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Chapter 1

Partial Dififerention equation

1.1 Tranport Equation

Let’s consider the 1D transport equation, which is the following initial value problem (IVP){
ut(x, t) + bux(x, t) = 0, x ∈ R, t ∈ R>0,
u(x, 0) = g(x), x ∈ R,

where b ∈ R is a constant and g ∈ C1(R).
To solve it, we try to reduce the problem to an ODE along some curve x = x(t). Consider the

curve defined by dx
dt = b, then x(t) = bt+ x0, where x0 = x(0). By the chain rule, along such curve

we have
du

dt
= ux

dx

dt
+ ut

dt

dt
= bux + ut = 0.

This implies u(x(t), t) = const = u(x0, 0) = g(x0) = g(x(t) − bt). As the above lines x = bt + x0

(called characteristic lines) fill out the entire xt-plane with some x0 ∈ R, we find the solution of
the above IVP as u(x, t) = g(x − bt). Indeed, as g ∈ C1(R), we can check that u(x, t) = g(x − bt)
satisfies the PDE

ut(x, t) + bux(x, t) = g′(x− bt)(−b) + bg′(x− bt) = 0, x ∈ R, t ∈ R>0

and the initial condition u(x, 0) = g(x− b · 0) = g(x), x ∈ R.

Remark. As the solution indicates, the solution corresponds to “transport” the initial data g(x)
along the x-axis at a constant speed b.

Now we consider the general case of the transport equation in Rn and explore the similar idea to
solve it from a different perspective. Consider the following IVP{

ut(x, t) + b · ∇u(x, t) = 0, x ∈ Rn, t > 0,
u(x, 0) = g(x), x ∈ Rn,

where b = (b1, . . . , bn) ∈ Rn is a constant vector and g ∈ C1(Rn).
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2 CHAPTER 1. PARTIAL DIFIFERENTION EQUATION

To solve the above IVP, we notice first that the equation can be written as

ut + b · ∇u = ⟨b, 1⟩ · ⟨∇u, ut⟩ = 0,

which implies the directional derivative of u(x, t) along the direction (b, 1) is 0. So u(x, t) must be
constant along this direction. To see this, we let

z(s) := u(x+ sb, t+ s), s ∈ R.

Then differentiating z with respect to s, we get

z′(s) =
dz(s)

ds
= ∇u(x+ sb, t+ s) · d(x+ sb)

ds
+

∂

∂t
u(x+ sb, t+ s)

d(t+ s)

ds
= ∇u(x+ sb, t+ s) · b+ ut(x+ sb, t+ s) = 0.

So z(s) is a contant in s. In particular, z(0) = z(−t), which implies

u(x, t) = u(x− tb, 0) = g(x− tb).

Again, we can easily check the above solution indeeds solves the above IVP.
Next, let us look at the nonhomogeneous problem{

ut(x, t) + b · ∇u(x, t) = f(x, t), x ∈ Rn, t > 0,
u(x, 0) = g(x), x ∈ Rn,

where again b = (b1, . . . , bn) ∈ Rn is a constant vector and g ∈ C1(Rn) and f ∈ C1(Rn × (0,∞)).
To solve the above IVP, we follow the above example and let z(s) = u(x + sb, t + s) and then

we have
z′(s) = ∇u(x+ s · b, t+ s) · b+ ut(x+ sb, t+ s) = f(x+ sb, t+ s).

Hence

u(x, t)−u(x− tb, 0) = z(0)−z(−t) =

∫ 0

−t

z′(s)ds =

∫ 0

−t

f(x+sb, t+s)ds =

∫ t

0

f(x+(s− t)b, s)ds,

i.e.,

u(x, t) = g(x− tb) +

∫ t

0

f(x+ (s− t)b, s)ds.

To check the above u(x, t) is indeed a solution of the above IVP, as g ∈ C1(Rn) and f ∈ C1(Rn ×
(0,∞)), by the lemma below, we compute

ut(x, t) = ∇g(x− tb) · (−b) + f(x, t) +

∫ t

0

∇f(x+ (s− t)b, s) · (−b)ds,

and

∇u(x, t) = ∇g(x− tb) +

∫ t

0

∇f(x+ (s− t)b, s)ds.

Combine the above 2 equations, we really get ut(x, t)+ b∇u(x, t) = f(x, t). In addition, the initial

condition u(x, 0) = g(x) +
∫ 0

0
∇f(x+ sb, s)ds = g(x) is satisfied.
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Lemma 1.1. Let F ∈ C1(R2), then

d

dt

∫ t

0

F (t, s)ds = F (t, t) +

∫ t

0

Ft(t, s)ds.

Proof. Since F ∈ C1(R2), by DCT and MVT,

d

dt

∫ t

0

F (t, s)ds = lim
h!0

1

h

[∫ t+h

0

F (t+ h, s)ds−
∫ t

0

F (t, s)ds

]

= lim
h!0

1

h

[∫ t

0

(F (t+ h, s)− F (t, s))ds+

∫ t+h

t

F (t+ h, s)ds

]

= lim
h!0

1

h

∫ t

0

(F (t+ h, s)− F (t, s))ds+ lim
h!0

1

h

∫ t+h

t

F (t+ h, s)ds

=

∫ t

0

lim
h!0

1

h
(F (t+ h, s)− F (t, s))ds+ lim

h!0

1

h
F (t+ h, ξ)(t+ h− t), ξ ∈ [t, t+ h]

=

∫ t

0

Ft(t, s)ds+ F (t, t).

1.2 Wave Equation in One Dimension

Let’s consider first the 1D wave equation that models small vibrations of a string:

utt(x, t)− c2uxx(x, t) = 0, x ∈ R, t ∈ R>0,

where c > 0 is a constant (propagation speed). The equation is of hyperbolic type and its character-
istics are given by x± ct = const. Then by a change of variable µ(x, t) = x+ ct and η(x, t) = x− ct,
the above wave equation is transformed to uµη = 0 which has general solutions u(µ, η) = F (µ)+G(η)
with arbitrary F,G ∈ C1(R). Return to the variables x and t, we have the general solution of the
above wave equation given by

u(x, t) = F (x+ ct) +G(x− ct).

Note that the solution is a sum of solutions of two transport equations and it can be realized as the
superposition of two waves propagating with constant speed c in the opposite directions along the
x-axis.

If F,G ∈ C2(R), then u(x, t) = F (x+ ct)+G(x− ct) becomes a strong solution. We can also use
the following algebraic property of the solution u to define a weak solution. To see this, consider a
rectangle ABCD in the µη-plane whose sides are parallel to the coordinates axes. Since F has a
constant value along the vertical lines and G has a constant value along horizontal lines, we have

u(A) + u(C) = u(B) + u(D),

where A,B,C,D ∈ R2. Translated to the xy-plane, we may see above equality as a parallelogram
rule that holds for every parallelogram whose sides are all segments of the characteristics.
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Definition 1.2. If a function u(x, t) satisfies u(A) + u(C) = u(B) + u(D) for every parallelogram
ABCD whose sides are all segments of the characteristics of the above wave equation is called a
weak solution.

Remark. The characterization of weak solutions is useful for solving the wave equation with both
initial and boundary conditions.

Let’s consider the Cauchy problem for the above wave equation as an initial value problem
(IVP), that is {

utt(x, t)− c2uxx(x, t) = 0, x ∈ R, t ∈ R>0,
u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ R,

where g and h are arbitrary functions. Plug in the initial conditions into the general solution
u(x, t) = F (x+ ct) +G(x− ct), we get{

F (x) +G(x) = u(x, 0) = g(x)
cF ′(x)− cG′(x) = ut(x, 0) = h(x).

Integrate the second equation we get F (x) − G(x) = 1
c

∫ x

0
h(y)dy + [F (0) − G(0)]. Combine with

the first equation we have{
F (x) = 1

2g(x) +
1
2c

∫ x

0
h(y)dy + 1

2 [F (0)−G(0)]
G(x) = 1

2g(x)−
1
2c

∫ x

0
h(y)dy − 1

2 [F (0)−G(0)].

Thus, we get the solution of the above IVP (called the d’Alembert formula)

u(x, t) =
1

2
[g(x+ ct) + g(x− ct)] +

1

2c

∫ x+ct

x−ct

h(y)dy.

Alternative: in view of the form of the general solution, the above IVP can also be solved by the
following way that involves solving two 1D transport equations. To see this, note utt − c2uxx = 0
can be “factored” as (

∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u = 0.

Let v(x, t) = ( ∂
∂t − c ∂

∂x )u = ut − cux, then v satisfies the transport equation with initial condition{
vt(x, t) + cvx(x, t) = 0
v(x, 0) = h(x)− cg′(x)r.

From previous section, the above equation has the solution

v(x, t) = v(x− ct) = h(x− ct)− cg′(x− ct).

Also we have u satisfies the nonhomogeneous transport equation{
ut(x, t)− cux(x, t) = v(x, t)
u(x, 0) = g(x)
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Again, from previous section, this nonhomogeneous equation has the solution

u(x, t) = g(x+ ct) +

∫ t

0

v(x− c(s− t), s)ds

= g(x+ ct) +

∫ t

0

h(x+ ct− 2cs)ds− c

∫ t

0

g′(x+ ct− 2cs)ds

= g(x+ ct)− 1

2c

∫ x−ct

x+ct

h(y)dy +
1

2
g(x+ ct− 2cs)

∣∣s=t

s=0

=
1

2
[g(x+ ct) + g(x− ct)] +

1

2c

∫ x+ct

x−ct

h(y)dy,

which coincides with the d’Alembert formula.

Theorem 1.3. Let g ∈ C2(R) and h ∈ C1(R). Then the IVP problem{
utt(x, t)− c2uxx(x, t) = 0, x ∈ R, t ∈ R>0,
u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ R,

is well-posed, and its solution is given by the d’Alembert formula

u(x, t) =
1

2
[g(x+ ct) + g(x− ct)] +

1

2c

∫ x+ct

x−ct

h(y)dy.

Moreover, the solution is a strong solution, i.e., u ∈ C2(R× (0,∞)).

Proof. Exercise.

Note from the d’Alembert formula, the solution u of the IVP at (x, t) is only determined by the
initial position at x ± ct and the initial velocity along the segment from x − ct to x + ct, nothing
outside the interval [x − ct, x + ct] matters. We call the closed interval [x − ct, x + ct] the domain
of dependence of (x, t). On the other hand, the initial data at any point x0 on the initial time line
t = 0 must influence all values u(x, t) in the wedge formed by two characteristics drawn from x0

into the region of t > 0. This wedge area, {(x, t) | t > 0, x0 − ct ⩽ x ⩽ x0 + ct} is called the range
of influence of x0. Similarly, we may also define the range of influence of an interval [x1, x2] on the
initial time line t = 0 as {(x, t) | t > 0, x1 − ct ⩽ x ⩽ x2 + ct}.

Next, we consider the nonhomogeneous wave equation{
utt(x, t)− c2uxx(x, t) = f(x, t), x ∈ R, t ∈ R>0,
u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ R,

where g and h are arbitrary functions. To solve the homogeneous problem, we first decompose the
problem by linearity as u = u1 + u2, where u1 solves the nonhomogeneous problem and u2 solves
the nonhomogeneous problem however with zero initial data. Namely, we have{

u1tt(x, t)− c2u1xx
(x, t) = 0

u1(x, 0) = g(x), u1t(x, 0) = h(x).

{
u2tt(x, t)− c2u2xx

(x, t) = f(x, t)
u2(x, 0) = 0 = u2t(x, 0).

To find u1, we simply apply the d’Alembert formula, so the problem becomes to find the solution u2.
A general way to solve nonhomogeneous problems like the u2 problem with zero initial conditions
is to use the Duhamel’s Principle, which we state in the following.
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Theorem 1.4 (Duhamel’s Principal). If w(x, t; s) (s > 0 is a parameter) solves the homogeneous
problem {

wtt(x, t; s)− c2wxx(x, t; s) = 0, x ∈ R, t > s
w(x, s; s) = 0, wt(x, s; s) = f(x, s), x ∈ R.

Then the function u(x, t) =
∫ t

0
w(x, t; s)ds solves the u2-problem.

Proof. We check by a direct computation, using the initial conditions for w and previous lemma,

ut(x, t) = w(x, t; t) +

∫ t

0

wt(x, t; s)ds =

∫ t

0

wt(x, t; s)ds

utt(x, t) = wt(x, t; t) +

∫ t

0

wtt(x, t; s)ds = f(x, t) +

∫ t

0

wtt(x, t; s)ds

uxx(x, t) =

∫ t

0

wxx(x, t; s)ds.

Then we get

utt − c2uxx = f(x, t) +

∫ t

0

(wtt(x, t; s)− c2wxx(x, t; s))ds = f(x, t).

In addition, it is obvious that the initial conditions in the u2-problem are satisfied.

Thus, to find u2 we only need to find the solution w(s, t; s) of{
wtt(x, t; s)− c2wxx(x, t; s) = 0, x ∈ R, t > s
w(x, s; s) = 0, wt(x, s; s) = f(x, s), x ∈ R.

and then integrate the parameter s from 0 to t. Notice the above equation is a homogeneous wave
equation starting at time t = s, letting t̃ = t− s, we may apply d’Alembert formula to find

w(x, t̃; s) =
1

2c

∫ x+ct̃

x−ct̃

f(y, s)dy,

which implies

w(s, t; s) =
1

2c

∫ x+c(t−s)

x−c(t−s)

f(y, s)dy.

Therefore, by Duhamel’s principle the solution of the u2-problem is given by

u2(x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

f(y, s)dyds =
1

2c

∫∫
D
f(y, s)dyds,

where D is the triangular region {(y, s) | 0 < s < t, x− c(t− s) ⩽ y ⩽ x+ c(t− s)} in the ys-plane.
To summarize, we have the following result for the nonhomogeneous problem.

Theorem 1.5. Let f be C1 in x and continuous in t, g ∈ C2(R), h ∈ C1(R). Then the nonhomo-
geneous problem {

utt(x, t)− c2uxx(x, t) = f(x, t), x ∈ R, t ∈ R>0,
u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ R,
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is well-posed, and its solution is given by the formula

u(x, t) =
1

2
[g(x+ ct) + g(x− ct)] +

1

2c

∫ x+ct

x−ct

h(y)dy +
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

f(y, s)dyds.

Moreover, the solution is a strong solution, i.e., u ∈ C2(R× (0,∞)).

As another application of the d’Alembert formula, next we consider a half-space problem for
the wave equation, that is, wave equation on the half real number line R>0. More precisely, we
consider  utt(x, t)− c2uxx(x, t) = 0 x ∈ R>0, t ∈ R>0,

u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ R>0,
u(0, t) = 0, t ∈ R>0,

where the last condition u(0, t) = 0 is called the homogeneous Dirichlet boundary condition. Phys-
ically this means the end of the string at x = 0 is held fixed at all time.

The idea to solve the half-space problem is to extend the data to the entire real number line
so that we may apply the d’Alembert formula. Namely, we assume that there is still string on
R<0 and it is just during the vibration the point x = 0 is kept fixed. Suppose we extend g, h, u
to the entire real numebr line, and we use g̃, h̃, ũ to represent the new functions. Then from the
d’Alembert formula, we should have

ũ(x, t) =
1

2
[g̃(x+ ct) + g̃(x− ct)] +

1

2c

∫ x+ct

x−ct

h̃(y)dy.

Plug in the boundary condition ũ(0, t) = 0 we then get

0 =
1

2
[g̃(ct) + g̃(−ct)] +

1

2c

∫ ct

−ct

h̃(y)dy

which will always hold if g̃, h̃ are both odd functions. So we only need to extend g, h to R<0 by an
odd relection

g̃(x) =

{
g(x), x ⩾ 0,
−g(−x), x < 0,

h̃(x) =

{
h(x), x ⩾ 0,
−h(−x), x < 0.

Put these functions into the d’Alembert formula, we find the solution of the half-space problem as

u(x, t) =

{
1
2 [g(x+ ct) + g(x− ct)] + 1

2c

∫ x+ct

x−ct
h(y)dy, x ⩾ ct ⩾ 0

1
2 [g(x+ ct)− g(ct− x)] + 1

2c

∫ x+ct

ct−x
h(y)dy, 0 ⩽ x ⩽ ct.

We can check that

u(x, t) = −u(−x, t),∀(x, t) ∈ R× R+.

Remark. Even if we have g ∈ C2(R>0) and h ∈ C1(R>0), in general u above may not be a strong
solution, i.e., u ̸∈ C2(R>0 × R>0). To make u a strong solution, we need compatibility conditions.
By directly computing derivatives from u above, we can see that u is continuous if we have g(0) = 0,
u is in C1 if we have g(0) = h(0) = 0 and u is in C2 if we have g(0) = h(0) = g′′(0) = 0.
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Theorem 1.6 (Dirihlet Condition). Given g ∈ C2[0,∞), h ∈ C1[0,∞) and ϕ ∈ C2(0,∞), there is a
unique C2 solution u of the homogeneous Cauchy initial value problem (IVP) of the wave equation,

utt(x, t)− c2uxx(x, t) = 0, (x, t) ∈ R>0 × R>0,
u(x, 0) = g(x), x ∈ R+,
ut(x, 0) = h(x), x ∈ R+,
u(0, t) = ϕ(t), t ∈ R>0,

where ϕ, g, h satisfies the compatibility condition g(0) = ϕ(0), g′′(0) = ϕ′′(0) and h(0) = ϕ′(0).

Proof. Define

Ω1 = {(x, t) ∈ R>0 × R>0 | x > ct} and Ω2 = {(x, t) ∈ R>0 × R>0 | x < ct}.

For (x, t) ∈ Ω1, since the wave propagation speed is c, ϕ(t) does not affect Ω1, we have the solution

u1(x, t) =
1

2
[g(x− ct) + g(x+ ct)] +

1

2c

∫ x+ct

x−ct

h(y)dy.

In particular, on the line x = ct, we get

χ(x) := u1(x, x/c) =
1

2
(g(0) + g(2x)) +

1

2c

∫ 2x

0

h(y)dy.

Let u2 be the solution in Ω2 of

utt(x, t)− c2uxx(x, t) = 0, (x, t) ∈ Ω2,
u(x, x/c) = χ(x), x = ct,
u(0, t) = ϕ(t), t ∈ R>0.

Fix A := (x0, t0) ∈ Ω2. One of the characteristic curve with slope 1
c through A intersects t-axis at

B := (0, t0− x0

c ). The other characteristic curve with slope − 1
c through A intersects the line ct = x

at C := 1
2 (ct0 +x0, t0 +

x0

c ). The characteristic curve with slope − 1
c through B intersects ct = x at

D := 1
2 (ct0 − x0, t0 − x0

c ).

t

x

A

B
C

D

x = ct

x = −ct+ cT

cT

T

0

The four points A,B,C,D form a parallelogram in Ω2. By the parallelogram rule, u(A) + u(D) =
u(B) + u(C), i.e.,

u2(x0, t0) + u2

(
1

2

(
ct0 − x0, t0 −

x0

c

))
= u2

(
0, t0 −

x0

c

)
+ u2

(
1

2

(
ct0 + x0, t0 +

x0

c

))
.
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Hence for any (x, t) ∈ Ω2,

u2(x, t) = ϕ(t− x/c) + χ(1/2(ct+ x))− χ(1/2(ct− x))

= ϕ(t− x/c) +
1

2
(g(0) + g(ct+ x)) +

1

2c

∫ ct+x

0

h(y)dy

− 1

2
(g(0) + g(ct− x))− 1

2c

∫ ct−x

0

h(y)dy

= ϕ(t− x/c) +
1

2
(g(ct+ x)− g(ct− x)) +

1

2c

∫ ct+x

ct−x

h(y)dy.

By setting

u(x, t) =

{
u1(x, t) (x, t) ∈ Ω1

u2(x, t) (x, t) ∈ Ω2
.

and the fact that all derivatives of u are continuous along ct = x line due to the compatibility
condition, u is a solution.
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Chapter 2

Boundary Control Method in 1D
Dynamical Inverse Problems [1]

2.1 Introduction

2.1.1 About this chapter

The purpose of this chapter is to recover the coefficient q = q(x) in the string equation ρutt −
uxx + qu = 0 with ρ = const > 0 on the semi-axis x > 0 via the time-domain measurements at the
enedpoints x = 0 of the string.

2.1.2 Comment, notation, convention

• All functions in the chapter are real. The following classes of functions are in use:

(a) the space C[a, b] of continuous functions and the space Ck[a, b] of k times continuously
differentiable functions for k ∈ N;

(b) a Hilbert space L2(a, b) of square summable functions provided with the standard inner
product

(y, v)L2(a,b) :=

∫ a

b

y(s)v(s)ds

and the norm ∥y∥L2(a,b)
:= (y, y)

1
2

L2(a,b)
;

(c) the Sobolev class H1[a, b] of differentiable functions y with derivatives y′ ∈ L2(a, b).

• Sometimes, to distinguish the time intervals α < t < β from the space ones a < x < b, we
denote the space intervals by Ω(a,b) := (a, b) and put Ωa := (0, a).

• Convention All functions depending on time t ⩾ 0 are assumed to be extended to t < 0 by
zero.

11
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2.2 Forward problem

2.2.1 Statement

We deal with an initial boundary value problem (IBVP) of the form

ρutt − uxx + qu = 0, x > 0, 0 < t < T
u(x, 0) = 0 = ut(x, 0), x ⩾ 0
u(0, t) = f(t), 0 ⩽ t ⩽ T,

where q = q(x) ∈ C[0,∞), f = f(t) is a boundary control that may not satisfies the compatibility
condition f(0) = 0 = f ′(0), u = uf (x, t) is a solution, which is interpreted as a wave initiated by f .
When q ̸= 0, we refer it as a perturbed problem. When q = 0, it becomes an unperturbed problem
and the solution is denoted by ũf (x, t), which can be found explicitly:

ũf (x, t) = f(t− x

c
),

where c := 1√
ρ is a wave velocity.

2.2.2 Integral equation and generalized solutions

The main tool for investigating the IBVP is an integral equation. Seeking for the solution in the
form uf = ũf + w with a new unknow w = wf (x, t), we easily get

ρwtt − wxx = −qw − qũf , x > 0, 0 < t < T
w(x, 0) = 0 = wt(x, 0), x ⩾ 0
w(0, t) = 0, 0 ⩽ t ⩽ T.

Applying the D’Alembert formula, we arrive at the equation

w +Mw = −Mũf , x > 0, 0 ⩽ t ⩽ T,

where an operator M acts by the rule

(Mw)(x, t) :=
1

2c

∫∫
Kc(x,t)

q(ξ)w(ξ, η)dξdη,

and Kc(x, t) is the trapezium bounded by the characteristic lines t ± x
c = const. We will see later

that uf |η< ξ
c
= 0, then wf (ξ, η)|η< ξ

c
= [uf (ξ, η) − f(η − ξ

c )]|η< ξ
c
= 0. So the trapezium becomes a

parallelogram.
The above equation is a second-kind Volterra type equation and it can be studied by the standard
iteration method. As can be shown, if the control f ∈ C2[0, T ] satisfies f(0) = f ′(0) = f ′′(0) = 0,
then its solution wf is in C2. As a result, the function uf = ũf +w turns out to be classical (strong)
solution.



2.2. FORWARD PROBLEM 13

η

ξ

(x, t)

η = ξ
c

η = T − ξ
c

0 cT

T

Figure 2.1: The domain Kc(x, t)

As is easy to see, for any f ∈ L2(0, T ), Mũf is a continuous function of x, t vanishing as t < x
c .

Simple analysis shows that the equation w +Mw = −Mũf , x > 0, 0 ⩽ t ⩽ T is uniquely solvable
in this class of functions. In this case, we define the function uf := ũf + wf to be the generalized
(may be weak) solution.

2.2.3 Fundamental solution

Define

δϵ :=

{
1
ϵ , 0 ⩽ t < ϵ,
0, t ⩾ ϵ.

Recall that δϵ ! δ as ϵ ! 0 in the sense of distributions. Putting f = δϵ in w+Mw = −Mũf , x >
0, 0 ⩽ t ⩽ T , we get the solution wδϵ belonging to the class C([0, T ], L2(a, b)). In the mean
time, Mũδϵ ! Mũδ as ϵ ! 0, the latter being a continuously differentiable function of x, t for
0 ⩽ x

c ⩽ t ⩽ T and vanishing as x
c > t. Thus, even though the limit leads to a singular control

f = δ, the solution wδ := limϵ!0 w
δϵ does not leave the class C([0, T ], L2(a, b)).

Simple analysis provides the following of its properties:

(a) wδ is continuously differentiable in the domain {(x, t) | 0 ⩽ x ⩽ cT, x
c ⩽ t ⩽ T} and wδ|t< x

c
= 0.

(b) wδ(0, t) = 0 for all t > 0.

(c) For any x ⩾ 0, the relation

wδ(x− 0,
x

c
) = lim

s"x
wδ(s,

x

c
) = − c

2

∫ x

0

q(s)ds

holds and shows that wδ may have a jump at the characteristic line t = x
c , whereas below this line,

we have wδ = 0.

Proof. (3) Define a sequence of functions and distributions {θj(t)}∞j=−∞, −∞ < t < ∞ by

θ0(t) :=

{
0, t < 0
1, t ⩾ 0

; θj(t) =

∫ t

−∞
θj−1(s)ds, j ∈ Z.
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This is said to be a smoothness scale: the bigger j, the smoother θj and

θj−1 = dθj

dt (t), −∞ < t < ∞

holds. In particular,

θj(t) = δ(−j−1)(t), j ∈ Z<0 and θj =
tj

j!
θ0(t), j ∈ Z+.

Note that all elements of the scale vanish as t < 0.
Let us look for the fundamental solution in the form of a formal series

uδ(x, t) =

∞∑
j=−1

aj(x)θ
j(t− x

c
)

with unknown functions aj , which can be referred to as the Taylor expansion of uδ near (from the
left of) its forward front t = x

c . The reason to begin with the series with j = −1 is that in the
unpertured case one has ũδ(x, t) = δ(t− x

c ) = θ−1(t− x
c ). Dif and only iferentiating and combining

the similar terms, we easily get

1

c2
uδ
tt − uδ

xx + quδ =

[
2

c
a′−1(x)

]
θ−2(t− x

c
)+

∞∑
j=−1

[
2

c
a′j+1(x)− a′′j (x) + q(x)aj(x)

]
θj(t− x

c
) = 0.

By the independence of the different order singularities, we get the recurrent system of the ODEs:
for x > 0,

2

c
a′−1 = 0 and

2

c
a′j − a′′j−1 + qaj−1 = 0, j ∈ Z+,

which is often called the transport equations and can be integrated one by one. In the same time,
the condition uδ(0, t) = δ(t), t ⩾ 0 implies the initial conditions

a′−1(0) = 1 and a′j(0) = 0, j ∈ Z+.

The integration yields

a−1 = 1 and a0(x) = − c

2

∫ x

0

q(s)dx, · · · .

Summarizing, we arrive at the well-known representation

uδ(x, t) = δ(t− x

c
)−

[
c

2

∫ x

0

q(s)ds

]
θ0(t− x

c
) + · · ·

that describe the behavior of the fundamental solution near its forward front t = x
c .

In the unperturbed case of q = 0, we easily have wδ = 0, whereas

ũδ = δ(t− x

c
),
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satisfies the unperturbed equation in the sense of distributions and is called the fundamental
solution of unperturbed problem.
Analogously,

uδ(x, t) = δ(t− x

c
) + wδ(x, t),

is said to be a fundamental solution of the perturbed problem. It describes the wave produced by
the impluse control f = δ.
Such a wave consists of the singular leading part δ(t− x

c ) propagating along the string with velocity
c and the regular tail wδ(x, t), which may have a jump at its forward front. The presence of the
tail is explained by interaction between the singular part and the potential. Also, note that the
singular part in the perturbed and unperturbed cases is one and the same.

2.2.4 Properties of waves

Return to the perturbed problem and represent the control in the form of a convolution with time:
f(t) = (δ ∗ f)(t) =

∫∞
−∞ δ(t− s)f(s)ds. Since the potential q does not depend on t, we have

uf = uδ∗f = uδ ∗ f = (ũδ + wδ) ∗ f = ũδ ∗ f + wδ ∗ f,

which implies the representation

uf (x, t) = f(t− x

c
) +

∫ t

0

wδ(x, t− s)f(s)ds,

= f(t− x

c
) +

∫ t− x
c

0

wδ(x, t− s)f(s)ds, x ⩾ 0, t ⩾ 0,

which is often called the Duhamel’s formula.
The listed below properties of the waves easily follow from the above equation:

(a) For any f ∈ L2(0, T ), the relation

uf |t< x
c
= 0, x ⩾ 0, t ⩾ 0

hold, which is interpreted as the finiteness of the wave propagation speed.

(b) For f ∈ L2(0, T ) and τ ∈ [0, T ], define a delayed control fτ ∈ L2(0, T ) by

fτ (t) := f(t− τ), 0 ⩽ t ⩽ T,

where τ is the value of delay. Since the potential does not depend on t, the relation

ufτ (x, t) := uf (x, t− τ)

is valid.

(c) Consider in the upper triangular domain D. Let f(s), 0 ⩽ s ⩽ T be a piece-wise continuous
function, which has a jump at s = ξ. Then f(t− x

c ) has a jump at the characteristic line t = c
+ξ.

Since g(s) := wδ(x, s) is continuous on s ∈ [xc , t], h(s) := wδ(x, t− s) is continuous on s ∈ [0, t− x
c ].

Also, since f(s) is piece-wise continuous on s ∈ [0, t− x
c ], we have wδ(x, t− s)f(s) is piece-wise
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continuous on s ∈ [0, t− x
c ]. So the integral has no jump at t = x

c +ξ. Thus, with a fixed t ⩾ ξ ⩾ 0,
the integral term has no jump at the character line t = x

c + ξ. Then

uf (c(t− ξ) + 0, t)− uf (c(t− ξ)− 0, t) = f

(
t− c(t− ξ) + 0

c

)
− f

(
t− c(t− ξ)− 0

c

)
= f(ξ − 0)− f(ξ + 0) = − (f(ξ + 0)− f(ξ − 0)) ,

i.e.,

uf (x, t)
∣∣x=c(t−ξ)+0

x=c(t−ξ)−0
= −f(s)

∣∣x=ξ+0

x=ξ−0
.

In particular, if f(s) vanishes for 0 < s < T − ξ and has a jump at s = T − ξ, then f(T − ξ−0) = 0.
Since the action time is T − (T − ξ) = ξ, uf (·, T ) = 0 when x > cξ. So uf (cξ + 0, T ) = 0. Replace
t with T and ξ with T − ξ in the previous expression, we have

−uf (cξ − 0, T ) = uf (x, t)
∣∣x=cξ+0

x=cξ−0
= −f(s)

∣∣x=T−ξ+0

x=T−ξ−0
= −f(T − ξ + 0),

i.e.,

uf (cξ − 0, T ) = f(T − ξ + 0), 0 ⩽ ξ ⩽ T.

2.2.5 Extended perturbed problem and locality

Return to w+Mw = −Mũf , x > 0, 0 ⩽ t ⩽ T for the regular part wδ of the fundamental solution.
Representing in the form of the Neumann series wδ =

∑∞
k=0(−1)kMkũδ and looking at the previous

figure, we easily see that the values wδ and then the values wδ
x for 0 ⩽ x < cT

2 , 0 < t < T − x
c

are determined by the values of the potential q|0<x< cT
2

only. Such a dependence is an inherence

feature of the wave processes with the finite speed of the wave propagation; it is known as a locality
principle. It motivates to extend the perturbed problem as follows:

ρutt − uxx + qu = 0, (x, t) ∈ ∆2T

u|t< x
c
= 0

u(0, t) = f(t), 0 ⩽ t ⩽ 2T,

where ∆2T := {(x, t) | 0 < x < cT, 0 < t < 2T − x
c }. Seeking for the solution in the form

uf = f(t− x
c ) + wf , one can reduce the problem to the integral equation

w +Mw = −Mũf , (x, t) ∈ ∆2T ,

which is quite analogous to previous one. For any f ∈ L2(0, 2T ), w is uniquely solvable in a
relevant class of functions in ∆2T . So the above problem is a well-posed problem and its solution
is determined by q|0<x<cT .
Taking f = δ in the extended perturbed problem, one can contruct the fundamental solution

uδ = δ(t− x
c ) + wδ(x, t), (x, t) ∈ ∆2T ,

and represent

uf (x, t) = f(t− x
c ) +

∫ t− x
c

0
wδ(x, t− s)f(s)ds, (x, t) ∈ ∆2T ,
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that extends the domain of definition of the previous Duhamel representation.
Take a smooth control f provided f(0) = 0. Note when x = 0, 0 < t < 2T − 0

c = 2T . Dif and only
iferentiating in above equation w.r.t. x by previous lemma, we get

uf
x(0, t) = −1

c
f ′(t− x

c
)
∣∣
x=0

−1

c
wδ(x, t− (t− x

c
))f(t− x

c
)ds

∣∣
x=0

+

∫ t− x
c

0

wδ
x(x, t− s)f(s)ds

∣∣∣
x=0

= −√
ρf ′(t)−√

ρwδ(0, 0)f(t− x

c
) +

∫ t

0

wδ
x(0, t− s)f(s)ds

= −√
ρf ′(t) +

∫ t

0

r(t− s)f(s)ds, 0 < t < 2T,

where r := wδ
x(0, ·)|0<t<2T is called a reply function. It is a smooth function, which may have a

jump at t = 0 only, and it will play a central role in the inverse problem.

Remark. By the locality principle, since wδ
x for 0 < x < cT, 0 < t < 2T − x

c are determined by the
values of the potential q|0<x<cT only, we have the reply function r = wδ

x(0, ·)|0<t<2T is determined
by the part q|0<x<cT only.

t

x
cT

2T

T

cT 2cT

t = 2T − x
c

0

2.3 String as dynamical system

2.3.1 System αT

Here the original perturbed problem is considered in terms of the control theory and endowed with
standard attributes of a dynamical system. The system is denoted by αT .

Definition 2.1. The Hilbert space of controls (inputs) FT : L2(0, T ) with the inner product

(f, g)FT =

∫ T

0

f(t)g(t)dt

is said to be an outer space of the system αT . It contains an increasing family of subspaces

FT,ξ := {f ∈ FT
∣∣ f |t<T−ξ = 0}, 0 ⩽ ξ ⩽ T

consisting of the delayed controls.
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Definition 2.2. The space HcT = L2,ρ(Ω
cT ) with the inner product

(u, v)HcT =

∫
ΩcT

u(x)v(x)ρdx

is called an inner space of the system αT . For each f ∈ FT and each 0 ⩽ t ⩽ T , the wave uf (·, t)
is supported in ΩcT by the property that uf |t< x

c
= 0, x ⩾ 0, t ⩾ 0, and hence can be regarded as a

time-dependent element of HcT . In control theory, uf (·, t) is referred to as a state of the system at
the moment t. So HcT is a space of states.
The inner space contains an increasing family of subspaces

Hcξ := {y ∈ HcT
∣∣ y|x>cξ = 0}, 0 ⩽ ξ ⩽ T.

Definition 2.3. Define a control operator WT : FT ! HcT in the system of αT by sending the
input f to the state uf (·, T ), which creates the waves, i.e.,

(WT f)(x) = uf (x, T ) = f(T − x

c
) +

∫ T− x
c

0

wδ(x, T − s)f(s)ds

= f(T − x

c
) +

∫ cT

x

1

c
wδ(x,

s

c
)f(s)ds

= f(T − x

c
) +

∫ cT

x

w(x, s)f(s)ds, x ∈ ΩcT ,

where w(x, s) := 1
cw

δ(x, s
c ) for any x ⩽ s ⩽ cT . As is easy to see, WT is a bounded (continuous)

operator.
Define the delay operator DT,ξ : FT ! FT given by f 7! fT−ξ. By definition, DT,ξFT = FT,ξ.
From the previous result, the delay of the control implies the delay of the wave and so

WTDT,ξf = WT fT−ξ = ufT−ξ(·, T ) = uf (·, T − (T − ξ)) = uf (·, ξ) ∈ Hcξ.

Hence

WTFT,ξ = WTDT,ξFT ⊆ Hcξ, 0 ⩽ ξ ⩽ T.

As we will see later, “⊆” can be replaced by “=”.

Definition 2.4. Define a respond operator RT : FT ! FT in the system of αT by sending the
control f of the Sobolev class H1[0, T ] with f(0) = 0, to the output uf

x(0, ·). Similarly, we have

(RT f)(t) = uf
x(0, t) = −√

ρf ′(t) +
∫ t

0
r(t− s)f(s)ds, 0 < t < T.

In mechanics, uf
x(0, t) is interpreted as a value at time t of the force generated at the endpoint

x = 0 of the string by the wave process initiated by the control f .
The presence of differentiation renders RT to be an unbounded operator. Its adjoint (RT )∗ is also
unbounded. As is easy to show, it is defined on the controls f of the Sobolev class H1[0, T ] with
f(T ) = 0 and acts by the rule

((RT )∗f)(t) =
√
ρf ′(t) +

∫ T

t
r(s− t)f(s)ds, 0 < t < T.
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Return to the extended problem and associate with it the extended reponse operator R2T acting
in the space F2T on the controls f of the class H1[0, 2T ] with f(0) = 0 by the rule

(R2T f)(t) = uf
x(x, t) = −√

ρf ′(t) +
∫ t

0
r(t− s)f(s)ds, 0 < t < 2T,

The extended response operator is one more intrinstic object of the system αT . By the locality
principle, R2T is determined by the part q|ΩcT .

Definition 2.5. Define a connecting operator CT : FT ! FT by letting CT = (WT )∗WT . Since
WT is continuous, CT is also continuous. By the definition, one has

(CT f, g)FT =
(
(WT )∗WT f, g

)
FT = (WT f,WT g)HcT = (uf (·, T ), ug(·, T ))HcT ,

i.e., CT connects the metrics of the outer and inner spaces.
The connecting operator plays a key role in the BC-method owing to the remarkable fact: it can
be represented via the response operator in explicit and simple form. To formulate the result we
need to introduce auxiliary operators:

• The operator ST : FT ! F2T ,

(ST f)(t) :=

{
f(t), 0 < t < T
−f(2T − t), T ⩽ t < 2T

extending the controls from (0, T ) to (0, 2T ) by oddness w.r.t. t = T . As is easy to check, its
adjoint (ST )∗ : F2T ! FT acts by the rule(

(ST )∗g
)
(t) = g(t)− g(2T − t) 0 < t < T.

• The integration operator J2T : F2T ! F2T ,

(J2T f)(t) =
∫ t

0
f(η)dη, 0 < t < 2T

The integration commutes with the response operator:

R2TJ2T = J2TR2T .

The formula, which express the connecting operator via the response operator, is

CT = −1

2
(ST )∗R2TJ2TST .
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Then for 0 < t < T , we have f(s) = 0 for any T < s ⩽ 2T − t and so

(CT f)(t) = −1

2

(
(ST )∗R2TJ2TST f

)
(t) = −1

2

(
(ST )∗R2TJ2T f

)
(t)

= −1

2

(
(ST )∗R2T

) ∫ t

0

f(s)ds = −1

2
(ST )∗

(
−√

ρf(t) +

∫ t

0

r(t− η)

[∫ η

0

f(s)ds

]
dη

)
= −1

2
(ST )∗

(
−√

ρf(t) +

∫ t

0

r(η)

[∫ t−η

0

f(s)ds

]
dη

)
= −1

2
(ST )∗

(
−√

ρf(t) +

∫ t

0

[∫ t−s

0

r(η)dη

]
f(s)ds

)
=

1

2

(
√
ρf(t) +

∫ 2T−t

0

[∫ 2T−t−s

0

r(η)dη

]
f(s)ds−

∫ t

0

[∫ t−s

0

r(η)dη

]
f(s)ds

)

=
1

2

(
√
ρf(t) +

∫ T

0

[∫ 2T−t−s

0

r(η)dη

]
f(s)ds−

∫ t

0

[∫ t−s

0

r(η)dη

]
f(s)ds

)

=
1

2

√
ρf(t) +

1

2

∫∫
Shaded Area

r(η)f(s)dsη

=
1

2

√
ρf(t) +

1

2

∫ T

0

[
1{s⩽t}

∫ 2T−t−s

t−s

r(η)dη + 1{s>t}

∫ 2T−t−s

0

r(η)dη

]
f(s)ds

=
1

2

√
ρf(t) +

∫ T

0

1

2

[∫ 2T−t−s

t−s

r(η)dη + 1{s>t}

∫ 2T−t−s

0

r(η)dη

]
f(s)ds

=
1

2

√
ρf(t) +

∫ T

0

1

2

[∫ 2T−t−s

(t−s)+
r(η)dη

]
f(s)ds =

1

2

√
ρf(t) +

∫ T

0

cT (t, s)f(s)ds,

with the kernel
cT (t, s) := 1

2

∫ 2T−t−s

(t−s)+
r(η)dη, 0 < s, t < T.

s

η
t 2T − t

t

T

2T − t

0

The following fact will be used later in solving the inverse problem. Assume that the external
observer investigates the system αT via its input-output correspondence. Such an observer operates
at the endpoint x = 0 of the string; he can apply controls f and measure uf

x(0, ·) but, however,
cannot see the waves uf themselves on the string. As result of such measurements, the observer
is provided with the reply function r|(0,2T ) = wδ

x(0, ·)|(0,2T ). If so, the observer can determine the
operator CT be the representaion for (CT f)(t) above and then, for any given controls f, g ∈ FT ,
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find the product of the waves (uf (·, T ), ug(·, T ))HcT , even though the waves themselves are invisible!
As we shall see, such an option enables one to make the waves visible.

2.3.2 Controllability

Can one manage the shape of the wave on a string? More precisely: Is it possible to drive the
system of αT from the initial zeor state to a given final state uf (·, T ) = y be means of the proper
choice of the boundary control f? This sort of problems is a subject of the boundary control theroy,
which is a highly developed branch of mathematical physics. Here the affirmative answer to the
posed question is provided.
There is an evident necessary condition for the above-mentioned problem to be solvable. In view of
the property uf |t< x

c
= 0, x ⩾ 0, t ⩾ 0, the function y has to be supported in the interval ΩcT filled

with waves at the final moment. Therefore, the relevant setup is: given function y ∈ HcT , to find
control f ∈ FT such that

uf (x, T ) = y(x), x ∈ ΩcT

holds. It is what is called a boundary control problem (BCP). The BCP is obviously equivalent to
the equation

WT f = y.

In the case of the unperturbed system, the BCP takes form of the equation

f(T − x
c ) = ũf (x, T ) = y(x), x ∈ ΩcT ,

which has the evident solution

f(t) = y(c(T − t)), 0 ⩽ t ⩽ T,

since 0 ⩽ x ⩽ cT .
In the perturbed case, letting

(WT f)(x) = f(T − x
c ) +

∫ cT

x
w(x, s)f(s)ds = y(x), x ∈ ΩcT ,

then we have

f(t) +
∫ cT

c(T−t)
w(c(T − t), s)f(s)ds = y(c(T − t)) 0 ⩽ t ⩽ T,

i.e.,

f(t) +
∫ t

0
cw(c(T − t), c(T − s))f(c(T − s))ds = y(c(T − t)) 0 ⩽ t ⩽ T,

i.e.,

f(t) +
∫ t

0
kT (t, s)f(c(T − s))ds = y(c(T − t)) 0 ⩽ t ⩽ T,

with kT (t, s) := cw(c(T − t), c(T − s)) that is a second-kind Volterra equation w.r.t. f . As is
well-known, such an equatio and hence the BCP is unique solvable in FT for any r.h.s.. In operator
terms, this means that the control operator is boundly invertible, its inverse (WT )−1 being defined
onto HcT .
This result can be also interpreted as follows. The set of waves

UT := {uf (·, T ) | f ∈ FT } = WTFT
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is called reachable at the moment T . The solvability of the BCP is equivalent to the relation

UT = HcT , T ⩾ 0,

which shows that our system can be steered from zero state for any state by proper choice of the
boundary control. In control theory, such a property of a dynamical system is referred to as a
controllability. Taking into account the finiteness of the wave propagation speed, we specify it as a
local boundary controllability of the system αT .
For inverse problems, controllability is an affirmative and help property. A very general principle of
system theory claim that the richer the set of states, which the observer can create in the system by
means of the given reserve of controls, the richer information about the system, which the observer
can extract from external measurements. As we shall see, the BC-method follows and realizes this
principle.

2.3.3 Wave basis

Here we make use of controllability of the system αT for storing up an efficient instrument, which
will be used for solving the inverse problem. Fix 0 ⩽ ξ ⩽ T .
Let g ∈ Hcξ ⊆ HcT . Then g|x>cξ = 0. Since WT is invertible, there exists h ∈ FT such that
WTh = uh(·, T ) with WTh|0<x<ξ = g = uh(·, ξ) = WTDT,ξh ∈ WTDT,ξFT . So

WTFT,ξ = WTDT,ξFT = Hcξ, 0 ⩽ ξ ⩽ T.

Since WT : FT ! HcT is invertible, WT |FT,ξ : FT,ξ ! Hcξ is also invertible.

Let us choose a basis of controls {fξ
j }∞j=1 in the subspace FT,ξ. Since WT is a boundly invertible

operator, the above reltion yields that the corresponding waves {ufξ
j (·, T )}∞j=1 constitute a basis of

the subspace Hcξ. For the needs of the inverse problem, it is convenient to make the latter basis
orthonormalized. To this end, we recast the basis of controls by the Schmidt orthogonalization
process w.r.t. the bilinear form (CT f, g)FT :

g̃ξ1 = fξ
1 , gξ1 =

g̃ξ
1√

(CT g̃ξ
1 ,g̃

ξ
1)FT

,

g̃ξ2 = fξ
2 − (CT fξ

2 , g
ξ
1)FT gξ1, gξ2 =

g̃ξ
2√

(CT g̃ξ
2 ,g̃

ξ
2)FT

,

...
...

g̃ξk = fξ
k −

∑k−1
j=1 (C

T fξ
k , g

ξ
j )FT gξj , gξk =

g̃ξ
k√

(CT g̃ξ
k,g̃

ξ
k)FT

,

...
...

and get a new system of controls {gξk}∞k=1, which is also a basis in FT,ξ and satisfies(
CT gξk, g

ξ
l

)
FT

= δkl, k, l = 1, 2, · · ·

by contruction. The corresponding waves {uξ
k}∞k=1, where uξ

k := ugξ
k(·, T ) = WT gξk form a basis in

the subspace Hcξ, the basis turning out to be orthonormal. Indeed, we have(
uξ
k, u

ξ
l

)
Hcξ

=

(
ugξ

k(·, T ), ugξ
l

l (·, T )
)

Hcξ

= (CT gξk, g
ξ
l )FT,ξ = δkl, k, l = 1, 2, · · · .
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We say {uξ
k}∞k=1 to be a wave basis in Hcξ.

2.4 Truncation

As in the previous subsection, we keep 0 ⩽ ξ ⩽ T fixed. In the inner space HcT introduce the
operation P cξ. Let y ∈ HcT , define

(P cξy)(x) :=

{
y(x), x ∈ Ωcξ

0, x ∈ ΩcT ∖ Ωcξ

that truncates functions onto the subinterval Ωcξ ⊆ ΩcT . As is easy to see, P cξ is the orthogonal
projection in HcT onto the subspace Hcξ, and expanding over the wave basis, we can represent the
truncated function in the form of the Fourier series:

P cξy = y|x∈Ωcξ =

∞∑
k=1

(
y, uξ

k

)
HcT

uξ
k.

By the controllability of αT , the function y ∈ HcT can be regarded as a wave produced by a control
f = (WT )−1y. By the same reason and since WT |FT,ξ : FT,ξ ! Hcξ is invertible, the truncated
function P cξy ∈ Hcξ is also a wave produced by a control fξ := (WT )−1P cξy ∈ FT,ξ. Thus, we
have a correspondence f 7! fξ, which is realized by an operator

P ξ := (WT )−1P cξWT

acting in the outer space FT . In other words, the truncating y 7! P cξy in the inner space induces
a truncation-like operation f 7! P ξf in the outer space.

FT HcT

FT,ξ Hcξ

P ξ

WT

P cξ

WT

An important fact is that the latter operation can be represented in the form of the expansion
over the system {gξk}∞k=1: namely, let f ∈ FT , then

P cξWT f =

∞∑
k=1

(
WT f, uξ

k

)
HcT

WT gξk =

∞∑
k=1

(
WT f,WT gξk

)
HcT

WT gξk = WT
∞∑
k=1

(
CT f, gξk

)
FT

gξk,

i.e.,

P ξf = (WT )−1P cξWT f =

∞∑
k=1

(
CT f, gξk

)
FT

gξk.

2.4.1 Amplitude formula

Now, let us derive a relation, which represents the values of the waves through the operator P ξ.
Let a control f ∈ FT be continuous on [0, T ]. Since WT is bounded, by the definition of the



24CHAPTER 2. BOUNDARY CONTROLMETHOD IN 1D DYNAMICAL INVERSE PROBLEMS [1]

continuity, we have uf (·, T ) is also continuous on ΩcT . Also, since P cξ is a truncation operation,
(P cξuf (·, T ))(x) vanishes for x > cξ, is continuous in Ωcξ and has a jump(

P cξuf (·, T )
)
(x)

∣∣x=cξ+0

x=cξ−0
= 0− uf (cξ, T ) = −uf (cξ, T ).

Also, since P cξuf (·, T ) = P cξWT f = WTP ξf = uP ξf (·, T ) and P ξf ∈ FT,ξ, we have

(
P cξuf (·, T )

)
(x)

∣∣x=cξ+0

x=cξ−0
=
(
uP ξf (·, T )

)
(x)

∣∣∣x=cξ+0

x=cξ−0
= −(P ξf)(s)

∣∣s=T−ξ+0

s=T−ξ−0
= −(P ξf)(T − ξ + 0).

Compare the 2 equations above, we have

uf (cξ, T ) = (P ξf)(T − ξ + 0) =

[ ∞∑
k=1

(
CT f, gξk

)
FT

gξk(t)

] ∣∣∣∣∣
t=T−ξ+0

,

which is the amplitude formula (AF). The reason is that it represents the wave through the jump
amplitudes of the control, which appears as one projects the control on the subspaces FT,ξ by the
operators P ξ. The backgroup of the AF is geometrical optics; its various versions play the role of
key tool of the BC-method.

2.4.2 Special BCP

In this subsection we deal with the controlling problem of uf (x, T ) = y(x), x ∈ ΩcT with a special
r.h.s. y ∈ HcT . Consider the Cauchy problem

−p′′ + q(x)p = 0, x > 0,

p|x=0 = α, p′|x=0 = β,

where α and β are constant. By standard ODE theory, such a problem has a unique smooth
solution p = pαβ(x). In what follows we assume α and β are fixed. Therefore we omit these
subsripts and write just p(x).
Consider the special BCP: find a pieice-wise continuous control f ∈ FT satisfying

uf (·, T ) = p, x ∈ ΩcT .

By previous result, such a problem has a unique solution fT ∈ FT and applying the AF for f = fT

we get

p(cξ) = uf (cξ, T ) = (P ξf)(T − ξ + 0) =
[∑∞

k=1

(
CT f, gξk

)
FT

gξk(t)
] ∣∣∣∣∣

t=T−ξ+0

, 0 < ξ ⩽ T.

The remarkable fact is that, in this case, the coefficients of the series can be found explicitly.
To find the coefficients, let us take a smooth control g ∈ FT provided g(0) = g′(0) = g′′(0) = 0.
The corresponding wave ug satisfies the equations in the perturbed problem in the classic sense;
therefore it vanishes at its forward front together with the derivatives and we have the boundary
condition

ug(cT, t) = 0 = ug
x(cT, t), 0 ⩽ t ⩽ T.
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This enables one to justify the following calculations:

(CT f, g)FT =
(
uf (·, T ), ug(·, T )

)
HcT = (p, ug(·, T ))HcT =

∫ cT

0

p(x)ug(x, T )ρdx

=

∫ cT

0

p(x)ug(x, t)
∣∣r=T

r=0
ρdx =

∫ cT

0

p(x)

[∫ T

0

ug
t (x, r)dr

]
ρdx

=

∫ cT

0

p(x)

[∫ T

0

ug
t (x, s)

∣∣s=r

s=0
dr

]
ρdx =

∫ cT

0

p(x)

[∫ T

0

[∫ r

0

ug
tt(x, s)ds

]
dr

]
ρdx

=

∫ cT

0

p(x)

[∫ T

0

ug
tt(x, s)

[∫ T

s

dr

]
ds

]
ρdx =

∫ cT

0

p(x)

[∫ T

0

(T − s)ug
tt(x, s)dt

]
ρdx

=

∫ T

0

(T − s)

[∫ cT

0

p(x)ρug
tt(x, s)dx

]
ds

=

∫ T

0

(T − s)

[∫ cT

0

p(x) [ug
xx(x, s)− q(x)ug(x, s)] dx

]
ds

=

∫ T

0

(T − s)

[∫ cT

0

p(x)dug
x(x, s)−

∫ cT

0

q(x)p(x)ug(x, s)dx

]
ds

=

∫ T

0

(T − s)

[
ug
x(x, s)p(x)

∣∣x=cT

x=0
−
∫ cT

0

p′(x)ug
x(x, s)dx−

∫ cT

0

q(x)p(x)ug(x, s)dx

]
ds

=

∫ T

0

(T − s)

[
−ug

x(0, s)p(0)−
∫ cT

0

p′(x)dug(x, s)−
∫ cT

0

q(x)p(x)ug(x, s)dx

]
ds

=

∫ T

0

(T − s)

[
−ug

x(0, s)p(0)− ug(x, s)p′(x)
∣∣x=cT

x=0
+

∫ cT

0

p′′(x)ug(x, s)dx

−
∫ cT

0

q(x)p(x)ug(x, s)dx

]
ds

=

∫ T

0

(T − s)

[
−p(0)ug

x(0, s) + p′(0)ug(0, s) +

∫ cT

0

[p′′(x)− q(x)p(x)]ug(x, s)dx

]
ds

=

∫ T

0

(T − s)
[
−α(RT g)(s) + βg

]
ds =

(
κ,−αRT g + βg

)
FT =

(
−(RT )∗κα+ κβ, g

)
FT

where κ(t) := T − t for any 0 ⩽ t ⩽ T and κ ∈ FT . Thus, we have got the equality

(CT f, g)FT =
(
−(RT )∗κα+ κβ, g

)
FT .

For each k ∈ N, letting g = gξk, we have

(CT f, gξk)FT =
(
−(RT )∗κα+ κβ, gξk

)
FT

.
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Thus,

p(cξ) = uf (cξ, T ) =

[ ∞∑
k=1

(
−(RT )∗κα+ κβ, gξk

)
FT

gξk(t)

] ∣∣∣∣∣
t=T−ξ+0

, 0 < ξ ⩽ T.

The significance of this formula is that it represents the function p, which is an object of the inner
space, through the objects of the outer space. We shall see that it is the fact, which enables the
external observer to use the above expression for solving the inverse problem.

2.5 Inverse Problem

2.5.1 Statement

The setup of the dynamical inverse problem is motivated by the locality principle or, more exactly,
by the local character of dependence of the response operator on the potential. Recall that the op-
erator R2T associated with the extended perturbed problem is determined by q|ΩcT . This property
is of transparent physical meaning. Namely, the response of the system αT (i.e., the force uf

x(0, t))
measured at the endpoint on the string) on the action of a control f is formed by the waves, which
are reflected from inhomogeneities of the string and return back to the endpoint x = 0. Since the
wave propagation speed is equal to c, the waves reflected from the depths x > cT return to the
endpoint later than t = 2T and then they are not recorded by the external observer measuring
the values uf

x(0, t) for times 0 ⩽ t ⩽ 2T . Therefore, the operator R2T , which corresponds to these
measurements, contains certain information on q|ΩcT but “knows nothing” about q|x>cT . Taking
into account this fact, the relevant statement of the dynamical inverse problem has to be as follows:
given operator R2T , recover the potential q|ΩcT .

Note in addition that this statement agrees closely with very general principles of the system
theory. By one of them, the input-output map of a linear system (here the response operator R2T )
determines not the whole system but its controllable part (here the interval ΩcT ) only.

2.5.2 Solving inverse problem

The potential q|ΩcT can be recovered by means of the following procedure:

(a) Determine the constant
√
ρ and the reply function r|(0,2T ). Find the operator CT and the

compute (RT )∗.

(b) Fix ξ ∈ (0, T ]. In the subspace FT,ξ ⊆ FT , construct a CT -orthogonal basis of controls {gkk}∞k=1.

(c) Choose two constant α, β provided α2 + β2 ̸= 0 and find the value p(cξ).

(d) Varying ξ ∈ (0, T ], recover the functon p in ΩcT .

(e) Determine the potential by

q(x) = p′′(x)
p(x) , x ∈ ΩcT .

Using the step (e), one has to take care of the case p(x) = 0. However, as is well-known, on any
finite interval ΩcT , there may be only a finite number of zeros of p. Therefore, if q is determined in
other points it can be extended to the zeros by continuity. Another option to remove the zero of p
at a given x = x0 is to choose another α, β.
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