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Chapter 1

Sets and Events

Let Ω be a set and N = {1, 2, . . . , }.

1.1 Indicator functions

Definition 1.1. Let A ⊆ Ω.

1A(ω) =

{
1 if ω ∈ A,
0 otherwise.

Fact 1.2. The following hold:

(a) 1A ⩽ 1B if and only if A ⊆ B.

(b) 1Ac = 1− 1A.

Definition 1.3. Let {Ai}∞i=1 be a sequence of subsets of Ω. Define

(a)

inf
k⩾n

Ak :=

∞⋂
k=n

Ak, sup
k⩾n

Ak :=

∞⋃
k=n

Ak,

and

(b)

lim inf
n!∞

An =

∞⋃
k=1

∞⋂
k=n

Ak, lim sup
n!∞

An =

∞⋂
n=1

∞⋃
k=n

Ak.

Proposition 1.4. By de Morgan’s law,

(lim inf
n!∞

An)
c = lim sup

n!∞
Ac

n,

(lim sup
n!∞

An)
c = lim inf

n!∞
Ac

n.

1



2 CHAPTER 1. SETS AND EVENTS

Definition 1.5. For some sequence {Bn} of subsets of Ω, if lim supn!∞Bn = B = lim infn!∞Bn,
then the limit of {Bn} exists, written as

lim sup
n!∞

= B.

Lemma 1.6. Let {An} be a sequence of subsets of Ω.

(a)

lim sup
n!∞

An =

{
ω
∣∣∣ ∞∑
n=1

1An
(ω) = ∞

}
= {ω | ω ∈ Ank

, k = 1, 2, · · · },

for some subsequence nk depending on ω. Consequencely, we write lim supn!∞An = {An i.o.}.

(b)

lim inf
n!∞

An =

{
ω
∣∣∣ ∞∑
n=1

1Ac
n
(ω) <∞

}
= {ω | ω ∈ An,∀n ⩾ n0(ω)}.

Proof. (a) If ω ∈ lim supn!∞An, then for any n ∈ N, ω ∈
⋃∞

k=nAk. So for any n ∈ N, there
exists kn ⩾ n such that ω ∈ Akn

, and therefore
∑∞

n=1 1An
(ω) ⩾

∑
n 1Akn

(ω) = ∞, which implies

ω ∈
{
ω
∣∣ ∑∞

n=1 1An
(ω) = ∞

}
. Thus, limn!∞ supAn ⊆

{
ω
∣∣ ∑∞

n=1 1An(ω) = ∞
}
. Conversely, if

ω ∈
{
ω
∣∣ ∑∞

n=1 1(An)(ω) = ∞
}
, then there exists kn ! ∞ such that ω ∈ Akn

, and therefore

for any n ∈ N, ω ∈
⋃∞

k=nAk so that ω ∈ limn!∞ supAn. Thus,
{
ω
∣∣ ∑∞

n=1 1(An)(ω) = ∞
}

⊆
limn!∞ supAn.

(b) It is similar.

Example 1.7.

lim inf
n!∞

[
0,

n

n+ 1

)
= [0, 1) = lim sup

n!∞

[
0,

n

n+ 1

)
.

Definition 1.8. We say Xn ! X0 almost surely (a.s.) (a.e.) if P (limn!∞Xn = X0) = 1.

Theorem 1.9 (Almost surely convergence). Let {Xn} be a set of measurable functions from Ω to
R. If Xn ! X0 a.e., then

1 = P
(
lim
n!∞

Xn = X0

)
= P

(
ω
∣∣ |Xn(ω)−X0(ω)| ⩽ ϵ,∀n ⩾ n0(ω)

)
= P (ω | ω ∈ {|Xn −X0| ⩽ ϵ} ,∀n ⩾ n0(ω)) = P (ω | ω ∈ An,∀n ⩾ n0(ω))

= P (lim inf
n!∞

An) = P
(
lim inf
n!∞

{|Xn −X0| ⩽ ϵ}
)
,∀ϵ > 0,

and so

0 = P

(
lim sup
n!∞

Ac
n

)
= P

(
lim sup
n!∞

{|Xn −X0| > ϵ}
)
,∀ϵ > 0.

Proposition 1.10. Suppose {An} is a monotone sequence of subsets.

(a) If An ", then limn!∞An =
⋃∞

n=1An.

(b) If An #, then limn!∞An =
⋂∞

n=1An.
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Proof. (a) If follows from

lim sup
n!∞

An =

∞⋂
n=1

⋃
k⩾n

Ak ⊆
⋃
k⩾1

Ak =

∞⋃
n=1

An =

∞⋃
n=1

⋂
k⩾n

Ak = lim inf
n!∞

An ⊆ lim sup
n!∞

An.

Remark. Recall that the limit of monotone increasing sequence is its supremum.

Remark. Since {
⋂∞

k=nAk}n⩾1 is monotone increasing,

lim inf
n!∞

An :=

∞⋃
k=1

∞⋂
k=n

Ak = lim
n!∞

∞⋂
k=n

Ak.

Since {
⋃∞

k=nAk}n⩾1 is monotone decreasing,

lim sup
n!∞

An :=

∞⋂
n=1

∞⋃
k=n

Ak = lim
n!∞

∞⋃
k=n

Ak.

Proposition 1.11. We have the following.

(a)
1infn⩾k An = inf

n⩾k
1An , 1supn⩾k An = sup

n⩾k
1An .

(b)
1lim supn!∞ An

= lim sup
n!∞

1An
, 1lim infn!∞ An

= lim inf
n!∞

1An
.

(c)
1A∆B ≡ 1A + 1B (mod 2).

Proof. (a) 1infn⩾k An
= 1 if and only if ω ∈ infn⩾k An = ∩∞

n=kAn if and only if ω ∈ An for all n ⩾ k
if and only if 1An

(ω) = 1 for all n ⩾ k if and only if infn⩾k 1An
(ω) = 1.

(b)
1lim supn!∞ An

= 1infn⩾1 supk⩾n Ak
= inf

n⩾1
1supk⩾n Ak

= inf
n⩾1

sup
k⩾n

1Ak
= lim sup

n!∞
1An

.
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Chapter 2

Probability Spaces

Definition 2.1. Suppose Ω = R and let

C = {(a, b] | −∞ ⩽ a ⩽ b <∞}.

Define
B(R) := σ(C)

and call B(R) the Borel subsets of R.

2.1 Basic Definitions and Properties

s

Definition 2.2. A probability space is a triple (Ω,B, P ) where

(a) Ω is the sample space corresponding to outcomes of some experiment.

(b) B is the σ-algebra of subsets of Ω. These subsets are called events.

(c) P is a probability measure, i.e., P is a function P : B ! [0, 1] such that

(1) P (A) ⩾ 0 for all A ∈ B.
(2) P is σ-additive.

(3) P (Ω) = 1.

Theorem 2.3 (inclusion-exclusion formula).

P

( n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1

( ∑
1⩽i1<···<ik⩽n

P (Ai1 ∩ · · · ∩Aik)

)
=

∑
∅̸=J⊆{1,2,...,n}

(−1)|J|−1P

(⋂
j∈J

Aj

)
.

Theorem 2.4 (More continuity). We have the following.

(a)

P
(
lim
n!∞

inf An

)
⩽ lim

n!∞
inf P (An) ⩽ lim

n!∞
supP (An) ⩽ P

(
lim
n!∞

supAn

)
.

5
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(b) P is continuous.

Proof. (a) The first inequality follows from Fatou’s Lemma:

P (lim inf
n!∞

An) = P ( lim
n!∞

⋂
k⩾n

Ak) = lim
n!∞

P (
⋂
k⩾n

Ak) = lim inf
n!∞

P (
⋂
k⩾n

Ak) ⩽ lim inf
n!∞

P (An),

where the second equality follows from the monotone continuity property. The last inequality
follows from Proposition 1.4 and the first inequality.

(b) Let An ! A as n ! ∞. Then limn!∞ supAn = limn!∞ inf An. So by (a), P (A) =
P (limn!∞ inf An) ⩽ limn!∞ inf P (An) ⩽ limn!∞ supP (An) ⩽ P (limn!∞ supAn) = P (A).

Definition 2.5. A function F : R! [0, 1] satisfying

(a) F is right continuous,

(b) F is monotone nondecreasing,

(c) F has limit at ±∞: F (∞) := limx"∞ F (x) = 1 and F (−∞) := limx#−∞ F (x) = 0,

is called a (probability) distribution function.

Proposition 2.6. Define F : R! [0, 1] by F (x) := µ ((−∞, x]), where µ is a finite Borel measure
on R. Then F is a distribution function.

Proof. (a) Let xn # x, then (−∞, xn] # (−∞, x]. By the (right) continuity of probability measure,
µ ((−∞, xn]) =

∫
R 1(−∞,xn]dµ #

∫
R 1(−∞,x]dµ = µ ((−∞, x]). So F (xn) # F (x).

(b) If x, y ∈ R and x < y, then (−∞, x] ⊆ (−∞, y]. So by the monotonicity of µ, F (x) =
µ ((−∞, x]) ⩽ µ ((−∞, y]) = F (y).

(c) Let xn " ∞. Since µ is continuous, F (∞) = limxn"∞ F (xn) = limxn"∞ µ ((−∞, xn]) =
µ (limxn"∞(−∞, xn]) = µ (

⋃∞
n=1(−∞, xn]) = µ ((−∞,∞)) = µ(R) = µ(Ω) = 1. Likewise, let

xn # −∞, F (−∞) = limxn#−∞ F (xn) = limxn#−∞ µ ((−∞, xn]) = µ (limxn#−∞(−∞, xn]) =
µ (
⋂∞

n=1(−∞, xn]) = µ(∅) = 0.

Remark. In practice, we start with a known distribution function F : R ! [0, 1] and wish to
construct a probability space (Ω,B, P ) such that F (x) = P ((−∞, x]).

Example 2.7 (Coincidences). Suppose the integers 1, 2, . . . , n are randomly permuted. What is
the probability that there is an integer left unchanged by the permutation?

We first construct a probability space. Let Ω be the set of all permutations of 1, 2, . . . , n so that

Ω = {(x1, . . . , xn) | x1 ∪ · · · ∪ xn = {1, . . . , n}}.

Thus Ω is the set of outcomes from the experiment of sampling n times without replacement from
the population 1, . . . , n. We let B = P(Ω) be the power set of Ω and define P ((x1, . . . , xn)) =

1
n! for

(x1, . . . , xn) ∈ Ω, and P (B) = 1
n! |B| for B ∈ B. For i = 1, . . . , n, let Ai be the set of all elements

of Ω with i in the ith spot. From Theorem 2.3, we have

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑

1⩽i<j⩽n

P (AiAj) +
∑

1⩽i<j<k⩽n

P (AiAjAk)− · · ·+ (−1)n+1P (A1 · · ·An).
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To compute P (Ai), we fix an integer i in the ith spot and count the number of ways to distribute
n− 1 objects in n− 1 spots, which is (n− 1)! and then divide by n!. To compute P (AiAj), we fix i
and j and count the number of ways to distribute n− 2 integers into n− 2 spots, and so on. Thus,

P

(
n⋃

i=1

Ai

)
= n

(n− 1)!

n!
−
(
n

2

)
(n− 2)!

n!
+

(
n

3

)
(n− 3)!

n!
− · · ·+ (−1)n+1 1

n!

= 1− 1

2!
+

1

3!
− · · ·+ (−1)n

1

n!
.

Taking into account the expansion of ex for x = −1, we see that for large n, the probability of a
conincidence is approximately P (

⋃n
i=1Ai) ≈ 1− e−1 ≈ 0.632.

2.2 More on Closure

Definition 2.8. P is a π-system if it is closed under finite intersections.

Definition 2.9. A class subsets L of Ω is called a λ-system (σ-additive class, Dynkin class) if it
satisfies

old (a) Ω ∈ L,
(b) if A ⊆ B with A,B ∈ L, then B ∖A ∈ L,
(c) for increasing {An} ⊆ L:

⋃∞
n=1An ∈ L;

new (a) Ω ∈ L,
(b) if A ∈ L, then Ac ∈ L,
(c) for pairwise disjoint {An} ⊆ L:

⋃∞
n=1An ∈ L.

Definition 2.10. The minimal structure S generated by a class C is a non-empty structure satis-
fying

(a) C ⊆ S,

(b) If S′ is some other structure containing C, then S ⊆ S ′.

Denote the minimal structure by S(C).

Proposition 2.11. The minimal structure S generated by a class C exists and is unique. Let
N = {G | G is a strucure, C ⊆ G}, then S(C) =

⋂
G∈N G.

Theorem 2.12 (Dynkin’ theorem). (a) If P is a π-system and L is a λ-system such that P ⊆ L,
then σ(P) ⊆ L.

(b) If P is a π-system, then σ(P ) = L(P), that is, the minimal σ-algebra over P equals the minimal
λ-system over P.

Proposition 2.13. Let P1, P2 be two probability measure on (Ω,B). {A ∈ B | P1(A) = P2(A)} is
a λ-system.

Corollary 2.14. If P1, P2 are two probability measures in (Ω,B) and if P is a π-system such that
for A ∈ P : P1(A) = P2(A), then for B ∈ σ(P) : P1(B) = P2(B).
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Proof. L := {A ∈ B | P1(A) = P2(A)} is a λ-system. But P ⊆ L, and hence by Dynkin’s theorem
σ(P) ⊆ L.

Corollary 2.15. Let Ω = R. Let P1, P2 be two probability measures on (R,B(R)) such that their
distribution functions are equal: for all x ∈ R : F1(x) = P1 ((−∞, x]) = F2(x) = P2 ((−∞, x]).
Then P1 ≡ P2 on B(R). So a probability measure on R is uniquely determined by its distribution
function.

Proof. Let P = {(−∞, x] : x ∈ R}. Then P is a π-system since (−∞, x]∩(−∞, y] = (−∞, x∧y] ∈ P.
So F1(x) = F2(x), x ∈ R means P1 ≡ P2 on P. Furthermore σ(P) = B(R). Thus, by CorollAry
2.14, P1 ≡ P2 on σ(P) = B(R).

Proposition 2.16. If a class C is both a π-system and a λ-system, then it is a σ-algebra.

2.3 Two Constructions

(a) Discrete models: Suppose Ω = {ω1, ω2, · · · } is countable. For each i ⩾, associate to ωi the
number pi such that pi ⩾ 0 and

∑∞
i=1 pi = 1. Define B = P(Ω), and for A ∈ B, set P (A) =∑

ωi∈A pi. Then we have the following properties of P :

(1) P (A) ⩾ 0,∀A ∈ B.

(2) P (Ω) =
∑∞

i=1 pi = 1.

(3) If {Aj}j⩾1 are mutually disjoint subsets, then

P

( ∞⊔
j=1

Aj

)
=

∑
ωi∈

⊔∞
j=1 Aj

pi =

∞∑
j=1

∑
ωi∈Aj

pi =

∞∑
j=1

P (Aj),

where the last step is justified because the series, being positive, can be added in any order.

This gives the general construction of probabilities when Ω is countable.

(b) Coin tossing N times: Set

Ω = {0, 1}N = {(ω1, . . . , ωN ) : ωi = 0 or 1}.

For p ⩾ 0, q ⩾ 0, p + q = 1, define p(ω1,...,ωN ) = p
∑N

j=1 ωjqN−
∑N

j=1 ωj = p#1′sq#0′s. Let B = P(Ω)
and for A ⊆ Ω, define P (A) =

∑
ω∈A pω. As in (a), this gives a probability model provided∑

ω∈Ω pω = 1. Note the product form p(ω1,...,ωN ) =
∏N

i=1 p
ωiq1−ωi . So

∑
i

pi =
∑

ω1,...,ωN

N∏
i=1

pωiq1−ωi =
∑

ω1,...,ωN−1

N−1∏
i=1

pωiq1−ωi
(
p1q0 + p0q1

)
= · · · = 1.
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2.4 Construction of Probability Spaces

Lemma 2.17 (The algebra generated by a semialgebra). Suppose S is a semialgebra of subsets of
Ω. Let A(S) be the smallEst algebra containing S. Then

A(S) =

{
finite⊔

i

Si

∣∣∣ {Si} ⊆ S are disjoint

}
.

Theorem 2.18 (First Extension Theorem). Suppose S is a semialgebra of subsets of Ω and P :
S ! [0, 1] is a σ-additive on S and satisfies P (Ω) = 1, implying P is a probability measure on S.
There is a unqiue extension P ′ of P to A(S), defined by P ′(

⊔
i∈I Si) =

∑
i∈I P (Si), which is a

probability measure on A(S); that is P ′(Ω) = 1 and P ′ is σ-additive on A(S).

Theorem 2.19 (Second Extension Theorem). A probability measure P defined on a algebra A of
subsets has a unique extension to a probility measure on σ(A), the σ-algebra generated by A.

Theorem 2.20 (Combo Extension Theorem). Suppose S is a semialgebra of subsets of Ω and that
P is a σ-addtive set function mapping S into [0, 1] such that P (Ω) = 1. There is a unique probability
measure on σ(S) that extends P .

2.5 Measure Constructon

2.5.1 Lebesgue Measure on (0, 1]

Suppose Ω = (0, 1], B = B ((0, 1]) and S = {(a, b] | 0 ⩽ a ⩽ b ⩽ 1}. Define on S the function
λ : S −! [0, 1] by λ(∅) = 0, λ(a, b] = b−a. With a view to applying Extension Theorem, note that
λ(A) ⩾ 0. To show that λ has unique extension we need to show that λ is σ-additive.

2.5.2 Construction of a Probability Measure on R with Given Distribu-
tion Function F (x).

Given Lebesgue measure λ constructed in last section and a distribution function F (x), we con-
struct a probability measure PF on R such that PF ((−∞, x]) = F (x). Define the left con-
tinuous inverse of F as F (y) = inf{s : F (s) ⩾ y}, 0 < y < 1. Now define for A ⊆ R,
ξF (A) = {x ∈ (0, 1] : F (x) ∈ A}. If A is a Borel subset of R, then ξF (A) is a Borel subset of
(0, 1].

Lemma 2.21. If A ∈ B(R), then ξF (A) ∈ B ((0, 1]).

Proof. Define G = {A ⊆ R : ξF (A) ∈ B ((0, 1])}. G contains finite intervals of the form (a, b] ⊆ R
since

ξF ((a, b]) = {x ∈ (0, 1] : F (x) ∈ (a, b]} = {x ∈ (0, 1] : a < F (x) ⩽ b}
= {x ∈ (0, 1] : F (a) < x ⩽ F (b)} = (F (a), F (b)] ∈ B ((0, 1]) .

Next, we verify that G is a σ-field.

(a) Since ξF (R) = (0, 1], we have R ∈ G.
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(b) Assume A ∈ G, then Ac ⊆ R and then

ξF (A
c) = {x ∈ (0, 1] : F (x) ∈ Ac} = {x ∈ (0, 1] : F (x) ∈ A}c = (ξF (A))

c ∈ B ((0, 1]) ,

since ξF (A) ∈ B ((0, 1]).

(c) Let {An} ⊆ G, then ξF (
⋃∞

n=1An) =
⋃∞

n=1 ξF (An) ∈ B ((0, 1]).

So G contains intervals and G is a σ-field and therefore B(R) ⊇ G.

Define PF (A) = λ (ξF (A)), where λ is Lebesgue measure on (0, 1]. It is easy to check that PF

is a probability measure. Note that

PF ((−∞, x]) = λ (ξF ((−∞, x])) = λ {y ∈ (0, 1] : F (y) ⩽ x}
= λ {y ∈ (0, 1] : y ⩽ F (x)} = λ ((0, F (x)]) = F (x).



Chapter 3

Random Variables, Elements, and
Measurable Maps

3.1 Inverse Maps

Random variables are conveninet tools that allow us to focus on properties of interest about exper-
iment being modelled. Suppose Ω and Ω′ are two sets. Suppose X : Ω −! Ω′. Then X determines
a function X−1 : Ω′ −! Ω defined by X−1(A′) = {ω ∈ Ω : X(ω) ∈ A′} for A′ ⊆ Ω′.

Remark. X−1 preserves complementation, union and intersection.

Proposition 3.1. If B′ is a σ-field of subsets of Ω′, then X−1(B′) is σ-field of subsets of Ω.

Proposition 3.2. If C ′ is a class of subsets of Ω′, then

X−1 (σ(C ′)) = σ
(
X−1(C ′)

)
.

3.2 Measurable Maps, Random Elements, Induced Proba-
bility Measures

Definition 3.3. A pair (Ω,B) consisting of a set Ω and a σ-field of subsets B is called a measurable
space.

Definition 3.4. If (Ω,B) and (Ω′,B′) are two measurable spaces, then a map

X : Ω −! Ω′

ω 7−! X(ω)

is called measurable if X−1(B′) ⊆ B. Denoted X ∈ B/B′ or X : (Ω,B) ! (Ω′,B′). When
(Ω′,B′) = (R,B(R)), X is called a random variable.

Definition 3.5. Let (Ω,B) be a measurable space. A measure on (Ω,B) is a function µ : B ! [0,∞]
such that

11
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(a)

µ(∅) = 0.

(b)

µ

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

µ(Ai),

where {Ai} ⊆ B are pairwise disjoint.

We call (Ω,B, µ) a measure space.

Remark. If µ is a probability measure, we just replace condition (a) as µ(Ω) = 1.

Proposition 3.6. Let (Ω,B, P ) be a probability (measure) space and suppose X : (Ω,B) −!
(Ω′,B′). Define

P ◦X−1 : B′ −! R+

A′ 7−! (P ◦X−1)(A′) = P (X−1(A′)).

Then P ◦ X−1 is a probability measure on (Ω′,B′), called induced probability measure or the
distribution of X.

Proof. (a) (P ◦X−1)(A′) ∈ R+ for any A′ ∈ B′.

(b) (P ◦X−1)(Ω′) = P (X−1(Ω′)) = P (Ω) = 1.

(c) Let {An} ⊆ B′ be pairwise disjoint, then

(P ◦X−1)

( ∞⊔
n=1

A′
n

)
= P

( ∞⊔
n=1

X−1(A′
n)

)
=

∞∑
n=1

P (X−1(A′
n)) =

∞∑
n=1

(P ◦X−1)(A′
n).

Remark. Usually we write

P ◦X−1(A′) = P (X ∈ A′).

For example, if X is random variable, then

(P ◦X−1)((−∞, x]) = P (X ⩽ x).

Definition 3.7. Let (Ω,B) be a measurable space. X : Ω ! [−∞,∞] is called measurable if
{f ∈ A} ⊆ B for any A ∈ B(R).

Remark. X is Borel measurable if B is a Borel σ-algebra. X is Lebesgue measurable if B = B(Ω)
on R is a Lebesgue σ-algebra (All Lebesgue measurable sets on Ω ⊆ R).

Verification that a map is measurable is sometimes made easy by decomposing the map into
the composition of two (or more) maps. If each map in the composition is measurable, then the
composition is measurable.
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Proposition 3.8 (Composition). Let X1 : (Ω1,B1)! (Ω2,B2) and X2 : (Ω2,B2)! (Ω3,B3) where
(Ωi,Bi), i = 1, 2, 3 are measurable spaces. Define

X2 ◦X1 : Ω1 −! Ω3

ω1 7−! X2(X1 (ω1)) .

Then X2 ◦X1 ∈ B1/B3.

Proof. Since for any B3 ⊆ Ω3:

(X2 ◦X1)
−1(B3) = {ω1 : X2 ◦X1(ω1) ∈ B3} = {ω1 : X1(ω1) ∈ X−1

2 (B3)}
= {ω1 : ω1 ∈ X−1

1

(
X−1

2

)
(B3)} = X−1

1 X−1
2 (B3),

we have (X2 ◦X1)
−1 = X−1

1 X−1
2 . Let B3 ∈ B3, then (X2 ◦X1)

−1(B3) = X−1
1 X−1

2 (B3) ∈ B1 since
X−1

2 (B3) ∈ B2. (Or we can say (X2 ◦X1)
−1(B3) ⊆ B1.)

Proposition 3.9. If Xi : (Ω,B) ! (R,B(R)) is a random variable for i = 1, . . . , n, and ϕ : U(⊆
Rn) −! R is continuous, then

ϕ(X1, . . . , Xn) : Ω −! R
ω 7−! ϕ(X1(ω), . . . , Xn(ω))

is a random variable. (Note you have to check range of (X1, . . . , Xn) is in U .)

Proof. Let
V := {ϕ < t} = {(s1, . . . , sn) ∈ Rn | ϕ(s1, . . . , sn) < t}.

Then V is open since ϕ is continuous. By Lindelof theorem for Rn, there exists {ck}k⩾1 such that
V =

⊔∞
k=1 ck, where

ck =
(
a
(k)
1 , b

(k)
1

)
× · · · ×

(
a(k)n , b(k)n

)
,∀k ⩾ 1,

are disjoint with a
(k)
i ∈ R,∀ i = 1, . . . , n, ∀k ⩾ 1, and such that

{ϕ(X1, . . . , Xn) < t} = {ω ∈ Ω | (X1(ω), . . . , Xn(ω)) ∈ V }

=

{
ω ∈ Ω

∣∣∣ (X1(ω), . . . , Xn(ω)) ∈
n⊔

k=1

ck

}

=

∞⊔
k=1

{ω ∈ Ω | (X1(ω), . . . , Xn(ω)) ∈ ck}

=

∞⊔
k=1

{
ω ∈ Ω

∣∣∣ X1(ω) ∈
(
a
(k)
1 , b

(k)
1

)
, . . . , Xn(ω) ∈

(
a(k)n , b(k)n

)}
=

∞⊔
k=1

n⋂
j=1

{
ω ∈ Ω

∣∣ a(k)i < Xi(x) < b
(k)
i

}
∈ B.

Thus, ϕ(X1, . . . , Xn) is a random variable.
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3.3 σ-fields Generated by Maps

Let X : (Ω,B)! (R,B(R)) be a random variable. Define

σ(X) := X−1(B(R)).

This is the σ-algebra generated by information about X, which is a way of isolating that information
in the probability space that pertains to X. If F ⊆ B is a sub-σ-field of B, we say X is measurable
w.r.t to F , written X ∈ F if σ(X) ⊆ F .

Example 3.10 (Extreme example). Let X(ω) = 17 for ω ∈ Ω. Then σ(X) = σ(∅,Ω) = {∅,Ω}.

Example 3.11 (Less extreme example). Suppose X = 1A for some A ∈ B (So mesurable). Note
X has range {0, 1}. Then

σ(X) = σ
(
X−1({0}), X−1({1})

)
= σ(A,Ac) = {∅,Ω, A,Ac}.

Example 3.12 (Useful example: Simple function). Let Ai := X−1(ai) = {X = ai}. Then

{Ai, i = 1, . . . , k} partitions Ω. We may represent X as X =
∑k

i=1 ai1Ai . Then

σ(X) = σ(A1, . . . , Ak) =

{⊔
i∈I

Ai : I ⊆ {1, . . . , k}

}
.

Theorem 3.13. For t ∈ T , let Xt : (Ω,B)! (R,B(R)) be measurable. Then

σ(Xt, t ∈ T ) =
∨
t∈T

σ(Xt),

which is the smallest σ-algebra containing all σ(Xt).

In stochastic process theory, we frequently keep track of potential information that can be
revealed to us by observing the evolution of a stochastic process by an increasing famility of σ-field.
If {Xn}n⩾1 is a (discrete time) stochastic process, we may define

Bn := σ(X1, . . . , Xn),∀n ⩾ 1.

Then Bn ⊆ Bn+1 and we think of Bn as the information potentially available at time n. This is
a way of cataloguing what information is contained in the probability model. Properties of the
stochastic process are sometines expressed in terms of {Bn}n⩾1. For instance, one formualtion
of the Markov property is that the conditional distribution of Xn+1 given Bn is the same as the
conditional distribution of Xn+1 given Xn.



Chapter 4

Independence

The occurrence or non-occurrence of an event has no effect on our estimate of the probability that
an independent event will or will not occur.

4.1 Basic Definitions

Definition 4.1 (Independence of a finite number of events). The events A1, . . . , An(n ⩾ 2) are
independent if

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai),

for all finite I ⊆ {1, . . . , n}. There are
∑n

k=2

(
n
k

)
= 2n − n − 1 equations. It can be reprased as

follows: The events A1, . . . , An are independent if

P (B1 ∩B2 · · · ∩Bn) =

n∏
i=1

P (Bi),

where for i = 1, . . . , n, Bi equals Ai or Ω.

Definition 4.2 (Independent classes). Let Ci ⊆ B for i = 1, . . . , n. The classes Ci are independent,
if for any choice A1, . . . , An with Ai ∈ Ci for i = 1, . . . , n, we have the events A1, . . . , An are
independent events.

Definition 4.3 (Arbitrary number of independent classes). Let T be an arbitrary index set. The
classes Ct, t ∈ T are independent families if for each finite I with I ⊆ T we have {Ct}t∈I is
independent.

4.2 Independent Random Variables

Definition 4.4 (Independent random variables). {Xt, t ∈ T} is an independent family of random
variables if {σ(Xt), t ∈ T} are independent σ-fields (σ(X) = X−1((R))).

15
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Theorem 4.5 (Factorization Criterion). A family of random variables {Xt}t∈T , is independent if
and only if for for all finite J ⊆ T ,

FJ(xt, t ∈ J) =
∏
t∈J

P (Xt ⩽ xt), ∀x ∈ R.

4.3 Two Examples of Independence

4.3.1 Records, Ranks, Renyi Theorem

Let {Xn, n ⩾ 1} be iid with common continuous distribution function F (x). The continuity of F
implies P (Xi = Xj) = 0, so that if we define [Ties] =

⋃
i̸=j [Xi = Xj ], then P [Ties] = 0. Call

Xn a record of the sequence if Xn >
∨n−1

i=1 Xi, and define An = [Xnis a record]. A result due to
Renyi says that the events {Aj , j ⩾ 1} are independent and P (Aj) =

1
j for j ⩾ 2. This is a special

case of result about relative ranks. Let Rn be the relative rank of Xn among X1, . . . , Xn where
Rn =

∑n
j=1 1(Xj ⩾ Xn). So

Rn = 1 if and only if Xn is a record,

= 2 if and only if Xn is the second largest of X1, . . . , Xn,

and so on.

Theorem 4.6 (Renyi Theorem). Assume {Xn, n ⩾ 1} are iid with common, continuous distribu-
tion function F (x).

(a) The sequence of random variables {Rn, n ⩾ 1} is independent and

P (Rn = k) =
1

n
,∀k = 1, . . . , n.

(b) The sequence of events {An, n ⩾ 1} is independent and

P (An) =
1

n
.

Proof. All possible orderings have the same probability 1
n! , so for example,

P (ω : X2(ω) < X3(ω) < · · · < Xn(ω) < X1(ω)) =
1

n!
.

Each realization of R1, . . . , Rn has the same probability as a particular ordering of X1, . . . , Xn.
Hence

P (R1 = r1, . . . , Rn = rn) =
1

n!
,

for ri ∈ {1, . . . , i}, i = 1, . . . , n since each realization of R1, . . . , Rn uniquely determines an ordering:
For example, if n = 3, suppose R1(ω) = 1, R2(ω) = 1, and R3(ω) = 1. This tells us that

X1(ω) < X2(ω) < X3(ω).
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Note that

P (Rn = rn) =
∑

r1,...,rn−1

P (R1 = r1, . . . , Rn−1 = rn−1, Rn = rn) =
∑

r1,...,rn−1

1

n!
.

Since ri ranges over i values, the number of terms in the sum is 1 ·2 ·3 · . . . · (n−1) = (n−1)!. Thus

P (Rn = rn) =
(n− 1)!

n!
=

1

n
, n = 1, 2, · · · .

Therefore P (R1 = r1, . . . , Rn = rn) =
1
n! = P (R1 = r1) · · ·P (Rn = rn).

Remark. If {Xn, n ⩾ 1} is iid with common continuous distribution F (x), why is the probability
of ties zero? We have

P (Ties) = P

⋃
i̸=j

[Xi = Xj ]

 .

and by subadditivity, this probability is bounded above by
∑

i ̸=j P (Xi = Xj). Then it suffices to
show that P (X1 = X2) = 0. Note the set containment: For every n,

[X1 = X2] ⊆
∞⋃

k=−∞

[
k − 1

2n
< X1, X2 ⩽

k

2n

]
.

By monotonicity and subadditivity

P (X1 = X2) ⩽
∞∑

k=−∞

P

(
k − 1

2n
< X1 ⩽

k

2n
,
k − 1

2n
< X2 ⩽

k

2n

)

=

∞∑
k=−∞

(
P

(
k − 1

2n
< X1 ⩽

k

2n

))2

. (4.1)

Write F (a, b] = F (b)− F (a), then (4.1) is equal to

∞∑
k=−∞

F (
k − 1

2n
,
k

2n
]F (

k − 1

2n
,
k

2n
] = max

−∞<k<∞
F (
k − 1

2n
,
k

2n
]

∞∑
k=−∞

F (
k − 1

2n
,
k

2n
]

⩽ max
−∞<k<∞

F (
k − 1

2n
,
k

2n
] · 1 = max

−∞<k<∞
F (
k − 1

2n
,
k

2n
].

Since F is continuous on R, because F is also a probability distribution, F is uniformly continuous
on R. Thus given any ϵ > 0, ∃n0(ϵ), when k

2n − k−1
2n = 1

2n , as n ⩾ n0(ϵ), we have for all k,

F (
k − 1

2n
,
k

2n
] = F

(
k

2n

)
− F

(
k − 1

n

)
⩽ ϵ,

Thus for any ϵ > 0, P (X1 = X2) ⩽ ϵ.
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4.3.2 Dyadic Expansions of Uniform Random Numbers

Here we consider (Ω,B, P ) = ((0, 1],B((0, 1])), λ), where λ is Lebesgue measure. We write ω ∈ (0, 1]
using its dyadic expansion

ω =

∞∑
n=1

dn(ω)

2n
= .d1(ω)d2(ω)d3(ω) · · · ,

where each dn(ω) is either 0 or 1.
If a number such as 1

2 has two possible expansions, we agree to use the nonterminating one.

Fact 4.7. Each dn is a r.v.. Since dn is discrete with possible values 0,1, it suffices to check

[dn = 0] ∈ B((0, 1]), [dn = 1] ∈ B((0, 1]),

for any n ⩾ 1. In fact, since [dn = 0] = [dn = 1]c, it suffices to check [dn = 1] ∈ B((0, 1]). For
n = 1,

[d1 = 1] = (.1000 · · · , .1111 · · · ] = (
1

2
, 1] ∈ B((0, 1]).

The left endpoint is open because of the convention that we take the nonterminating expansion.
Note P (d1 = 1) = P (d1 = 0) = 1

2 . For n ⩾ 2,

[dn = 1] =
⋃

(u1,...,un−1)∈[0,1]n−1

(.u1u2 · · ·un−11000 · · · , .u1u2 · · ·un−11111 · · · ]

= disjoint union of 2n−1 intervals ∈ B((0, 1]).

For example [d2 = 1] = ( 14 ,
1
2 ] ∪ ( 34 , 1].

Fact 4.8. We have

P (dn = 1) =
∑

(u1,...,un−1)∈[0,1]n−1

P (.u1u2 · · ·un−11000 · · · , .u1u2 · · ·un−11111 · · · ])

= 2n−1
∞∑

i=n+1

1

2i
=

1

2
.

We thus conclude that P (dn = 0) = P (dn = 1) = 1
2 .

Fact 4.9. The sequence {dn, n ⩾ 1} is iid. It is suffices to show {dn} is independent. For this, it
suffices to pick n ⩾ 1 and prove {d1, . . . , dn} is independent.
For (u− 1, . . . , un) ∈ [0, 1]n, we have

n⋂
i=1

[di = ui] = (.u1u2 · · ·un000 · · · , .u1u2 · · ·un111 · · · ].

Since the probability of an interval is its length, we get

P

(
n⋂

i=1

[di = ui]

)
=

∞∑
i=n+1

1

2i
=

1

2n
=

n∏
i=1

P (di = ui).
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4.4 Independence, Zero-One Laws, Borel-Cantelli Lemma

4.4.1 Borel-Cantelli Lemma

Proposition 4.10 (Borel-Cantelli Lemma). Let {An} be any events. If
∑

n=1 P (An) < ∞, then
P (limn!∞ supAn) = 0.

Example 4.11. Suppose {Xn, n ⩾ 1} are BernoullI random variables with P (Xn = 1) = pn =
1− P (Xn = 0). We assert that P (limn!∞Xn = 0) = 1, if

∑∞
n=1 pn <∞.

Proposition 4.12 (Borel Zro-One Law). If {An} is a sequence of independent events, then

P ([An i.o.]) =

{
0, if and only if

∑∞
n=1 P (An) <∞,

1, if and only if
∑∞

n=1 P (An) = ∞.

Example 4.13 (Behavior of exponential random variables). We assume that {En, n ⩾ 1} are iid
uit exponential random variales; then

P
(
lim
n!∞

supEn/ logn = 1
)
= 1.

That is, every often, the sequence {En} spits out a large value and the growth of these large values
approximately matches that of {log n, n ⩾ 1}.

Proof. To prove it, we need the following simple fact: If {Bk} are any events satisfying P (Bk) = 1
for k ∈ N, then P (

⋂∞
k=1Bk) = 1. For any ω ∈ Ω,

lim
n!∞

sup
En(ω)

log n
= 1

means

(a) for any ϵ > 0, En(ω)
logn ⩽ 1 + ϵ, for all large n, (Otherwise, there is infinitely many n such that

En(ω)
logn > 1) and

(b) for any ϵ > 0, En(ω)
logn > 1− ϵ, for infinitely many n.

Note (a) says that for any ϵ, there is no subsequential limit bigger than 1+ ϵ and part (b) says that
for any ϵ, there is always some subsequential limit bounded below by 1− ϵ. We have the following
set equality: Let ϵk # 0 and observe[

lim
n!∞

sup
En

log n
= 1

]
=

∞⋂
k=1

{
lim
n!∞

inf

[
En

log n
⩽ 1 + ϵk

]}⋂ ∞⋂
k=1

{[
En

log n
> 1− ϵk

]
i.o.

}
.

Then it suffices to show every braced event on the right side has prob. 1.
For fixed k,

∞∑
n=1

P

(
En

log n
> 1− ϵk

)
=

∞∑
n=1

P (En > (1− ϵk) log n) =

∞∑
n=1

e−((1−ϵk) logn)) =

∞∑
n=1

1

n1−ϵk
= ∞.
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So by the Borel Zero-One law, P
([

En

logn > 1− ϵk

]
i.o.
)
= 1. Likewise,

∞∑
n=1

P

[
En

log n
> 1 + ϵk

]
=

∞∑
n=1

e−(1+ϵk) logn =

∞∑
n=1

1

n1+ϵk
<∞,

so

P

(
lim
n!∞

sup

[
En

log n
> 1 + ϵk

])
= 1,

implies

P

(
lim
n!∞

inf

[
En

log n
⩽ 1 + ϵk

])
= 1− 0 = 1.

4.4.2 Kolmogorov Zero-One law

Let Xn be a sequence of random variables and define

F ′
n = σ (Xn+1, Xn+2, · · · ) , n = 1, 2, . . . ,

where F ′
n is the smallest σ-algebra on Ω consisting of all events that depends only onXn+1, Xn+2, · · · .

The tail σ-algebra T is defined as

T =

∞⋂
n=1

F ′
n = lim

n!∞
# σ (Xn, Xn+1, · · · ) .

If A ∈ T , we will call A a tail event and a random variable measurable with respect to T is called
a tail random variable.

Example 4.14. (a) Observe that{
ω :

∞∑
n=1

Xn(ω) converges

}
∈ T .

To see this note that, for any m ∈ Z+, the sum
∑∞

n=1Xn(ω) converges if and only if
∑∞

n=mXn(ω)
converges. So [ ∞∑

n=1

Xn converges

]
=

[ ∞∑
n=m+1

Xn converges

]
∈ F ′

m.

This holds for all m and after intersecting over m.

(b) We have limn!∞ supXn ∈ T , limn!∞ infXn ∈ T , {ω : limn!∞Xn(ω) exists} ∈ T . This is
true since the lim sup of the sequence {X1, X2, . . . , · · · } is the same as the lim sup of the sequence
{Xm, Xm+1, · · · } for all m.

(c) Let Sn = X1 + · · ·+Xn. Then {
ω : lim

n!∞

Sn(ω)

n

}
∈ T
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since for any m,

lim
n!∞

Sn(ω)

n
= lim

n!∞

∑n
i=1Xi(ω)

n
= lim

n!∞

∑n
i=m+1Xi(ω)

n
,

and so for any m, limn!∞
Sn(ω)

n ∈ F ′
m.

Theorem 4.15 (Kolmogorov Zero-One Law). If {Xn} are independent random variables with tail
σ-field T , then Λ ∈ T implies P (Λ) = 0 or 1 so that the tail σ-field T is almost trivial.

Lemma 4.16 (Almost trivial σ-fields). Let G be an almost trivial σ-field and let X be a random
variable measurable with respect to G. Then there exists c such that P (X = c) = 1.

Proof. Let F (x) = P (X ⩽ x). Since {X ⩽ x} ∈ σ(X) ⊆ G, we have F (x) = 0 or 1,∀x ∈ R. Let
c = sup{x : F (x) = 0}. Since F is non-decreasing, the distribution function must have a jump of
size 1 at c and thus P (X = c) = 1.

Corollary 4.17 (CorollAries of the Kolmogorov Zero-One Law). Let {Xn} be independent random
variables. Then the following are true.

(a) The event [
∑∞

n=1Xn converges] has probability 0 or 1.

(b) The random variable lim supn!∞Xn and lim infn!∞Xn are constant with prob. 1.

(c) The event {ω : Sn(ω)/n! 0} has probability 0 or 1.
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Chapter 5

Integration and Expectation

5.1 Simple Functions

A functionX : Ω! R on the probability space (Ω,B, P ) is simple if it has a finite range. Henceforth,
assume that a simple function is R/R(R) measurable. Such a function can always be written in the
form

X(ω) =

k∑
i=1

ai1Ai
(ω),

where ai ∈ R and Ai ∈ B and A1, . . . , Ak are disjoint and
⊔k

i=1Ai = Ω.
Recall

B(X) = B(Ai, i = 1, . . . , k) =

{⊔
i∈I

Ai : I ⊆ {1, . . . , k}

}
.

Let E be the set of all simple functions on Ω. We have the following important properties of E .

(a) E is vector space. This means the following two properties hold.

(1) If X =
∑k

i=1 ai1Ai
∈ E , then αX =

∑k
i=1 αai1Ai

∈ E .
(2) If X =

∑k
i=1 ai1Ai

, and Y =
∑m

i=1 bj1Bj
and X,Y ∈ E , then X + Y =

∑
i,j(ai + bj)1Ai∩Bj

and {Ai ∩Bj , 1 ⩽ i ⩽ k, 1 ⩽ j ⩽ m} is a partition of Ω. So X + Y ∈ E .

(b) If X,Y ∈ E , then XY ∈ E since XY =
∑

ij aibj1Ai∩Bj
.

(c) If X,Y ∈ E , then X ∨ Y , X ∧ Y ∈ E , since, for instance, X ∨ Y =
∑

i,j ai ∨ bj1AiBj .

Theorem 5.1 (Measurability Theorem). Suppose X(ω) ⩾ 0,∀ω. Then X ∈ B/B(R) if and only if
there exists simple functions Xn ∈ E and 0 ⩽ Xn " X.

Proof. ⇐= If Xn ! E , then Xn ∈ B/B(R), and if X = limn!∞ " Xn, then X ∈ B/B(R) since
taking limits preserves measurability.

=⇒ Suppose 0 ⩽ X ∈ B/B(R). Define

Xn :=

n2n∑
k=1

(
k − 1

2n

)
1{ k−1

2n ⩽X< k
2n } + n1{X⩾n}.

23
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Because X ∈ B/B(R), it follows that Xn ∈ E . Also Xn ⩽ Xn+1 and if X(ω) <∞, then for all large
enough n

|X(ω)−Xn(ω)| ⩽
1

2n
! 0.

IfX(ω) = ∞, thenXn(ω) = n!∞. (IfM : supω∈Ω|X(ω)| <∞, supω∈Ω|X(ω)−Xn(ω)|! 0.)

5.2 Expectation and Integration

Suppose (Ω,B, P ) is a probability space and X : (Ω,B)! R, B
(
R
)
, where R = [−∞,∞]. We will

define the expectation of X, written E(X) or
∫
Ω
XdP or

∫
Ω
X(ω)P (dω), as the Lebesgue-Stieltjes

integral of X w.r.t. P .

5.2.1 Expectation of Simple Functions

5.2.2 Extension of the Definition

In stochastic modeling, for instance, we often deal with waiting times for an event to happen or
return times to a state or set. If the event never occurs, it is natural to say the waiting time is
infinite. If the process never returns to a state or set, it is natural to say the return time is infinite.
Let E+ be the non-negative valued simple functions, and define

E+ =
{
X ⩾ 0 : X : (Ω,B)!

(
R,B(R)

)}
to be nonnegative, measurable functions with domain Ω. Let X ∈ E+, if P (X = ∞) > 0, define
E(X) = ∞, otherwise by Theorem 5.1, we may find Xn ∈ E+, such that 0 ⩽ Xn " X. We call {Xn}
the approximating sequence to X. The sequence {E(Xn)} is nondecreasing by the monotonicity
of expectations applied to E+. Since limits of monotone sequences always exists, we conclude that
limn!∞E(Xn) exists. We define E(X) := limn!∞E(Xn). This extends expectation from E to E+.

Proposition 5.2. E is well defined on E+, since if Xn ∈ E+ and Ym ∈ E+ and Xn " X, Ym " X,
then limn!∞E(Xn) = limn!∞E(Ym).

Theorem 5.3 (MCT). If Xn ⩾ 0 for any n ∈ N, then E (limn!∞ " Xn) = limn!∞ " E(Xn).

If E(X+) and E(X−) are both finite, call X integrable. This is the case if and only if E (|X|) <
∞.

If E(X+) <∞ but E(X+) = ∞, then E(X) = −∞.
If E(X+) = ∞ but E(X−) <∞, then E(X) = ∞.
If E(X+) = ∞ and E(X−) = ∞, then E(X) does not exists.

Example 5.4. Assume the pdf f(x) of the r.v. X exists.
If

f(x) =

{
x−2, if x > 1,
0, otherwise,

then E(X) = ∞. On the other hand, if

f(x) =

{
1
2 |x|

−2
, if |x| > 1,

0, otherwise,
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then E(X+) = E(X−) = ∞, and E(X) does not exist. The same conclusion would hold if f were
the Cauchy density f(x) = 1

π(1+x2) for x ∈ R.

Properties of the expectation operator E.

(a) If X is integrable, then P (X = ±∞) = 0.

(b) (WLLN) Let {Xn, n ⩾ 1} be iid with finite mean and variance. Suppos E(Xn) = µ <∞ and
Var(Xn) = σ2 <∞. Then for any ϵ > 0,

lim
n!∞

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > ϵ

)
= 0.

5.3 The Transformation Theorem and Densities

Suppose we are given two measurable spaces (Ω,B) and (Ω′,B′), and T : (Ω,B) ! (Ω′,B′) is a
measurable map. P is a probability measure on B.
Define P ′ = P ◦T−1 to be the probability measure on B′ given by P ′(A′) = P

(
T−1(A′)

)
, A′ ∈ B′.

Theorem 5.5. Suppose X ′ : (Ω′,B′) ! (R,B(R)) is a random variable with domain Ω′. (Then
X ′ ◦ T : Ω! R is also a random variable by composition.)

(a) If X ′ > 0, then ∫
Ω

X ′(T (ω))P (dω) =

∫
Ω′
X ′(ω′)P ′(dω′),

where P ′ = P ◦ T−1. It can also be expressed as E(X ′ ◦ T ) = E′(X ′).

(b) We have X ′ ∈ L1(P ′) if and only if X ′ ◦ T ∈ L1(P ), in which case∫
T −1(A′)

X ′(T (ω))P (dω) =

∫
A′
X ′(ω′)P ′(dω′),∀A′ ∈ B′.

Proof. Typical of many integration proofs, we proceed in a series of steps, starting with X as an
indicator function, proceeding to X as a simple function and concluding with X being general.

(a) Suppose X ′ = 1A′ , A′ ∈ B′. If T (ω) ∈ A′, then ω ∈ T−1T (ω) ⊆ T−1(A). If ω ∈ T−1A′, then
T (ω) ∈ TT−1A′ ⊆ A′. So T (ω) ∈ A′ if and only if ω ∈ T−1A′. Thus, X ′(T (ω)) = 1A′(T (ω)) =
1T−1A′(ω). Then∫

Ω

X ′(T (ω))P (dω) =

∫
Ω

1
′
A(T (ω))P (dω) =

∫
Ω

1T−1(A′)(ω)P (dω)

= P (T−1(A′)) = P ′(A′) =

∫
Ω′
1A′(ω)P ′(dω′).

(b) Let X ′ be simple: X ′ =
∑k

i=1 a
′
i1A′

i
. Then∫

Ω

X ′(Tω)P (dω) =

∫
Ω

k∑
i=1

a′i1A′
i
(T (ω))P (dω) =

k∑
i=1

a′i

∫
Ω

1T−1(A′
i)
(ω)P (dω)

=

k∑
i=1

a′iP (T
−1(A′

i)) =

k∑
i=1

a′iP
′(A′

i) =

∫
Ω

k∑
i=1

a′i1A′
i
(ω′)P ′(dω′).
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(c) Let X ′ ⩾ 0 be measurable. There exists a sequence of simple functions {X ′
n} such that X ′

n " X
′.

Then it is also true that X ′
n ◦ T " X ′ ◦ T . Then∫

Ω

X ′(Tω)P (dω)
MCT
= lim

n!∞
"

∫
Ω

X ′
n(T (ω))P (dω) = lim

n!∞
"

∫
Ω′
X ′

n(ω
′)P ′(dω′)

MCT
=

∫
Ω′
X ′

n(ω
′)P ′(dω′).

Proof (ii) is similar and for the second we replace X ′ in (i) by X ′
1A′ .

5.3.1 Expectation is Always an Integral on R
Recall the the distribution of X is the measure F := P ◦X−1 on (R,B(R)) defined by (A ∈ B(R)):
F (A) = P ◦X−1(A) = P (X ∈ A). The d.f. of X is

F (x) := F ((−∞, x]) = P (X ⩽ x).

Corollary 5.6. (a) If X is an integrable random variable with distribution F , then

E(X) =

∫
Ω

XdP =

∫
R
xF (dx).

(b) Suppose X : (Ω,B) ! (E, E) is a random element of E with distribution F = P ◦ X−1 and
suppose g : (E, E)! (R+,B(R+)) is a non-negative measurable function. The expectation of g(X)
is

E[g(X)] =

∫
Ω

g(X(ω))P (dω) =

∫
x∈E

g(x)F (dx).

Proof. (a) X : (Ω,B) ! (R,B(R)), X ′ : (R, ,B(R)) ! (R,B(R)), X ′(x) = x, (identity map),
T = X, P ′ = P ◦X−1 =: F , and then apply the Transformation Theorem (a).

(b) Let X ′ = g. X ′ : (E, E)! (R,B(R)). T = X. P ′ = P ◦X−1 = F .

5.3.2 Densities

Let X⃗ : (Ω,B)! (Rk,B(Rk)) be a random vector on (Ω,B, P ) with distribution F . We say X or F
is absolutely continuous if there exists a nonnegative function f : (Rk,B(Rk))! (R+,B(R+)) such
that F (A) =

∫
A
f(x⃗)dx⃗, where dx⃗ stands for Lebesgue measure.

5.4 Product Spaces, Independence, Fubini Theorem

Definition 5.7. If A ⊆ Ω1 × Ω2, define

Aω1 = {ω2 : (ω1, ω2) ∈ A} ⊆ Ω2,

Aω2 = {ω1 : (ω1, ω2) ∈ A} ⊆ Ω1,

where Aω1 is called the section of A at ω1.



5.4. PRODUCT SPACES, INDEPENDENCE, FUBINI THEOREM 27

Here are some properties of set sections.

(a) If A ⊆ Ω1 × Ω2, then
(Ac)ω1

= (Aω1
)c.

(b) For an index set T , let Aα ⊆ Ω1 × Ω2,∀α ∈ T . Then(⋃
α∈T

Aα

)
ω1

=
⋃
α∈T

(Aα)ω1
,

(⋂
α∈T

Aα

)
ω1

=
⋂
α∈T

(Aα)ω1 .

Definition 5.8. Define the section of the function X : Ω1 ×Ω2 ! S as Xω1
(ω2) = X(ω1, ω2). So

Xω1 : Ω2 ! S. We think of ω1 as fixed and the section is a function of varying ω2. Call Xω1 the
section of X at ω1.

Basic properties of sections of functions mapping from Ω1 × Ω2 to S are the following:

(a) (1A)ω1
= 1Aω1

.

(b) If S = Rk for some k ∈ N and if for i = 1, 2, we have Xi : Ω1 × Ω2 ! S, then (X1 +X2)ω1
=

(X1)ω1
+ (X2)ω1

.

(c) Suppose S is a metric space for n ∈ N, Xn : Ω1 × Ω2 ! S and limn!∞Xn exists. Then(
lim
n!∞

Xn

)
ω1

= lim
n!∞

(Xn)ω1
.

Definition 5.9. A rectangle is called measurable if it is of the form A1 × A2 where Ai ∈ Bi for
i = 1, 2.

Definition 5.10. The class of measurable rectangles is a semi-algebra which we call RECT.

Proof. (a) ∅,Ω ∈ RECT.

(b) RECT is a π-class: If A1 ×A2, A
′
1 ×A′

2 ∈ RECT, then

(A1 ×A2) ∩ (A′
1 ×A′

2) = (A1 ∩A′
1)× (A2 ∩A′

2) ∈ RECT.

(c) RECT is closed under complementation. Suppose A1 ×A2 ∈ RECT. Then

(Ω1 × Ω2)∖ (A1 ×A2) = ((Ω1 ∖A1)×A2)
⊔

(A1 × (Ω2 ∖A2))
⊔

(Ac
1 ×Ac

2) .

Definition 5.11 (product σ-field).

B1 × B2 := σ(RECT).
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Remark. Another way to generate the product σ-field on R2 is

B1 × B2 = σ ({I1 × I2, Ij ∈ I, j = 1, 2}) .

Lemma 5.12 (Sectioning Sets). Sections of measurable sets are measurable. If A ∈ B1 ×B2, then
for all ω1 ∈ Ω1, Aω1 ∈ B2.

Proof. Define

Cω1 := {A ⊆ Ω1 × Ω2 : Aω1 ∈ B2}.

If A ∈ RECT and A = A1 ×A2 where A1 ∈ B1 and A2 ∈ B2, then

Aω1 = {ω2 : (ω1 × ω2) ∈ A1 ×A2} =

{
A2 ∈ B2, if ω1 ∈ A1,
∅ ∈ B2, if ω1 ̸∈ A1.

So RECT ⊆ Cω1
. Check Cω1

is a λ-system. By Dynkin’s theorem, B1 × B2 = σ(RECT) ⊆ Cω1
.

Thus, Aω1
∈ B2.

Corollary 5.13. Sections of measurable function are measurable. That is, if

X : (Ω× Ω2,B1 × B2)! (S,S)

is B1 × B2/S-measurable, then Xω1
∈ B2. Also, Xω2

∈ B1.

Proof. Let Λ ∈ S, then X−1(λ) ∈ B1 × B2. Since sections of measurable sets are measurable,
(X−1(Λ))ω1

∈ B2. Note Xω1
: Ω2 ! S. Then

B2 ∋ (Xω1)
−1(Λ) = {ω2 : Xω1(ω2) ∈ Λ} = {ω2 : X(ω1, ω2) ∈ Λ}

= {ω2 : (ω1, ω2) ∈ X−1(Λ)} = (X−1(Λ))ω1
,

by the def of the section of the set X−1(Λ). So Xω1
∈ B2.

5.5 Probability Measures on Product Spaces

Definition 5.14. Call a funtion

K(ω1, A2) : Ω1 × B2 ! [0, 1]

a transition function if

(a) for each ω1, K(ω1, ·) is a probability measure on B2, and

(b) for each A2 ∈ B2, K(·, A2) is B1/B([0, 1]) measurable.

Transition functions are used to define discrete time Markov processes where K(ω1, A2) repre-
sents the conditional probability that starting from ω1, the next movement of the system results in
a state in A2.
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Theorem 5.15. Let P1 be a probability measure on B1, and suppose K : Ω1 × B2 ! [0, 1] is a
transition function. Then K and P1, uniquely determine a probability on B1 × B2 via the formula

P (A1 ×A2) =

∫
A1

K(ω1, A2)P1(dω1),

for all A2 ×A2 ∈ RECT. Let A := A1 ×A2 (genreal case since we can not always find a rectangle
set A1 ×A2 and then A2 depend on ω1), then

P (A) =

∫
A1

K(ω1, Aω1)P1(dω1),

Proof. The measure P given above is specified on the semealgebra RECT and we need to verify
that the conditions of the Combo Extension Theorem are applicibale so that P can be extended to

σ(RECT) = B1×B2. We verify that P is σ-additive on RECT. Suppose A1×A2 =
⊔∞

n=1A
(n)
1 ×A(n)

2 ,

where A
(n)
1 ×A

(n)
2 ∈ RECT for n ∈ N. Then

A1 =

∞⊔
n=1

A
(n)
1 ∈ B1 and A2 =

∞⊔
n=1

A
(n)
2 ∈ B2.

Then A1 ×A2 ∈ RECT. Need to show

P

( ∞⊔
n=1

A
(n)
1 ×A

(n)
2

)
=

∞∑
n=1

P
(
A

(n)
1 ×A

(n)
2

)
.

Note that

1A1
(ω1)1A2

(ω2) = 1A1×A2
(ω1, ω2) = 1⊔∞

n=1 An
1 ×A

(n)
2

(ω1, ω2)

=

∞∑
n=1

1
A

(n)
1 ×A

(n)
2

(ω1, ω2) =

∞∑
n=1

1
A

(n)
1

(ω1)1A
(n)
2

(ω).
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Then

P (A1 ×A2) =

∫
A1

K(ω1, A2)P1(dω1) =

∫
Ω1

1A1
(ω1)K(ω1, A2)P1(dω1)

=

∫
Ω1

1A1
(ω1)

∫
Ω2

1A2
(ω2)K(ω1, dω2)P1(dω1)

=

∫
Ω1

∫
Ω2

1A1
(ω1)1A2

(ω2)K(ω1, dω2)P1(dω1) (Riemman)

=

∫
Ω1

∫
Ω2

∞∑
n=1

1
A

(n)
1

(ω1)1A
(n)
2

(ω2)K(ω1, dω2)P1(dω1)

=

∫
Ω1

∞∑
i=1

∫
Ω2

1
A

(n)
1

(ω1)1A
(n)
2

(ω2)K(ω1, dω2)P1(dω1)

=

∞∑
i=1

∫
Ω1

1
A

(n)
1

(ω1)

[∫
Ω2

1
A

(n)
2

(ω2)K(ω1, dω2)

]
P1(dω1)

=

∞∑
i=1

∫
Ω1

1
A

(n)
1

(ω1)K(ω1, A
(n)
2 )P1(dω1)

=

∞∑
n=1

P (A
(n)
1 ×A

(n)
2 ).

Remark. Special case. Suppose for some probability measure P2 on B2 that K(ω1, A2) = P2(A2).
Then P (A1 × A2) = P1(A1)P2(A2). We denote this P by P1 × P2 and call P product measure.
Define σ-fields in Ω1 × Ω2 by

B#
1 = {A1 × Ω2 : A1 ∈ B1},

B#
2 = {Ω1 ×A2 : A2 ∈ B2}.

With respect to the product measure P = P1 × P2, we have B#
1 |= B#

2 since

P (A1 × Ω2 ∩ Ω1 ×A2) = P (A1 ×A2) = P1(A1)P2(A2)

= P1(A1)P2(Ω2)P1(Ω1)P2(A2)

= P (A1 × Ω2)P (Ω1 ×A2).

Suppose Xi : (Ωi,Bi)! (R,B(R)) is random variable on Ωi for i = 1, 2. Define on Ω1×Ω2 the new
functions

X#
1 (ω1, ω2) = X1(ω1), X

#
2 (ω1, ω2) = X2(ω2).

Then for any B1 ∈ B(R),

{X#
1 ∈ B1} =

{
(ω1, ω2) : X

#
1 (ω1, ω2) ∈ B1

}
= {(ω1, ω2) : X1(ω1) ∈ B1} = X−1

1 (B1)× Ω2.

Likewise,∀B2 ∈ B(R), {
X#

2 ∈ B2

}
= Ω1 ×X−1

2 (B2).
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With respect to P = P1 × P2, the variables X#
1 and X#

2 are independent since∀B1, B2 ∈ B(R), we
have

P (X#
1 ∈ B1, X

#
2 ∈ B2) = P

(
X−1

1 (B1)× Ω2,Ω1 ×X−1
2 (B2)

)
= P

((
X−1

1 (B1) ∩ Ω1

)
×
(
Ω2 ∩X−1

2 (B2)
))

= P
(
X−1

1 (B1)×X−1
2 (B2)

)
= P1

(
X−1

1 (B1)
)
P2

(
X−1

2 (B2)
)

= P
(
X−1

1 (B1)× Ω2

)
P
(
Ω1 ×X−1

2 (B2)
)

= P
(
X#

1 ∈ B1

)
P
(
X#

2 ∈ B2

)
The point of the remark is that independence is automatically built into the model by construc-

tion when using product measure.

5.6 Approximation theorem for measures

By the second extension theorem, the probability defined on RECT has a unique extension to a
probability measure on σ(RECT).

Theorem 5.16. Let RECT be the semialgebra on Ω1 × Ω1 and let P be a probability measure on
σ(RECT). Then for any A ∈ σ(RECT) and for any ϵ > 0, there exists n ∈ N and mutually disjoint
sets A1, . . . , An ∈RECT such that

P

(
A∆

n⊔
k=1

Ak

)
< ϵ.

Proof. By the definition

P ∗(A) = inf

{∑
E∈E

P (E) : E ∈ U(A)

}
,∀A ⊆ Ω1 × Ω2.

where the covering of A

U(A) =

{
E ⊆ RECT | E is at most countable and A ⊆

⋃
E∈E

E

}
.

Let A ∈ σ(RECT), ∃A1, A2 ∈ RECT such that A =
⊔∞

i=1Ai. Then by the defintion of P ∗ and
since P is a measure on σ(RECT), P is countable additive: P ∗(A) =

∑∞
i=1 P (Ai) = P (A). So P

and P ∗ coincide on σ(RECT) (⋆). Also, there exists a covering E =
⋃∞

i=1Bi ⊆ RECT such that

P (A) = P ∗(A) ⩾
∞∑
i=1

P (Bi)− ϵ/2,∀A ∈ σ(RECT).

Since P is bounded, there exists n ∈ N such that
∑∞

i=n+1 P (Bi) <
ϵ
2 . For any three sets C,D,E,

we have

C∆D = (D ∖ C)U(C ∖D) ⊆ (D ∖ C) ∪ (C ∖ (DUE))UE ⊆ (C ∖∆(D ∪ E)) ∪ E.
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Choose C = A, D =
⋃n

i=1Bi and E =
⋃∞

i=n+1Bi, since A∖
⋃∞

i=1Bi = ∅,

P

(
A∆

n⋃
i=1

Bi

)
⩽ P

(
A∆

∞⋃
i=1

Bi

)
+ P

( ∞⋃
i=n+1

Bi

)
⩽ P

( ∞⋃
i=1

Bi

)
− µ(A) +

ϵ

2
⩽ ϵ.

Since RECT is a semialgebra, there exist B′
1, . . . , B

′
n ∈RECT such that

n⊔
i=1

B′
i := B1 ⊔

n⊔
i=2

i−1⋂
j=1

(Bi ∖Bj) =

n⋃
i=1

Bi.

Theorem 5.17. Let A ⊆ Ω and {An}∞n=1 ⊆ Ω. Then An ! A⇐⇒ 1An
! 1A.

Proof. It is clear.

5.7 Fubini’s theorem

We conitnue to work on the product space (Ω× Ω2,B1 × B2).

Theorem 5.18. Let P1 be a probability measure on (Ω1,B1) and suppose K : Ω1 × B2 ! [0, 1] is
a transition kernel. Define P on (Ω1 × Ω2,B1 × B2) by

P (A1 ×A2) =

∫
A1

K(ω1, A2)P1(dω1),∀A1 ×A2 ∈ B1 × B2.

Assume X : (Ω1 × Ω2,B1 × B2) ! (R,B(R)) is B1 × B2/B(R)-measurable. Furthermore, suppose
X ⩾ 0 (X is integrable). Then

Y (ω1) =

∫
Ω2

K(ω1, dω2)Xω1(ω2)

has the properties:

(a) Y is well defined,

(b) Y ∈ B1,

(c) Y ⩾ 0 (Y ∈ L1(P1)), and furthermore∫
Ω1×Ω2

XdP =

∫
Ω1

Y (ω1)P1(dω1) =

∫
Ω1

[∫
Ω2

K(ω1, dω2)Xω1
(ω2)

]
P1(dω1)

Proof. (a) Since section of random variable (measurable function) is still a random variable, we
have Xω1

(ω2) ∈ B2,∀ω1 ∈ Ω1. Also, K(ω1, ·) is a probability measure on (Ω2,B2).
So Y is well-defined.

(b) (1) Assume X = 1A for A = A1 ×A2 ∈ RECT. Then

X(ω1, ω2) = 1A1×A2(ω1, ω2) = 1A1(ω1)1A2(ω2),∀(ω1, ω2) ∈ Ω1 × Ω2.
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Then

Y (ω1) =

∫
Ω2

1A1
(ω1)1A2

(ω2)K(ω1, dω2) =

∫
A2

1A1
(ω1) K(ω1, dω2) = 1A1

(ω1)K(ω1, A2).

So Y = 1A1
·K(·, A2) ∈ B1.

(2) Assume X = 1A for A = A1 × A2 ∈ ZR
∗ , where ZR

∗ is the algebra of finite unions of disjoint
rectangles. Then there exists n ∈ N and (disjoint) A1,i ×A2,i ∈ RECT for i = 1, . . . , n such that

A =

n⊔
i=1

A1,i ×A2,i.

Then since A1,i ×A2,i’s are disjoint,

X(ω1, ω2) = 1
⊔n

i=1 A1,i×A2,i
(ω1, ω2) =

n∑
i=1

1A1,i×A2,i
(ω1, ω2)

=

n∑
i=1

1Ai,1
(ω1)1A2,i

(ω2),∀(ω1, ω2) ∈ Ω1 × Ω2.

Then

Y (ω1) =

∫
Ω2

n∑
i=1

1A1(ω1)1A2(ω2)K(ω1, dω2) =

n∑
i=1

∫
A2,i

1A1,i(ω1)K(ω1, dω2)

=

n∑
i=1

1A1,i(ω1)K(ω1, A2,i).

So Y =
∑n

i=1 1A1,i
K(·, A2,i) ∈ B1.

(3) Let X = 1A for A ∈ B1 × B2. By the theorem 5.16, there exists a sequence of sets

{A1,n ×A2,n}n∈N ⊆ ZR
∗ .

such that A1,n ×A2,n ! A in P -measure. By the theorem 5.1,

1A1,n×A2,n ! 1A = X.

Then

X(ω1, ω2) = lim
n!∞

1A1,n×A2,n(ω1, ω2) = lim
n!∞

1A1,n(ω1)1A2,n(ω2),∀(ω1, ω2) ∈ Ω1 × Ω2.

Then

Y (ω1) =

∫
Ω2

lim
n!∞

1A1,n
(ω1)1A2,n

(ω2)K(ω1, dω2) = lim
n!∞

∫
A2,n

1A1,n
(ω1)K(ω1, dω2)

= lim
n!∞

1A1,n
(ω1)K(ω1, A2,n).

Since limits of B1-measureable functions are B1-measurable, Y ∈ B1.
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(4) Since X ⩾ 0, there exists a sequence of (positive) simple functions {Zn}n∈N mapping from
Ω1 × Ω2 to R such that Zn " X, where

Zn(ω1, ω2) =

n2n∑
k=1

k − 1

2n
1Ak

(s) + n1An2n+1
(ω1, ω2),

and

Ak =

{
(ω1, ω2) ∈ Ω1 × Ω1 :

k − 1

2n
< X(ω1, ω2) ⩽

k

2n

}
∈ B1 × B2,

An2n+1 = {(ω1, ω2) ∈ Ω1 × Ω2 : X(ω1, ω2) > n} ∈ B1 × B2.

Then by MCT,∀ω1 ∈ Ω1,

Y (ω1) =

∫
Ω2

Xω1
(ω2)K(ω1, dω2) =

∫
Ω2

lim
n!∞

Zn(ω1, ω2)K(ω1, dω2)

= lim
n!∞

∫
Ω2

Zn(ω1, ω2)K(ω1, dω2) = lim
n!∞

n2n∑
k=1

k − 1

2n
K(ω1, Ak) + nK(ω1, An2n+1).

Since

k − 1

2n
K(·, Ak) ∈ B1,∀k = 1, . . . , n2n, and nK(·, An2n+1) ∈ B1,

we have Y ∈ B1.

Alternative: First show it holds for simple functions, then by MCT, we have the conclusion for
measurable functions.

(c) Define LHS :=
∫
Ω1×Ω2

XdP and RHS :=
∫
Ω1
Y (ω1)P (dω1). We begin by supposing X =

1A1×A2
where A1 ×A2 ∈ RECT. Then LHS :=

∫
A1×A2

dP = P (A1 ×A2) and

RHS =

∫
Ω1

[∫
Ω2

K(ω1, dω2)1A1
(ω1)1A2

(ω2)

]
P1(dω) =

∫
A1

K(ω1, A2)P1(dω1) = P (A1 ×A2).

So LHS = RHS for any A ∈ RECT. Define C := {A ∈ B1 × B2 : LHS = RHS∀X = 1A}. Note
RECT ⊆ C. We claim C is a λ-system.

(1) Ω1 × Ω2 ∈ C since Ω1 × Ω2 ∈ RECT ⊆ C.

(2) If A ∈ C, then for X = 1Ac , we have LHS = P (Ac) = 1 − P (A). Since by definition,
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∫
Ω1
K(ω1,Ω2) = P (Ω1 × Ω2) = 1.

LHS = 1−
∫
Ω1

∫
Ω2

K(ω1, dω2)1Aω1 (ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)P1(dω1)−
∫
Ω1

∫
Ω2

K(ω1, dω2)1Aω1 (ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)
(
1− 1Aω1

(ω2)
)
P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)1(Aω1
)c(ω2)P1(dω2)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)1(Ac)ω1
(ω2)P1(dω2)

= RHS.

So Ac ∈ C.

(3) If {An}∞n=1 ⊆ C are disjoint, then

LHS =

∫
Ω1×Ω2

1
⊔∞

n=1 An
dP = P

( ∞⊔
n=1

An

)
=

∞∑
n=1

P (An)

=

∞∑
n=1

∫
Ω1

∫
Ω2

K(ω1, dω2)1(An)ω1
(ω2)P1(dω1),

since ∫
Ω1

∫
Ω2

K(ω1, dω2)1(An)ω1
(ω2)P1(dω1) =

∫
Ω1

∫
(An)ω1

K(ω1, dω2)P1(dω1)

=

∫
Ω1

K(ω1, (An)ω1)P1(dω1)

= P (An).

Then by MCT∫
Ω1×Ω2

1
⊔∞

n=1 An
dP =

∫
Ω1

∫
Ω2

K(ω1, dω2)

∞∑
n=1

1(An)ω1
(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)1(
⊔∞

n=1 An)ω1
(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)1(
⊔∞

n=1 An)ω1
(ω2)P1(dω1) (⋆ not for sets)

= RHS.

So
⊔∞

n=1An ∈ C.
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Then B1 ×B2 = σ(RECT) ⊆ C. We may conclude that for any A ∈ B1 ×B2, if X = 1A, then LHS
= RHS. Now consider the simple functions of the form

X =

k∑
i=1

ai1Ai
, Ai ∈ B1 × B2,∀ i = 1, . . . , k.

Then

LHS =

∫
Ω1×Ω2

k∑
i=1

ai1AidP =

k∑
i=1

ai

∫
Ω1×Ω2

1AidP =

k∑
i=1

aiP (Ai)

=

k∑
i=1

ai

∫
Ω1

∫
Ω2

K(ω1, dω2)1(Ai)ω1
(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)

k∑
i=1

ai1(Ai)ω1
(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)

k∑
i=1

ai(1Ai)ω1(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)

(
k∑

i=1

ai1Ai

)
ω1

(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)

(
k∑

i=1

ai1Ai

)
(ω1, ω2)P1(dω1)

= RHS.

So LHS = RHS holds for simple functions. For arbitrary X ⩾ 0, there exists a sequence of simple
{Xn}n∈N such that Xn " X. Note LHS(Xn) = RHS(Xn) for n ∈ N. By MCT, LHS(Xn) " LHS(X).
Also, we get for RHS, by applying monotone convergence twice, that

LHS = lim
n!∞

LHS(Xn) = lim
n!∞

RHS(Xn) = lim
n!∞

∫
Ω1

∫
Ω2

K(ω1, dω2)(Xn)ω1(ω2)P1(dω1)

=

∫
Ω1

lim
n!∞

∫
Ω2

K(ω1, dω2)(Xn)ω1(ω2)P1(dω1) =

∫
Ω1

∫
Ω2

lim
n!∞

K(ω1, dω2)(Xn)ω1(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K(ω1, dω2)Xω1(ω2)P1(dω1) = RHS(X).

We can now give the result, called Fubino’s theorem, which justifies interchange of the order of
integration.

Theorem 5.19 (Fubini Theorem). Let P = P1×P2 be product measure. If X is B1×B2 measurable
and is either nonnegative or integrable w.r.t. P , then∫

Ω1×Ω2

XdP =

∫
Ω1

[∫
Ω2

Xω1
(ω2)P2(dω2)

]
P1(dω1) =

∫
Ω2

[∫
Ω1

Xω2
(ω1)P1(dω1)

]
P2(dω2).
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Proof. Let K(ω1, A2) = P2(A2). Then∫
Ω1×Ω2

XdP =

∫
Ω1

∫
Ω2

K(ω1, dω2)Xω1
(ω2)P1(dω1) =

∫
Ω1

[∫
Ω2

Xω1
(ω2)P2(dω2)

]
P1(dω1).

Similarly, let K̃(ω2, A1) = P1(A1) be a transition function with K̃ : Ω1 × B1 ! [0, 1]. Then∫
Ω1×Ω2

XdP =

∫
Ω2

∫
Ω1

K̃(ω2, dω1)Xω2(ω1)P2(dω2)

=

∫
Ω2

[∫
Ω1

Xω2
(ω1)P1(dω1)

]
P2(dω2).

Example 5.20. Let Xi ⩾ 0, i = 1, 2 be two independent random variables. Then E[X1X2] =
E[X1]E[X2].

Proof. Define the random vector X := (X1, X2) as

X : Ω −! R
ω 7−! (X1(ω), X2(ω))

g : R+ × R+ −! R+

(x1, x2) 7−! x1 + x2

Note P ◦X−1 = F1 × F2, where Fi is the distribution of Xi. This follows since

P ◦X−1(A1 ×A2) = P ((X1, X2) ∈ A1 ×A2) = P (X1 ∈ A1, X2 ∈ A2) = P (X1 ∈ A1)P (X2 ∈ A2)

= F1(A1)F2(A2) = F1 × F2(A1 ×A2).

So P ◦X−1 and F1 × F2 agree on RECT and hence on B(RECT) = B1 × B2. Then by CorollAry
5.6,

E[X1X2] = E[g(X)] =

∫
Ω

g(X(ω))P (dω) =

∫
R+×R+

g(x)P ◦X−1(dx) =

∫
R+×R+

gd(F1 × F2)

=

∫
R+

x2

∫
R+

x1F1(dx1)F2(d2) (Fubini) = E[X1]

∫
R+

x2F2(dx2) = E[X1]E[X2].

Example 5.21 (Convolution). Suppose X1, X2 are two independent random variables with distri-
butions F1, F2. The distribution function of the random variableX1+X2 is given by the convolution
F1 ∗ F2 of the distribution functions. For x ∈ R,

P (X1 +X2 ⩽ x) =: F1 ∗ F2(x) =

∫
R
F1(x− u)F2(du) =

∫
R
F2(x− u)F1(du).

Proof. To see this, proceed as in the previous example. Let X = (X1, X2) which has a distribution
F1 × F2 and set

g(x1, x2) = 1{(u,v)∈R2:u+v⩽x}(x1, x2), (x1, x2) ∈ R2.
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From Corollary 5.6,

P (X1 +X2 ⩽ x) = E[1{X1+X2⩽x}] = E
[
1{(u,v)∈R2:u+v⩽x}(X1, X2)

]
= E[g(X)] =

∫
R2

gd(F1 × F2)

=

∫
R

∫
R
1{(u,v)∈R2:u+v⩽x}(x1, x2)F1(dx1)F2(dx2) (independence)

=

∫
R

∫
R
1{v∈R:v⩽x−x2}(x1)F1(dx1)F2(dx2)

=

∫
R
F1(x− x2)F2(dx2).
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Convergence Concepts

Much of classical probability theory and its applications to statistics concerns limit theorem; that is,
the asymptotic behavior of a sequence of random variables. The sequence could consist of sample
averges, cumulative sums, extremes, sample quantiles, sample correlations, and so on. Whereas
probability theory disscusses limit theorem, the theory of statistics is concerned with large sample
properties of statistics, where a statistics is just a function of the sample.

6.1 Almost Sure Convergence

Proposition 6.1. Let {Xn} be iid random variables with common distribution function F (x).
Asume that F (x) < 1, for all x. Set

Mn =

n∨
i=1

Xi !∞ a.s..

Proof. Since F (j) < 1, we have
∑∞

n=1 P (Mn ⩽ j) =
∑∞

n=1 F
n(j) < ∞. By the Borel-Cantelli

Lemma, P (limn!∞ sup{Mn ⩽ j}) = 0. Let Nj = limn!∞ sup{Mn ⩽ j} for j ∈ N. Then P (Nj) =
0 for j ∈ N. Note N c

j = limn!∞ inf{Mn ⩾ j}. So for ω ∈ N c
j , we get Mn(ω) > j for all large n.

Let N =
⋃∞

j=1Nj , so P (N) ⩽
∑∞

j=1 P (Nj) = 0. Note

N c =

∞⋂
j=1

N c
j =

∞⋂
j=1

lim
n!∞

inf{Mn > j},

and P (N c) = 1. If ω ∈ N c, we have the property that for any j, Mn(ω) > j for all sufficiently large
n. Thus, P (Mn !∞) = 1.

6.2 Convergence in Probability

Theorem 6.2 (Convergence a.s implies convergence i.p.). Suppose that {Xn, n ⩾ 1, X} are r.v.’s

on a probability space (Ω,B, P ). If Xn ! X, a.s., then Xn
p
−! X.
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Proof. If Xn ! X a.s., then for any ϵ > 0

0 = P (|Xn −X| > ϵ i.o.) = P ( lim
n!∞

sup{|Xn −X| > ϵ}) = P

( ∞⋂
n=1

∞⋃
k=n

{|Xn −X| > ϵ}

)

= lim
n!∞

P

( ∞⋃
k=n

{|Xn −X| > ϵ}

)
⩾ lim

n!∞
P (|Xn −X| > ϵ).

Remark. The definition of convergence i.p. and convergence a.s. can be readily extended to
random elements of metric spaces.

6.3 Statistical Terminology

In statistical estimation theory, almost sure and in probability convergence have analogues as strong
or weak consistency. Given a family of probability models ((Ω,B, Pθ)). Suppose the statistician
ges to observe random variables X1 · · · , Xn defined on Ω and based on these observations must
decide which is the correct model; that is, which is the correct value of θ. Statistical estimation
means: select the correct model. For example, suppose Ω = R∞, B = B(R∞). Let ω = (x1, x2, · · · )
and define Xn(ω) = xn,∀n ∈ Z+. For each θ ∈ R, let Pθ be product measure on R∞ which
makes {Xn, n ⩾ 1} iid with common N(θ, 1) distribution. Based on observing X1, . . . , Xn, one

estimate θ with an appropriate function of the observations θ̂n = θ̂n(X1, . . . , Xn). θ̂n(X1, . . . , Xn)
is called a statistic and is also an estimator. When one actually does the experiment and observes,
X1 = x1, . . . , Xn = xn, then θ̂n(x1, . . . , xn) is called the estimate. So the estimator is a random
element while the estimate is a number or maybe a vector if θ is multidimentional. In this example,
the usual choice of estimator is θ̂n =

∑n
i=1Xi/n. The estimator θ̂n is weakly consistent if for all

θ ∈ Θ,

Pθ

(∣∣∣θ̂n − θ
∣∣∣ > ϵ

)
! 0,

that is, θ̂n
Pθ! θ. This indicates that no matter what the true parameter is or to put it another way,

no matter what the true (but unknown) state of nature is, θ̂ does a good job estimating the true

parameter. θ̂n is strongly consistent if for all θ ∈ Θ, θ̂n ! θ, Pθ-a.s..
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Laws of Large Numbers and Sums
of Independent Random Variables

7.1 Truncation and Equivalence

We will see that is is easier to deal with random variables that are uniformly bounded or that have
moments. Many technique rely on these desirable properties being present. If these properties are
not present, a technique called truncation can induce their presence but then a comparison must be
made between the original random variables and the truncated ones. For instance, we often want
to compare {Xj} with

{
Xj1{|Xj |⩽n}

}
. The following is a useful concept, expecially for problems

needing almost sure convergence.

Definition 7.1. Two sequences {Xn} and {X ′
n} are tail equivalent if

∑∞
n=1 P (Xn ̸= X ′

n) <∞.

When two sequences are tail equivalent, their sums behave asympotically the same as shown
next.

Proposition 7.2 (Equivalence). Suppose the two sequences {Xn} and {X ′
n} are tail equivalent.

Then

(a)
∑∞

n=1(Xn −X ′
n) converges a.s.

(b) Two two series
∑∞

n=1Xn and
∑∞

n=1X
′
n converges a.s. together or diverge a.s. together; that

is
∑∞

n=1Xn converges a.s. if and only if
∑∞

n=1X
′
n converges a.s..

(c) If there exists a sequence {an} such that an "∞ and if there exists a random variable X such

that 1
an

∑n
j=1Xj

a.s.
−−! X, then also 1

an

∑n
j=1X

′
j

a.s.
−−! X.

Proof. (a) By the Borel-CantellI Lemma, since they are tail equivalent, limn!∞ sup {Xn ̸= X ′
n} =

0, or equivalently P (limn!∞ inf {Xn = X ′
n}) = 1. So for ω ∈ limn!∞ inf{Xn = X ′

n}, we have that
Xn(ω) = X ′

n(ω) from some index onwars, say for n ⩾ N(ω).

41



42CHAPTER 7. LAWS OF LARGE NUMBERS AND SUMS OF INDEPENDENT RANDOMVARIABLES

7.2 A General Weak Law of Large Numbers

Theorem 7.3 (General weak law of large numbers). Suppose {Xn, n ⩾ 1} are independent random
variables and define Sn =

∑n
j=1Xj. If

(a)
∑n

j=1 P (|Xj | > n)! 0,

(b) 1
n2

∑n
j=1EX

2
j 1{|Xj |⩽n} ! 0,

then if we define an =
∑n

j=1E
(
Xj1{|Xj |⩽n}

)
, we get

Sn − an
n

P
−! 0. (7.1)

One of the virtues of this result is that no assumptions about moments need to be made. Also,
although this result is presented as conditions which are sufficient for (7.1).

7.3 Almost Sure Convergence of Sums of Independent Ran-
dom Variables

Reminder: If {Xn} is a monotone sequence of random variables, then Xn
P
−! X implies Xn

a.s.
−−! X.

Theorem 7.4 (Levy’s theorem). If {Xn, n ⩾ 1} is an independent sequence of random variables,
then

∑∞
n Xn converges in probability if and only if

∑∞
n Xn converges a.s..

Theorem 7.5 (Kolmogorov Convergence Criterion). Suppose {Xn, n ⩾ 1} is a sequence of in-
dependent random variables. If

∑∞
j=1 Var(Xj) < ∞, then

∑∞
j=1(Xj − E(Xj)) converges almost

surely.

7.4 Strong Laws of Large Numbers

Lemma 7.6 (Kronecker’s lemma). Suppose we have two sequence {xk} and {an} such that xk ∈ R
and 0 < an "∞. If

∑∞
k=1

xk

ak
converges, then limn!∞ a−1

n

∑n
k=1 xk = 0.

7.4.1 Record counts

Suppose {Xn, n ⩾ 1} is an iid sequence with common continuous distribution function F . Define

uN =

N∑
j=1

1{Xj is a record} =

N∑
j=1

1j ,

where 1j = 1{Xj is a record}. So uN is the number of records in the first N observations.

Proposition 7.7 (Logarithmic growth rate). The number of records in an iid sequence grows
logarithmically and we have the almost sure limit

lim
n!∞

µN

logN
! 1.
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7.4.2 Explosions in the Pure Birth Process

Let {Xj , j ⩾ 1} be nonnegative independent random variables and suppose

P (Xn > x) = e−λnx, x > 0,

where λn ∈ R+ for n ∈ N are called the birth parameters. Define the birth time process Sn =∑n
t=1Xt and the population size process {X(t), t ⩾ 0} of the pure birth process by

X(t) =


1, if 0 ⩽ t < S1,
2, if S1 ⩽ t < S2,
3, if S2 ⩽ t < S3,
...

Next define the event explosion by

{explosion} =

[ ∞∑
n=1

Xn <∞

]
= [X(t) = ∞ for some finite t] .

Proposition 7.8. For the probability of explosion, we have

P [explosion] =

{
1, if

∑∞
n=1 λ

−1
n < 0,

0 if
∑∞

n=1 λ
−1
n = ∞.

Recall that we know that P (
∑∞

n=1Xn <∞) = 0 or 1 by Kologorov Zero-One Law.

7.5 The Strong Law of Large Numbers for IID Sequences

Theorem 7.9 (Kolmogorov’ SLLN). Let {Xn, n ⩾ 1} be an iid sequence of random variables and

set Sn =
∑n

i=1Xi. There exists c ∈ R such that Xn = Sn/n
a.s.
−−! c if and only if E (|X1|) < ∞ in

which case c = E(X1).

Corollary 7.10. If {Xn} is iid, then

E (|X1|) <∞ implies Xn
a.s.
−−! µ = E(X1),

and

EX2
1 <∞ implies Sn :=

1

n

n∑
i=1

(Xi −X)2
a.s.
−−! σ2 =: Var(X1).
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Chapter 8

Convergence in Distribution

8.1 Basic Definitions

Definition 8.1. F is a distribution function if

(a) 0 ⩽ F (x) ⩽ 1;

(b) F is non-decreasing;

(c) F (x+) = F (x) for x ∈ R, where F (x+) = limϵ>0,ϵ#0 F (x+ ϵ).

Also, remember the notation

F (∞) := lim
y"∞

F (y),

F (−∞) := lim
y#−∞

F (y).

F is a probability distribution function if F (−∞) = 0 and F (+∞) = 1. In this case, F is proper or
non-defective.

Lemma 8.2. A distribution function F (x) is determined on a dense set. Let D be dense in R.
Suppose FD(·) is defined on D and satisfies the following:

(a) FD(·) is non-decreasing on D.

(b) 0 ⩽ FD(x) ⩽ 1 for x ∈ D.

(c) limx∈D,x!+∞ FD(x) = 1, limx∈D,x!−∞ FD(x) = 0.

Define for x ∈ R,
F (x) := inf

y>x,y∈D
FD(y) = lim

y#x,y∈D
FD(y).

Then F is a right continuous probability distribution function. Thus, any two right continuous df’s
agreeing on a dense set will agree everywhere.
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Proof. Fix x ∈ R. Given ϵ > 0, there exists x′ ∈ D,x′ > x such that F (x) + ϵ ⩾ FD(x′). By
the definition of F for any y ∈ (x, x′), FD(x′) ⩾ F (y). Then F (x) + ϵ ⩾ F (y) for any y ∈ (x, x′).
Now F is monotone (F (x+) = limy#x F (y) exists), so let y # x to get F (x) + ϵ ⩾ F (x+). This is
true for all small ϵ > 0, so let ϵ # 0 and we get F (x) ⩾ F (x+). Since monotonicity of F implies
F (x+) ⩾ F (x), we get F (x) = F (x+) as desired.

Remark. If g : R ! R have the property that for any x ∈ R, g(x+) = limy#x g(y) exists. Set
h(x) = g(x+). Then h is right continuous.

Definition 8.3. Weak convergence. The sequence {Fn} converges weakly to F , written Fn ⇒ F ,
if Fn(x)! F (x) for all x ∈ C(F ).

Remark. In the definition of weak convergence, F may not be proper.

Proposition 8.4. C(F )c is a at most countable set.

Proof.

C(F )c = {x ∈ R, F (x)− F (x−) > 0} =

∞⋃
n=1

{
x ∈ R, F (x)− F (x−) ⩾

1

n

}
=

∞⋃
n=1

Bn.

Claim. Bn has at most n distinct elements. Suppose not, then we can find x1, x2, . . . , xn+1 ∈ Bn

and x1 < x2 · · ·xn < xn+1. Then F (x
−
n+1) ⩾ F (xn) and

F (xn+1) = F (xn+1)− F (x−n+1) + F (x−n+1) ⩾
1

n
+ F (xn) ⩾

2

n
+ F (xn−1)

⩾
n

n
+ F (x1) ⩾

n+ 1

n
+ F (x−1 ) > 1,

which is a contradiction.

Example 8.5. Let N be an N(0, 1) random variable so that the distribution function is symmetric.

Define for n ⩾ 1, Xn = (−1)nN . Then Xn
d
= N , so automatically Xn ⇒ N . But of course {Xn}

neither converges almost surely nor in probability.

Remark. Weak limits are unique. If Fn ! F , and also Fn ! G, then F = G. There is a simple
reason for this. The set (C(F ))c∪(C(G))c is countable so INT = C(F )∩C(G) = R∖ a countable set
and hence is dense. For x ∈ INT, Fn(x) ! F (x), Fn(x) ! G(x). So F (x) = G(x) for x ∈ INT,
and hence by Lemma 8.2, we have F = G.

Example 8.6. Suppose Fn puts mass 1
n at points

{
1
n ,

2
n , . . . ,

n
n

}
. If F (x) = x, 0 ⩽ x ⩽ 1 is the

uniform distribution on [0, 1], then for x ∈ (0, 1), Fn(x) =
⌊nx⌋
n ! x = F (x). Thus we have weak

convergence Fn ⇒ F . However if Q is the set of rationals in [0, 1], Fn(Q) = 1, F (Q) = 0. So
Fn(A) ̸! F (A) for A ∈ B(R).

8.2 Scheffe’ lemma

Lemma 8.7 (Scheffe’s lemma). Suppose F and {Fn}n⩾1 are probability distributions with densities
{f, fn n ⩾ 1}. Then

sup
B∈B(R)

|Fn(B)− F (B)| = 1

2

∫
|fn(x)− f(x)|dx.



8.2. SCHEFFE’ LEMMA 47

If f(x)! f(x) almost everywhere, then
∫
|fn(x)− f(x)|dx! 0, and thus Fn ! F in total variation

(and hence weakly).

8.2.1 Scheffe’s lemma and Order Statistics

Proposition 8.8. Suppose {Un}n⩾1 are iid U(0, 1) random variables so that

P (Uj ⩽ x) = x, 0 ⩽ x ⩽ 1,∀j ∈ N

and suppose U(1,n) ⩽ U(2,n) ⩽ · · · ⩽ U(n,n) are the order statistics. Assume k = k(n) is a function
of n satisfying k(n)!∞ and k/n! 0 as n!∞. Let

ξn =
U(k,n) − k

n√
k
n

(
1− k

n

)
1
n

.

Then the density of ξn converges to a standard normal density and hence by Scheffe’ lemma

sup
B∈B(R)

∣∣∣∣∣P (ξn ∈ B)−
∫
B

√
1

2π
e−u2/2du

∣∣∣∣∣! 0.

Proof. For 0 < x < 1, P (U(k,n) ⩽ x) is the binomial probability of at least k successes in n trials
when the success probability is x. So

P (U(k,n) ⩽ x) =

n∑
i=k

(
n

i

)
xi(1− x)n−i.

Dif and only iferentiating, we get the density f(k,n)(x) of U(k,n) to be

fn(x) =

n∑
i=k

(
n

i

)
ixi−1(1− x)n−i −

n∑
i=k

(
n

i

)
xi(n− i)(1− x)n−i−1

=

n−1∑
i=k−1

(
n

i+ 1

)
(i+ 1)xi(1− x)n−i−1 −

n−1∑
i=k

(
n

i

)
xi(n− i)(1− x)n−i−1

=

n−1∑
i=k−1

n!

i!(n− i− 1)!
xi(1− x)n−i−1 −

n−1∑
i=k

n!

i!(n− i− 1)!
xi(1− x)n−i−1

=

(
n

k

)
kxk−1(1− x)n−k

=
n!

(k − 1)!(n− k)!
xk−1(1− x)n−k, 0 < x < 1.

Since
√

k
n

(
1− k

n

)
1
n ∼

√
k

n as n!∞, by convergence of types theorem discussed below assures us

we can replace the square root in the expression for ξn by
√
k/n and by transformation theorem,

the pdf of ξn is

gn(x) =

√
k

n
fn

(√
k

n
x+

k

n

)
.
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By Stirling’s formula, as n!∞, ( kn ! 0 as n!∞.)

n!

(k − 1)!(n− k)!
∼

√
n

√
2π
(
k
n

)k−1/2 (
1− k

n

)n−k
.

So as n!∞,

gn(x) ∼
√
k

n

√
n

√
2π
(
k
n

)k−1/2 (
1− k

n

)n−k

(√
k

n
x+

k

n

)k−1(
1−

√
k

n
x− k

n

)n−k

=
1√
2π

(√
k

n x+ k
n

)k−1

(
k
n

)k−1

(
1− k

n −
√
k

n x
)n−k

(
1− k

n

)n−k

=
1√
2π

(
1 +

x√
k

)k−1(
1− x

(n− k)/
√
k

)n−k

.

It suffices to prove that (
1 +

x√
k

)k−1(
1− x

(n− k)/
√
k

)n−k

,

or equivalently,

(k − 1) log

(
1 +

x√
k

)
+ (n− k) log

(
1− x

(n− k)/
√
k

)
! −x

2

2
.

Observe that, for |t| < 1, − log(1− t) =
∑∞

n=1
tn

n , and therefore

δ(t) :=

∣∣∣∣− log(1− t)− (t+
t2

2
)

∣∣∣∣ ⩽ ∞∑
n=3

|t|n =
|t|3

1− |t|
⩽ 2|t|3, if |t| < 1

2
.

Then

(k − 1) log

(
1 +

x√
k

)
+ (n− k) log

(
1− x

(n− k)/
√
k

)
= (k − 1)

(
x√
k
− x2

2k

)
− (n− k)

(
x

(n− k)/
√
k
+

x2

2(n− k)2/k

)
+ 0(1)

= −x
2

2
− x√

k
+
x2

2k
− x2

2(n− k)/k
+ 0(1).

= − x√
k
− x2

2

(
1− 1

k
− 1

n/k − 1

)
+ 0(1)

! −x
2

2

since

0(1) = (k − 1)δ

(
x√
k

)
+ (n− k)δ

(
x

(n− k)/
√
k

)
! 0,

and k(n)!∞ and k
n ! 0 as n!∞.
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8.3 Appetizer

Definition 8.9. Suppose X1, . . . , Xn are random variables. Set Mn = max{X1, . . . , Xn}.

Example 8.10. Let Yi be the low temperature in year i. Set Xi = −Yi so that

−Mn = −max{X1, . . . , Xn} = min{−X1, . . . ,−Xn} = min{Y1, . . . , Yn}

is the lowest temperature in year 1, . . . , n.

Example 8.11. Suppose X1, . . . , Xn are iid with d.f. F . Since Mn ⩽ x if and only if X1 ⩽
x, . . . ,Xn ⩽ x,

P (Mn ⩽ x) = P (X1 ⩽ x, . . . ,Xn ⩽ x) =

n∏
i=1

P (Xi ⩽ x) =

n∏
i=1

F (x) = F (x)n.

Definition 8.12. Let Xr = inf{x : F (x) = 1} with inf{∅} = ∞.

Example 8.13. Uniform[0, 1].

F (x) =

 0, x < 0
x, 0 ⩽ x < 1
1, x = 1

.

Then Xr = 1.

Example 8.14. exp(λ).

F (x) =

{
0, x ⩽ 0

1− e−λx x > 0

Then Xr = ∞.

Corollary 8.15. When x < Xr, we have F (x) < 1 and then P (Mn ⩽ x) = (F (x))n ! 0. If

x > Xr, then F (x) = 1 and P (Mn ⩽ x) = [F (x)]n = 1 ! 1. Thus, Mn
d
−! M , where M is

degenerate and

FM (x) =

{
0, x < Xr

1, x > Xr

Remark. If Xr = ∞, then FM (x) = 0 for x ∈ R since F (x) <∞ for x ∈ R.

X1, X2, · · · are iid, E(X1) = µ, Var(X1) = σ2.

Theorem 8.16. Central Limit Theorem.

First, make a single variable center 0 and variance 1,

Xi − µ

σ
.

Then make the sum center 0 and variance 1,

n∑
i=1

Xi − µ

σ
√
n

=

∑n
i=1 Xi − nµ

σ
√
n

=
Sn − bn

an

d
−! N(0, 1).
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Then

P

(
Sn − bn

an
⩽ x

)
= P (Sn ⩽ anx+ bn) = FSn(anx+ bn) −! N(0, 1).

Can we find constants and bn so that

P

(
Mn − bn

an
⩽ x

)
= P (Mn ⩽ anx+ bn) −! G(x)?

where G is not degenerate.

Example 8.17. X1, X2, · · · are iid and Xi ∼exp(1). Consider Mn = max(X1, . . . , Xn). Let
X(0) = 0, then for all i ∈ [n], X(i) −X(i−1) ∼ exp(n+ 1− i), then

Mn = X(1) + (X(2) −X(1)) + · · ·+ (X(n) −X(n−1)).

So

E[Mn] =

n∑
i=1

1

n+ i− 1
∼ logn = bn.

Set an = 1. For x ∈ R, as soon as x+ logn ⩾ 0,

P (Mn − logn ⩽ x) = P (Mn ⩽ x+ log n) =
(
1− e−(x+logn)

)n
=

(
1− 1

n
e−x

)n

! e−e−x

.

Thus, Mn− bn
d
−! G, where G(x) = e−e−x

for x > 0. Choose bn so that 1− e−bn = F (bn) = 1− 1
n ,

where bn is the last n-th tile of d.f F . Then we get bn = log n as before.

Example 8.18. Pareto

F (x) =

{
0, x < 1

1− 1
x , x ⩾ 1

E[X] =

∫ ∞

1

(1− F (x))dx =

∫ ∞

1

1

x
!∞.

X has a heavey tail. Take bn = 0 and choose an so that 1 − 1
an

= F (an) = 1 − 1
n . Then we get

an = n. For x > 0, when anx > 1,

P

(
Mn

an
⩽ x

)
= (Mn ⩽ anx) = (F (nx))n =

(
1− 1

nx

)n

! e−x−1

.

Thus, Mn

an

d
−! G, where

G(x) =

{
0, x ⩽ 0

e−x−1

, x > 0

8.4 Left Continuous Inverse

Proposition 8.19. Any c.d.f. F : A! R is right continuous, where A ⊆ R.
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Proof. Fix x ∈ R. Assume {xn} ⊆ R and xn # x. Then {X ⩽ x1} ⊇ {X ⩽ x2} ⊇ · · · , and⋂∞
n=1{X ⩽ xn} = {X ⩽ x}. By the continuity of probability measure, we have P (X ⩽ x) =

limn!∞ P (X ⩽ xn). Then F (x) = limn!∞ F (xn). By the equavalent definition of continuity, we
have F is right continuous.

Definition 8.20. Let H be a nondecreasing function defined on R. Define the the continuous
inverse

H�(y) = inf{s : H(s) ⩾ y}.

Remark. Given H nondecreasing, consider the graphs.
If H is strictly increasing, then H�(y) is strictly increasing.
If H is flat, then there is a jump in H�(y).
If there is a jump in H, then H�(y) is flat.
Thus, H� is also nondecreasing.

Proposition 8.21. Let A(y) = {x : H(x) ⩾ y}, then A(y) = (H�(y),∞), or A(y) = (H�(y),∞).

Proof. Suppose s ∈ A(y), then s ⩾ H�(y). So A(y) ⊆ [H�(y),∞). Since H�(y) = inf A(y), we
have for any δ > 0, there exists s ∈ R such that H�(y) ⩽ s < H�(y) + δ. (Otherwise, for any
s ∈ R, H�(y) > s or H�(y) + δ ⩽ s, a contradiction.) Thus, [H�(y) + δ,∞) ⊆ [H�(y),∞).
Since δ > 0 is arbitrary, (H�(y),∞) ⊆ A(y). Hence, s ⩾ H�(y). So A(y) = (H�(y),∞), or
A(y) = [H�(y),∞).

Proposition 8.22. Assume H is right continuous. Then

(a) A(y) is closed, and then A(y) = [H�(y),∞).

(b) H�(y) ∈ A(y) and then H(H�(y)) ⩾ y.

(c) H�(y) ⩽ t if and only if y ⩽ H(t).

(d) H�(y) > t if and only if y > H(t).

Proof. (a) If sn ∈ A(y) and sn # s, then by right continuity y ⩽ H(sn) # H(s). So H(s) ⩾ y and
then s ∈ A(y). If sn ∈ A(y) and sn " s, then since H is nondecreasing, y ⩽ H(sn) " H(s−) ⩽ H(s).
So y ⩽ H(s) and then s ∈ A(y).

(b) By (a).

(c) Since A(y) = [H�(y),∞), H�(y) ⩽ t if and only if t ∈ A(y) if and only if y ⩽ H(t).

(d) Similar to (c).

Proposition 8.23. H� is left continuous.

Proof. It equivalent to show if {yn} ⊆ R and yn " y ∈ R, then H�(yn) " H�(y). Since H� is
nondecreasing, it sufficies to show for any t ∈ R for which

yn " y and∀n ∈ N>0, H�(yn) < t, then H�(y) ⩽ t.

(Suppose not, then there exists ϵ > 0 such that H�(y) = t + ϵ, then |H�(yn)−H�(y)| > ϵ, a
contradiction.) Then for n ∈ N, t ∈ {x : H(x) ⩾ yn}. Since yn " y, t ∈ {s : H(s) ⩾ y}. Thus,
H�(y) ⩽ t.
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Proposition 8.24. Let X have a df. F and U ∼ Uni(0,1), then F�(U) also has a df. F .

Proof. P (F�(U) ⩽ x) = P (U ⩽ F (x)) = F (x).

Remark. Let H : R ! (0, 1], then H� : (0, 1] ! R. Let ξH(A) = {x ∈ (0, 1] : H�(x) ∈ A} for
A ⊆ R. If A ∈ B(R), then ξF (A) ∈ B((0, 1]).

Example 8.25. Let X be a ramdon variable with cdf F (x) = 1 − e−x, x ⩾ 0. Set R(x) =
− log(1− F (x)). Then R�(X) has has cdf F .

Proof.

P (R�(X) ⩽ x) = P (X ⩽ R(x)) = 1− e−R(x) = 1− elog(1−F (x)) = 1− (1− F (x)) = F (x).

Let H,H1, H2, · · · be nondecreasing and right continuous. Let C(H) be continuity points of H.
We say Hn ! H if for any t ∈ C(H), Hn(t)! H(t).

Theorem 8.26. Hn ! H implies H�
n ! H�.

Proof. Let t ∈≪ C(H�). It is equivalent to show A : limn!∞ infH�
n (t) ⩾ H�(t) and B :

limn!∞ supH�
n (t) ⩽ H�(t). Let ϵ > 0. Since the discontinuous point is countable, C(H) = H.

Then there exists x ∈ C(H) such that H�(t)− ϵ < x < H�(t). By Proposition 8.22(4), H(x) < t.
Since x ∈ C(H), Hn(x)! H(x). Then there exists n0 ∈ N>0 such that for any n ⩾ n0, Hn(x) < t.
(Let H(x) = t−δ for some δ > 0, then there exists some N such that Hn(x) ⩽ H(x) < t as n ⩾ N .)
By Proposition 8.22(4), for any n ⩾ n0, x < H�

n (t). So infn⩾n0
H�

n (t) ⩾ x > H�(t) − ϵ. Thus,
limn!∞ infH�

n (t) ⩾ infn⩾n0
H�

n (t) ⩾ H�(t)− ϵ. Since ϵ is arbitrary, A follows. Let ϵ > 0. Select
t′ > t and choose y ∈ {x : H�(t′) < x < H�(t′) + ϵ} ∩ C(H). Since y > H�(t′), H(y) ⩾ t′ > t.
Since y ∈ H, Hn(y)! H(y), and there exists n0 ∈ N>0 such that for any n ⩾ n0, Hn(y) > t. Then
y ∈ A(t) = {s : Hn(s) ⩾ t} = [H�

n (t),∞) for any n ⩾ n0. So for any n ⩾ n0, y ⩾ H�
n (t). Therefore,

for any n ⩾ n0, H
�(t′) + ϵ > y ⩾ H�

n (t). So supn⩾n0
H�

n (t) ⩽ H�(t′) + ϵ. Then

lim
n!∞

supH�
n (t) ⩽ sup

n⩾n0

H�
n (t) ⩽ H�(t′) + ϵ.

Since ϵ is arbitrary, limn!∞ supH�
n (t) ⩽ H�(t′). Since t ∈ C(H�), let t′ # t,

lim
n!∞

supH�
n (t) ⩽ H�(t).

8.5 The Baby Skorohod Theorem

Proposition 8.27. Suppose X, {Xn}n⩾1 are random variables. If Xn
a.s.
= X, then Xn ⇒ X.

Proof. Consider the same probability space (Ω,A, P ). Suppose Xn
a.s.
−−! X and let F and {Fn}n⩾1

be the distribution functions of X and {Xn}n⩾1, respectively. Then there exists N ∈ A such that
P (N) = 0, and for ω ∈ N c, limn!∞Xn(ω) = X(ω). Fix x ∈ R.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ crucial ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Claim I. for any h > 0 we have {X ⩽ x − h} ∩ N c ⊆ limn!∞ inf{Xn ⩽ x} ∩ N c. Assuming
{X ⩽ x− h} ∩N c ̸= ∅, fix ω ∈ {X ⩽ x− h} ∩N c. Since ω ∈ {X ⩽ x− h}, X(ω) ⩽ x− h. Since
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ω ∈ N c, Xn(ω) ! X(ω). Then ∃N ∈ Z>0 such that∀n ⩾ N , |Xn(ω)−X(ω)| < h
2 . Then for any

n ⩾ N ,
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Trick ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Xn(ω) ⩽ X(ω) + |Xn(ω)−X(ω)| < x− h

2
< x.

Therefore, Xn(ω) < x for all but finitly many n. Thus, ω ∈ limn!∞ inf{Xn ⩽ x}. Also ω ∈ N c.
Hence ω ∈ limn!∞ inf{Xn ⩽ x} ∩N c.

Claim II. limn!∞ sup{Xn ⩽ x} ∩ N c ⊆ {X ⩽ x}. Assuming limn!∞ sup{Xn ⩽ x} ≠ ∅, fix
ω ∈ limn!∞ sup{Xn ⩽ x}∩N c. Since ω ∈ limn!∞ sup{Xn ⩽ x}, Xn(ω) ⩽ x for infinitely many n.
We claim X(ω) ⩽ x. Suppose not, then ∃ϵ > 0 such that X(ω) = x+ ϵ. Then |Xn(ω)−X(ω)| ⩾ ϵ
for infinitely many n. Since ω ∈ N c, Xn(ω)! X(ω). Then for the same ϵ, |Xn(ω)−X(ω)| < ϵ for all
but finitly many n, a contradiction. HenceX(ω) ⩽ x. Thus, limn!∞ sup{Xn ⩽ x}∩N c ⊆ {X ⩽ x}.
As a result,

{X ⩽ x− h} ∩N c ⊆ lim
n!∞

inf{Xn ⩽ x} ∩N c ⊆ lim
n!∞

sup{Xn ⩽ x} ∩N c ⊆ {X ⩽ x}.

Taking probabilites,

F (x− h) = P (X ⩽ x− h) = P (X ⩽ x− h ∩N c) ⩽ P
(
lim
n!∞

inf{Xn ⩽ x}
)
⩽ lim

n!∞
inf P ({Xn ⩽ x})

⩽ lim
n!∞

supP ({Xn ⩽ x}) ⩽ P
(
lim
n!∞

sup{Xn ⩽ x}
)
⩽ P (X ⩽ x).

Since x ∈ C(F ), let h # 0 to get F (x) ⩽ limn!∞ inf Fn(x) ⩽ limn!∞ supFn(x) ⩽ F (x). Thus,
limn!∞ Fn(x) = F (x).

Theorem 8.28 (Baby Skorohod Theorem). Suppose Xn ⇒ X. Then one can take the prob. space

([0, 1],B([0, 1]),m), where m is Lebesgue measure. Construct r.v’s X̃n and X̃ such that

(a)

X̃
d
= X, X̃n

d
= Xn,∀n ∈ N>0.

(b)

X̃n ! X̃, with prob 1 (a.s.).

Proof. Define

U : [0, 1]! R
ω 7! ω.

For 0 ⩽ x ⩽ 1, m ({ω : U(ω) ⩽ x}) = m([0, x]) = x. Thus, U has a uniform distribution. Set

X̃ = F�(U), and X̃n = F�
n (U),∀n ∈ N>0.

By the Proposition 8.24,

X̃
d
= X, and X̃n

d
= Xn,∀n ∈ N>0.

By the Theorem 8.26,
X̃n(ω)! X̃(ω),∀ω ∈ C(X̃).
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The only thing left to do is to show m
(
C(X̃)

)
= 1. If ω1, ω2 ∈ [0, 1] and ω1 < ω2,

X̃(ω1) = F�(U(ω1)) = F�(ω1) ⩽ F�(ω2) = F�(U(ω2)) = X̃(ω2).

So
∼
X is nondecreasing on [0, 1]. Thus,

∼
X has at most a countable number of discontinuity. Hence

m
(
C(X̃)

)
= 1.

Theorem 8.29 (Continuous Mapping Theorem). Suppose Xn ⇒ X. Let f : R ! R satisfy
P (X ∈ Disc(f)) = 0. Then f(Xn) ⇒ f(X), and if h is bounded, dominated convergence implies
E [f(Xn)]! E [f(X)], since assuming |h| ⩽M , we have E[M ] =M , implying M is integrable.

Proof. We take the probalility space ([0, 1],B([0, 1],m)), where m is Lebesgue measure. By the

Baby Skorohod Theorem, we can construct X̃n,∀n ∈ Z>0 and X̃ such that X̃n
d
= Xn,∀n ∈ Z>0,

and X̃n
a.s.
−! X̃. If X̃(ω) ∈ C(f) = (Disc(f))c, then f

(
X̃n(ω)

)
! f

(
X̃(ω)

)
.

m
(
ω ∈ [0, 1] : f(X̃n(ω))! f(X̃(ω))

)
⩾ m

(
ω ∈ [0, 1] : X̃(ω) ∈ (Disc(f))c

)
= P ({X ∈ Disc(f)}c) = 1.

So f(X̃n)
a.s.
−−! f(X̃) w.r.t m. By Proposition 8.27, we have f(X̃n) ⇒ f(X̃). Since X̃n

d
= Xn, and

X̃
d
= X, we have

f(Xn)
d
= f(X̃n) and f(X̃)

d
= f(X).

Thus,

f(Xn)
d
= f(X̃n) =⇒ f(X̃)

d
= f(X).

8.6 The Delta Method

The delta method allows us to take a basic convergence, for instance to a limiting normal distri-
bution, and apply smmoth functions and conclude that the functions are asymptotically normal
as well. In statistical estimation we try to estimate a parameter θ from a parameter set Θ based
on a random sample size n with a statistic Tn = Tn(X1, . . . , Xn). This means we have a family
of probability models {(Ω,B, Pθ), θ ∈ Θ}, and we are trying to choose the correct model. The

estimator Tn is consistent if Tn
Pθ−! θ for every θ, meaning Tn converges to θ in probability Pθ for

any θ ∈ Θ. The estimator Tn is consistent and asymptotically normal, if for any θ ∈ Θ,

lim
n!∞

Pθ[σn(Tn − θ) ⩽ x] = N(0, 1, x).

From CLT, we get
Sn − nµ

σ
√
n

⇒ N(0, 1).

Equivalently,
√
n

(
X − µ

σ

)
⇒ N(0, 1).
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So X is consistent and an asymptotically normal estimator of µ. The delta method asserts that if
g(x) has a non-zero derivative g′(µ) at µ, then

√
n

(
g(X)− g(µ)

σg′(u)

)
⇒ N(0, 1),

and so g
(
X
)
is also consistent and asymptotically normal for g(µ).

Remark. The proof does not depende on the limiting r.v. being N(0, 1) and would work equally
well if N(0, 1) were replaced by any random variable Y .

Proof. By the Baby Skorohod Theorem, there exist random variable Z̃n for any n ∈ N and Ñ on
the probability space ([0, 1], B([0, 1]),m) such that

Z̃n
d
=

√
n

(
X − µ

σ

)
and Ñ

d
= N,

and Z̃n
a.s.
−! Ñ . Then X

d
= µ+ σZ̃n/

√
n. Then

√
n

(
g
(
X
)
− g(µ)

σg′(u)

)
d
=

√
n

g
(
µ+ σZ̃n/

√
n
)
− g(µ)

σg′(u)


=
g
(
µ+ σZ̃n/

√
n
)
− g(µ)

σZ̃n/
√
n

Z̃n

g′(µ)

a.s (m)
−−−−! g′(µ)

Ñ

g′(µ)
= Ñ

d
= N,

since Z̃n/
√
n! 0 almost surely. This completes the proof.

Theorem 8.30 (Portmanteau Theorem). Let {Fn}n⩾0 be a family of proper distributions. The
following are equivalent.

(i) Fn =⇒ F0.

(ii) For all f : R ! R which are bounded and continuous,
∫
fdFn !

∫
fdF0. Equivalently, if Xn

is a r.v. with d.f. Fn for any n ∈ N, then for f bounded and continuous, E [f(Xn)]! E [f(X0)].

(iii) If A ∈ B(R) satisfies F0(δA) = 0, then Fn(A) ! F0(A), where δA = A ∖ interior(A), and
A is the intersection of all closed sets containing A and interior(A) is the union of all open sets
contained in A.

Proof. (i)=⇒(ii) Suppose f : R ! R is bounded and ocntinuous on R. Since Xn ⇒ X0, the
continuous mapping theorem implies f(Xn)! f(X0). Since f is bounded on R, by DCT,

lim
n!∞

E[f(Xn)] = E [f(X0)] .

(ii)=⇒(i) Let a, b ∈ C(F0), it suffices to show Fn(a, b]! F0(a, b]. Defined the bounded continu-
ous function gk whose graph is the trapezoid of height 1 obtained by takng a rectangle of height 1
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with base [a, b] and extending the base sysmmetrically to [a− k−1, b+ k−1]. Then gk # 1[a,b]. For
all k ∈ N,

Fn(a, b] =

∫
R
1(a,b]dFn ⩽

∫
R
gkdFn !

∫
R
gkdF0.

Since |gk| ⩽ 1 and gk # 1[a,b], by DCT,
∫
R gkdF0 # F0([a, b]) = F0((a, b]), where the last equality

follows since a ∈ C(F0). We conclude that limn!∞ supFn(a, b] ⩽ F0(a, b]. Next, define new
functions hk whose graphs are trapezoids of height 1 obtained by taking a rectangle of height 1
with base [a+ k−1, b− k−1] and stretching the base symmetically to obtain [a, b]. Then hk " 1[a,b]

and for any k ∈ N,
Fn(a, b] ⩾

∫
R
hkdFn !

∫
R
hkdF0,

By MCT, since a ∈ C(F0),
∫
R hkdF0 " F0([a, b]) = F0((a, b]) so that limn!∞ inf Fn(a, b] ⩽ F0(a, b].

Remark. (ii) allows for the easy generalziation of the notion of weak convergence of random
elements {ξn, n ⩾ 0} whose range S is a subset of the metric space R2. The definition is ξn ⇒ ξ0
if and only if E(f(ξn)) ! E(f(ξ0)), for all test functions f : S ! R which are bounded and
continuous. (The notion of continuity is natural since S is a metric space.)

Example 8.31. Suppose Fn has atoms at i/n, 1 ⩽ i ⩽ n of size 1/n. Let F0 be the uniform
distribution on [0, 1]. Then Fn ⇒ F0. It suffices to show integrals of arbitrary bounded continuous
test functions converge. Let f be real valued, bounded and continuous with domain [0, 1]. Observe
that∫

fdFn =

n∑
i=1

f(i/n)
1

n
= Riemman approximating sum!

∫ 1

0

f(x)dx (n!∞) =

∫
fdF0,

where F0 is the uniform distribution on [0, 1].

It is possible to restrict the test function in the portmanteau theorem to be uniformly continuous
and not just continuous.

Corollary 8.32. TFAE:

(i) Fn =⇒ F0.

(ii) IfXn is a random variable with distribution Fn for any n ∈ N, then for f bounded and uniformly
continuous Ef(Xn)! Ef(X0).

Proof. The the proof of (ii)=⇒(i) in the portmanteau theorem, the trapezoid functions are each
bounded, continuous, vanish off a compact set, and are hence uniformly continuous. This observa-
tion suffices.

8.7 More Relations Among Modes of Convergence

Proposition 8.33. Let {X,Xn, n ⩾ 1} be random variables on the probability space (Ω,B, P )

(a) If Xn
a.s.
−−! X, then Xn

p
−! X.
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(b) If Xn
p
−! X, then Xn ⇒ X.

Proof. We have shown (a). To verify (b), suppose Xn
p
−! X and f is bounded and continuous

function. Then f(Xn)
p
−! f(X). By DCT, E[f(Xn)]! E(f(X)). So Xn ⇒ X, by the portmanteau

theorem.

Proposition 8.34. If Xn ⇒ a ∈ R, then Xn
p
−! a.

Proof. Let Fn be the d.f.’s of Xn for any n ∈ N. Fix ϵ > 0,

lim
n!∞

P (|Xn − a| > ϵ) = 1− lim
n!∞

P (−ϵ ⩽ Xn − a ⩽ ϵ)

= 1− lim
n!∞

P (a− ϵ ⩽ Xn ⩽ a+ ϵ)

= 1 + lim
n!∞

P (Xn < a− ϵ)− lim
n!∞

P (Xn ⩽ a+ ϵ)

⩽ 1 + lim
n!∞

P (Xn ⩽ a− ϵ)− lim
n!∞

P (Xn ⩽ a+ ϵ)

= 1 + lim
n!∞

Fn(a− ϵ)− lim
n!∞

Fn(a+ ϵ)

= 1 + F (a− ϵ)− F (a+ ϵ)

= 1 + 0− 1

= 0,

since the constant function a is continuous on R and

F (x) =

{
1, x ⩾ a
0, x < a.

Alternative: Fix ϵ > 0,

lim
n!∞

P (|Xn − a| > ϵ) = lim
n!∞

P (Xn > a+ ϵ) + lim
n!∞

P (Xn < a− ϵ)

= lim
n!∞

P (Xn > a+ ϵ) + lim
n!∞

P (Xn < a− ϵ)

= 1− F (a+ ϵ) + F (a− ϵ)

= 1− 1 + 0

= 0.

Theorem 8.35 (Slutsky’s Theorem). Suppose X, {Xn} and {Yn} are all real-valued r.v’s s.t.

Xn ⇒ X as n!∞, and Yn
p
−! 0 as n! 0. Then Xn + Yn ⇒ X.

Proof. Fix a bounded and uniformly continuous f : R! R. Fix ϵ > 0, define

wϵ(f) = sup
|x−y|⩽ϵ

|f(x)− f(y)|.
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Then since Xn ⇒ X,

lim
n!∞

|E[f(Xn + Yn)]− E[f(Xn)]|

⩽ lim
n!∞

|E[f(Xn + Yn)]− E[f(Xn)]|+ lim
n!∞

|E[f(Xn)]− E[f(X)]|

= lim
n!∞

E (|f(Xn + Yn)− f(Xn)|1(|Yn| ⩽ ϵ)) + lim
n!∞

E (|f(Xn + Yn)− f(Xn)|1(|Yn| > ϵ))

⩽ lim
n!∞

E(wϵ(f)) + 2M lim
n!∞

P (|Yn| > ϵ)

= wϵ(f)! 0 as ϵ # 0.

Thus, by portmanteau theorem, Xn + Yn ⇒ X.

Remark. Since the slutsky’s theorem follows from the portmanteau theorem, it allows for the easy
generalziation of the notion of weak convergence of random vector {(Xn, Yn), n ⩾ 0} whose range
S is a metric space.

Lemma 8.36. If Xn
p
−! X and Yn

p
−! Y , then (Xn, Yn)

p
−!! (X,Y ).

Proof. Since x, y, z, w ∈ (X, d),

d ((x, y), (z, w)) =
(
d2(x, z) + d2(y, w)

) 1
2 =

(
d2(x, z) + d2(y, w)

) 1
2 ⩽ d(x, z) + d(y, w).

So

P (d2 ((Xn, Yn), (X,Y )) ⩾ ϵ) ⩽ P (|Xn −X|+ |Yn − Y | ⩾ ϵ)

⩽ P (|Xn −X| ⩾ ϵ/2) + P (|Yn − Y | ⩾ ϵ/2)

! 0.

Lemma 8.37. If Xn ⇒ X and Yn ⇒ c, where c ∈ R is a constant, then (Xn, Yn) ⇒ (X, c).

Proof. First we will show that (Xn, c) ⇒ (X, c). By ther portmanteau theoerm, it is equivalent to
show for any bounded and continuous function f : R×R! R, we have E [f(Xn, c)]! E [f(X, c)].
So let f be such arbitrary function. Now consider the function of a single variable g(x) = f(x, c),
which is also bounded and continuous. By the portmanteau theorem, since Xn ⇒ X, E [g(Xn)]!
E[g(X)]. However the above expression is equivalent to E [f(Xn, c)]! E[f(X, c)]. Hence (Xn, c) ⇒
(X, c). Since Yn ⇒ c, by Proposition 8.34, Yn

p
−! c. Similar to Lemma 8.36,

P (d2 ((Xn, Yn), (Xn, c)) ⩾ ϵ) ⩽ P (|Xn −Xn|+ |Yn − c| ⩾ ϵ)

= P (|Yn − c| ⩾ ϵ)

! 0.

Thus, (Xn, Yn)
p
−! (Xn, c). By the slutsky’s theorem, (Xn, Yn) ⇒ (X, c).

Corollary 8.38. If Xn ⇒ X, Yn ⇒ c, where c ∈ R is a constant, then Xn + Yn ⇒ X + c;
XnYn ⇒ cX; Xn/Yn ⇒ X/c, provided that c is invertible.

Proof. By Lemma 8.37, we have (Xn, Yn) ⇒ (Xn, c). Since +, ·, / : R × R ! R are continuous
functions on the metric space R2, by the portmanteau theorem, we have the above conclusion.
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8.8 Convergence of types theorem

Definition 8.39. Two random variables X and Y are said to be of the same type if there exists
a > 0 and b ∈ R such that

Y − b

a

d
= X.

In terms of dfs, this is written as
FX(x) = FY (ax+ b).

Example 8.40. Suppose X ∼ N(µ1, σ
2) and Y ∼ N(µ2, σ

2). Since X−µ1

σ1

d
= Y−µ2

σ2
,

Y
d
=
σ2
σ1
X −

(
σ2
σ1
µ1 − µ2

)
=
X − (µ1 − σ1/σ2µ2)

σ1/σ2
.

Then X and Y are of the same type.

Theorem 8.41. Let U and V be df.’s, neither of which are degenerate.

(a) Let {Fn}n⩾1 be dfs and an, αn > 0, bn, βn ∈ R and Fn(anx+bn)! U(x), Fn(αnx+βn)! V (x).
Then

αn

an
! A > 0 and

βn − bn
an

! B ∈ R,

and V (x) = U(Ax+B), i.e., U and V are the same type.

(a′) In terms of random variables Xn, n = 1, · · · , X and Y , Xn−bn
an

⇒ X and Xn−βn

αn
⇒ Y , then

αn

an
! A > 0, and

βn − bn
an

! B ∈ R,

and Y
d
= X−B

A .

(b) If αn

an
! A > 0 and βn−bn

an
! B ∈ R and either Fn(anX+bn) ⇒ U(x) or Fn(αnx+βn) ⇒ V (x),

then does the other and so does V (x) = U(Ax+B).

(b′) In terms of random variables Xn, n = 1, · · · , X and Y , if αn

an
! A > 0, and βn−bn

an
! B ∈ R,

and either
Xn − bn
an

⇒ X or
Xn − βn
αn

⇒ Y,

then does the other and so does Y
d
= X−B

A .

Proof. Proof of (b′) by Baby Skorohod’s Theorem. Suppose Yn = Xn−bn
an

⇒ X and αn

an
! A >

0, and βn−bn
an

! B ∈ R, then we need to show that Xn−βn

αn
⇒ X−B

A . Use Baby Skorohod’s

Theorem, X̃
d
= X, Ỹn

d
= Yn and Ỹn ! X̃. Let X̃n = anỸn + bn for any n ∈ N. Then

∼
Xn

d
=

anYn + bn = Xn. So

Xn − βn
αn

d
=
X̃n − βn
αn

=
an
αn

 ∼
Xn − bn + bn − βn

an

 =
an
αn

(
∼
Yn +

bn − βn
an

)

!
1

A

(
∼
X −B

)
d
=
X −B

A
.
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Thus, Xn−βn

αn
⇒ X−B

A . Alternative: Suppose Xn−bn
an

⇒ X, and αn

an
! A and βn−bn

an
= B. Then

Xn − βn
αn

=
an
αn

Xn − βn
an

=
an
αn

(
Xn − bn
an

+
bn − βn
an

)
⇒ 1

A
(W −B),

by the corollary of slutsky’s theorem.
Proof of (a) by inverse functions. Assume Fn(anx + bn) ! U(x), and Fn(αnx + βn) ! V (x).

Claim.
αn

an
! A > 0, and

βn − bn
an

! B ∈ R,

and

V (x) = U(Ax+B).

Let Gn be the d.f. of Xn−bn
an

for any n ∈ N. Then

Gn(x) = P

(
Xn − bn
an

⩽ x

)
= P (Xn ⩽ anX + bn) = Fn(anx+ bn).

Since Gn ! U , for any y ∈ (0, 1) ∩ C(U ), G n (y)! U (y). Then for any y ∈ (0, 1) ∩ C(U ),

F�
n (y) = inf{x : Fn(x) ⩾ y}

= inf{x : Fn(anx+ bn) ⩾ y}

=
inf{anx+ bn : Fn(anx+ bn) ⩾ y} − bn

an
(b/c : an > 0)

=
F n (y)− bn

an
.

Then for any y ∈ (0, 1) ∩ C(U ),
F�
n (y)− bn
an

! U (y) (8.1)

Likewise, for any y ∈ (0, 1) ∩ C(V ),

F�
n (y)− bn
an

! V (y),

Choose y1 < y2, so they are in C(U�) ∩ C(V �) and

−∞ < U�(y1) ⩽ U�(y2) <∞ and −∞ < V �(y1) < V �(y2) <∞.

(8.1) holds for both y1, y2, so

F�
n (y2)− F�

n (y1)

an
! U�(y2)− U�(y1) ⩾ 0.

Likewise,
F�
n (y2)− F�

n (y1)

αn
! V �(y2)− V �(y1) > 0.
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Hence
αn

an
!

U�(y2)− U�(y1)

V �(y2)− V �(y1)
= A.

Moreover,

βn − bn
an

=
F�
n (y1)− bn

an
− F�

n (y1)− βn
an

=
F�
n (y1)− bn

an
− αn

an

F�
n (y1)− βn

αn

! U�(y1)−AV �(y1)

= B.

At last, use (b) to show they are of the same type.

Given X1, X2, . . . , Xn iid with d.f. F . Set

Mn = max{X1, X2, . . . , Xn}.

Definition 8.42 (Max-stable Distribution). A non-degenerate d.f. F on R is called max-stable,
if for i.i.d. random variables (Xi)i∈N with d.f. F and for any n ∈ Z>0, ∃an > 0, bn ∈ R such
that Mn−bn

an
also has distribution F . Equivalently, M is max-stable if its d.f. F satisfies: for each

n ∈ Z>0, there exists an > 0 and bn ∈ R such that

Fn(anx+ bn) = F (x)∀x ∈ R.

Theorem 8.43 (Max-stable Distribution are Weak Limits of Maximal). A non-degenerate d.f. F
on R is max-stable if and only if ∃ i.i.d. random variables (Xi)i∈Z>0 , an > 0, bn ∈ R, such that the
d.f. of Mn−bn

an
converges to F .

Proof. “⇐”. Assume

Zn :=
Mn − bn

an
! Z,

for some an > 0 and bn ∈ R and Z has d.f. F . Let
(
Z(j)

)
j∈Z>0 be i.i.d. copies of Z. For j ∈ Z>0,

let X(j) :=
(
X

(j)
i

)
i∈Z>0

be i.i.d. copies of the sequence (Xi)i∈Z>0 . Let

M (j)
n := max

{
X

(j)
1 , . . . , X(j)

n

}
,

and denote

Zj
n =

M
(j)
n − bn
an

.

Then for each m ∈ Z>0, (
Z(1)
n , . . . , Z(m)

n

)
⇒
(
Z(1), . . . , Z(m)

)
.

Therefore, since “max” is continuous, by the Continuous Mapping Theorem for the weak conver-
gence,

max
1⩽j⩽m

Z(j)
n ⇒ max

1⩽j⩽m
Z(j).
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On the other hand,

max
1⩽j⩽m

Z(j)
n = max

1⩽j⩽m

M
(j)
n − bn
an

d
=
Mmn − bn

an

= cm,n

(
Mmn − bmn

amn

)
+ dm,n

= cm,nZmn + dm,n,

where
Mmn = max

1⩽j⩽m
M (j)

n and mn = argmax1⩽j⩽mM
(j)
n

and

cm,n =
amn

an
and dmn =

bmn − bn
an

.

Since
Zmn ⇒ Z and cm,nZmn + dm,n ⇒ max

1⩽j⩽m
Z(j),

where both limits are non-degenerate, we can apply the Convergence of Types Theorem, to conclude
that

cm,n ! cm > 0 and dm,n ! dm

and

Z
d
=

max1⩽j⩽m Z(j) − dm
cm

,

and hence the distribution of Z is max-stable.
=⇒ It is obvious by def since for any n ∈ Z>0, ∃an > 0 and bn ∈ R such that

Mn − bn
an

d
= Z.

Theorem 8.44. Suppose there exists an > 0 and bn ∈ R such that

P

(
Mn − bn

an
⩽ x

)
= Fn(anx+ bn)

d
−! G(x),

where G(x) is proper and non-degenerate. Then G is of one of the following types.

(a)

G(x) = L(x) = e−e−x

, x ∈ R.

(b) There is α > 0 such that

G(x) = Φα(x) =

{
0, x < 0

e−x−α

, x > 0
.
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(c) There is α > 0 such that

G(x) = Ψα(x) =

{
e−(−x)α , x < 0

1, x ⩾ 0
.

G above is a max-stable distribution.

Remark.

Proof. • Claim I: For all t > 0,

Gt(x) = G (α(t)x+ β(t)) .

(Then Gt is of the same type as G.) Suppose Fn(anx+ bn)! G(x). Then

(a)
F ⌊nt⌋ (a⌊nt⌋x+ b⌊nt⌋

)
! G(x),

where ⌊nt⌋ ∈ Z⩾0.

(b)

F ⌊nt⌋ (anx+ bn) = [Fn(anx+ bn)]
⌊nt⌋
n ! Gt(x).

Proof. ∀ ϵ > 0, ∃N ∈ N, as n > N ,

G(x)− ϵ ⩽ Fn(anx+ bn) ⩽ G(x) + ϵ.

Then

[G(x)− ϵ]
⌊nt⌋
n ⩽ F ⌊nt⌋(anx+ bn) ⩽ [G(x) + ϵ]

⌊nt⌋
n .

Since ⌊nt⌋
n ! t, letting n!∞,

[G(x)− ϵ]
t ⩽ lim

n!∞
F ⌊nt⌋(anx+ bn) ⩽ [G(x) + ϵ]

t
.

Let ϵ # 0, then
lim
n!∞

F ⌊nt⌋(anx+ bn) = Gt(x).

Thus, G and Gt are of the same type since G
1

⌊nt⌋ and G
t

⌊nt⌋ are the same type and we can raise
both sides to a power ⌊nt⌋. Then since G(t) and Gt(x) are not degenerate, by the convergence
of types theorem, there exist two functions α(t) > 0 and β(t), t ⩾ 0 such that for any t > 0,

an
a⌊nt⌋

! α(t) and
bn − b⌊nt⌋

a⌊nt⌋
! β(t),

and also
Gt(x) = G (α(t)x+ β(t)) , t > 0.

(Note that since an, bn are constant and a⌊nt⌋, b⌊nt⌋ are step functions, α(t) and β(t) are
Lebesgue measurable.)

• Claim II. α and β are Lebesgue measurable function on (0,∞).
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Proof. Define

αn(t) =
an
a⌊nt⌋

,∀ t > 0.

Then

αn(t) =

∞∑
k=0

an
ak
1{k⩽nt<k+1} =

∞∑
k=0

an
ak
1{ k

n⩽t< k+1
n }.

Since
{

k
n ⩽ t < k+1

n

}
is a measurable set for any k ∈ Z, we have an

ak
1{k⩽nt<k+1} is a simple

function for any k ∈ Z. Then

αn,m(t) :=

m∑
k=0

an
ak
1{k⩽nt<k+1} ! αn(t),∀ t > 0, as m!∞.

Since the sum is convergent, αn is measurable. Thus, α is measurable. Likewise, β is mea-
surable.

• Claim III. for any s, t > 0,

α(st) = α(s)α(t),

and

β(st) = α(t)β(s) + β(t) = α(s)β(t) + β(s).

Since

Gst(x) = G(α(st)x+ β(st)),

and

Gst(x) =
(
Gt(x)

)s
= Gs(α(t)x+ β(t))

= G(α(s)(α(t)x+ β(t)) + β(s))

= G (α(s)α(t)x+ α(s)β(t) + β(s)) ,

also G is non-degenerate and α(t) > 0 for any t > 0 we have

α(st) = α(s)α(t),

and

β(st) = α(s)β(t) + β(s),

where we used the fact that if F is a non-degenerate d.f. and

F (ax+ b) = F (cx+ d),∀x ∈ R,

for some a, c ∈ R+, b, d ∈ R, then a = c and b = d.
Proof. Define

Ha,b(x) := H(ax+ b),∀x ∈ R,

Hc,d(x) := H(cx+ d),∀x ∈ R.
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∀ y ∈ (0, 1),

H a,b(y) = inf{x ∈ R|Ha,b(x) ⩾ y}
= inf{x ∈ R, H(ax+ b) ⩾ y}

=
inf{ax+ b ∈ R|H(ax+ b) ⩾ y} − b

a

=
H (y)− b

a
.

Likewise,

H c,d(y) =
H (y)− d

c
.

Since
F (ax+ b) = F (cx+ d),∀x ∈ R,

we have
H a,b(y) = H c,d(y).

So

H (y)

(
1

a
− 1

c

)
=
b

a
− d

c
,∀ t ∈ (0, 1).

Thus,
a = c and b = d.

The only measurable solution to the Hamel’s equation

α(st) = α(s)α(t)

is
α(t) = tθ

for some θ ∈ R since α : (0,∞)! R is Lebesgue measurable.

(a) Assume θ = 0. Then α(t) = 1 for any t > 0, and then β(st) = α(t)β(t) + β(s) = β(s) + β(t).
Define Ω(t) = eβ(t), t > 0. Then Ω(st) = eβ(st) = eβ(s)+β(t) = Ω(s)Ω(t). Then eβ(t) = Ω(t) = tc,
for some c ∈ R. Thus, β(t) = c log t, t > 0. Then Gt(x) = G(α(t)x+β(t)) = G(x+ c log(t)), t > 0.
Assume c = 0, then for t > 0, Gt(x) = G(x), which implies for any x ∈ R, G(x) ∈ {0, 1}. Then
clearly G is degenerate or not proper, a contradiction. Thus, c ̸= 0. Suppose ∃x0 ∈ R such that
G(x0) = 0. Then for any t > 0, 0 = Gt(x0) = G(x0 + c log t). Setting u = x0 + c log t, since
log t ∈ (−∞,∞) and c ̸= 0, G(u) = 0 for any u ∈ R, then G is not proper, which is a contradiction.
Thus, G(x) ̸= 0 for any x ∈ R. Similarly, G(x) ̸= 1 for any x ∈ R. Therefore, 0 < G(x) < 1 for any
x ∈ R. Then Gt(x) is decreasing in t. Since Gt(x) = G(x + c log t) for any t > 0, G(x + c log t) is
decreasing. Thus, c < 0. Let x = 0, then Gt(0) = G(c log t) ∈ (0, 1). We can set e−k = G(0) for
some k ∈ R+. Set y = c log t, then e

y
c = t. Then

G(y) = e−kt

= e−ke
y
c

= e−e
−( 1

|c| y−log k)

= L

(
1

|c|
y − log k

)
.
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(b) Assume θ ̸= 0. Recall α(t) = tθ. We claim

β(t) = c
(
1− tθ

)
, c ∈ R.

Then
β(ts) = α(t)β(s) + β(t) = α(s)β(t) + β(s),

or
β(t)(1− α(s)) = β(s)(1− α(t)),

or
β(t)

1− α(t)
=

β(s)

1− α(s)
,∀s ̸= 1, t ̸= 1.

Thus, β(t)
1−α(t) is a constant function of t. Set β(t)

1−α(t) = c and then

β(t) =
β(s)

1− α(s)
(1− α(t)) = c

(
1− tθ

)
.

Then
Gt(x) = G(α(t)x+ β(t) = G

(
tθx+ c

(
1− t−θ

))
= G

(
tθ(x− c) + c

)
.

Let y + c = x, then Gt(y + c) = G
(
t−θy + c

)
. Set H(x) = G(x + c). (Note H and G are of the

same type.) Then
Ht(x) = Gt(x+ c) = G

(
tθx+ c

)
= H

(
tθx
)
,∀ t > 0.

• Assume θ < 0. Claim. H(0) = 0. Set x = 0, then Ht(0) = H(0) for any t > 0. So
H(0) ∈ {0, 1}. Suppose H(0) = 1. Consider x < 0, since H is not degenerate, ∃x0 < 0 such
that 0 < H(x0) < 1, andHt(x0) = H

(
tθx0

)
. (IfH(x) = 0 for any x < 0, thenH is degenerate;

if H(x) = 1 for any x < 0, then H is not proper.) For all t > 0, the LHS is strictly decreasing
in t and the RHS is nondecreasing in t since x0 < 0, a contradiction. Thus, H(0) ̸= 1, then
H(0) = 0. Therefore, H(x) = 0, x ⩽ 0. Next, we can consider x > 0. Suppose H(x1) = 0 for
some x1 > 0, then 0 = Ht(x1) = H

(
tθx1

)
for any t > 0. Thus, H ≡ 0, contradiction. Suppose

H(x2) = 1 for some x2 > 0, then 1 = Ht(x2) = H
(
tθx2

)
for any t > 0. Then

H(t) =

{
0, if t ⩽ 0
1, if t > 0

,

so H is degenerate, a contradiction. Hence H(t) ∈ (0, 1) for any t > 0. Let x = 1, then

Ht(1) = H(tθ) ∈ (0, 1). We can set e−k = H(1) for some k ∈ R+. Set y = tθ, then y
1
θ = t.

Then

H(y) = e−kt = e−ky
1
θ = e−ky

− 1
|θ|

= e−(k−|θ|y)
− 1

|θ|
.

Besides, H and G are of the same type.

• Assume θ > 0. Claim H(0) = 1. Set x = 0, then Ht(0) = H(0) for any t > 0. So
H(0) ∈ {0, 1}. Suppose H(0) = 0. Consider x > 0, since H is not degenerate, ∃x0 < 0 such
that 0 < H(x0) < 1, and Ht(x0) = H

(
tθx0

)
. (If H(x) = 0 for any x > 0, then H is not

proper; if H(x) = 1 for any x > 0, then H is degenerate.) For all t > 0, the lhs is strictly
decreasing in t and the rhs is nondecreasing in t since x0 > 0, a contradiction. Thus, H(0) ̸= 0,
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then H(0) = 1. Therefore, H(x) = 1, x ⩾ 0. Next, we can consider x < 0. Suppose H(x1) = 0
for some x1 < 0, then 0 = Ht(x1) = H

(
tθx1

)
for all t > 0. Then

H(t) =

{
0, if t ⩽ 0
1, if t > 0

,

so H is degenerate, a contradiction. 0 = Ht(x1) = H
(
tθx1

)
for any t > 0. Suppose H(x2) = 1

for some x2 < 0, then 1 = Ht(x2) = H
(
tθx2

)
for any t > 0. Thus, H ≡ 1, contradiction.

Hence H(t) ∈ (0, 1) for any t > 0. Let x = −1, then Ht(−1) = H(−tθ) ∈ (0, 1). We can set

e−k = H(−1) for some k ∈ R+. Set y = −tθ, then (−y) 1
θ = t. Then

H(y) = e−kt = e−k(−y)
1
θ = e−(−kθy)

1
θ .

Besides, H and G are of the same type.

Lemma 8.45. If an ∼ bn, then
an
bn
! 1.

If bn ! b and an ∼ bn. Then

a an =
an
bn

· bn.

Theorem 8.46. Let X1, X2, · · · be iid and 0 ⩽ τ ⩽ ∞. Suppose {un} is a sequence of real numbers
(Think of un = anx+ bn) such that

n(1− F (un))! τ. (8.2)

Then
P (Mn ⩽ un)! e−τ . (8.3)

Conversely, (8.3) holds, so does (8.2).

Proof. Assume 0 ⩽ τ ⩽ ∞ and (8.2) holds. Then 1− F (un) =
τ
n + 0(1). So

P (Mn ⩽ un) =

n∏
k=1

P (Xk ⩽ un)

= Fn(un)

= [1− (1− F (un))]
n

=
[
1−

( τ
n
+ 0(1)

)]n
! e−τ as n!∞.

Suppose 0 ⩽ τ < ∞ and (8.3) holds. Claim. 1 − F (un) ! 0. Suppose there exists a subsequence
{unk

}k⩾1 so that 1− F (uk) is bounded away from 0. Then as k !∞,

P (Mnk
⩽ unk

) = [1− (1− F (unk
))]

nk ! 0 = e−∞,

since 0 < 1−F (unk
) < 1, which means τ = ∞, a contradiction. We know as x! 0, − log(1−x) ∼ x.

Since 8.3 holds and by Lemma 8.45,

τ  − logP (Mn ⩽ un) = −n log(1− (1− F (un))) ∼ n(1− F (un)).
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Let τ = ∞ and suppose (8.3) holds, but (8.2) does not hold. If n(1−F (un)) does not converges to
infinite, then there exists a subsequence {unk

} such that

nk(1− F (unk
))! C,

where 0 ⩽ C <∞. By the proof of the finite case of τ , similarly, we have

P (Mnk
⩽ uk)! e−C > 0 = e−∞,

which is a contradiction.

Example 8.47. Suppose X1, X2, · · · iid and X1 ∼ N(0, 1). Let

Mn = max{X1, . . . , Xn}.

Then

P

(
Mn − bn

an

)
! L(x) = e−e−x

,

where an = (2 log n)−
1
2 and

bn = (2 log n)
1
2 − 1

2
(2 log n)−

1
2 (log log n+ log(4π)).

The proof is to show
n(1− Φ(un))! e−x,

where un = anx+ bn. Let φ(x) =
1
2π e

− x2

2 . We claim

1− Φ(un) ∼
φ(un)

un
.

On one hand,

1− Φ(x) =

∫ ∞

x

1√
2π
e−

t2

2 dt

<
1

x

1√
2π

∫ ∞

x

te−
t2

2 dt

=
1

x

1√
2π
e−

x2

2

=
φ(x)

x
.

On the other hand, ∫ ∞

x

1√
2π
e−

t2

2 dt =

∫ ∞

x

1√
2π

1

t
d
(
−e− t2

2

)
=
φ(x)

x
−
∫ ∞

x

1

t2
1√
2π
e−

t2

2 .
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Then

φ(x)

x
=

∫ ∞

x

1√
2π

(
1 +

1

t2

)
e−

t2

2

<

∫ ∞

x

1√
2π

(
1 +

1

x2

)
e−

t2

2

=
x2 + 1

x2
(1− Φ(x)).

So
xφ(x)

x2 + 1
< 1− Φ(x) <

φ(x)

x
.

Since

lim
x!∞

φ(x)
x

xφ(x)
x2+1

= lim
x!∞

x2 + 1

x2
= 1,

1− Φ(x) ∼ φ(x)

x
.

Want to choose un so that n(1− Φ(un)) = e−x, but we replace 1− Φ(un) with
φ(un)
un

. Then

1

n
e−x = 1− Φ(un) ∼

φ(un)

un
=

1√
2π

e−
u2
n
2

un
.

So √
2πun
n

e−x

e−
u2
n
2

! 1 as n!∞.

Then
1

2
log(2π) + log un − x− log n+

u2n
2
! 0 as n!∞.

Since
u2
n

2 dominates log un,

u2n
2
! −1

2
log(2π) + x+ log n.

So
u2n

2 log n
! 1.

Then

log un =
1

2
(log log n+ log 2) + o(1).

Thus,

u2n = − log(2π)− (log log n+ log 2) + 2x+ 2 log n+ o(1).

= − log(4π)− log log n+ 2x+ 2 log n+ o(1).

= 2 log n

[
1 +

x− 1
2 (log log n+ log(4π))

log n
+ o

(
1

2 log n

)]
.
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Since
√
1 + y = 1 + y

2 + o(y),

un = (2 log n)
1
2

[
1 +

x− 1
2 (log log n+ log(4π))

2 log n
+ o

(
1

2 log n

)]
.

= (2 log n)−
1
2x+ (2 log n)

1
2 − 1

2
(2 log n)−

1
2 (log log n+ log(4π)) + o

(
(2 log n)−

1
2

)
.

Take an = (2 log n)−
1
2 and

bn = (2 log n)
1
2 − 1

2
(2 log n)−

1
2 (log log n+ log(4π)),

we have
un = anx+ bn + o(an).

Take αn = an and βn = bn + o(an). Then

P

(
Mn − βn

an
⩽ x

)
= P (Mn ⩽ anx+ βn)! ee

−x

.

Since αn

an
= 1 > 0 and βn−an

an
= 0 ∈ R, by convergence of types theorem,

P

(
Mn − bn

an
⩽ x

)
= P (Mn ⩽ anx+ bn)! ee

−x

.

Given a sequence of X1, X2, · · · of r.v.’s that are N(0, 1). Assume the sequence is stationary.

Definition 8.48. A sequence X1, X2, · · · is said to be (strictly) stationary if for all positive integers
n and k,

X1, . . . , Xk
d
= Xn+1, . . . , Xn+k.

Aside: Suppose the sequence forms a Markov chain with transition matrix P . Suppose π is a prob. vector
that satisfies π = πP . Let π be the initial dist.
Then

P (X0 = i0, . . . , Xk = ik) = πi0Pi0i1Pi1i2 · · ·Pik−1ik .

Also,
P (Xn = i0, . . . , Xn+k = ik) = P (Xn = i0)Pi0i1 · · ·Pik−1ik .

But

P (Xn = i0) =
∑
j∈E

P (X0 = j,Xn = i0)

=
∑
j∈E

P (X0 = j)P (Xn = i0|X0 = j)

=
∑
j∈E

πjP
n
ji0

= πi0 ,

since π = πP implies
πPn = π,∀n ∈ Z+.
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Thus, if ∃π with πj > 0 for any j ∈ E, satisfying π = πP , let X0
d
= π, then the sequence X1, X2, · · · in a

Markov chain is stationary.

Definition 8.49. A sequence (X1, . . . , Xn) is multivariate normal if for every α = (α1, . . . , αn)
T ∈

Rn, the r.v.
∑n

i=1 αiXi is normally distributed.
Then (alternative)

Var

(
n∑

i=1

αiXi

)
= E

 n∑
j=1

αjXj

n∑
k=1

αkXk

− E

 n∑
j=1

αjXj

E [ n∑
k=1

αkXk

]

=
∑
j

∑
k

αjE[XjXk]αk −
∑
j

∑
k

αjE[Xj ]E[Xk]αk

=
∑
j

∑
k

αj(E[XjXk]− E[Xj ]E[Xk])αk

=
∑
j

∑
k

αjCov(Xj , Xk)αk

= αTΣα ⩾ 0,∀α ∈ Rn,

where Σij = Cov(Xi, Xj). Σ is symmetric and nonnegative definite. Provided the covariance matrix

Σ is nonsingular, the random vector X⃗ = (X1, . . . , Xn) has a joint (Gaussian) pdf given by

fX⃗(x) = (2π)−
n
2 (detΣ)−

1
2 exp

(
−1

2
(x⃗− µ⃗)′Σ−1(x⃗− µ⃗)

)
.

Remark. It is obvious that T(a1,...,an) is in the dual space of Rn.

Definition 8.50. A sequence X1, X2, · · · is said to be a Gaussian random sequence (Gaussian
process) if for n ∈ Z+ and (k1, . . . , kn)

T ∈ (Zn)+, (Xk1
, . . . , Xkn

) is multivariate normal.
Hence a Gaussian process depend only on

(a)
m(i) = E[Xi],

(b)
γ(i, j) = Cov(Xi, Xj).

Definition 8.51. A Gaussian process {Xi}i∈Z+ is stationary if

(a)
m(i) = E[Xi] = µ, (8.4)

(b)
γ(i, j) = Cov(Xi, Xj). (8.5)

only depends on the difference j − i, so denote it as

γ(i, j) = γ|j−i|,

where γ· is autocovariance function. Or another explanation is

(Xi, Xj)
d
= (X0, Xj−i),∀ i ⩽ j, i, j ∈ Z+.
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As a result, the (joint) distribution of a stationary Gaussian process is only determined by u and
γj for any j ∈ Z, since the (joint) pdf is just related to µ and Σ, where Σij = γ|i−j|.

Remark. A general stochastic process {Xi}i∈Z+ satisfying conditions (8.4) and (8.5) is said to be
weakly or second-order stationary. The first-order and second-order moments of weakly stationary
processes are invariant with respect to time translations. For Gaussian time series, the concepts of
weak and strict stationarity coalesce.

Let Mn = max{X1, . . . , Xn}, where {Xi}i∈Z+ is some sequence. Are there constants an and bn
such that

Mn − bn
an

! γ (Gumble)?

...

Given is a regenerative process on the nonnegative integers, i.e {Xn, n = 0, 1, 2 · · · }. There is a
sequence of r.v’s

0 ⩽ τ0 ⩽ τ1 < τ2 · · ·

that forms a delayed renewal process. Then we have

(a) Xτn , Xτn+1 · · · is independent of τn, and X0, . . . , Xτn−1.

(b) For n = 1, 2, · · · , Xτn , Xτn+1, · · · has the same distribution as Xτ0 , Xτ0+1, · · · .

Example 8.52. Let {Xn, n = 0, 1, · · · } be a Markov chain with state space {0, 1, · · · }. Let τ0 =
inf{n ⩾ 0|Xn = 12}. For k = 1, 2, · · · ,

τk = inf{n > τk−1 : Xn = 12}.

τk is the time of the kth return of the MC to state 12. Note that {τk, k = 0, 1, 2, · · · } forms a
delayed renewal process, and w.r.t. that renewal process, {Xn, n = 0, 1, · · · } is a regenerative
process. Thus,

(X0, . . . , Xτ1−1), (Xτ1 , . . . , Xτ2−1), · · ·

are iid random elements. Intuitively, it means a regenerative process can be split into i.i.d. cycles.
Take for k ∈ Z+,

Yk = max
(
Xτk−1

, Xτk−1+1, . . . , Xτk−1

)
.

Suppose the renewal sequence {τn, n = 0, 1, 2 · · · } is recurrent, and aperiodic. Assume τ0 = 0 with
probability 1. Find a renewal equation for P (Xt ∈ B).

P (Xt ∈ B) = P (Xt ∈ B, τ1 ⩽ t) + P (Xt ∈ B, τ1 > t).
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Note

P (Xt ∈ B, τ1 ⩽ t) =

t∑
k=1

P (Xt ∈ B, τ1 = k)

=

t∑
k=1

P (Xt−k+τ1 ∈ B, τ1 = k)

=

t∑
k=1

P (Xt−k+τ1 ∈ B)P (τ1 = k)

=

t∑
k=1

P (Xt−k ∈ B)P (τ1 = k),

since −k + τ1 = 0 and Xt−k+τ1 is independent of (τ1 − τ0) = τ1 and has the same distribution as
Xt−k. Thus,

P (Xt ∈ B) = P (Xt ∈ B, τ1 > t) +

t∑
k=1

P (Xt−k ∈ B)P (τ1 = k).

If one set h(t) = P (Xk ∈ B) and g(t) = P (Xt ∈ B, τ1 > t), get the renewal equation

h(t) = g(t) +

t∑
k=1

P (τ1 = k)h(t− k).

Thus,

lim
t!∞

h(t) =

∑∞
t=0 g(t)

E[τ1]
.

Note

∞∑
t=0

g(t) =

∞∑
t=0

P (Xt ∈ B, τ1 > t)

=

∞∑
t=0

E [1B(Xt)1(τ1 > t)]

= E

[ ∞∑
t=0

1B(Xt)1(τ1 > t)

]

= E

[
τ1−1∑
t=0

1B(Xt)

]

Note
∑τ1−1

t=0 1B(Xt) is the number of times the regenerative process visits the set B during the first
cycle. Thus,

lim
t!∞

P (Xt ∈ B) =
E
[∑τ1−1

t=0 1B(Xt)
]

E[τ1]
.
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It equals to expected number of visits the regenerative process makes to set B in the first cycle
divided by the expected cycle time. Set X to be a r.v. with d.f. FX give by

FX(x) =
E
[∑τ1−1

t=0 1(−∞,x](Xk)
]

E[τ1]
,

where FX is the limiting distribution.

Proposition 8.53. Continuing the last example, where the sequence of iid copies of {Yk}k⩾1 are
the maximums of those iid cycles, suppose there exists an and bn such that

[FX(anx+ bn)]
n ! G(x),

where G(x) is the extreme value distribution.
Set

An,k = {Xk > anx+ bn}.
Consider the condition

lim
n!∞

n
∑

0⩽i<k<τ1

P (An,i ∩An,k) = 0. (8.6)

Then

lim
n!∞

P

(
max

1⩽k⩽n
Yk ⩽ anx+ bn

)
= [G(x)]u,

where u = E[τ1].

Proof. It suffices to show

lim
n!∞

nP (Y1 > anx+ bn)! −u logG(x),

by the theorem 8.46. It is obvious that

{Y1 > anx+ bn} =

τ1−1⋃
k=0

{Xk > anx+ bn} =

τ1−1⋃
k=0

An,k.

By the inclusion-exclusion formula, we have

E

[
τ1−1∑
k=0

1An,k

]
− E

 ∑
0⩽i<k<τ1

1An,i∩An,k

 ⩽ P

(
τ1−1⋃
k=0

An,k

)
⩽ E

[
τ1−1∑
k=0

1An,k

]
.

Using condition (8.6),

lim
n!∞

nE

[
τ1−1∑
k=0

1An,k

]
⩽ lim

n!∞
nP

(
τ1−1⋃
k=0

An,k

)
⩽ lim

n!∞
nE

[
τ1−1∑
k=0

1An,k

]
.

Since
⋃τ1−1

k=0 An,k = {Y1 > anx+ bn},

lim
n!∞

nP (Y1 > anx+ bn) = lim
n!∞

nE

[
τ1−1∑
k=0

1An,k

]
.
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Divide by E[τ1], we obtain

1

E[τ1]
lim
n!∞

P (Y1 > anx+ bn) = lim
n!∞

n(1− FX(anx+ bn)),

since

E
[∑τ1−1

k=0 1An,k

]
E[τ1]

= 1− FX(anx+ bn).

Since

[1− (1− FX(anx+ bn))]
n
= [FX(anx+ bn)]

n ! G(x),

we have

lim
n!∞

n(1− FX(anx+ bn)) = − logG(x).

Thus,

lim
n!∞

nP (Y1 > anx+ bn)! −E[τ1] logG(x).

8.8.1 Maximum process

Let X1, X2, · · · be iid r.v.’s with d.f. F such that there are continuous an and bn for which

Fn(anx+ bn)! G(x).

Set Mn = max(X1, . . . , Xn), what types of process is {M1,M2, · · · }?
Calculate for t1 < t2 and x1 ⩽ x2 ⩽ · · · ⩽ xt1 ,

P (Mt2 ⩽ xt2 |M1 = x1, . . . ,Mt1 = xt1) .

If xt2 < xt1 , then Mt2 ⩽ xt2 < xt1 =Mt1 , which has prob. 0.

If xt2 ⩾ xt1 , then given Mt1 = xt1 ⩽ xt2 ,

Mt2 ⩽ xt2 if and only if (Xt1+1 ⩽ Xt2 , . . . , Xt2 ⩽ Xt2) .

Since Xt1+1, . . . , Xt2 are independent of M1, . . . ,Mt1 ,

P (Mt2 ⩽ xt2 |M1 = x1, . . . ,Mt1 = xt1) = P (Xt1+1 ⩽ xt2 , . . . , Xt2 ⩽ xt2) = F t2−t1(xt2).

Thus,

P (Mt2 ⩽ xt2 |M1 = x1, . . . ,Mt1 = xt1) =

{
0, if xt2 < xt1 ,

F t2−t1(xt2), otherwise.

Hence

P
(
Mt2 ⩽ x

∣∣M1, . . . ,Mt1

)
= 1[0,x](Mt1)F

t2−t1(x).
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Therefore,

P (Mt1 ⩽ x1,Mt2 ⩽ x2) = E
[
1{Mt1

⩽x1}∩{Mt2
⩽x2}

]
= E

[
1[0,x1](Mt1)1[0,x2](Mt2)

]
= E

[
E

[
1[0,x1](Mt1)1[0,x2](Mt2)

∣∣∣∣Mt1

]]
= E

[
1[0,x1](Mt1)E

[
1[0,x2](Mt2)

∣∣∣∣Mt1

]]
= E

[
1[0,x1](Mt1)1[0,x2](Mt1)F

t2−t1(x2)
]

= E
[
1[0,x1∧x2](Mt1)F

t2−t1(x2)
]

= P (Mt1 ⩽ x1 ∧ x2)F t2−t1(x2)

= F t1(x1 ∧ x2)F t2−t1(x2).

For t1 < t2 < · · · < tn,

P (Mt1 ⩽ x1,Mt2 ⩽ x2, . . . ,Mtn ⩽ xn) = F t1(x1 ∧ · · · ∧ xn)F t2−t1(x2 ∧ · · · ∧ xn) · · ·F tn−tn−1(xn).

8.8.2 Extremal process

An extremal process {Ut; t ⩾ 0} is a continuous time Markov chain such that

P (Ut1 ⩽ x1, Ut2 ⩽ x2, · · · , Utn ⩽ xn) = Gt1(x1 ∧ · · · ∧ xn)Gt2−t1(x2 ∧ · · · ∧ xn) · · ·Gtn−tn−1(xn),

where G is any extreme value d.f. Set Q(x) = − logG(x). The holding time in a state will be
exponential with rate Q(x). For y ⩾ x, the d.f. that the new state will be less than y is

1− Q(y)

Q(x)
.

Suppose there exists an and bn such that

P

(
Mn − bn

an
⩽ x

)
! G(x).

Define for n = 1, 2, · · · , the process {Mn
t ; t ⩾ 0} such that

Mn
t =

M⌊nt⌋ − bn

an
,

where the time and space are scaled. Then one can show

{Mn
t } ⇒ {Ut},

where {Ut}is a extremal process. (Process convergence in metric space of sequence space.)
Let X1, X2, · · · be a “nice” regenerative process so that

lim
n!∞

P (Xn ⩽ x) =
E
[∑τ−1

k=0 1(−∞,x](Xk)

]
E[τ1]

= F (x).
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Suppose F is in the domain of attraction of an extreme value distribution G, that is, there exists
an and bn such that

Fn(anx+ bn)! G(x).

For n = 1, 2, · · · , set
Yn = max

{
Xτn−1,...,Xτn−1

}
,

which is the maximum of the nth cycle. We’ve shown that if
∼
Mn = max{Y1, . . . , Yn}, then

P (
∼
Mn ⩽ anx+ bn)! Gu(x),

where u = E[τ1]. Set

∼
Mn

t =

∼
M⌊nt⌋ − bn

an
.

Then {
∼
Mn

t

}
!

{
∼
U t

}
,

where

{
∼
U t

}
is an extremal process such that

P (
∼
U t ⩽ x) = Gt(x).

Proof. Let
Mn = max {X1, . . . , Xn} .

Let
Wn := max{k : τk ⩽ n}.

Then {Wn} is a renewal counting proces. For large n,

Mn =MWn
=

∼
MWn

, (a.s.)

since essentially, the maximum of X1, . . . , Xn can not occur in XWn+1, · · ·Xn.
Set

Mn
t =M⌊nt⌋ =

∼
MW⌊nt⌋ =

∼
M

⌊n
W⌊nt⌋

n ⌋
=

∼
Mn

W⌊nt⌋
n

.

Set
∼
ϕnt =

W⌊nt⌋

n
,

so that

Mn
t =

∼
Mn ◦

∼
ϕnt .

Know
Wn

n
!

1

E[τ1]
=

1

µ
.

Also,
⌊nt⌋
n
! t.
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Thus,
W⌊nt⌋

n
=
W⌊nt⌋

⌊nt⌋
⌊nt⌋
n
!

t

µ
, w.p. 1.

As a result,

⌊
∼
ϕnt ⌋!

⌊
t

µ

⌋
, w.p. 1.

Let
∼
ϕt :=

t

µ
.

If ∼
Mn ◦

∼
ϕnt ⇒

∼
U ◦

∼
ϕt, w.p. 1.

But

P

(
∼
U ◦

∼
ϕt ⩽ x

)
= {[G(x)]µ}

∼
ϕt = {[G(x)]µ}

t
µ = Gt(x).

If we take care of the edge effects, then

{
∼
Mn

t} ⇒ {
∼
U t},

wher
∼
U t =

∼
U ◦

∼
ϕt.



Chapter 9

Charateristic Functions and the
Central Limit Theorem

9.1 Characteristic Functions

Suppose X is a real-valued r.v on the probability space (Ω,B, P ).

X : Ω! R

is B/B(R) measurable.

Definition 9.1. The moment generating function ψ : R! R is defined as

ψ(u) = E[euX ].

Proposition 9.2. Suppose X is a random variable satisfying

E
[
etX
]
<∞,

Suppose that there exists a set (−u1, u2), u1, u2 > 0 such that for each u ∈ (−u1, u2), ψ(u) <∞.
Notice that for |u| < min(u1, u2),

E
[
eu|X|

]
= E[euX1(X ⩾ 0)] + E[euX1(X < 0)] ⩽ E[euX ] + E[e−uX ] = ψ(u) + ψ(−u) <∞.

Furthermore, since for n satisfying 0 < n < min(u1, u2), we have

eu|X| =

∞∑
n=0

un|X|n

n!
⩾
un|X|n

n!
.

Thus,
unE[|X|n]

n!
⩽ E

[
eu|X|

]
<∞,

and so for each integer n ⩾ 1,
E (|X|n) <∞.

79
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Definition 9.3. The characteristic function (chf) ϕ : R ! C of X with distribution F is defined
as

ϕ(t) = E[eitx] = E[cos(tx)] + iE[sin(tx)] =
∫ ∞

−∞
cos(tx)Fdx+ i

∫ ∞

−∞
sin(tx)Fdx.

Proposition 9.4. Suppose X : Ω ! C is of the form X = U + iV , where U, V : Ω ! R are B/B(R)
measurable random variables having finite first moment. Then

|E[X]| ⩽ E [|X|] .

Proof. Let c = E[X] ̸= 0.
Then

|c|2 = c̄c = E[c̄X] = E[Re(c̄X)] + iE[Im(c̄X)] = E[Re(cX̄)],

since |c|2 must be real.
Furthermore, ∣∣E[Re(cX̄)]

∣∣ ⩽ E
[∣∣Re(cX̄)

∣∣] ⩽ E [|c̄X|] = |c̄|E [|X|] .
Thus,

|c|2 ⩽ |c̄|E [|X|] ,
or

|E[X]| = |c| ⩽ E [|X|] .

Remark. Properties of ϕ.

(a) ϕ(0) = 1.

(b) |ϕ(t)| ⩽ 1 for each t ∈ R.

Proof.

|ϕ(t)|2 = ϕ(t)ϕ(t)

= (E[cos(tx)] + iE[sin(tx)])(E[cos(tx)]− iE[sin(tx)])
= E2[cos(tx)] + E2[sin(tx)]

⩽ E[cos2(tx)] + E[sin2(tx)] = 1. (9.1)

(c) ϕ is uniformly continuous on R.

Proof. For t, h ∈ R,

|ϕ(t+ h)− ϕ(t)| =
∣∣∣E[ei(t+h)x]− E[eitx]

∣∣∣
=
∣∣E[eitx(eihx − 1)]

∣∣
⩽ E

[∣∣eitx∣∣∣∣eihx − 1
∣∣]

= E
[∣∣eihx − 1

∣∣]
! 0 as h! 0. (9.2)
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(d) For a, b ∈ R, t ∈ R,

ϕaX+b(t) = E[eit(aX+b)] = E[eitbei(at)X ] = eitbϕ(at).

(e)

ϕ−X(t) = ϕX(−t) = E[cos(−tX)] + iE[sin(−tX)] = E[cos(tX)]− iE[sin(tX)] = ϕX(t)

(f) X1 and X2 are independent, real-valued,

ϕX1+X2
= ϕX2

(t)ϕX2
(t)

(g) The chf ϕ is real if and only if

X
d
= −X

if and only if the cdf F is a symmetric function. This follows since ϕ is real if and only if ϕ = ϕ if
and only if X and −X have the same chf by (5).

Lemma 9.5. For each integer n ⩾ 0, we have the following identity∫ x

0

(x− s)neisds =
xn+1

n+ 1
+

i

n+ 1

∫ x

0

(x− s)n+1eisds,

for each x ∈ R.

Proposition 9.6.

eix =

n∑
k=0

(ik)x

k!
+
in+1

n!

∫ x

0

(x− s)neisds,

for each x ∈ R.

Proof.
1

i
(eix − 1) =

∫ x

0

eisds = x+ i

∫ x

0

(x− s)eisds

by setting n = 0 in Lemma 9.5. So

eix = 1 + ix+ i2
∫ x

0

(x− s)eisds

= 1 + ix+ i2
(
x2

2
+
i

2

∫ x

0

(x− s)2eisds

)
= 1 + ix+

(ix)2

2!
+
i3

2!

∫ x

0

(x− s)2eisds.

by setting n = 1 in Lemma 9.5.
...
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Corollary 9.7. ∀x ∈ R, ∣∣∣∣∣eix −
n∑

k=1

(ik)x

k!

∣∣∣∣∣ =
∣∣∣∣ in+1

n!

∫ x

0

(x− s)neisds

∣∣∣∣
=

1

n!

∣∣∣∣∫ x

0

(x− s)neisds

∣∣∣∣
⩽

1

n!

∫ x

0

|x− s|nds

=
|x|n+1

(n+ 1)!

Corollary 9.8. For any x ∈ R, ∣∣∣∣∣eix −
n∑

k=1

(ik)x

k!

∣∣∣∣∣ ⩽ 2|x|n

n!

Proof. For n ⩾ 1, ∫ x

0

eis(x− s)n−1ds =
xn

n
+
i

n

∫ x

0

(x− s)neisds, (9.3)

by Lemma 9.5. Multiply both sides of equation 9.3 by in

(n−1)! ,

in+1

n!

∫ x

0

(x− s)neisds =
in

(n− 1)!

∫ x

0

(x− s)n−1eisds− (ix)n

n!
. (9.4)

Furthermore,

eix =

n∑
k=0

(ik)x

k!
+
in+1

n!

∫ x

0

(x− s)neisds. (9.5)

Plugging 9.4 into 9.5 yields

eix −
n∑

k=0

(ik)x

k!
= − (ix)n

n!
+

in

(n− 1)!

∫ x

0

(x− s)n−1eisds.

Then ∣∣∣∣∣eix −
n∑

k=0

(ik)x

k!

∣∣∣∣∣ ⩽
∣∣∣∣xnn!

∣∣∣∣+ |x|n

n!
=

2|x|n

n!
.

Proposition 9.9. ∣∣∣∣∣eix −
n∑

k=0

(ik)x

k!

∣∣∣∣∣ ⩽ min

{
|x|n+1

(n+ 1)!
,
2|x|n

n!

}
,

for each x ∈ R.
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Proposition 9.10. Suppose X is a random variable that satisfies

ψ(t) = E
[
etX
]
<∞,∀ t ∈ (−a, a),

for some a > 0. Then

ϕ(t) = E
[
eitX

]
=

∞∑
k=0

ikE
[
Xk
]

k!
tk.

Proof. For any t ∈ (−a, a),

E
[
e|tX|

]
= E[e|t|X1(X ⩾ 0)] + E[e−|t|X

1(X ⩽ 0)]

⩽ E[e|t|X ] + E[e−|t|X ]

= ψ(|t|) + ψ(−|t|)
<∞.

Since
∞∑
k=0

|t|k|X|k

k!
= e|tX|,

by MCT,

∞∑
k=0

|t|kE
[
|X|k

]
k!

= E
[
e|tX|

]
<∞.

Then
E [|X|n] <∞,∀n ∈ N,

and

lim
n!∞

|t|n|X|n

n!
= 0.

Then ∣∣∣∣∣E [eitX]−
n∑

k=0

(it)kE
[
Xk
]

k!

∣∣∣∣∣
=

∣∣∣∣∣E
[
eitX −

n∑
k=0

(it)kXk

k!

]∣∣∣∣∣
⩽ E

∣∣∣∣∣eitX −
n∑

k=0

(it)kXk

k!

∣∣∣∣∣
⩽ E

[
2|t|n|X|n

n!

∧ |t|n+1|X|n+1

(n+ 1)!

]

⩽ 2E
[
|t|n|X|n

n!

]
! 0 as n!∞,
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where we use the DCT since for n large enough,

|t|n|X|n

n!
⩽ |X|n,

and
E[|X|n] <∞,∀n ∈ N.

Thus, ∀ t ∈ (−a, a),

ϕ(t) = E
[
eitX

]
=

∞∑
k=0

ikE
[
xk
]

k!
tk.

Remark. Suppose X is a r.v that satisfies

E
[
etX
]
<∞,∀ t ∈ (−a, a),

for some a > 0. Then

E
[
etX
]
=

∞∑
k=0

E[Xk]

k!
tk,∀ t ∈ (−a, a).

Example 9.11. Suppose Z ∼ N(0, 1), compute

ϕZ(t) = E[eitZ ],∀ t ∈ R.

For t ∈ R,
ψZ(t) = E[etZ ] = e

t2

2 <∞.

By Proposition 9.10,

ϕZ(t) =

∞∑
k=0

ikE
[
Zk
]

k!
tk,∀ t ∈ R.

But

ψZ(t) = e
t2

2 =

∞∑
k=0

t2k

2kk!
=

∞∑
k=0

(2k)!

2kk!

t2k

(2k)!
,

and we know

ψZ(t) =

∞∑
k=0

E
[
Zk
] tk
k!
.

Thus,

E
[
Z2k

]
=

(2k)!

2kk!
,∀k ⩾ 0,

and
E
[
Z2k+1

]
= 0,∀k ⩾ 0.

Then

ϕZ(t) =

∞∑
k=0

(it)k

k!
E
[
Zk
]
=

∞∑
k=0

(it)2k

(2k)!

(2k)!

2kk!
=

∞∑
k=0

(
− t2

2

)k
k!

= e−
t2

2 ∈ R,∀ t ∈ R,

because fZ(t) = fZ(−t).
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Proposition 9.12. Suppose X is a r.v. satisfying E [|X|] <∞. Then ϕ′(0) = iE[X]. Furthermore,
if E [|X|n] <∞, then

ϕ(n)(0) = inE [Xn] .

Proof. We will focus on the case when n = 1. Fix t, h ∈ R, then∣∣∣∣ϕ(t+ h)− ϕ(t)

h
− E

[
(iX)eitX

]∣∣∣∣
=

∣∣∣∣ 1hE [ei(t+h)X − eitX
]
− E

[
(iX)eitX

]∣∣∣∣
=

1

|h|
∣∣E [eitX (eihX − 1− (ihX)

)]∣∣
⩽

1

|h|
E
[∣∣eihX − 1− (ihX)

∣∣]
=

1

|h|
E

[∣∣∣∣∣eihX −
1∑

k=0

(ihX)k

k!

∣∣∣∣∣
]

⩽
1

|h|
E

[
2
|hX|1

1!

∧ |hX|2

2!

]

= E

[
2|X|

∧ |h||X|2

2

]
! 0 as h! 0,

where we use the DCT since

2|X|
∧ |h||X|2

2
⩽ 2|X|,

and

E[X] <∞.

Thus,

lim
h!0

sup

∣∣∣∣ϕ(t+ h)− ϕ(t)

h
− E[(iX)eitX ]

∣∣∣∣ = 0.

So

ϕ′(t) = lim
h!0

ϕ(t+ h)− ϕ(t)

h
= E[(ix)eitx].

Hence,

ϕ(0) = iE[X].

9.2 Uniqueness and Continuity Theorem

Theorem 9.13 (Uniqueness). The characteristic function of a probability distribution on R uniquely
determines the probability distribution function.



86 CHAPTER 9. CHARATERISTIC FUNCTIONS AND THE CENTRAL LIMIT THEOREM

Proof. Let X be a real-valued r.v. with cdf F and characteristic function (chf) ϕ.
For any cdf G with chf γ and ∀θ ∈ R, we have the possible relation

∫
R
e−iθyϕ(y)G(dy) =

∫
R
γ(x− θ)F (dx), (9.6)

since

∫
R
e−iθyϕ(y)G(dy)

=

∫
R
e−iθy

∫
R
eiyxF (dx)G(dy)

=

∫
R

∫
R
eiy(x−θ)F (dx)G(dy)

=

∫
R

[∫
R
eiy(x−θ)G(dy)

]
F (dx)

=

∫
R
γ(x− θ)Fdx.

Next, let G satisfying

G(dy) =
1√
2πσ2

e−
y2

2σ2 dy,

where G is a cdf of N(0, σ2). Let Z = σN , where N ∼ N(0, 1). Then chf of G is

γ = ϕZ(x) = ϕσN (x) = ϕN (σx) = e−
σ2x2

2 , x ∈ R.

Put γ and G into 9.6, we have

∫
R
e−iθyϕ(y)

1√
2πσ2

e−
y2

2σ2 dy =

∫
R
e−

σ2(z−θ)2

2 F (dz).

Then integrate both sides of the above equation over θ,

∫ x

−∞

∫
R
e−iθyϕ(y)

1√
2πσ2

e−
y2

2σ2 dydθ =

∫ x

−∞

∫
R
e−

σ2(z−θ)2

2 F (dz)dθ.
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By Toneli Theorem, ∫ x

−∞

∫
R
e−

σ2(z−θ)2

2 F (dz)dθ

=

∫
R

∫ x

−∞
e−

σ2(θ−z)2

2 F (dz)dθ

=

∫
R

[∫ x−z

−∞
e−

σ2θ2

2 dθ

]
F (dz)

=

√
2π

σ

∫
R

∫ x−z

−∞

1√
2π 1

σ2

e
− θ2

2 1
σ2 dθ

F (dz)
=

√
2π

σ

∫
R
P

(
N

σ
⩽ x− z

)
F (dz)

=

√
2π

σ
P

(
X +

N

σ
⩽ x

)
,

since the last but one equation is a convolution and z is a instance of X and N ∼ N(0, 1). Thus,

P

(
X +

N

σ
⩽ x

)
=

σ√
2π

∫ x

−∞

∫
R
e−iθyϕ(y)

1√
2πσ2

e−
y2

2σ2 dydθ

=
1

2π

∫ x

−∞

∫
R
e−iθyϕ(y)e−

y2

2σ2 dydθ.

Let σn = n,∀n ∈ N>0. Then

X +
N

σn
! X as n!∞.

So

X +
N

σn
⇒ X.

Then

F (x) = P (X ⩽ x)

= lim
n!∞

P

(
X +

N

n
⩽ x

)
=

1

2π
lim
n!∞

∫ x

−∞

∫
R
e−iθyϕ(y)e−

y2

2n2 dydθ,

which implies the chf ϕ(t) uniquely determines the cdf F (x) since we know the limit must exist.

Or use Slutsky Theorem, since X ⇒ X and N
σn

p
−! 0, X + N

σn
⇒ X.
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Lemma 9.14 (Diagnolization). Given a sequence {aj}j⩾1 of distinct real numbers and a family
{un}n⩾1 of real valued functions defined on R, there exists a subsequence {unk

}k⩾1 of functions
such that

lim
k!∞

unk
(aj) exists (could be ±∞),∀j ∈ N>0.

Proof. The sequence {un(a1)}n⩾1 contains a subsequence {u1,k(a1)}k⩾1 converges, i.e.

lim
k!∞

u1,k(a1) exists.

Similarly, the sequence {un1,k
(a1)} contains a subsequence {un2,k

(a2)} such that

lim
k!∞

u2,k(a1) = lim
k!∞

u1,k(a1) exists.

Continuing in this way,∀j ∈ N>0, we have for 1 ⩽ l ⩽ j,

{unj,k
(al)}k⩾1 ⊆ {unl,k

(al)}k⩾1

and
lim
k!∞

unj,k
(al) = lim

k!∞
unl,k

(al) exists.

Construct a new seuqnce of integers {mj}j⩾1 as mj = nj,j , j ⩾ 1. Then for each fixed l ⩾ 1,

{mj}j⩾l = {nj,j}j⩾l ⊆ {nj,k}k⩾l.

Then for any l ∈ N>0,
lim
k!∞

umk
(al) = lim

k!∞
unl,k

(al).

Lemma 9.15. If D = {ai}i⩾1 is a countable dense subset of R and if {Fn}n⩾1 are distribution
functions such that

lim
n!∞

Fn(ai) exists,∀ i ∈ N>0,

then define for any i ∈ N>0,
F∞(ai) = lim

n!∞
Fn(ai).

This determines a distribution function F∞ on R and

Fn ⇒ F∞ as n!∞.

Proof. Then F∞ is non-decreasing, and 0 ⩽ F∞(x) ⩽ 1 for any x ∈ D, and

lim
x∈D,x!+∞

F∞(x) = 1, lim
x∈D,x!−∞

F∞(x) = 0.

For each x ∈ R, define
F∞(x) = inf

ai∈D,ai⩾x
F∞(ai).

By Lemma 8.2, F∞ is a right continuous probability distribution function. Next, let x ∈ C(F∞).
Since D is dense, there exists two subsequences {ai}i⩾1 ⊆ D and {a′i}i⩾1 ⊆ D such that

ai # x and a′i " x.
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Then for any k, i ∈ N,
Fk(a

′
i) ⩽ Fk(x) ⩽ Fk(ai).

Then for any i ∈ N, taking limit on k, we have

F∞(a′i) = lim
k!∞

inf Fk(a
′
i) ⩽ lim

k!∞
inf Fk(x) ⩽ lim

k!∞
supFk(x) ⩽ lim

k!∞
supFk(ai) = F∞(ai).

Since x ∈ C(F∞),

lim
i!∞

F∞(a′i)(= F∞(x−)) = F∞(x)(= F∞(x+)) = lim
i!∞

F∞(ai).

Thus,

F∞(x) = lim
k!∞

inf Fk(x) = lim
k!∞

supFk(x).

Hence

lim
k!∞

Fk(x) = F∞(x),∀x ∈ C(F∞).

Theorem 9.16 (Section). Any sequence of dfs {Fn}n⩾1 contains a weakly convergent subsequence
(but the limit may not be proper).

Proof. Define D = {ai}ai∈Q. By the Diagnolization Lemma, there exists a subsequence {Fnk
}k⩾1

such that limk!∞ Fnk
(ai) exists,∀ i ∈ N>0. By Lemma 9.15 there is a df F∞ such that Fnk

⇒
F∞.

Example 9.17. Consider {Fn}n⩾1, where

Fn(x) =

{
0, x < n
1, x ⩾ n.

For each q ∈ Q, limn!∞ Fn(a) = 0. By the Lemma 9.15, F∞(x) = 0,∀x ∈ R. So the limit is not
proper.

Alternative: by the def of convergence in dist.

Definition 9.18. A collEction of distribution functions Π is relatively compact if every sequence
{Fn}n⩾1 contains a subsequence that converges to a proper d.f..

Definition 9.19. A collection of distribution function Π is tight if∀ϵ > 0, there exists a compact
set Kϵ ⊆ R such that∀F ∈ Π,

F (Kϵ) > 1− ϵ.

Remark. Tightness of Π implies that each of d.f. F ∈ Π is proper.

Theorem 9.20 (Prohorov’s Theorem). A family Π of distribution functions is relatively compact
if and only if it is tight.

Proof. ⇐= Suppose first Π is tight, and choose an arbitrary sequence {Fn}n⩾1 ⊆ Π. Next, fix
ϵ > 0. Tightness of {Fn}n⩾1 implies ∃Mϵ ∈ R+ such that

Fn([−Mϵ,Mϵ]) > 1− ϵ,∀n ∈ Z>0.
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Furthermore, the Selection Theorem says there exists a subsequence {Fnk
}k⩾1 satisfying

Fnk
⇒ F∞,

where F∞ is a d.f.. We claim F∞ is proper. Since C(F∞)c is at most countable, given Mϵ, we can
always find M ′

ϵ > Mϵ such that M ′
ϵ,−M ′

ϵ ∈ C(F∞). Clearly,

Fn([−M ′
ϵ,M

′
ϵ]) > 1− ϵ,∀n ∈ Z>0.

Then

F∞ ([−M ′
ϵ,M

′
ϵ]
c) = 1− F∞(M ′

ϵ) + F∞(−M ′
ϵ)

= lim
k!∞

[1− Fnk
(M ′

ϵ) + Fnk
(−M ′

ϵ)]

= lim
k!∞

Fnk
([−M ′

ϵ,M
′
ϵ]
c)

< ϵ.

So
F∞ ([−M ′

ϵ,M
′
ϵ]
c) ⩽ ϵ.

Hence
F∞ ([−M ′

ϵ,M
′
ϵ]) > 1− ϵ.

This holds for each ϵ, so F∞(R) = 1.
=⇒ Assume Π is not tight. Then ∃ϵ > 0 such that∀n ∈ Z>0, we can pick Fn ∈ Π satisfying

Fn ([−n, n]) ⩽ 1− ϵ.

This defines a sequence {Fn}n⩾1 ⊆ Π. The Selection Theorem says ∃{Fnk
}k⩾1 ⊆ {Fn}n⩾1 such

that
Fnk

⇒ G,

where G is a d.f.. The goal now is to show G is not proper. Choose a, b ∈ C(G) such that a < b,
then

G((a, b]) = lim
k!∞

Fnk
((a, b]).

If nk is large enough,
Fk((a, b]) ⩽ Fnk

([−nk, nk]) ⩽ 1− ϵ.

So
lim
k!∞

Fnk
((a, b]) ⩽ 1− ϵ,

meaning
G((a, b]) ⩽ 1− ϵ.

This holds for any a, b ∈ C(G). Hence G(R) ⩽ 1 − ϵ. Thus, G is not proper, proving Π is not
relatively compact.

Remark. In the above theorem, we uses R is a polish space, which is a separable completely
metrizable topological space when we use compactness of R to show there is a limit point for every
bound and infinite set in Diagnolization Theorem and use separability in Selection Theorem.



9.2. UNIQUENESS AND CONTINUITY THEOREM 91

Lemma 9.21. Suppose F is d.f. on R with chf ϕ. Then there exists α > 0 such that for each
x > 0,

F ([−x, x]c) < αx

∫ 1
x

0

[1− Re(ϕ(t))] dt,

where α does not depend on F .

Proof. Recall first that

Re(ϕ(t)) =

∫ ∞

−∞
cos(ty)F (dy).

This means for fixed x > 0,

x

∫ 1
x

0

[1− Re(ϕ(t))] dt = x

∫ 1
x

0

∫ ∞

−∞
(1− cos(ty))F (dy)dt

= x

∫ ∞

−∞

(
1

x
− 1

y
sin

y

x

)
F (dy)

=

∫ ∞

−∞

(
1−

sin y
x

y
x

)
F (dy).

Since 1− sinu
u ⩾ 0,∀u ∈ R,

x

∫ 1
x

0

[1− Re(ϕ(t))] dt ⩾
∫
|y|>x

(
1−

sin y
x

y
x

)
F (dy)

⩾ α−1F ([−x, x]c) ,

where

α−1 = inf
|y|⩾1

(
1− sin y

y

)
.

Theorem 9.22 (Continuity Theorem). Let {Xn}n⩾1 be a sequence of real-valued r.v.’s with CDF
Fn and chf ϕn.

(a) If Xn ⇒ X0 for some real-valued r.v. X0, then

lim
n!∞

ϕn(t) = ϕ0(t),∀ t ∈ R,

where ϕ0 is the chf of X0.

(b) Deeper part: Suppose

(1) limn!∞ ϕn(t)(= ϕ∞(t)) exists∀ t ∈ R.

(2) ϕ∞(t) is continuous at t = 0.

Then for some d.f. F∞, Fn ⇒ F∞, and ϕ∞ is the chf of F∞. If ϕ∞(0) = 1, then F∞ is proper.
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Proof. Suppose Xn ⇒ X0. Then by Portmanteau Theorem,∀ t ∈ R,

lim
n!∞

E[cos(tXn)] = E[cos(tX0)],

and
lim
n!∞

E[sin(tXn)] = E[sin(tX0)].

Hence
lim
n!∞

E
[
eitXn

]
= E

[
eitX0

]
.

Suppose∀ t ∈ R,
lim
n!∞

ϕn(t) = ϕ∞(t),

where ϕ∞ is continuous at t = 0. We claim {Fn}n⩾1 is tight. For M ∈ R+, by Lemma 9.21,

Fn ([−M,M ]c) ⩽ αM

∫ 1
M

0

[1− Re(ϕn(t))] dt,∀n ∈ Z>0.

Then

lim
n!∞

supFn ([−M,M ]c) ⩽ αx lim
n!∞

∫ 1
M

0

[1− Re(ϕn(t))] dt.

Observe that
|1− Re(ϕn(t))| = |1− E[cos(tXn)]| ⩽ E [|1− cost(tXn)|] ⩽ 2.

Then by the DCT/BCT,

lim
n!∞

∫ 1
M

0

[1− Re(ϕn(t))] dt =

∫ 1
M

0

[1− Re(ϕ∞(t))] dt

Hence,

lim
n!∞

supFn ([−M,M ]c) ⩽ αM

∫ 1
M

0

[1− Re(ϕ∞(t))] dt.

Since ϕ∞ is continuous at t = 0,

lim
t!0

ϕ∞(t) = ϕ∞(0) = lim
n!∞

ϕn(0) = 1,

since {Xn}n⩾1 are real-valued r.v. and then {PX−1
n }n⩾1 are probability measures (d.f.’s) and by

the definition of the measure, PX−1
n (R) = 1 = Fn(R) for any n ∈ Z>0, so we have {Fn}n⩾1 are

proper.
Next, fix ϵ > 0 and choose large Mϵ > 0 such that

sup
0⩽t⩽ 1

Mϵ

[1− Re(ϕ∞(t))] ⩽ ϵ.

Then

lim
n!∞

supFn ([−Mϵ,Mϵ]
c) ⩽ αMϵ

∫ 1
M

0

ϵdt = αMϵ.
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This means that there exists an n0(ϵ) ∈ Z>0 such that as n ⩾ n0(ϵ),

Fn ([−Mϵ,Mϵ]
c) ⩽ ϵ.

Not only that, ∃M ′
ϵ > Mϵ such that

Fn ([−M ′
ϵ,M

′
ϵ]
c) ⩽ ϵ,∀n ∈ Z>0.

Thus, {Fn}n⩾1 is tight. By Prohorov’ Theorem, {Fn} is also relative compact. Suppose {Fn1,k
}k⩾1

and {Fn2,k
}k⩾1 are both two subsequences of {Fn}n⩾1, where

Fn1,k
⇒ G1 and Fn2,k

⇒ G2.

Then
ϕ∞(t) = lim

k!∞
ϕn1,k

(t) = ϕG1
(t),

and
ϕ∞(t) = lim

k!∞
ϕn2,k

(t) = ϕG2(t).

Thus,
ϕG1

(t) = ϕG2
(t),∀ t ∈ R.

9.3 The Classical CLT for iid Random Variables

Lemma 9.23. Suppose {an}n⩾1 ⊆ C and limk!∞ ak = a ∈ C. Then

lim
n!∞

(
1 +

an
n

)n
= ea.

Proof. (
1 +

an
n

)n
=

n∑
k=0

(
n

k

)(an
n

)k
=

n∑
k=0

n(n− 1) · · · (n− k + 1)

nk
akn
k!

=

∞∑
k=0

1(k ⩽ n)
n(n− 1) · · · (n− k + 1)

nk
akn
k!
.

Theb by DCT,

lim
n!∞

(
1 +

an
n

)n
=

∞∑
k=0

lim
n!∞

1(k ⩽ n)
n(n− 1) · · · (n− k + 1)

nk
akn
k!

=

∞∑
k=0

lim
n!∞

akn
k!

=

∞∑
k=0

ak

k!

= ea.
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Theorem 9.24 (Weak Law of Large Numbers). Suppose {Xk}k⩾1 are iid sequence of r.v’s, having

cdf F and satisfying E [|X1|] <∞. Define µ = E[X1] and Sn =
∑n

k=1Xk, n ⩾ 1. Then Sn

n

p
−! µ.

Proof. For t ∈ R, since {Xk}k⩾1 are iid,

E
[
eit

Sn
n

]
= E

[
n∏

k=1

e
it
n Xk

]
= En

[
e

it
n X1

]
.

Next,

E
[
e

it
n X1

]
= E

[
1∑

k=0

1

k!

(
it

n

)k

Xk
1

]
+ h(t, n)

= 1 +
it

n
µ+ h(t, n).

where

|h(t, n)| =

∣∣∣∣∣E
[
e

it
n X1 −

1∑
k=0

1

k!

(
it

n

)k

Xk
1

]∣∣∣∣∣
⩽ E

∣∣∣∣∣e it
n X1 −

1∑
k=0

1

k!

(
it

n

)k

Xk
1

∣∣∣∣∣
⩽ E

[
min

{
2
∣∣ tX1

n

∣∣
1!

,

(
tX1

n

)2
2!

}]

⩽ E

[
min

{
2|t||X1|

n
,
t2|X1|2

2n2

}]
.

Since

lim
n!∞

|nh(t, n)| ⩽ lim
n!∞

E

[
min

{
2|t||X1|,

t2|X1|2

2n

}]
DCT
===== E

[
lim
n!∞

min

{
2|t||X1|,

t2|X1|2

2n

}]

⩽ E

[
lim
n!∞

t2|X1|2

2n

]
= 0,

since min
{
2|t||X1|, t

2|X1|2
2n

}
⩽ 2|t||X1| and E [2|t||X1|] = 2|t|E [X1] <∞,∀ t ∈ R.

So
lim
n!∞

nh(t, n) = 0.
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Hence,
lim
n!∞

itu+ nh(t, n) = itu.

By Lemma 9.23,

lim
n!∞

En
[
e

it
n X1

]
=

(
1 +

itu+ nh(t, n)

n

)n

= eitµ

= ϕ(t).

Also ϕ(0) = 1, by the continuity theorem,

Xn ⇒ µ.

By Proposition 8.34, we have

Xn
p
−! µ.

Theorem 9.25 (Central Limit Theorem). Suppose {Xk}k⩾1 is an iid sequence, where E[X1] =
µ <∞, Var(X1) = σ2 <∞. Define Sn =

∑n
k=1Xk, n ⩾ 1. Then

Sn − nµ

σ
√
n
! N(0, 1).

Proof. Assume, wlog, that µ = 0, σ = 1 by transforming theorem. Then E [X1] = 0, E
[
X2

1

]
= 1

and we need to show Sn√
n
! N(0, 1). For t ∈ R, since {Xk}k⩾1 are iid,

E
[
e
it Sn√

n

]
= E

[
n∏

k=1

e
it
n Xk

]
= En

[
e

it√
n
X1

]
.

Next,

E
[
e

it√
n
X1

]
= E

[
2∑

k=0

1

k!

(
it√
n

)k

Xk
1

]
+ h(t, n)

= 1 +
it√
n
E [X1] +

1

2

(
it√
n

)2

E
[
X2

1

]
+ h(t, n).

= 1− t2

2n
+ h(t, n),

where

h(t, n) ⩽ E

min

2

∣∣∣ tX1√
n

∣∣∣2
2!

,

∣∣∣ tX1√
n

∣∣∣3
3!




= E

[
min

{
t2X2

1

n
,
|t|3|X1|3

6n
3
2

}]
.
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Since

lim
n!∞

|nh(t, n)| ⩽ lim
n!∞

E

[
min

{
t2X2

1 ,
|t|3|X1|3

6n
1
2

}]
DCT
===== E

[
lim
n!∞

min

{
t2X2

1 ,
|t|3|X1|3

6n
1
2

}]
= 0,

since min
{
t2X2

1 ,
|t|3|X1|3

6n
1
2

}
⩽ t2X2

1 and E
[
t2X2

1

]
= t2E

[
X2

1

]
<∞,∀ t ∈ R. So

lim
n!∞

nh(t, n) = 0.

Hence ,

lim
n!∞

− t
2

2
+ nh(t, n) = − t

2

2
.

By Lemma 9.23,

lim
n!∞

En
[
e

it
n X1

]
=

(
1 +

− t2

2 + nh(t, n)

n

)n

= e−
t2

2

= ϕ(t).

Also ϕ(0) = 1, by the continuity theorem,

Sn√
n
⇒ N(0, 1).

9.4 Lindeberg CLT

Let {Xn} be independent, but not necessarily identically distributed, and suppose Xk has cdf Fk

and chf ϕ(k) with E[Xk] = 0, V ar(Xk) = σ2
k. Define

s2n =

n∑
k=1

σ2
k = Var

(
n∑

k=1

Xk

)
.

Definition 9.26. {Xk}k⩾1 satisfies the lindeberg condition if for each t > 0,

1

s2n

n∑
k=1

E

[
X2

k1

(∣∣∣∣Xk

sn

∣∣∣∣ > t

)]
! 0.

Corollary 9.27. Consequences of the Lindeberg are

(a)

lim
n!∞

max
1⩽k⩽n

σ2
k

S2
n

= 0.
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Proof. For ϵ > 0 fixed,∀k ∈ [n],

σ2
k

s2n
=

1

s2n
E[X2

k ]

= E

[∣∣∣∣Xk

sn

∣∣∣∣2
]

= E

[∣∣∣∣Xk

sn

∣∣∣∣21(∣∣∣∣Xk

sn

∣∣∣∣ ⩽ ϵ

)]
+ E

[∣∣∣∣Xk

sn

∣∣∣∣21(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

)]

⩽ ϵ2 +
1

|sn|2
E
[
|Xk|21

(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

)]
⩽ ϵ2 +

1

|sn|2
n∑

l=1

E
[
|Xk|21

(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

)]
.

Then

max
1⩽k⩽n

σ2
k

s2n
⩽ ϵ2 +

1

|sn|2
n∑

l=1

E
[
|Xk|21

(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

)]
.

Then

lim
n!∞

supmax
σ2
k

s2n
⩽ ϵ2.

So

lim
n!∞

max
1⩽k⩽n

σ2
k

s2n
= 0.

(b) If

lim
n!∞

max
1⩽k⩽n

σk

s2n
= 0,

then∀ϵ > 0,

max
1⩽⩽k⩽n

P

(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

)
! 0,

which is called uniform asymptotic negligibility (UAN). It is typical in CLT that the UAN condition
holds so that no one summand dominates but each sumand contributes a small amount to the total.

Proof.

max
1⩽k⩽n

P

(
Xk

sn
> ϵ

)
= max

1⩽k⩽n
P (|Xk| > snϵ)

⩽ max
1⩽k⩽n

E[X2
k ]

ϵ2s2n

⩽
1

ϵ2
max

1⩽k⩽n

E[X2
k ]

s2n
! 0.
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Lemma 9.28. Suppose {ak}nk=1 ⊆ C and {bk}nk=1 ⊆ C, where |ak| ⩽ 1 and |bk| ⩽ 1,∀k ∈ [n].
Then ∣∣∣∣∣

n∏
k=1

ak −
n∏

k=1

bk

∣∣∣∣∣ ⩽
n∑

k=1

|ak − bk|.

Proof. When n = 1, it clearly holds. Assume it holds for n.
Let {ak}n+1

k=1 ⊆ C and {bk}n+1
k=1 ⊆ C, |ak| ⩽ 1 and {bk} ⩽ 1,∀k ∈ [n+ 1]. Then

∣∣∣∣∣
n∏

k=1

ak −
n∏

k=1

bk

∣∣∣∣∣ = |cnan+1 − dnbn+1|,

where cn =
∏n

k=1 ak, dn =
∑n

k=1 bk. We have

|cn| =

∣∣∣∣∣
n∏

k=1

ak

∣∣∣∣∣ =
n∏

k=1

|ak| ⩽ 1.

Similarly,

|dn| ⩽ 1.

Furthermore,

|cnan+1 − dnbn+1| = |cnan+1 − dnan+1 + dnan+1 − dnbn+1|
⩽ |cn − dn||an+1|+ |an+1 − bn+1||dn|
⩽ |cn − dn|+ |an+1 − bn+1|

⩽
n+1∑
k=1

|ak − bk|.

So it also holds for n+ 1.

Lemma 9.29. Suppose {Yn} is an iid sequence of r.v.’s with common cdf F and chf ϕ.
Let N be independent of {Yn}n⩾1.

Suppose N ∼ Poisson(c), then the chf of
∑N

k=1 Yk is

ϕ(t) = E
[
eit

∑N
k=1 Yk

]
= ec(ϕ(t)−1),∀ t ∈ R.
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Proof.

E
[
eit

∑N
k=1 Yk

]
=

∞∑
n=0

E
[
eit

∑N
k=1 Yk1(N = n)

]
=

∞∑
n=0

E
[
eit

∑n
k=1 Yk1(N = n)

]
=

∞∑
n=0

E
[
eit

∑n
k=1 Yk

]
P (N = n)

=

∞∑
n=0

ϕ(t)n
cne−c

c!

= e−c
∞∑

n=0

(ϕ(t)c)n

n!

= ec(ϕ(t)−1).

Theorem 9.30 (Lindeberg-FellEr CLT). The Lindeberg condition implies

Sn

sn
⇒ N(0, 1),

where Sn =
∑n

k=1Xk.

Proof. To show Sn

sn
⇒ N(0, 1), it is equivalent to show

ϕSn/sn(t) =

n∏
k=1

ϕXk
(t/sn)! e−

t2

2 ,

by the Continuity Theorem. Then it suffices to show∣∣∣∣∣
n∏

k=1

ϕXk
(t/sn)− e−

t2

2

∣∣∣∣∣
⩽

∣∣∣∣∣
n∏

k=1

eϕXk
(t/sn)−1 −

n∏
k=1

ϕXk
(t/sn)

∣∣∣∣∣
+

∣∣∣∣∣
n∏

k=1

eϕXk
(t/sn)−1 − e−

t2

2

∣∣∣∣∣
=

∣∣∣∣∣
n∏

k=1

eϕXk
(t/sn)−1 −

n∏
k=1

ϕXk
(t/sn)

∣∣∣∣∣
+
∣∣∣e∑n

k=1(ϕXk
(t/sn)−1) − e−

t2

2

∣∣∣! 0.

Then it suffices to show ∣∣∣∣∣
n∏

k=1

eϕXk
(t/sn)−1 −

n∏
k=1

ϕXk
(t/sn)

∣∣∣∣∣! 0,
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and ( since |·| and e· is continuous,)

n∑
k=1

(ϕXk
(t/sn)− 1)−

(
−t2/2

)
! 0.

Since ∣∣∣eϕXk
(t/sn)−1

∣∣∣ ⩽ 1

e
e|ϕXk

(t/sn)| ⩽
1

e
e1 = 1,

and

|ϕXk
(t/sn)| ⩽ 1,

by Lemma 9.28,

∣∣∣∣∣
n∏

k=1

eϕXk
(t/sn)−1 −

n∏
k=1

ϕXk
(t/sn)

∣∣∣∣∣
⩽

n∑
k=1

∣∣∣eϕXk
(t/sn)−1 − ϕXk

(t/sn)
∣∣∣

=

n∑
k=1

∣∣∣eϕXk
(t/sn)−1 − 1− (ϕXk

(t/sn)− 1)
∣∣∣.

Note that for z ∈ C,

|ez − 1− z| =

∣∣∣∣∣
∞∑
k=2

zk

k!

∣∣∣∣∣
⩽

∞∑
k=2

|z|k

=
|z|2

1− |z|
if |z| < 1,

⩽ 2|z|2, if |z| ⩽ 1

2
,

⩽ δ|z|, if |z| ⩽ δ

2
<

1

2
,

for any 0 < δ < 1.



9.4. LINDEBERG CLT 101

Now for fixed t ∈ R,

|ϕXk
(t/sn)− 1| =

∣∣∣E [eitXk/sn
]
− 1
∣∣∣

=
∣∣∣E [eitXk/sn − itXk/sn − 1

]∣∣∣
⩽ E

[∣∣∣eitXk/sn − itXk/sn − 1
∣∣∣]

⩽ E
[
(Xkt/sn)

2

2!

]
=

t2

2s2n
σ2
k

⩽
t2

2
max

1⩽k⩽n

σ2
k

s2n
<
δ

2
,∀0 < δ < 1,

when n is sufficiently large by CorollAry 9.27 from the consequence of Lindeberg condition. Then
since |ϕXk

(t/sn)− 1| < δ
2 ,∀k ∈ [n],

∣∣∣∣∣
n∏

k=1

eϕXk
(t/sn)−1 −

n∏
k=1

ϕXk
(t/sn)

∣∣∣∣∣
⩽

n∑
k=1

∣∣∣eϕXk
(t/sn)−1 − 1− (ϕXk

(t/sn)− 1)
∣∣∣

⩽
n∑

k=1

δ|ϕXk
(t/sn)− 1)|

⩽ δ
t2

2s2n

n∑
k=1

σ2
k = δ

t2

2
,∀0 < δ < 1,

for n is sufficiently large.
Thus,

∣∣∣∣∣
n∏

k=1

eϕXk
(t/sn)−1 −

n∏
k=1

ϕXk
(t/sn)

∣∣∣∣∣! 0.

Next, since for any k ∈ [n],

E[Xk] = 0 and E[X2
k ] = σ2

k,
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we can write
n∑

k=1

(ϕXk
(t/sn − 1))−

(
−t2/2

)
=

n∑
k=1

E
(
eitXk/sn − 1

)
−

n∑
k=1

i
t

sn
E[Xk]−

n∑
k=1

(it)2E[X2
k ]

2s2n

=

n∑
k=1

E

(
eitXk/sn − 1− i

t

sn
Xk − 1

2

(
it

sn

)2

X2
k

)

=

n∑
k=1

E(∗)

=

n∑
k=1

(
E(∗)1

(∣∣∣∣Xk

sn

∣∣∣∣ ⩽ ϵ

)
+ E(∗)1

(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

))

=

n∑
k=1

E(∗)1
(∣∣∣∣Xk

sn

∣∣∣∣ ⩽ ϵ

)
+

n∑
k=1

E(∗)1
(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

)
= I + II.

Since

|I| ⩽
n∑

k=1

E(|∗|)1
(∣∣∣∣Xk

sn

∣∣∣∣ ⩽ ϵ

)

⩽
n∑

k=1

E

(
1

3!

∣∣∣∣ tsnXk

∣∣∣∣31(∣∣∣∣Xk

sn

∣∣∣∣ ⩽ ϵ

))

⩽
|t|3

6

n∑
k=1

E

(∣∣∣∣Xk

sn

∣∣∣∣31(∣∣∣∣Xk

sn

∣∣∣∣ ⩽ ϵ

))

⩽
|t|3

6
ϵ

n∑
k=1

E

(∣∣∣∣Xk

sn

∣∣∣∣21(∣∣∣∣Xk

sn

∣∣∣∣ ⩽ ϵ

))

⩽
|t|3

6
ϵ

n∑
k=1

σ2
k

s2n
=

|t|3

6
ϵ,

and

|II| ⩽
n∑

k=1

E

(
|1|
(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

))

⩽ 2

n∑
k=1

E

(
1

2!

∣∣∣∣ tXk

sn

∣∣∣∣21(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

))

=
t2

s2n

n∑
k=1

E

(
X2

k1

(∣∣∣∣Xk

sn

∣∣∣∣ > ϵ

))
! 0,
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by the Lindeberg condition.

Theorem 9.31 (Second Converging Together Theorem). Let us suppose that {Xu,n}n⩾1,u⩾1.
{Xu}u⩾1, {Yn}n⩾1 and X are random variables such that for each n ⩾ 1, Yn, {Xu,n} are all
defined on the same prob. space. Suppose for each u ⩾ 1 that Xu,n ⇒ Xu as n ! ∞. Furthmore,
Xu ⇒ X as u!∞. If ∀ ϵ > 0, we have

lim
µ!∞

lim
n!∞

supP (|Yn −Xu,n| > ϵ) = 0,

then
Yn ⇒ X as n!∞.

Proof. Suppose f : R! R is bounded and uniformly continuous on R. Our goal is to show

lim
n!∞

sup|E [f(Yn)]− E [f(X)]| = 0.

Fix ϵ > 0 and define
wf (ϵ) := sup

|x−y|<ϵ

|f(x)− f(y)|.

|E [f(Yn)]− E [f(X)]| = |E [f(Yn)]− E [f(Xu,n)]|+ |E [f(Xu,n)]− E [f(Xu)]|
+ |E [f(Xu)]− E [f(X)]|.

Letting n!∞,

lim
n!∞

sup|E [f(Yn)]− E [f(X)]| ⩽ lim
n!∞

sup|E [f(Yn)]− E [f(Xu,n)]|+ 0

+ |E [f(Xu)]− E [f(X)]|.

Letting u!∞,

lim
n!∞

sup|E [f(Yn)]− E [f(X)]| ⩽ lim
u!∞

lim
n!∞

sup|E [f(Yn)]− E [f(Xu,n)]|.

Since

|E [f(Yn)]− E [f(Xu,n)]| ⩽ E
(
|f(Yn)− f(Xu,n)|1|f(Yn)−f(Xu,n)|⩽ϵ

)
+ E

(
|f(Yn)− f(Xu,n)|1|f(Yn)−f(Xu,n)|>ϵ

)
⩽ E(wf (ϵ)) + 2MP (|Yn −Xu,n| > ϵ) .

So

lim
u!∞

lim
n!∞

sup|E [f(Yn)]− E [f(Xu,n)]| ⩽ wf (ϵ) + 2MP lim
u!∞

lim
n!∞

sup (|Yn −Xu,n| > ϵ)

= wf (ϵ).

Let ϵ! 0, then wf (ϵ)! 0, so

lim
n!∞

sup|E [f(Yn)]− E [f(X)]| = 0.
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9.5 CLT for m-dependent random variables

Definition 9.32. A sequence of r.v.’s {Xn}n⩾1 is m-dependent (m ∈ Z⩾0 fixed.) if∀ t ∈ Z+,
σ(Xj , j ⩽ t) and σ(Xj , j ⩾ t+m+ 1) are independent.

The most common example of a stationarym-dependent sequence is the time series model called
the moving average of order m.

Definition 9.33. Let {Zn} be iid and define for given constants c1, . . . , cm ∈ R the process

Xt =

m∑
j=1

cjZt−j , t = 0, 1. · · · .

Example 9.34. Xt =
∑m

j=1 cjZt−j and Xt+m =
∑m

j=1 cjZt+m−j are independent. Then Xk and
Xl are independent∀|k − l| ⩾ m. Thus, the sequence {Xn}n⩾1 are (m− 1)-dependent.

Remark. m-dependent implies k-independet∀k > m.

Theorem 9.35 (Hoeffding and Robbins). Suppose {Xn, n ⩾ 1} is a strictly stationary and m-
dependent sequence with E(X1) = 0 and

Cov(Xt, Xt+h) = E(XtXt+h) := γ(h).

Suppose

νm := γ(0) + 2

m∑
j=1

γ(j) ̸= 0.

Then
1√
n

n∑
i=1

Xi ⇒ N(0, νm).

Proof. (a) Part 1: Variance calculation.

nVar(Xn) = nCov

 1

n

n∑
i=1

Xi,
1

n

n∑
i=j

Xj


=

1

n

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj)

= γ(0) +
2

n

∑
i<j

γ(j − i)

= γ(0) +
2

n

n−1∑
i=1

iγ(n− i)

= γ(0) +
2

n

n−1∑
k=1

(n− k)γ(k)

= γ(0) + 2

n−1∑
k=1

(1− k

n
)γ(k).
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Since γ(l) = 0 if |l| > m, letting n!∞,

nVar(Xn)! γ(0) + 2

m∑
k=1

γ(k).

(b) Part 2: The big block-little block method. Pick n > u > 2m. Consider the following diagram.

(1)
fb
−! (u−m)

fl
! (u)

sb
−! (2u−m)

sl
! (2u) · · · · · · (r − 1)u

rb
−! (ru−m)! (rn)

remainder
! (n).

Let

r =
⌊n
u

⌋
so that r

n !
1
u and define

ξ1 = X1 + · · ·+Xu−m,

ξ2 = Xu+1 + · · ·+X2u−m,

...

ξr = X(r−1)u+1 + · · ·+Xru−m,

which are the “big block” sums. Note by stationarity and m-dependence that ξi, . . . , ξr are iid
because the little blocks have been removed. Define

Xun :=
ξ1 + · · ·+ ξr√

n
=
ξ + · · ·+ ξr√

r

√
r

n
.

Note that √
r

n
!

√
1

u
.

From the CLT for iid summands, as n!∞,

Xun ⇒ N

(
0,

Var(ξ1)

u

)
=: Xu.

Now observe that as u!∞,

Var(ξ1)

u
=

Var
(∑u−m

i=1 Xi

)
u

=
(u−m)2

u
Var

(∑u−m
i=1 Xi

u−m

)
= (u−m)Var

(
Xu−m

) u−m

u
! νm · 1 = νm,
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by the part (1). Thus, as u!∞,

Xu = N

(
0,

Var(ξ1)

u

)
⇒ N(0, νm) =: X,

since a sequence of normal distributions converges weakly if their means (in this case, all zero) and
variance converge (Continuity theorem). By the second convergence together theorem, it remains
to show that

lim
u!∞

lim
n!∞

supP

(∣∣∣∣Xun −
∑n

i=1Xi√
n

∣∣∣∣ > ϵ

)
= 0.

For i = 1, . . . , r, let
Bi = {iu−m+ 1, . . . , iu}

be the m integers in the ithe little block, and let

Br = {ru−m+ 1, . . . , n}

be the integers in the last little block coupled with the remainder due to u not dividing n exactly.
Then we have ∣∣∣∣∑n

i=1Xi√
n

−Xun

∣∣∣∣ = 1√
n

∣∣∣∣∣∣
∑
i∈B1

X1 + · · ·+
∑

i∈Br−1

Xi +
∑
i∈Br

Xi

∣∣∣∣∣∣,
and all sums on the right side are independent by m-dependence. Also, by the stationarity ((r −
1)iid),

Var

(∑n
i=1Xi√
n

−Xun

)
=

1

n

(
(r − 1)Var

(
m∑
i=1

Xi

)
+Var

(
n−ru+m+1∑

i=1

Xi

))
.

Note that

h(n) : = n− ru+m

= n−
[n
u

]
u+m

⩽ n−
(n
u
− 1
)
u+m

= n− n+ u+m

= u+m.

Thus for fixed u, as n!∞,

1

n
Var

h(n)∑
i=1

Xi

 ⩽
supj∈[u+m] Var

(∑j
i=1Xi

)
n

! 0.

Also, since r/n! 1/u as n!∞,

1

n

(
(r − 1)Var

(
m∑
i=1

Xi

))
∼ 1

u
Var

(
m∑
i=1

Xi

)
! 0.
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By Chebychev’s inequality

lim
u!∞

lim
n!∞

supP

(∣∣∣∣∑n
i=1Xi√
n

−Xun

∣∣∣∣ > ϵ

)
⩽ lim

u!∞
lim
n!∞

sup
1

ϵ2
Var

(∑n
i=1Xi√
n

−Xun

)
= 0.
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Chapter 10

Point process

10.1 Borel Measure

Definition 10.1. Let E be a non-empty set, A family of subsets E of E is called a σ-algebra if

(a) E ⊆ E ,

(b) if A ∈ E , so is Ac,

(c) if A1, A2, · · · ∈ E , so is
⋃∞

n=1An.

Remark. (a) We can measure the whole set E.

(b) A ∈ E measurable, then Ac should be measurable. If µ(A) <∞, µ(Ac) = µ(E)− µ(A).

(c) If A1 and A2 are disjoint, µ(A1 ⊔A2) = µ(A1) + µ(A2).

(d)
A1 ∩Ac

2, A
c
1 ∩A2, A1 ∩A2 ∈ E .

µ(A1 ∪A2) = µ ((A1 ∩Ac
2) ⊔ (Ac

1 ∩A2) ⊔ (∩A1 ∩A2))

= µ(A1 ∩Ac
2) + µ(Ac

1 ∩A2) + µ(A1 ∩A2)

= (µ(A1 ∩Ac
2) + µ(A1 ∩A2)) + (µ(Ac

1 ∩A2) + µ(A1 ∩A2))− µ(A1 ∩A2)

= µ(A1) + µ(A2)− µ(A1 ∩A2).

Definition 10.2. Suppose E = R2,

B := { (a1, b1]× (a2, b2]| a1 < b1, a2 < b2}
⋃

∅,

which are all the rectangles.

Remark. Ac is not a rectangle.

A

109
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A

B

Since for any A,B ∈ C, A∩B ∈ B, so B is a π-system. Since A ∈ B, Ac ̸∈ B, and A⊔B may not
in B, B is not a λ-system. Thus, B is not a σ-algebra. The borel subsets of R2, denoted as B(R2),
is the smallest σ-algebra that contains B (proved by the axiom of choice).

Definition 10.3. A Hausdorff space X is a topological space in which distinct points have disjoint
neighbourhoods, which means for any x, y ∈ X, there exist rx, ry ∈ R+, and Bd

rx(x) and Bd
ry (y)

such that
Bd

rx(x) ∩B
d
ry (y) = ∅,

where d is the corresponding Hausdorff distance or Hausdorff metric.

Definition 10.4. A borel measure µ on the Hausdorff space R2 is a mapping from B(R2) to [0,∞]
that satisfies if A1, A2, · · · are disjoint subsets of B(R2), then

µ

( ∞⊔
n=1

An

)
=

∞∑
n=1

µ(An).

Remark. The choice of Borel measure which assigns

µ(a, b]× (c, d]) = (c− a)(d− b),∀(a, b], (c, d] ∈ B

is sometimes called “the” Borel measure on R2. The measure is actually the Lebesgue measure
restricted on the Borel algebra B(R2), which is a complete measure and is defined on the Lebesgue
σ-algebra (all Lebesgue measurable sets form a σ-algebra).

Definition 10.5. Let (X,T, d) be a topological metric space. The Diameter of a B ∈ (X,T ),

D(B) = sup{d(x, y) | x, y ∈ B}.

If B is bounded, then D(B) <∞.

10.2 Measure

Theorem 10.6. Suppose µ1 and µ2 are two measures on
(
R2,B

(
R2
))

such that for any B ∈ B,
µ1(B) = µ2(B). Then

µ1(A) = µ2(A),∀A ∈ B(R2).

Definition 10.7 (Measurable sets). A classical solution to the measure problem consists in at-
tempting to approximate the measure of a complicated set using simple sets. More precisely,
suppose we have a class of simple sets S which we know how to measure (these would contain
events, rectangles and finite unions of rectangle for example). Then, given some arbitrary set A,
we can define an inner measure µI(A) and an outer measure µO(A) of A by letting

µI(A) = sup{µ(E) : E ⊆ A,E ∈ S} and µO(A) = inf{µ(E) : E ⊇ A,E ∈ S}.

Note that the inner and outer measures of sets in S are clearly the same as the measure we have
already assigned to them. In this framework, one calls a set A measurable if µO(A) = µI(A), in
which case we assign µ(A) = µO(A) = µI(A).



10.2. MEASURE 111

Definition 10.8. Let (X,T ) be a topological space, and let Σ be a σ-algebra on X that contains
the topology T . Let M be a collection of (possibly signed or comlex) measure defined on Σ. The
collection M is called tight (or uniformly tight) if for any ϵ > 0, there is a compact subset Kϵ of X
such that, for all measures µ ∈M ,

|µ|(K ∖Kϵ) < ϵ,

where |µ| is the total variation measure of µ. Very often, the measures in question are probability
measure, so the last part can be written as

µ(Kϵ) > 1− ϵ.

If a tight collection M consists of a single measure µ, then µ may either be said to be a tight
measure or to be an inner regular measure. If Y is an X-valued random variable whose probability
distribution on X is a tight measure, then Y is said to be a seperable random variable or a Radon
random variable.

Example 10.9. Let Y ∈ (Ω,B, P ). Then Y is tight.

Proof. Let ϵ > 0. Since P is nondecreasing and

lim
x!∞

P ([−x, x]) = 1,

there exists Kϵ = [−n, n] ⊊ R+ such that P (Kϵ) > 1− ϵ.

Example 10.10. Consider R with its usual Borel topology. Let δx denote the Dirac measure, a
unit mass at the point x in R. The collection M1 := {δn | n ∈ N} is not tight.

Proof. Assume there is such a comact Kϵ. Then there exists N ∈ Z+ such that supKϵ ⩽ N < ∞.
However, δN+1(Kϵ) = 0 ⩽ 1 − ϵ when 0 < ϵ ⩽ 1. On the other hand, the collection M2 := {δ1/n |
n ∈ N} is tight: the compact interval [0, 1] will work as Kϵ for any ϵ > 0. In general, a collection of
Dirac delta measures on Rn is tight if and only if the collection of their supports is bounded.

Definition 10.11. Let µ be a measure on the σ-algebra of Borel sets of a Hausdorff space X.

• µ is called inner regular or tight, if for any Borel set B,

µ(B) = sup{µ(K) | K ⊆ B and K is compact}.

• µ is called outer outer regular if, for any Borel set B,

µ(B) = inf{µ(U) | B ⊆ U and U is open}.

• µ is called locally finite if every point X has a neighborhood U for which µ(U) is finite. (If µ
is locally finite, then it follows that µ is finite on compact sets.)

Definition 10.12. A measure µ is called Radon measure if it is inner regular and locally finite.

Remark. The Lebesgue measure is a radon measure, instead of writing µ(B) for B ∈ B
(
R2
)
, we

will write
|B|.
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10.3 Random measure and Point process

Definition 10.13. Let M be the collection of radon measures on (R2,B(R2)). Set Mp ⊆ M be
these µ ∈M such that

µ(A) ∈ {0, 1 · · · ,∞},∀A ∈ B(R2).

Example 10.14. Let x ∈ R2. Set δx ∈Mp by

δx(A) =

{
1, x ∈ A
0, x ̸∈ A.

Suppose x1, x2, · · · are in R2. Set

µ(A) =

∞∑
k=1

δxk
(A).

Then µ is a counting measure and µ ∈Mp. So for any bounded (finite?) B ∈ B(R), µ(B) <∞. In
our compact set, we do not want any accumulation point, so we just consider finite sets.

Let (Ω,A, P ) be a probability space.

Definition 10.15 (Random measure). Let
(
R2,B

(
R2
))

be a measurable space. A random measure

on
(
R2,B

(
R2
))

is a transition kernel from (Ω,A) into
(
R2,B

(
R2
))
. More explicitly, a mapping

N : Ω× B
(
R2
)
! R+

is called a random measure if

(a) for any B ∈ B,

N(·, B) : Ω! R+

ω 7! N(ω,B)

is a random variable,

(b) for any ω ∈ Ω,

N(ω, ·) : B
(
R2
)
! R+

B 7! N(ω,B)

is a radon measure on
(
R2,B(R2)

)
.

Call a function
K : Ω1 × B2 ! [0, 1]

a transition function if

(a) for all B2 ∈ B2,

K(·, B2) : Ω! [0, 1]

ω 7! K(ω,B2)

is B1/B([0, 1])-measurable, (random variable taking value on [0, 1], e.g. P (Y = 1|X) = f(X).) and
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(b) for any ω ∈ Ω,

K(ω, ·) : B2 ! [0, 1]

B2 7! K(ω,B2)

is a probability measure on (Ω2,B2). (e.g. P (·|X = 1) on some sub-σ-field B2 of B1 with Ω1 = Ω2.)
Transition functions are used to define discrete time Markov processes where K(ω1, B2) represents the
conditional probability that, starting from ω1, the next movement of the system results in a state in
B2 ∈ B2 ⊆ B1.

Remark. We have the following.

• We may denote N(·, B) as N(B).

• Then we may regard N as the collections of random variables
{
N(B), B ∈ B

(
R2
)}

.

• We shall denote the radon measure N(ω, ·) as Nω.

• We may regard N is a random measure that assigns a measure Nω to every outcome ω ∈ Ω.
(A random element N of a collection of Radon measures is called a random measure.)

• N(B) is a r.v., meaning for any B ∈ B and any C ∈ B(R),

{ω : N(ω,B) ∈ C} ∈ A.

Let µ be Lebesgue measure on R2 and X be a nonnegative r.v.,

N(ω,B) = X(ω)µ(B).

Definition 10.16. A random measure N is a point process if for any ω ∈ Ω, N(ω, ·) ∈Mp.

Example 10.17. LetX be a multivariate (or d-variate) r.v. on R2. Define a point processN := δX ,
where for A ∈ B(Rd),

δX(A) =

{
1, if X ∈ A;
0, if X ̸∈ A.

Then for any B ∈ B(R2),

P (N(B) = 1) = P (δX(B) = 1) = P (X ∈ B) =: µ(B).

Hence δX(B) = N(B) is a r.v. and N(B) ∼ Bernoulli (µ(B)). Hence

E
[
e−sδX(B)

]
= 1 + µ(A)

(
e−s − 1

)
.

Theorem 10.18. Suppose X1, X2, . . . are r.v.’s in Rd and τ is a nonnegative integer value r.v.,
independent of X1, X2, . . . . Define

N : B(Rd) −! Z⩾0 ∪ {∞}

A 7−!
τ∑

i=1

δXi
(A).

Then N(A) is a r.v., which counts the number of points X1, . . . , Xτ that belongs to A.
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Remark. Regard Xi as the position of the i-th particle.

Example 10.19. Let X1, X2, . . . , Xn be an iid such that P (X1 ∈ A) = µ(A) for any A ∈ B(Rd).
Define

N(A) :=

n∑
i=1

δXi
(A),∀A ∈ B(Rd).

Since δX1
(A), . . . , δXn

(A)
iid∼ Bernoulli (µ(A)), we have

N(A) =

n∑
i=1

δXi
(A) ∼ Binomial(n, µ(A)).

Moreover, E[N(A)] = nµ(A), Var(N(A)) = nµ(A)(1− µ(A)), and

E
[
e−sN(A)

]
=
[
1 + µ(A)

(
e−s − 1

)]n
.

Suppose sets A1, . . . , Ak ∈ B(Rd) forms a partition of Rd. Note

n =

n∑
i=1

δXi(Rd) = N(Rd) = N

(
k⊔

i=1

Ai

)
=

k∑
i=1

N(Ai).

The random vector (N(A1), . . . , N(Ak)) has a multinormal distribution with parameters n, u(A1), · · ·µ(Ak).
(Consider there are k candidates and n voters.) Then for ni > 0 and n1 + · · ·+ nk = n,

P (N(A1) = n1, N(Ak) = nk) =
n!

n1! · · ·nk!
[µ(A1)]

n1 · · · [µ(Ak)]
nk .

Proof.

P (N(A1) = n1) =
n!

n1!(n− n1)!
[µ(A1)]

n1 [1− µ(A1)]
n−n1 .

Given N(A1) = n1, there are n− n1 candidates remaining, then

N(A2) ∼ B

(
n− n1,

µ(A2)

1− µ(A1)

)
,

where µ(A2)
1−µ(A1)

= P (votes for 2 | not votes for 1). Hence

P (N(A1) = n1, N(A2) = n2)

= P (N(A1) = n1)P (N(A2) = n2|N(A1) = n1)

=
n!

n1!(n− n1)!
[µ(A1)]

n1 [1− µ(A1)]
n−n1

(n− n1)!

n2!(n− n1 − n2)!

[
µ(A2)

1− µ(A1)

]n2
[
1− µ(A2)

1− µ(A1)

]n−n1−n2

=
n!

n1!n2!(n− n1 − n2)!
[µ(A1)]

n1 [µ(A2)]
n2 [1− µ(A1)− µ(A2)]

n−n1−n2 .

Then use induction to finish the proof.

Remark. {N(Ai)}i=1,...,n are not independent.
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Example 10.20. Let X1, X2, . . . be iid, and τ a nonnegative integer value r.v., independent of
X1, X2, . . . . Define

N : B(Rd)! Z⩾0 ∪ {∞}

A 7!
τ∑

i=1

δXi(A).

Then N(A) is a random sum of iid Bernoulli r.v.’s. Moreover, E[N(A)] = E[τ ]µ(A), Var(N(A)) =
E[τ ]µ(A)(1− µ(A)) + µ2(A)Var(τ), and

E
[
e−sN(A)

]
= E

[
E
[
e−sN(A)

∣∣∣ τ]]
= E

([
E
(
e−sδX1

(A)
)]τ)

= E
([
1 +

(
e−s − 1

)
µ(A)

]τ)
= Gτ

(
1 +

(
e−s − 1

)
µ(A)

)
,

since the generating function of τ in terms of z is Gτ (z) = E[zτ ]. If A1, . . . , Ak forms a partition
of Rd,

E

[
exp

(
−

k∑
i=1

siN(Ai)

)]
= E

[
E

[
exp

(
−

k∑
i=1

siN(Ai)

)∣∣∣∣∣ τ
]]

= E

[(
k∑

i=1

e−siµ(Ai)

)τ]
= Gτ

(
k∑

i=1

e−siµ(Ai)

)
,

since the joint laplace transform of {N(Ai)}ki=1 given τ = n is

E

[
exp

(
−

k∑
i=1

siN(Ai)

)∣∣∣∣∣ τ = n

]

=
∑

exp

(
−

k∑
i=1

sini

)
n!

n1! · · ·nk!
[µ(A1)]

n1 · · · [µ(Ak)]
nk

=
∑ n!

n1! · · ·nk!
[
e−s1µ(A1)

]n1 · · ·
[
e−skµ(Ak)

]nk

=

(
k∑

i=1

e−siµ(Ai)

)n

.

Assume τ ∼Poisson(λ). Then E[N(A)] = λµ(A) and

Var(N(A)) = λµ(A)(1− µ(A)) + λµ2(A) = λµ(A).

Since

Gτ (z) = E[zτ ] =

∞∑
τ=1

λτ

τ !
e−λzτ =

∞∑
τ=0

(λz)
τ

τ !
e−λ = eλze−λ = eλ(z−1),
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we have

E
[
e−sN(A)

]
= Gτ

(
1 +

(
e−s − 1

)
µ(A)

)
= eλ(e

−s−1)µ(A) = eλµ(A)(e−s−1).

Thus, N(A) ∼ Poisson (λµ(A)). Suppose A1, . . . , Ak forms a partition Rd. Then

E

[
exp

(
−

k∑
i=1

siN(Ai)

)]
= Gτ

(
k∑

i=1

e−siµ(Ai)

)

= exp

(
λ

(
k∑

i=1

e−siµ(Ai)− 1

))

= exp

(
λ

(
k∑

i=1

e−siµ(Ai)−
k∑

i=1

µ(Ai)

))

=
k∏

i=1

eλµ(Ai)(e−si−1)

=

k∏
i=1

E
[
e−siN(Ai)

]
.

Thus, N(A1), . . . , N(Ak) are independent Poisson r.v., and N(Ai) ∼ Poisson (λµ(Ai)).

10.4 Poisson random measure

Let N be a random measure on (Ω,F , P ) such that for each bounded A ∈ B(Rd), N(A)(·) ∈
Z⩾0 ∪ {∞} on Ω, i.e., N(A) ∈Mp. The point process

N : Ω!Mp

is called a Poisson random measure or Poisson point process if

(a) for disjoint bounded Borel sets A1, . . . , An, N(A1), . . . , N(An) are independent random vari-
ables,

(b) there exists a measure µ : B(Rd) ! [0,∞] such that for all bounded B ∈ B(Rd), µ(B) < ∞
and N(B) ∼Poisson(µ(B)). The measure µ is called the intensity of N .

Example 10.21. Let {Xt, t ⩾ 0} be a homogeneous Poisson process having rate λ > 0. For
I = (a, b], define N(I) := Xb − Xa, denoting the number of points in interval I. Define for
I = (a, b], µ(I) := λ(b− a).

(a) Let 0 ⩽ a1 < b1 ⩽ · · · ⩽ an < bn < ∞. For k = 1, . . . , n, set Ik = (ak, bk]. Since the
intevals I1, . . . , In are pointwise disjoint and a Poisson proces has independent increment, the r.v.’s
Xb1 −Xa1 , . . . , Xbn −Xan are independent. So N(I1), . . . , N(In) are independent random variables.

(b) For I = (a, b], N(I) ∼ Poisson (λ(b− a)), where λ(b− a) = µ(I).
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Thus, N is a Poisson random measure. Using the above measure N , µ can be extended to B([0,∞))
in a way so that N is a Poisson random measure.

Example 10.22. Let X1, X2, · · · be iid d-variate random variables having distribution ν, that is,
for any B ∈ B(Rd), P (X ∈ B) = ν(B). Let τ ∼ Poisson(λ), independent of X1, X2, · · · . Define

N : B(Rd)! Z⩾0

B 7!
τ∑

k=1

δXk
(B).

From Example 10.20, we have N is a Poisson random measure with intensity µ = λν, where λν
denotes a scalar multiple of the measure ν.

Example 10.23. Define

In,m = (n− 1, n]× (m− 1,m],∀n,m ∈ Z.

Then the sets {In,m}n,m∈Z form a partition of R2. Let νn,m be a probability distribution on In,m.
For example, νn,m can be the uniform distribution on In,m. Let λn,m > 0. Using the example
10.22,∀n,m ∈ Z, there exists a Poisson random measure Nn,m on In,m having indensity

µn,m = λn,mνn,m.

Assume that the Poisson random measures {Nn,m}n,m∈Z are independent. Now define a process N
and a measure µ on R2 by setting for each A ∈ B(R2),

N(A) =
∑
n,m

Nn,m(A ∩ In,m),

µ(A) =
∑
n,m

µn,m(A ∩ In,m).

(a) Let B1, . . . , Bk ⊆ B(R2) be bounded disjoint. Then for any n,m ∈ Z, {B1∩In,m, . . . , Bk∩In,m}
are disjoint subsets of In,m. So for any n,m ∈ Z, the r.v.’s Nn,m(B1 ∩ In,m), . . . , Nn,m(Bk ∩ In,m)
are independent. Since the Poisson random measures Nn,m are independent. Since for i = 1, . . . , k,

N(Bi) =
∑
n,m

Nn,m(Bi) ∩ In,m,

and by assumption, {Nn,m}n,m∈Z are independent, N(B1), . . . , N(Bk) are independent.

(b) Let B ∈ B(R2) be bounded, then {{n,m} : B ∩ In,m ̸= ∅} is finite. Hence

N(B) =
∑
n,m

Nn,m(B ∩ In,m)

is a finite sum of independent Poisson r.v.’s. Since r.v.’s {Nn,m(B ∩ In,m)} are independent and

Nn,m(B ∩ In,m) ∼ Poisson (µn,m(B ∩ In,m)) ,
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and the sum of independent Poisson distributed random variables is Poisson whose parameter is
sum of the parameters, i.e.,

N(B) ∼ Poisson(µ(B)),

where
µ(B) =

∑
n,m

µn,m(B ∩ In,m).

Example 10.24 (Cox Random Measure). Let N be a point process on Rd and let η be a random
measure on Rd such that η ({x}) = 0. For example, for bounded B ∈ B(Rd), define

ν(B) :=

∫
B

(
1

2π

) d
2

e−
∥x∥2d

2 dx,

to be the standard normal distribution in Rd. Let Λ be a positive random variable, say Λ ∼ exp(1).
Define η := Λν, or η(B) = Λν(B) for any B ∈ B(Rd). Then η is a Cox random measure if
conditioned on η = µ, N is a Poisson random measure with tensity µ. In this case,

P (N(B) = k) = E (P (N(B) = k|η))

= E

(
ηk(B)

k!
e−η(B)

)
.

Then N are said to be conditionally Poisson, or doubly stochastic Poisson, or Cox processes.
In the case when η = Λν with Λ and ν defined above, we have

P (N(B) = k) = E

(
Λkνk(B)

k!
e−Λν(B)

)
=

∫ ∞

0

λkνk(B)

k!
e−ν(B)λe−λdλ

=
νk(B)

(ν(B) + 1)
k+1

∫ ∞

0

(ν(B) + 1)
k+1

λk+1−1

Γ(k + 1)
e−(ν(B)+1)λdλ

=

(
1− ν(B)

ν(B) + 1

)(
ν(B)

ν(B) + 1

)k

.

Thus, N(B) is geometrically distributed. Since N(B) is not Poisson distributed, N is not a Poisson
random measure.

10.5 Integration w.r.t Measure

Let S be a set and S an sigma algebra on S and µ is a measure on (S,S). (Think of S to be Rd,
S = B(Rd) and µ point measure.) The goal is to give meaning to integral of f with repect to the
measure µ denoted by ∫

S

f(x)µ(dx) =

∫
fdµ =: µf.

Definition 10.25. Let N be a random measure on (S,S).
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(a)

Nf :=

∫
S

f(x)N(dx),

or

Nf(ω) :=

∫
S

f(x)N(ω, dx),∀ω ∈ Ω,

defines a positive random variable Nf for any f ∈ S/B(R+).

(b)

µ(B) = E[N(B)] =

∫
Ω

N(ω,B)P (dω),∀B ∈ S,

defines a measure µ on (S,S). Hence

µ(dx) = E[N(dx)] =

∫
Ω

N(ω, dx)P (dω).

(c) E[Nf ] = µf .

Proof. By Fubini theorem,

µf =

∫
S

f(x)µ(dx) =

∫
S

f(x)

∫
Ω

N(ω, dx)P (dω) =

∫
Ω

∫
S

f(x)N(ω, dx)P (dω) = E[Nf ].

Definition 10.26. Call a function f : S ! R measurable if for any t ∈ R, {x ∈ S : f(x) ⩽ t} ∈ S.
For example, if (Ω,F , P ) is a probability space, a measurable function X is just a r.v. and {ω ∈
Ω : X(ω) ⩽ t} ∈ F . Then taking the probability measure, P ({ω ∈ Ω : X(ω) ⩽ t}) = FX(t), where
FX(t) is the cdf of X, since (P ◦X−1)((−∞, t]) = FX(t).

How does one integrate f w.r.t. µ ? How does one construct∫
S

f(x)µ(dx) =

∫
fdµ =: µf.

Recall in calculus, how did we construct
∫ b

a
f(x)dx for a continuous function f ⩾ 0 ? Thought

of the integral as the area under the curve and make approximation using rectangle (if you will)
and check that limit exists as one make finite partitions. Let A ∈ S and recall

1A(s) =

{
1, s ∈ A,
0, s ∈ Ac.

Then define ∫
S

1A(s)µ(ds) = E[1A] = µ(A).

Let A1, . . . , An ∈ S be pairwise disjoint and let c1, . . . , cn ∈ R. Define

f(x) =

n∑
i=1

ci1Ai
(x),
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which is a simple function. Then∫
S

f(x)µ(dx) =

∫
S

n∑
i=1

ci1Ai(x)µ(dx) =

n∑
i=1

ci

∫
1Ai(x)µ(dx) =

n∑
i=1

ciµ(Ai).

Recall f : S ! [0,∞) is measurable, then for a < b,

{s ∈ S : a < f(s) ⩽ b} = {s ∈ S : f(s) ⩽ b}∖ {s ∈ S : f(s) ⩽ a} ∈ S.

For n = 1, 2, · · · , construct simple functions {fn}n∈Z+ such that f1 ⩽ f2 ⩽ · · · and fn " f . Then
we define ∫

S

f(s)µ(ds) = lim
n!∞

∫
S

fn(s)µ(ds).

For k = 1, . . . , n2n,

Ak =

{
s ∈ S :

k − 1

2n
< f(s) ⩽

k

2n

}
.

An2n+1 = {s ∈ S : f(s) > n}.
Set for k = 1, . . . , n2n, ck = k−1

2n , cn2n+1 = n. The function

fn(s) =

n2n+1∑
k=1

ck1Ak
(s)

is a simple function. When n going from n to n + 1, each interval (k−1
2n , k

2n ] gets split into two
disjoint intervals (

2k − 2

2n+1
,
2k − 1

2n+1

]⊔(
2k − 1

2n+1
,

2k

2n+1

]
.

Ak gets split into two disjoint sets

f−1

((
2k − 2

2n+1
,
2k − 1

2n+1

])⊔
f−1

((
2k − 1

2n+1
,

2k

2n+1

])
.

If s is in the former, then fn+1(s) = fn(s) =
k−1
2n . If s is in the latter,

fn+1(s) =
2k − 1

2n+1
> fn(s) =

k − 1

2n
.

Thus for any s ∈ S, fn(s) ⩽ fn+1(s) and fn(s) " f(s). Note limn!∞ fn(s)µ(ds) exists but may be
∞. Set ∫

S

f(s)µd(s) = lim
n!∞

∫
fn(s)µ(ds),

where ∫
S

fn(s)µ(ds) =

n2n∑
k=1

k − 1

2n
µ(Ak) + nµ(An2n+1).

Let f be a measurable real function on S. Then both f+ and f− are nonnegative measurable
functions, implying their integrals exist. If at least one of the integrals µf+ and µf− is finite, then∫

S

f(s)µ(ds) =

∫
S

f+µ(ds)−
∫
S

f−(s)µ(ds).
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Example 10.27. Let S = R2 and S = B(R) and µ(dx) = g(x)dx, where g is a nonnegative and
piecewise continuous function whose Riemman integral is 1. So g is the density for a r.v. and then
µ is a induced probabolity measure. Then for any A ∈ B(R2),

µ(A) =

∫
R2

1A(x)µ(dx) =

∫
R2

1A(x)g(x)dx = P (X ∈ A).

Now if f is an integrable function w.r.t µ,∫
R
f(x)µ(dx) =

∫
R

f(x)g(x)dx = E[f(x)].

(Think of the density g(x) of the Lebegue measure is 1, which implies the random variable is
unformly distributed.) Then

λ(dx) = 1 · dx = dx and

∫
R
1dx = µ(R) = ∞,

in space (R,B(R), λ) and

E[f ] =

∫
R
fdλ =

∫
R
fλ(dx) =

∫
R
f · 1 · dx =

∫
fdx.

Example 10.28. Let (S,S) be a measurable space. Let x ∈ S, for measurable f ⩾ 0 and f is
defined at x, find

∫
S
f(t)δx(dt). Recall the measure δx ∈Mp and

δx(A) =

{
1, x ∈ A,
0, x ̸∈ A.

Let A in S. If f(x) = 1A(x),∫
S

f(s)δx(ds) =

∫
S

1A(s)δx(ds) = δx(A) = 1A(x) = f(x).

Example 10.29. Let A1, . . . , An ∈ S be pairwise disjoint, and let c1, . . . , cn ∈ [0,∞), set

fn(x) =

n∑
i=1

ci1Ai
(x).

If x ̸∈ ⊔n
i=1Ai, ∫

S

fn(t)δx(dt) =

n∑
i=1

ciδx(Ai) = 0 = fn(x).

If x ∈ Aj for some j, ∫
S

fn(t)δx(dt) =

n∑
i=1

ciδx(Aj) = cj = fn(x).

Like before, let

fn(x) =

n2n+1∑
k=1

k − 1

2n
1Ak

(x) + n1An2n+1
(x) " f(x).
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Assume f is defined at x. If k−1
2n < f(x) ⩽ k

2n for some k = 1, . . . , n2n, then∫
S

fn(t)δx(dt) =
k − 1

2n
δx

(
f−1

(
k − 1

2n
,
k

2n

])
=
k − 1

2n
= fn(x).

If f(x) > n, ∫
S

fn(x)δx(dt) = nδx
(
f−1(n,∞)

)
= n = fn(x).

Thus, ∫
S

fn(t)δx(dt) = fn(x).

Then by MCT, ∫
S

f(t)δx(dt) = lim
n!∞

∫
S

fn(t)δx(dt) = lim
n!∞

fn(x) = f(x),

when a f is nonnegative and measurable function.

Example 10.30. If f is measurable and f is defined at x,∫
S

f(t)δx(dt) = δx(f
+)− δx(f

−) = f+(x)− f−(x) = (f+ − f−)(x) = f(x),

since f+(x) or f−(x) must be 0. Theorefore, the integration of a function f w.r.t. to the point
measure δx is the evaluation of the function f at that point x, i.e., f(x).

Example 10.31. Let x1, . . . , xn be points in S and define a measure µ by

µ(A) =

n∑
k=1

δxk
(A),∀A ∈ S,

which counts the number of x1, . . . , xn that are in the set A. So µ is a counting measure. Then for
measurable f and f is defined at x1, . . . , xk,

µf :=

∫
S

f(t)µ(dt) =

n∑
k=1

∫
S

f(t)δxk
(dt) =

n∑
k=1

f(xk).

Example 10.32. Let N be a point process on (S,S). For measurable f ⩾ 0, the Laplace functional
of N is given by

LN (f) := E
[
e−Nf

]
= E

[
exp

(
−
∫
f(t)N(dt)

)]
.

If µ is a measure, ∫
S

f(x)µ(dx) ∈ R.∫
S

(af(x) + bg(x)µ(dx) = a

∫
f(x)µ(dx) + b

∫
g(x)µ(dx),

where we think of the integral w.r.t µ as a linear functional on the msble functions on S.



10.5. INTEGRATION W.R.T MEASURE 123

Example 10.33. Let X be an S-valued random variable having distribution ν, that is ν(B) =
P (X ∈ B). Define a point process N := δX . Let f be measurable. Since

∫
S
f(x)δX(dx) = f(X),

we have the Laplace functional of f is

LδX (f) = E

[
exp

(
−
∫
f(x)δX(dx)

)]
= E [exp (−f(X))] =

∫
S

e−f(x)ν(dx).

If S = [0,∞) and f(x) = s · x for some s > 0, then

LδX (f) =

∫ ∞

0

e−stν(dt) = E[e−sX ],

which is just the Laplace transform of X.

Example 10.34. Let X1, . . . , Xn be iid S-valued r.v.’s with distribution ν. Define a point process
N by

N =

n∑
k=1

δXk
.

For f ⩾ 0 and measurable,

LN (f) = e−
∫
S
f(x)N(dx) = E

[
exp

(
−

n∑
k=1

∫
S

f(x)δXk
(dx)

)]
= E

[
exp

(
−

n∑
k=1

f(Xk)

)]

=

n∏
k=1

E
[
e−f(Xk)

]
=

(∫
S

e−f(x)ν(dx)

)n

=
(
νe−f

)n
.

Example 10.35. Let τ be a nonnegative S-valued r.v., independent of X1, . . . , Xn. Set

N =

τ∑
k=1

δXk
.

Let f ⩾ 0 be measurable and consider

E[e−Nf |τ = n] =
(
νe−f

)τ
.

Then
LN (f) = E

[
e−Nf

]
= E

[
E
[
e−Nf

∣∣ τ]] = E
[(
νe−f

)τ]
.

Let Gτ be the probability generating function for τ , i.e., Gτ (z) = E[zτ ]. Then

LN (f) = Gτ

(
νe−f

)
.

If, for example, τ ∼ Poisson (1), Gτ (z) = e−λ(1−z). Then

LN (f) = Gτ

(
νe−f

)
= e−λ(1−νe−f).

Since

ν1 =

∫
S

1 · ν(dx) =
∫
S

ν(dx) = ν(S) = 1,
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we have LN (f) = e−λν(1−e−f). Let m = λν, then LN (f) = e−m(1−e−f). Suppose X ∼ Poisson(λ),
then

E[e−sX ] =

∞∑
k=0

e−sk λ
k

k!
e−λ = e−λ(1−e−s).

Example 10.36. A poisson random measure on (S,S) is a point process N so that A1, . . . , An

are pairwise disjoint in S. Then N(A1), . . . , N(An) are independent poisson distributed r.v.’s with
parameter m(A1), . . . ,m(An), respectively, where the intensity m is a measure on (S,S). Suppose
f = 1A for A ∈ S and N(A) ∼Poisson(m(A)), then

Nf = N1A =

∫
S

1A(x)N(dx) = N(A).

In this case,

LN (1A) = E
[
e−Nf

]
= E

[
e−N(A)

]
= e−m(A)(1−e−1). (Let s = 1).

Note

m
(
1− e−1A

)
=

∫
S

(
1− e−1A(x)

)
m(dx).

If x ̸∈ A, 1− e−1A(x) = 1− e−0 = 0. If x ∈ A, 1− e−1A(x) = 1− e−1. Then

m
(
1− e−1A

)
=

∫
A

(
1− e−1

)
m(dx) =

(
1− e−1

)
m(A).

Thus, LN (1A) = e−m(1−e−1A). In this case, LN (f) = e−m(1−e−f).

Example 10.37. Let A1, . . . , An be disjoint sets in S and let c1, . . . , cn be positive number, and

f(x) =

n∑
k=1

ck1Ak
(x).

Then Nf =
∫
S
f(x)N(dx) =

∑n
k=1 ckN(Ak). Then

LN (f) = E
[
e−Nf

]
=

n∏
k=1

E
[
e−ckN(Ak)

]
= exp

(
−

n∑
k=1

m(Ak)
(
1− e−ck

))
(s = ck)

= exp

(
−

n∑
k=1

m
(
1− e−ck1Ak

))
= em(1−e−f)???

10.6 Kernel

Definition 10.38. Let (S,S) and (T, T ) be two meaurable Polish spaces, e.g., S = Rd.
Kernel is a mapping

ν : S × T ! R+

satisfying
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(a) for any s ∈ S, ν(s, ·) is a measure on T .

(b) for any B ∈ T , ν(·, B) is a mesurable function on S.

Example 10.39. Let X be S-valued and Y be T -valued random variables, respectively. Let µ be
the distribution of X, i.e.,

µ(A) = P (X ∈ A),∀A ∈ S.
Let A ∈ S and B ∈ T . Then

P (X ∈ A, Y ∈ B) = E[1A(X)1B(Y )]

= E[E[1A(X)1B(Y )|X]]

= E[1A(X)E[1B(Y )|X]]

= E[1A(X)P (Y ∈ B|X)]

If S is nice enough, there exists a kernel ν such that

ν(s,B) = P (Y ∈ B|X = s).

Then ν(X,B) is a random variable and

P (X ∈ A, Y ∈ B) = E[1A(X)ν(X,B)] =

∫
S

1A(s)ν(s,B)µ(ds) =

∫
A

ν(s,B)µ(ds).

Recall the discrete case,

P (X ∈ A, Y ∈ B) =
∑
i∈A

∑
j∈B

P (X = i, Y = j)

=
∑
i∈A

∑
j∈B

P (Y = j|X = i)P (X = i)

=
∑
i∈A

P (Y ∈ B|X = i)P (X = i).

So we can regard the sum as the integral, P (Y ∈ B|X = i) as ν(s,B) and P (X = i) as µ(ds).

10.7 Randomization of a Point Process

Let N be a point process on (S,S). Write

N(A) =
∑
k

δξk(A),∀A ∈ S.

Here ξ1, ξ2, · · · are S-valued random variables and ξk can be thought of the location of the k-th
points. Now let τ1, τ2, · · · be a sequence of random variables on (T, T ), which are conditionally
independent given N and such that

P (τk ∈ B|N) = P (τk ∈ B|ξk) = ν(ξk, B),∀B ∈ T .

Here when ξk = s, P (τk|ξk = s) is distribution for τk, i.e.,

P (τk ∈ B|ξk = s) ∈ R+,∀B ∈ T .
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Example 10.40. Let N be a Poisson random measure on (R,B(R)) with intensity m, which is
Lebesgue measure. Then

E[N(a, b)] = m(b− a) = b− a.

Think of N as being the arrival process to a queue system.

N(A) =
∑
k∈Z

δξk(A),∀A ∈ S.

Let {τk}k∈Z be iid random variables independent of N that are nonnegative. Think of τk as the
amount of work brought by the arrival at ξk. Construct a new point process

Nν(A×B) =
∑
k

δ(ξk,τk)(A×B)

for A×B ∈ S × T , i.e., Nν is a point process on the product space (S × T,S × T ).

Let µk be the distribution of ξk. Since given N , τk just depends on ξk,

P
(
δ(ξk,τk)(A,B) = 1

)
= P (ξk ∈ A, τk ∈ B)

= E[E[P (ξk ∈ A, τk ∈ B)|N ]]

= E[E[1A(ξk)1B(τk)|N ]]

= E[1A(ξk)E[1B(τk)|N ]]

= E[1A(ξk)P (τk ∈ B|N)]

= E[1A(ξk)ν(ξk, B)]

=

∫
S

ν(s,B)µk(ds)1A(s)

=

∫
A

ν(s,B)µk(ds).

Define a (product) measure γ on (S × T,S × T ) by

γ(A×B) =

∫
A×B

γ(ds, dt) =

∫
A

ν(s,B)µ(ds) =

∫
A

∫
B

ν(s, dt)µ(ds)

=

∫
S

∫
T

ν(s, dt)µ(ds)1A(s)1B(t),∀A×B ∈ S × T .

Suppose f(X,Y ) = g(X)h(Y ), where g and h are nonnegative. Then

E[f(X,Y )] = E[g(X)h(Y )] = E[E[g(X)h(Y )|X]] = E[g(X)E[h(Y )|X]]

= E

[
g(X)

∫
T

h(t)ν(X, dt)

]
=

∫
T

E [g(X)h(t)ν(X, dt)]

=

∫
T

∫
S

g(s)h(t)ν(s, dt)µ(ds) =

∫
S

∫
T

f(s, t)ν(s, dt)µ(ds).

=

∫
S×T

f(s, t)γ(ds, dt).
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Let µ be the intensity of N and µk be the distribution of ξk. Recall that µ is a measure on (S,S)
defined by µ(A) = E[N(A)]. Thus, for nonnegative measurable f on (S,S),

µf =

∫
S

f(s)µ(ds) =

∫
S

f(s)E[N(ds)]

= E

[∫
S

f(s)N(ds)

]
= E[Nf ]

= E

[∑
k

δξkf

]
= E

[∑
k

f(ξk)

]
=
∑
k

E[f(ξk)]

=
∑
k

∫
S

f(s)µk(ds).

So µf =
∑

k µkf . Note
∑

k E[1Ak
] =

∑
k P (Ak), E[δk(A)] = P (ξk ∈ A), and

µ(A) = E[N(A)] =
∑
k

E[δξk(A)] =
∑
k

P (ξk ∈ A) =
∑
k

µk(A).

Since µf =
∑

k µkf , µν(·, B) =
∑

k µkν(·, B).

E[Nν(A×B)] = E

[∑
k

δ(ξk,τk)(A×B)

]
=
∑
k

E [δξk(A)δτk(B)] =
∑
k

E [1A(ξk)1B(τk)]

=
∑
k

P (ξk ∈ A, τk ∈ B) =
∑
k

∫
S

ν(s,B)µk(ds)1A(s) =
∑
k

∫
A

ν(s,B)µk(ds)

=

∫
A

ν(s,B)µ(ds) = γ(A×B).

Suppose f : S × T ! R+ is measurable. Then E[f(ξk, τk)|ξk] =
∫
T
f(ξk, t)ν(ξk, dt). The above

equation is a function of the random variable ξk and for notational convenience, we write it as
E[f(ξk, τk)|ξk] = ν̂f(ξk). The ν-randomization of the point process N is the point process Nν on
the product space (S × T,S × T ) given by

Nν(A×B) =
∑
k

δ(ξk,τk)(A×B).

Let f : S × T ! R+ is measurable. Note

Nνf =

∫
S×T

f(s, t)Nν(ds, dt) =

∫
S×T

f(s, t)
∑
k

δ(ξk,τk)(ds, dt)

=
∑
k

∫
S×T

f(s, t)δ(ξk,τk)(ds, dt) =
∑
k

f(ξk, τk).
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Since τk’s are conditionally independent given N and ξk’s are known given N ,

E
[
e−Nνf

∣∣N] = E

[
exp

(
−
∑
k

f(ξk, τk)

)∣∣∣∣∣N
]

=
∏
k

E [ exp (−f(ξk, τk))|N ]

=
∏
k

E [ exp (−f(ξk, τk))| ξk]

=
∏
k

ν̂
(
e−f

)
(ξk)

= exp

(∑
k

log
(
ν̂
(
e−f

)
(ξk)

))
.

Hence

LNν
(f) = E

[
E
[
e−Nνf

∣∣N]] = E

[
exp

(∑
k

log
(
ν̂
(
e−f

)
(ξk)

))]
= LN

(
− log

(
ν̂
(
e−f

)))
,

since LN (f) = E [exp (−
∑

k f(ξk))]. Thus, the Laplace functional of Nν can be written in terms
of Laplace functional of N and the kernel ν.

Example 10.41. Suppose N is a Poisson random measure with intensity µ. Oberve that

µν̂f =

∫
S

[ν̂f(s)]µ(ds) =

∫
S

∫
T

f(s, t)ν(s, dt)µ(ds).

Since LN (f) = e−µ(1−e−f ), and ν̂ · 1 = E[1|ξk] = 1, we have

LNν
(f) = LN

(
− log

(
ν̂
(
e−f

)))
= exp

(
−µ
(
1− ν̂

(
e−f

)))
= exp

(
−µν̂

(
1−

(
e−f

)))
= exp

[
−
∫
S

∫
T

(
1− e−f(s,t)

)
ν(s, dt)µ(ds)

]
= exp

[
−γ
(
1− e−f(s,t)

)]
.

It follows that Nν is a Poisson random measure on the product space (S×T,S×T ) having intensity
γ(ds, dt) = ν(s, dt)µ(ds).

Example 10.42. Let A ∈ S and B ∈ T .
Note

E[Nν(A×B)|N ] = E

[∑
k

δ(ξk,τk)(A×B)

∣∣∣∣∣N
]
= E

[∑
k

δξk(A)δτk(B)

∣∣∣∣∣N
]

=
∑
k

E [δξk(A)δτk(B)|N ] =
∑
k

δξk(A)P (τk ∈ B|ξk)

=
∑
k

δξk(A)ν(ξk, B).
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Also, if f(s) = 1A(s)ν(s,B),

(Nf =

∫
S

f(s)N(ds) =)

∫
1A(s)ν(s,B)N(ds)

=
∑
k

∫
S

1A(s)ν(s,B)δξk(ds) =
∑
k

∫
A

ν(s,B)δξk(ds)

=
∑
k

∫
A

ν(ξk, B)δξk(ds) =
∑
k

δξk(A)ν(ξk, B).

Then

E[Nν(A×B)] = E

[∫
A

ν(s,B)N(ds)

]
=

∫
A

ν(s,B)µ(ds) (⋆)

=

∫
A

∫
B

ν(s, dt)µ(ds) =

∫
S

∫
T

1A×Bν(s, dt)µ(ds),

where γ(ds, dt) = ν(s, dt)µ(ds) is the joint distribution of ξk and τk.

Example 10.43. Let N =
∑

k δξk be a Poisson random measure and partition the random measure
N into j groups N1, . . . , NJ . An arrival ξk is put into group j w/prob Pj(ξk). Let τk be random
variables taking values in the sets T = {e1, . . . , ej}, where ek is the kth unit vector such that

P (τk = ej |N) = γ (ξk, {ej}) = Pj(ξk).

Let Nν be the randomization

Nν =
∑
k

δ(ξk, τk)

Let A ∈ S and consider the set A× {ej},

Nν (A× {ej}) =
∑
k

δ(ξk,τk) (A× {ej}) := Nj(A),

the number of points in group j. Let f : S×T ! [0,∞) be measurable. Set fj(s) = f(s, ej). Then

Nνf =
∑
k

δ(ξk, τk)f =
∑
k

f(ξk, τk) =
∑
k

J∑
j=1

f(ξk, ej)1{τk=ej} =
∑
k

J∑
j=1

fj(ξk)1{τk=ej}

=

J∑
j=1

∑
k

fj(ξk)1{τk=ej} =

J∑
j=1

∑
k=1

(δξkfj)1{τk=ej} =

J∑
j=1

Njfj .
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Hence E[Nνf ] =
∑J

j=1E[Njfj ]. Note

E[Njfj ] = E

[∑
k

fj(ξk)1{τk=ej}

]
= E

[
E

[∑
k

fj(ξk)1{τk=ej}

∣∣∣∣∣N
]]

= E

[∑
k

fj(ξk)E
[
1{τk=ej}

∣∣N]] = E

[∑
k

fj(ξk)Pj(ξk)

]

= E

[∑
k

δξk(fj · Pj)

]
= E[Nf ]

= E

[∫
S

(fj · Pj)(s)N(ds)

]
=

∫
S

fj(s)Pj(s)µ(ds)

= [Pj(·)µ] fj

So the intensity of the jth point process is Pj(·)µ, where µ is the intensity of N . Note

E[Nνf ] =

J∑
j=1

Pj(·)µ]fj .

So the intensity of Nν is
∑J

j=1 Pj(·)µ = µ. Next, since Nν has intensity γ(ds, dt) = µ(ds)ν(s, dt),

E

 J∏
j=1

e−Njfj

 = E
[
e−

∑J
j=1 Njfj

]
= E

[
e−Nνf

]
= exp

[
−
∫
S

∫
T

ν(s, dt)µ(ds)
(
1− e−f(s,t)

)]

= exp

−∫
S

J∑
j=1

ν(s, ej)µ(ds)
(
1− e−f(s,ej)

)
= exp

− J∑
j=1

∫
S

Pj(s)µ(ds)
(
1− e−fj(s)

)
=

J∏
j=1

exp

[
−
∫
S

Pj(s)µ(ds)
(
1− e−fj(s)

)]
.

Since

exp

[
−
∫
S

Pj(s)µ(ds)
(
1− e−fj(s)

)]
is the Laplace functional of a Possion random measure with intensity Pj(s)µ(ds), we get N1, . . . , Nj

are independent Poisson random measure with intensity Pj(·)µ.

10.7.1 M/G/∞
Arrival forms a Poisson process {Nt, t ⩾ 0} having rate λ > 0. Service time s1, s2, · · · are iid having
df F . Fix a time t, an arrival at time ξk is still in the system if ξk + sk > t and has departed if
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ξk + sk ⩽ t. Let

N = {Ns; 0 ⩽ s ⩽ t}.

Let F be the distribution of S1 and set

P1(ξk) = 1− F (t− ξk) = P (s1 + ξk > t),

P2(ξk) = F (t− ξk) = P (s1 + ξk ⩽ t).

Then P1(ξk) is the prob. a customer which arrives at time ξk is still in the system at time t. P2(ξk)
is the prob. a customer departs by time given arrival at ξk. Then defining N1 and N2 as the
number that belongs to group i, we get N1 and N2 are independent Poisson random measures with
intensities λ(1− F (s))ds and λF (s)ds. The expected number of customer still in system at time t
has expectation

E [N1(0, t]] =

∫ t

0

λ(1− F (t− s))ds = λ

∫ t

0

[1− F (s)]ds,

and similarly, E [N2(0, t]] = λ
∫ t

0
F (s)ds.

10.8 Transformation of random measures

Definition 10.44. Suppose (S,S) and (T, T ) are measurable space. A mapping f : S ! T is said
to be measurable if for any B ∈ T ,

f−1(B) = {s ∈ S|f(s) ∈ B} ∈ S.

Remark. If {Bn}n∈Z+ ⊆ T are disjoint, then
{
f−1(Bn)

}
n∈Z+ are also disjoint.

Proof. Assume x = f−1(B1) = f−1(B2). Then f(x) ∈ B1 and f(x) ∈ B2, which is contradicted by
B1 and B2 are disjoint.

Theorem 10.45. Let µ be a measure on (S,S). Given a measurable mappping f : S ! T and
T = σ(T ). Define

µ ◦ f−1 : T ! R
B ! µ

(
f−1(B)

)
Then µ ◦ f−1 is a measure on (T, T ).

Proof. (a)

µ ◦ f−1(∅) = µ
(
f−1(∅)

)
= µ(∅) = 0.

(b) Let {Bn}n∈Z+ ⊆ T be disjoint. Since µ is σ-addtive,

(µ ◦ f−1)

( ∞⊔
n=1

Bn

)
= µ

(
f−1

( ∞⊔
n=1

Bn

))
= µ

( ∞⊔
n=1

f−1(Bn)

)
=

∞∑
n=1

(µ ◦ f−1)(Bn).
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Example 10.46. Let X : Ω ! R be a random variable. Then P ◦X−1 : B(R) ! R is a measure
on (R,B(R)). Since

P ◦X−1(R) = P
(
X−1(R)

)
= P (Ω) = 1,

P ◦X−1 is a probability measure on (R,B(R)), which is called a distribution of X.

Theorem 10.47. Let g be a nonnegative and measurable function on T . That is

g : T ! R+

so that g−1(B) ∈ T for all B ∈ B(R+). Then∫
T

g(t)
[
µ ◦ f−1

]
(dt) =

∫
S

g ◦ f(s)µ(ds) =
∫
S

g (f(s))µ(ds).

1f−1(A)(s) =

{
1, s ∈ f−1(A),
0, s ̸∈ f−1(A)

=

{
1, f(s) ∈ A,
0, f(s) ̸∈ A.

= 1Af(s).

Proof. Let g = 1A. Then∫
T

1A(t)
[
µ ◦ f−1

]
(dt) = µ ◦ f−1(A) = µ

(
f−1(A)

)
=

∫
S

1f−1(A)µ(ds)

=

∫
S

1A(f(s))µ(ds) =

∫
S

[1A ◦ f ](s)µ(ds).

Set g =
∑n

i=1 ci1Ai
, where ci ∈ R and Ai ∈ S for i = 1, . . . , n. Then∫

T

g(t)
[
µ ◦ f−1

]
(dt) =

n∑
i=1

ci

∫
T

1Ai

[
µ ◦ f−1

]
(dt)

=

n∑
i=1

ci

∫
S

[1Ai
◦ f ] (s)µ(ds)

=

∫
S

(
n∑

i=1

ci1Ai

)
f(s)µ(ds)

=

∫
S

g ◦ f(s)µ(ds).

Let g ⩾ 0 be measurable, then ∃{gn}n∈Z+ simple such that gn " g. Then gn ◦ f−1 " g ◦ f−1. By
MCT, ∫

S

g ◦ f(s)µ(ds) =
∫
S

lim
n!∞

gn ◦ f(s)µ(ds)

= lim
n!∞

∫
S

gn ◦ f(s)µ(ds)

= lim
n!∞

∫
T

gn(t)
[
µ ◦ f−1

]
(dt)

=

∫
T

g(t)
[
µ ◦ f−1

]
(dt).
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Example 10.48. By laws of the unconscious statistician,

E[g(x)] =

∫
Ω

g(X(ω))P (dω) =

∫
R
g(x)

[
P ◦X−1

]
(dx) =

∫
R
g(x)F (dx).

Example 10.49. Suppose N is a point process on (S,S). Write N =
∑

k δξk . Then N ◦ f−1 is a
point process on (T, T ). Let g be a nonnegative measurable function on T . Then

(N ◦ f−1)g =

∫
T

g(t)N ◦ f−1(dt) =

∫
S

g ◦ f(s)N(ds) =

∫
S

f ◦ f(s)
∑
k

δξk(ds)

=
∑
k

g ◦ f(ξk) =
∑
k

g (f(ξk)) .

So setting τk = f(ξk), we have N ◦ f−1 =
∑

k δτk =
∑

k δf(ξk). Let m be the intensity of N , then
m ◦ f−1 is the intensity of N ◦ f−1 since

E[N ◦ f−1(A)] = E
[
N(f−1(A))

]
= m(f−1(A)) = m ◦ f−1(A).

Next the Laplace functional of N ◦ f−1 is

LN◦f−1(g) = E
[
exp

(
−N ◦ f−1g

)]
= E

[
−
∫
S

g ◦ f(s)N(ds)

]
= LN (g ◦ f).

Finally, let N be a Poisson random measure on (S,S) with intensity m. Then

LN◦f−1(g) = LN (g ◦ f) = exp
[
−m

(
1− e−f◦g)]

= exp
[
−m

(
1− e−g

)
◦ f
]
= exp

[
−m ◦ f−1

(
1− e−g

)]
,

since
1− e−g◦f(s) =

(
1− e−g

)
f(s)(= 1[f(s)]−

(
e−g
)
(f(s)) = 1− e−g◦f(s),∀s ∈ S.)

So N ◦ f−1 is a Poisson random measure with intensity mf−1.

Example 10.50. Suppose N is a Poisson random measure on R× R+ with intensity

m(dt, dx) = λ(dt)µ(dx),

where µ is the distribution of a nonnegative random variable. Let N =
∑

k δ(ξk,τk), where ξk ∈ R
and τk ∈ R+. Consider an infinite server queue, and let ξk be the arrival time and τk be the service
time of the arrival ξk. Define

f : R× R+ ! R
(s, x)! s+ x.

Then Nf−1 =
∑

k δf(ξk,τk) =
∑

k δξk+τk , is the point process giving the departure time from the
system. It is a Poisson random measure with intensity m ◦ f−1. Let g : R! R+. Then(

m ◦ f−1
)
g =

∫
R
g(y)m ◦ f−1(dy) =

∫
R×R+

g ◦ f(s, t)m(ds, dt) =

∫
R+

∫
R
g(s+ t)λ(ds)µ(dt).

Let x = s+ t, then dx = ds. Then(
m ◦ f−1

)
g =

∫
R+

∫
R
g(x)λdxµ(dt) =

∫
R
g(x)

[∫
R+

µ(dt)

]
λdx =

∫
R
g(x)λdx.

m ◦ f−1(dy) = λdy.???
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10.9 The Distribution of a Point Process

Definition 10.51. Let N be the set of all counting measures on S given (Ω,A, P ), consisting of
all events of the form

EA,k = {m ∈ N | m(A) = k},∀compact A ∈ S,∀k ∈ N,

i.e, it is the event that there are exactly k points in the region A. The measurable space (N ,B(N ))
is called the canonical space or outcome space for a point process in S.

Remark. The σ-field B(N ) includes events such that

EA1,k1
∩ · · ·EAn,kn

= {m ∈ N : m(A1) = k1, . . . ,m(An) = kn},

i.e., the event that there are exactly ki points in the region Bi for i = 1, . . . ,m. It also includes, for
example, the event that the point process has no points at all,

{N = 0} = {m ∈ N : m(A) = 0,∀A ∈ S},

since this event can be represented as the intersection of the countable sequence of events {EB(0,n),0}n∈Z+ .
Here B(0, r) denotes the ball of radius r and center 0 in S.

A point process N may now be defined formly as a measurable mapping from a probability
space to an outcome space

N : (Ω,A, P )! (N ,B(N )).

Thus, each elementary outcome ω ∈ Ω determines an outcome Nω ∈Mp for the entire point process.
Measurability is the requirement that,∀E ∈ B(N ), the event

{N ∈ E} = {ω ∈ Ω : Nω ∈ E} ∈ A.

This implies that any event has a well-defined probability P (N ∈ E).

Definition 10.52. The distribution of a point process N is the probability measure PN on the
outcome space (N ,B(N )), defined by

PN (A) = P (N ∈ A) = P (ω ∈ Ω : Nω ∈ A),∀A ∈ B(N ).

10.10 Stationary Random measure

Let {N(t); t ⩾ 0} be a time homogeneous Poisson process having rate λ so that it has the following
properties:

(a) N(0) = 0.

(b) It has stationary increments.

(c) It has independent increments.

(d) N(t) ∼ Poi(λt).
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Remark. Property (2) stats that if A = (a, b] and t > 0, then with t + A = {x + t : x ∈ A}, we
have N(t+A) = N(A), i.e., N(t+ b− a)−N(t) = N(b− a).

Definition 10.53. For any t ∈ R, define

θt : N ! N
m 7! θtm : B(R)! R+

A 7! m(t+A).

Therefore, on Rd, θtx = x− t? (Shift all points to the left or shift the origin to the right.)

Theorem 10.54. θt is B(N )/B(N )-measurable.

Proof. NTS: for any B ∈ B(N ),

θ−1
t (B) = {m ∈ N : θtm ∈ B} ∈ B(N ).

Define
ζ := {B ∈ B(N ) : θ−1

t (B) ∈ B(N )} ⊆ B(N ).

Since preimages are nice, it is very easy to show ζ is an σ-algebra. Next, we show B(N ) ⊆ ζ, we
need to show ζ contains all sets of the form {m ∈ N : m(A) = k}. Suppose this is done. Thus,
ζ = B(N ). Let EA,k = {m ∈ N : m(A) = k}, where A ∈ B(Rd) and k ∈ N. Since θt : N ! N ,

θ−1
t (EA,k) = {m ∈ N : (θtm)(A) = k} = {m ∈ N : m(t+A) = k}.

Since t+A ∈ B(Rd), it makes sense for m(t+A) = k and we are done.

Definition 10.55. A point process

N : (Ω,A, P )! (N ,B(N ))

is said to be stationary if for any t ∈ Rd, θtN has the same distribution as N , where

PN (A) = P (ω ∈ Ω | Nω ∈ A),∀A ∈ B(N ),

PθtN (A) = P (ω ∈ Ω | (θtN)ω ∈ A),∀A ∈ B(N ).

This is equivalent to the condition that for any n ∈ Z+, if {Ai}ni=1 ⊆ B(Rd) are disjoint,

((θtN)(A1), . . . , (θtN)(An)) = (N(t+A1), . . . , N(t+An))

d
= (N(A1), . . . , N(An)) .

For a stationary point process N , let u ∈Mp be the intensity of N . Then∀A ∈ B(Rd),

µ(A) = E[N(A)] = E[(θtN)(A)] = E[N(t+A)] = µ(t+A),

which is translation invariant. Moreover, if A ∈ B(R) is bounded, then µ(A) < ∞. Since for all
Radon measures, only the multiple of Lebesgue measure on Rd satisfying the translation invariance
property,

∃λ > 0, s.t. µ(A) = λ|A|,
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where |·| denotes the Lebesgue measure. Note λ|·| is still a invariant measure. Let {Nt; t ⩾ 0} be
a time homogeneous Poisson process having rate λ. By above, we can think of {Nt, t ⩾ 0} as a
stationary point process having the intensity λ× |·|. Recall that

lim
t!∞

N(t)

t
= λ w.p.1.

One method of proving the above result is to apply the strong law of large numbers to the inter-

arrival and invert. A slightly weaker result is to show that N(t)
t

p
! λ. Let ϵ > 0 and t > 0,

then

P (|N(t)/t− λ| > ϵ) = P (|N(t)− λt| > λt) ⩽
Var(Nt − λt)

(λt)2

=
Var(Nt)

(λt)2
=

1

λt
! 0, as t!∞.

Our goal is to provide a similar result for stationary point process. Before doing so consider the
following result from Markov chain theory. Let {(Xn, Yn);n = 0, 1, · · · } be a time homogeneous
Markov chain with state space {(0, 0), (1, 0), (0, 1), (1, 1)} and one-step transition matrix P given
by 

0.3 0.7 0 0
0.7 0.3 0 0
0 0 0.3 0.7
0 0 0.2 0.8


Then

π(0) = (1/2, 1/2, 0, 0), (sub chain is doubly MC)

π(1) = (0, 0, 2/9, 7/9),

are stationary distribution, as are their convex combinations. Let Sn =
∑n

m=1 1{Xm=0}. Then

Sn

n
! 1/21{Y0=0} + 2/91{Y0=1},

which is a random variable.

10.11 Invariant Sets and the ergodic theorem for random
measures

Definition 10.56. For θt : N ! N , a set I ∈ B(N ) is called shift-invariant if

θ−1
t I = {m ∈ N | θtm ∈ I} = I.

Let
Bn = [0, n),

and

Ic =

{
N(Bn)

n
! c

}
as n!∞.
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Then

θtIc =

{
N(t+Bn)

n
! c

}
as n!∞.

Note t+Bn = [t, n+ t). Let ω ∈ Ic, then
Nω(Bn)

n
! c.

Since as n!∞,

c 
Nω ([0, ⌈n+ t⌉))

⌈n+ t⌉ =
Nω ([0, t))

⌈n+ t⌉ +
Nω ([t, n+ t))

⌈n+ t⌉ +
Nω ([n+ t, ⌈n+ t⌉))

⌈n+ t⌉ ,

we have as n!∞,
Nω ([t, n+ t))

⌈n+ t⌉ ! c.

Then as n!∞,

Nω(t+Bn)

n
=

Nω(t+ Bn)

⌈n+ t⌉
⌈n+ t⌉

n
=

Nω ([t, n+ t))

⌈n+ t⌉
⌈n+ t⌉

n
! c.

So Ic ⊆ θtIc. Similarly, TtIc ⊆ Ic. Hence TtIc = Ic. Thus, Ic is invariant?

Definition 10.57. Let I ∈ B(N ) be invariant. Then

I := B({I ∈ B(N ) | I is invariant}) ⊆ B(N )

is a σ-algebra. Then
IN := N−1(I) = {N−1(I) | I ∈ I} ⊆ A

is a σ-algebra.

Definition 10.58. A stationary point process N is called ergodic if

P
(
N−1(I)

)
∈ {0, 1},∀I ∈ I.

Theorem 10.59. In general, it can be shown that there is an IN measurable random variable ξ
such that

E[N(B)|IN ] = ξ · |B|,∀B ∈ B(Rd).

If N is ergodic, ξ can be taken to be a constant.

Proof. Since {ξ ⩽ t} ⊆ IN ,∀ t ∈ R, then P (ξ ⩽ t) ∈ {0, 1},∀ t ∈ R. Let c := inf{t : P (ξ ⩽ t) = 1}.
If t > c, then P (ξ ⩽ t) = 1; If t < c, then P (ξ ⩽ t) = 0. Thus, ξ = c, w.p.1.

Theorem 10.60. The ergodic theorem states that if {Bn}n∈Z+ are rectangles such that B1 ⊆ B2 ⊆
· · · and |Bn| "∞, then

N(Bn)

|Bn|
! ξ.

Example 10.61. Recall a stationary Cox process N is a point process for which there exists a
random variable Λ such that conditional on Λ = λ, N is a homogeneous Poisson process with rate
λ. Taking Bn = [0, n). Since

N ([0, n))

n

∣∣∣∣Λ = λ −! λ, w.p.1.
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Then
N ([0, n))

n

∣∣∣∣Λ −! Λ w.p.1.

By ergodic theorem, ξ = Λ.

10.12 Stochastic process

Definition 10.62. A stochastic process is defined as a collection of random variables defined on
a common probability space (Ω,B, P ) and the random variables, indexed by some set T , all take
values in the same space (S,S). In other words, for a given probability space (Ω,B, P ) and a
measurable space (S,S), a stochastic process is a collection of S-valued random variables, which
can be written as

{X(t) : t ∈ T}.

Definition 10.63. The space S is called the state space of the stochastic process.

Definition 10.64. If {X(t); t ∈ T} is a stochastic process, then for any ω ∈ Ω, the mapping

X(·, ω) : T ! S,

is called a sample function, a realization, or, particularly when T is interpreted as time, as sample
path. This means that for a fixed ω ∈ Ω, there exits a sample function that maps the index set T
to the state space S.

Remark. (a) t is typically time, but can also be a spatial dimension.

(b) t can be discrete or continuous.

(c) The range of t can be finite, but more often is finite, which means the process contains an
infinite number of r.v’s.

Example 10.65. • The wireless signal received by a cell phone over time

• The daily stock price

• The number of packets arriving at a router in 1-second intervals.

• the image intensity over 1cm2 regions.

Definition 10.66. A stochastic process

X : (Ω,A, P )!
(
SR,SR)

is said to be stationary if for any t ∈ Rd, θtX has the same distribution as X, where

PX(A) = P (ω ∈ Ω | Xω ∈ A),∀A ∈ SR,

PθtX(A) = P (ω ∈ Ω | (θtX)ω ∈ A),∀A ∈ SR.

This is equivalent to the condition that for any n ∈ Z+, if {Ai}ni=1 ⊆ SR are disjoint,

((θtX)(A1), . . . , (θtX)(An)) = (X(t+A1), . . . , X(t+An))

d
= (X(A1), . . . , X(An)) .
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10.13 Jointly Stationary Random Measures and Stochastic
Processes

10.13.1 Event and Time Averges

Theorem 10.67 (Ergodic theorem). Let {X(t); t ⩾ 0} be a ergodic stochastic process with E[X(t)] <
∞. Then

lim
t!∞

1

t

∫ t

0

f(Xω(s))ds = E [f (X(0))] ,∀ω ∈ Ω,

for all bounded functions f , which is called time average. Suppose we observe Xt at times {Ti}i∈Z+

that correspond to a ergoic point process {N(t); t ⩾ 0}. Define the following if it exists:

EN [f (X(0))]
d
= lim

t!∞

1

Nω(t)

Nω(t)∑
k=1

f (X(Tk(ω))) = lim
t!∞

1

Nω(t)

∫ t

0

f (Xω(s))Nω(ds),

where we note that by the definiton of the Stieltjes integral,

∫ t

0

f(Xω(s))Nω(ds) =

∫ t

0

f(Xω(s))

Nω(t)∑
k=1

δTk

 (ds) =

Nω(t)∑
k=1

f (X(Tk(ω))) .

Let N be a point process. Let the index T = R and X be a S-valued stochastic process
X = {Xt; t ∈ R}. Let SR be the space consisting of all functions f : R! S. Think X of

X : (Ω,A, P )! (SR,SR),

which usually is not onto.

Definition 10.68. For any t ∈ R, define the evaluation

πt : S
R ! S

x 7! x(t).

Definition 10.69. Take SR to be σ(SR) that makes πt’s measurable, whose element is of the form

{x ∈ SR | πtx ∈ A},∀ t ∈ R,∀A ∈ S,

Then the distribution of X is determined by the finite dimensional distribution

P (X(t1) ∈ B1, . . . , X(tn) ∈ Bn),

where t1, . . . , tn ∈ R and B1, . . . , Bn ∈ S.

10.13.2 Joint processes

Consider the joint process (X,N) on
(
SR ×N ,SR ⊗ B(N )

)
.
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Definition 10.70. (a) For any t ∈ R,

θt : (N ,B(N ))! (N ,B(N ))

m 7! mt,

where mt(A) = m(t+A) for any A ∈ B(R). For example, m = Nω.

(b) For any t ∈ R, define

θt : (S
R,SR)! (SR,SR)

x 7! θtx,

where (θtx)(s) = x(t+ s) for any s ∈ S. For example, x = Xω.

(c) For any t ∈ R, define

θt : (S
R ×N ,SR × B(N ))! (SR ×N ,SR × B(N ))

(x,m) 7! (θtx, θtm).

Definition 10.71. The joint process (X,N) is called stationary if

θt(X,N)
d
= (X,N),∀ t ∈ R,

where
P(X,N)(A) = P ((X,N) ∈ A),∀A ∈ SR × B(N ).

Example 10.72. Let X = {X(t); t ∈ R+} be a CTMC having a countable state space S. Assume
X has a unique stationary distribution which is also a limiting distribution. If Q is the generator
of X, then πQ = 0, is the “stationary dist” in that if X0 has distribution π, then

θt (X(t1), . . . , X(tn)) = (X(t+ t1), . . . , X(t+ tn))
d
= (X(t1), . . . , X(tn)) .

Thus,

θtX
d
= X

and X is stationary on R+. One can extend X to a stationary process on R having the same dist
as on R+. Label the jump times of the MC so that

· · · < τ−1(N) < τ0(N) ⩽ 0 < τ1(N) < · · · .

Let N be the point process whose jump times are given by the {τk}k∈Z. The N is a measurable
function of X and it turns out (X,N) is stationary. Since N is stationary, there exists λ > 0 such
that

E[N(A)] = λ|A|.

Note

E[N(0, t)|X0 = i] = 1 · P (N(0, t) = 1|X0 = i) +

∞∑
n=2

nP (N(0, t) = n|X0 = i),
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and P (N(0, t) = 1|X0 = i) = λit+ o(t), where λi = −qii =
∑

j ̸=i qij . Next, (and one takes a little
work)

∞∑
n=2

nP (N(0, t) = n) = o(t).

Hence
E[N(0, t)|X0 = i] = λit+ o(t).

Thus,

E[N(0, t)] = E[E[N(0, t)|X0]] = E

[∑
i∈S

E[N(0, t)|X0 = i]1{X0=i}

]
=
∑
i∈S

E[N(0, t)|X0 = i]P (X0 = i) =
∑
i∈S

πi (λit+ o(t)) = λt.

where we divide by t and letting t! 0 to obtain λ =
∑

i∈S πiλi.

10.14 Palm distribution

The palm distribution of (X,N). The stationary pair (X,N) involves a dist. P(X,N) on (SR ×
N ,SR × B(N )) via

P(X,N)(A) = P ((X,N) ∈ A),∀A ∈ SR × B(N ).

For nonnegative measurable f on SR ×N ,

P(X,N)f =

∫
SR×N

f(x,m)P(X,N)(dx, dm) = E[f(X,N)].

Define a palm distribution Q(X,N) on (SR×N ,SR×B(N )) by setting for all nonnegative measurable
f ,

Q(X,N)f =

∫
SR×N

f(x,m)Q(dx, dm) :=
E
[∫

B
f (θs(X,N))N(ds)

]
E[N(B)]

,∀B ∈ B(R) and |B| ≠ 0.

Note Q(X,N)f does not depend on choice of B since (X,N) is a stationary pair. To gain some
insight into the palm distribution, label the points of N as

· · · < τ−1(N) < τ0(N) ⩽ 0 < τ1(N) < · · · .

The notation reminds us that the points of N are functions (indeed measurable) of N . Since

N =
∑N(t)

k=−∞ δτk(N) is a point process,∫
B

f (θs(X,N))N(ds) =
∑

τk(N)∈B

f
(
θτk(N)(X,N)

)
,∀B ∈ B(R).

For ω ∈ Ω, θτk(N(ω))(X(ω), N(ω)) is the outcome formed from (X(ω,N(ω))) by shifting the origin
to τk(N(ω)). If one thinks of the τk(N)’s as arrival times, θτk(N)(X,N) is the process viewed by
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from the perspective of the arrival at τk(N). If we now think of f as being some measurement made
on the process (X,N), then f

(
θτk(N)(X,N)

)
is the measurement one makes if the arrival at time

τk(N) occurs at times 0. If one sums over the arrivals that occur in B, then takes the expectation
and finally divides by the expected value of B, one gets a type of average of the measurement f as
seen by an arriving customer.

Theorem 10.73. Suppose P is a probability measure and f ⩾ 0 is measurable, define

µ(A) =

∫
A

f(x)P (dx),∀A ∈ B.

Then by definition, µ is a measure.

Example 10.74. Let X be a CTMC and let N be the point process consisting of the jumps
{τk}k∈Z. Assume X is stationary. Since N is a function of X, (X,N) is jointly stationary. Note
given a distribution, there is always a random variable which has the distribution. Let (Y,M) be a
pair that has joint distribution Q(X,N).

E[f(Y,M)] = Q(X,N)f.

Let f(x,m) = 1{j}(x0). Take B = [0, t]. Since θsX0 = Xs, we have

E
[
1{Y0=j}

]
= P (Y0 = j) =

E
[∫ t

0
1{j}(Xs)N(ds)

]
E[N(0, t)]

=
E
[∑N(0,t)

k=1 1{j}
(
Xτk(N)

)](∑
i∈S πiλi

)
t

.

Now

E

N(0,t)∑
k=0

1{j} (Xτk(N))

 = E

E
N(0,t)∑

k=0

1{j} (Xτk(N))

∣∣∣∣∣∣X0


= E

[ ∞∑
k=1

P
(
Xτk(N) = j,N(0, t) ⩾ k

∣∣X0

)]
= E

[
P
(
Xτk(N) = j,N(0, t) ⩾ 1

∣∣X0

)]
+ E

[ ∞∑
k=2

P
(
Xτk(N) = j,N(0, t) ⩾ k

∣∣X0

)]
= E[qX0jt+ o(t)] + E[o(t)]

=
∑
i̸=j

πiqijt+ o(t)

= πjλjt+ o(t).

since the CTMC cannot make a jump to itself and then when X0 = j, the conditional expectation
is just o(t) and finally, by the balance equation πQ = 0, we get the result. Letting t! 0, we have

P (Y0 = j) =
πjλj∑
i∈S πiλi

.
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Given a joint stationary pair (X,N), the palm measure is

E[f(Y,M)] = Q(X,N)f =
E
[∫

B
f (θs(X,N))N(ds)

]
E[N(B)]

=
E
[∫

B
f (θs(X,N))N(ds)

]
E[N ]|B|

,

where B ∈ B(R), N = E[N(0, 1)|IN ], E[N(A)] = λ|A|. stationary: invariant, multiple, Lebesgue.

Lemma 10.75. Let f be a nonnegative measurable function of SR × N and define a random
measure Nf on (R,B(R)) by

Nf (B) =

∫
B

f (θs(X,N))N(ds),∀B bounded Borel set.

Then Nf is also stationary.

Corollary 10.76. Given the lemma, since Nf is stationary,

E

[∫
B

f (θs(X,N))N(ds)

]
= E[Nf (B)] = c|B|,

where c = E[Nf (0, 1)]. Then

Q(X,N)f =
c|B|

E[N ]|B|
=

c

E[N ]
=

c

E[N(0, 1)]
=
c

λ
,

which does not depend on B.

Theorem 10.77. Let (X,N) be a stationary pair as above. Let Y be an S valued stochastic process
and M a point process on R having joint distribution Q(X,N). Then for any f ⩾ 0,

E[f(X,N)] = E[N ]E

[∫ τ1(M)

0

f(θs(Y,M))ds

]
.

Proof. By

E[N ]|B|E[f(Y,M)] = E

[∫
B

f (θs(X,N))N(ds)

]
,

we have

E[N ]

∫
Ω×R

1B(s)f (Y (ω),M(ω))P (dω)ds =

∫
R×Ω

1B(s)f (θs(X(ω), N(ω)))N(ω, ds)P (dω),

where dsP (dω) is the product measure on R×Ω and N(ω, ds)P (dω) is the measure on R×Ω. From
here, one can extend the relationship to

E[N ]E

[∫
R
h(Y,M, s)ds

]
= E

[∫
R
h (θs(X,N), s)N(ds)

]
,

where h ⩾ 0 is a measurable function on SR × N × R. Setting h(x,m, s) = f (θs(x,m), s) for
nonnegative measurable f . Making the change of variable t = −s on the left hand side yields

E[N ]E

[∫
R
f (θs(Y,M), s) ds

]
= E[N ]E

[∫
R
f (θ−t(Y,M),−t) dt

]
= E

[∫
R
f(X,N, s)N(ds)

]
.
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Set f(x,m, s) = h(x,m)1{τ0(m)=s}. Since M({0}) = 1,

τ0(θs(M)) = −s if and only if 0 < s < τ1(M).

The the left hand side of the above equation becomes

E[N ]E

[∫
R
h (θs(Y,M))1{τ0(θs(M))=−s}ds

]
= E[N ]E

[∫ τ1(M)

0

h (θs(Y,M)) ds

]

= E

[∫
R
h(X,N)1{τ0(N)=s}N(ds)

]
= E

[
h(X,N)

∫
R
1{τ0(N)=s}N(ds)

]
= E[h(X,N)],

which is equal to the right hand side of the above equation.

Example 10.78. Take
f(x,m) = 1B(x0), for some B ∈ S.

Since E[N ] = 1
E[τ1(M)] , by the theorem above,

P (X0 ∈ B) =
E
[∫ τ1(M)

0
(θs1B)(Y0)ds

]
E[τ1(M)]

=
E
[∫ τ1(M)

0
1B(Ys)ds

]
E[τ1(M)]

.

This result should look familar. For suppose X is a stationary regenerative process and N is
associated renewal sequence, then (Y,M) is the pair whenM is the counting process for an ordinary
renewal process. Note τ1(M) is time the first renewal occurs. If the interrenewal distribution is
F , then P (τ1(M) > t) = 1− F (t). Suppose the interrenewal distribution is nonarithemtic so that
a limiting distribution exists and is the stationary distribution. In this case, the above equation
becomes

lim
t!∞

P (Xt ∈ B) =
E
[∫ τ1(M)

0
1B(Ys)ds

]
E[τ1(M)]

,

which is precisely the limiting distribution of a regenerative process.

Example 10.79. Let (X,N) be the stationary pair, where X is a CTMC and N is the point
process which counts the jumps of X. Let (Y,M) be the pair when using the measure Q(X,N). Let
f(x,m) = 1j(x0). Then

πj = P (X0 = j) =
E
[∫ τ1(M)

0
1{j}(Ys)ds

]
E[τ1(M)]

.

Note the process Y is constant in the interval [0, τ1(M)) when given Y0, so the numerator equals

E

[∫ τ1(M)

0

1{j}(Ys)τ1(M)

]
= E

[
E

[∫ τ1(M)

0

1{j}(Ys)τ1(M)

∣∣∣∣∣Y0
]]

= E
[
E
[
1{j}(Y0)τ1(M)

∣∣Y0]] = E
[
E
[
1{j}(Y0)τ1(M)

∣∣Y0 = j
]
1{Y0=j}

]
= E

[
1{j}(Y0)τ1(M)

∣∣Y0 = j
]
E
[
1{Y0=j}

]
= E [τ1(M)|Y0 = j]P (Y0 = j)

= νj/λj .
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A similar argument shows the denominator equals
∑

i νi/λi. We obtain

πj =
νj/λj∑
i νi/λi

.
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Chapter 11

Stochastic intensity

Let X ⩾ 0 be a random variable with distribution function F and a density f . Then the hazard
function (failure rate)

h(x) = lim
y!0

P (x < X ⩽ x+ y|X > x)

y
= lim

y!0

P (x < X ⩽ x+ y)

yP (X > x)

= lim
y!0

F (x+ y)− F (x)

y

1

1− F (x)
=

f(x)

1− F (x)
, x > 0.

Since F (0) = 0, integrating both sides from 0 to x,

−
∫ x

0

h(y)dy = log (1− F (x))− log (1− F (0)) , x > 0.

So

1− F (x) = exp

(
−
∫ x

0

h(y)dy

)
, x > 0.

Theorem 11.1.

E

[∫ X

0

h(x)dx

]
=

∫
Ω

∫ X(ω)

0

h(x)dxP (dω),

or

E

[∫ X

0

h(x)dx

]
= E

[∫ ∞

0

h(x)1{X>x}dx

]
=

∫ ∞

0

h(x)E
[
1{X>x}

]
dx

=

∫ ∞

0

h(x) [1− F (x)] dx =

∫ ∞

0

f(x) = 1.

Let {N(t), t ⩾ 0} be a point process on R⩾0. Assume N(0) = 0 and the jump times occurs at
0 < T1 < T2 < · · · , and with probability 1, limn!∞ Tn = ∞ and N(t) ! ∞ as t ! ∞. Assume
there exists a stochastic process {λ(t), t ⩾ 0} such that

P
(
N(t+ s)−N(t) = 1|F0

t

)
= λ(t)s+ o(s),

147
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P
(
N(t+ s)−N(t) > 1|F0

t

)
= o(s),

where F0
t is the smallest σ-algebra that makes each N(h) measurable for 0 ⩽ h ⩽ t. Also

F0
t =

⋂
h>t

F0
h.

The family {F0
t , t ⩾ 0} is called the natural filtration (history) of the process {N(t), t ⩾ 0}. The

filtration {Ft, t ⩾ 0} is called the right continuous version of {F0
t , t ⩾ 0}. A random variable τ

taking values in [0,∞] is called a {F0
t } stopping time if {τ ⩽ t} ∈ Ft,∀ t > 0. If τ is an {Ft}-stopping

time, then for any t > 0,

{τ < t} =

∞⋂
n=1

{
τ ⩽ t+

1

n

}
?

But {
τ ⩽ t+

1

n

}
∈ Ft+ 1

n
,

hence

{τ < t} ∈
∞⋂

n=1

Ft+ 1
n
= Ft.

Thus, S is an {Ft} stopping if {τ < t} ∈ Ft,∀ t ⩾ 0. Each jump time Tn is a stopping time since
{Tn ⩽ t} = {N(t) ⩾ n} ∈ Ft.

Example 11.2. Suppose {N(t), t ⩾ 0} is a homogeneous Poisson process having rate λ.

(a) N(0) = 0.

(b) Sample path are right-continuous, step process with jumps of size 1.

(c) stationary and independent increments.

(d) P (N(t) = 1) = λt+ o(t) and P (N(t) > 1) = o(t).

Note by property (3),

P (N(t+ s)−N(t) = 1|Ft) = P (N(t+ s)−N(t) = 1) = P (N(s) = 1) = λs+ o(s),

P (N(t+ s)−N(t) > 1|Ft) = P (N(t+ s)−N(t) > 1) = P (N(s) > 1) = o(s).

Choose n0 so that 1
n0
< s. For n ⩾ n0, since N(t+ s)−N(t+ 1

n ) is independent of Ft+ 1
n
and hence

independent of Ft, then

P (N(t+ s)−N(t+ 1/n) = 1|Ft) = P (N(s− 1/n) = 1) = λ(s− 1/n)e−λ(s−1/n),

and right-continuity of a sample path Nω in terms of t, where ω ∈ A ⊆ Ω and P (A) = 1, and since
limn!∞ Tn = ∞,

N(t+ s)−N(t+ 1/n) ⩽ N(t+ s) <∞,∀n ∈ N,
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by BCT,

P (N(t+ s)−N(t) = 1|Ft) = P
(
lim
n!∞

(N(t+ s)−N(t+ 1/n)) = 1
)

= lim
n!∞

P (N(t+ s)−N(t+ 1/n) = 1|Ft)

= λse−λs small
===== λs+ o(s),

Hence the stochastic intensity of a homogeneous Poisson process is

λ(t) = lim
s!0

P (t < Tn+1 ⩽ t+ s|Ft)

s
= lim

s!0

P (N(t+ s)−N(t) = 1|Ft)

s
= λ,∀n ∈ N.

General form of the stochastic intensity. Set B0 = {∅,Ω}, and Bn = σ(T1, . . . , Tn),∀n ∈ Z+.
Set

Fn(t) = P (Tn ⩽ t | Bn−1),∀n ∈ Z+,

i.e., Fn is the conditional distribution of Tn given Bn−1 and fn is the corresponding density function.
Assume Fn has a density fn. Think of the information is available at time T1, . . . , Tn and t − Tn.
Fix n ∈ N, assume Tn < t ⩽ Tn+1, the failure rate at t is

λ(t) = lim
y!0

P (t < Tn+1 ⩽ t+ y|Tn+1 > t)

y
= lim

y!0

P (t < Tn+1 ⩽ t+ y|Bn)

yP (Tn+1 > t|Bn)

= lim
y!0

Fn+1(t+ y)− Fn+1(t)

y

1

1− Fn+1(t)
=

fn+1(t)

1− Fn+1(t)
, Tn < t ⩽ Tn+1,

So

λ(t) =

∞∑
n=0

fn+1(t)

1− Fn+1(t)
1{Tn<t⩽Tn+1}.

Example 11.3. For a renewal process with interrenewal distribution F , since

P (Tn+1 − Tn > t|Tn = s) = P (Tn+1 − Tn > t− Tn|Tn = s)

= P (Tn+1 − Tn > t− s|Tn = s)

= P (Tn+1 − Tn > t− s)

= 1− F (t− s),

we have

P (Tn+1 > t|Bn) = P (Tn+1 − Tn > t− Tn|Bn) = P (Tn+1 − Tn > t− Tn|Tn)
= 1− F (t− Tn).

Similarly,
Fn+1(t) = P (Tn+1 < t|Bn) = F (t− Tn),

Fn+1(t+ y) = P (Tn+1 < t+ y|Bn) = F (t+ y − Tn).

Hence

lim
y!0

F (t+ y − Tn)− F (t− Tn)

y
= F ′(t− Tn) = f(t− Tn).



150 CHAPTER 11. STOCHASTIC INTENSITY

Hence

λ(t) =

∞∑
n=0

f(t− Tn)

1− F (t− Tn)
1{Tn<t⩽Tn+1}

=

∞∑
n=1

h(t− Tn)1{Tn<t⩽Tn+1}(conditioning on σ-algebra)

= h(t− TN(t)),

where h is the hazard function of F . Plot the grap of the hazard function, we can see between any
interrenewal, the tend are the same.

11.1 Hawkes Process

The Hawkes process is also called the self-exciting Poisson process. Given a Poisson process
{Np(t), t ⩾ 0} with parameter λ and for k ∈ Z+, we have independent Poisson process {Na

k (t), t ⩾
0} that are independent of {Np(t), t ⩾ 0} having intensity function {φ(t), t ⩾ 0}, which is decreasing
over time. Define

N(t) =

Np(t)∑
k=1

Na
k (t− T p

k ) +Np(t), t ⩾ 0,

where T p
k is the time if the kth primary event occurs and we can think of {Na

k , t ⩾ 0} is the after
Poisson process initiated by the kth primary events. The we will get the stochastic intensity of
{N(t), t ⩾ 0}.

(a) Assume the filtration {Ft, t ⩾ 0} can distinguish after events from primary events. In this case,

P (N(t+ s)−N(t) = 1|Ft) = λs+

Np(t)∑
k=1

φ(t− T p
k )s+ o(s),

P (N(t+ s)−N(t) > 1|Ft) = o(s).

The intensity of {Na
k (t), t ⩾ 0} at time t given it started at time T p

k is the intensity of {Na
k (t), t ⩾ 0}

at time t − T p
k given it started at time 0, i,e., γ(t − T p

k ), where γ : [0,∞) ! [0,∞) s.t. γ(t) !
0 as t!∞. Hence,

λ(t) = λ+

Np(t)∑
k=1

γ(t− T p
k ) = λ+

∫ t

0

γ(t− s)dN(s).

Set

Y (t) =

∫ t

0

γ(t− s)dN(s).

Then {Y (t), t ⩾ 0} is a shot noise process.
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(b) Allow all events to generate the after events. Then with the same notation

N1(t) =

N(t)∑
k=1

N(t− Tk) +N(t).

The intensity function is

λ(t) = λ+

∫ t

0

γ(t− s)dN(s).

Suppose T1, T2, · · · are iid random variables having density function f(· · · , θd), where θ ∈ Rd is
a parameter. Suppose we take a sample of size n and observe t1, . . . , tn. The likelihood function is

L(x1, . . . , xn; θ) = f(x1, θ) · · · f(xn, θ).

Maximizing over Θ gives that parameter which is most likely to give the data t1, . . . , tn.

Example 11.4. Suppose {N(t); t ⩾ 0} is a homogeous Poisson process with rate λ. Observe the
process over an interval [0, t]. The arrivals occurs at times

0 ⩽ t1 < · · · < tn ⩽ t.

Construct the likelihood function. Suppose one just saw one arrival at t1 ∈ [0, t). Then

P (N(t1) = 0, N(t1 +∆t)−N(t1) = 1, N(t)−N(t1 +∆t) = 0)

= e−λt1 · (λ∆t+ o(∆t)) · e−λ(t−t1−∆t)

= (λ∆t+ o(∆t)) · e−λ(t−∆t).

Then

L(t1, λ) = lim
∆t!0

(λ∆t+ o(∆t)) · e−λ(t−∆t))

∆t
= λe−λt.

Extend the same argument,

L(t1, . . . , tn, λ) = λne−λt.

Since given t, N(t) is a random variable.!!! By the conditional uniformity, the arrivals the rhs does
not depend on t1, . . . , tn. The log-likelihood function is

logL(t1, . . . , tn, λ) = n log λ− λt,

Then the MLE

λ̂M =
n

t
.

Can the idea be extended to a P.P with stochastic intensity function λ(t)? Suppose observe one
arrival and it occurs at time t1. Partition the interval [0, t) into n intervals, each of the length is
t
n , i.e.,

0 <
t

n
<

2t

n
< · · · < (n− 1)t

n
< t.
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Know t1 is in one of the intervals
[
(i−1)t

n , itn

)
. Suppose it is in

[
k−1
n , ktn

)
, then probability of

observing t1 as the only point on [0, t) is

L(t1, λ)

= P (N(t/n) = 0, . . . , N(kt/n)−N((k − 1)t/n) = 1, . . . , N(t)−N((n− 1)t/n) = 0)

= P (N(t/n) = 0)P (N(2t/n)−N(t/n) = 0|N(t/n) = 0)

· P (N(kt/n)−N((k − 1)t/n) = 1|N((k − 1)t/n)−N((k − 2)t/n) = 0, . . . , N(t/n) = 0)

· P (N(t)−N((n− 1)t/n) = 0|N((n− 1)t/n)−N((n− 2)t/n) = 0, . . . , N(t/n) = 0).

Since
P (N(t/n) = 0) = 1− λ(t/n)1/n+ o(1/n),

P (N(2t/n)−N(t/n) = 0|N(t/n) = 0) = 1− λ(2t/n)1/n+ o(1/n),

...

P (N(kt/n)−N((k − 1)t/n) = 1|N((k − 1)t/n)−N((k − 2)t/n) = 0, . . . , N(t/n) = 0)

= λ(kt/n)1/n+ o(1/n).

P (N(t)−N((n− 1)t/n) = 0|N((n− 1)t/n)−N((n− 2)t/n) = 0, . . . , N(t/n) = 0)

= 1− λ(t)1/n+ o(1/n).

Hence

L(t1, λ) =

n∏
j=1,j ̸=k

(1− λ(jt/n)1/n+ o(1/n)) (λ(kt/n)1/n+ o(1/n))

Taking log,
n∑

j=1,j ̸=k

log (1− λ(jt/n)1/n+ o(1/n)) + log (λ(kt/n)1/n+ o(1/n))

∼ −
n∑

j=1,j ̸=k

λ(jt/n)1/n+ log
λ(kt/n)1/n

1− λ(kt/n)1/n

! −
∫ t

0

λ(s)ds+ log(λ(t1))?

Observe n points at 0 < t1 < · · · tn ⩽ t, the log-likelihood function

logL(t1, . . . , tn, λ) =

n∑
k=1

log λ(ti)−
∫ t

0

λ(s)ds.

Hawkes process is a point process. {N(t)}t⩾0 is defined as follows

(a) There is a homogeous Poisson process which {Np(t)}t⩾0 which are primary jumps.

(b) There are independent Poisson process {Na(t)}t⩾0 which have rate function φ(t)dt and is
independent of {Np(t)}t⩾0. Then

N(t) = Np(t) +

∫ t

0

Na(t− s)Np(ds).
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11.1.1 Probability generating functional

Recall the probability generating function for a nonnegative integer valued random variable N is

GN (z) = E[zN ] =

∞∑
n=0

P (N = n)zn.

Let h be a measurable function defined on [0,∞) such that

(a) 0 < h(t) ⩽ 1.

(b) 1− h has compact support, which means that there exists [a, b] such that 1− h(t) = 0 for any
t ̸∈ [a, b].

The probability generating functional of a point process {N(t)}t⩾0 is

GN (h) = E

[
exp

{∫ ∞

0

log(h(t))N(dt)

}]
.

Let A = [a, b] and define h = 1− (1− z)1A,∀0 < z < 1. Then 1− h(t) = 0 for any t ∈ Ac, and

GN (h) = E

[
exp

{∫ ∞

0

log
(
1− (1− z)1[a,b](t)

)
N(dt)

}]
.

Note ∫ ∞

0

log
(
1− (1− z)1[a,b](t)

)
N(dt) =

∑
i

log
(
1− (1− z)1[a,b](Ti)

)
=
∑
i

(log z)1[a,b](Ti)

= (log z)N(a, b)

= log zN(a,b).

But then GN (h) = E
[
zN(a,b)

]
. Suppose A1, . . . , Ak are disjoint intervals and zi ∈ (0, 1) for any

i ∈ [k]. Define

h(t) = 1−
k∑

j=1

(1− zj)1Aj (t).

Then the previous argument (modified) gives

GN (h) = E

 k∏
j=1

z
N(Aj)
j

 .
Example 11.5. Let {N(t)}t⩾0 be a Poisson process with intensity measure µ, that is, µ(A) =
E[N(A)]. Then E[zN ] = e−λ(1−z). Let

h(t) = 1−
k∑

j=1

(1− zj)1Aj
(t).
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Then

GN (h) = E

 k∏
j=1

z
N(Aj)
j

 =

k∏
j=1

E
[
Z

N(Aj)
j

]

=

k∏
j=1

e−µ(Aj)(1−zj) = exp

−
k∑

j=1

µ(Aj)(1− zj)


= exp

−
∫ ∞

0

k∑
j=1

(1− zj)1Aj
(x)µ(dx)


= exp

{
−
∫ ∞

0

(1− h(t))µ(dt)

}
.

Define

τx : R⩾0 ! R⩾0

y 7! x+ y.

Suppose that µ is a measure on a measurable space (E, E) and let (G,G) be another measurable space.
Suppose that f : E ! G is a measurable function. For B ∈ G define

µ ◦ f−1(B) = µ(f−1(B)) = µ{x ∈ E : f(x) ∈ B}.

Then, µ ◦ f−1 define a measure on (E, E). If g is nonnegative measurable function of G, then∫
G

g(y)µ ◦ f−1(dy) =

∫
E

g ◦ f(x)µ(dx),

which is true by the definition of µ ◦ f−1 when g = 1B for B ∈ G and extends to nonnegative measurable
functions by the usual arguments. Also,∫

G

g(y)µ ◦ τx(dy) =
∫
G

g ◦ τx(y)µ(dy) =
∫
G

g(x+ y)µ(dy).

If µ is a measure on (R,B(R⩾0)), define a new measure µ ◦ τ−1
x on (R⩾0,B(R⩾0)) by

µ ◦ τ−1
x (B) = µ(τ−1

x (B)) = µ(B − x),

where B ∈ B(R⩾0) and

τ−1
x (B) = {y ∈ R⩾0 : τx(y) ∈ B} = {y ∈ R⩾0 : x+ y ∈ B} = B − x.

Let δx be the dirac delta function. Then

δs ◦ τ−1
x (A) = δs(A− x) =

{
1 s ∈ A− x or s+ x ∈ A,
0 otherwise.

= δs+x(A).

If µ =
∑

i δsi (a realization of a point process), then

µ ◦ τ−1
x (A) =

∑
i

δsi+x(A) = µ(A− x).
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Consider Hawkes process. Let Nc be a stationary Poisson random measure having intensity λ · l,
where l is the Lebesgue measure. Let {Nk}k∈Z+ be a iid Poisson random measures, independent of
Nc with common intensity φ(x)dx, where φ : R⩾0 ! R⩾0, and φ(x) ! 0 as x ! ∞. The Hawkes
process is the random measure on (R⩾0,B(R⩾0)) given by

N(A) = Nc(A) +

∫
R⩾0

NNc((0,s]) ◦ τ
−1
s (A)Nc(ds)

= Nc(A) +

∫
R+

NNc((0,s]) ◦ τs(A− s)Nc(ds)

= Nc(A) +

∫
R+

NNc((0,s])(τs(A− s))Nc(ds),

where Nc({s}) ∈ {0, 1}, and then we can see as if Nk starts at 0. Setting N(t) = N(0, t], one gets

N(t) = Nc(t) +

∫
R⩾0

NNc((0,s])((0, t− s])Nc(ds)

= Nc(t) +

∫
R⩾0

NNc(s)(t− s)Nc(ds).

So if 0 < T1 < T2 < · · · are the event time of Nc, i.e., Nc =
∑∞

i=1 δTi
. We have

N(A) =

∞∑
i=1

δTi(A) +

∫
R⩾0

NNc((0,s]) ◦ τ
−1
s (A)

∞∑
i=1

δTi(ds)

=

∞∑
i=1

δTi
(A) +

∞∑
i=1

∫
R⩾0

NNc((0,s]) ◦ τ
−1
s (A)δTi

(ds)

=

∞∑
i=1

δTi
(A) +

∞∑
i=1

Ni ◦ τ−1
Ti

(A)

=

∞∑
i=1

(
δTi +

∞∑
i=1

Ni ◦ τ−1
Ti

)
(A).

Consider the probability generating functional

GN (h) = E

[
exp

{∫ ∞

0

log(h(t))N(dt)

}]
.
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By the definition of N ,

E

[
exp

{∫
R⩾0

log(h(t))N(dt)

}∣∣∣∣Nc =

∞∑
i=1

δti

]

= E

[
exp

{ ∞∑
i=1

[
log(h(ti)) +

∫
R⩾0

log(h(t))Ni ◦ τ−1
ti (dt)

]}∣∣∣∣∣Nc =

∞∑
i=1

δti

]

= E

[
exp

{ ∞∑
i=1

[
log(h(ti)) +

∫
R⩾0

log(h(t))Ni ◦ τ−1
ti (dt)

]}]

= E

[ ∞∏
i=1

[
h(ti) exp

{∫
R⩾0

log(h(t))Ni ◦ τ−1
ti (dt)

}]]

=

∞∏
i=1

h(ti)E

[
exp

{∫
R⩾0

log(h(t))Ni ◦ τ−1
ti (dt)

}]

=

∞∏
i=1

h(ti)GN1◦τ−1
ti

(h).

Thus,

E

[
exp

{∫
R⩾0

log(h(t))N(dt)

}∣∣∣∣Nc =

∞∑
i=1

δTi

]
=

∞∏
i=1

h(ti)GN1◦τ−1
Ti

(h).

Taking expectations, yield

GN (h) = E

[
exp

{ ∞∑
i=1

log
(
h(Ti) ◦GN1◦τ−1

Ti

(h)
)}]

= E

[
exp

{∫ ∞

0

log
(
h(s)GN1◦τ−1

s
(h)Nc(ds)

)}]
= GNc

(
h(·)GN1

◦ τ−1
(·)

)
.

Note that

GN1◦τ−1
s

(h) = E

[
exp

{∫
R⩾0

log(h(t))N1 ◦ τ−1
s (dt)

}]
= E

[
exp

{∫
R⩾0

log(h ◦ τs(x))N1(dx)

}
.

]
Since N1 is a Poisson random measure with intensity φ(x)dx, by previous result,

GN1◦τ−1
s

(h) = exp

{
−
∫
R⩾0

(1− h(s+ x))φ(x)

}
.
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Since Nc is a stationary Poisson random measure with intensity λl, by previosu result,

GN (h) = GNc

(
h(·)GN1

◦ τ−1
(·)

)
= exp

{
−
∫
R⩾0

(
1− h(s)GN1◦τ−1

s
(h)
)
λds

}
= exp

{
−
∫
R⩾0

(
1− h(s) exp

{
−
∫
R⩾0

(1− h(s+ x))φ(x)

})
λds

}
.

For a, c ∈ R⩾0,

E[N((a, a+ c])] = E[Nc((a, a+ c])] + E

[∫
R⩾0]

NNc((0,s]) ◦ τ
−1
s ((a, a+ c]Nc(ds)

]

= λc+ E

[∫
R⩾0]

NNc((0,s]) ◦ τ
−1
s ((a, a+ c]Nc(ds)

]
.

Let U1, . . . , Un be the unordered event times of Nc in (0, a+ c]. Then

E

[∫
R⩾0]

NNc((0,s]) ◦ τ
−1
s ((a, a+ c]Nc(ds)

∣∣∣∣∣Nc(0, a+ c] = n

]

= E

[
n∑

i=1

Ni ◦ τ−1
ui

((a, a+ c])

∣∣∣∣∣Nc((0, a+ c]) = n

]
,

Given N((0, a+ c]) = n, U1, . . . , Un are iid Uniform(0, a+ c) distributed random variables and since
N1, . . . , Nn are iid Poisson random measures having intensity φ · l,

E

[
n∑

i=1

Ni ◦ τ−1
Ui

((a, a+ c])

∣∣∣∣∣Nc((0, a+ c]) = n

]

= E

[
n∑

i=1

Ni ◦ τ−1
Ui

((a, a+ c])

]
=

n∑
i=1

E
[
Ni ◦ τ−1

Ui
((a, a+ c])

]
=

n∑
i=1

[∫ a

0

E[Ni((a− s, a+ c− s])]
1

a+ c
ds+

∫ a+c

a

E[Ni((0, a+ c− s])]
1

a+ c
ds

]
=

n

a+ c

[∫ a

0

∫ a+c−s

a−s

φ(x)dxds+

∫ a+c

a

∫ a+c−s

0

φ(x)dxds

]
.

Thus,

E

[
n∑

i=1

Ni ◦ τ−1
µi

((a, a+ c])

∣∣∣∣∣Nc((0, a+ c])

]

=
Nc((0, a+ c])

a+ c

[∫ a

0

∫ a+c−s

a

+

∫ a+c

a

∫ a+c−s

0

]
φ(x)dxds.
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Therefore,

E[N((a, a+ c])] = λc+ E

[
Nc((0, a+ c])

a+ c

[∫ a

0

∫ a+c−s

a

+

∫ a+c

a

∫ a+c−s

0

]
φ(x)dxds

]
= λc+ λ

[∫ a

0

∫ a+c−s

a

+

∫ a+c

a

∫ a+c−s

0

]
φ(x)dxds.

To discuss limiting properties of the Hawkes process, we assume that the function φ is uniformly
bounded and has compact support, i.e., there exists T > 0 such that φ(t) = 0 for any t > T . Goal:
Find

lim
t!∞

P (N(t, t+ c) = k).

Let 0 = T0 < T1 < T2 < · · · be the event times of Nc. Define K0 = 0 and

Kn = min{n > Kn−1 : Tn − TKn−1 > T}.

For t ⩾ 0, set
Ft = σ{N(A) : A ∈ B([0, t])}.

Let
F∞ = σ({Ft}t∈R⩾0).

Since {Kn}n∈N are stopping times,

FKn = {A ∈ F∞ : A ∩ {TKn ⩽ t} ∈ Ft,∀ t ∈ R⩾0}.

Theorem 11.6. Let A ∈ B(R⩾0). Then the random measures {N(TKn +A)}n∈Z+ are independent
of FKn . Moreover, {N(TKn +A)}n∈Z+ and N(A) are identically distributed.

Proof. Let n ∈ Z+. By definition,

N(TKn +A) = Nc(TKn +A) +

∫
R⩾0

NNc((0,s]) ◦ τ
−1
s (TKn +A)Nc(ds)

= Nc(TKn
+A) +

∞∑
j=1

Nj ◦ τ−1
Tj

(TKn
+A)

= Nc(TKn
+A) +

∞∑
j=1

Nj(TKn
− Tj +A)

= Nc(TKn +A) +

∞∑
j=Kn

Nj(TKn − Tj +A),

since TKn
− Tj > T for any 1 ⩽ j ⩽ Kn − 1, and φ(t) = 0 for any t > T , then we have

Nj(TKn
− Tj +A) = 0,∀1 ⩽ j ⩽ Kn − 1.

(!!!) Since Nc is stationary, {Tj − TKn
}j⩾Kn

has the same distribution as {Tn}n∈N? Also the
processes {Nn}n∈N are independent of Nc, we obtain

N(TKn
+A)

d
= Nc(A) +

∞∑
n=0

Nn(Tn +A) = N(A).



Chapter 12

Martingales

12.1 Signed Measure (Royden)

Definition 12.1 (Mutually singular). Two measures ν1 and ν2 on (X,M) are said to be mutually
singular if there are disjoint measurable sets A and B with X = A ⊔B for which

ν1(B) = ν2(A) = 0.

Two measures ν+ and ν− defined below are mutually singular.

Definition 12.2 (The Jordan Decomposition Theorem). Let ν be a signed measure on the mea-
surable space (X,M). Then there are two mutually singular measure ν+ and ν− on (X,M) for
which ν = ν+ − ν−. Moreover, there is only one such pair of mutually singular measures.

Example 12.3. Let f : R ! R be a function that is Lebesgue integrable over R. For a Lebesgue
measurable set E, define ν(E) =

∫
E
fdm. We infer form the countable additivity of integration

that ν is a signed measure on the measurable space (R,L), where L is the collEction of Lebesgue
measurable subsets of R. Define A = {x ∈ R|f(x) ⩾ 0} and B = {x ∈ R|f(x) < 0} and define, for
each Lebesgue measurable set E,

ν+(E) =

∫
A∩E

fdm

and

ν−(E) = −
∫
B∩E

fdm.

Then {A,B} is a Hahn decomposition of R with respect to the signed measure ν. Moreover,

159
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ν := ν+ − ν− is a Jordan decomposition of ν. Then

ν+(E)− ν−(E) =

∫
A∩E

fdm−
∫
B∩E

fdm

=

∫
A∩E

f+dm+

∫
B∩E

(
−f−

)
dm

=

∫
A∩E

(
f+ − f−

)
dm+

∫
B∩E

(
f+ − f−

)
dm

=

∫
A∩E

fdm+

∫
B∩E

fdm

=

∫
(A∩E)∪(B∩E)

fdm

=

∫
E

fdm

= ν(E),

where ν := ν+ − ν−.

Definition 12.4 (The absolute value of measure). The measure |ν| is defined on M by

|ν|(E) = ν+(E) + ν−(E),∀E ∈M.

Let (X,M) be a measurable space. For µ a measure on (X,M) and f a nonnegative function
on X that is measurable with respect to M , defind the set function ν on M by

ν(E) =

∫
E

fdµ,∀E ∈M.

Then from the linearity of integration and the monotone convergence theorem that ν is a measure
on the measurable space (X,M), and it has the property

if E ∈M and µ(E) = 0, then ν(E) = 0,

which implies ν ≪ µ.

Proposition 12.5. ν ≪ µ if and only if for any ϵ > 0, there is a δ > 0 such that for any set
E ∈M , if µ(E) < δ, then ν(E) < ϵ.

Proof. ⇐= is obvious.
“⇒”. Assume there is an ϵ > 0 and a {En}∞n=1 with µ(En) <

1
2n while ν(En) ⩾ ϵ0,∀n ∈ N.

Define

A =

∞⋂
k=1

∞⋃
k=n

Ek.

Then

µ(A) = lim
n!∞

µ

( ∞⋃
k=n

Ek

)
⩽ lim

n!∞

∞∑
k=n

µ(Ek) ⩽ lim
n!∞

∞∑
k=n

1

2n
= 0.
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But

ν(A) = lim
n!∞

ν

( ∞⋃
k=n

Ek

)
⩾ ϵ0,

since ν(En) ⩾ ϵ0 for any n ∈ N, contradiction.

Theorem 12.6 (Radon-Nikodym Theorem). Let (X,M, µ) be a σ-finite measure space and ν a
σ-finite measure defined on the measurable space (X,M) and ν << µ. Then there is a nonnegative
function f on X that is measurable w.r.t M for which

ν(E) =

∫
E

fdµ ∀ E ∈ M.

The function f is unique in the sense that if g also has this property, then g = f µ a.e..

12.2 Radon Nikodym Derivative

Let (Ω,B) be a measurable space, and let µ, λ be positive and bounded measures on (Ω,B).

Definition 12.7. We say λ is absolutely continuous w.r.t µ (written as λ << u) if

µ(A) = 0 =⇒ λ(A) = 0,∀A ∈ B.

Definition 12.8. We say that λ concentrate on a set A ∈ B if

λ(Ac) = 0.

Definition 12.9. We say that λ and µ are mutually singular if there exist sets A,B ∈ B such that
A ∩B = ∅, λ(Ac) = 0 and λ(Bc) = 0.

Let’s suppose H is a real Hilbert space.

Proposition 12.10 (Riesz Representation Theorem). Let L : H ! R be a continuous linear
functional, then there exists a unique y ∈ H such that

L(x) = ⟨x, y⟩,∀x ∈ H.

Lemma 12.11 (Integral Comparison Lemma). Suppose X,Y ∈ L(Ω,B, P ). Then∫
A

XdP ⩽
∫
A

Y dP,∀A ∈ B =⇒ X ⩽ Y, a.e..

Complete version: ∫
A

XdP ⩽ (⩾ / =)

∫
A

Y dP,∀A ∈ B ⇐⇒ X ⩽ (⩾ / =)Y, a.e..

Proof. Claim. if X ⩾ 0, then P (X > 0) > 0 implies E(X) > 0. Since P (X > 0) > 0, ∃n ∈ N+

such that

P

(
X >

1

n

)
> 0,
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otherwise,

P (X > 0) ⩽ lim
n!∞

P

(
X >

1

n

)
= P

( ∞⋃
n=1

{
X >

1

n

})
⩽

∞∑
n=1

P

(
X >

1

n

)
= 0.

Then

E(X) ⩾
1

n
P

(
X >

1

n

)
> 0,

which is a contradiction. Assume P (X > Y ) > 0. Let

A := {X > Y } and consider {(X − Y )1A ⩾ 0} .

Then
P ((X − Y )1A > 0)) ⩾ P (A) > 0.

So
E ((X − Y )1A > 0) > 0,

which is a contradiction. Thus, X ⩽ Y a.e..

Theorem 12.12 (Radon Nikodym). Let (Ω,B, P ) be probability space. Suppose ν is a positive
bounded measure and ν ≪ P . Then there exists integrable random variable X satisfying

ν(A) =

∫
A

XdP, ∀A ∈ B.

X is Radon-Nikodym derivative and is written X = dν
dP or dν = XdP .

Proof. Define

Q : B −! [0, 1]

A 7−!
ν(A)

ν(Ω)
.

Then Q is a probability measure on (Ω,B) and Q≪ P since Q≪ ν ≪ P . Define

P ∗ : B ! [0, 1]

A 7!
P (A) +Q(A)

2
.

which is also a probability measure on (Ω,B) since P ∗(Ω) = 1. Then

H := L2(Ω,B, P ∗),

where we say a random variable

(R,B(R)) (Ω,B) : X ∈ L2(Ω,B, P ∗)

if X ∈ B and
∫
Ω
|X|2dP ∗ <∞. Then H is a Hilbert space (up to equivalent classes since ⟨X,X⟩ =∫

|X|2dP ∗ = 0 ̸⇒ X = 0) with inner product

⟨X,Y ⟩ =
∫
Ω

XY dP ∗.
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Then

∥Y ∥2 =
√
⟨Y, Y ⟩ =

(∫
Ω

|Y |2dP ∗
) 1

2

,∀Y ∈ H.

Note that all elements of H = L2(Ω,B, P ∗) are B/B(R)-measurable (random variable). Then we
can define the functional

L : H −! R

Y 7−!

∫
Ω

Y dQ

so that L : L2(P
∗)! R is linear and bounded (and hence continuous). Since

|L(Y )| ⩽
∫
|Y |dQ ⩽

∫
|Y |dQ+

∫
|Y |dP ⩽ 2

∫
|Y |dP ∗ ⩽ 2

(∫
Y 2dP ∗

) 1
2

= 2∥Y ∥2.

So L is bounded. Then L is (Lipschitz) continuous since H is a normed linear space. Thus, by
Proposition 12.10, there exists Z ∈ H such that for any Y ∈ H,∫

Y dQ = L(Y ) = ⟨Y,Z⟩ =
∫
Y ZdP ∗.

Let Y = 1A, where A ∈ B, then

Q(A) =

∫
A

dQ =

∫
A

ZdP ∗.

Then assuming P ∗ is positive,

0 ⩽
Q(A)

P ∗(A)
=

∫
A
ZdP ∗

P ∗(A)
⩽

∫
A
ZdP ∗

Q(A)/2
= 2,

since 2P ∗ = P +Q ⩾ Q. Then

0 ⩽
∫
A

ZdP ∗ = Q(A) ⩽ 2P ∗(A),∀A ∈ B,

that is,

0 ⩽
∫
A

ZdP ∗ ⩽
∫
A

2dP ∗,∀A ∈ B.

From the Integral Comparison Lemma 12.11,

0 ⩽ Z ⩽ 2, P ∗-a.s..

Since ∫
Y dQ =

∫
Y ZdP ∗ =

∫
1

2
Y ZdP +

∫
1

2
Y ZdQ,

we have ∫
Y

(
1− Z

2

)
dQ =

∫
Y Z

2
dP,∀Y ∈ H.
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Set Y = 1{Z=2} to get ∫
{Z=2}

(
1− Z

2

)
dQ =

∫
{Z=2}

Z

2
dP,

that is, 0 = P (Z = 2). Since Q << P , we have 0 = Q(Z = 2). Hence P ∗(Z = 2) = 0. Thus,

0 ⩽ Z < 2, P ∗-a.s..

Let

Y =

(
Z

2

)n

1A, A ∈ B.

Then
Y ∈ H = L2(P

∗) and 0 ⩽ Y < 1 P/Q/P ∗-a.s.

Since ∫
Y

(
1− Z

2

)
dQ =

∫
Y Z

2
dP,∀Y ∈ H,

∫
A

(
Z

2

)n(
1− Z

2

)
dQ =

∫
A

(
Z

2

)n+1

dP.

Sum both sides over n = 0 to n = N to get

∫
A

(
1−

(
Z

2

)N+1
)
dQ =

∫
A

Z
2

(
1−

(
Z
2

)N+1
)

1− Z
2

dP.

Since 1−
(
Z
2

)N+1
" 1 Q-a.s., by MCT,

ν(A)

ν(Ω)
= Q(A) =

∫
A

Z

2− Z
dP :=

∫
A

X

ν(Ω)
dP,∀A ∈ B.

Thus,

ν(A) =

∫
A

XdP, ∀A ∈ B.

Corollary 12.13. Suppose Q and P are probability measures on (Ω,B) such that Q ≪ P . Let
G ⊆ B be a subσ-algebra. Let Q|G , P |G be the restrictions of Q and P to G. Then in (Ω,G),

Q|G ≪ P |G

and
dQ|G
dP |G

is G-measurable.

Proof. Check the proof of the Radon-Nikodym theorem. Since Z ∈ H,

X =
Z

2− Z
ν(Ω) ∈ B.
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12.3 Conditional Expectation

Definition 12.14. Suppose X ∈ L1(Ω,B, P ) and let G ⊆ B be a sub-σ-field. Then there exists a
random variable E(X|G), called the conditional expectation of X w.r.t to G such that

(a) E(X|G) is G/B(R)-measurable and integrable.

(b) ∀ A ∈ G, we have ∫
A

XdP =

∫
A

E(X|G)dP.

Or ∫
A

dν

dP
=

∫
A

dν|G
dP |G

dP,

where

ν(A) =

∫
A

XdP, ∀A ∈ B.

Why does this defintion of conditional expectation make mathematical sense? We will show the
existence.

Proof. Suppose X ∈ L1(Ω,B, P ). Suppose initially that X ⩾ 0. Define

ν(A) =

∫
A

XdP, ∀A ∈ B.

Then since ν(Ω) = E[X] <∞, ν is a bounded measure. Moreover, ν ≪ P on B, so

ν|G ≪ P |G .

From the Radon-Nikodym theorem, the derivative exists and we set

E[X|G] := dν|G
dP |G

,

or
dν = E[X|G]dP on G,

or for any A ∈ G,∫
A

XdP = ν(A) = ν|G(A) =
∫
A

dν|G =

∫
A

dν|G
dP |G

dP |G =

∫
A

dν|G
dP |G

dP :=

∫
A

E[X|G]dP,

which is (ii) and part of (i) of the definition of conditional expectation. Besides, by 12.13, dν|G
dP |G

is G-measurable. Thus, dν|G
dP |G is the conditional expectation of X. Without the condition X ⩾ 0,

define

ν(A) =

∫
A

XdP, A ∈ B.

Since X ∈ L1(Ω,B, P ), X± ∈ L1(Ω,B, P ). Define

ν±(A) =

∫
A

X±dP,∀A ∈ G.
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Then ν± are bounded measure and ν±|G ≪ P |G . Smilarly, by the Rodan-Nikodym theorem,
E[X+|G] and E[X−1|G] satisfy the two conditions of the conditional expectation. Then after
defining

E[X|G] :=]E[X+|G]− E[X−|G],

we have it satisfies (i) of the definition of the conditional expectation. Also, ν = ν+ − ν− is a
Jordan decomposition of ν. So ν+(A)− ν−(A) = ν(A). Then for any A ∈ G,∫

A

XdP = ν(A)

(
=

∫
A

XdP =

∫
A

(X+ −X−)dP =

∫
A

X+dP −
∫
A

X−dP

)
= ν+(A)− ν−(A) =

∫
A

E[X+|G]dP −
∫
A

E[X−|G]dP

=

∫
A

(
E[X+|G]− E[X−|G]

)
dP

=:

∫
A

E[X|G]dP, (!!!)

which implies E[X+|G] − E[X−|G] satisfies (ii) of the definition of the conditional expectation.
Thus, E[X+|G]− E[X−G] is the conditional expectation of X.

Remark. We can write

E[·|G] : L1(F)! L1(G).

Definition 12.15 (Conditional expectation w.r.t. an event).

E[X|A] = E[1AX]

P (A)
=

∫
x∈X

xP (dx|A).

So

P [B|A] = P (A ∩B)

P (A)
.

Definition 12.16 (Conditional expectation w.r.t. a r.v.). If Y is a discrete random variable with
range Y, then we can define

g : Y ! R
y 7! E[X|Y = y]

Then g ◦ Y is called the conditional expectation of X w.r.t. Y so that we have

E[X|Y ] : Ω! R
ω 7! E[X|Y = Y (ω)],

which is a random variable. If Y is a continuous random variable, as explained in the Borel-
Kolmogorov paradox, we have to specify what limiting procedure produces the set Y = y. This can
be naturally done by defining the set

Hϵ
y = {ω | ∥Y (ω)− y∥ < ϵ} ,
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so that if P (Hϵ
y) > 0 for all ϵ > 0, then

g : Y ! R
y 7! lim

ϵ!0
E
[
X|Hϵ

y

]
.

The modern definition is anlogous to the above except that the above limiting process is replaced
by the Radon-Nikodym derivative just instroduced, so the result holds more generally.

Definition 12.17 (Conditional expectation w.r.t. a σ-algebra). LetX ∈ L1(Ω,B, P ). The function
X : Ω ! R is ususally not G-measurable, thus the existence of the integrals of the form

∫
A
XdPG ,

where A ∈ G and PG is the restriction of P to G cannot be stated in general . However, the
local averages

∫
A
XdP can be recovered in (Ω,G, P |G) with the help of the conditional expectation.

A conditional expectation of X given G, denoted as E[X|G], is any G-measurable function which
satisfies: ∫

A

E[X|G]dP =

∫
A

XdP, ∀A ∈ G.

The existence of E[X|G] can be established by noting that

µX : B ! R

A 7!

∫
A

XdP,

which is a finite measure. Then µX ≪ P . Furthermore, if π is the natural injection from G to B,
then µX ◦ π = µX

|G is the restriction of µX to G and P ◦ π = P|G is the restriction of P to G and

µX ◦ π ≪ P ◦ π since for any A ∈ G,

P ◦ π(A) = 0 ⇐⇒ P (π(A)) = 0 =⇒ µX(π(A)) = 0 ⇐⇒ µX ◦ π(A) = 0.

Thus, we have

E[X|G] =
dµX

|G

dPG
=
d(µX ◦ π)
d(P ◦ π)

,

where the derivative are Radon-Nikodym derivatives of measures.

Definition 12.18 (Conditional probability). Given (Ω,B, P ), with G a sub-σ-field of B, define

P (A|G) = E[1A|G],∀A ∈ B.

Definition 12.19 (Conditioning on random variables). Suppose {Xt, t ∈ T} is a family of random
variables defined on (Ω,B) and indexed by some index set T . Define

G := σ(Xt, t ∈ T )

to be the σ-field generated by the process {Xt, t ∈ T}. Then define

E(X|Xt, t ∈ T ) = E(X|G).

(This definition saves us from having to make seperate defintions for E[X|X1], E(X|X1, X2), etc).
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Example 12.20. Fix B ∈ B, and let

G = {∅, B,Bc,Ω}.

What is the probability of A given G? Assume P (B) > 0. Then∫
B

E[1A|G] =
∫
B

1AdP

= P (A ∩B)

= P (A|B)P (B)

=

∫
B

P (A|B)1BdP

=

∫
B

[P (A|B)1B + P (A|Bc)1Bc ] dP.

Smilarly, ∫
Bc

E[1A|G] =
∫
Bc

1AdP =

∫
Bc

[P (A|B)1B + P (A|Bc)1Bc ] dP.

So ∫
Ω

E[1A|G] =
∫
Ω

1AdP

=

∫
B

1AdP +

∫
Bc

1AdP

=

∫
B

[P (A|B)1B + P (A|Bc)1Bc ] dP +

∫
Bc

[P (A|B)1B + P (A|Bc)1Bc ] dP

=

∫
Ω

[P (A|B)1B + P (A|Bc)1Bc ] dP.

Finally, ∫
∅
E[1A|G] =

∫
∅
1AdP =

∫
∅
[P (A|B)1B + P (A|Bc)1Bc ] dP.

Thus, by integral comparison lemma,

P (A|G) = E[1A|G] = P (A|B)1B + P (A|Bc)1Bc .

Example 12.21 (countable partition). Suppose X ∈ L1(Ω,B, P ). Let {An} be a partition of Ω.

(We can define the discrete r.v. Y =
∑∞

n=1 ci1An
, then {{Y = ci}} forms a partition of Ω.)

Define

G = σ(An, n ⩾ 1)

so that

G =

{⊔
i∈J

Ai, J ⊆ {1, 2, · · · }

}
.
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For X ∈ L1(Ω,B, P ), define

E(X|An) =

{ ∫
An

XdP

P (An)
, P (An) > 0

17, P (An) = 0.
=

{
E[X1An ]
P (An)

, P (An) > 0

17, P (An) = 0.

We claim

E[X|G] a.s.=

∞∑
n=1

E[X|An]1An ∈ G.

If this holds, let X = 1A,∀A ∈ B, then

P (A|G) a.s.
=

∞∑
n=1

P (A|An)1An
.

Proof. Let A =
⊔

i∈J Ai for some J ⊆ {1, 2, · · · }.∫
A

∞∑
n=1

E[X|An]1An
dP =

∞∑
n=1

∑
i∈J

∫
Ai

E[X|An]1An
dP

=

∞∑
n=1

∑
i∈J

E[X|1An
]P (AiAn)

=
∑
i∈J

E[X|1Ai
]P (Ai)

=
∑
i∈J

(
E[X1Ai

]

P (Ai)
P (Ai) + 17 · 0

)
=
∑
i∈J

E[X1Ai
]

= E
[
X1⊔

i∈J Ai

]
= E[X1A]

=

∫
A

XdP

=

∫
A

E[X|G]dP.

Thus,

E[X|G] a.s.=

∞∑
n=1

E[X|An]1An .

Interpretation: Consider an experiment with sample space Ω. Condition on the information
that “some event in G occurs”. Imaine that at a future time you will be told which set An the
outcome ω fallS in (but you will not be told ω). At time 0

∞∑
n=1

P (A|An)1An

is the best you can do to evaluate conditional probabilities.
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Example 12.22 (Discrete case). LetX be a discrete random variable with possible values x1, x2, · · · .
Then for A ∈ B,

P (A|X) = P (A|σ(X)) =

∞∑
i=1

P (A|X = xi)1{X=xi}.

Example 12.23 (Absolutely continuous case). Let Ω = R2 and suppose X and Y are r.v.’s whose
joint distribution is absolutely continuous with density f(x, y) so that for A ∈ B(R2),

P ((X,Y ) ∈ B) =

∫ ∫
B

fX,Y (s, t)dsdt,

or

P (X ∈ Bx, Y ∈ By) =

∫
Bx

∫
By

fX,Y (s, t)dsdt,

where fX,Y is the joint pdf of X and Y . Find for C ∈ B(R),

P (Y ∈ C|σ(X)).

Proof. We use G = σ(X). Let

fX(x) :=

∫
R
fX,Y (x, t)dt

be the marginal density of X. Define

ϕC(X) =

{ ∫
C

fX,Y (x,t)dt

fX(x) , fX(x) > 0,

17, fX(x) = 0.

We claim that
P (Y ∈ C|σ(X)) = P (Y ∈ C|G) = ϕC(X).

First of all, note ∫
C

fX,Y (x, t)dt

is σ(X)-measurable and hence ϕ(X) is σ(X)-meaurable. Since

P (Y ∈ C|G) = E[1{Y ∈C}|G],

and by the definition of conditional expection, for any A ∈ B(R),∫
X∈A

E[1{Y ∈C}|G]dP =

∫
{X∈A}

1{Y ∈C}dP,

it suffices to show that for any A ∈ B(R),∫
{X∈A}

ϕC(X)dP =

∫
{X∈A}

1{Y ∈C}dP.

Since

E(g(X)) =

∫
Ω

g(X(ω))P (dω) =

∫
x∈R

g(x)F (dx),
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we have∫
{X∈A}

ϕC(X)dP =

∫
Ω

1A(X)ϕC(X)dP

=

∫
R
1A(x)ϕC(x)F (dx)

TR
=

∫
R
1A(x)ϕC(x)fX(x)dx

=

∫
R
1{A∩fX(x)>0}(x)ϕC(x)fX(x)dx+

∫
R
1{A∩fX(x)=0}(x)ϕC(x)fX(x)dx

=

∫
R
1A(x)

∫
C
fX,Y (x, t)dt

fX(x)
fX(x)dx+ 0

=

∫
(x∈)A

∫
C

fX,Y (x, t)dtdx

def
= P ((X,Y ) ∈ A× C)

= P (X ∈ A, Y ∈ C) =

∫
{X∈A}

1{Y ∈C}dP.

Since {X ∈ A} ∈ σ(X) is arbitray,

12.4 Properties of conditional expectation

Our probability space (Ω,B, P ) and G is a sub-field of B. L1(Ω,B, P ) is the set of r.v.’ that are
B-measurable and satisfies E[|X|] <∞.

(a) Linearity: If X,Y ∈ L1 and α1, α2 ∈ R, then

E[α1X + α2Y |G] = α1E[X|G] + α2E[Y |G].

Proof. For any A ∈ G,∫
A

E[α1X + α2Y |G]dP =

∫
A

(α1X + α2Y )dP

= α1

∫
A

XdP + α2

∫
A

Y dP

= α1

∫
A

E[X|G]dP + α2

∫
A

E[Y |G]dP

=

∫
A

(α1E[X|G] + α2E[Y |G]) dP.

So by integral comparison lemma, E[α1X + α2Y |G] = α1E[X|G] + α2E[Y |G].

(b) If X ∈ L1 and X is G-measurable, then

E[X|G] = X, P -a.s..
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Proof. Note for any A ∈ G, ∫
A

E[X|G]dP =

∫
A

XdP.

Since X is G-measurable (for any A ∈ B(R), X−1(A) ∈ G ), by the integral comparision lemma,

X = E[X|G] P -a.s..

Since constant functions are always measurable on any σ-algebra (the only one on the trival σ-
algebra), let c ∈ R, E[c|G] = c P -a.s..

(c) Suppose X ∈ L1 and G = {∅,Ω}. Then

E[X|G] = E[X]. P -a.s.

Proof. Here ∫
Ω

E[X|G]dP =

∫
Ω

XdP = E[X] =

∫
Ω

E[X]dP,∫
∅
E[X|G]dP =

∫
∅
XdP = 0 =

∫
∅
E[X]dP.

(d) Monotonicity: Suppose X,Y ∈ L1 and X ⩽ Y , then

E[X|G] ⩽ E[Y |G] P -a.s.

Proof. For any A ∈ G, ∫
A

E[X|G]dP =

∫
A

XdP ⩽
∫
A

Y dP =

∫
A

E[Y |G]dP.

Then by the integral comparison lemma,

E[X|G] ⩽ E[Y |G], P -a.s..

(e) Modulus inequality: Suppose X ∈ L1, then

|E[X|G]| ⩽ E [|X||G]P -a.s..

Proof. Since X ∈ L1, X
− ∈ L1. So E[X−|G] <∞, and then

E[X|G] = E[X+|G]− E[X−|G].

Since E[X+|G] and E[X−|G] are nonnegative,

|E[X|G]| =
∣∣E[X+|G]− E[X−|G]

∣∣
⩽ E[X+|G] + E[X−|G]
= E[X+ +X−|G]
= E [|X||G] P -a.s.
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(f) Monotone convergence theorem: For nonnegative and monotone increasing sequence {Xn}, if
X := limn!∞Xn ∈ L1, then

lim
n!∞

E[Xn|G] = E
[
lim
n!∞

Xn|G
]
.

Proof. Note that by the property of monotonicity,

E[Xn|G] ⩽ E[Xn+1|G] P -a.s..

Then
lim
n!∞

E[Xn|G] exists P -a.s..

Note that if P (An) = 1 for any n ∈ Z+, then

P

( ∞⋂
n=1

An

)
= 1.

Then for any A ∈ G, ∫
A

lim
n!∞

E[Xn|G]dP = lim
n!∞

∫
A

E[Xn|G]dP

= lim
n!∞

∫
A

XndP

=

∫
A

lim
n!∞

XndP

=

∫
A

E
[
lim
n!∞

Xn|G
]
dP, P -a.s..

(g) For nonnegative sequence {Xn} satisfies Xn ∈ L1,∀n ∈ Z,

E
[
lim
n!∞

infXn|G
]
⩽ lim

n!∞
inf E[Xn|G].

Proof. For any A ∈ G,

E
[
lim
n!∞

infXn|G
]
= E

[
lim
n!∞

inf
k⩾n

Xk|G
]

MCT
= lim

n!∞
E

[
inf
k⩾n

Xk|G
]

⩽ lim
n!∞

inf
k⩾n

E[Xk|G] ( bounded inside the expectation, then take inf)

= lim
n!∞

inf E[Xn|G].

(h) If {Xn} ⊆ L1, |Xn| ⩽ Z for n ⩾ 1 and Z ∈ L1, and Xn ! X∞ as n!∞. Then

lim
n!∞

E[Xn|G] = E[X∞|G].
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(i) Product rule. Let X and Y be random varibales satisfying X1 ∈ L1, Y X ∈ L1,. If Y ∈ G
(G-measurable), then

E[XY |G] a.s.= Y E(X|G).

Proof. Case 1: Assume Y = 1B for some B ∈ G. Then∀A ∈ G, since A ∩B ∈ G,∫
A

E[X1B |G]dP =

∫
A

X1BdP =

∫
A∩B

XdP =

∫
A∩B

E[X|G]dP =

∫
A

1BE[X|G]dP.

So

E[X1B |G]
a.s.
= 1BE(X|G).

Case 2: Assume Y =
∑n

k=1 ck1Bk
, where c1, . . . , ck ∈ R, B1 · · ·Bk ∈ G. Then Y ∈ G and

E

[
X

n∑
k=1

ck1Bk

∣∣∣∣∣G
]
=

n∑
k=1

E[ck1Bk
X|G] =

n∑
k=1

ck1Bk
E[X|G],

by the case 1.
Case 3: Assume Y ⩾ 0. Then there exists simple random variables {Yn} s.t. {Yn} ⊆ G and Yn " Y
as n ! ∞. However XY ∈ L1, (XY )− = X−Y ∈ L1. However X ∈ L1, X

− = X− ∈ L1. So
E[(XY )−|G] <∞. Then by the case 2,

E[XY |G] = E[(XY )+|G]− E[(XY )−|G]
= E[X+Y |G]− E[X−Y |G]
= lim

n!∞
E[X+Yn|G]− lim

n!∞
E[X−Yn|G]

= lim
n!∞

YnE[X+|G]− lim
n!∞

YnE[X−|G]

= Y E[X+|G]− Y E[X−|G]
= Y E[X|G].

Last case: extend to G-measurable.

(j) The tower (smooth) property: Suppose X ∈ L1, and G1 and G2 are both sub-σ-fields of B
satisfying

G1 ⊆ G2 ⊆ B P -a.s..

Then

E[E[X|G2]|G1] = E[X|G1], P -a.s.,

E[E[X|G1]|G2] = E[X|G1], P -a.s..

Proof. Since E[X|G1] ∈ G2, by the product rule,

E[E[X|G1]|G2] = E[X|G1]E[1|G2] = E[X|G1].
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Note that for any A ∈ G1 ⊆ G2,∫
A

E[E[X|G2]|G1]dP
def
=

∫
A

E[X|G2]dP

=

∫
A

XdP (A ∈ G1 ⊆ G2)

=

∫
A

E[X|G1]dP.

Since E[X|G1] is G1-measurable, by the integral comparison lemma,

E[E[X|G2]|G1] = E[X|G1], P -a.s..

A special case: G1 = {∅,Ω}. Then by property (3), E[X|G1] = E[X], and then

E[E[X|G2]] = E[E[X|G2]|G1]

= E[X|G1]

= E[X].

Then let G2 = σ(Y ), then

E[X] = E[E[X|Y ]].

A common use of the tower property i the calculation for G-measurable Y ∈ L1,

E[XY ] = E [E[XY |G]] = E [Y E[X|G]] .

(k) Projections: Suppose X ∈ L2(B). Then E[X|G] is the projection of X onto L2(G), a subspace
of L2(B). The projection of X onto L2(G) is the unique element of L2(G) achieving

inf
Z∈L2(G)

∥X − Z∥2.

It is computed by solving the prediction equations for Z ∈ L2(G):

(Y,X − Z) = 0, ∀Y ∈ L2(G).

By trying a solution of Z = E[X|G], we get∫
Y (X − Z)dP = E[Y (X − E[X|G])]

= E[Y X]− E[Y E[X|G]]
= E[Y X]− E[E[Y X|G]]
= E[Y X]− E[Y X] = 0.

In time series analysis, E[X|G] is the best predictor of X in L2(G). It is not often used when
G = σ(X1, . . . , Xn) and X = Xn+1 because of its lack of linearity and hence its computational
difficulty.
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(l) Conditioning and independence: If X ∈ L1 and X |= G, then

E[X|G] = E[X].

Proof. Recall X is independent of G if σ(X) is independent of G w.r.t the underlying measure P .
Let A ∈ G, since E[X] is G-measurable,∫

A

E[X|G]dP =

∫
A

XdP = E[X1A] = E[X]P (A) =

∫
A

E[X]dP.

So E[X|G] = E[X].

(m) Conditional Jensen’s inequality: Let ϕ be a convex function, X ∈ L1 and ϕ(X) ∈ L1. Then
almost surely

ϕ[E(X|G)] ⩽ E[ϕ(X)|G].

(n) Conditional expectation is continuous on Lp: Assume Xn
Lp
! X as n!∞ for p ⩾ 1. Then

E[Xn|G]
Lp
! E[X|G].

Proof. When p ⩾ 1, ϕ(x) = |x|p is a convex function. Then

E [|E[Xn|G]− E[X|G]|p] = E [|E[Xn −X|G]|p]
⩽ E [E|Xn −X|p|G]
= E [|Xn −X|p]
! 0.

(o) Conditional expectation is Lp norm reducing, i.e.,

∥E[X|B]∥p ⩽ ∥X∥p.

Proof. Similarly, by Jensen’s inequality.

12.5 Martingale

Let {Xn}n∈Z⩾0 ⊆ L1(Ω,B, P ) and let {Bn}n∈Z⩾0 be sub-σ-field of B.
Consider the following statesments.

(a)
Bn ⊆ Bn+1,∀n ∈ Z⩾0.

(b)
Xn ∈ Bn,∀n ∈ Z⩾0.

(c) (1) For any n ∈ Z⩾0 and any m ∈ Z+,

E[Xn+m|Bn] = Xn, P -a.s..
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(2) For any n ∈ Z⩾0 and any m ∈ Z+,

E[Xn+m|Bn] ⩾ Xn, P -a.s..

(3) For any n ∈ Z⩾0 and any m ∈ Z+,

E[Xn+m|Bn] ⩽ Xn, P -a.s..

Then

(a) {(Xn,Bn)}n∈Z⩾0 is called a martingale if it satisfies (i), (ii) and (iii)(a).

(b) {(Xn,Bn)}n∈Z⩾0 is called a submartingale if it satisfies (i), (ii) and (iii)(b).

(c) {(Xn,Bn)}n∈Z⩾0 is called a supmartingale if it satisfies (i), (ii) and (iii)(c).

Remark. (a) {(Xn,Bn)}n∈Z⩾0 is called a martingale if and only if it is both submartingle and
supmartingale.

(b) Postulate (iii) could be replaced by

E[Xn+1|Bn] = Xn P -a.s.∀n ∈ Z⩾0.

Proof. For any m ⩾ 2,

E[Xn+m|Bn] = E[E[Xn+m|Bn+m−1]|Bn]

= E[Xn+m−1|Bn]

=
...

= E[Xn+1|Bn]

= Xn.

(c) For any n ⩾ 0, let Cn = σ(X0, . . . , Xn). If {(Xn,Bn)}n∈Z⩾0 is a martingale, then {(Xn, Cn)}n∈Z⩾0

is a martingale.

Proof. (1)
Cn = σ(X0, . . . , Xn) ⊆ σ(X0, . . . , Xn+1) = Cn+1.

(2) Since Xk ∈ Bk ⊆ Bn for any 0 ⩽ k ⩽ n, we have Cn ∈ Bn.

(3) For any n ∈ Z⩾0,m ∈ Z+, since Xn ∈ Cn,

E[Xn+m|Cn] = E[E[Xn+m|Bn]|Cn] = E[Xn|Cn] = Xn, P -a.s..

Definition 12.24. A sequence {Bn}n∈Z⩾0 of σ-fields satisfying Bn ⊆ Bn+1 for any n ∈ Z⩾0 is
called a filtration.

Definition 12.25 (Martingale difference). For {(dj ,Bj)}j∈Z⩾0 , where {dj}j∈Z⩾0 ⊆ L1(Ω,B, P )
and {Bj}j∈Z⩾0 are sub-σ-field of B. Consider the following statements,
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(a) Bj ⊆ Bj+1 for any j ∈ Z⩾0.

(b) dj ∈ Bj for any j ∈ Z⩾0.

(c) (1)

E[dj+1|Bj ] = 0, P -a.s.∀j ∈ Z⩾0.

(2)

E[dj+1|Bj ] ⩾ 0, P -a.s.∀j ∈ Z⩾0.

(3)

E[dj+1|Bj ] ⩽ 0, P -a.s.∀j ∈ Z⩾0.

Then

(a) {(dj ,Bj)}j∈Z⩾0 is called a martingale difference sequence or a fair sequence if it satisfies (i), (ii)
and (iii)(a).

(b) {(dj ,Bj)}j∈Z⩾0 is called a sub-fair sequence if it satisfies (i), (ii) and (iii)(b).

(c) {(dj ,Bj)}j∈Z⩾0 is called a sup-fair sequence if it satisfies (i), (ii) and (iii)(c).

Proposition 12.26. Facts about martingale differences:

(a) If {(dj ,Bj)}j∈Z⩾0 is (sub,super) fair sequence, then
Xn :=

n∑
j=0

dj , Bn


n∈Z⩾0

is a (sub, sup) fair martingale.

Proof. Proof of the fair sequence cases. Suppose {(dj ,Bj)}j∈Z⩾0 is fair. Then dj ∈ L1(Ω,B, P ) for
any j ∈ Z⩾0 and since L1 is closed under finite sum,

Xn ∈ L1(Ω,B, P ),∀n ∈ Z⩾0.

Furthermore,

(1) Clearly, Bn ⊆ Bn+1 for any n ∈ Z⩾0.

(2) Since dj ∈ Bj ⊆ Bn for any 0 ⩽ j ⩽ n and j ∈ Z, Xn =
∑n

j=0 dj ∈ Bn.

(3) For any n ∈ Z⩾0,

E[Xn+1|Bn] = E[Xn + dn+1|Bn]

= E[Xn|Bn] + E[dn+1|Bn]

= Xn + 0

= Xn, P -a.s..
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(b) Suppose {(Xn,Bn)}n∈Z⩾0 is a (sub, sup) martingale. Define

d0 := X0 − E[X0],

dj := Xj −Xj−1,∀j ∈ Z+.

Then {(dj ,Bj)}j∈Z⩾0 is a (sub, sup) fair sequence.

Proof. Proof of the martingale case. Suppose {(Xn,Bn)}n∈Z⩾0 is a martingale. Then Xn ∈
L1(Ω,B, P ) for any n ∈ Z⩾0 and since L1 is closed linear combinations,

dj ∈ L1(Ω,B, P ),∀j ∈ Z⩾0.

(1) Clearly, Bj ⊆ Bj+1,∀n ∈ Z⩾0.

(2) Clearly, d0 = X0 − E[X0] ∈ B0. Since Xj ∈ Bj and Xj−1 ∈ Bj−1 ⊆ Bj for any j ∈ Z+,

dj = Xj −Xj−1 ∈ Bj ,∀j ∈ Z+.

(3) For any j ∈ Z⩾0,

E[dj+1|Bj ] = E[Xj+1 −Xj |Bj ] = E[Xj+1|Bj ]− E[Xj |Bj ] = Xj −Xj = 0, P -a.s..

(c) (Orthogonaility of martingale difference.) Suppose {(dj ,Bj)}n∈Z⩾0 is a fair sequence and
{dj}n∈Z⩾0 ⊆ L2(Ω,B, P ). Then

E[didj ] = 0,∀ i ̸= j.

Proof. By holder’s inequality,

E [|didj |] ⩽
√
E[d2i ]

√
E[d2j ] <∞.

So
{didj}i ̸=j,i,j∈Z⩾0 ⊆ L1(Ω,B, P ).

When i ̸= j, without loss of generality, assume j > i, since

E[dj |Bi] = E[E[dj |Bj−1]|Bi] = E[0|Bi] = 0,

we have
E[didj ] = E[E[didj |Bi]] = E[diE[dj |Bi]] = E[di · 0] = 0, P -a.s..

12.5.1 Examples of Martingales

Example 12.27. Suppose X ∈ L1(Ω,B, P ) and {Bn}n∈Z⩾0 is an increasing family of sub-σ-field
of B. Define for any n ∈ Z⩾0.

Xn := E[X|Bn].

Then {(Xn,Bn)}n∈Z⩾0 is a martingle.

Proof. Since X ∈ L1 and Xn = E[X|Bn], Xn ∈ L1(Ω,B, P ) for any n ∈ Z⩾0.
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(a) Clearly, Bn ⊆ Bn+1,∀n ⩾ 0.

(b) Since X ∈ L1 and Xn = E[X|Bn], Xn ∈ Bn for any n ∈ Z⩾0.

(c) For any n ∈ Z⩾0,

E[Xn+1|Bn] = E[E[X|Bn+1]|Bn] = E[X|Bn] = Xn, P -a.s..

Example 12.28 (Martingales’s and sums of independent random variables.). Suppose {Zn}n∈Z⩾0

is an independent sequence satisfying (random walk)

Zn ∈ L1(Ω,B, P ),∀n ∈ Z⩾0.

E[Zn] = 0,∀n ∈ Z⩾0.

Set

Xn =

n∑
i=0

Zi,∀n ∈ Z⩾0,

Bn = σ(Z0, . . . , Zn).

Then {(Xn,Bn)}n∈Z⩾0 is a martingale.

Proof. It suffices to show {Zn}n∈Z⩾0 is a fair sequence.

(a) Bn = σ(Z0, . . . , Zn) ⊆ σ(Z0, . . . , Zn) = Bn+1 for any n ∈ Z⩾0.

(b) Zn ∈ L1 for any n ∈ Z⩾0.

(c) Since {Zn}n∈Z⩾0 is an independent sequence for any n ∈ Z⩾0,

E[Zn+1|Bn] = E[Zn+1] = 0, P -a.s..

Example 12.29. Suppose {Xn}n∈Z⩾0 have a countable space E = {0, 1, · · · } and transition matrix

P = [Pij ]i,j∈E .

For any n ∈ Z⩾0, define
Bn = σ(X0, . . . , Xn).

By Markov property, For any n ∈ Z⩾0 and any j ∈ E,

P (Xn+1 = j|Bn) = P (Xn+1 = j|σ(Xn)) = P (Xn+1 = j|Xn), P -a.s..

By example 12.22,

P (Xn+1 = j|Xn) =
∑
i∈E

P (Xn+1 = j|Xn = i)1{Xn=i}.

On the set {Xn = i, . . . ,X0 = x0},

P (Xn+1 = j|Bn) = P (Xn+1 = j|Xn = i) = Pij .



12.5. MARTINGALE 181

Note that
Xn : (Ω,Bn)! (E,P(E)),∀n ∈ Z+.

Suppose there exists an eigenvalue λ and a corresponding eigenvector

f : (E,P(E))! (R,B(R)).

satisfying Pf = λf , and f = (f(0), f(1), · · · ). In component form, this is∑
j∈E

Pijf(j) = λf(i).

In terms of expectation,
E[f(Xn+1|Xn = i)] = λf(i).

or

E[f(Xn+1|Xn)] = E[f(Xn+1|σ(Xn)] = E[f(Xn+1|Bn)] = λf(Xn),

by (inverse) Markov property. Assume λ ̸= 0, define

Zn =
f(Xn)

λn
, ∀n ∈ Z⩾0.

Claim {(Zn,Bn)}n∈Z⩾0 is a martingale. Clearly, f ∈ P(E). Then f(Xn) ∈ Bn for any n ∈ Z⩾0. So
Zn ∈ Bn ⊆ B, ∀n ∈ Z⩾0. Also, assume

E [|f(X0)|] =
∑
i∈E

|f(i)|P (X0 = i) <∞,

meaning f(X0) ∈ L1, where X0 is the intial distribution. Then

E [|f(Xn)|] =
∑
i∈E

|f(i)|P (Xn = i)

=
∑
i∈E

|f(i)|
∑
j∈E

P (X0 = j)P
(n)
ji

=
∑
i∈E

|f(i)|P (X0 = i) (stationary?)

<∞.

So Zn = f(Xn)
λn ∈ L1 for any n ∈ Z⩾0.

(a) Bn ⊆ Bn+1 for any n ∈ Z⩾0.

(b) We already showed Zn ∈ Bn for any n ∈ Z⩾0.

(c) For any n ∈ Z⩾0,

E[Zn+1|Bn] =
E[f(Xn+1)|Bn]

λn+1
=
λf(Xn)

λn+1
=
f(Xn)

λn
= Zn, P -a.s..



182 CHAPTER 12. MARTINGALES

So {(Zn,Bn)}n∈Z⩾0 is a martingale.

Example 12.30 (Simple branching process). Let Xn be the number of organisms of the n-th
generation. Each organisms reproduces asexually and let

Pi = P (an organism has i offspring),∀ i ∈ Z⩾0.

Let Zn,k be the number of offspring produced by the k-th organism in the n-th generation. Assume
{Zn,k}n∈Z⩾0,k∈Z+ are iid. Then

Xn+1 =

{ ∑Xn

j=1 Zn,j , Xn > 0,

0, Xn = 0.

So {Xn}n⩾0 is a DTMC and

Pij =

{
δ0j , i = 0
P ∗i
j , i ⩾ 1,

where P ∗i
j is the j-th component of the i-fold convolution of the sequence {pn}, i.e.,

p ∗ p[i] =
∞∑

m=0

pmpi−m =

∞∑
m=0

pi−mpm.

Let

m =

∞∑
k=1

kpk

be the mean number of offspring per organism. Note that for any i ∈ Z+,

mi =

∞∑
j=0

Pijj =

∞∑
j=0

P ∗i
j j,

while for i = 0,

∞∑
j=0

pijj = P00 · 0 = 0 = mi.

With f(j) = j, we have Pf = mf .
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Or note when Xn > 0,

E[Xn+1] = E

[
Xn∑
k=1

Zn,k

]

= E

[ ∞∑
k=0

Zn,k1{Xn⩾k}

]

=

∞∑
k=0

E[Zn,k1{Xn⩾k}.]

=

∞∑
k=0

E[Zn,k]P (Xn ⩾ k) (naturally independent)

=

∞∑
k=0

mP (Xn ⩾ k)

= mE[Xn],

while for Xn = 0, E[Xn+1] = 0 = mE[Xn]. Thus, the process {(Xn/m
n, σ(X0, . . . , Xn), n ⩾ 0} is

a martingale.

Example 12.31. (Likelihood ratios). Suppose {Yn, n ⩾ 0} are iid random variables and suppose
the true density of Y1 is f0. (The word “density” can be understood with respect to some fixed
reference meaure µ.) Let f1 be some other probability density. For simplicity suppose f0(y) > 0,
for all y. Then for n ⩾ 0,

Xn =

∏n
i=0 f1(Yi)∏n
i=0 f0(Yi)

is a martingale.

Proof. We check the condition (iii).

E(Xn+1|Y0, . . . , Yn) = E

(∏n
i=0 f1(Yi)∏n
i=0 f0(Yi)

f1(Yn+1)

f0(Yn+1)

∣∣∣∣Y0, . . . , Yn)
= XnE

(
f1(Yn+1)

f0(Yn+1)

∣∣∣∣Y0, . . . , Yn) P -a.s.

By independence this becomes

E(Xn+1|Y0, . . . , Yn) = XnE

(
f1(Yn+1)

f0(Yn+1)

)
P -a.s.

= Xn

∫
f1(y)

f0(y)
f0(y)µ(dy)

= Xn

∫
f1dµ

= Xn · 1
= Xn P -a.s.

since f1 is a density.
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Definition 12.32. A sequence of random variables {Uj}j⩾0 is said to be predictable w.r.t a filtra-
tion {Bn} if

(a) U0 ∈ B0,

(b) Uj ∈ Bj−1 for any j ∈ Z+.

Definition 12.33. A sequence of random variables {Uj}j⩾0 is adapt to the filtration {Bj}j⩾0 if

Uj ∈ Bj ,∀j ∈ Z+.

Remark. If {Uj}j∈Z⩾0 is predictable w.r.t. {Bj}j∈Z⩾0 , it is adapt to {Bj}j⩾0.

Example 12.34 (Discrete stochastic integration). Suppose {(dj ,Bj)}j∈Z⩾0 is a fair sequence. Let
{(Uj)}j∈Z⩾0 be predictable w.r.t. {Bj}j∈Z⩾0 and assume that

{Uj}j∈Z⩾0 ⊆ L∞(Ω,B, P ).

Show that {(Ujdj ,Bj)}j∈Z⩾0 is still a fair sequence.

Proof. Since dj ∈ Bj ⊆ B and Uj ∈ Bj−1 ⊆ B, Ujdj ∈ B. It is easy to find (or use Holder’s
inequality) Ujdj ∈ L1(Ω,B, P ).

(a) Clearly, Bn ⊆ Bn+1.

(b) Since dj ∈ Bj and Uj ∈ Bj−1 ⊆ Bj , Ujdj ∈ Bj .

(c) For any j ∈ Z⩾0, since Uj+1 ⊆ Bj ,

E[Uj+1dj+1|Bj ] = Uj+1E[dj+1|Bj ] = 0 P -a.s..

So {(Ujdj ,Bj)}j∈Z⩾0 is a fair sequence. Define

Xn :=

n∑
m=0

Umdm, ∀n ∈ Z⩾0.

Then {(Xn,Bn)}n∈Z⩾0 is martingale.

In gambling models, dj might be ±1 and Uj is how much you gamble so that Uj is a strategy
based on previous gambles. In investment model, dj might be the change in price of a risky asset
and Uj is the number of shares of the asset held by the investor. In stochastic integration, ths dj ’s
are increment of Brownian motion. Refer to

(a) Stochastic Differential Equations by Okendal

(b) Stochastic Integration and Differential Equations by Protter

(c) Introduction to Stochastic Integration by K.L. Chung.
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Lemma 12.35. Suppose {Bn}n⩾0 is a filtration and let

{Mn}n⩾0 ⊆ L1(Ω,B, P )

be adapt w.r.t {Bn}n∈Z⩾0 . Define

d0 =M0,

dn =Mn −Mn−1,∀n ∈ Z+.

Then {(Mn,Bn)}n∈Z⩾0 is a martingale if and only if for every bounded predictable sequence
{Un}n∈Z⩾0 , we have

E

(
N∑

n=1

Undn

)
= 0,∀N ∈ Z+.

Proof. Suppose {(Mn,Bn)}n∈Z⩾0 is a martingale and {Uj}j∈Z⩾0 is bounded predictable sequence,
where “bounded” means

sup
n∈Z⩾0

sup
ω∈Ω

|Un(ω)| ⩽ A <∞.

Then for any N ∈ Z+,

E

[
N∑

n=1

Undn

]
=

N∑
n=1

E[Undn] =

N∑
n=1

E [E[Undn|Bn−1]] =

N∑
n=1

E [UnE[dn|Bn−1]] = 0.

Assume the other direction.

(a) {Bn}n∈Z⩾0 is a filtration.

(b) {Mn}n∈Z⩾0 ⊆ L1(Ω,B, P ) is adapt w.r.t. {Bn}n∈Z⩾0 .

(c) Fix j ∈ Z⩾0 and let A ∈ Bj .
Define for any n ∈ Z⩾0,

Un =

{
0, n ̸= j + 1
1A, n = j + 1.

Then {Un}n∈Z⩾0 is bounded and predictable w.r.t. {Bn}n∈Z⩾0 since

(1) If n ̸= j + 1, Un = 0 ∈ Bn−1.

(2) If n = j + 1, Uj+1 = 1A ∈ Bj since A ∈ Bj .

Then for any N ⩾ j + 1 and N ∈ Z+, by assummption,

0 = E

(
N∑

n=1

Undn

)
= E[Uj+1(Mj+1 −Mj)] = E[1A(Mj+1 −Mj)] = E[1AMj+1]− E[1AMj ].

So E[1AMj+1] = E[1AMj ]. Since A ∈ Bj is arbitrary,

E[1AMj ] = E[1AMj+1] = E
[
1AjE[Mj+1|Bj ]

]
P -a.s..
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By the integral comparision lemma,

E[Mj+1|Bj ] =Mj P -a.s..

Or use when for any N ⩾ j + 1 and N ∈ Z+, by assumption,

0 = E

(
N∑

n=1

Undn

)
= E[Uj+1dj+1] = E[1Aj

dj+1]

so that
0 = E[1Aj

dj+1] = E
[
1Aj

E[dj+1|Bj ]
]
.

By the integral comparision lemma, E[dj+1|Bj ] = 0 P -a.s..

So {(Mn,Bn)}n∈Z⩾0 is a martingale.

Definition 12.36. A collection of random variables that is predictable w.r.t. the filtration {Bn}n∈Z⩾0

is said to be increasing if
0 = A0 ⩽ A1 ⩽ A2 ⩽ · · · P -a.s..

Theorem 12.37 (Doob decomposition). Any submartingale {(Xn,Bn)}n∈Z⩾0 can be written in a
unique way as the sum of a martingale {(Mn,Bn)}n∈Z⩾0 and an increasing process {An}n∈Z⩾0 .
That is Xn =Mn +An, n ∈ Z⩾0.

Proof. Define

Mn = X0 +

n∑
k=1

[Xk − E[Xk|Bk−1]] .

(a) Bn ⊆ Bn+1,∀n ∈ Z⩾0.

(b) M0 = X0 ∈ L1 and M0 ∈ B0. Let n ∈ Z+. Since conditional expectation

E[Xk|Bk−1] ∈ Bk−1 ⊆ Bn ⊆ B,∀k ∈ [n],

and conditional expectations are always integrable,

E[Xk|Bk−1] ∈ L1(Ω,B, P ),∀k ∈ [n].

So Mn ∈ L1. Similarly, Mn ∈ Bn.

(c) For any n ∈ Z⩾0,

E[Mn+1|Bn] = E [Mn +Xn+1 − E[Xn+1|Bn]| Bn]

= E[Mn|Bn] + E[Xn+1|Bn]− E[Xn+1|Bn]

=Mn.

So {(Mn,Bn)} is a martingale. Define

An = Xn −Mn,∀n ∈ Z⩾0.
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Then

A0 = X0 −M0 = 0 ∈ any σ field.

An = Xn −X0 −
n∑

k=1

(Xk − E[Xk|Bk−1])

= E[Xn|Bn−1]−X0 −
n−1∑
k=1

(Xk − E[Xk|Bk−1])

= E[Xn|Bn−1]−Mn−1

= E[Xn|Bn−1]−Xn−1 +An−1

⩾ An−1 P -a.s.,

since {(Xn,Bn)}n⩾0 is a submartingale. Besides,

An = E[Xn|Bn−1]−Xn−1 +An−1 ∈ Bn−1.

So {An}n∈Z⩾0 is increasing. Next, we prove the uniqueness. Suppose there is another decomposition

Xn =M ′
n +A′

n,

where {(M ′
n,Bn)}n∈Z⩾0 is a martingale and {A′

n} is an increasing process. Then∀n ⩾ 0,

A′
n+1 −A′

n = Xn+1 −M ′
n+1 − (Xn −M ′

n)

= Xn+1 −Xn − (M ′
n+1 −M ′

n).

Since {A′
n} is predictable and {M ′

n} is a martingale,

A′
n+1 −A′

n = E[A′
n+1 −A′

n|Bn]

= E[Xn+1 −Xn − (M ′
n+1 −M ′

n)|Bn]

= E[Xn+1|Bn]−Xn P -a.s..

Similarly,

An+1 −An = E[Xn+1|Bn]−Xn P -a.s..

Thus, since A0 = A′
0 = 0,

A′
n = A′

0 +

n∑
k=1

(A′
k −A′

k−1)

= A0 +

n∑
k=1

(Ak −Ak−1)

= An P -a.s..

Finally,

Mn = Xn −An = Xn −A′
n =M ′

n P -a.s.,∀n ∈ Z⩾0.
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Example 12.38. Suppose {Bk}k⩾1 is an iid sequence of Poisson random variables having rate λ.
Define

Nn =

n∑
k=1

Bk,∀n ∈ Z⩾0.

Define
Bn = σ(N0, . . . , Nn), n ⩾ 0.

Then {(Nn,Bn)}n⩾0 is a submartingale.

Proof. Note
σ(N0, . . . , Nn) = σ(B1, . . . , Bn).

(a) Clearly, Bn ⊆ Bn+1 for any n ∈ Z⩾0.

(b) Since Bk ∈ Bk for any k ∈ Z⩾0 and E[Nn] = nλ <∞, Nn ∈ Bn and Nn ∈ L1 for any n ∈ Z⩾0.

(c)

E[Nn+1|Bn] = E

[
n+1∑
k=1

Bn|Bn

]
= E[Nn|Bn] + E[Bn+1|Bn] = Nn + E[Bn+1] = Nn + λ ⩾ Nn.

What’s the Doob’s decomposition?

Mn = N0 +

n∑
k=1

(Nk − E[Nk|Bk−1])

=

n∑
k=1

(Nk − (Nk−1 + E[Bk]))

=

n∑
k=1

(Nk −Nk−1) +

n∑
k=1

E[Bk]

= Nn − nλ.

Furthermore, An = Nn −Mn = nλ.

Proposition 12.39. (a) Let {Xn,Bn}n⩾0 be a martingale, and let ϕ : R ! R be convex on R,
where

ϕ(Xn) ∈ L1(Ω,B, P ),∀n ∈ Z⩾0.

Then {ϕ(Xn),Bn}n⩾0 is a submartingale.

(b) Let {(Xn,Bn)} be a submartingale and ϕ : R ! R be a convex, nondecreasing function that
satisfies

ϕ(Xn) ∈ L1(Ω,B, P ),∀n ∈ Z⩾0.

Then {(ϕ(Xn),Bn)}⩾0 is a submartingale.

Proof. By Jensen’s inequality,

E[ϕ(Xn+1)|Bn] ⩾ ϕ (E[Xn+1|Bn]) ⩾ ϕ(Xn).
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12.6 Stopping time

Define
N := {0, 1, 2, · · · },

N = {0, 1, 2, . . . ,∞},

and suppose {Bn}n⩾0 is a filtration.

Definition 12.40. A random variable ν : Ω! N is a stopping time (w.r.t {Bn}) if

{ν = n} ∈ Bn,∀n ∈ N.

Remark. To fix ideas, image a sequence of gambles. Then ν is the rule for when to stop and Bn is
the information accumulated up to time n. You decide whether or not to stop after the nth gamble
based on information availble up to and including the nth gamble.

Definition 12.41. Define
B∞ =

∨
n∈N

Bn = σ(Bn, n ∈ N).

Then

{ν = ∞} = [ν <∞]c =

(⋃
n∈N

[ν = n]

)c

=
⋂
n∈N

[ν = n]c ∈ B∞.

Requiring
{ν = n} ∈ Bn, n ∈ N

implies
{ν = n} ∈ Bn, n ∈ N.

Example 12.42. Suppose {Xn}n∈N is adapt to a filtration {Bn}n∈N. For any A ∈ B(R), define

ν = inf{n ∈ N | Xn ∈ A}.

with the convention that inf ∅ = ∞. Then ν is a stopping time w.r.t {Bn}n∈N since

{ν = n} = {X0 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A} ∈ Bn.

Example 12.43. Suppose ν is a stopping time w.r.t. {Bn}n∈N. Define

Bν = {A ∈ B∞ | A ∩ {ν = n} ∈ Bn,∀n ∈ N}.

Bν consists of all events that have the property that adding the information of when ν occurred,
places the intersection in the approprite σ-field. Claim. Bν is a σ-field.

Proof. (a) For any n ∈ N, Ω ∩ {ν = n} = {ν = n} ∈ Bn.

(b) Suppose A ∈ Bν . For any n ∈ N,

Ac ∩ {ν = n} = {ν = n}∖ (A ∩ {ν = n}) ∈ Bn.

So Ac ∈ Bn.
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(c) Suppose {Ak}∞k=1 ⊆ Bν . Then∀n ∈ N,( ∞⋃
k=1

Ak

)
∩ {ν = n} =

∞⋃
k=1

Ak ∩ {ν = n} ∈ Bn.

So
∞⋃
k=1

Ak ∈ Bn.

Basic Facts:

(a) If ν ≡ k, for some k ∈ N, then ν is a stopping time and Bν = Bk.

Proof. For any n ∈ N,

{ν = n} =

{
∅, n ̸= k
Ω, n = k

∈ Bn .

Note
Bν = {A ∈ B∞ : A ∩ {ν = n} ∈ Bn,∀n ∈ N}.

If A ∈ Bν , by the definition of Bν ,

A = A ∩ Ω = A ∩ {ν = k} ∈ Bk.

So Bν ⊆ Bk. Suppose A ∈ Bk. If 0 ⩽ n < k or n > k,

A ∩ {ν = k} = A ∩ ∅ = ∅ ∈ Bn.

If n = k, A ∩ {ν = k} = A ∈ Bk = Bn. So A ⊆ Bν . Hence Bk ⊆ Bν . Thus, Bk = Bν .

(b) If ν is a stopping time and B ∈ Bν , then B ∩ {ν = ∞} ∈ B∞, and hence

B ∩ {ν = n} ∈ Bn,∀n ∈ N.

Proof.

B ∩ {ν = ∞} = B ∩ {ν <∞}c

= B ∩

(⋃
n∈N

{ν = n}

)c

= B ∩
⋂
n∈N

{ν ̸= n}

=
⋂
n∈N

B ∩ {ν ̸= n}

∈ B∞,

since B ∈ Bν ⊆ B∞ and {ν ̸= n} = {ν = n}c ∈ Bn ⊆ B∞.
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(c) If ν is a stopping time, then ν ∈ Bν ⊆ B∞.

Proof. {ν = n} ∈ Bn ⊆ B∞ for any n ∈ N. Since for any n ∈ N,

{ν = n} ∩ {ν = k} =

{
{ν = k}, k ⩽ n
{ν = n}, k > n

∈ Bk,∀k ∈ N ,

we have {ν = n} ∈ Bν ,∀n ∈ N. Since the range of ν is N, ν ∈ Bν .

(d) ν is a stopping time if and only if

{ν ⩽ n} ∈ Bn,∀n ∈ N,

if and only if
{ν > n} ∈ Bn,∀n ∈ N.

Proof. Since

{ν ⩽ n} =
⋃

0⩽j⩽n

{ν = j},

we have {ν = n} = {ν ⩽ n} − {ν ⩽ n− 1} and {ν > n} = {ν ⩽ n}c.

(e) If B ∈ B∞, then
B ∈ Bν ⇐⇒ B ∩ {ν ⩽ n} ∈ Bn,∀n ∈ N.

(f) If {νk}k∈Z+ , then so is
min
k∈Z+

{νk} and max
k∈Z+

{νk}.

Proof. { ∧
k∈Z+

νk > n

}
=
⋂

k∈Z+

{νk > n} ∈ Bn,∀n ∈ N,

{ ∨
k∈Z+

νk ⩽ n

}
=
⋂

k∈Z+

{νk ⩽ n} ∈ Bn,∀n ∈ N.

(g) If {νk} is a monotone family of stopping times, limk!∞ νk is a stopping time since the limit is∨
k∈Z+

νk or
∧

k∈Z+

νk.

(h) If νi, i = 1, 2 are stopping times, so is ν1 + ν2.

Example 12.44. If ν is a stopping times, then

νn = ν ∧ n, ∀n ∈ Z+

is a stopping time (which is bounded) since both ν and n are stopping times.
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Facts concerning the comparison of two stopping times ν and ν′. We assume ν and ν′ are both
stopping time w.r.t. the same filtration {Bn}n∈N.

(a)
{ν < ν′}, {ν = ν′}, {ν ⩽ ν′} ∈ Bν ∩ Bν′ .

Proof. Note
{ν = ν′} ∩ {ν = n} = {n = ν′} ∩ {ν = n} ∈ Bn,∀n ∈ Bn,

so {ν = ν′} ∈ Bν . Note that

{ν < ν′} ∩ {ν = n} = {n < ν′} ∩ {ν = n} ∈ Bn,∀n ∈ N,

so {ν < ν′} ∈ Bν . Thus,
{ν ⩽ ν′} = {ν < ν′} ∪ {ν = ν′} ∈ Bν .

or use (⋆ ⋆ ⋆)

{ν ⩽ ν′} ∩ {ν = n} = {n ⩽ ν′} ∩ {ν = n} = {n− 1 < ν′} ∩ {ν = n} ∈ Bn,∀n ∈ N,

Similarly, note
{ν ⩽ ν′} ∩ {ν′ = n} = {ν ⩽ n} ∩ {ν′ = n} ∈ Bn,

so {ν ⩽ ν′} ∈ Bν′ .

(b) If B ∈ Bν , then
B ∩ {ν ⩽ ν′} ∈ Bν′ ,

B ∩ {ν < ν′} ∈ Bν′ .

Proof.
B ∩ {ν ⩽ ν′} ∩ {ν′ = n} = (B ∩ {ν ⩽ n}) ∩ {ν′ = n} ∈ Bn,

since

B ∩ {ν ⩽ n} = B ∩
n⋃

k=1

{ν = k} =

n⋃
k=1

B ∩ {ν = k} ∈ Bn.

(c) If ν ⩽ ν′ on Ω, then Bν ⊆ Bν′ .

Proof. This follows from (2) since {ν ⩽ ν′} = Ω.

12.7 Positive Supermartingale

Suppose {(Xn,Bn)}n∈N is a positive supermartingale so that

Xn ⩾ 0 P -a.s.,

Xn ∈ Bn,

and
E[Xn+1|Bn] ⩽ Xn, n ⩾ 0, P -a.s..

Consider the following questions.
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(a) When does limn!∞Xn exist? In what sense does convergence take place if some form of
convergence holds? Since supermartingale tend to decrease, at least on the average, one expects
that under reasonbale conditions, supermartingale bounded below by 0 should converge.

(b) Is fairness preserved under random stopping? If {Xn} is a martingale, we know that we have
constant mean; that is

E(Xn) = E(X0),∀n ∈ N.

Is
E(Xν) = E(X0)

for some reasonable class of stopping times ν?

When it holds, preservation of the mean under random stopping is quite useful. However, we can
quickly see that preservation of the mean under random stopping does not always hold.

Example 12.45. Let {X0 = 0, Xn =
∑n

i=1 Yi, n ⩾ 1} be the BernoullI random walk so that
{Yi}i∈Z+ are iid and

P (Yi = ±1) =
1

2
, i ∈ Z+.

Then {(Xn,Bn)}n∈N is a martingale, where Bn = σ(X0, . . . , Xn). Let

ν = inf{n ∈ Z+| : Xn = 1}

be the first time the random walks hits 1. Standard Markov chain analysis asserts that

P (ν <∞) = 1.

But Xν = 1 so that
E[Xν ] = 1 ̸= E(X0) = 0.(

Xν(ω) := Xν(ω)(ω),∀ω ∈ Ω.
)

Thus, for random stopping to preserve the process mean, we need restrictions either on {Xn} or on
ν or both.

12.7.1 Operations on Supermartingale

We consider two transformations of supermartingles which yield supermartingales.

Proposition 12.46 (Pasting of supermartingales). For i = 1, 2, let{(
X(i)

n ,Bn

)
, n ⩾ 0

}
be positive supermartingales. Let ν be a stopping time such that

X(1)
ν (ω) ⩾ X(2)

ν (ω),∀ω ∈ {ν <∞}.

For any n ∈ N, define

Xn(ω) =

{
X

(1)
n (ω), n < ν(ω)

X
(2)
n (ω), n ⩾ ν(ω).

Then {(Xn,Bn)}n∈N is a positive supermartingale, called the pasted supermartingale.
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Proof. Write

Xn = X(1)
n 1{ν>n} +X(2)

n 1{ν⩽n}.

(a) Clearly, Bn ⊆ Bn+1,∀n ∈ N.

(b) For any n ⩾ 0, Xn ∈ Bn, Xn ⩾ 0 and Xn ∈ L1.

(c) Since on the set {ν <∞}, X(1)
n ⩾ X

(2)
n , then for any k ∈ Z+, on the set {ν = k}: X(1)

n ⩾ X
(2)
n .

Then for any n ∈ N,

Xn = X(1)
n 1{ν>n} +X(2)

n 1{ν⩽n}

⩾ E
[
X

(1)
n+1

∣∣∣Bn

]
1{ν>n} + E

[
X

(2)
n+1

∣∣∣Bn

]
1{ν⩽n}

= E
[
X

(1)
n+11{ν>n} +X

(2)
n+11{ν⩽n}

∣∣∣Bn

]
= E

[
X

(1)
n+11{ν>n+1} +X

(1)
n+11{ν=n+1} +X

(2)
n+11{ν⩽n}

∣∣∣Bn

]
⩾ E

[
X

(1)
n+11{ν>n+1} +X

(2)
n+11{ν=n+1} +X

(2)
n+11{ν⩽n}

∣∣∣Bn

]
= E

[
X

(1)
n+11{ν>n+1} +X

(2)
n+11{ν⩽n+1}

∣∣∣Bn

]
= E[Xn+1|Bn], P -a.s..

Our second operation is to freeze the supermartingale after n steps. We show that if {Xn} is a
supermartingale (martingale), {Xν∧n} is still a supermartingale (martingale). Note that

(Xν∧n,n∈N) = (X0, X1, . . . , Xn−1, Xν , Xν , Xν , · · · ).

Proposition 12.47. If {(Xn,Bn)}n∈N is a supermartingale (martingale), then {(Xν∧n,Bn)}n∈N is
also a supermartingale (martingale).

Proof. Assume {(Xn,Bn)}n∈N is a supermartingale.

(a) Clearly, Bn ⊆ Bn+1,∀n ∈ N.

(b) For any n ∈ N,

Xν∧n = Xν1{n>ν} +Xn1{ν⩾n} =

n−1∑
k=0

Xk1{ν=j} +Xn1{ν⩾n} ∈ Bn.

Also, Xν∧n ∈ L1.
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(c) For any n ∈ N,

E
[
Xν∧{n+1}

∣∣Bn

]
= E

[
n∑

k=0

Xk1{ν=n} +Xn+11{ν⩾n+1}

∣∣∣∣∣Bn

]

=

n∑
k=0

E[Xk|Bn]1{ν=k} + E[Xn+1|Bn]1{ν⩾n+1}

=

n∑
k=0

Xk|1{ν=k} +Xn+11{ν⩾n+1}

⩽
n∑

k=0

Xk1{ν=k} +Xn1{ν⩾n+1}

= Xν1{ν<n+1} +Xn1{ν⩾n+1}

= Xν1{ν⩽n} +Xn1{ν⩾n+1}

= Xν∧n.

12.7.2 Upcrossings

Let {xn}n∈N ⊆ R, and let −∞ < a < b < ∞. Define the crossing times of [a, b] by the sequence
{xn}n∈N as

ν1 = inf{n ⩾ 0 : xn ⩽ a}
ν2 = inf{n ⩾ ν1 : xn ⩾ b}
ν3 = inf{n ⩾ ν2 : xn ⩽ a}
ν4 = inf{n ⩾ ν3 : xn ⩾ b}
...

ν2k−1 = inf{n ⩾ ν2k−2 : xn ⩽ a}
ν2k = inf{n ⩾ ν2k−1 : xn ⩾ b}

...

Define
βa,b = sup{k ∈ Z+ : ν2k <∞},

the number of upcrossings of [a, b] by {xn} (from [−∞, a] to [b,∞]).

Lemma 12.48 (Upcrossing and Convergence). The sequence {xn}n∈N ⊆ R converges in R if and
only if

βa,b <∞,∀a, b ∈ Q and a < b.

Proof. ⇐= Assume
lim inf

n!∞
xn < lim sup

n!∞
xn.

Then there exist a, b ∈ Q and a < b such that

lim inf
n!∞

xn < a < b < lim sup
n!∞

xn.
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So xn < a i.o. and xn > b i.o.. Thus, βa,b = ∞, a contradiction.
=⇒ Suppose there exists a, b ∈ Q and a < b such that βa,b = ∞. Then xn ⩽ a i.o. and xn ⩽ b

i.o. so that
lim inf

n!∞
xn ⩽ a < b ⩽ lim sup

n!∞
xn,

a contradition.

12.7.3 Boundedness Properties

This section considers how to prove the following intuitive fact: A positive supermartingale tends
to decrease but must stay non-negative, so the process should be bounded.

Proposition 12.49. Let {(Xn,Bn)}n∈N be a positive supermartingale (Xn ⩾ 0 a.s.). We have
that

sup
n∈N

Xn <∞ a.s. on {X0 <∞},

and

P

(
sup
n∈N

Xn > a|B0

)
⩽ min

{
X0

a
, 1

}
,∀constants a > 0.

Proof. Consider two supermartingales

{(X(i)
n ,Bn)}n∈N, i = 1, 2,

defined by X
(1)
n = Xn and X

(2)
n = a for any n ∈ N,. Define a stopping time

νa = inf{n ∈ N : Xn ⩾ a}.

Note on the set {νa <∞}, X(1)
νa = Xνa

⩾ a = X
(2)
νa . Define

Yn :=

{
Xn, n < νa,
a, n ⩾ νa

.

By the pasting property, {(Yn,Bn)}n∈N is a positive supermartingale. This means

E[Yn|B0] ⩽ Y0,∀n ∈ N.

Furthermore,
Yn = Xn1{νa>n} + a1{νa⩽n} ⩾ a1{νa⩽n},

and
Y0 = X01{νa>0} + a1{νa=0} = X01{X0<a} + a1{X0⩾a} = min{X0, a}.

Then

min{X0, a} = Y0 ⩾ E[Yn|B0] ⩾ E[a1{νa⩽n}|B0] = aP (νa ⩽ n|B0) = aP

(
sup

0⩽k⩽n
Xk ⩾ a|B0

)
.

So

P

(
sup

0⩽k⩽n
Xk ⩾ a|B0

)
⩽ min

{
X0

a
, 1

}
.
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By the conditional MCT,

P

(
sup
n∈N

Xn > a|B0

)
⩽ min

{
X0

a
, 1

}
.

Next, notice that

P

(
sup
n∈N

Xn ⩾ a,X0 <∞
)

= E
[
E
[
1{supn∈N Xn⩾a}1{X0<∞}

∣∣∣B0

]]
= E

[
1{X0<∞}P

(
sup
n∈N

Xn > a|B0

)]
⩽ E

[
1{X0<∞} min

{
X0

a
, 1

}]
! 0 as a!∞.

by the DCT. So

P

(
sup
n∈N

Xn = ∞, X0 <∞
)

⩽ 0.

Thus,

P

(
sup
n∈N

Xn = ∞, X0 <∞
)

= 0.

As a result, on {X0 <∞}, supn∈NXn <∞ a.s..

12.7.4 Convergence of Positive Supermartingale

Let {(Xn,Bn)}n∈N be a positive supermartingale. For a, b ∈ R and a < b, define

ν1(ω) = inf{n ⩾ 0 : Xn(ω) ⩽ a}
ν2(ω) = inf{n ⩾ ν1(ω) : Xn(ω) ⩾ b}
ν3(ω) = inf{n ⩾ ν2(ω) : Xn(ω) ⩽ a}
ν4(ω) = inf{n ⩾ ν3(ω) : Xn(ω) ⩾ b}

...

ν2k−1(ω) = inf{n ⩾ ν2k−2(ω) : Xn(ω) ⩽ a}
ν2k(ω) = inf{n ⩾ ν2k−1(ω) : Xn(ω) ⩾ b}

...

and define
βa,b(ω) = sup{k ∈ Z+ : ν2k(ω) <∞},

the number of upcrossings of [a, b] by {Xn(ω)} (from [−∞, a] to [b,∞]). Note we have the fact

{ω : lim
n!∞

Xn(ω) exists} =
⋂

a,b∈Q,a<b

{ω : βa,b(ω) <∞}.

So
lim
n!∞

Xn exists a.s. ⇐⇒ βa,b <∞,∀a, b ∈ Q and a < b.



198 CHAPTER 12. MARTINGALES

Thus, to show P (limn!∞Xn exists) = 1, it suffices to show P (βa,b <∞) = 1 for any a, b ∈ Q and
a < b.

Proposition 12.50 (Dubin’s inequality). Let {(Xn,Bn)}n∈N be a positive supermartingale. Sup-
pose 0 < a < b. Then

(a)

P (βa,b ⩾ k|B0) ⩽
(a
b

)k
min

(
X0

a
, 1

)
,∀k ∈ Z+.

(b) βa,b <∞ a.s..

Proof. (2) follows from (1) since

E[βa,b] =

∞∑
k=1

P (βa,b ⩾ k) ⩽
∞∑
k=1

(a
b

)k
<∞.

Start by considering the supermartingales

X(1)
n = 1,∀n ∈ N,

X(2)
n =

Xn

a
,∀n ∈ N,

and paste at ν1. Note on {ν1 <∞},

X(1)
ν1

= 1 ⩾
Xν1

a
= X(2)

ν1
.

So

Y (1)
n =

{
1, n < ν1,
Xn

a , n ⩾ ν1,

is a positive supermartingale w.r.t {Bn}n∈N. Now compare and paste

X(3)
n = Y (1)

n ,

X(4)
n = b/a

at the stopping time ν2. On {ν2 <∞},

X(3)
ν2

= Y (1)
ν2

=
Xν2

a
⩾
b

a
= X(4)

ν2
.

So

Y (2)
n =

{
Y

(1)
n , n < ν2,
b
a , n ⩾ ν2,

=


1, n < ν1,
Xn

a , ν1 < n < ν2,
b
a , n ⩾ ν2,



12.7. POSITIVE SUPERMARTINGALE 199

is a positive supermartingale w.r.t {Bn}n∈N. Now compare Y
(2)
n and b

a
Xn

a . On {ν3 <∞},

Y (2)
ν3

=
b

a
⩾
b

a

Xν3

a
,

and so

Y (3)
n =

{
Y

(2)
n , n < ν3,

b
a
Xn

a , n ⩾ ν3,

is a positive supermartingale w.r.t {Bn}n∈N. Now compare Y
(3)
n and

(
b
a

)2
. On {ν4 <∞},

Y (3)
ν4

=
b

a

Xν4

a
⩾

(
b

a

)2

,

and so

Y (4)
n =

{
Y

(3)
n , n < ν4,(
b
a

)2
, n ⩾ ν4,

=


1, n < ν1,
Xn

a , ν1 ⩽ n < ν2,
b
a , ν2 ⩽ n < ν3,

b
a
Xn

a , ν3 ⩽ n < ν4,(
b
a

)2
, n ⩾ ν4,

is a positive supermartingale w.r.t {Bn}n∈N. Continuing on in this manner, we see for any k ∈ Z+,

Y (2k)
n =



1, n < ν1,
Xn

a , ν1 ⩽ n < ν2,
b
a , ν2 ⩽ n < ν3,

b
a
Xn

a , ν3 ⩽ n < ν4,
...(

b
a

)k−1 Xn

a , ν2k−1 ⩽ n < ν2k,(
b
a

)k
, n ⩾ ν2k,

is a positive supermartingale w.r.t {Bn}n∈N. Note that

Y
(2k)
0 = Y

(2k)
0 1{ν1>0}+Y

(2k)
0 1{ν1=0} = 1{ν1>0}+

X0

a
1{ν1=0} = 1{X0⩾a}+

X0

a
1{X0⩽a} = min

{
X0

a
, 1

}
.

Also for any n ∈ N,

Y (2k)
n ⩾ Y (2k)

n 1{ν2k⩽n} =

(
b

a

)k

1{ν2k⩽n} P -a.s..

Since {(Y 2k
n ,Bn)}n∈N is a positive supermartingale,(

b

a

)k

P (ν2k ⩽ n|B0) ⩽ E[Y (2k)
n |B0] ⩽ Y

(2k)
0 = min

{
X0

a
, 1

}
.

Thus,

P (ν2k ⩽ n|B0) ⩽
(a
b

)k
min

{
X0

a
, 1

}
,∀n ∈ N.
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By the conditional MCT,

P (ν2k <∞|B0) ⩽
(a
b

)k
min

{
X0

a
, 1

}
.

So

P (βa,b ⩾ k|B0) ⩽
(a
b

)k
min

{
X0

a
, 1

}
.

Let k !∞ and we see P (βa,b = ∞|B0) = 0.

Remark. Since any martingale is also a supermartingale and -1 times a supermartingale is a
submartingale, we have the same conclusion for martingales and submartingale.

Theorem 12.51 (Martingale Convergence Theorem). If {(Xn,Bn)}n∈N is a positive supermartin-
gale, then limn!∞Xn =: X∞ exists a.s.. Furthermore, E[X∞|Bn] ⩽ Xn for any n ∈ N, so
{(Xn,Bn)}n∈N is a positive supermartingale. Moverover, E[X∞] ⩽ E[Xn] <∞ for any n ∈ N. So
X∞ ∈ L1.

Proof. It suffices to show X∞ can be added to {Xn}n∈N while preserving the supermartingale
property. Fix a, b ∈ R and a < b. By Dubin’s Inequality, P (βa,b <∞) = 1. So X∞ := limn!∞Xn

exists a.s.. Let p ∈ N. For n ⩾ p,

E

[
inf
m⩾n

Xm

∣∣∣∣Bp

]
⩽ E [Xn|Bp] ⩽ Xp P -a.s..

Since X∞ = limn!∞ infm⩾nXm P -a.s., by the conditional MCT, E[X∞|Bp] ⩽ Xp P -a.s..

Remark. The last statement says we can add a last variable preserves the supermartingale prop-
erty. This is the closure property to be discussed in the next subsection and is an essential concept
for the stopping theorems.

12.7.5 Closure

If {(Xn,Bn)}n∈N is positive martingale, then we know it is almost surely convergent. But when is
it the case that

(a) Xn
L1! X∞,

(b) E[X∞|Bn] = Xn so that {(Xn,Bn)}n∈N is a positive martingale?

Even though it is true that Xn
a.s.
! X∞ and E(Xm|Bn) = Xn for any m > n, it is not necessarily

the case that
E(X∞|Bn) = Xn.

Extra conditions are needed. Consider, for instance, the example of the simple branching process.
If {Zn}n∈N is the process with Z0 = 1 and Zn representing the number of particles in the nth
generation and m = E(Z1) is the mean offspring number per individual, then {Zn/m

n} is a non-
negative martingale so the almost sure limit exists:

Wn := Zn/m
n a.s.
−−!W.

However, if m ⩽ 1, then extinction is sure so W ≡ 0 and we do not have

E[W |Bn] = Zn/m
n.
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Definition 12.52 (Closed Martingale). A martingale {(Xn,Bn)}n∈N is closed on the right if there
exists an integrable random variable X∞ ∈ B∞ such that

Xn = E[X∞|Bn],∀n ∈ N.

In this case, {(Xn,Bn)}n∈N is a martingale.

In what follows, we write L+
p for the random variables ξ ∈ Lp and X ⩾ 0 P -a.s..

Proposition 12.53. Let p ⩾ 1, X ∈ L+
p and define Xn := E[X|Bn],∀n ∈ N, and X∞ := E[X|B∞].

Then

Xn
a.s.
−−! X∞, Xn

Lp
−−! X∞,

and {(Xn,Bn)}n∈N is a closed martingale.

Proof. Clearly, {(E[X|Bn],Bn)}n∈N is a positive martingale and thus by the Maringale convergence

theorem, there exists X#
∞ such that Xn

a.s.
−−!! X#

∞. Since Xn ∈ Bn ⊆ B∞, X#
∞ ∈ B∞. NTS:

X#
∞ = E[X|B∞], P -a.s..

• Case 1: Suppose there exists λ <∞ satisfying P (X ⩽ λ) = 1. Then since X ⩽ λ a.s.,

E[X|Bn] ⩽ λ P -a.s,∀n ∈ N.

Assume the probability space is (Ω,B, P ). By DCT,

lim
n!∞

∫
A

E[X|Bn]dP =

∫
A

lim
n!∞

E[X|Bn]dP =

∫
A

E[X|B∞]dP =

∫
A

X∞dP,∀A ∈ B.

Fix m ∈ Z+ and let A ∈ Bm, then∀n > m, we have A ∈ Bm ⊆ Bn and by the definition of
the conditional expectation, ∫

A

E[X|Bn]dP =

∫
A

XdP.

So ∫
A

X∞dP = lim
n!∞

∫
A

E[X|Bn]dP =

∫
A

XdP.

Thus, ∫
A

X∞dP =

∫
A

XdP, ∀A ∈
∞⋃

m=1

Bm.

To show
X#

∞ = E[X|B∞], P -a.s.,

we need to show ∫
A

XdP =

∫
A

E[X|B∞] =

∫
A

X#
∞dP,∀A ∈ B∞.

It suffices to show ∫
A

XdP =

∫
A

X#
∞dP,∀A ∈ B∞.
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Define

C =

∞⋃
n=1

Bn,

which is a π system. Define

D =

{
A ∈ B :

∫
A

XdP =

∫
A

X#
∞dP

}
.

Note that C ⊆ D. If we can show D is a λ-system, by Dykin’s theorem, B∞ = σ(C) ⊆ D.

(a) Clearly, Ω ∈ D.

(b) Suppose A,B ∈ D and A ⊆ B. Then∫
A∖B

XdP =

∫
B

XdP −
∫
A

XdP =

∫
B

X#
∞ −

∫
A

X#
∞ =

∫
B∖A

X#
∞dP.

So B ∖A ∈ D.

(c) Suppose {An}n∈Z+ ⊆ D and An ⊆ An+1,∀n ∈ Z+. Then by MCT,∫
⋃∞

n=1 An

XdP =

∫
Ω

1
⋃∞

n=1 An
XdP = lim

m!∞

∫
Ω

1
⋃m

n=1 An
XdP

= lim
m!∞

∫
Am

XdP = lim
m!∞

∫
Am

X#
∞dP

= lim
m!∞

∫
Ω

1
⋃m

n=1 An
X#

∞dP =

∫
Ω

1
⋃∞

n=1 An
X#

∞dP

=

∫
⋃∞

n=1 An

X#
∞dP.

Thus, D is a λ-system. Hence X#
∞ = E[X|B∞], P -a.s.. Next, since

E[X|Bn] ⩽ λ, P -a.s.,∀n ∈ N,

we have

lim
n!∞

∥E[X|Bn]− E[X|B∞]∥p = lim
n!∞

(E (|E[X|Bn]− E[X|B∞]|p))
1
p

=
(
lim
n!∞

E (|E[X|Bn]− E[X|B∞]|p)
) 1

p

DCT
==

(
E
(
lim
n!∞

|E[X|Bn]− E[X|B∞]|p
)) 1

p

= 0.

So Xn
Lp
−−! X∞. Note that

E[X∞|Bn] = E [E[X|B∞]|Bn] = E[X|Bn] = Xn,∀n ∈ N ,

proving {(Xn,Bn)}n∈N is a closed martingale.
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• Fix λ > 0, and write X = X ∧ λ+ (X − λ)+. Since E(·|Bn) is Lp-norm reducing, we have

∥E[X|Bn]− E[X|B∞]∥p
⩽ ∥E[X ∧ λ|Bn]− E[X ∧ λ|B∞]∥p +

∥∥E[(X − λ)+|Bn]
∥∥
p
+
∥∥E[(X − λ)+|B∞]

∥∥
p

⩽ ∥E[X ∧ λ|Bn]− E[X ∧ λ|B∞]∥p + 2
∥∥(X − λ)+

∥∥
p

= I + II.

Since 0 ⩽ X ∧ λ ⩽ λ, by case 1, I ! 0. For II, note as λ ! ∞, (X − λ)+ ! 0 and
(X − λ)+ ⩽ X ∈ Lp. By DCT, ∥(X − λ)+∥p ! 0 as λ!∞. We may conclude that

lim sup
n!∞

∥E[X|Bn]− E[X|B∞]∥p ⩽ 2
∥∥(X − λ)+

∥∥
p
.

The left side is independent of λ, so let λ!∞ to get

lim sup
n!∞

∥E[X|Bn]− E[X|B∞]∥p = 0.

Thus, E[X|Bn]
Lp
! E[X|B∞]. Then E[X|Bn]

p
! E[X|B∞]. Also, we already have

E[X|Bn]
a.s.
−−!! X#

∞.

So E[X|Bn]
p
! X#

∞. Thus, X#
∞ = E[X|B∞], P -a.s..

Remark. (a) Since E[X∞|Bn] = E[E[X|B∞]|Bn] = E[X|Bn], we have Xn = E[X∞|Bn], P -a.s..

(b) We can extend it to the cases where the closing random variable is not necessarily non-negative
by writting X = X+ −X−.

Corollary 12.54. For p ∈ Z+, the class of Lp convergence positive martingales is the class of the
form

{(E[X|Bn],Bn)}n∈N

with X ∈ L+
p .

Proof. If X ∈ L+
p , then {(E[X|Bn], Bn)}n∈N is a positive martingale and

E[X|Bn]
Lp
−−! E[X|B∞].

Conversely, suppose {Xn}n∈N is a positive martingale and Lp convergent. For n < r, then

E[Xr|Bn] = Xn.

Now by assumption, Xr
Lp
−−! X∞ and E(·|Bn) is continuous in the Lp-metric by the property of

conditional expectation. Thus, as r !∞,

Xn = E[Xr|Bn]
Lp
−−! E[X∞|Bn]

by continuity. Therefore, since Xn = E[Xr|Bn] for any r > n, Xn = E[X∞|Bn]. Thus, it is of the
form

{(E[X∞|Bn],Bn)}n∈N .
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12.8 Stopping Supermartingales

What happens to the supermartingale property if deterministic indices are replaced by stopping
times?

Lemma 12.55. If ν is a stopping time and ξ ∈ L1, then

E[ξ|Bν ] =
∑
n∈N

E[ξ|Bn]1{ν=n}.

Proof. Note the right side is Bν-measurable and∀A ∈ Bν , since A ∩ {ν = n} ∈ Bn,∫
A

E[ξ|Bν ]dP =

∫
A

ξdP =
∑
n∈N

∫
A∩{ν=n}

ξdP

=
∑
n∈N

∫
A∩{ν=n}

E[ξ|Bn]dP

=

∫
A

∑
n∈N

E[ξ|Bn]1{ν=n}ξdP.

So
E[ξ|Bν ] =

∑
n∈N

E[ξ|Bn]1{ν=n}.

Theorem 12.56 (Random Stopping). Suppose {(Xn,Bn)}n∈N is a positive supermartingale and

also suppose Xn
a.s.
! X∞. Let ν1, ν2 be two stopping times. Then

E[Xν2
|Bν1

] ⩽ Xν1
, P -a.s. on [ν1 ⩽ ν2].

Proof. By previous lemma,

E[Xν2
|Bν1

] =
∑
n∈N

E[Xν2
|Bn]1{ν1=n}.

It suffices to show on the set [ν1 ⩽ ν2] ∩ {ν1 = n},

E[Xν2 |Bn] ⩽ Xn, P -a.s.,∀n ∈ N.

Define Yn = Xν2∧n for any n ∈ N. Then {(Yn,Bn)}n∈N is a positive supermartingale and claim

Yn
a.s.
−−! Y∞ = Xν2

.

Note that if ν2(ω) < ∞, then for n large, we have n ∧ ν2(ω) = ν2(ω). On the other hand, if
ν2(ω) = ∞, then

Yn(ω) = Xn(ω)! X∞(ω) = Xν2(ω).

By convergence theorem, {(Yn,Bn)}n∈N is a positive supermartingale. So

E[Y∞|Bn] ⩽ Yn,∀n ∈ N ?
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That is

E[Xν2
|Bn] ⩽ Xν2∧n,∀n ∈ N.

Hence on the set [ν1 ⩽ ν2] ∩ {ν1 = n},

E[Xν2 |Bn] ⩽ Xn, P -a.s.,∀n ∈ N.

Some special cases:

(a) If ν1 = 0, then ν2 ⩾ 0 = ν1 and E[Xν2
|B0] ⩽ X0 and then E[Xν2

] ⩽ E[X0].

(b) If ν1 ⩽ ν2 pointwise everywhere, then E[Xν2 |Bν1 ] ⩽ Xν1 , P -a.s., and then

E[Xν2 ] ⩽ E[Xν1 ], P -a.s..

For martingale, we will see that it is useful to know when equality holds. Unfortunately, this
does not always hold and conditions must be present to guarantee preservation of the martingale
property under random stopping.

12.8.1 Gambler’s Ruin

Suppose {Zn}n∈Z+ are idd BernoullI random variables satisfying

P (Z1 = ±1) =
1

2
,

and assuming a fixed j0 ∈ {0, 1, . . . , N}, let

X0 = j0, Xn =

n∑
i=1

Zi + j0, n ∈ Z+

be the simple random walk starting from j0. We ask: starting from j0, will be the random walk hit
0 or N first? Define

Bn = σ(Z1, . . . , Zn), B0 = {∅,Ω}.

Then {(Xn,Bn)}n∈N is a martingale. Define

ν = inf {n > 0, Xn ∈ {0, N}} .

Then {(Xν∧n,Bn)} is a positive martingale. If random stopping preserves the martingale property
(to be verified later), then

j0 = E[X0] = E[Xν ] = 0P (Xν = 0) +NP (Xν = N).

So

P (Xν = N) =
j0
N
,

P (Xν = 0) = 1− j0
N
.
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12.9 Martingale and Submartingale Convergence

This section begins by discussing another relation between martingales and submartingales called
the Krickeberg decomposition. This decomposition is used to extend convergence properties of
positive supermartingale to more general martingal structures.

12.9.1 Krickeberg Decomposition

Theorem 12.57 (Krickeberg Decomposition). If {(Xn,Bn)}n⩾0 is a submartingale such that

sup
n∈N

E[X+
n ] <∞, (u.i)

then there exists a positive martingale {(Mn,Bn)}n∈N and a positive supermartingale {(Yn,Bn)}n∈N
and

Xn =Mn − Yn.∀n ∈ N.

Proof. Recall if {(Xn,Bn)}n∈N is submartingale, so is {(X+
n ,Bn)}n∈N. Also, {E

[
X+

p |Bn

]
}p⩾n is

monotone non-decreasing in p since

E
[
X+

p+1|Bn

]
= E

[
E
[
X+

p+1|Bp

]
|Bn

]
⩾ E

[
X+

p |Bn

]
, P -a.s..

Define
Mn := lim

p!∞
E
[
X+

p |Bn

]
,∀n ∈ N,

which is well-defined by MCT. Claim. {(Mn,Bn)}n∈N is a positive martingale.

(a) Mn ∈ Bn, Mn ⩾ 0, P -a.s. for any n ∈ N.

(b) By MCT and since the expextations of submartingale increas,

E[Mn] = E

[
lim
p!∞

E
[
X+

p |Bn

]]
= lim

p!∞
E
[
E
[
X+

p |Bn

]]
= lim

p!∞
E
[
X+

p

]
= sup

n⩾0
E
[
X+

n

]
<∞, P -a.s.,∀n ∈ N.

(c)

E[Mn+1|Bn] = E

[
lim
p!∞

E
[
X+

p |Bn+1

]∣∣∣∣Bn

]
= lim

p!∞
E
[
E
[
X+

p |Bn+1

]∣∣Bn

]
= lim

p!∞
E
[
X+

p |Bn

]
=Mn, P -a.s.,∀n ∈ N.

Define Yn :=Mn −Xn for any n ∈ N. Claim. {(Yn,Bn)}n∈N is a positive supermartingale.
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(a) Yn ∈ Bn,∀n ∈ N.

Mn = lim
p!∞

E
[
X+

p |Bn

]
⩾ E[X+

n |Bn] = X+
n ⩾ X+

n −X−
n = Xn, P -a.s.,∀n ∈ N.

So Yn ⩾ 0, P -a.s.,∀n ∈ N. Clearly, Yn ∈ L1, P -a.s. for any n ∈ N.

(b)

E[Yn+1|Bn] = E[Mn+1Bn]− E[X+1|Bn]

=Mn − E[Xn+1|Bn]

⩽Mn −Xn = Yn, P -a.s.,∀n ∈ N.

12.9.2 Doob’s (Sub)martingale Convergence Theorem

Krickeberg’s decomposition leads to the Doob submartingale convergence theorem.

Theorem 12.58 (Submartingale Convergence). If {(Xn,Bn)}n∈N is a (sub)-martingale satisfying
L1-bounded, i.e.,

sup
n∈N

E[X+
n ] <∞,

then there exists X∞ ∈ L1 such that

Xn

a.s.

X ∞.

Proof. From the Krickberg decomposition, there exists a positive martingale {(Mn,Bn)}n∈N and
a positive supermartingale {(Yn,Bn)}n∈N such that Xn = Mn − Yn. Since a martingale is also a
supermartingale, by martingale convergence theorem,

Mn
a.s.
−−!M∞ ∈ L1, Yn

a.s.
−−! Y∞ ∈ L1.

So M∞ and Y∞ are finite a.s., X∞ :=M∞ − Y∞ exists a.s., Xn
a.s.
−−! X∞.

Remark. If {(Xn,Bn)} is a submartingale, then

sup
n∈N

E
[
X+

n

]
<∞ if and only if sup

n∈N
E [|Xn|] <∞,

in which case the submartingale is called L1-bounded. To see this equivalence, observe that if
{(Xn,Bn)}n∈N is a submartingale, then

E [|Xn|] = E
[
X+

n

]
+ E

[
X−

n

]
= 2

[
X+

n

]
− E [Xn] ⩽ 2

[
X+

n

]
− E[X0].

So

sup
n∈N

E [|Xn|] ⩽ 2 sup
n∈N

E
[
X+

n

]
− E[X0].

On the other hand,

sup
n∈N

E
[
X+

n

]
⩽ sup

n∈N
E [|Xn|] .
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12.10 Regularity and Closure

Question: Given a martingale {(Xn,Bn)}n∈N, under what conditions, is it true that there exists a
random variable X satisfying

Xn = E[X|Bn] P -a.s..

This means the martingale {(Xn,Bn)}n∈N is closed.

Definition 12.59. A family of random variable’s {Xt}t∈T is unformly integrable if

lim
b!∞

sup
t∈I

E
[
|Xt|1{|Xt|>b}

]
= 0.

Clearly, this means Xt ∈ L1,∀ t ∈ T .

Recall the fact: If Xn
a.s.
−−! X∞, and {Xn}n∈N is u.i., then Xn

L1−−! X∞.

Proposition 12.60. Let X ∈ L1, and let K be collections of subfields of B. Then {E[X|G]}G∈K is
u.i..

Proof. Fix b > 0 and G ∈ K and let c > 0, by Markov’s inequality,∫
{|E[X|G]|>b}

|E[X|G]|dP ⩽
∫
{E[|X||G]>b}

E [|X||G] dP

def
=

∫
{E[|X||G]>b}

|X|dP

=

∫
{E[|X||G]>b}∩{|X|⩽c}

|X|dP +

∫
{E[|X||G]>b}∩{|X|>c}

|X|dP

⩽ cP (E [|X||G] > b) +

∫
{|X|>c}

|X|dP

⩽
K

b
E [E [|X||G]] +

∫
{|X|>c}

|X|dP

=
k

b
E [|X|] +

∫
{|X|>c}

|X|dP,

that is,

lim sup
b!∞

sup
G

∫
{|E[X|G]|>b}

|E[X|G]|dP ⩽
∫
{|X|>c}

|X|dP.

Since c > 0 is arbitrary chosen, letting c!∞ by DCT, proving the claim.

Proposition 12.61 (Uniformly integrability Martingales). Suppose that {(Xn,Bn)}n∈N is a mar-
tingale. The following are equivalent:

(a) {Xn} is L1-convergent.

(b) supn∈NE [|Xn|] < ∞, and there exists a random variable X∞ such that Xn
a.s.
−−! X∞ which

satisfyies Xn = E[X∞|Bn] for any n ∈ N.
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(c) {(Xn,Bn)}n∈N is closed, that is, ∃X ∈ L1 such that Xn = E[X|Bn] for any n ∈ N.

(d) The sequence {Xn}n∈N is u.i..

If one of the statements (a)− (d) is true, the martingale is called regular or closable.

Proof. “(a) =⇒ (b)”. Since Xn is L1-convergent, limn!∞E (|Xn|) exists. So E [|Xn|] <∞ for any
n ∈ N. Since the sequence is bounded and its limit exists, it is uniformly bounded, i.e.,

sup
n∈N

E [|Xn|] <∞.

By the martingale convergence theorem, Xn
a.s.
−−! X∞. Finllay, for any n ∈ N, we have for any

p > n,

E [|Xn − E[X∞|Bn]|] = E [|E[Xp|Bn]− E[X∞|Bn]|]
= E [|E[Xp −X∞|Bn]|]
⩽ E [E [ |Xp −X∞|| Bn]]

= E [|Xp −X∞|] .

Since p > n is arbitraryliy chosen, letting p!∞, we have

E
[
|Xn − E[X∞|Bn]|

]
= 0,∀n ∈ N.

Xn = E[X∞|Bn], P -a.s.,∀n ∈ N.

“(b) =⇒ (c)”. The random variable variable X = X∞ serves the purpose and note (by trangale
inequality)

E [|X∞|] = E
[
lim
n!∞

inf|Xn|
]
⩽ lim

n!∞
inf E [|Xn|] ⩽ sup

n∈N
E [|Xn|] <∞.

“(c) =⇒ (d)”. The family {E[X|Bn]}n∈N is u.i..
“(d) =⇒ (a)”. If {Xn}n∈N is u.i., supn∈NE [|Xn|] < ∞ by the characterization of uniform

integrability. By the martingale convergence theorem, Xn
a.s.
−−! X∞. Therefore, Xn

L1! X∞.

12.11 Regularity and Stopping

We now discuss when a stopped martingale retains the martingale characteristics.

Theorem 12.62. Let {(Xn,Bn)}n∈N be a regular martingale.

(a) If ν is a stopping time, then Xν ∈ L1.

(b) If ν1 and ν2 are stopping times and ν1 ⩽ ν2, then

E[Xν2
|Bν1

] = Xν1
, P -a.s..

E[Xν2 ] = E[Xν1 ] = E[X0].
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Proof. (a) Let ν : Ω ! N ∪ {∞} be a stopping time. The martingale is assumed regular so that
there exists a random variable X such that Xn = E[X|Bn] for any ∈ N. Moreover, X = X∞, and

Xn
a.s.
−−! X∞,

Xn
L1−−! X∞.

Then

E[X∞|Bν ] =
∑
n∈N

E[X∞|Bn]1{ν=n} =
∑
n∈N

Xn1{ν=n} = Xν .

Since X∞ ∈ L1,

E [|Xν |] = E [|E[X∞|Bν ]|] ⩽ E [E [|X∞||Bν ]] = E [|X∞|] <∞.

(b) If ν1 ⩽ ν2, then Bν1 ⊆ Bν2 . From (a), we have for any stopping time ν, Xν = E[X∞|Bν ]. Then

E[Xν2
|Bν1

] = E [E [X∞|Bν2
]| Bν1

] = E[X∞|Bν1
] = Xν1

.

Remark. For regular martingales, random stopping preserves fairness and for a stoppping fime ν,
we have E[Xν ] = E[X0] since we may take ν = ν2 and ν1 = 0.

Remark. By Crystal Ball condtition, if {(Xn,Bn)}n∈N is a martingale and Lp bounded, i.e.,

sup
n
E [|Xn|p] <∞, p > 1,

then {Xn} u.i. and hence regular.

12.12 Stopping Theorems

We now examine more flxible condtions for a stopped martingale to retain martingale characteristics.
In order for this to be the case, either one must impose conditions on the sequence (such as the ui
condition) or the on the stopping time or both.

Definition 12.63. A stopping time ν is regular for a martingale {(Xn,Bn)}n∈N if {(Xν∧n,Bn)}n∈N
is a regular martingale since we’ve shown {(Xν∧n,Bn)}n∈N is a martingale.

Proposition 12.64 (Regularity). Let {(Xn,Bn)}n∈N be a martingale and suppose ν is a stopping
time, then ν is regular for {(Xn,Bn)} if and only if the following 3 conditions hold.

(a) X∞ := limn!∞Xn exists a.s. on {ν = ∞}. This means limn!∞Xν∧n exists a.s. on Ω.

(b) Xν ∈ L1. (Note from (i), we know Xν is defined a.s. on Ω.)

(c) Xν∧n = E[Xν |Bn] for any n ∈ N.

Proof. Suppose ν is regular for {(Xn,Bn)}. Then {(Yn = Xν∧n,Bn)}n∈N is a regular martingale.
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(a) There exists a random variable Y∞ such that

Yn
a.s.
−−! Y∞.

Yn
L1−−! Y∞.

On the set {ν = ∞}, Yn = Xν∧n = Xn, and so limn!∞Xν∧n exists a.s. on Ω.

(b) Note
Xν = lim

n!∞
Xν∧n = lim

n!∞
Yn = Y∞ ∈ L1, P -a.s..

(c) By (ii), Xν = Y∞, so

E[Xν |Bn] = E[Y∞|Bn] = Yn = Xν∧n, P -a.s..

Next, suppose (i),(ii),(iii) hold. By (i), Xν is defined a.s. on Ω. By (ii), Xν ∈ L1. By(iii),
Xν∧n = E[Xν |Bn]. So we get Xν is a closing random variable for the martingale {(Xν∧n,Bn)}n∈N.
Thus, {(Xν∧n,Bn)}n∈N is a regular martingale.

Here are two circumstances which guarantee that ν is regular.

(a) If ν ⩽M a.s., then ν is regular since

|Xν∧n| ⩽ sup
m∈N

|Xν∧m| = sup
m⩽M

|Xm| ∈ L1.

Recall that domination by an integrable random variable is sufficient for uniform integrability. Or
it suffices to show Xν∧n is u.i.. By BCT in terms of b,

lim
b!∞

sup
n∈N

E
[
|Xν∧n|1{|Xν∧n|>b}

]
⩽ lim

b!∞
E

[
max

0⩽n⩽M
|Xn|1{max0⩽n⩽M |Xn|>b}

]
= 0.

(b) If {Xn}, then any stopping time ν is regular. (See the Corollary below.)

Theorem 12.65. If ν is regular and ν1 ⩽ ν2 ⩽ ν for stopping time ν1 and ν2, then Xν1
and Xν2

exists, Xν1 ∈ L1, Xν2 ∈ L1 and

E[Xν2
|Bν1

] = Xν1
, P -a.s..

Proof. Define Yn = Xν∧n. So {(Yn,Bn)}n∈N is a regular martingale. Then by previous theorem,
Yν1

, Yν2
∈ L1, and E[Yν2

|Bν1
] = Yν1

, P -a.s.. Also,

L1 ∋ Yν1 = Xν1∧ν = Xν1 ,

L1 ∋ Yν2
= Xν2∧ν = Xν2

.

So E[Xν2 |Bν1 ] = Xν1 , P -a.s..

Remark. Suppose ν is regular, ν1 = 0 and ν2 = ν. Then E[Xν |B0] = X0 and E[Xν ] = E[X0].

Corollary 12.66. (a) Suppose ν1 and ν2 are stopping times and ν1 ⩽ ν2. If ν2 is regular for the
martingale {(Xn,Bn)}n∈N, so is ν1.
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(b) If {(Xn,Bn)}n∈N is a regular martingale, every stopping time ν is regular.

Proof. (b) follows from (a). Set ν1 = ν and ν2 = ∞. Then Xν2∧n = Xn. So {(Xν2∧n,Bn)}n∈N is a
regular martingale. Then ν2 is regular. By (a), ν1 is regular. Next, we prove (a). Assume ν1 and ν2
are stopping time, where ν2 is regular. It suffices to show {(Xν1∧n,Bn)}n∈N is a regular martingale.
It is enough to show {Xν1∧n}n∈N is u.i.. Fix b > 0 and n ∈ N, note∫

{|Xν1∧n|>b}
|Xν1∧n|dP =

∫
{|Xν1∧n|>b,ν1⩽n}

|Xν1∧n|dP +

∫
{|Xν1∧n|>b,ν1>n}

|Xν1∧n|dP

=

∫
{|Xν1 |>b,ν1⩽n}

|Xν1
|dP +

∫
{|Xn|>b,ν1>n}

|Xn|dP

⩽
∫
{|Xν1

|>b}
|Xν1 |dP +

∫
{|Xn|>b,ν2>n}

|Xn|dP

⩽
∫
{|Xν1

|>b}
|Xν1

|dP +

∫
{|Xn∧n|>b,ν2>n}

|Xν2∧n|dP

⩽
∫
{|Xν1 |>b}

|Xν1
|dP +

∫
{|Xn∧n|>b}

|Xν2∧n|dP.

Since Xν1 ∈ L1 by previous theorem, and {Xν2∧n}n∈N is u.i.,

sup
n∈N

∫
{|Xν1∧n|>b}

|Xν1∧n|dP ⩽
∫
{|Xν1

|>b}
|Xν1

|dP + sup
n∈Z+

∫
{|Xν2∧n|>b}

|Xν2∧n|dP

! 0 as b!∞.

Theorem 12.67. In order for the stopping time ν to be regular for the martingale {(Xn,Bn)}n∈N,
it is necessary and sufficient that

(a)
∫
{ν<∞}|Xν |dP <∞, and

(b) {Xn1{ν>n}}n∈N is u.i..

Proof. Sufficiency: It suffices to show {Xν∧n}n∈N is u.i.. Fix b > 0 and n ∈ N, note∫
{|Xν∧n|>b}

|Xν∧n|dP =

∫
{|Xν∧n|>b,ν⩽n}

|Xν∧n|dP +

∫
{|Xν∧n|>b,ν>n}

|Xν∧n|dP

=

∫
{|Xν |>b,ν⩽n}

|Xν |dP +

∫
{|Xn|>b,ν>n}

|Xn|1{ν>n}dP

⩽
∫
{|Xν |>b,ν<∞}

|Xν |1{ν<∞}dP +

∫
{|Xn1{ν>n}|>b}

∣∣Xn1{ν>n}
∣∣dP

=

∫
{|Xν1{ν<∞}|>b}

∣∣Xν1{ν<∞}
∣∣dP +

∫
{|Xn1{ν>n}|>b}

∣∣Xn1{ν>n}
∣∣dP.

Since Xν1{ν<∞} ∈ L1 by (a), and {Xn1{ν>n}}n∈N is u.i. by (b),

sup
n∈N

∫
{|Xν∧n|>b}

|Xν∧n|dP ⩽
∫
{|Xν1{ν<∞}|>b}

∣∣Xν1{ν<∞}
∣∣dP + sup

n∈N

∫
{|Xn1{ν>n}|>b}

∣∣Xn1{ν>n}
∣∣dP

! 0, as b!∞.

Necessity: Suppose ν is regular.
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(a) Since {Xν∧n}n∈N is u.i.,∫
{ν<∞}

|Xν |dP = lim
n!∞

∫
{ν⩽n}

|Xν |dP = lim
n!∞

∫
{ν⩽n}

|Xν∧n|dP ⩽ sup
n∈N

E [Xν∧n] <∞.

(b) Since {X{ν ∧ n}}n∈N is u.i.,

sup
n∈N

∫
{|Xn1{ν>n}|>b}

∣∣Xn1{ν>n}
∣∣dP = sup

n∈N

∫
{|Xν∧n1{ν>n}|>b}

∣∣Xν∧n1{ν>n}
∣∣dP

⩽ sup
n∈N

∫
{|Xν∧n|>b}

|Xν∧n|dP

! 0, as b!∞.

Remark. Question: is there a simple sufficient condition for (a) to hold? Fact: If {Xn}n⩾0 is
L1-bounded, we have that

sup
n∈N

E [|Xn|] <∞.

Proof. By the martingale convergence theorem, Xn
a.s.
−−! X∞ as n ! ∞. Thus, Xν is defined a.e..

We claim Xν ∈ L1 and then Xν1{ν<∞} ∈ L1. To verify the claim, observe that Xν∧n
a.s.
−−! Xν , and

so by Fatou’s lemma

E [|Xν |] = E
[
lim
n!∞

|Xν∧n|
]
⩽ lim

n!∞
inf E [|Xν∧n|] .

Then for any n ∈ N,

E[Xn|Bν∧n] =

n∑
j=0

E[Xn|Bj ]1{v∧n=j}
a.s.
=

n∑
j=0

Xj1{v∧n=j} = Xν∧n.

Thus,
E (|Xν∧n|) ⩽ E [|E [Xn|Bν∧n]|] ⩽ E [E [|Xn||Bν∧n]] = E [|Xn|] .

Thus,
E [|Xv|] ⩽ lim

n!∞
inf E [|Xν∧n|] ⩽ lim

n!∞
E [|Xn|] ⩽ sup

n∈N
E [|Xn|] <∞.

Remark. If the martingale {Xn}n∈N is non-negative, then it is automatically L1-bounded since

sup
n∈N

E [|Xn|] = sup
n∈N

E[Xn] = E[X0].

Corollary 12.68. Let {(Xn,Bn), n ⩾ 0} be an L1-bounded martingale.

(a) For any level a > 0, the escape time

νa = inf{n ⩾ 0 : |Xn| > a}

is regular. In particular, this holds if {Xn} is a positive martingale.
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(b) For a, b ∈ R and b < 0 < a,

νa,b = inf{n ⩾ 0 : Xn > a or Xn < b}

is regular.

Proof. Since {Xn} is L1 bounded and νa, νa,b are stopping time, we have∫
{νa<∞}

|Xνa |dP <∞,

∫
{νa,b<∞}

∣∣Xνa,b

∣∣dP <∞.

Then it suffices to show that {Xn1{νa>n}} and {Xn1{νa,b>n}} are both u.i.. Observe that∣∣Xn1{νa>n}
∣∣ = |Xn|1{νa>n} ⩽ a1{νa>n} ⩽ a,

and ∣∣Xn1νa,b>n

∣∣ = |Xn|1{νa,b>n} ⩽ max {|a|, |b|}1{νa,b>n} ⩽ max {|a|, |b|} .

Proposition 12.69. Suppose {(Xn,Bn)}n⩾0 is a martingale. Then

(a) ν is regular for {(Xn,Bn)}n⩾0 and

(b) Xn
a.s.
−−! 0 on {ν = ∞}

is equivalent to

(a)’
∫
{ν<∞}|Xν |dP <∞ and

(b)’ limn!∞
∫
{ν>n}|Xn|dP = 0.

Proof. Assume (a) and (b) hold. Then {(Xν∧,Bn
)}n∈N is a regular martingale, and hence

Xν∧n
a.s.
−−! Xν , Xν∧n

L1−−! Xν .

From (b), Xν = 0 on {ν = ∞}. Then∫
{ν<∞}

|Xν |dP =

∫
Ω

|Xν | <∞.

Claim. If Xn
L1−−! X and Yn

a.s.
−−! Y , then

|E[XnYn]− E[XY ]| ⩽ |E[XnYn]− E[XYn]|+ |E[XYn]− E[XY ]|
= E [|Yn||Xn −X|] + E [|X||Yn − Y |]
! 0.

Then ∫
{ν>n}

|Xn|dP =

∫
Ω

|Xν∧n|1{ν>n}dP !

∫
{ν=∞}

|Xν |dP = 0.
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Assume (a)’ and (b)’ hold. To prove (a), it suffices to show {Xn1{ν>n}}n⩾0 is u.i.. Fix ϵ > 0, by
(b)’, there exists n0 such that when n ⩾ n0,∫

{ν>n}
|Xn|dP ⩽ ϵ.

Then for b > 0,

sup
n⩾0

∫
{|Xn|1{ν>n}}

|Xn|dP

= max

{
max

0⩽n⩽n0−1

∫
{|Xn|>b,ν>n}

|Xn|dP, sup
n⩾n0

∫
{|Xn|>b,ν>n}

|Xn|dP

}

⩽ max

{
max

0⩽n⩽n0−1

∫
{|Xn|>b,ν>n}

|Xn|dP, ϵ

}
.

Therefore,

lim sup
b!∞

sup
n∈N

∫
{|Xn1{ν>n}|>b}

∣∣Xn1{ν>n}
∣∣dP ⩽ ϵ.

So {Xn1{ν>n}}n⩾0 is u.i.. Thus, ν is regular. Since ν is regular, Xν is defined on Ω and

Xν∧n
a.s.
−−! Xν , and Xν∧n

L1−−! Xν .

Then

0 = lim
n!∞

∫
ν>n

|Xn|dP = lim
n!∞

∫
ν>n

|Xν∧n|dP =

∫
ν=∞

|Xν |dP.

So Xν1{ν=∞} = 0 a.s.. That is, Xn ! 0 on {ν = ∞}.

12.13 Wald’s identity and random walks

This section discuss a martingale approach to some facts about the random walk. Consider a
sequence of iid random variables {Yn}n∈Z+ which are not a.s. constant and define the random walk
{Xn}n∈N by

X0 = 0, Xn =

n∑
i=1

Yi, n ∈ Z+,

with associated σ-fields

B0 = {∅,Ω}, Bn = σ(Y1, . . . , Yn) = σ(X0, . . . , Xn), n ∈ Z+.

Definition 12.70. The cumulant generating function of Y1 is a funtion

ϕ : R! R
u 7! log

(
E
[
euY1

])
.

Facts about ϕ:
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(a) ϕ is convex on R.

Proof. Let u1, u2 ∈ R, and fix α ∈ (0, 1). By Holder’s inequality,

ϕ(αu1 + (1− α)u2) = logE
[
eαu1Y1e(1−α)u2Y2

]
⩽ log

[
E
[
eu1Y1

]]α [
E
[
eu2Y1

]]1−α

= αϕ(u1) + (1− α)ϕ(u2).

In fact, we can show that ϕ is strictly convex on {ϕ < ∞}. Hence, on {ϕ < ∞}, ϕ′ is strictly
increasing.

(b) {ϕ < ∞} is an interval containing 0. (This interval might be [0, 0] = [0], as would be the case
if Y1 were Cauchy distributed.)

Proof. Clearly, ϕ(0) = 0 <∞. So 0 ∈ {ϕ <∞}. Fix u1, u2 ∈ {ϕ <∞}, then for α ∈ [0, 1],

ϕ(αu1 + (1− α)u2) ⩽ αϕ(u1) + (1− α)ϕ(u2) <∞.

Then αu1 + (1− α)u2 ∈ {ϕ <∞}. Thus, [u1, u2] ∈ {ϕ <∞}.

(c) If the interior of {ϕ <∞} is non-empty, ϕ is analytic there, hence infinitely differentiable, and

ϕ′(u) = E
[
Y1e

uY1−ϕ(u)
]
.

Hence, ϕ′(0) = E[Y1]. One may also check that ϕ′′(0) = Var(Y1).

12.13.1 The basic Martingales

Here is a basic connection between martingales and the random walk.

Proposition 12.71. For any u ∈ {ϕ <∞}, define

Mn(u) = euXn−nϕ(u) = euXne−n logE[euY1 ] =
euXn

[E [euY1 ]]
n .

Then {(Mn(u),Bn)}n∈N is a positive martingale with E[Mn(u)] = 1. SinceMn(u) > 0,Mn(u) ∈ L1.
Also,

Mn(u)
a.s.
−−! 0 as n!∞.

Hence {Mn(u)} is a non-regular martingale.

Proof. Clearly, Mn(u) ∈ Bn.

E [Mn+1(u)|Bn] = E

[
Mn(u)

euYn+1

E [euY1 ]

∣∣∣∣Bn

]
=Mn(µ).

Since 0, u ∈ {ϕ <∞}, we have u
2 ∈ {ϕ <∞}. Then

ϕ(u/2) = ϕ(u/2 + 0/2) < 1/2ϕ(u) + 1/2ϕ(0) = 1/2ϕ(u).
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Also, {Mn(u/2)}n∈N is a positive martingale and then L1-bounded, so there exists a random variable
Z such that

Mn(u/2) = eu/2Xn−nϕ(u/2) a.s.
! Z <∞,

and by continuity,

M2
n(u/2) = euXn−2nϕ(u/2) a.s.

! Z2 <∞.

Therefore,

Mn(u) = euXn−nϕ(u) = euXn−2nϕ(u/2)+n[2ϕ(u/2)−ϕ(u)]

= e2[u/2Xn−nϕ(u/2)]e−2n[1/2ϕ(u)−ϕ(u/2)]

=M2
n(u/2)e

−2n[1/2ϕ(u)−ϕ(u/2)]

! Z2 · 0 = 0.

12.13.2 Regular stopping times

We will call the martingale {(Mn(u),Bn)}n∈N, where

Mn(u) = euXn−uϕ(u) =
euXn

[E [euY1 ]]
n

the exponential martingale. Recall that if u ̸= 0 and u ∈ {ϕ <∞}, then

Mn(u)
a.s.
−−! 0.

Here is Wald’s identity for the exponential martingale.

Proposition 12.72 (Wald’s Identity). Let u ∈ {ϕ <∞} and suppose ϕ′(u) ⩾ 0. Then for a > 0,

ν+a := inf{n > 0 : Xn ⩾ a}

is regular for the martingale {(Mn(u),Bn)}n∈N. Consequently, any stopping time ν ⩽ ν+a is regular
and hence Wald’s identity holds

1 = E[M0(u)] = E[Mν(u)] =

∫
Ω

euXν−νϕ(u)dP =

∫
{ν<∞}

euXν−νϕ(u)dP.

Proof. To show that ν+a is regular, since Mn(u)
a.s.
−−! 0, by the equivalence proposition, it suffices

to show that

(a) ∫
{ν+

a <∞}
Mν+

a
(u)dP <∞,

(b)

lim
n!∞

∫
{ν+

a >n}
Mn(u)dP = 0.
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(a) is true since {(Mn(u),Bn)}n∈N is L1-bounded for supn∈NE [|Mn(u)|] = 1. It remains to check

lim
n!∞

∫
{ν+

a >n}
Mn(u)dP = lim

n!∞

∫
{ν+

a >n}
euXn−nϕ(u)dP = 0.

We need the following random walk fact. Let {Yi}i∈Z+ be iid with d.f. F and E[Yi] ⩾ 0. After
defining

Xn =

n∑
i=1

Yi,

we have lim supn!∞Xn = +∞. If E[Y1] > 0, then by the SLLN,

Xn

n

a.s.
−−! E[Y1] > 0 as n!∞.

So Xn
a.s.
−−!∞. It is still true that if E[Y1] = 0 but one must use standard random walk theory as

discussed in, for example, Chung (1974), Feller (1971), Resnick (1994). Also

lim inf
n!∞

Xn = −∞, P -a.s..

Since
{lim sup

n!∞
Xn = ∞} ⊆ {ν+a <∞},∀a > 0,

we have P (ν+a < ∞) = 1. Thus, limn!∞ P (ν+a > n) = 0. Exponentia tilting: Construct a

probability space (Ω#,B#, P#), and on the space, construct iid random variables {Y #
i }i∈Z+ with

distribution F# defined by
F#(dy) = euy−ϕ(u)F (dy).

Note F# is a probability distribution since

F#(R) =
∫
R
euy−ϕ(u)F (dy) =

∫
Ω

euY1−ϕ(u)dP = E
[
euY1/eϕ(u)

]
= 1.

F# is sometimes called the Esscher transform of F . Also,

E#[Y #
1 ] =

∫
R
yF#(dy) =

∫
R
yeuy−ϕ(u)F (dy) =

E
[
Y1e

uY1
]

E [euY1 ]
=

d

du
logE

[
euY1

]
= ϕ′(u) ⩾ 0.

Finally,∫
{ν+

a >n}
euXn−nϕ(u)dP =

∫
Ω

euXn−nϕ(u)
1{ν+

a >n}dP

=

∫
· · ·
∫
(y1,...,yn):

∑k
i=1 yi<a,1⩽k⩽n

n∏
l=1

euyl−ϕ(u)F (dyn) · · ·F (dy1)

=

∫
· · ·
∫
(y1,...,yn):

∑k
i=1 yi<a,1⩽k⩽n

F#(dyn) · · ·F#(dy1)

= P

(
k∑

i=1

y#i < a, j = 1, . . . , n

)
= P#(ν+a

#
> n)! 0 a.s. n!∞,

since E#[Y #
1 ] ⩾ 0.
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Corollary 12.73. Let b < 0 < a, u ∈ {ϕ <∞} and define

νa,b = inf{n ⩾ 0 : Xn ⩽ b or Xn ⩾ a}.

Then νa,b is regular for {(Mn(u),Bn)}n∈N and thus satisfies Wald’s identity.

Proof. If ϕ′(u) ⩾ 0, then ν+a is regular for {(Mn(u),Bn)}n∈N, and hence νa,b < ν+a is regular. If
ϕ′(u) ⩽ 0, check the previous Proposition to convince yourself that

ν−b := inf{n : Xn ⩽ b}

is regular and hence νa,b ⩽ ν−b is also regular.

Example 12.74 (Skip free random walk). Suppose the range of Y1 is {1, 0,−1,−2, · · · } and

P (Y1 = 1) ∈ (0, 1].

Then the random walk {Xn}n∈N with steps {Yj}j∈Z+ is skip free positive random walk since it
cannnot jump over states in the upward direction. Let a ∈ Z+, since {Xn}n∈N is skip free positive,

Xν+
a
= a on {ν+a <∞}.

Next,

ϕ(u) = logE
[
euY1

]
= log

euP (Y1 = 1) +

∞∑
j=0

e−ujP (Y1 = −j)

 <∞,∀u ∈ (0,∞).

Also, since P (Y1 = 1) > 0, limu!∞ ϕ(u) = ∞. ϕ : [0,∞) ! R is strictly convex on [0,∞) and ϕ′

strictly increasing on [0,∞). Then there exists u∗ ∈ [0,∞) such that

ϕ(u∗) = inf
u⩾0

ϕ(u),

u∗ is in the parabola or straight line. Thus, ϕ′(u) ⩾ 0,∀u ⩾ u∗.
Goal: find the Laplace transform of ν+a . For u ⩾ u∗, since on {ν+a <∞}, Xν+

a
= a, and Wald’s

identity says

1 = E
[
e
uX

ν
+
a
−ν+

a ϕ(u)
1{ν+

a <∞}

]
=

∫
{ν+

a <∞}
e
uX

ν
+
a
−ν+

a ϕ(u)
dP

= eua
∫
{ν+

a <∞}
e−ν+

a ϕ(u)dP

= euaE
[
e−ϕ(u)ν+

a 1{ν+
a <∞}

]
.

So
E
[
e−ϕ(u)ν+

a 1{ν+
a <∞}

]
= e−ua,∀u ∈ {ϕ <∞}.

Thus,

E
[
e−ϕ(u)ν+

a 1{ν+
a <∞}

]
= e−ua,∀u ∈ [u∗,∞). (12.1)

Consider the following cases.
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(a) Suppose ϕ′(0) = E[Y1] ⩾ 0. Then (straight line) u∗ = 0. Since E[Y1] ⩾ 0, we have ν+a < ∞
a.s.. Then by 12.1,

E
[
e−ϕ(u)ν+

a

]
= e−ua,∀u ⩾ 0.

Setting λ = ϕ(u) gives

E
[
e−λν+

a

]
= e−ϕ (λ)a.

In this case, Wald’s identity gives a formula for the Laplace transform of ν+a .

(b) Suppose E[Y1] = ϕ′(0) < 0. Since ϕ(0) = 0, convexity requires ϕ(u∗) < 0. So there exists
! u0 > u∗ > 0 such that ϕ(u0) = 0 (parabola). Thus if we substitude u0 in 12.1, we get

e−ua = E
[
e−ϕ(u0)ν

+
a 1{ν+<∞}

]
= E

[
1{ν+

a <∞}

]
= P (ν+a <∞) < 1.

In this case, Wald’s identity gives a formula for P (ν+a <∞).

We now examine the following martingales:

{Xn − nE[Y1]}n∈N and {(Xn − nE[Y1])
2 − nVar(Y1)}n∈N.

Suppose {Yk}k⩾ is an iid random varibles. Define

X0 = 0, Xn =

n∑
k=1

Yk,∀n ∈ Z+.

Define
Bn = σ(X1, . . . , Xn),∀n ∈ Z+.

Clearly, B0 = {∅,Ω}. If E[|Y1|] <∞, then {(Xn − nE[Y1],Bn)}n∈N is a martingale. If E[Y 2
1 ] <∞,

then {(
(Xn − nE[Y1])

2 − nVar(Y1),Bn

)}
n∈N

is also a martingale. Neither is regular but we can find regular stopping times.

Proposition 12.75. Let ν be a stopping time which satisfies E[ν] <∞. Then

(a) ν is regular for {(Xn, nE[Y1],Bn)}n∈N assuming E[|Y1|] <∞.

(b) ν is regular for {(Xn − nE[Y1])
2 − nVar(Y1),Bn)}n∈N assuming E[Y 2

1 ] <∞.

Proof. (a) Since {Xn − nE[Y1]} has mean 0, wlog, we can assume that E[Y1] = 0. If E[ν] < ∞,

P (ν <∞) = 1 and so Xν∧n
a.s.
−−! Xν . NTS:

Xν∧n
L1! Xν as n!∞.

Note

|Xν −Xν∧n| =

∣∣∣∣∣
ν∑

k=1

Yk −
ν∧n∑
k=1

Yk

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
k=1

1{ν⩾k} −
n∑

k=1

Yk1{ν⩾k}

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=n+1

Yk1{ν⩾k}

∣∣∣∣∣ ⩽
∞∑

k=n+1

|Yk|1{ν⩾k}.
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Define

ξn =

∞∑
k=n

|Yk|1{ν⩾k}.

Then ξn ⩽ ξ1,∀n ⩾ 1, and since ν <∞ a.e., ξn ! 0 as n!∞. Since {ν ⩾ j} ∈ Bj−1,

Yj |= 1{ν⩾j}.

Then

E[ξ1] = E

 ∞∑
j=1

|Y1|1{ν⩾j}

 =

∞∑
j=1

E
[
|Y1|1{ν⩾j}

]
=

∞∑
j=1

E [|Y1|]P (ν ⩾ j) = E [|Y1|]E[ν] <∞.

By DCT, limn!∞E[ξn] = E[0] = 0. So

E [|Xν∧n −Xν |] ⩽ E[ξn+1]! 0 as n!∞.

Thus, Xν∧n
L1−−! Xν , as n!∞.

12.13.3 Examples of integrable stopping times

Previous Proposition has a hypothesis that the stopping time be integrable. In this subsection, we
give sufficient conditions for first passage times and first escape times from strips to be integrable.

Proposition 12.76. Consider the random walk with steps {Yj}j∈Z+ .

(a) If E[Y1] > 0, then for a > 0,

ν+a := inf{n : Xn ⩾ a} ∈ L1.

(b) If E[Y1] < 0, then for b > 0,

ν−b = inf{n ⩾ 1 : Xn ⩽ −b} ∈ L1.

(c) If E[Y1] ̸= 0 amd Y1 ∈ L1, then

νa,b := inf{n ⩾ 1 : Xn ⩽ −b or Xn ⩾ a} ⊆ L1.

Proof. Suppose (a) holds. Define
Y ′
i = −Yi,∀ i ∈ N,

X ′
n =

n∑
i=1

Y ′
k, n ∈ N.

Then E[Y ′
k] > 0, and

ν′+b = inf{n ⩾ 1 : X ′
n ⩾ b} ∈ L1.

Also,
ν′+b = inf{n ⩾ 1 : Xn ⩽ −b} = ν−b .
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So (b) follows from (a).
(c) follows from (a) since νa,b ⩽ max{ν+a , ν−b }. It remains to establish (a). Since {(Xn −

nE[Y1])}n∈N is a martingale, then so is

{(Xν+
a ∧n − (ν+a ∧ n)E[Y1],Bn)}n∈N.

Hence, since
Xν+

a ∧n, (ν
+
a ∧ n)E[Y1] ∈ L1,

we have
E
[
Xν+

a ∧n − (ν+a ∧ n)E[Y1]
]
= 0.

Then
E
[
Xν+

a ∧n

]
= E[Y1]E[ν+a ∧ n].

Since ν+a ∧ n " ν+a , by MCT, E [ν+a ∧ n] " E[ν+a ]. Then we need a bound on E
[
Xν+

a ∧n

]
.

(a) Case 1: Suppose there exists c ∈ R such that P (Y1 ⩽ c) = 1. On {ν+a <∞}, we haveXν+
a −1 < a

and Yν+
a
⩽ c so that

Xν+
a
= Xν+

a −1 + Yν+
a
⩽ a+ c.

If n ⩾ ν+a , Xν+
a ∧n = Xν+

a
⩽ a+ c; if n < ν+a , Xν+

a ∧n ⩽ a. Thus, Xν+
a ∧n ⩽ a+ c. Then

E
[
Xν+

a ∧n

]
⩽ a+ c.

Since Y1 > 0,
a+ c

E[Y1]
⩾ E

[
ν+a ∧ n

]
" E[ν+a ].

So ν+a ∈ L1.

(b) If Y1 is not bounded above by c, given {Yk}k⩾1, define

Y
(c)
i = Yi ∧ c,∀ i ∈ N,

X(c)
n =

n∑
i=1

Y
(c)
i ,∀n ∈ Z+,

ν+a
(c)

= inf{n ∈ Z+ : X(c)
n ⩾ a} ⩾ ν+a .

From Case 1, we have ν+a
(c) ∈ L1. Thus, ν

+
a ∈ L1.

12.13.4 The simple random walk

Suppose {Yn}n∈Z+ are iid random variables and P [Y1 = ±1] = 1
2 . Define

X0 = 0, Xn =

n∑
i=1

Yi, n ∈ Z+,



12.13. WALD’S IDENTITY AND RANDOM WALKS 223

and think of Xn as your fortune after the nth gamble. Let a ∈ Z+, define

ν+a = inf{n : Xn = a}.

Claim.

P (ν+a <∞) = 1.

Proof. Clearly,

ν+a <∞ a.s. ⇐⇒ ν+1 <∞ a.s.,

since if the random walk can reach state 1 in finite time, then it can start afresh and advance to
state 2 with the same probability that governed its transition from 0 to 1. Define

p := P (ν+a = ∞).

Then

1− p = P (ν+1 <∞)

= P (ν+1 <∞, X1 = −1) + P (ν+1 <∞, X1 = 1)

=
1

2
(1− p)(1− p) +

1

2

since (1− p)(1− p) is the probability the random walk starts from -1, ultimately hits 0, and then
starting from 0 ultimately hits 1. Therefore, p = 0. Notice that even though P (ν+a < ∞) = 1,
E[ν+a ] = ∞ since otherwise, by Walds’s equation

a = E
[
Xν+

a

]
= E[Y1]E[ν+a ] = 0,

a contradiction.

Example 12.77 (Gambler’s ruin). Fix a, b ∈ Z+, define

νa,b = inf{n ∈ Z+ : Xn ⩽ −b or Xn ⩾ a},

where we can use equal sign since the increments are −1 or +1. νa,b is regular w.r.t. {Xn}n⩾1 since∫
{νa,b}

∣∣Xνa,b

∣∣dP ⩽ max {|a|, |b|} <∞,

and

|Xn|1{νa,b>n} ⩽ max {|a|, |b|} <∞

so that {Xn1{νa,b>n}} is u.i..

Now regularity of the stopping time allows optimal stopping

0 = E[X0] = E [Xνa,b] = aP (ν+a < ν−b )− bP (ν−b < ν+a )

= aP (ν+a < ν−b )− b(1− P (ν+a < ν−b )).
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So

P (ν+a < ν−b ) =
b

a+ b
.

P (ν−b < ν+a ) =
a

a+ b
.

We now compute the expected duration of the game E[νa,b]. Recall {X2
n − n}n∈N is a martingale

and E[X2
n − n] = 0. Also {(Xννa,b∧n−(νa,b∧n),Bn)}n∈N is a zero mean martingale so that

0 = E
[
X2

νa,b∧n − (νa,b ∧ n)
]
;

and since X2
νa,b∧n, νa,b ∧ n ∈ L1, we have

E
[
X2

νa,b∧n

]
= E[νa,b ∧ n].

Note that νa,b ∧ n " νa,b as n!∞. By MCT, E[νa,b ∧ n] " E[νa,b]. Also,∣∣∣X2
νa,b∧n

∣∣∣ ⩽ max
{
|a|2, |b|2

}
,

and Xνa,b∧n ! Xνa,b
. By DCT, E

[
X2

νa,b∧n

]
! E

[
X2

νa,b

]
. Thus, E[νa,b] = E

[
X2

νa,b

]
. So νa,b ∈ L1,

and then νa,b is regular. Hence

E[νa,b] = E
[
X2

νa,b

]
= a2P (Xνa,b

= a) + b2P (Xνa,b=b) = a2
b

a+ b
+ b2

a

a+ b
= ab.

12.14 Reversed martingales

Lemma 12.78. Let X be an integrable random variable and let F and G be sub σ-fields of B,
where X,G |= F . Then E[X|G ∨ F ] = E[X|G].

Proof.

G ∨ F = σ{A ∩B : A ∈ G, B ∈ F}.

Then for A ∈ G and B ∈ F ,∫
A∩B

E[X|G]dP =

∫
Ω

E[X|G]1A∩BdP = E[E[X|G]1A1B ]

= E[E[X|G]1A]P (B) = E[E[X1A|G]]P (B)

= E[X1A]P (B) = E[X1A1B ]

=

∫
A∩B

XdP.

Since by the definition of conditional expectation,∫
A∩B

E[X|G ∧ F ]dP =

∫
A∩B

XdP.
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Thus, ∫
A∩B

E[X|G]dP =

∫
A∩B

E[X|G ∧ F ]dP.

Since {A ∩ B : A ∈ G, B ∈ F} is a π-system and {C ∈ B :
∫
C
E[X|G]dP =

∫
C
E[X|G ∧ F ]dP} is a

λ-system, by the Dynkin’s π-λ theorem,∫
C

E[X|G]dP =

∫
C

E[X|G ∧ F ]dP,∀C ∈ G ∨ F .

By the integral comparision lemma, E[X|G] = E[X|G ∨ F ], P -a.s..

Suppose that {Bn}n∈N is a decreasing family of σ-fields, i.e., Bn ⊇ Bn+1 for any n ∈ N.

Definition 12.79. Call {(Xn,Bn)}n∈N is a reversed martingale if

Xn ∈ Bn, Xn ∈ L1,∀n ∈ N,

E[Xn|Bn+1] = Xn+1,∀n ∈ N.

From a reversed martingale, we can construct a martingale. Define

X ′
n := X−n,∀n ∈ Z⩽0,

B′
n := B−n,∀n ∈ Z⩽0.

Then B′
n ⊆ B′

m for any n < m < 0, and {(X ′
n,B′

n)}n∈Z⩽0 is a martingale on the index set

T = {· · · ,−2,−1, 0}

with time flowing as usual from left to right. Note that

E[X ′
n+1|B′

n] = E[X−n−1|B−n] = X−n = X ′
n, P -a.s.,∀n ∈ Z⩽0.

Also, this martingale is closed on the right by X ′
0 and E[X ′

0|B′
n] = X ′

n for any n ∈ Z⩽0. Therefore,
the martingale {(X ′

n,B′
n)}n∈Z⩽0 is u.i. and as we will see, this implies the original sequence is

convergent a.s. and in L1.

Example 12.80. Let {ξk, k ∈ Z+} be iid, L1 random variables. Define

Sn =

n∑
i=1

ξi,∀n ∈ Z+,

Bn = σ(Sn, Sn+1, · · · ).

Hence {Bn}n∈Z+ is a decreasing family of σ-fields and Sn ∈ Bn, Sn ∈ L1. Also,

Bn = σ(Sn, ξn+1, ξn+1, · · · ).

Furthermore, by symmetry, for any n ∈ Z+,

E[ξk|Bn] = E[ξ1|Bn], P -a.s.,∀1 ⩽ k ⩽ n.



226 CHAPTER 12. MARTINGALES

By previous lemma,

E[ξk|Bn] = E[ξk|σ(Sn)], P -a.s.,∀1 ⩽ k ⩽ n.

Next, need to show

E[ξk|σ(Sn) = E[ξ1|σ(Sn)] P -a.s.,∀1 ⩽ k ⩽ n.

Fix t ∈ R, then (or use Sn ⩽ t, π system: {Sn ⩽ t1} ∩ {Sn ⩽ t2} = {Sn ⩽ t1 ∧ t2}.)∫
{Sn>t}

ξkdP = E[ξk1{Sn>t}] = E[ξk1{ξ1+···+ξn>t}] = E[ξ11{Sn>t}] =

∫
{Sn>t}

ξ1dP.

By π-λ theorem,

E[ξk|σ(Sn)] = E[ξ1|σ(Sn)], P -a.s.,∀1 ⩽ k ⩽ n.

Finally, for any n ∈ Z+,

Sn = E[Sn|Bn] =

n∑
i=1

E[ξi|Bn] =

n∑
i=1

E[ξ1|Bn] = nE[ξ1|Bn].

So Sn

n = E[ξ1|Bn]. Note

E

[
Sn

n

∣∣∣∣Bn+1

]
= E[E[ξ1|Bn]|Bn+1] = E[ξ1|Bn+1] =

Sn+1

n+ 1
, etc.

This implies that {(Sn/n,Bn)}n∈Z+ is a reversed martingale and thus uniformly integrable. From
the theorem below, this sequence is almost surely convergent. The Kolmogorov 0-1 law gives

lim
n!∞

Sn

n
= c(constant).

But this means ?c = 1
nE[Sn] = E[ξ1]. Thus, the Reversed Matingale Convergence Theorem below

provides a very short proof of the SLLN.

Theorem 12.81 (Reversed Martingale Convergence Theorem). Suppose that {Bn}n∈N is a de-
creasing family of σ-fields and suppose {(Xn,Bn)}n∈N is a positive reversed martingale. Set

B∞ =
⋂
n⩾0

Bn.

Then

(a) there exists X∞ ∈ B∞ such that Xn
a.s.
−−! X∞,

(b) E[Xn|B∞] = X∞, P -a.s. for any n ∈ N,

(c) {Xn}n∈N is u.i.. and Xn
L1−−! X∞.

Proof. (a) Define

X ′
n := X−n, B′

n := B−n,∀n ∈ Z⩽0.
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Then {(X ′
n,B′

n)}n∈Z⩽0 is a martingale. Define

δ
(n)
a,b : = # of downcrossing of [a, b] by X0, . . . , Xn

= # of upcrossing of [a, b] by Xn, . . . , X0

= # of upcrossing of [a, b] by X ′
−n, . . . , X

′
0

=: γ
(n)
a,b .

Now apply Dubin’s inequality to the positive martingale X ′
−n, . . . , X

′
0 to get for any k ∈ Z+,

P (γ
(n)
a,b ⩾ k|B′

−n) ⩽
(a
b

)k (X ′
−n

a
∧ 1

)
=
(a
b

)k (Xn

a
∧ 1

)
.

Taking E[·|B∞] on both sides yields

P (δ
(n)
a,b ⩾ k|B∞) ⩽

(a
b

)k
E

[(
Xn

a
∧ 1

)∣∣∣∣B∞

]
.

Note for any k ∈ Z+,

P (δ
(n)
a,b ⩾ k|B∞) = E

[
E
[
1{δ(n)

a,b⩾k}

∣∣∣Bn

]∣∣∣B∞

]
⩽ E

[(a
b

)k (Xn

a
∧ 1

)∣∣∣∣B∞

]
⩽
(a
b

)k
sup
n∈N

E

[
Xn

a
∧ 1

∣∣∣∣B∞

]
⩽
(a
b

)k
.

Then P (δ
(n)
a,b ⩾ k) ⩽

(
a
b

)k
. Also, as n "∞.

δ
(n)
a,b " δa,b = # downcrossings of [a, b] by {X0, X1, · · · }.

So P (δa,b ⩾ k|) ⩽
(
a
b

)k
. Thus, P (δa,b <∞) = 1. Therefore, {Xn} converges a.s.. Set

X∞ = lim sup
n!∞

Xn.

Note for a fixed p ∈ N, since Xn ∈ Bn for any n ∈ N, supn⩾pXn ∈ Bp. So

lim sup
n!∞

Xn ∈ Bp,∀p ∈ N.

Thus, X∞ = lim supn!∞Xn ∈ B∞.

(c) Note Xn = E[X0|Bn]. So {Xn} is u.i.. U.i. and a.s. convergence imply L1 convergence.

(b) Notice that
E[Xn|B∞] = E[E[X0|Bn]|B∞] = E[X0|B∞], P -a.s..



228 CHAPTER 12. MARTINGALES

Then
lim
n!∞

E[Xn|B∞] = E[X0|B∞], P -a.s..

Define
An = {ω : E[Xn|B∞] = E[X0|B∞]},∀n ∈ N.

Then P (An) = 1 for any n ∈ N. Define

A =
⋂
n∈N

An.

Then P (A) = 1, and on A, since X∞ ∈ B∞, Xn
a.s.
−−! X∞, and Xn

L1−−! X∞, we have

X∞ = E[X∞|B∞] = lim
n!∞

E[Xn|B∞] = E[X0|B∞].

Remark. These results are easily extended when we drop the assumption of positivity which was
only assumed in order to be able to apply Dubin’s inequality.

Corollary 12.82. Suppose {Bn}n∈N is a decreasing family of σ-fields and X ∈ L1. Then

E[X|Bn]
a.s.
! E[X|B∞].

E[X|Bn]
L1! E[X|B∞].

(The result also holds if {Bn} is an increasing family of σ-fields.)

Proof. Observe that if we define Xn := E[X|Bn] for any n ∈ N, then this sequence is a reversed
martingale from smoothing. From the previous theorem, we know

Xn ! X∞ ∈ B∞ a.s. and in L1.

We must identify X∞. From L1-convergence we have that for any A ∈ B,∫
A

E[X|Bn]dP !

∫
A

X∞dP.

Thus for any A ∈ B∞ ⊆ Bn,∫
A

E[X|Bn]dP
def
==

∫
A

XdP
def
==

∫
A

E[X|B∞]dP !

∫
A

X∞dP.

Thus, by the integral Comparison Lemma, X∞ = E[X|B∞].
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