The k™ bracket power of I is the ideal I¥l = ({f* | f € [I]}) for
keN.

Remark. By definition, JF <, R for k € N.

Lemma 2.34. Let S C [R] and k € N. Set I = (S) and J = ({f* | f € S}). If g € [R], then
g € I if and only if ¢ € J.

Proof. = Assume g € I. Since I <,, R, by Dickson’s lemma, there exists a finite S” C S such
that I = (5"). So g € (f) for some f € S’ C S. Hence g* € (f*) C J.

<= Assume g* € J. Since J <, R, there exists a finite S}, C Sy := {f* | f € S} such that
J = (S})R by Dickson’s lemma. So g* € (f*) for some f* € S, with f € S. Write f = X™ and
g = X™ with m,n € Nd. Then km = kn, i.e., m=n. Sog=X"€ (X™)=(f) C(S)=1. O

Proposition 2.35. Let I <,, R.
(a) If S C [R] and I = (S), then IFl = ({f* | f € S}).
(b) IfI:(flvvfn)\mRthenI (fl’?f'r]f)

Proof. (a) By definition of I, 1] O ({fk | f€S}) =:J. Let g € [RJNI = [I]. Then by previous
lemma, ¢g* € J = ({f* | f € S}). Note g* is an arbitrary genertor of I'*l. So Il C ({f* | f € S}).

(b) This is the special case of (a). O

Example 2.36. Let I := (X3 X?Y,Y?) < A[X,Y]. Then I?l = (X6 X4y2 v*).
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L((X?, X?Y,Y?)) L((X%, X1Y2, Y1)

Lemma 2.37. Let I <,, R, g € [R] and k € N. Then g € I if and only if g* € I¥].
Proof. Tt follows from previous lemma and proposition. O

Proposition 2.38. Let I <,, R. Let f1,..., fn € [I] be an irredundant generating sequence for I
and k € N. Then I'® is irredundantly generated by ok

Proof. By previous proposition, ff,...,f* € [I] is a generating sequence for JI*¥I. Suppose
fF ..., f¥is redundant. Then there exsits i,j € {1,...,n} with i # j such that fF € (fjk) = (f;)IH.
So by previous lemma, f; € (f;), a contradiction. O

Lemma 2.39. Let I,J <,, Rand k£ € N.
(a) I C Jif and only if I1Fl C JlkI,
(b) I =J if and only if I*l = jl¥,

Proof. (a) = By definition of I'*] and J*I.
< Assume I* C JIFl. Let g € [I]. Then g* € I* C JI*. So g € J by previous lemma.

(b) It follows from (a). O

Since ther intersection of monomial ideals is a monomial ideal, ("}, J;)[*! is defined.

Proposition 2.40. Let Ji,...,J, <m R and k € N. Then (O, J;)® = ", J*.

=11 =1 "1

Proof. By induction. O



Chapter 3

M-Irreducible Ideals and
Decompositions

Let A be a nonzero commutative ring with identity and R = A[X;, ..., X4].

3.1 M-irreducible monomial ideals

Definition 3.1. I <,, R is m-reducible if there exist J, K <,, R such that I = JN K and
J#AIT #K.

I <, R is m-irreducible if it is not m-reducible.
Theorem 3.2. If A is a field and I <,,, R is m-irreducible, then I is irreducible.

Theorem 3.3. I <, R is m-irreducible if and only if I # R and for any J, K <., R, if = JNK,
then I =J orI =K.

Example 3.4. (X3, X2Y2 V%) is m-reducible since (X3,Y?) N (X2, V%) = (X3, X2Y2 Y?), and
Y2 e (X3,V?2) (X3, X232, YH U (X2 YY), X2 e (X2, V) (X3, X322, YY) U (X3,7?)).

Theorem 3.5. 0 # I <,;, R is m-irreducible if and only if it is generated by “pure powers”, i.e., if
and only if I = (X}',..., X[*) for somet>1anda; > 1 fori=1,...t.
Proof. “<". Reorder X;,,...,X,, if necessary to assume I = (X7*,..., X{"*) C (X1,...,Xq4) C R.
Suppose there exist J, K <,, R such that I = JNK and J # I # K. Then I C J K. So
[1] € [J,[K]. Let f = X™ € [J] ~ [I] and ¢ = X™ € [K] ~ [I]. Let X2 := LCM(f,g).
Since f & [I], X[ { X™, ie, a; > m; for i = 1,...,t. Similarly, a; > n; for : = 1,...,t. So
a; > max(m;,n;) = p;, ie, X ¥ XEfori=1,...,t. Hence X2 & (X{*,..., X)) = I. Since
fe[J] and g € [K] and J, K <, R, (LCM(f,9))R = (f)N(9) C ([J]) N ([K]) = JNK. So
X2 =LCM(f,g9) € JN K = I, a contradiction.

= Take an irredundant monomial generating sequence f1,..., fr for I, where at least one of
the f;’s is not a pure power. Reorder the f;’s to assume fj is not a pure power. Then there exists j €
{1,...,n} such that fx = X;jg, where ¢; > 1, X, { g and g # 1. Reorder the variables if necessary

15



16 CHAPTER 3. M-IRREDUCIBLE IDEALS AND DECOMPOSITIONS

to assume j = 1. Then f; = Xi*g, where ¢; > 1,X;1g and g # 1. Set J = (f1,..., fu—1, X{*),
K ={(fi,..., fe—1,9). Then

JN K = (LCM(f1, f1),LCM(f2, f2), ..., LCM(f—1, fx—1), LCM(X{*, g), -+ +)
= <f1>f27"'7fk:717chlga"'> = <f17f27"‘7fk713X1Clg> = <f17f27"‘7fk71ﬂfk> =1

Suppose X' € I. Then there exists ¢ € {1,...,k} such that f; | X{* | f&, i.e., fi | fx. Since
fi,-.., fn is an irredundant monomial generating sequence, f = f; | X7', a contradiction. So
X7t ¢ 1. Hence I C K. Similarly, I C K. O

Example 3.6. (X3, X?Y2 V%) is not m-irreducible. (X?2,Y*) and (X3, Y?) are both m-irreducible.

Theorem 3.7. If I, J1,...,J, <;n R such that I is m-irreducible and I D ﬂ?zl Ji, then I O J; for
some i€ {1,...,n}.

Proof. 1t I = 0, then I =0 2 (', J;, so ();—, J; = 0. Then Jy---J, C (), J; = 0. So there
exists ¢ € {1,...,n} such that J; = 0 = I. Assume I # 0. Assume n > 2. Induct on n. Let’s
show n = 2. Let (X{",...,af) =12 JyNJo. Suppose I 2 Ji,Ja. Then [I] 2 [J1],[J2]. Let
f1 = Xm S [[Jlﬂ AN [[Iﬂ and f2 = Kﬂ S [[JQ]] N [[IH Let KE = LCM(fl,fg) = (fl) N (fg) - Jl N Jg -

(X, ..., X{). Then Xiajj | X2 for some j € {1,...,t}. So a; < p;; = max(m;,n;) < My, Ny,
ie., XZ_’ | X™ = f1 or Xiajj | X* = fy for j = 1,...,t. Hence fi € (X{,...,Xj"") = I or
fa (X, ..., X)) = 1. Thus, f1 € [I] or fy € [I], a contradiction. O

3.2 M-irreducible decomposition

Definition 3.8. An m-irreducible decomposition of I <,, R is an expression I = (,_, J; with
n > 1 such that Jy,...,J, <,, R are m-irreducible.

Remark. 0 intersection of ideals is R.
Example 3.9. (X2, XY,Y3) = (X,Y3)N (X2 Y) is an m-irreducble decomposition.
Theorem 3.10. I <, R has an m-irreducible decomposition.

Proof. Suppose not. Let ¥ = {J <,, R | J doesn’t has an m-irreducble decomposition}. Then
3 # (). By previous theorem, ¥ has a maximal element I, not m-irreducible. So there exists
J, K <, Rsuch that [y = JN K and I; € J,K. Since [; is maximal in ¥, J K ¢ X. Since
J, K <, R, they have an m-irreducible decomposition. So I; = J N K has an m-irreducble
decomposition, a contradiction. O

Definition 3.11. An m-irreducible decomposition I = (., J; is redundant if I = (i, J; for
some k € {1,...,n}.

Theorem 3.12. Given an m-irreducible decomposition I = ﬂ?zl Ji. The followings are equivalent.
(i) The decomposition is redundant.

(i1) There exists 1,5 € {1,...,n} with i # j such that J; C J;.
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Proof. “(ii)=(1)”. If J; C Jj, then I = (y_y Jr = Ns; S

“(i)=(ii)”. If the decomposition is redundant, then there exists j € {1,...,n} such that J; 2
NieyJi =1 = ﬂzij Ji. By previous theorem, there exists k € {1,...,n} with k& # j such that
J; 2 . 0

Theorem 3.13. I <,,, R has an irredundant m-irreducble decomposition.

Proof. Let I = (\;_, J; withn > 1 be an m-irreducible decomposition. If it is irredundant, stop.
Else, there exists j € {1,...,n} such that I = ﬂ;;j J;. Repeat with the new decomposition.
Process terminate in at most n — 1 steps. O

Theorem 3.14 (Irredundant m-irreducible decompositions are unique up to reodering). Let I <,,
R with two irredundant m-irreducible decompositions (V;_, I; = ﬂ§:1 I;. Then s =t and there
erists o € Sy such that I; = J,;y fori=1,...,t.

Proof. Let i € {1,...,s} be given. Then (\_, [; = ﬂz’:l I; C I;. So there exists j € {1,...,t}
such that J; C I;. Similarly, there exists k € {1,...,s} such that I, C J; C I,. Since ﬂlszl I is
irredundant, k£ = ¢ and then J; = I;. Suppose there exists m € {1,...,t} such that J,, = I; = J;.
Since ﬂle Jy is irredundant, j = m. So there exists a unique j € {1,...,t} such that J; = I,.
Define o : [s] — [t] by i = unique j such that J; = I; = J,(;). By symmetry, there exists 7 : [t] — [s]
given by j — unique k such that I, = J; = I(;). Check 0 o7 =id and 700 =id. O

Remark. The “splitting generators” algorithm can be established using the previous proof. Assume
I has a m-reducible monomial generators f; = Xj'g, e > 1 and X; { g. Then decompose I as

I= <f1a"'7fn> = <X1€17f27"'7fn>m<gvf27"'1fn>'

Example 3.15.

(X3YZ,XY*Z) = (X3, XY*Z)n (Y, XY*Z) N (Z,XY*Z)
= (X X)X YHn (X3 Z2)n Y, X)n{Y)Yn({Y,Z)N{(Z,X)N(Z,Y*) N (Z)
= (X)N(Y)N(Z)n (X3, Y.
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Chapter 4

Connections with Combinatorics

Let A be a nonzero commutative ring with identity and R = A[X7,..., X,,].

4.1 Square free monomial ideals

Definition 4.1. A monomial X is square-free if n; < 1, ie., X2 { X2 for i = 1,...,d, i.e.,
X" =red(X™).

I <, R is square-free if it is generated by square free monomials.
Example 4.2. (X3Y Z, XY*Z) is not square-free.

Theorem 4.3. I < R is square-free if and only if irredundant monomial generating sequence is
square-free.

Example 4.4. 0 is square-free since 0 = (}) and @) C {square-free monomials}.

Theorem 4.5. J <, R is square-free if and only if J = m-rad(J) if and only if J = m-rad(I) for
some I <, R. In particular, if I <,, R, then m-rad(I) is square-free.

Proof. Assume first that J is square-free. Then J has a square-free monomial generating sequence.
Let f1,..., fn € [J] be a irredundant generating sequence for J. Then by previous theorem, the
square-free monomial generating sequence contains the f;’s. So fi,..., fn is square-free. Hence
m-rad(J) = (red(f1),...,red(fn)) = {(f1,..., fn) = J.

Assume J = rad(I) for some I <,, R. Let g1,...,9m € [I] be a generating sequence for I.
Then J = m-rad(I) = (red(g1),-..,red(gn)). So J is square-free. O

Remark. Assume A is a field. We know then m-rad(I) = rad(I). So J is square-free if and only
it J =rad(J) if and only if J = rad(I) for some I <, R.

Theorem 4.6. Let I <,, R. Then I is square-free and m-irreducible if and only if I = (X;,, ..., X3,)
for somet >1 and iy,... i € {1,...,d}.

Proof. = Assume [ is square-free and m-irreducible. Since I is m-irreducible, there exists an

irredundant monomial generating sequence Xfll, e ,Xit with a1,...,a; > 1. Since [ is square-
free, by previous theorem, I = m-rad(f) = (X;,,..., X;,).
<= It is similar. O

19
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Theorem 4.7. Let J =(\_, J; be an m-irreducible decomposition.
(a) If J1,...,J, are square-free, so is J.
(b) If J is square-free and the intersection is irredundant, then Jy,...,J, are square-free.

Proof. (a) Since Ji,...,J, are square-free, J; = m-rad(J;) for i = 1,...,n. So m-rad(J) =
m-rad (/_; J;) = ey m-rad(J;) = iy Ji = J.

(b) Assume J is square-free. Let k € {1,...,n}. Then Jy 2 N, J; = J = mrad(J) =
Ni_, m-rad(.J;). So Ji 2 m-rad(J;) 2 J; for some i € {1,...,n}. Since the decomposition is
irredundant, k = i. So J, = m-rad(J;) = J;. Then J;, = m-rad(J;) = m-rad(J;). O

Example 4.8. (X?YZ, XY*Z) = (X) N (V)N (Z) N (X3,Y*), is not square free.
Example 4.9. (XY Z,YZW) = (Y)N{(Z) N (X, W) is square-free.
Definition 4.10. Let V = {vy,...,v4} and V/ C V. Define
Py = (X; | v € V').
Example 4.11. P,, ,, = (X1, X3) and Py = (0) = 0.

Theorem 4.12. I <,,, R is square-free if and only if there are Vi,...,V,, C V such that J =
ﬂ?zl Py,.

Proof. By previous theorems. O

4.2 Polarization
Definition 4.13. Let X* € [R]. Define the polarization of M to be the square-free monomial
POXY) =X11- X1,0, X201 Xoay - Xag- - Xday

in the polynomial ring S = A[X;; |1 <i<d,1<j < aql.
Let I = (X% ..., X%) <,, R. Define the polarization of I by

PO(I) = (PO(X*™),...,PO(X%)).

Example 4.14. Let (X12, X1X27X23) g A[X17X2]. Then PO = (X171X172,X171X271, X2,1X272X23)
in A[X11, X192, X091, X099, X5 3].

Remark. By identifying each X; with X, 1, one can consider S as a polynomial extension of R.
Let A be a field.

Proposition 4.15. Let I,J <,, R.

(a) PO(I+ J)=PO(I)+PO(J).

(b) Let f,g € [R]. Then f | g if and only if PO(f) | PO(g).

(c) POUINJ)=POI)NPOJ).
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(d) If p is a (minimal) prime containing I, then PO(p) is a (minimal) prime containing PO(I).
(e) ht(I) =ht(PO(I)) in the corresponding ring, respectively.

Proposition 4.16 (Froberg). Let X1, ..., X% € [R]. Let m; = maxi<;<nia;;} for j=1,...,d.
Let Ny = PO(X*), ---, N, = PO(X%*) in S := A[X;, | 1 <i<d,1 <k < my such that
Xim, appears in at least one of the monomials Ny,..., N, for ¢ = 1,...,d. Then the sequence
of elements X; 1 — X; 5,1 <@ < d,2 < k < m; forms a regular sequence in R’ := ﬁ Let
I = ({XiJ *Xi,k | 1 izéd,? < k g ml}) < R/. Then

k(X1 Xd R R AXip|1<i<d1<k<m

(X9, X)) (X0, X)) T (N N+ (X = Xap [ 1< <d 2 <k <my})

Moreover, R is Cohen-Macaulay (Gorenstein) if and only if R’ is.

Example 4.17. Let H = (Vy, Ey) be a suspension of G with Vg = {Vg} U {wi,...,wq}. Then
K(SG) = X1 Xa Yo Xa] _ K[XioXa Vi Yol g K(2G) k[X1,.. 7Xd]
I(H) T (I(G)+H (XY, XaYa))® (X1—Y1,Xa—Ya) (G HXL, YN

4.2.1 Primary decomposition

Definition 4.18. Let I < R. p € Spec(R) is called a minimal prime ideal of I if I C p and there
is no p’ € Spec(R) such that I Cp’ C p.
We denote the set of minimal prime ideals of I by Min(7).

Theorem 4.19. Let I <,, R. Then I =(\_, X% for somen >1 and a4, ...,a, C Ng.

n =

Theorem 4.20. Let I <,, R be square-free. Then I = ﬂ?zl X% for somen =1 and aq,...,q, C
{0,1}4.

Lemma 4.21. If I < R has an irredundant decomposition I = ﬂ:;l p; as an intersection of prime
ideals, then Min(I) = {p1,...,pm}, where p <,, R.

Corollary 4.22. Let I C S be a square-free monomial ideal. Then I = p, where p <,,, R.

peMin(I)
Definition 4.23. The support of M is

Suppg(M) = {p € Spec(R) | M, # 0}.

Definition 4.24. p € Spec(R) is called a minimal prime ideal of M if M, # 0 and for p D p" with
p’ € Spec(R), one has My =0, i.e., p € Suppp(M) and for p D p’ € Spec(R), p’ & Suppr(M).

Remark. Note (R/I), # 0 if and only if I, < R, if and only if /N R~ p = 0 if and only if I C p,
and (R/I), = 0 if and only if I Z p’, similarly.

So p € Suppy(R/I) if and only if I C p € Spec(R) if and only if p € V(I). Thus, Suppr(R/I) =
V().

Also, p € Spec(R) is a minimal prime ideal of R/I if and only if I C

p and there is no
p’ € Spec(R) such that I C p’ C p. Thus, Min(Suppy(R/I)) = Min(I) = Mm( /1).

Corollary 4.25. Let I <,,, R. Then p <, R for p € Assg(I).
Corollary 4.26. Let I <,, R and p € Assg(I). Then there exists h € [R] such that p = (I : h).
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Proof. Since R is noetherian and p € Assg([l), there exists f € R such that p = (I : f). Since
I <, R, we have g € (I : f) if and only if gf € I if and only if gu € I for all u in monomials of f
if and only if g € (N, monomials of f(£ 2 %) S0P = (I : ) =y monomial of f({ : w). Thus, p= (I : u)
for some u € [R]. O

Proposition 4.27. Let I < Rand S = R/I. Then there exists a polynomial ring R’ and a square-
free monomial ideal I’ such that S = S’/(a), where S” = R’/I’ and a is a regular sequence on S’
of forms of degree 1.

Proof. Let F = {f1,..., fr-} be a set of monomials that minimally generate I. Assume without
loss of generality X; occurs in at least one of the monomials in F' with multiplicity greater than 1,
say f1 Then one may write f1 = X{'g1,...,fs = X{°gs, where a1 > 2, ag,...,as = 1, X tg; for
t=1,...,sand Xy { fifori=s+1,...,7. Set

I'= (XoX{" g1, ., Xo X gs, for1, - [r) € R = R[X),

where Xg is a new variable. Claim. Xy — X; is a nonzero divisor of S’ = %. Suppose not, then
Xo = X1 € ZD(R'/T") = Upenssp(rr 1) P> 80 Xo — X1 € p for some p € Assp(R'/I") = Assp(I')
since R is noetherian. By previous corllary, we have p <,, R, so Xy, X1 € p. Also, by previous
corollary, p = (I’ : h) for some h € [R]. So Xoh, X1h € I'. Also, since h ¢ I', through the restricted
form of genertors of I, we must have X;h = Xo X" 'g;h; for some i € {1,...,s} and h; € R'.
Since Xgh € I’, we have

XoX% "M for some j € {1,...,s} and M € R’ or

XX gihy = Xoh =
0 X1 Tgiln oh {ij for some j € {s+1,...,r} and M € R’

. . . . ij_lM or ,
Since X is a new variable, X, { f;. So in bothe cases, Xo | M. Then h = f, el,
7 Xo
a contradiction. Thus, Xg — X is regular for R'/I’ = S’. Since
S’ ~ R ~ R _ R _ R g
(XO_Xl) B (I/+(X0_X1)) N (Xlalglv"'aXlaSgsvfs+1v"'afT) (flv"'vff‘) I ’
one can repeat the contruction to obtain the asserted monomial ideal I’. O

Remark. The ideal I’ constructed above is called the polarization of I. Thus, any monomial ring
is a deformation by linear forms of a monomial ring with square-free relations.

Note that I is Cohen-Macaulay (resp. Gorenstein) if and only if I’ is Cohen-Macaulay (resp.
Gorenstein).

. A[X1,X2,X3] ~ k[X1,X2,X35,Y1,Y2,Y3]
Example 4.28. Let R = A[X1, X5, X3]. Then (X%TX;,X?% = (XlYl7X2Y27Xslyg)i(§1jYﬁX;YQ’XV%).

X1 — Xo — X3

Y Y, Ys
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4.3 Graphs and edge ideals

Graph means here finite simple undirected graph. We will take the more combinatorial approach
(as oppose to the geometric approach) to the study of graphs. However, these objects still model
important objects from other area, like social networks and electrical power systems.

Definition 4.29. For n > 1, let P, be a path on n vertices, i.e.,
V] —— Vg —— o —— Uy

Definition 4.30. Let G be a graph with vertex set V = {vy,...,v4}. The edge ideal of G is defined
by
Ic = {X;X, | viv; is an edge in G}).

Remark. By definition, the edge I is square-free.

4.4 Decomposition of edge ideal

Let G be a graph with vertex set V = {v1,...,v4}.

Definition 4.31. A wverter cover of G is a subset of V/ C V such that for any v;v; € B, either
v; € V'iorv; eV,
A vertex cover V' is minimal if it doesn’t properly contain another vertex cover.

Fact 4.32. (a) {vertex cover of G} is closed under supersets.

(b) If |V| < oo, then every vertex cover contains a minimal one.

(¢) V itself is a vertex cover for finite graph G, so there exists a minimal vertex cover.
Lemma 4.33. Let V/ C V. Then I(G) C Py if and only if V' is a vertex cover of G.

Proof. Let v;jv; € E be arbitrary. Then I(G) C Py if and only if X;X; € Py if and only if
X | X; X, for some v, € V' if and only if X = X; or X, = X; for some v, € V' if and only if
v; =v € V' or v; = v, € V' for some v, € V' if and only if V' is a vertex cover of G. O

Theorem 4.34. I(G) = (v o cover PV = (V7 min. v. cover Pv7- These are m-irreducible decom-
positions and the second decomposition is irredundant.

Proof. Since {V' v. cover} D {V/ min. v. cover}, (N v cover PV S (V7 min. v. cover Lv7- L€t @ €
v’ min. v. cover Pv7- Let V'’ be a vertex cover for G. Then there exists V" C V’ such that V" is
a minimal vertex cover. So a € Py~ C Py/. Hence a € (), Py, Thus, (), Py, C
nv/ min. v. cover PV"

By previous lemma, I(G) C Py for any vertex cover V'. So I(G) C (v y. cover v+ Since I(G)
is square-free, by previous theorem, there are V,...,V,, C V such that I(G) = (., Py, C Py, for
k=1,...,n. So Vj is a vertex cover for k = 1,...,n by previous lemma. Then [, Py C
ﬂ?:l Py, = I(G).

Besides, let V', V" C V be satisfying V' € V" ¢ V’. Then Py: € Py» € Pys. So the second
decomposition is irredundant. O

V. cover V. cover

V. cover

Remark. This can be used to decompose any square-free quadratic monomial ideal.
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Definition 4.35. Specify a length . The path ideal is I;(G) = (generated by the P’s in G).
Remark. I,(G) = I(G).

Definition 4.36. An [-vertex cover is a subset V' C V such that for any P, : v;,,...,v;,, we have
v;; € V' for some j.

Lemma 4.37. Let V/ C V. Then V' is an [-vertex cover if and only if [;(G) C Py-.
Let T" C G be a fixed graph.
Definition 4.38. Define

Ir(G) = (all isomorphic copies of T' C G).

Definition 4.39. T'-vertex cover: V' C V such that for any isomorphic copy T of I' C G, some
vertex in T is in V.

Lemma 4.40. Let V' C V. Then V' is a I-vertex cover if and only if Ir(G) C Py.

Theorem 4.41. Ir(G) = v/ 1. cover PV = (V7. min. Tov. cover Pv7- The second decomposition
1s irredundant.

Example 4.42. Let I3(G) = (abc,abd,abf,ade,adf). Then (a) N (b,e, f) N (b,d) N (¢, d, f) =
(abe, abd, abf, ade).

Definition 4.43. Weighted graph:

w

W~
@/
-

QU ——2

Define
I,(G) = (a®b? ac,a*d*, b33, P d).
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