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Chapter 1

Sets and Events

Let Q be a set and N={1,2,...,}.

1.1 Indicator functions

Definition 1.1. Let A C Q.
1 ifwedA,
La(w) = { 0 otherwise.

Fact 1.2. The following hold:

(a) 14 < 1p if and only if A C B.

(b) Tae =1—14.

Definition 1.3. Let {A;}52; be a sequence of subsets of ). Define

(a)

o0 o0
inf Ay := Ap, sup Ay = Ayp,
e ,D ot L_J *

=n k=n

liminf 4,, = D ﬁ Ay, limsup A4, = ﬁ G Ay

n—00 n— oo

k=1k=n n=1k=n
Proposition 1.4. By de Morgan’s law,

(liminf A, )¢ = limsup A,

n—oo n—oo

(limsup A,)¢ = liminf AY.

n— oo n—00
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Definition 1.5. For some sequence {B,,} of subsets of Q, if limsup,,_, ., B, = B = liminf,_, By,
then the limit of {B,} exists, written as

limsup = B.

n—oo
Lemma 1.6. Let {A,} be a sequence of subsets of €.

(a)

limsup A4,, = {w ‘ Z]lAn(w) :oo} ={w|lweAd, k=121,
n=1

n—oo
for some subsequence ny depending on w. Consequencely, we write limsup,, . A, = {4, i.0.}.

(b)

n—oo

liminf A, = {w ‘ Z Tac(w) < oo} ={w|weA,,Vn =ne(w)}.
n=1

Proof. (a) If w € limsup,,_, ., A,, then for any n € N, w € [, Ag. So for any n € N, there
exists k, > n such that w € Ay, , and therefore > 7, 14, (w) >, 14, (w) = oo, which implies
we {w| Y 14, (w) =00} Thus, lim,cosup A, € {w | > 07 14, (w) =o00}. Conversely, if
w € {w| X0 1(A,)(w) = oo}, then there exists k, — oo such that w € A, and therefore
for any n € N, w € [Jp—,, Ak so that w € lim,_oosup A,. Thus, {w | > 77 1(4,)(w) = o0} C
lim,, o sup 4.

(b) It is similar. O
Example 1.7.

liminf |0, —— ) =[0,1) = limsup |0, ——

n—oo ”I’L+1 - ’ o n—>oop ,'I'L+1 '

Definition 1.8. We say X,, — X almost surely (a.s.) (a.e.) if P (lim,_ X, = Xo) = 1.

Theorem 1.9 (Almost surely convergence). Let {X,,} be a set of measurable functions from § to
R. If X,, — Xy a.e., then

1=P (nlin;o X, = Xo) = P (w ] |Xn(w) = Xo(w)| < &¥n > no(w))

=Pw|we{lX,—Xo| <e},Vn2no(w)) =P(w|we A4, Vn =ng(w))
= P(liminf A,) = P <liminf{|Xn ~ Xo| < e}) Ve > 0,

and so

n—oo n—oo

0=P <limsupAfl) =P (limsup{|Xn — Xo| > e}> ,Ve> 0.
Proposition 1.10. Suppose {A,} is a monotone sequence of subsets.
(a) If A, 71, then lim, oo A, = ;| Ap.
(b) If A, |, then lim, .o A, = (2, Ap.
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Proof. (a) If follows from
(oo} (oo} oo
limsup A4,, = A C A = A, =liminf A, Cli A,.
imsup 4, ﬂU k_U k U Uﬂ iminf A, C limsup A,
n=1k>n k>1 n=1 n=1k>n
Remark. Recall that the limit of monotone increasing sequence is its supremum.
Remark. Since {(;—, Ak }n>1 is monotone increasing,
hnnilo%fA” = U ﬂ A, = nlLH;o ﬂ Ay
k=1k=n
Since {Upe,, Ak }n>1 is monotone decreasing,

limsup A, n U A, = nler;O U Ay

n—oo

n=1k=n
Proposition 1.11. We have the following.
(a)
]]'infnék A, = inf ]]-A , ]]-supn>k A, = Sup ]]'An'
n> = n)k
(b)
]]-lim SUDy, o0 An = lim sup ]]-Ana ]]-lim inf, .00 Ap — lim inf :IlA71 .
n—oo n—oo

()
Iuap=14+1p (Il’lOd 2).

Proof. (a) Lint,, A, = 1if and only if w € inf,>x A, = N2 Ay, if and only if w € A,, for all n >

if and only if 14, (w) =1 for all n > k if and only if inf,, >, 14, (w) = 1.

(b)

ﬂlimsupn_,oC A, — ]linfn;1 SUpg>, Ak = inf ]lsupk>n A — inf sup ]lAk - hmsup ]lA
21 nz1 k>n n— o0

k
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Chapter 2

Probability Spaces

Definition 2.1. Suppose 2 = R and let
C ={(a,b] | —oo < a <b< oo}

Define

and call B(R) the Borel subsets of R.

2.1 Basic Definitions and Properties

s
Definition 2.2. A probability space is a triple (2, B, P) where

(a) Q is the sample space corresponding to outcomes of some experiment.
(b) B is the o-algebra of subsets of 2. These subsets are called events.

(c) P is a probability measure, i.e., P is a function P : B — [0, 1] such that

(1) P(A) >0 forall A€ B.
(2) P is o-additive.
(3) P(Q2) =1.

Theorem 2.3 (inclusion-exclusion formula).
P(U A> Z(l)k“( S P4, m...mAw) - ¥ (1)J1p<m Aj>.
i=1 k=1 1< < <ip<n 0#JC{1,2,...,n} jeJd

Theorem 2.4 (More continuity). We have the following.

(a)
P ( lim inf An) < lim inf P(A,) < lim supP (4,)< P ( lim sup An) .

n—oo n—oo n—oo n—oo

5
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(b) P is continuous.

Proof. (a) The first inequality follows from Fatou’s Lemma:

P(liminf A,) = P(lim (] Ax) = lim P([") Ax) = liminf P([] Ax) < liminf P(A,,),

n—oo n—oo n— oo n—oo
k>n k>n k>n

where the second equality follows from the monotone continuity property. The last inequality
follows from Proposition 1.4 and the first inequality.

(b) Let A, — A as n — oo. Then lim, . supA, = lim, ,inf A,. So by (a), P(A) =
P (lim;, o0 inf A,,) < lim,, o0 inf P(A,,) < lim, oo sup P (4,,) < P (lim,, oo sup 4,,) = P(4). O

Definition 2.5. A function F : R — [0, 1] satisfying

(a) F is right continuous,

(b) F is monotone nondecreasing,

(c) F has limit at £oo: F(00) 1= limg1ee Fi(z) = 1 and F(—00) 1= lim,|_o F(z) =0,
is called a (probability) distribution function.

Proposition 2.6. Define F': R — [0,1] by F(x) := p((—o00,x]), where 4 is a finite Borel measure
on R. Then F is a distribution function.

Proof. (a) Let x,, | x, then (—oo,x,] | (—00,z]. By the (right) continuity of probability measure,
(=00, 2n]) = Jo L(—oo,wn]dit | Jo L(—ooz)dpt = p((—00, z]). So F(zy) | F(z).

(b) If 2,y € R and = < y, then (—oo,z] C (—o0,y]. So by the monotonicity of u, F(x) =

p (=00, 2]) < pu((—00,9]) = F(y).

(c) Let =, T oo. Since g is continuous, F(00) = limy, oo F(xy) = limy, 1o pt((—00,2,]) =
p(limg, o (—00, 7)) = (U (—00,20)) = p((—00,00)) = p(R) = p(Q) = 1. Likewise, let
Ty | —00, F(—00) = limg, | oo F(xn) = limy |—oo pt ((—00,2p]) = p(limg, | _co(—00,2,]) =
1 (Mnz (00, zn]) = p(0) = 0. O

Remark. In practice, we start with a known distribution function F' : R — [0,1] and wish to
construct a probability space (2, B, P) such that F(x) = P ((—o0, z]).

Example 2.7 (Coincidences). Suppose the integers 1,2,...,n are randomly permuted. What is
the probability that there is an integer left unchanged by the permutation?
We first construct a probability space. Let 2 be the set of all permutations of 1,2,...,n so that

Q={(z1,...,20) |21 U--- Uz, ={1,...,n}}.

Thus € is the set of outcomes from the experiment of sampling n times without replacement from
the population 1,...,n. We let B = P(Q2) be the power set of Q and define P((x1,...,z,)) = % for
(z1,...,2n) € Q, and P(B) = 4|B| for B€ B. For i =1,...,n, let A; be the set of all elements
of Q with ¢ in the i*® spot. From Theorem 2.3, we have

1<i<j<n 1<i<j<k<n
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To compute P(A;), we fix an integer 4 in the i*" spot and count the number of ways to distribute
n— 1 objects in n — 1 spots, which is (n —1)! and then divide by n!. To compute P (A4;A;), we fix i
and j and count the number of ways to distribute n — 2 integers into n — 2 spots, and so on. Thus,

P(Ua) = () (5) o )

i=1
1 1 ol
Taking into account the expansion of e” for x = —1, we see that for large n, the probability of a

conincidence is approximately P (!, A;) & 1 — e~ =~ 0.632.

2.2 More on Closure

Definition 2.8. P is a w-system if it is closed under finite intersections.

Definition 2.9. A class subsets £ of Q is called a A-system (o-additive class, Dynkin class) if it
satisfies

old (a) Qe L,
(b) if AC B with A,B € L, then B\ A€ L,
(c) for increasing {A,} C L: U,—, A, € L;
new (a) Q€ L,
(b) if A€ L, then A€ L,
(c) for pairwise disjoint {A4,} C £: U,—, A, € L.
Definition 2.10. The minimal structure S generated by a class C is a non-empty structure satis-
fying
(a) CC S,
(b) If S’ is some other structure containing C, then S C &’.
Denote the minimal structure by S(C).

Proposition 2.11. The minimal structure S generated by a class C exists and is unique. Let

N ={G | G is a strucure,C C G}, then S(C) = Ngen G-

Theorem 2.12 (Dynkin’ theorem). (a) If P is a m-system and L is a A\-system such that P C L,
then o(P) C L.

(b) If P is a w-system, then o(P) = L(P), that is, the minimal o-algebra over P equals the minimal
A-system over P.

Proposition 2.13. Let P;, P, be two probability measure on (2,B). {4 € B| Pi(4) = P,(A)} is
a A-system.

Corollary 2.14. If Py, P, are two probability measures in (£2, B) and if P is a w-system such that
for A€ P: Pi(A) = Py(A), then for B € o(P) : P1(B) = P»2(B).



8 CHAPTER 2. PROBABILITY SPACES

Proof. £L:={A € B| Pi(A) = P,(A)} is a A\-system. But P C £, and hence by Dynkin’s theorem
o(P) C L. O

Corollary 2.15. Let Q2 = R. Let Py, P> be two probability measures on (R, B(R)) such that their
distribution functions are equal: for all z € R : Fi(z) = P; ((—o0,z]) = Fa(x) = P ((—o0,z]).
Then P, = P, on B(R). So a probability measure on R is uniquely determined by its distribution
function.

Proof. Let P = {(—
So Fi(x) = Fy(z),x
214, P1 EPQ on O'(P)

z] : & € R}. Then P is a m-system since (—oo, z]N(—o00,y] = (—o0, zAy] € P.
€ R means P; = P on P. Furthermore o(P) = B(R ) Thus, by CorollAry
= B(R). O

Proposition 2.16. If a class C is both a 7m-system and a A-system, then it is a o-algebra.

2.3 Two Constructions

(a) Discrete models: Suppose 2 = {wy,wa, -} is countable. For each ¢ >, associate to w; the
number p; such that p; > 0 and ) .o p; = 1. Define B = P(2), and for A € B, set P(A4) =
Zwie 4 Pi- Then we have the following properties of P:

(1) P(A) > 0,YA € B.

(2) P(Q) =372 pi=1.
(3) If {A;};>1 are mutually disjoint subsets, then

PUa)= £ w=X X n=dru
Jj=1 wi€l 52, Ay J=lw;€A; j=1
where the last step is justified because the series, being positive, can be added in any order.
This gives the general construction of probabilities when €2 is countable.
(b) Coin tossing N times: Set
Q={0,1}" ={(w1,...,wn) :w; =0 or 1}.
Forp>0,q2>0,p+q=1,define pi,, .. wy) = pzé‘vzlequz;'vzl“’f = p#lsg#0's Let B = P(Q)

and for A C Q, define P(A) = > . p.. As in (a), this gives a probability model provided
> weaPo = 1. Note the product form p(y, .. wy) = Hivzl pYigt =i, So

pi = Vg T = pYig ™ (p'® +p¢t) = = 1.
Z Z Hp q Z H wi 1—w; O_|_01) 1
i
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2.4 Construction of Probability Spaces

Lemma 2.17 (The algebra generated by a semialgebra). Suppose S is a semialgebra of subsets of
0. Let A(S) be the smallEst algebra containing S. Then

finite
A(S) = { |_| S ‘ {S;} C S are disjoint}.

Theorem 2.18 (First Extension Theorem). Suppose S is a semialgebra of subsets of Q and P :
S — [0,1] is a o-additive on S and satisfies P(Q)) = 1, implying P is a probability measure on S.
There is a ungiue extension P’ of P to A(S), defined by P'(|;c; Si) = > ;c; P(Si), which is a
probability measure on A(S); that is P'(2) =1 and P’ is o-additive on A(S).

Theorem 2.19 (Second Extension Theorem). A probability measure P defined on a algebra A of
subsets has a unique extension to a probility measure on o(A), the o-algebra generated by A.

Theorem 2.20 (Combo Extension Theorem). Suppose S is a semialgebra of subsets of Q and that
P is a o-addtive set function mapping S into [0, 1] such that P(2) = 1. There is a unique probability
measure on o(S) that extends P.

2.5 Measure Constructon

2.5.1 Lebesgue Measure on (0, 1]

Suppose @ = (0,1], B = B((0,1]) and S = {(a,b] |0 <a <b<1}. Define on S the function
A: S8 —[0,1] by A(@) =0, A(a,b] = b—a. With a view to applying Extension Theorem, note that
A(A) > 0. To show that A has unique extension we need to show that A is o-additive.

2.5.2 Construction of a Probability Measure on R with Given Distribu-
tion Function F(z).

Given Lebesgue measure A constructed in last section and a distribution function F'(x), we con-
struct a probability measure Pr on R such that Pg ((—oc0,z]) = F(z). Define the left con-
tinuous inverse of F as F(y) = inf{s : F(s) > y},0 < y < 1. Now define for A C R,
¢r(A) = {x €(0,1): F—(z) € A}. If A is a Borel subset of R, then £r(A) is a Borel subset of
(0,1].

Lemma 2.21. If A € B(R), then £r(A) € B((0,1)).
Proof. Define G = {AC R:{r(A) € B((0,1])}. G contains finite intervals of the form (a,b] C R

since
¢r ((a,b]) ={z € (0,1] : F~(z) € (a,b]} ={z € (0,1] :a < F™ (x) < b}
={zx € (0,1]: F(a) <z < F(b)} = (F(a),F(b)] € B((0,1]).

N

Next, we verify that G is a o-field.

(a) Since &rp(R) = (0,1], we have R € G.
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(b) Assume A € G, then A° C R and then
Er(A9) = {2 € (0,1]: F~(2) € A} = {a € (0,1] : F(2) € A} = (¢¢(A))° € B((0, 1),

since £r(A) € B ((0,1]).

(¢) Let {4,} € G, then & (U, An) = U2, £r(An) € B((0,1).

So G contains intervals and G is a o-field and therefore B(R) 2 G. O

Define Pp(A) = A (§r(A)), where X is Lebesgue measure on (0, 1]. It is easy to check that Pg
is a probability measure. Note that

Pr (=00, 2]) = A (€ ((—00,2])) = My € (0,1] : F™ (y) < x}
=My e (0,1]:y < F(x)} = A0, F(2)]) = F(x).



Chapter 3

Random Variables, Elements, and
Measurable Maps

3.1 Inverse Maps

Random variables are conveninet tools that allow us to focus on properties of interest about exper-
iment being modelled. Suppose 2 and Q' are two sets. Suppose X : @ — Q'. Then X determines
a function X! : Q' — Q defined by X 1 (A') ={w e Q: X(w) € A’} for A’ C Q.

Remark. X! preserves complementation, union and intersection.
Proposition 3.1. If B is a o-field of subsets of €', then X ~1(B’) is o-field of subsets of Q.

Proposition 3.2. If (' is a class of subsets of ', then

X1 (o(C) = o (XHC)).

3.2 Measurable Maps, Random Elements, Induced Proba-
bility Measures

Definition 3.3. A pair (€2, B) consisting of a set 2 and a o-field of subsets B is called a measurable
space.

Definition 3.4. If (Q,B) and (', B’) are two measurable spaces, then a map
X:Q—q

wr— X(w)

is called measurable if X~*(B') C B. Denoted X € B/B" or X : (,B) — (,B). When
(V,B) = (R,B(R)), X is called a random variable.

Definition 3.5. Let (€2, B) be a measurable space. A measure on (2, B) is a function p : B — [0, o]
such that

11
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where {A;} C B are pairwise disjoint.
We call (Q, B, 1) a measure space.
Remark. If y is a probability measure, we just replace condition (a) as u(Q2) = 1.

Proposition 3.6. Let (2,5, P) be a probability (measure) space and suppose X : (Q,8) —
(€, B'). Define

PoX':B —Rt
Al (PoX71)(4) = P(X7(4)).

Then P o X! is a probability measure on (€, B’), called induced probability measure or the
distribution of X.

Proof. (a) (Po X 1)(A4’) € RT for any A’ € B'.
(b) (Po X)) = P(X Q) = P(Q) = 1.
(c) Let {A,} C B’ be pairwise disjoint, then
(PoxY) <|_| A;) —p <|_| X—1<A;>> S S PN = S (PoX (4. O
n=1 n=1 n=1 n=1

Remark. Usually we write
PoX1A)=P(X cA).

For example, if X is random variable, then
(PoX1)((~00,2]) = P(X < ).

Definition 3.7. Let (Q,B) be a measurable space. X : @ — [—o00,00] is called measurable if
{f € A} C B for any A € B(R).

Remark. X is Borel measurable if B is a Borel o-algebra. X is Lebesgue measurable if B = B(Q?)
on R is a Lebesgue o-algebra (All Lebesgue measurable sets on 2 C R).

Verification that a map is measurable is sometimes made easy by decomposing the map into
the composition of two (or more) maps. If each map in the composition is measurable, then the
composition is measurable.
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Proposition 3.8 (Composition). Let X7 : (Q1,81) — (Q2,B3) and X5 : (2, B2) — (Q3, B3) where
(Q,B;),i =1,2,3 are measurable spaces. Define

X2 o X1 : Ql — Qg

Wy —— XQ(Xl (wl)) .
Then XQ [¢) X1 € Bl/Bg.
Proof. Since for any B3 C Qs:

(X20X1) H(B3) = {w : Xa0X1(w1) € B3} = {w; : Xi(w1) € X5 '(B3)}
={wirw € X7 (X51) (By)} = X' X5 (By),
we have (Xo0 X;)™' = X' X, ! Let Bs € Bs, then (Xp 0 X)"Y(B3) = X; ' X, H(B3) € By since
X5 (B3) € By. (Or we can say (X2 0 X;)"1(B3) C By.) O
Proposition 3.9. If X; : (?,B) — (R,B(R)) is a random variable for i = 1,...,n, and ¢ : U(C
R™) — R is continuous, then
O(X1,...,Xn): Q—R
wr— P(X1(W), .. Xn(w))

is a random variable. (Note you have to check range of (Xi,...,X,,) isin U.)

Proof. Let
Vi={p<t}={(s1,..-,80) ER"| P(s1,...,8n) < t}.

Then V is open since ¢ is continuous. By Lindelof theorem for R™, there exists {cg }r>1 such that
V =|lpZ, ¢, where

Cp = (ag’“),bg’“)) X e X (a;@,bg’“)) VE>1,
are disjoint with a® e R,Vi=1,...,n,Vk > 1, and such that

i

{p(X1,..., Xp) <t} ={we Q| (X1(w),..., Xn(w)) €V}

= {w €N ‘ (X1 (w),..., X,(w)) € |_| ck}
k=1

|
[ 3

{we| Xi1(w),...,X,(w)) € e}

b
Il
—

Il
[

{w =0 ’ X1(w) € (ag’“),bg’”) e X(w) € (a;’ﬂ,b;’“))}

-
31

N
3

= |_| ﬂ {w €| agk) < Xi(z) < bz(-k)}

Thus, ¢(X4,...,X,) is a random variable. O
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3.3 o-fields Generated by Maps
Let X : (Q,B) — (R, B(R)) be a random variable. Define
o(X) := X1 (B(R)).

This is the o-algebra generated by information about X, which is a way of isolating that information
in the probability space that pertains to X. If 7 C B is a sub-o-field of B, we say X is measurable
w.r.t to F, written X € F if o(X) C F.

Example 3.10 (Extreme example). Let X (w) = 17 for w € Q. Then o(X) = o(0,Q) = {0, Q}.

Example 3.11 (Less extreme example). Suppose X = 14 for some A € B (So mesurable). Note
X has range {0,1}. Then

o(X) = o (XT1({0}), X7 ({1})) = 0(4, 4°) = {0,2, 4, A°}.

Example 3.12 (Useful example: Simple function). Let A; := X 1(a;) = {X = a;}. Then
{A;,i=1,...,k} partitions 2. We may represent X as X = Zle a;14,. Then

U(X):o(Ah...,Ak):{|_|AZ-:IC{1,...,I€}}.

icl
Theorem 3.13. Fort €T, let X;: (Q,B) — (R,B(R)) be measurable. Then

o(Xp,teT)=\/ o(X),
teT

which is the smallest o-algebra containing all o(Xy).

In stochastic process theory, we frequently keep track of potential information that can be
revealed to us by observing the evolution of a stochastic process by an increasing famility of o-field.
If {X,,}n>1 is a (discrete time) stochastic process, we may define

B, =0(X1,...,X,),Vn > 1.

Then B,, € B,41 and we think of B, as the information potentially available at time n. This is
a way of cataloguing what information is contained in the probability model. Properties of the
stochastic process are sometines expressed in terms of {Bn}n>1. For instance, one formualtion
of the Markov property is that the conditional distribution of X, 1 given B, is the same as the
conditional distribution of X, ;1 given X,,.



Chapter 4

Independence

The occurrence or non-occurrence of an event has no effect on our estimate of the probability that
an independent event will or will not occur.

4.1 Basic Definitions

Definition 4.1 (Independence of a finite number of events). The events Aj,..., A,(n > 2) are
independent if
P(ﬂ Ai> =[P4,
iel iel

for all finite I C {1,...,n}. There are Y ,_, (2) = 2" — n — 1 equations. It can be reprased as
follows: The events Ay, ..., A, are independent if

n
P(ByNBy---NBy,) =[] P(By),

i=1
where for i = 1,...,n, B; equals A; or Q.

Definition 4.2 (Independent classes). Let C; C B for i = 1,...,n. The classes C; are independent,
if for any choice Ay,..., A, with A; € C; for i = 1,...,n, we have the events Ay,..., A, are
independent events.

Definition 4.3 (Arbitrary number of independent classes). Let T' be an arbitrary index set. The
classes Ct,t € T are independent families if for each finite I with I C T we have {Ci}ier is
independent.

4.2 Independent Random Variables

Definition 4.4 (Independent random variables). {X;,t € T} is an independent family of random
variables if {o(X;),t € T} are independent o-fields (o(X) = X 1((R))).

15
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Theorem 4.5 (Factorization Criterion). A family of random variables { X }ter, is independent if
and only if for for all finite J C T,

Fy(z,t € J) = [[ P(x, . Vz eR.
teJ

4.3 Two Examples of Independence

4.3.1 Records, Ranks, Renyi Theorem

Let {X,,n > 1} be iid with common continuous distribution function F(x). The continuity of F'
implies P(X = X;) = 0, so that if we define [Ties] = |J,,;,[Xi = X;], then P[Ties] = 0. Call

X, a record of the sequence if X,, > \/I'; ' X;, and define A,, = [X,is a record]. A result due to
Renyi says that the events {A;, j > 1} are 1ndependent and P(4;) = ; for j > 2. This is a special
case of result about relative rcmks. Let R, be the relative rank of X,, among X;,...,X,, where

R, =Y"1(X; > X,). So

R,, =1 if and only if X, is a record,
= 2 if and only if X, is the second largest of X7,..., X,

and so on.

Theorem 4.6 (Renyi Theorem). Assume {X,,, n > 1} are iid with common, continuous distribu-
tion function F(x).

(a) The sequence of random variables {R,, n > 1} is independent and

(b) The sequence of events {A,, n = 1} is independent and

1
P(A,) = —.
(An) =
Proof. All possible orderings have the same probability - -1, so for example,
1
Plw: Xo(w) < X3(w) < -+ < Xp(w) < X1(w)) = o
Each realization of Ry,..., R, has the same probability as a particular ordering of Xi,..., X,.
Hence )
P(Rl :Tl,...,Rn:Tn) = m,
forr; € {1,...,1},i=1,...,n since each realization of Ry, ..., R, uniquely determines an ordering:
For example, if n = 3, suppose R;(w) =1, Ra(w) =1, and Rg( ) = 1. This tells us that

Xl(w) < Xg(w) < Xg(w).
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Note that

1
P(Rn:Tn): Z P(Rl:T17"'7Rn71:rn717Rn:/rn): Z —.

Since r; ranges over i values, the number of terms in the sumis 1-2-3-...-(n—1) = (n—1)!. Thus
- 1! 1
PRo=r) ==Ly
n! n
Therefore P(Ry =r1,..., Ry, =1,) = 5 = P(Ry =71) - P(R, =1y,). O

Remark. If {X,,, n > 1} is iid with common continuous distribution F'(z), why is the probability
of ties zero? We have

P(Ties) = P | | J[X: = X]]
i#]

and by subadditivity, this probability is bounded above by 37, . P(X; = X;). Then it suffices to
show that P(X; = X3) = 0. Note the set containment: For every n,

(k-1 k
(X1 =X,] C U [ <X17X2<2n}

2n
k=—oc0
By monotonicity and subadditivity
= E—1 E k-1 k
= X,) < — < omy o <o
P(X; = X») k_Z_OOP( o <K< g o < Xo 2n>
> k—1 E\\°
= P <— 1)) . .
> (r(r<n<y)) (41)
k=—o0
Write F(a,b] = F(b) — F(a), then (4.1) is equal to
oo oo
k=1 k. k—1 k k—1 k k—1 k
F —1F —]= F(——, — F —
k;m (G P gal = _max F(=5 ’zn]k;oo (20
k—1 k k—1 k
< F(=——,—]-1= F(——=, 2.
_max Pl ol max P gl

Since F' is continuous on R, because F' is also a probability distribution, F' is uniformly continuous

on R. Thus given any € > 0, Ing(e), when % — k2—"1 = %, as n = ng(e), we have for all k,

F(%,QE] =F<2k> —F(k_l) <e
n n n n

Thus for any ¢ > 0, P(X; = X3) <e.




18 CHAPTER 4. INDEPENDENCE

4.3.2 Dyadic Expansions of Uniform Random Numbers

Here we consider (2, B, P) = ((0, 1], B((0,1])), A), where A is Lebesgue measure. We write w € (0, 1]
using its dyadic expansion

w=Y d';(f) = .di(w)dz(w)dz(w) -,
n=1

where each d, (w) is either 0 or 1.
If a number such as % has two possible expansions, we agree to use the nonterminating one.

Fact 4.7. Each d,, is a r.v.. Since d,, is discrete with possible values 0,1, it suffices to check
[dn = 0] € B((0,1]), [dn = 1] € B((0,1]),
for any n > 1. In fact, since [d, = 0] = [d,, = 1]¢, it suffices to check [d,, = 1] € B((0,1]). For
n =1,
1
[di=1] = (.1000--- , 1111+ -] = (5, 1] € B((0,1]).
The left endpoint is open because of the convention that we take the nonterminating expansion.
Note P(d; =1) = P(d; =0) = . For n > 2,
[dy, =1] = U (gt Up—11000 -+ | Uty - Up_11111 -]
(u1,..csun—1)€[0,1]7—1
= disjoint union of 2"~ * intervals € B((0,1]).

For example [ds = 1] = (1, 3] U (2,1].
Fact 4.8. We have
P(d, =1) = > P(ugtig - tp—11000 - -+ | uytg - - - tpy_1 1111 - --])

(u17~--7un—1)6[071]n71
o0
1 1
— 211—1 — =,
2 573
1=n-+1
We thus conclude that P(d, =0) = P(d, =1) = %

Fact 4.9. The sequence {d,,, n > 1} is iid. It is suffices to show {d,} is independent. For this, it
suffices to pick n > 1 and prove {dy,...,d,} is independent.
For (u—1,...,u,) € [0,1]", we have

n

ﬂ[di =u;] = (ugug - w000 - uqug - up 1114 -]
i=1

Since the probability of an interval is its length, we get
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4.4 Independence, Zero-One Laws, Borel-Cantelli Lemma

4.4.1 Borel-Cantelli Lemma

Proposition 4.10 (Borel-Cantelli Lemma). Let {A4,} be any events. If Y~ _, P(A,) < oo, then
P (lim,, oo sup 4,,) = 0.

Example 4.11. Suppose {X,,n > 1} are Bernoulll random variables with P(X, = 1) = p, =
1 — P(X, =0). We assert that P(lim, o X, =0) =1,if > p,, < c0.

Proposition 4.12 (Borel Zro-One Law). If {A,} is a sequence of independent events, then

.o [0, ifand only if > 7 P(A,) < oo
P([An i0]) = { 1, ifand only if Y 7 P(4,) = .
Example 4.13 (Behavior of exponential random variables). We assume that {E,, n > 1} are iid
uit exponential random variales; then

P( lim sup F,/log,, = 1) =1

n—oo

That is, every often, the sequence {F,} spits out a large value and the growth of these large values
approximately matches that of {logn, n > 1}.

Proof. To prove it, we need the following simple fact: If {Bj} are any events satisfying P(By) = 1
for k € N, then P ((,—; Bx) = 1. For any w € €,

i sup ) =1
means
(a) for any € > 0, ?gé‘;) < 1+ ¢, for all large n, (Otherwise, there is infinitely many n such that
Elog(‘;) > 1) and
Ep(w)

(b) for any ¢ > 0,

Toan > 176 for infinitely many n.

Note (a) says that for any €, there is no subsequential limit bigger than 14 ¢ and part (b) says that
for any e, there is always some subsequential limit bounded below by 1 —e. We have the following
set equality: Let €, | 0 and observe

E, (. .. E, .
[nlin;o sup Togn = 1] m {nlin;o inf [logn <1 —|—ek} } ﬂ ﬂ { [logn >1-— ek} z.o.} .

k=1

Then it suffices to show every braced event on the right side has prob. 1.
For fixed k,

oo o} 1

Z <log 1_6k> ZP E, > (1—¢€x)logn) = Z ((1—ex)logn)) :an?:

n=1 n=1 n=1 n=1
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So by the Borel Zero-One law, P ([ TR - ek} i.o.) = 1. Likewise,

logn
iP En >1+e| = ie_(l‘“’“)k’g" = iil < 00
n=1 IOg’ﬂ n=1 n=1 niter 7

SO 5
P(lim sup [n > 1—1—64) =1,
n—o0 logn

implies

E
P(liminf{ n <1+e,€D:1—0:1.
n—o0 logn

4.4.2 Kolmogorov Zero-One law

Let X,, be a sequence of random variables and define

]:, :U(Xn+1,Xn+2,"')7 TL:1,2,...,

n

where F), is the smallest o-algebra on € consisting of all events that depends only on X,, 1, Xy 42, .
The tail o-algebra T is defined as

T=()F,=lim | o(Xp Xps1, ).
n=1

n—oo

If Ae T, we will call A a tail event and a random variable measurable with respect to 7T is called
a tail random variable.

Example 4.14. (a) Observe that

{w : Z Xn(w) converges} eT.
n=1

To see this note that, for any m € Z*, the sum Y~ | X,,(w) converges if and only if > 07 X, (w)

converges. So
o0 oo
[Z X5 converges] = [ Z X, converges] e F.

n=1 n=m-+1

This holds for all m and after intersecting over m.

(b) We have lim,, oo sup X,, € T, lim, oo inf X,, € T, {w : lim, o0 Xy (w) exists} € T. This is
true since the limsup of the sequence {X;, Xo,..., -} is the same as the lim sup of the sequence
{Xm, Xms1,- -} for all m.

(c) Let S, = X1+ -+ X,,. Then

{w : lim S"(w)} eT
n—oo n
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since for any m,
n
lim = lim —Zi:erl Xi(w)

n—oo n n— 00 n n—oo n

)

and so for any m, lim,, . S”T(w) eF,.

Theorem 4.15 (Kolmogorov Zero-One Law). If {X,} are independent random variables with tail
o-field T, then A € T implies P(A) =0 or 1 so that the tail o-field T is almost trivial.

Lemma 4.16 (Almost trivial o-fields). Let G be an almost trivial o-field and let X be a random
variable measurable with respect to G. Then there exists ¢ such that P(X =¢) = 1.

Proof. Let F(z) = P(X < z). Since {X <z} € 0(X) C G, we have F(z) =0or 1,Vz € R. Let
¢ = sup{z : F(z) = 0}. Since F' is non-decreasing, the distribution function must have a jump of
size 1 at ¢ and thus P(X =¢) = 1. O

Corollary 4.17 (CorollAries of the Kolmogorov Zero-One Law). Let {X,,} be independent random
variables. Then the following are true.

(a) The event [y ° | X,, converges| has probability 0 or 1.
(b) The random variable limsup,, ., X, and liminf,_,, X, are constant with prob. 1.

(¢) The event {w : S,(w)/n — 0} has probability 0 or 1.
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Chapter 5

Integration and Expectation

5.1 Simple Functions

A function X : Q — R on the probability space (£2, B, P) is simple if it has a finite range. Henceforth,
assume that a simple function is R/R(R) measurable. Such a function can always be written in the
form

k
X(@) =Y aila, @)

where a; € R and A; € B and A, ..., Ay are disjoint and |_|f:1 A; = Q.
Recall

B(X)=B(A;,i=1,....k) = {|_|Ai:1g {1,...,k}}.
iel
Let € be the set of all simple functions on 2. We have the following important properties of £.

(a) & is vector space. This means the following two properties hold.

(1) f X = Zle a;la, € &, then aX = Zle aa;ly, € E.
(2) If X = Ele ai]lAi; and Y = Zml bjlej and XY € g, then X +Y = Zi’j(ai + bj)]lAiﬂBj

1=

and {4, N B;,1<i<k,1<j<m}isa partition of Q. So X +Y € €.
(b) f X,V € &, then XY € € since XY =}, a;bjLla;np;.
() EX,Y €& then X VY, X \Y € €&, since, for instance, X VY =37, .a; Vb;la,p;.

Theorem 5.1 (Measurability Theorem). Suppose X (w) > 0,YVw. Then X € B/B(R) if and only if
there exists simple functions X, € £ and 0 < X,, T X.

Proof. <= If X,, — &, then X,, € B/B(R), and if X = lim,,_,oc 1 X,, then X € B/B(R) since
taking limits preserves measurability.
= Suppose 0 < X € B/B(R). Define

o
k—1
X ::Z< 2 >1{g¢<x<z’z}+”1{><>n}'
k=1

23
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Because X € B/B(R), it follows that X,, € £. Also X,, < X,,41 and if X(w) < oo, then for all large

enough n
2% — 0.
If X (w) = 00, then X, (w) =n — oco. (If M : sup,,cq|X (w)| < 00, sup,cqlX(w) — Xp(w)] —0.) O

[X(w) = Xn(w)] <

5.2 Expectation and Integration

Suppose (2, B, P) is a probability space and X : (Q,B) — R, B (R), where R = [—00, 00]. We will
define the expectation of X, written E(X) or [, XdP or [, X(w)P(dw), as the Lebesgue-Stieltjes
integral of X w.r.t. P.

5.2.1 Expectation of Simple Functions
5.2.2 Extension of the Definition

In stochastic modeling, for instance, we often deal with waiting times for an event to happen or
return times to a state or set. If the event never occurs, it is natural to say the waiting time is
infinite. If the process never returns to a state or set, it is natural to say the return time is infinite.
Let £4 be the non-negative valued simple functions, and define

& = {X>0:X:(28) — (RE®))

to be nonnegative, measurable functions with domain Q. Let X € &,, if P(X = oo) > 0, define
E(X) = oo, otherwise by Theorem 5.1, we may find X,, € £, such that 0 < X,, T X. We call {X,,}
the approximating sequence to X. The sequence {F(X,)} is nondecreasing by the monotonicity
of expectations applied to £;. Since limits of monotone sequences always exists, we conclude that
lim,, o0 F(X,,) exists. We define F(X) := lim,, .o, F(X,,). This extends expectation from & to &,

Proposition 5.2. E is well defined on &, , since if X,, € £, and Y, € &, and X,, T X, Y, T X,
then lim,, oo F(X,) = lim, 00 E(Yi).

Theorem 5.3 (MCT). If X,, 20 for any n € N, then E (lim,_o T X,) = lim, o T E(X,).

If E(X") and E(X ™) are both finite, call X integrable. This is the case if and only if F (] X]) <
0.
If E(X") < oo but E(XT) = 0o, then E(X) = —oo.
If E(XT) =00 but E(X~) < oo, then E(X) = cc.
If E(X*) =00 and E(X~) = oo, then E(X) does not exists.

Example 5.4. Assume the pdf f(z) of the r.v. X exists.
If

fz) =

then E(X) = co. On the other hand, if

x7 2 ifx>1,
0, otherwise,

2

f(z) { slzl7, if |z > 1,

0, otherwise,
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then E(XT) = E(X™) = o0, and E(X) does not exist. The same conclusion would hold if f were
the Cauchy density f(x) = 7r(1+x2) for x € R.
Properties of the expectation operator F.
(a) If X is integrable, then P(X = +o0) = 0.
(b) (WLLN) Let {X,,, n > 1} be iid with finite mean and variance. Suppos E(X,) = pu < co and
Var(X,,) = 02 < co. Then for any € > 0,
> e) =0.

5.3 The Transformation Theorem and Densities

1 n
n 2K

Suppose we are given two measurable spaces (2,B) and (V,B’), and T : (2,B) — (', B') is a
measurable map. P is a probability measure on B.
Define P’ = PoT~! to be the probability measure on B’ given by P'(A') = P (T~'(A)), A’ € B'.

Theorem 5.5. Suppose X' : (', B) — (R,B(R)) is a random variable with domain . (Then
X' oT :Q — R is also a random variable by composition.)

(a) If X’ >0, then

X'(T(w))P(dw) = | X'(w')P'(dw'),
Q o
where P’ = PoT~+. It can also be expressed as oT) = .
here P/ = Po T 1. I Iso b d as E(X'oT) =E'(X'

(b) We have X' € L*(P') if and only if X' o T € L*(P), in which case

/ X'(T(W))P(dw) = | X'()P'(dw'),VA € B.
T-1(4%) Al

Proof. Typical of many integration proofs, we proceed in a series of steps, starting with X as an
indicator function, proceeding to X as a simple function and concluding with X being general.

(a) Suppose X' =14/, A € B. If T(w) € A’, then w € T71T(w) C T 1(A). If w € T71A’, then
T(w) € TT*A" C A'. So T(w) € A" if and only if w € T71A’. Thus, X'(T(w)) = 1a(T(w)) =
17-14/(w). Then
/ X' (T(w))P(dw) = / 14 (T(w)) P(dw) :/ Ly-1(an)(w)P(dw)
Q Q Q
=P(T *(4A")) = P'(A) :/ 14/ (w)P'(dw').

’

(b) Let X’ be simple: X' = Zz a;la;. Then

/X Tw)P(dw) /Za 1y/(T )P(dw)zZag/ Lp—1(ar)(w)P(dw)
:Za’iP(T ZaP Al) —/Za 1y (W) P'(dw').
i=1
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(¢) Let X’ > 0 be measurable. There exists a sequence of simple functions { X/, } such that X/ T X".
Then it is also true that X/, oT 7 X' oT. Then

X'(Tw)P(dw) " lim 1 | X, (T(w))P(dw) = lim 1 [ X/ ()P (dw')
MET [ X! ()P (duw).
Q/
Proof (ii) is similar and for the second we replace X’ in (i) by X'1 4/. O

5.3.1 Expectation is Always an Integral on R
Recall the the distribution of X is the measure F' := Po X1 on (R, B(R)) defined by (A € B(R)):
F(A)=Po X Y(A)=P(X € A). The d.f. of X is

F(z) := F((—o0,2]) = P(X < z).

Corollary 5.6. (a) If X is an integrable random variable with distribution F, then

E(X)= QXsz/RxF(dx).

(b) Suppose X : (2,B) — (E,€) is a random element of E with distribution F = P o X1 and
suppose g : (E, &) — (R4, B(R4)) is a non-negative measurable function. The expectation of g(X)
is

Elg(x)) = [

Q

9(X (w)) P(dw) = / o) F(dz).

z€E

Proof. (a) X : (2,B) — (R,B(R)), X' : (R,,B(R)) — (R,B(R)), X'(z) = =, (identity map),
T=X,P =PoX !=:F, and then apply the Transformation Theorem (a).

(b) Let X' =g. X' : (E,€) — (R,B(R)). T=X. P'=PoX 1=F, O

5.3.2 Densities
Let X : (2, B) — (R*, B(R*)) be a random vector on (§2, B, P) with distribution F. We say X or F

is absolutely continuous if there exists a nonnegative function f : (R¥, B(R*)) — (R, B(R,)) such
that F(A) = [, f(Z)dZ, where dT stands for Lebesgue measure.
5.4 Product Spaces, Independence, Fubini Theorem
Definition 5.7. If A C Q x Qs, define

Auy = {wz @ (w1,w2) € A} C o,

sz = {wl : (oJl,(JJQ) S A} - Ql,

where A,, is called the section of A at ws.
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Here are some properties of set sections.

(a) IfA g Ql X QQ, then
(AC)UJI = (AUJI)C'

(b) For an index set T, let A, € Qy X Q9,Va € T. Then

(U Aa> U (Ao
a€T w1 a€T

(ﬂ Aa>w = [ (Aa)w: -

acT 1 acT

Definition 5.8. Define the section of the function X : Q1 x Q3 — S as X, (w2) = X (w1, w2). So
X, + Q2 — 5. We think of w; as fixed and the section is a function of varying we. Call X, the
section of X at wy.

Basic properties of sections of functions mapping from 2; x 5 to S are the following:
a) (1A)w1 =law,-

(

(b) If S = R¥ for some k € N and if for i = 1,2, we have X; : Q3 x Qs — S, then (X; + X3),, =
(Xl)wl + (XE)wl-
(

c) Suppose S is a metric space for n € N, X, : 1 x Q5 — S and lim,,_, o, X, exists. Then

(lim Xn) = lim (X,),.

n—oo w1 n—oo

Definition 5.9. A rectangle is called measurable if it is of the form A; x As where A; € B; for
1=1,2.

Definition 5.10. The class of measurable rectangles is a semi-algebra which we call RECT.
Proof. (a) 0,9 € RECT.
(b) RECT is a m-class: If A; x Ay, A} x A, € RECT, then

(Al X Ag) n (All X AIQ) = (Al ﬂA’l) X (AQ N AIQ) € RECT.
(¢) RECT is closed under complementation. Suppose A; x A; € RECT. Then

(Q x Qo) N (A1 x Ag) = (2~ A1) x Ag) | | (A1 x (D2~ Az)) | | (AF x A3).

Definition 5.11 (product o-field).

Bl X BQ = O'(RECT)
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Remark. Another way to generate the product o-field on R? is
81 XBQ :O'({Il X IQ,I]‘ GI,j = 1,2})

Lemma 5.12 (Sectioning Sets). Sections of measurable sets are measurable. If A € By x Bs, then
for all wy € Q4, Ay, € Ba.

Proof. Define
Cwl = {A - Q]_ X QQ : Awl S 82}

If A€ RECT and A = Ay x Ay where A; € By and Ay € By, then

AQGBQ, ifwleAl,

AM:{”Z:(“”X”?)GA”A?}:{ DBy, ifwr A

So RECT C C,,. Check C,, is a A-system. By Dynkin’s theorem, B; x Bs = o(RECT) C C,,.
Thus, Awl € Bs. O

Corollary 5.13. Sections of measurable function are measurable. That is, if
X (QxQ9,By x Bz) — (S,S5)
is By x By/S-measurable, then X, € By. Also, X, € B.

Proof. Let A € S, then X~1(\) € By x By. Since sections of measurable sets are measurable,
(X71(A))w, € Ba. Note X, : Q2 — S. Then

By 5 (Xoy) M (A) = {ws : Xun (wn) € A} = {wn : X(wr,wn) € A}
={wy : (w1, wa) € X HA)} = (XH(A))wy,

by the def of the section of the set X ~1(A). So X,,, € Ba. O

5.5 Probability Measures on Product Spaces
Definition 5.14. Call a funtion
K(wy, Ag) : Q1 x By — [0,1]
a transition function if
(a) for each wy, K(w1,-) is a probability measure on By, and
(b) for each Ay € By, K(+, As) is B1/B([0,1]) measurable.
Transition functions are used to define discrete time Markov processes where K(wq, As) repre-

sents the conditional probability that starting from wy, the next movement of the system results in
a state in As.
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Theorem 5.15. Let Py be a probability measure on By, and suppose K : Q1 X By — [0,1] is a

transition function. Then K and Py, uniquely determine a probability on By X By via the formula

P(Al X Ag) = K(wl,Ag)Pl(dwl),
Ay

for all Ay x As € RECT. Let A:= A; x As (genreal case since we can not always find a rectangle
set Ay x As and then Ay depend on wi ), then

P(A) = N K(wl,Awl)Pl(dwl),

Proof. The measure P given above is specified on the semealgebra RECT and we need to verify
that the conditions of the Combo Extension Theorem are applicibale so that P can be extended to

o(RECT) = By x By. We verify that P is o-additive on RECT. Suppose Ay x Ay = | 2, A x A,
where A™ x A" € RECT for n € N. Then

:DA € By and Ay = |_|A(”)e[5‘
n=1

n=1

Then A; x Ay € RECT. Need to show

<|_| A A ) i (A§”> x Ag”).

n=1

Note that

Lay (@) Ta, (@2) = Tayxcay (W1,02) = 1 e gny q0m (Wi 02)

= E Ly agm (w1, w2) E ]lAw) w1) A<">( w).

=1
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Then

P(A1 X AQ) = N K(wl,AQ)Pl(dwl) = /Q ]lAl (wl)K(wl,Ag)Pl(dwl)

= / ]1A1 (wl)/ ]lAQ(OJQ)K(OJl,dLUQ)Pl(dwl)
Q1 Q2

:/ / 14, (w1)1 4, (w2) K (w1, dws) Py (dwy) (Riemman)
/0,

= Z]l (n)(wl)]l (n)(wg)K(wl,dWQ)Pl(dwl)
o, Jo Ay Ay

2 n=1

-/ / 1o (1)1 g0 (w2) K (w1, o) Py (doon)
Q1 =1 /2 ! 2

=S / 1, (w1) [ / 1o (w2) K (w1, deon) | Py (dwy)
i1/ 0 7

— Z/ I]'A(") (wl)K(wl,A(Q"))Pl (dwl)
=1/

=" Pl x AP, O
n=1

Remark. Special case. Suppose for some probability measure P> on By that K (w1, As) = Pa(Asz).
Then P(A; x Ag) = P1(A1)P2(As). We denote this P by P; x P> and call P product measure.
Define o-fields in €2 x 5 by

BfE = {A1 X g Al € 81},

BY = {0 x Ay : Ay € By}
With respect to the product measure P = P; X P5, we have B#LB# since

P(A1 x QN X Ag) = P(Al X AQ) = Pl(Al)PQ(AQ)
= P1(A1)P2(Q2) P1 (1) P2(A2)
= P(Al X QQ)P(Ql X AQ)

Suppose X; : (€, B;) — (R, B(R)) is random variable on ; for i = 1, 2. Define on € x {25 the new
functions
X (wi,w2) = X1 (wn), XJ (w1,ws) = Xo(wa).

Then for any B; € B(R),
(X7 € Biy = {(wn,w2) : X (wi,0n) € Bi | = {(w1,02) : Xi(w1) € Br} = X7 (B1) x .

Likewise,¥ By € B(R),
{Xf € Bg} = Oy x X5 (By).
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With respect to P = P; x P», the variables Xf& and X;# are independent sinceV By, Bs € B(R), we
have
P(X{ € B1, X} € By) = P (X7 H(B1) x Qo, 0 x X5 1(Ba))
=P ((X{7'(B1)NQ) x (N X5 (B)))
=P (X;'(B1) x X5 '(B2))
=P (X' (B) P (X5 (B2))
=P (X7 (B1) x Q2) P (1 x X5 (B2))
e (Xf € Bl) P (Xf e BQ)

The point of the remark is that independence is automatically built into the model by construc-
tion when using product measure.

5.6 Approximation theorem for measures

By the second extension theorem, the probability defined on RECT has a unique extension to a
probability measure on o(RECT).

Theorem 5.16. Let RECT be the semialgebra on Q1 X Q1 and let P be a probability measure on
o(RECT). Then for any A € o (RECT) and for any € > 0, there exists n € N and mutually disjoint

sets Aq,..., A, ERECT such that
P (AA | | Ak> <e

k=1
Proof. By the definition

P*(A) = inf{z P(E): €€ LI(A)} WA C QO x Q.
EcE

where the covering of A

UA) = {8 C RECT | € is at most countable and A C U E} .
Ecg

Let A € o(RECT), 341, Ay € RECT such that A = | |;°; A;. Then by the defintion of P* and
since P is a measure on o(RECT), P is countable additive: P*(A) = >"°, P(A4;) = P(A). So P
and P* coincide on o(RECT) (x). Also, there exists a covering € = |J;=; B; € RECT such that

P(A)=P*(A) > ) P(B;) — ¢/2,YA € o(RECT).
=1

oo

Since P is bounded, there exists n € N such that Y ., P(B;) < §. For any three sets C, D, E,
we have

CAD=(D~CYU(CND)C(DNC)U(CN(DUE)EC(C~A(DUE))UE.
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Choose C = A, D=J;_, By and E = J;2,,,, Bi, since AN ;2 B; =0,

o0

P(AA_UBZ) <P<AAUB¢> +P<_ U Bi> <P<UBi> fu(A)+§<e

=1 =1 1=n+1 =1

Since RECT is a semialgebra, there exist Bj, ..., B/, ERECT such that
n n i—1 n
| |Bi==Biu| | (B~ B;)=|]B: O
i=1 i=2j=1 i=1

Theorem 5.17. Let A C Q and {A,}52, C Q. Then A, > A<= 14, — 14.

Proof. 1t is clear. O

5.7 Fubini’s theorem

We conitnue to work on the product space (2 X Qa,B; X Bs).
Theorem 5.18. Let Py be a probability measure on (21, B1) and suppose K : Q1 x By — [0,1] is
a transition kernel. Define P on (Q1 X Qa,B1 X Bs) by

P(A1 X Ag) = K(wl,Ag)Pl(dwl),VAl X Ao € By X Bs.
Ay

Assume X 1 (Qq X Q2,81 x Ba) — (R,B(R)) is By x By/B(R)-measurable. Furthermore, suppose
X >0 (X is integrable). Then

Y (w) = i K (w1, dws) X, (w2)

has the properties:

(a) Y is well defined,

(b) Y € By,

(c) Y >0 (Y € LY(P)), and furthermore

/ XdP = Y(wl)Pl(dwl) :/ |: K(Wl,dWQ)le(UJQ) Pl(dwl)
Q1 %00 Q1 |95 Q2

Proof. (a) Since section of random variable (measurable function) is still a random variable, we
have X, (w2) € Ba,Vw; € Q4. Also, K(ws,-) is a probability measure on (€2, B2).
So Y is well-defined.

(b) (1) Assume X =14 for A= A; x Ay € RECT. Then

X(wl,u@) = ]].AleQ(LL)l,WQ) = ]lAl(wl)]lAZ(wg),V(wl,wg) € Q1 x Q.
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Then
Y(wl) = /Q ]]‘Al (wl)]lAQ(wg)K(wl,dwg) = /A ]]‘Al (wl) K(wl,dwg) = ]]‘Al (wl)K(wl,Az).

SoY = ]]‘Al 'K(~,A2) € B;.

(2) Assume X = 14 for A = A; x Ay € ZE where ZE is the algebra of finite unions of disjoint
rectangles. Then there exists n € N and (disjoint) A;; x Az ; € RECT for i =1,...,n such that

A= |i| A x Az

=1

Then since Ay ; x Ay ;’s are disjoint,

n
X(wi,wa) =1 n A, x4, (Wi, w2) = Z Ta, %A, (W1,w2)
=1

= Z ]lAz.,l(wl)]lAz,i(wz),V(thUQ) € Q1 x Q.
=1

Then

n

Y(w) = [ Y La,(wi)la,(ws)K (wr,dws) = La,, (w1)K (w1, dws)
Q

2 =1 i=1 7 Az

n
= Z ]lAl,i (wl)K(wl’ AQJ)'
i=1
SoY = Z?:l ILAl)iK(', A27i) S Bl.
(3) Let X =14 for A € By x Ba. By the theorem 5.16, there exists a sequence of sets
{Al,n X A2,n}n6N C Zf
such that A; , x Az , — A in P-measure. By the theorem 5.1,

Ta x4y, = 1la=X.

Then
X(wi,wo) = lim T4, xa,,(wi,w2) = lm 14, (w1)la,,(W2),V (w1, ws) € Q1 x Qa.
n—oo n—oo
Then
Y(w) = / lim 14, ,(w1)la,, (w2)K(wi,dws) = lim 1a,, (w1)K(wr,dws)
Q2 n—oo n—oo AZ.TL
= lim 1y, (01)K (w1, Agn).

Since limits of Bi-measureable functions are Bi-measurable, Y € B;.
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(4) Since X > 0, there exists a sequence of (positive) simple functions {Z,},cn mapping from
Q1 x Q5 to R such that Z,, T X, where

n2™

k—1
Zn(wl,wz) = Z 27”]1Ak(8) =+ nﬂAn2n+1 (thJQ),
k=1
and
k—1 k
A, = (wl,OJQ)GQlX91:QT<X(W1,(U2)<27 Glegg,

Angn_;,_l = {(wl,wg) € xQy: X(wl,wg) > n} € By x Bs.

Then by MCT Vw; € Qq,

Y((,ul):/Q le(wg)K(wl,dwg):/ lim Z,(w1,ws) K (w1, dws)

Q n—oo
n2"
. . k-1
= lim Zn (w1, w2) K (wy,dws) = lim Z 2TK(w1,Ak) + nK (w1, Apong)-
n—oo Jo, n—00 P
Since
k-1
2TK(7A]C) S Bl,vk = 1, e ,n2n7 and nK(',An2n+1) S B]_,

we have Y € Bj.

Alternative: First show it holds for simple functions, then by MCT, we have the conclusion for
measurable functions.

(c) Define LHS := [, o XdP and RHS := [, Y(wi)P(dwi). We begin by supposing X =

14,xa4, where A1 x Ao € RECT. Then LHS := fAlez dP = P(A; x As) and

RHS = / |: K(wl,dWQ)I].Al (wl)ILA2 (CL)Q):| Pl(dw) = K(wl, AQ)Pl(dwl) = P(Al X AQ)
Q1 LJQs Aq

So LHS = RHS for any A € RECT. Define C := {4 € By x By : LHS = RHSVX = 14}. Note
RECT C C. We claim C is a A-system.

(1) Q1 x Q9 € C since Q1 x Q3 € RECT C C.

(2) If A € C, then for X = 14e, we have LHS = P(A°) = 1 — P(A). Since by definition,
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le K(thg) = P(Ql X Qg) =1.

LHS=1- / K(wl, dWQ)]lAwl (W2)P1 (dwy)
Q1 JQo

= / K(wl,dw2)P1(dw1) — / K(wl,dwg)]lAwl(wz)Pl(dwl)
Ql Qz Q1 Q2

= / K(wl,dw2) (1 — ]lAwl (WQ)) Pl(dwl)
Q JQo

_ / K (wn, dos) 1 e (w2) Py (den)
Q, Ja,

_ / K (w1, dwn) T ae)., (w2) P (dun)
Q, Ja,

= RHS.

So A¢ e C.
(3) If {A,}52, C C are disjoint, then

LHS = / Iy~ 4, dP=P( | |A. ]| =) P4,
Q1 X8 " n=1 n=1
= Z/ K<w17dw2)]l(An)wl (wg)Pl(dwl),
n=1"% /22

since

/ K(wl,dng)Pl(dwl)
(An)wy

/ K(wl,dWQ)]].(An)WI (wg)Pl(dwl) = /
Ql Qz

Q
- / K (w1, (An)oy) Py (de)

= P(A,).

Then by MCT

/ 11|_|3011An,dp:/ / K(whdwg)ZIL(An)wl(wg)Pl(dwl)
legz Ql 92

n=1

//K(w17dw2)]l(|_|:c:1An) (OJQ)Pl(dwl)
0 JQ, ’ “1

:/ / K(wi,dwa)L = a,) (w2)Pi(dwi) (% not for sets)
o J0, met T e

= RHS.

So ]2, A, eC.

35
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Then B x By = o(RECT) C C. We may conclude that for any A € By X By, if X = 14, then LHS
= RHS. Now consider the simple functions of the form

k
X :Zai]].A“ A; € By X Bo,Vi=1,...,k.
=1
Then

k
LHS = Zal]lA dpP = Za/ 14,dP = a;P(A
=1

QlXQQ i=1 QIXQ2

= Zaz/ K oJl,dCUQ)]].(A )"Jl (wg)Pl(dwl)

/ K whdwg Zall(A )Wl (wg)Pl(dwl)
21 JQs =1

/ K whdwg Zal I].A wl(OJQ)Pl(dwl)

/91 QQKwhdng <ZGJA> (w2) Py (dwy)

w1

/ K wdeQ Zal]].A wl,wg)Pl(dwl)
Ql QQ
= RHS.

So LHS = RHS holds for simple functions. For arbitrary X > 0, there exists a sequence of simple
{ X, }nen such that X,, T X. Note LHS(X,,) = RHS(X,,) for n € N. By MCT, LHS(X,,) T LHS(X).
Also, we get for RHS, by applying monotone convergence twice, that

LHS = lim LHS(X,) = lim RHS(X,) = lim K (w1, dwe)(Xn)w, (w2) Py (dw)

n—oo n—oo

n—oo n—oo

Q Qo
/ lim K (w1, dw2)(Xn)w, (w2) Py (dwy) / / lim K(wy,dws)(Xp)w, (w2) P (dwr)
Q1 Q JQo
/ K (wn, dws) X, () Py (duy) = RHS(X 0
Q1 JQs

We can now give the result, called Fubino’s theorem, which justifies interchange of the order of
integration.

Theorem 5.19 (Fubini Theorem). Let P = Py X Py be product measure. If X is By x By measurable
and is either nonnegative or integrable w.r.t. P, then

/lenz rdr= /Q UQ X““(W)Pz‘(d“?)] Pi(dun) = /Q UQ Xy (1) Py (duon) | Pa(duwn).
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Proof. Let K (w1, As) = Py(A3). Then
/ XdP = / K (wr, dws) Xy, (2) Py (dey) = / { X (ws) Pa(dews)| Py (dwn).
Ql XQQ Ql QQ Ql Q2
Similarly, let I~((w2,A1) = P;(A1) be a transition function with K:Q x By — [0,1]. Then

/ Xdp = / R (wa, dur) X, (1) Po(de)
leﬂg QZ Q1

_ /Q [/Q sz(mpl(dwl)} Py(dwn). O

Example 5.20. Let X; > 0,5 = 1,2 be two independent random variables. Then E[X;X5] =
E[X]|E[X,].

Proof. Define the random vector X := (X1, X») as

X:0—R
w — (X1 (w), Xz(w))

gIR+XR+—>R+

(x1,x2) — 1 + T2
Note Po X~ ! = F} x Fy, where F; is the distribution of X;. This follows since

POX_l(A]_ X Az) = P((Xl,Xg) € A x AQ) = P(X1 S Al,XQ < Ag) = P(X]_ S A1>P(X2 S Az)
= Fl(Al)FQ(AQ) = F1 X FQ(Al X AQ)

So Po X~! and F; x Fy agree on RECT and hence on B(RECT) = B; x By. Then by CorollAry
5.6,

g(x)Po X Y(dx) = / gd(Fy X Fy)

Ry xRy

B[X: X,] = Elg(X)] = /

9(X (@) P(dw) = /

R+ xR+

:/ 332/ $1F1(dl‘1)F2(d2) (Fubini) = E[Xl]/ l‘gFQ(dxg) = E[XI]E[XQ}
R+ R+ R+

O

Example 5.21 (Convolution). Suppose X1, Xs are two independent random variables with distri-
butions F}, F5. The distribution function of the random variable X7+ X5 is given by the convolution
F % Fy of the distribution functions. For z € R,

P(X1+ Xo <z)=: Fy % Fy(x) = / Fi(z — u)Fy(du) = / Fy(z — u)Fy(du).
R R
Proof. To see this, proceed as in the previous example. Let X = (X7, X») which has a distribution

Fi x Fy and set
9(21,22) = Ly v)er2utv<a} (T1, T2), (T1,32) € R
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From Corollary 5.6,
P(X1+ X2 <) = Bllgx s xsn] = B [Lumesssoen (X1, X2)] = B(X)] = [ gd(Fy x Py
= /R/RIL{(H’U)GRQZM—DQC} (x1,29)F1(dz1) Fo(dzs) (independence)
= [ [ 1tercaany (@) Filden) Paldes)

= / Fl(.’L' — x2)F2(de'2).
R



Chapter 6

Convergence Concepts

Much of classical probability theory and its applications to statistics concerns limit theorem; that is,
the asymptotic behavior of a sequence of random variables. The sequence could consist of sample
averges, cumulative sums, extremes, sample quantiles, sample correlations, and so on. Whereas
probability theory disscusses limit theorem, the theory of statistics is concerned with large sample
properties of statistics, where a statistics is just a function of the sample.

6.1 Almost Sure Convergence

Proposition 6.1. Let {X,} be iid random variables with common distribution function F(x).
Asume that F(z) < 1, for all z. Set

M, = \”/Xi — 00 a.S..

i=1

Proof. Since F(j) < 1, we have Y > P(M, < j) = Y .2, F"(j) < co. By the Borel-Cantelli
Lemma, P (lim,, o sup{M,, < j}) = 0. Let N; = lim,,_, sup{M,, < j} for j € N. Then P(N;) =
0 for j € N. Note N = lim,, . inf{M,, > j}. So for w € N¥, we get M, (w) > j for all large n.
Let N = U;i1 Nj, so P(N) < Zj‘;l P(N;) = 0. Note

Ne=(Nf = () lim inf{M, > j},
i=1 =1 n— oo
and P(N¢) = 1. If w € N°¢, we have the property that for any j, M, (w) > j for all sufficiently large
n. Thus, P(M,, — o) = 1. O
6.2 Convergence in Probability

Theorem 6.2 (Convergence a.s implies convergence i.p.). Suppose that {X,,n > 1, X} are r.v.’s
on a probability space (Q, B, P). If X, — X, a.s., then X,, & X.

39
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Proof. If X,, — X a.s., then for any € > 0

0=P (X, ~ X| > eio)=P(lim sup{|X, - X| > ¢}) = P (ﬂ U{xn - X1 > e})

n=1k=n

(oo}
= lim P (U {1X, — X| > e}> > lim P(|X, — X|>¢). O

n—oo
k=n

Remark. The definition of convergence i.p. and convergence a.s. can be readily extended to
random elements of metric spaces.

6.3 Statistical Terminology

In statistical estimation theory, almost sure and in probability convergence have analogues as strong
or weak consistency. Given a family of probability models ((£2, B, Py)). Suppose the statistician
ges to observe random variables X7 ---, X, defined on  and based on these observations must
decide which is the correct model; that is, which is the correct value of #. Statistical estimation
means: select the correct model. For example, suppose Q = R, B = B(R*>). Let w = (1,22, )
and define X,,(w) = x,,Vn € Z*. For each § € R, let Py be product measure on R*® which
makes {X,,, n > 1} iid with common N (6,1) distribution. Based on observing X;i,..., X, one
estimate @ with an appropriate function of the observations 6,, = én(Xl, v Xn). én(Xl, X))
is called a statistic and is also an estimator. When one actually does the experiment and observes,
X1 =z1,..., X, = z,, then én(xh ..., &y) is called the estimate. So the estimator is a random
element while the estimate is a number or maybe a vector if 6 is multidimentional. In this example,
the usual choice of estimator is 6, = >oi, Xi/n. The estimator 0,, is weakly consistent if for all

0 € 0O,
Pg(

that is, 0, 8 9. This indicates that no matter what the true parameter is or to put it another way,
no matter what the true (but unknown) state of nature is, 6 does a good job estimating the true
parameter. 6, is strongly consistent if for all § € ©, 0,, — 0, Py-a.s..

én—9’>e) — 0,



Chapter 7

Laws of Large Numbers and Sums
of Independent Random Variables

7.1 Truncation and Equivalence

We will see that is is easier to deal with random variables that are uniformly bounded or that have
moments. Many technique rely on these desirable properties being present. If these properties are
not present, a technique called truncation can induce their presence but then a comparison must be
made between the original random variables and the truncated ones. For instance, we often want
to compare {X;} with {X i1y Xj|<n}}~ The following is a useful concept, expecially for problems
needing almost sure convergence.

Definition 7.1. Two sequences {X,,} and {X},} are tail equivalent if 3~ | P(X,, # X],) < c0.

When two sequences are tail equivalent, their sums behave asympotically the same as shown
next.

Proposition 7.2 (Equivalence). Suppose the two sequences {X,} and {X]} are tail equivalent.
Then

(a) Y00 (X, — X]) converges a.s.

(b) Two two series >~ X,, and ) - | X/ converges a.s. together or diverge a.s. together; that

n=1
. oo . : oo /!
is Y7, X, converges a.s. if and only if )~ | X, converges a.s..

(c) If there exists a sequence {ay} such that a, 1 co and if there exists a random variable X such
that L Z”’lfl X] i) X, then also 1 Z"_lil X/ a.s. X
n = a, £vj=1"]

Proof. (a) By the Borel-Cantelll Lemma, since they are tail equivalent, lim,,_,o sup {X,, # X, } =
0, or equivalently P (lim,, o inf {X,, = X }) = 1. So for w € lim,,_,o inf{X,, = X, }, we have that
Xn(w) = X/ (w) from some index onwars, say for n > N(w).

O
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7.2 A General Weak Law of Large Numbers

Theorem 7.3 (General weak law of large numbers). Suppose {X,,,n > 1} are independent random
variables and define S, = 3°7_) X;. If

(a) 3251 P(1X;] >n) — 0,
(b) 72 25 EXFLyx,1<ny = 0,
then if we define a, =377 | F (X;1q1x,1<n}), we get
SnZn P g (7.1)
n

One of the virtues of this result is that no assumptions about moments need to be made. Also,
although this result is presented as conditions which are sufficient for (7.1).

7.3 Almost Sure Convergence of Sums of Independent Ran-
dom Variables

Reminder: If {X,,} is a monotone sequence of random variables, then X, P x implies X,, =25 X.

Theorem 7.4 (Levy’s theorem). If {X,,,n > 1} is an independent sequence of random variables,
then Y >° X,, converges in probability if and only if . X,, converges a.s..

Theorem 7.5 (Kolmogorov Convergence Criterion). Suppose {X,, n > 1} is a sequence of in-
dependent random wariables. If 3772, Var(X;) < oo, then > 52 (X; — E(X;)) converges almost
surely.

7.4 Strong Laws of Large Numbers

Lemma 7.6 (Kronecker’s lemma). Suppose we have two sequence {zy} and {a,} such that z; € R

and 0 < a, Too. If Y72, 2= converges, then lim,, e ap,t S op_ 2 =0.

7.4.1 Record counts
Suppose {X,,, n > 1} is an iid sequence with common continuous distribution function F. Define

N

N
unN = § ]l{X7 is a record} — E ]lj>
Jj=1

j=1
where 1; = Lix; is a record}- SO un is the number of records in the first IV observations.

Proposition 7.7 (Logarithmic growth rate). The number of records in an iid sequence grows

logarithmically and we have the almost sure limit
lim A
n—oo log N
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7.4.2 Explosions in the Pure Birth Process
Let {X;, j > 1} be nonnegative independent random variables and suppose
P(X,>z)=e % 1>0,

where )\, € RT for n € N are called the birth parameters. Define the birth time process S, =
> i, X; and the population size process {X (t), ¢ > 0} of the pure birth process by

1, ifo<t<S,
2, if 57 <t <8y,
X(t)=19 3, ifS,<t<Ss,

Next define the event explosion by

{explosion} = [Z Xn < oo} = [X (t) = oo for some finite ¢].

n=1
Proposition 7.8. For the probability of explosion, we have

L, if Y2 At <o,

Plexplosion] = { 0 SR AT =0
n= n N

Recall that we know that P(> 2 | X,, < c0) = 0 or 1 by Kologorov Zero-One Law.

7.5 The Strong Law of Large Numbers for IID Sequences

Theorem 7.9 (Kolmogorov’ SLLN). Let {X,,, n > 1} be an iid sequence of random variables and
set S, = > i, X;. There exists c € R such that X,, = S, /n == ¢ if and only if E (|X1]) < oo in
which case ¢ = E(X7).

Corollary 7.10. If {X,,} is iid, then
E (| X1]) < oo implies X,, 22 = E(X,),

and
n

1 <2 as.
EX? < oo implies S, := — g (X; — X)? 225 6% = Var(X)).
n
i=1
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Chapter 8

Convergence in Distribution

8.1 Basic Definitions

Definition 8.1. F is a distribution function if

(a) 0K F(x) < 1

(b) F is non-decreasing;

(c) F(z%) = F(z) for € R, where F(z%) = limeso,ej0 F(x + €).
Also, remember the notation

F(o0) := lim F(y),

yToo

F(—o0):= lim F(y).

yl—oo

F is a probability distribution function if F(—oc0) =0 and F(+o00) = 1. In this case, F is proper or
non-defective.

Lemma 8.2. A distribution function F'(z) is determined on a dense set. Let D be dense in R.
Suppose Fp(-) is defined on D and satisfies the following:

(a) Fp(-) is non-decreasing on D.

(b) 0 < Fp(z) < 1forz e D.

(¢) limgep z—too Fp(z) =1, limyep 4——oo Fp(z) = 0.
Define for z € R,

F(z):= inf Fp(y)= lim Fp(y).
(z) ot p(y) Jim p(y)

Then F' is a right continuous probability distribution function. Thus, any two right continuous df’s
agreeing on a dense set will agree everywhere.

45
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Proof. Fix z € R. Given ¢ > 0, there exists ' € D,2’ > z such that F(z) + ¢ > Fp(z'). By
the definition of F for any y € (x,2’), Fp(z') > F(y). Then F(x) + ¢ > F(y) for any y € (z, ).
Now F is monotone (F(z") = lim,|, F(y) exists), so let y | = to get F(x) + € > F(z"). This is
true for all small € > 0, so let € | 0 and we get F(x) > F(a). Since monotonicity of F implies
F(zT) > F(z), we get F(x) = F(a™) as desired. O

Remark. If g : R — R have the property that for any z € R, g(z*) = lim,, g(y) exists. Set
h(x) = g(z™). Then h is right continuous.

Definition 8.3. Weak convergence. The sequence {F,} converges weakly to F, written F,, = F,
it F,(x) — F(z) for all z € C(F).

Remark. In the definition of weak convergence, F' may not be proper.

Proposition 8.4. C(F)¢ is a at most countable set.

Proof.
o0 1 o0
CF)={zeR,F(z)—F(z7)>0}= U {x ER,F(z)—F(z7) > n} = U B,.
n=1 n=1
Claim. B, has at most n distinct elements. Suppose not, then we can find z1,29,...,2,41 € By,

and x1 < 2Ty < Zpq1. Then F(z,,,) > F(z,) and

_ _ 1 2
F(zpy1) = F(rpg) — F(xn+1) + F($n+1) > n + F(z,) > n + F(zp-1)

n+1
n

>~ Flay) +F(ay) > 1,

which is a contradiction. O

Example 8.5. Let N be an N(0,1) random variable so that the distribution function is symmetric.

Define for n > 1, X,, = (—1)"N. Then X, < N, so automatically X,, = N. But of course {X,}
neither converges almost surely nor in probability.

Remark. Weak limits are unique. If F,, — F, and also F,, — G, then F = G. There is a simple
reason for this. The set (C(F))°U(C(G))¢ is countable so INT = C(F)NC(G) = R~ a countable set
and hence is dense. For z € INT, F,(z) — F(x), F,(z) — G(z). So F(z) = G(z) for z € INT,
and hence by Lemma 8.2, we have F' = G.

Example 8.6. Suppose F,, puts mass % at points {%, %, ey %} If Fx) =2, 0 <z < 1is the
uniform distribution on [0, 1], then for = € (0,1), F,,(z) = Ln—fJ — x = F(z). Thus we have weak
convergence F,, = F. However if Q is the set of rationals in [0,1], F,,(Q) = 1, F(Q) = 0. So
F.(A) /~ F(A) for A € B(R).

8.2 Scheffe’ lemma

Lemma 8.7 (Scheffe’s lemma). Suppose F' and {F, },>1 are probability distributions with densities
{f, fn n>1}. Then

sup [F(B) = F(B)| = 5 [1u(o) ~ f(@)lda,

BeB(R)
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If fx) — f(x) almost everywhere, then [|f, () — f(z)|dz — 0, and thus F,, — F in total variation
(and hence weakly).

8.2.1 Scheffe’s lemma and Order Statistics
Proposition 8.8. Suppose {U,},>1 are iid U(0,1) random variables so that

PUj<z)=z, 0<z<1,VjeN

and suppose Uy n) < Ugn) < -++ < Uy pn) are the order statistics. Assume k = k(n) is a function
of n satisfying k(n) — oo and k/n — 0 asn — oo. Let

Utkm) —
S-hn

Then the density of &, converges to a standard normal density and hence by Scheffe’ lemma

P&, € B) — /\/7“/2@

Proof. For 0 < x < 1, P(Uj,n) < ) is the binomial probability of at least k successes in n trials
when the success probability is z. So

PUgmy < ) = zn: (j) 2i(1 — )",

i=k

gn:

sup — 0.

BEeB(R)

Dif and only iferentiating, we get the density f(x n)(x) of Uy ny to be

i=k i=k

3 1 ( ) (i+ Dai(l—z)" ! — n}_:k (:‘) zi(n —i)(1 — z)""i

n—1 n—1

" (1= n—i—1 _ " (= n—i—1
1z!(n—zfl).gc( z) Zi!(nfifl)!x( 2

i=

- k1 o n—k
BRI A

Since % (1 — E) Lo % as n — 00, by convergence of types theorem discussed below assures us

n n

we can replace the square root in the expression for &, by vk /n and by transformation theorem,

the pdf of &, is

gn(@) = —fa| —2+—
n n n
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By Stirling’s formula, as n — oo, (£ — 0 as n — 00.)

n! Vn

~

(k—Dl(n—k)! m(ﬁ)k—lﬂ (1_E)n—k'

n n

So as n — oo,

It suffices to prove that

- (1- (n- zWE)H’

>
N——

(5

or equivalently,

(k—l)log(1+x>+(n—k)log(1—x) _)_%2.

Observe that, for |[t| <1, —log(1 —t) =>""7, %, and therefore
5(t) :=|—1lo (17t)7(t+ﬁ) <i|t\"— [t <20t if \t|<1
i e /| S & Ty ST 2’
Then
x x
k-1 log<1+)+ n—k log<1>
(k—1) 7k (n—Fk) YN
r  a? x x?
—h-D(Z Tk + +0(1
-0 (G- 5) -9 (e s ) o0
2 2 2
S T —
2 Vk 2k 2n—k)/k
T x? 1 1
—‘@‘2( k‘n/k_l)”“)
&
2
since

0(1) = (k — 1)6 (j%) +(n— k) ((n—Z)/\/E) 0,

and k(n) — oo and £ — 0 as n — cc.
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8.3 Appetizer

Definition 8.9. Suppose Xi,..., X, are random variables. Set M,, = max{Xy,..., X,}.
Example 8.10. Let Y; be the low temperature in year 7. Set X; = —Y; so that

—M, = —max{Xy,..., X, } = min{—-X;,...,—X,} = min{Yy,..., Y, }
is the lowest temperature in year 1,...,n.

Example 8.11. Suppose Xi,..., X, are iid with d.f. F. Since M, < z if and only if X; <
z,...,X, <z,

Definition 8.12. Let X, = inf{x : F(z) = 1} with inf{0} = co.
Example 8.13. Uniform|0, 1].

0, x <0
Flz)=< z, 0<z<1
1, r=1

Then X, = 1.

Example 8.14. exp(A).
0, r <0

F(x){ l—e >0
Then X, = co.

Corollary 8.15. When z < X,, we have F(z) < 1 and then P(M,, < z) = (F(z))" — 0. If
x > X,, then F(z) =1 and P(M,, < z) = [F(z)]" =1 — 1. Thus, M, 4, M, where M is
degenerate and

0, <X,

1, z>X,

Fp(x) :{

Remark. If X, = oo, then Fy;(z) =0 for « € R since F(z) < oo for z € R.

X1, Xa, -+ are iid, B(X1) = u, Var(X1) = 0.
Theorem 8.16. Central Limit Theorem.

First, make a single variable center 0 and variance 1,
—
Then make the sum center 0 and variance 1,

. [ n X’L - n — On
> X Lz M S = 4 g1,
—~ oyn o\/n Gn
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p (Sn — by,
an

Can we find constants and b,, so that

Then

N

x) = P(Sn < anz +by) = Fs,, (anz + bp) — N(0,1).

P (M < x) = P(M, < apz+b,) — G(z)?

Qnp
where G is not degenerate.

Example 8.17. X;, X5, -+ are iid and X; ~exp(l). Consider M, = max(Xi,...,X,). Let
X0y =0, then for all i € [n], X(;) — X(;_1) ~ exp(n + 1 — i), then

M, = Xaq)+ (X — X))+ -+ (Xm) — Xn-1))-

So
E[M,] = Z o logn = b,,.

i:1n+l_1

Set a, = 1. For z € R, as soon as x + logn > 0,

P(M,, —logn < z) = P(M,, < z+logn) = (1 - ef(xHog”)) = <1 - ne“") —e ° .

Thus, M,, — b, 4, G, where G(z) = e~ " for 2 > 0. Choose b, so that 1 —e~ = F(b,) =1 —
where b,, is the last n-th tile of d.f F'. Then we get b,, = logn as before.

1
n’

Example 8.18. Pareto

ro={, % 15
E[X]/loo(lF(x))dx/looiﬂoo.

X has a heavey tail. Take b, = 0 and choose a,, so that 1 — ai =F(a,)=1- % Then we get
an, =n. For x > 0, when a,z > 1,

d
Thus, % — @, where

8.4 Left Continuous Inverse

Proposition 8.19. Any c.d.f. F': A — R is right continuous, where A C R.
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Proof. Fix x € R. Assume {z,} C R and x, | z. Then {X < 21} D {X < 22} D ---, and
N {X < x,} = {X < z}. By the continuity of probability measure, we have P(X < z) =
lim,, o P(X < 2,). Then F(z) = lim,_ F(z,). By the equavalent definition of continuity, we
have F' is right continuous. O

Definition 8.20. Let H be a nondecreasing function defined on R. Define the the continuous
inverse

H™(y) =inf{s: H(s) > y}.

Remark. Given H nondecreasing, consider the graphs.
If H is strictly increasing, then H* (y) is strictly increasing.
If H is flat, then there is a jump in H (y).
If there is a jump in H, then H (y) is flat.
Thus, H*< is also nondecreasing.
Proposition 8.21. Let A(y) = {x: H(z) > y}, then A(y) = (H" (y),00), or A(y) = (H (y),00).

Proof. Suppose s € A(y), then s > H (y). So A(y) C [H(y),00). Since H (y) = inf A(y), we
have for any § > 0, there exists s € R such that H(y) < s < H*(y) + 0. (Otherwise, for any
s € R, H (y) > s or H (y) + 0 < s, a contradiction.) Thus, [H"(y) + d,00) C [H* (y), o).
Since § > 0 is arbitrary, (H* (y),00) € A(y). Hence, s > H (y). So A(y) = (H" (y),0), or
Aly) = [H™(y), 00). O

Proposition 8.22. Assume H is right continuous. Then
(a) A(y) is closed, and then A(y) = [H (y), 00).

(b) H-

(¢) H(y) <t if and only if y < H(t).
d) H-

(

Proof. (a) If s, € A(y) and s, | s, then by right continuity y < H(sy,) | H(s). So H(s) >
then s € A(y). If s,, € A(y) and s, T s, then since H is nondecreasing, y < H(s,) T H(s™) <
So y < H(s) and then s € A(y).

(b) By (a).
(c) Since A(y) = [H (y),00), H  (y) < t if and only if t € A(y) if and only if y < H ().
(d) Similar to (c). O

(y) € A(y) and then H(H(y)) > y.

(y) >t if and only if y > H(t).

y and

Proposition 8.23. H*“ is left continuous.

Proof. Tt equivalent to show if {y,} C R and vy, 1 y € R, then H (y,) T H (y). Since H" is
nondecreasing, it sufficies to show for any ¢t € R for which

yn 1y and¥n € N> H(y,) < t, then H(y) < t.

(Suppose not, then there exists € > 0 such that H (y) = t + €, then |[H (y,) — H (y)| > ¢, a
contradiction.) Then for n € N, ¢t € {x : H(x) > y,}. Since y, Ty, t € {s: H(s) > y}. Thus,
H(y) <t O
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Proposition 8.24. Let X have a df. F and U ~ Uni(0,1), then F<(U) also has a df. F.
Proof. P(F-(U) < z)=P(U < F(x)) = F(z). O

Remark. Let H : R — (0,1], then H* : (0,1] — R. Let £ég(A) = {z € (0,1) : H (z) € A} for
ACR. If A€ B(R), then £r(A) € B((0,1]).

Example 8.25. Let X be a ramdon variable with cdf F(z) = 1 —e * 2z > 0. Set R(z) =
—log(1 — F(z)). Then R (X) has has cdf F.

Proof.
P(RT(X)<z)=P(X <R(z)) =1—eB@ =1 _¢loe(=F@) —1 _ (1 - P(z)) = F(z). O

Let H, Hy, Hy,- -+ be nondecreasing and right continuous. Let C(H) be continuity points of H.
We say H,, — H if for any t € C(H), H,(t) — H(t).

Theorem 8.26. H,, — H implies H, — H".

Proof. Let t e« C(H7). It is equivalent to show A : lim, . inf H (t) > H(t) and B :
lim,, oo sup H,; (t) < H(t). Let € > 0. Since the discontinuous point is countable, C(H) = H
Then there exists z € C(H) such that H(t) — e < z < H(t). By Proposition 8.22(4), H(z) <
Since z € C(H), H,(z) — H(z). Then there exists ng € N> such that for any n > ng, H,(z) <
(Let H(z) =t—¢ for some ¢ > 0, then there exists some N such that H,,(z) < H(z) <tasn > N.)
By Proposition 8.22(4), for any n > ng, * < H; (t). So inf,,>,, H; (t) > « > H*(t) —e. Thus,
lim,, o0 inf H (t) > inf,, >, Hy (£) > H(t) —e. Since € is arbitrary, A follows. Let € > 0. Select
t" >t and choose y € {x : H-(t') < < H(t/) + e} NC(H). Since y > H(t'), H(y) >t > 1.
Since y € H, H,(y) — H(y), and there exists ng € N>° such that for any n > ng, H,(y) > t. Then
y € A(t) ={s: Hy(s) 2t} = [H; (t),00) for any n > ng. So for any n > ng, y = H, (t). Therefore,
for any n > ng, H=(t') + € >y > H, (t). So sup,,>,,, H,, (t) < H=(t') + . Then

n

t.
t.

lim sup H;, (t) < sup H; (t) < H-(t') +e.

n—oo n>no
Since € is arbitrary, lim, o, sup H;; (t) < H* (). Since t € C(H"), let ¢ | ¢,

lim sup H, (t) < H(¢). O

n— oo

8.5 The Baby Skorohod Theorem

a

Proposition 8.27. Suppose X, {X,,},>; are random variables. If X,, =" X, then X,, = X.

Proof. Consider the same probability space (©,.4, P). Suppose X,, =25 X and let F and {F,},>1
be the distribution functions of X and {X,},>1, respectively. Then there exists N € A such that
P(N) =0, and for w € N¢, lim,,_,o0 Xp(w) = X(w). Fix x € R.

Kok ok ok ok ok ok ok ok ok ok K K K K K K K ok ok CTUCTAL K K K K K K K R R ok ok ok ok ok ok ok ok ok K K

Claim I. for any h > 0 we have {X < z — h} N N° C lim,,_ o inf{X,, < 2z} N N°. Assuming
{X<z—-h}NN £ fixwe{X <x—h}NN Since w € {X <z —h}, X(w) <z —h. Since
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w € N¢ X, (w) = X(w). Then IN € Z>° such thatVn > N, |X,(w) — X (w)| < &. Then for any
n>=N,
sk ok ok ok ok ok ok ok ok TPTCK % ok R ok ok Kk %k

Xn(w) < X(w) + [ Xp(w) — X (w)| <z — g <z

Therefore, X,,(w) < « for all but finitly many n. Thus, w € lim,_, inf{X,, < z}. Also w € N°.
Hence w € lim,,—. o inf{X,, <z} N N°.

Claim IL lim,, oo sup{X, < 2z} NN C {X < z}. Assuming lim, . sup{X, < z} # 0, fix
w € lim;, oo sup{X,, < z}NN€. Since w € lim,,_, o sup{X, < z}, X, (w) < z for infinitely many n.
We claim X (w) < . Suppose not, then Je > 0 such that X(w) =z +e€. Then |X,(w) — X(w)| > €
for infinitely many n. Sincew € N¢, X,,(w) — X (w). Then for the same ¢, | X,,(w)—X (w)| < € for all
but finitly many n, a contradiction. Hence X (w) < z. Thus, lim,_,o sup{X,, < 2}NN° C {X < z}.
As a result,

{X <z—h}NN°C lim inf{X,, <z} NN°C lim sup{X, <z} NN C{X <z}
Taking probabilites,

F(x—h)=P(X <z—h)=PX <z—hNN° < P(lim inf{X, <z}) < lim inf P({X,, < z})

n—oo n—oo

< lim supP{X, <z}) <P ( lim sup{X, < x}) < P(X < a).

n—oo

Since z € C(F), let h | 0 to get F(z) < lim, o inf F},(x) < lim, o0 sup Fp,(z) < F(z). Thus,
lim,, o Fp(z) = F(x). O

Theorem 8.28 (Baby Skorohod Theorem). Suppose X,, = X. Then one can take the prob. space
([0,1], B([0,1]),m), where m is Lebesque measure. Construct r.v’s X,, and X such that

(a)
d

X<x X,%x,VneNO

(b) .
X, — X, with prob 1 (a.s.).
Proof. Define
U:00,1] - R
W w.

For0<z <1, m{w:U(w) <z}) =m([0,2]) = 2. Thus, U has a uniform distribution. Set

X = F(U), and X,, = - (U),Vn € N°,
By the Proposition 8.24,
X, and X, £ X,,,Vn € N>°.

By the Theorem 8.26, _ ~ -
X, (w) = X(w),YVw € C(X).
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The only thing left to do is to show m(C’()Z')) =1. If wy,ws € [0,1] and wy < wa,

X(wi) = F(U(w)) = F~(w1) < F~(wp) = F~(U(w2)) = X (wn).

So X is nondecreasing on [0, 1]. Thus, X has at most a countable number of discontinuity. Hence

m(C(X)) = 1. O

Theorem 8.29 (Continuous Mapping Theorem). Suppose X, = X. Let f : R — R satisfy
P (X € Disc(f)) = 0. Then f(X,) = f(X), and if h is bounded, dominated convergence implies
E[f(Xn)] — E[f(X)], since assuming |h| < M, we have E[M] = M, implying M is integrable.

Proof. We take the probalility space ([0, 1], B([0,1],m)), where m is Lebesgue measure. By the

Baby~Skorthd Theorem, we can construct )W(n,Vn € Z>0 and X such that )?n 4 X, ¥n € 7”9,
and X,, == X. If X(w) € C(f) = (Disc(f))¢, then f(Xn(w)) — f(X(w)).

m(w € [0,1] : f(X,(w) — f(X(w))) =m(w e [0,1] : X(w) € (Disc(f))°)
P ({X € Disc(f)}°) = 1.

F(X0) L £(X,) and f(X) 2 F(X).

d

L (X)) = 1(X) £ F(X). m

f(Xn)

8.6 The Delta Method

The delta method allows us to take a basic convergence, for instance to a limiting normal distri-
bution, and apply smmoth functions and conclude that the functions are asymptotically normal
as well. In statistical estimation we try to estimate a parameter  from a parameter set © based
on a random sample size n with a statistic T,, = T,,(X1,...,X,,). This means we have a family
of probability models {(Q2, B, Py),0 € O}, and we are trying to choose the correct model. The

estimator T), is consistent if T, Lo, 9 for every 6, meaning T,, converges to 6 in probability Py for
any 6 € ©. The estimator T, is consistent and asymptotically normal, if for any 6 € ©,

lim Pylo, (T, —0) < z] = N(0,1,z).

n—oo

From CLT, we get
Sn —np

o = N(0,1).

Equivalently,




8.6. THE DELTA METHOD %)

So X is consistent and an asymptotically normal estimator of x. The delta method asserts that if
g(x) has a non-zero derivative ¢'(u) at p, then

ﬁ (g(X)—g(u)> = N(0,1),

og'(u)
and so g (X) is also consistent and asymptotically normal for g(p).

Remark. The proof does not depende on the limiting r.v. being N(0,1) and would work equally
well if N(0,1) were replaced by any random variable Y.

Proof. By the Baby Skorohod Theorem, there exist random variable Z,, for any n € N and N on
the probability space ([0, 1], B([0,1]),m) such that

Zni\/ﬁ(_“) and N 2 N,
o
and Z,, >% N. Then)?iu—l—agn/\/ﬁ. Then

f<g<X>g<u>> o (ol o Ziv) —o)

og'(u) og'(u)

since Zy, /v/n — 0 almost surely. This completes the proof. O

Theorem 8.30 (Portmanteau Theorem). Let {F),},>0 be a family of proper distributions. The
following are equivalent.

(ii) For all f : R — R which are bounded and continuous, [ fdF, — [ fdFy. Equivalently, if X,
is a r.v. with d.f. F,, for any n € N, then for f bounded and continuous, E[f(X,)] — E[f(Xo)].

(ii) If A € B(R) satisfies Fo(6A) = 0, then F,(A) — Fy(A), where A = A\ interior(A), and
A is the intersection of all closed sets containing A and interior(A) is the union of all open sets
contained in A.

Proof. (i)=>(ii) Suppose f : R — R is bounded and ocntinuous on R. Since X,, = X, the
continuous mapping theorem implies f(X,) — f(Xo). Since f is bounded on R, by DCT,

lim E[f(Xy)] = E[f(Xo)].

n—oo

(i))=(i) Let a,b € C(Fp), it suffices to show F),(a,b] — Fy(a,b]. Defined the bounded continu-
ous function g whose graph is the trapezoid of height 1 obtained by takng a rectangle of height 1
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with base [a, b] and extending the base sysmmetrically to [ — k=%, b+ k~1]. Then g | Ljq. For
all k € N,

Fn(aab]:/]]-(a7b]ang/gk‘anH/gdeO-
R R R

Since |gr| < 1 and gg | Liay), by DCT, [, gxdFo | Fo([a,b]) = Fy((a,b]), where the last equality
follows since a € C(Fp). We conclude that lim,, . sup Fy,(a,b] < Fy(a,b]. Next, define new
functions hy whose graphs are trapezoids of height 1 obtained by taking a rectangle of height 1
with base [a + k™', b — k'] and stretching the base symmetically to obtain [a,b]. Then hy T L4
and for any k € N,

Fo(a,b] > / hidF, — / hidFp,
R R

By MCT, since a € C(Fy), [, hedFo T Fo([a,b]) = Fo((a,b]) so that lim, . inf F},(a,b] < Fy(a,b].
O

Remark. (ii) allows for the easy generalziation of the notion of weak convergence of random
elements {&,,n > 0} whose range S is a subset of the metric space R2. The definition is &, = &
if and only if E(f(&,)) — E(f(&)), for all test functions f : S — R which are bounded and
continuous. (The notion of continuity is natural since S is a metric space.)

Example 8.31. Suppose F,, has atoms at i/n, 1 < i < n of size 1/n. Let Fy be the uniform
distribution on [0, 1]. Then F,, = Fy. It suffices to show integrals of arbitrary bounded continuous
test functions converge. Let f be real valued, bounded and continuous with domain [0, 1]. Observe
that

n 1

/de = g f(z/n)l = Riemman approximating sumﬂ/ f@)dx (n — 00) = /deO,
N n 0
i=1

where Fj is the uniform distribution on [0, 1].

It is possible to restrict the test function in the portmanteau theorem to be uniformly continuous
and not just continuous.

Corollary 8.32. TFAE:
(i) F,, = Fo.

(ii) If X,, is a random variable with distribution F;, for any n € N, then for f bounded and uniformly
continuous Ef(X,,) — Ef(Xo).

Proof. The the proof of (ii)==(i) in the portmanteau theorem, the trapezoid functions are each
bounded, continuous, vanish off a compact set, and are hence uniformly continuous. This observa-
tion suffices. O

8.7 More Relations Among Modes of Convergence
Proposition 8.33. Let {X, X,,, n > 1} be random variables on the probability space (2, B, P)

(a) If X, =25 X then X,, & X.
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(b) If X, & X, then X,, = X.

Proof. We have shown (a). To verify (b), suppose X,, & X and f is bounded and continuous

function. Then f(X,) £ f(X). By DCT, E[f(X,)] — E(f(X)). So X,, = X, by the portmanteau
theorem. O

Proposition 8.34. If X,, = a € R, then X,, & a.

Proof. Let F,, be the d.f.’s of X, for any n € N. Fix € > 0,

n—oo n—0oo (
=1— lim Pla—e< X, <a+e)
=1+ lim P(X, <a—¢)— lim P(X, <a+e¢)
<14 lim P(X, <a—¢)— lim P(X,, <a+e)

n—oo n—oo

=14 lim F,(a—¢€)— lim F,(a+e¢)
=1+F(a—¢)— F(a+e)
=1+0-1

since the constant function a is continuous on R and

1, x>a
F(I){ 0, z<a.

Alternative: Fix ¢ > 0,

lim P(|X, —a|>¢) = lim P(X,, >a+¢)+ lim P(X, <a—c¢)
n—oo

n— o0 n—oo

= lim P(X, >a+¢)+ lim P(X, <a—c¢)

=1—F(a+e)+ F(a—¢)
—1-1+40
=0. O

Theorem 8.35 (Slutsky’s Theorem). Suppose X, {X,} and {Y,} are all real-valued r.v’s s.t.
X, =X asn — oo, and Y, 250 asn — 0. Then X,, +Y, = X.

Proof. Fix a bounded and uniformly continuous f: R — R. Fix ¢ > 0, define

we(f) = sup |f(x)— f(y)l

|z—y|<e



o8 CHAPTER 8. CONVERGENCE IN DISTRIBUTION

Then since X, = X,

Jim [E[f (X5 + Ya)] - E[f(Xa)]|
< lim [B[f (X + Yo)] = B[f (X0)]] + lim [E[f(X,)] — E[f(X)]]
= lim E(|f(Xn +Y5) = f(Xo)[L([Ya] <€) + lim E(|f(Xn +Yn) = f(X)[1(|Yn] > €))
< lim E(we(f)) +2M lim P ([Yn] > ¢€)
=w(f) > 0aselO0.
Thus, by portmanteau theorem, X, + Y, = X. 0

Remark. Since the slutsky’s theorem follows from the portmanteau theorem, it allows for the easy
generalziation of the notion of weak convergence of random vector {(X,,Y,),n > 0} whose range
S is a metric space.

Lemma 8.36. If X,, 2 X and Y,, & Y, then (X,,,Y;) &— (X,Y).

Proof. Since z,y, z,w € (X, d),

N|=

d((:E,y), (z7w)) = (d2($72) + d2(y7w)) = (d2(m,z) + dQ(yaw))% < d(x,z) + d(y7w)‘

So

P(d2 ((Xn,yn)v(X7Y)) 26) (|Xn_X|+‘Yn_Y| 26)

<P
<P(IX0 = X| > ¢/2) + P([Ya — Y| > ¢/2)
— 0.

Lemma 8.37. If X,, = X and Y,, = ¢, where ¢ € R is a constant, then (X,,,Y,) = (X, ¢).

Proof. First we will show that (X,,,c) = (X, ¢). By ther portmanteau theoerm, it is equivalent to
show for any bounded and continuous function f: R x R — R, we have E [f(X,,¢)] = E[f(X,¢)].
So let f be such arbitrary function. Now consider the function of a single variable g(z) = f(z,c),
which is also bounded and continuous. By the portmanteau theorem, since X,, = X, E'[¢(X,)] —
Elg(X)]. However the above expression is equivalent to E [f(X,,, ¢)] — E[f(X,c)]. Hence (X,,,¢) =

(X, ¢). Since Y,, = ¢, by Proposition 8.34, Y, 2, ¢. Similar to Lemma 8.36,

P(d2 ((XmYn)a (ch)) P 6) < P(|Xn - Xn| + ‘Yn - C| = 6)

— P (Y- >0
— 0.
Thus, (X,,,Y,) & (Xn,c). By the slutsky’s theorem, (X,,Y,) = (X, c). O

Corollary 8.38. If X,, = X, Y,, = ¢, where ¢ € R is a constant, then X,, + Y, = X + ¢
XY, = cX; X,,/Y, = X/c¢, provided that c is invertible.

Proof. By Lemma 8.37, we have (X,,Y,) = (X,,c¢). Since +,-,/ : R x R — R are continuous
functions on the metric space R?, by the portmanteau theorem, we have the above conclusion. [
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8.8 Convergence of types theorem

Definition 8.39. Two random variables X and Y are said to be of the same type if there exists
a > 0 and b € R such that
Y—ba

a

X.

In terms of dfs, this is written as
Fx(z) = Fy(axz +b).

Example 8.40. Suppose X ~ N(u1,02) and Y ~ N(ug,02). Since X “1 4 Yoy

g2 ?
d o o X — — o1 /o
Y——QX (2/“_'”2): (1 1/ 2M2)
o1 01/02

Then X and Y are of the same type.
Theorem 8.41. Let U and V be df.’s, neither of which are degenerate.
(a) Let {F,,}n>1 be dfs and an, an > 0, by, By € R and F, (anz+b,) — U(z), Fp(anz+6,) — V(z).
Then 5, b
— — A>0and —"

an an

— B e R,

and V(z) = U(Az + B), i.e., U and V are the same type.

(d') In terms of random variables X,,,n=1,--+, X and Y, X"ai;b” = X and % =Y, then
%—>A>O, andbaBeR,
Qg Gp

anin ﬁ.

(b) If &= — A >0 and B" b2, B € R and either Fy,(a, X +b,) = U(z) or F,(anz+8n) = V(z),
then does the other and so does V(z) =U(Az + B).

(V') In terms of random variables X,,n=1,---, X and Y, if 3—: — A >0, and % — BeR,
and either X " X ' '
n — Un = X or n - 577,

an o230

then does the other and so doesY 4 %.

Proof. Proof of (b') by Baby Skorohod’s Theorem. Suppose Y, = X2=b2 — X and ”‘Tf — A >

QAn

0, and Z2=bn ™ b . B € R, then we need to show that X"a, Bn o Xo B. Use Baby Skorohod’s

=Y,

A
Theorem, X 4 X, )7” 4 Y, and }an — X. Let )Z'n = anYn + b, for any n € N. Then X,, =
anYy + b, = X,. So

Xn = o a4 Xn - -
Qo Oy Qo an ozn an
X —

1 d
- (%- B)— ;

B
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Thus, thi% = %. Alternative: Suppose Xfli_b" = X, and o= — A and @ = B. Then

o727 o2 Qn (o727 an

X, - X, - X, — — 1

by the corollary of slutsky’s theorem.
Proof of (a) by inverse functions. Assume Fj,(a,x + b,) — U(z), and F,, (o2 + 5pn) — V().
Claim. )
W g5 and n T L per

Qp, Gn,
and
V(z) = U(Az + B).

Let G,, be the d.f. of £2=b» for any n € N. Then

an

Gnl(z) =P <X”_b” < x) = P(Xn < anX +bp) = Fy(ana + by).
an

Since G,, — U, for any y € (0,1)NC(U), G5 (y) — U~ (y). Then for any y € (0,1) N C(U),

Fo(y) =inf{z: F,(z) >y}
=inf{z : F,(apz + by) >y}
inf{anz + by : Fu(anz +bn) >y} = bn

= o (b/c: a, >0)
_ Fr(y) —ba
an '
Then for any y € (0,1) NC(U),
Foly)—bn o
W) =bn ey (8.1)
Gy
Likewise, for any y € (0,1) N C(V),
B =),

Choose y1 < y2, so they are in C(UT)NC(V*) and
—00 < U (y1) KU (y2) <o and —oo <V (y1) < V™ (y2) < 0.
(8.1) holds for both y1,ys, so

Fy(y2) = F,y (y1)
an

— U (y2) =U"(y1) 2 0.

Likewise,
Fy(y2) — Fiy (y1)
an

= V7(y2) =V (y1) > 0.
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Hence _ _
Hn U™ (y2) = U (1) — A
an  V(y2) = V=(y1)
Moreover,
Pr — bn _ Fy(y1) — bn _ Fy(y1) — Bn
an an an,
_FEry) —bn on Fr(y1) = B
an an Qi
— U (y1) — AV™ (y1)
= B.
At last, use (b) to show they are of the same type. O

Given X1, Xo,..., X, iid with d.f. F. Set
Mn = max{Xl,Xg, ey Xn}

Definition 8.42 (Max-stable Distribution). A non-degenerate d.f. F' on R is called max-stable,
if for i.i.d. random variables (X;);eny with d.f. F and for any n € Z>% 3Ja, > 0, b, € R such

that #2=bn als0 has distribution F. Equivalently, M is max-stable if its d.f. F satisfies: for each

a

n e Z>O,nthere exists a, > 0 and b,, € R such that
F*(apx +b,) = F(z)Vz € R.

Theorem 8.43 (Max-stable Distribution are Weak Limits of Maximal). A non-degenerate d.f. F
on R is maz-stable if and only if 3i.i.d. random variables (X;)icz>0, an >0, by, € R, such that the
d.f. of M’;iw converges to F.

Proof. “<”. Assume

Zp = — 7,
Gnp
for some a,, > 0 and b, € R and Z has d.f. F. Let (Z(j))jez>0 be i.i.d. copies of Z. For j € Z>°,
let X .= (Xi(j)) oo be i.i.d. copies of the sequence (X;);cz>0. Let
ic

MY = max { X, XD,

and denote )
MY b,
T an

z,

Then for each m € Z>9,
(Z;U,...,Z,(Lm)) = (Z<1>,...,Z<m>) .

Therefore, since “max” is continuous, by the Continuous Mapping Theorem for the weak conver-
gence,

max ZY) = max Z0).
1<j<m 1<G<m
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On the other hand,

(4)
) My’ — by,
max Z,)) = max ———
1<jsm 1<j<m an
d My — by
Gp
an - bmn
=Cm,n ( + dm,n
Amn
= cmmZmn + dm,n7
where
M, = max M,S]) and mn = arg mazlgjgmeﬂ)
1<jsm
and
Amn bmn - bn
Cmpn = — and dyy = ——.
Gnp Gnp
Since

Zn = Z and ¢pn Zon + dpn = max 29
’ 1<j<m

where both limits are non-degenerate, we can apply the Convergence of Types Theorem, to conclude
that

Cmpn — Cm > 0 and dp, p, — diy

and

and hence the distribution of Z is max-stable.
= It is obvious by def since for any n € Z>°, Ja,, > 0 and b,, € R such that

My =bn 4,
an

Theorem 8.44. Suppose there exists a, > 0 and b,, € R such that

P (]\/[n_bn < x) = F"(anx + by) <, G(z),
a7l

where G(x) is proper and non-degenerate. Then G is of one of the following types.

(a)

(b) There is o > 0 such that
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(c) There is o > 0 such that

e (=% 2 <0
1, x>0

G above is a max-stable distribution.

Remark.

Proof. e Claim I: For all £ > 0,
G'(z) = G (a(t)z + B(1)) -
(Then G* is of the same type as G.) Suppose F"(a,x + b,) — G(x). Then

(a)
FLntJ (aLntJ:z: + b\_ntj) — G(;p)7

where |nt] € Z2°.

(b)

FI") (a2 4 b,) = [F™(anz + bn)]M — G'(z).

Proof. Ve >0,dN € N,asn > N,
G(z) —e < F"(apx + by) < G(z) +e.

Then
Lnt]

Gla)—d o

< FlM(a,z +b,) < [G(z) + ¢

Lnt]

Since — t, letting n — oo,

[G(z) — €' < lim FU"(a,z+b,) < [G(x) +€".
Let € | 0, then
lim F"(a,z +b,) = G*(x).
Thus, G and G* are of the same type since G =7 and GT7 are the same type and we can raise
both sides to a power |nt|. Then since G(t) and G*(x) are not degenerate, by the convergence
of types theorem, there exist two functions «(t) > 0 and 8(t), ¢t > 0 such that for any ¢ > 0,

an

bn - b n
— a(t) and =—" _ g(p),
| nt) A nt)

and also

G'(z) = G (a(t)z + B(t), t > 0.

(Note that since a,,b, are constant and a|,:|, b, are step functions, «(t) and S(t) are
Lebesgue measurable.)

e Claim II. @ and 8 are Lebesgue measurable function on (0, co).
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Proof. Define

QAp

an(t) = ,Vt > 0.
@|nt)
Then
- 2% = Qp,
an(t) = Z — ip<nt<ks1) = Z 7]1{£<t< ktly.
k=0 ¥ P g

Since {% <t< %} is a measurable set for any k € Z, we have %:1{k<nt<k+l} is a simple
function for any k € Z. Then

m

a
an,m(t) = Z ;Zl{kgnt<k+1} - O‘n(t)7Vt >0, as m — oo.
k=0

Since the sum is convergent, «,, is measurable. Thus, « is measurable. Likewise, 3 is mea-

surable. O

Claim III. for any s,t > 0,
a(st) = a(s)a(t),

and
B(st) = a(t)B(s) + B(t) = a(s)B(t) + B(s).
Since
G*(z) = G(a(st)x + B(st)),
and

G*!(x) = (G'(2)”
= G (alt)z + 5(1))
= Gla(s)(a(t)z + B(t) + 5(s))
= G(als)a(t)r + a(s)B(t) + B(s)),

also G is non-degenerate and «(t) > 0 for any ¢ > 0 we have
a(st) = a(s)a(t),

and
B(st) = a(s)B(t) + B(s),

where we used the fact that if F' is a non-degenerate d.f. and
F(ax +b) = F(cx +d),Vx € R,

for some a,c € RY, b,d € R, then a = c and b = d.
Proof. Define
Hyp(z) = H(ax +b),Vz € R,

H.4(z):= H(cx +d),Vz € R.
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Vye(0,1),
ap(y) = inf{z € R|Hq () = y}
=inf{z € R, H(az + b) > y}
inf{axr+beR|H(ax+b) 2y} —b
- a
_H™(y) -0
a
Likewise, W) —d
- H™(y) -
c,d(y) = c
Since
F(ax +b) = F(cx +d),Vz € R,
we have
an() = Hea(y)-
S0 1 1 b d
H(y) (a - c) == E,Vt € (0,1).
Thus,

a=cand b=d.
The only measurable solution to the Hamel’s equation
a(st) = a(s)a(t)
is
aft) =t?
for some 0 € R since « : (0,00) — R is Lebesgue measurable.

(a) Assume 6 = 0. Then «(t) = 1 for any ¢ > 0, and then B(st) = a(t)5(t) + B(s) = B(s) + B(¢).
Define Q(t) = e#®, ¢ > 0. Then Q(st) = Y = A+ = O(5)Q(t). Then #®) = Q(t) = t°,
for some ¢ € R. Thus, 3(t) = clogt, t > 0. Then G*(2) = G(a(t)z+ B(t)) = G(x + clog(t)), t > 0.
Assume ¢ = 0, then for t > 0, G'(x) = G(x), which implies for any z € R, G(z) € {0,1}. Then
clearly G is degenerate or not proper, a contradiction. Thus, ¢ # 0. Suppose Jxy € R such that
G(zp) = 0. Then for any ¢t > 0, 0 = G'(x¢) = G(x¢ + clogt). Setting u = x¢ + clogt, since
logt € (—o0,00) and ¢ # 0, G(u) = 0 for any u € R, then G is not proper, which is a contradiction.
Thus, G(z) # 0 for any « € R. Similarly, G(x) # 1 for any = € R. Therefore, 0 < G(z) < 1 for any
x € R. Then G*(z) is decreasing in t. Since G'(z) = G(z + clogt) for any ¢t > 0, G(x + clogt) is
decreasing. Thus, ¢ < 0. Let z = 0, then G*(0) = G(clogt) € (0,1). We can set e ¥ = G(0) for
some k € RT. Set y = clogt, then e¢ =t. Then

Gly) =e ™

_ efke%

—(iy—log k)
—e \lel
=€

1
=L (y—logk) .
|c]
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(b) Assume 6 # 0. Recall a(t) = t?. We claim

Bt)y=c(1-1t%), ceRr.

Then
B(ts) = a(t)B(s) + B(t) = a(s)B(t) + B(s),
B)(1—als) = B(s)(1 —a(?)),

B(t) B(s)
= \ 1,t#£1.
o) 1—a@) °7 b7
Thus, ~2%8_ is a constant function of t. Set —2%_ — ¢ and then

> T—a(t) 1—a(t)

80 = T2 (- al) =e(1- ).
Then
Gl(z) =Gat)r+Bt) =G Pz +c(1-t7%) =G (°(x —c) +¢).

Let y + ¢ = z, then G'(y +¢) = G (t7% +c¢). Set H(z) = G(z +¢). (Note H and G are of the
same type.) Then
H'(z) =G'(z+¢) =G (2 +¢) = H (t°z) ,Vt > 0.

e Assume # < 0. Claim. H(0) = 0. Set z = 0, then H*(0) = H(0) for any ¢ > 0. So
H(0) € {0,1}. Suppose H(0) = 1. Consider = < 0, since H is not degenerate, Jxg < 0 such
that 0 < H(xg) < 1, and H'(z9) = H (tewo). (If H(xz) = 0 for any = < 0, then H is degenerate;
if H(z) =1 for any = < 0, then H is not proper.) For all ¢ > 0, the LHS is strictly decreasing
in ¢ and the RHS is nondecreasing in ¢ since xg < 0, a contradiction. Thus, H(0) # 1, then
H(0) = 0. Therefore, H(z) =0, = < 0. Next, we can consider > 0. Suppose H(z1) = 0 for
some z1 > 0, then 0 = H'(x1) = H (tgxl) for any ¢ > 0. Thus, H = 0, contradiction. Suppose
H(z3) =1 for some x5 > 0, then 1 = H'(z3) = H (t?2) for any t > 0. Then

0, ift<0
1, ift>0 "

H@):{

so H is degenerate, a contradiction. Hence H(t) € (0,1) for any ¢ > 0. Let x = 1, then
H(1) = H(t?) € (0,1). We can set e * = H(1) for some k € R*. Set y = t?, then y7 = ¢.
Then

_ 1

H(y) = eikt = eiky% = eiky 1l - e,(k*W\y) ol

1]

Besides, H and G are of the same type.

e Assume § > 0. Claim H(0) = 1. Set z = 0, then H'(0) = H(0) for any ¢t > 0. So
H(0) € {0,1}. Suppose H(0) = 0. Consider x > 0, since H is not degenerate, Iz < 0 such
that 0 < H(zo) < 1, and H'(zo) = H (t’z¢). (If H(z) = 0 for any x > 0, then H is not
proper; if H(z) = 1 for any 2 > 0, then H is degenerate.) For all ¢ > 0, the lhs is strictly
decreasing in ¢ and the rhs is nondecreasing in ¢ since xg > 0, a contradiction. Thus, H(0) # 0,
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then H(0) = 1. Therefore, H(z) = 1, = > 0. Next, we can consider x < 0. Suppose H(z1) =0
for some 21 < 0, then 0 = H!(z1) = H (t‘ga:l) for all ¢ > 0. Then

0, ift<o0
H(t)_{l, ift>0 "

so H is degenerate, a contradiction. 0 = H'(z1) = H (taxl) for any ¢ > 0. Suppose H(z2) =1
for some x5 < 0, then 1 = H'(xz3) = H (tel'g) for any ¢ > 0. Thus, H = 1, contradiction.
Hence H(t) € (0,1) for any t > 0. Let # = —1, then H*(—1) = H(—t%) € (0,1). We can set
e~ % = H(—1) for some k € R*. Set y = —t?, then (—y)# = t. Then

Hy) = e * — e )T — o~ (-K0)7

Besides, H and G are of the same type. O
Lemma 8.45. If a,, ~ b,, then
Z—: — 1.
If b, — b and a,, ~b,,. Then
Gp
a<— ap, = 7 by,

Theorem 8.46. Let X1, Xs,--- be #id and 0 < 7 < 0o. Suppose {u,} is a sequence of real numbers
(Think of u, = anx + by,) such that

n(l — F(up)) — 7. (8.2)

Then
P(M, <up) —e " (8.3)

Conversely, (8.3) holds, so does (8.2).
Proof. Assume 0 < 7 < oo and (8.2) holds. Then 1 — F(u,) = = 4+ 0(1). So

Suppose 0 < 7 < oo and (8.3) holds. Claim. 1 — F(u,) — 0. Suppose there exists a subsequence
{tn, k=1 so that 1 — F(uy) is bounded away from 0. Then as k — oo,

P(M,, <up,) =[1—(1-F(uy,))|™ - 0=e",

since 0 < 1—F(uy, ) < 1, which means 7 = oo, a contradiction. We know as z — 0, —log(1—2x) ~ x.
Since 8.3 holds and by Lemma 8.45,

7 — —log P(M,, < u,) = —nlog(l — (1 = F(uy))) ~n(l — F(uy)).
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Let 7 = oo and suppose (8.3) holds, but (8.2) does not hold. If n(1 — F(u,)) does not converges to
infinite, then there exists a subsequence {uy, } such that

ng(1 — F(uy,)) — C,
where 0 < C' < co. By the proof of the finite case of 7, similarly, we have
P(M,, <up) —e 9 >0=e",
which is a contradiction. O
Example 8.47. Suppose X1, X»,--- iid and X; ~ N(0,1). Let
M, = max{Xy,..., X, }.
Then

P (Mn — bn) — L(z) = e,
an

where a,, = (2logn)~2 and

b, = (2log n)% — —(2log n)_%(log logn + log(4m)).

DN | =

The proof is to show
n(l — ®(u,)) — e %,

M

x

2. We claim

where u,, = a,x + b,. Let p(z) = %e

| = () ~ ).

Un,

On one hand,

oo 1 2
<L et
TA27 Jy
1 1 a2
= = e 2
T2
_ p(x)
x

On the other hand,
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Then

_x2+1
So

zo()
Since

Want to choose u, so that n(1 — ®(u,)) = e~ *, but we replace 1 — ®(u,,) with elun)

w2
1 —x (P(un) 1 e =
ne (u ) Unp, V2T Un
So
V2ru, e %
— — lasn — o
n 6_7"
Then
u2
—log(27) 4+ logu,, —x — logn + — — 0 as n — oc.
Since u; dominates log uy,,
u? 1
2 — ——log(27) + x + logn.
2 2
So )
Un 4
2logn
Then 1
logu, = —(loglogn + log 2) + o(1).
Thus,

u? = —log(2m) — (loglogn + log2) + 2z + 2logn 4 o(1).
= —log(4r) —loglogn + 2z + 2logn + o(1).

—2logn |1+ T — %(1oglogn + log(4m))

1
logn +0<2logn>} )

. Then

69
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Since T +y =1+ ¥+ o(y),

x;(1oglogn+log(47r))+0( 1 )}

.= (2logn)? |1
b (2logn) + 2logn 2logn

1
= (210gn)_%a: + (2logn)% — 5(210gn)_%(loglogn+10g(47r)) +o ((210gn)_%) .

Take a, = (2logn)~2 and

N

by, = (2logn)z — —(2log n)_%(loglogn + log(4m)),

N | =

we have
Up = an® + by, + 0(ay).

Take a,, = a,, and 83, = b, + o(a,). Then
M, — B, =
P <B <x> = P(M, < apx+ ) — €°

Qnp

Since o= =1> 0 and ﬁ"a;“” =0 € R, by convergence of types theorem,
M, —b -
P(Héx)ZP(Mnéanx+bn)—>ee .

Given a sequence of X7, X, -+ of r.v.’s that are N(0,1). Assume the sequence is stationary.

Definition 8.48. A sequence X1, Xo,--- is said to be (strictly) stationary if for all positive integers
n and k,

d
X1, X =Xog1, o, Xk

Aside: Suppose the sequence forms a Markov chain with transition matrix P. Suppose 7 is a prob. vector
that satisfies m = wP. Let 7 be the initial dist.

Then
P(XO = io, e ,Xk = Zk) = WiOPi0i1Pi1i2 . 'Pik—lilc'
Also,
P(Xn = io, .. ~,Xn+k = Zk) = P(Xn = iO)Pioil c 'Pilc—lik'
But

P(X, =i¢) = Z P(Xo = j, X, = o)
=Y P(Xo = j)P(X, = io| Xo = j)

JjEE

n
§ 7 Pjig

JEE

= ﬂ-’ioa

since m = wP implies
aP"=mx,¥nelZ .
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Thus, if 37 with 7; > 0 for any j € F, satisfying 7 = 7P, let X L 7, then the sequence X1, X2, - in a
Markov chain is stationary.

Definition 8.49. A sequence (X1,..., X,,) is multivariate normal if for every a = (a1, ...,a,)’ €
R"™, the r.v. Z?:l «; X; is normally distributed.
Then (alternative)

Var (iain) =F zn:anji:aka - K ianj E [Xn:aka]
=t J=1 k=1 j=1 k=1
=3 Y o EX;Xplax — Y > a;E[X;E[ Xy
j k ik
=573 a(EIX; X0 — E[X]E[X])
7 k

= ZZajCov(Xj,Xk)ak
ik
=aTSa >0,Ya € R",

where ¥;; = Cov(X;, X;). X is symmetric and nonnegative definite. Provided the covariance matrix
3} is nonsingular, the random vector X = (X1,...,X,) has a joint (Gaussian) pdf given by

_n _1 1, el -
Fela) = (2m)H@er)H oxp (~ 3@ - 'S E- ) ).
Remark. It is obvious that T(q, .. 4,) is in the dual space of R".

Definition 8.50. A sequence Xi, Xs,--- is said to be a Gaussian random sequence (Gaussian
process) if for n € Z* and (ky, ..., k)T € (ZM)*, (X4, ..., X},) is multivariate normal.
Hence a Gaussian process depend only on

(a)
(b) o

~(7,7) = Cov(X;, Xj).
Definition 8.51. A Gaussian process {X;};cz+ is stationary if

(a)
m(i) = E[X.] = p, (8.4)

(b)
v(%,7) = Cov(X;, X;). (8.5)

only depends on the difference j — i, so denote it as
7(7’7]) = VNj—ils

where 7. is autocovariance function. Or another explanation is

(XivXj) g (Xonj—i)’Vi < ja 17.] € Z+'
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As a result, the (joint) distribution of a stationary Gaussian process is only determined by u and
v; for any j € Z, since the (joint) pdf is just related to p and 3, where ¥;; = 7};_;/.

Remark. A general stochastic process {X;};cz+ satisfying conditions (8.4) and (8.5) is said to be
weakly or second-order stationary. The first-order and second-order moments of weakly stationary
processes are invariant with respect to time translations. For Gaussian time series, the concepts of
weak and strict stationarity coalesce.

Let M,, = max{Xy,..., X, }, where {X;};cz+ is some sequence. Are there constants a,, and b,
such that
M, — b,

- — 7 (Gumble)?

Given is a regenerative process on the nonnegative integers, i.e {X,,n = 0,1,2---}. There is a
sequence of r.v’s

O<THosT<T12 -
that forms a delayed renewal process. Then we have
(a) X, , X, 4+1--- is independent of 7,,, and Xy,..., X, _1.
(b) Forn=1,2,---, X, , X, +1,--- has the same distribution as X,,, X 41, .

Example 8.52. Let {X,,,n =0,1,---} be a Markov chain with state space {0,1,---}. Let 79 =
inf{n > 0/X,, =12}. For k=1,2,---,

T = inf{n > 17,1 : X, = 12}.

Tk is the time of the k'™ return of the MC to state 12. Note that {7z, k = 0,1,2,---} forms a
delayed renewal process, and w.r.t. that renewal process, {X,,n = 0,1,---} is a regenerative
process. Thus,

(XOa s 7X7'1—1)7 (XT17 e 7X7'2—1)? T

are iid random elements. Intuitively, it means a regenerative process can be split into i.i.d. cycles.
Take for k € Z™T,

Yk = max (XT)C717XT)C71+1’ ce 7X7'k—1) .

Suppose the renewal sequence {7,,,n = 0,1,2---} is recurrent, and aperiodic. Assume 19 = 0 with
probability 1. Find a renewal equation for P(X, € B).

P(X, € B)=P(X, € B,1y <1)+ P(X, € B,7y > 1).
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Note

t
P(X;€B,m <t)=)» P(X;€B,m =k
k=1

=Y P(Xi_kin € B,mi = k)
k=1

=Y P(Xi_jsr, € B)P(r1 = k)
k=1

=

- Z P(X,_, € B)P(r, = k),
k=1

since —k + 7 = 0 and X;_g+-, is independent of (71 — 79) = 71 and has the same distribution as
Xt—k- ThUS,

t
P(X, € B)=P(X, € B, >t)+ Y _P(Xi € B)P(r = k).
k=1

If one set h(t) = P(Xy € B) and ¢g(t) = P(X; € B, 71 > t), get the renewal equation

t

h(t) = g(t)+ > P(r = k)h(t — k).

k=1
Thus,
. _ 2o 9(®)
LI T
Note
ig(t) = f:P(Xt € B, > 1)
t=0 t=0
=Y E[1p(Xy)1(r > t)]
t=0
=F i 1p(X¢)1(r > t)]
t=0
=F

ﬁz_: ILB(Xt)]
t=0

Note 21:61 15(X) is the number of times the regenerative process visits the set B during the first
cycle. Thus,

B Y7y 1a(xX0)]

Jim P(X, € B) = Ein]
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It equals to expected number of visits the regenerative process makes to set B in the first cycle
divided by the expected cycle time. Set X to be a r.v. with d.f. Fx give by

T1—1
E tlzo ]]-(—oo,l](Xk)

Fx(z) = Bl ;

where F'x is the limiting distribution.

Proposition 8.53. Continuing the last example, where the sequence of iid copies of {Y3}r>1 are
the maximums of those iid cycles, suppose there exists a,, and b, such that

[Fx(anz +b,)]" — G(z),

where G(z) is the extreme value distribution.
Set
Ap i =A{Xk > anz + by}
Consider the condition
lim n Y P(An;NApg) =0. (8.6)

n—oo

0<i<k<Ty
Then
lim P ( max Yy < anz + bn) = [G(x)]",

n— oo 1<k<n
where v = E[r].

Proof. 1t suffices to show

lim nP (Y1 > apz + b,) — —ulog G(x),

n—oo

by the theorem 8.46. It is obvious that

T1—1 T1—1
{Y1 >apz+b,} = U {Xg > anz+b,} = U Ap k-
k=0 k=0

By the inclusion-exclusion formula, we have

T1—1
~E| Y la,na,,|<P ( U An,k> <E
k=0

0<i<k<t

T1—1

E ]lAn,k
k=0

Using condition (8.6),

E

Tlfl
E ]lAn,k .
k=0

lim nFE

n—oo

T1—1 T1—1
Z ]]‘An,k‘| < lim nP ( U An,k) < lim nE

k=0 k=0

T1—1
> 1An,k] .

k=0

Since U;lz_ol Apk ={Y1 > apz +b,},

lim nP (Y7 > apx +b,) = lim nE

n—oo n—oo

T1—1
> 11,474 :

k=0
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Divide by FE[r], we obtain

1
T lim P (Y7 > apz +b,) = lim n(l — Fx(anz + by)),

[’7‘1 n—o0 n—oo

since

E ;1:_01 ]]'A'n,,k:| F b

=1- .
E[Tl] X(anx+ n)
Since
1—(1-Fx(anx+bu))]" = [Fx(anz + by)]" — G(x),

we have

lim n(1 — Fx(apz +b,)) = —log G(z).
Thus,

lim nP (Y1 > apx +b,) — —E[n]log G(z).

n—oo

8.8.1 Maximum process

Let X1, X5, -+ beiid r.v.’s with d.f. F' such that there are continuous a,, and b,, for which
F"(anx + by) — G(z).

Set M,, = max(Xj,...,X,), what types of process is {My, Ma,---}?
Calculate for t; <9 and z; < z2 < -+ < a4,

P(Mt2 éxtz\Ml le,...,Mtl Zl‘tl).

If x4, < x4, then M, < x¢, < x¢, = My,, which has prob. 0.
If x4, > x4,, then given My, =z, < xy,,

Mt2 é Tty if and only if (th-‘,-l < th; ‘e ,th < th) .

Since X, 41, ..., X, are independent of My, ..., My,

P(Mt2 < .’17t2|M1 :LL'],...7M1§1 :Sﬁ'tl) = P(Xt1+1 < $t2a-~-7Xt2 < .'L'tz) :Ft2_t1($t2).

Thus,

07 if Tty < Tty

P (Mt2 < £Ct2|M1 =T1y---y Mtl = :Utl) = { FtQ_tl(xt ) otherwise
2/ .

Hence
P (Mt2 § X M17. .. 7Mt1) = ]]_[07w](Mt1)Ft27tl(I).

(0]
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Therefore,

P(My, <1, M, <a2) = FE _H{Mtlgzl}m{Mng}}

=E []1[0@1] (Mt1 )1[0,932] (Mtz)]

=F|F |:1[07£1](Mt1)]]-[0,w2] (MtQ

|
|
[1[0 x1] Mtl H[OIz](Mtl)Ft2 tl( 2)}
[]1[0,11/\172 Mtl)th tl( 2)]
P(
1

)
=E |19, (M,)E [ﬂ[o,m] (My,)

M SCl /\172) Ft2 tl(fﬁg)
—Ft (1’1 /\.’EQ)Fz tl(l’g).
For t) <ty < -+ < iy,

P(My;, <z, My, <xoy..., My, <) =F (2 Ao A )F27 0 (g Ao Amy) - Finmin=1(g,).

n

8.8.2 Extremal process

An extremal process {Uy;t > 0} is a continuous time Markov chain such that

PUs, <x1,Uty <9, Uy, <a0) =G (i Ao A2p)G2T 0 (g A - Azy) -+ - GIn i1 (),
where G is any extreme value d.f. Set @Q(z) = —log G(z). The holding time in a state will be
exponential with rate Q(z). For y > x, the d.f. that the new state will be less than y is

L QW)
Q(x)

Suppose there exists a,, and b,, such that

P (ana_b" < m) — G(z).
Define for n = 1,2, - -, the process {M]*;t > 0} such that
Mny) —bn

n _
M =
Qp

where the time and space are scaled. Then one can show
{M]} = {U},

where {U;}is a extremal process. (Process convergence in metric space of sequence space.)
Let X1, X5,--- be a “nice” regenerative process so that

E 3720 L—ooa)(X1)
lim P(X, <) = = OE[ ]m 21 Fla).
n— oo Tl
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Suppose F' is in the domain of attraction of an extreme value distribution G, that is, there exists
a, and b, such that
F"(apx + by) — G(x).

Forn=1,2,---, set
Y, = max {XT'7L717'~~)XTTL71} )

which is the maximum of the nth cycle. We’ve shown that if M,, = max{Y7,...,Y,}, then

P(]\N4n < apz +by) — G4 (x),

where u = E[r]. Set
M i) — bn

Qn

{Mz‘} - {5‘}

where {U t} is an extremal process such that

n _
M =

Then

~

PU; < z) = G'(x).

Proof. Let
M, = max{Xy,...,X,}.

Let
W, = max{k : 7u < n}.

Then {W,,} is a renewal counting proces. For large n,

Mn = MW,L = MWna (CLS)

since essentially, the maximum of X, ..., X,, can not occur in Xw,_ 41, Xp.
Set N N N
M= M) = MWLntJ = ML WL:HJ =M" WL:tJ
Set N W
op = —4,
so that L
M = M" o ¢}

Know

W, 11

‘n E[n]
Also,
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Thus,
Wi, Wi,
lnt] _ ' nt] [nt] — E, w.p. 1.
n Int] n 1
As a result,
~ t
Y= =1, wp. 1.
o LLJ
Let N "
¢, = —.
Yo
If L o
M"o ¢} = Uo¢,, wp. 1.
But

P(T0d <o) = G = (G@IY = G'(o)
If we take care of the edge effects, then
{M"} = {U:},

wher 5} :[}og,ﬁ.



Chapter 9

Charateristic Functions and the
Central Limit Theorem

9.1 Characteristic Functions
Suppose X is a real-valued r.v on the probability space (€2, B, P).
X:Q—-R

is B/B(R) measurable.

Definition 9.1. The moment generating function 1 : R — R is defined as
¥(u) = Ble"].

Proposition 9.2. Suppose X is a random variable satisfying
E [etX ] < 00,

Suppose that there exists a set (—uy,us), ur, us > 0 such that for each u € (—uq,uz), ¥(u) < co.
Notice that for |u| < min(uy,us),

E [eulx‘} = E[e"¥1(X > 0)] + E[*¥ 1(X < 0)] < E["X] + E[e="X] = (u) + 3(—u) < oo.

Furthermore, since for n satisfying 0 < n < min(u;, us), we have

ulx| = X" e X"
¢ N Z n! > n!
n=0
Thus,
u"E[| X]"] <E |:eu|X\i| < 0o
n! h ’
and so for each integer n > 1,
E(|X|") < cc.

79
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Definition 9.3. The characteristic function (chf) ¢ : R — C of X with distribution F is defined

as

oo o0

o(t) = E[e"*] = E[cos(tz)] + iE[sin(tx)] = / cos(tz)Fdx + z/ sin(tz)Fdx.

— 00 — 00

Proposition 9.4. Suppose X : Q — C is of the form X = U + iV, where U,V : Q — R are B/B(R)
measurable random variables having finite first moment. Then

[E[X] <E[IX]].

Proof. Let ¢ = E[X] # 0.
Then _
cl? = ce = E[eX] = E[Re(cX)] + iE[Im(cX)] = E[Re(c X)),

since |¢|® must be real.
Furthermore,
|E[Re(cX)]| < E[|Re(cX)|] <E[leX]|] = [¢|E[|X]].
Thus,
le|* < [elE[1X]],
or
[E[X][ = |l <E[X]].

O
Remark. Properties of ¢.
(a) ¢(0) =1.
(b) |#(t)] < 1 for each t € R.
Proof.
[6(6)]* = (1) (t)
= (E[cos(tz)] + iE[sin(tz)])(E[cos(tz)] — iE[sin(tx)])
= E?[cos(tx)] + E*[sin(tz)]
< Elcos?(tx)] + E[sin®(tz)] = 1. (9.1)
O
(¢) ¢ is uniformly continuous on R.
Proof. For t,h € R,
9t + 1) = ()] = [E[e¢+1)7] — B[ei*]
= [Efe (e — 1)
<E [l e - 1]
e - 1]
—0as h—0. (9.2)
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(d) For a,beR,teR,
Buxco(t) = Bl X HD] = B0l 00X] = citrg(a)
()
b_x(t) = dx(—t) = E[cos(—tX)] + iE[sin(—tX)] = E[cos(tX)] — iE[sin(tX)] = ox (£)
(f) X and X, are independent, real-valued,
Ox14+x2 = Ox,(H)dx, (1)

(g) The chf ¢ is real if and only if
x<_-x

if and only if the cdf F is a symmetric function. This follows since ¢ is real if and only if ¢ = ¢ if
and only if X and —X have the same chf by (5).

Lemma 9.5. For each integer n > 0, we have the following identity

T ) vt 7 z .
/ (x—s)"e"ds = +— / (x — s)"Tte'ds,
0 n+1 n+1)/

for each z € R.

Proposition 9.6.

for each = € R.

Proof.
—(e"—=1) = / e’ds = x + z/ (x — s)e**ds

0 0

by setting n = 0 in Lemma 9.5. So

e =14ir+i® | (v —s)eds

0
=1+iz+d? (g—i—;/o x—s2“ds>
2 3 px
=144z + m) +Z'/ 2“ds
! 0

by setting » = 1 in Lemma 9.5.
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Corollary 9.7. Vz € R,

k=1
1 x
= —'/ (x — s)"e"ds
n!|Jo
1 x
< — | lv—sl"ds
n! Jo
_ |m|n+1
~(nt1)
Corollary 9.8. For any = € R,
o (R _ 2"
— K| T nl
Proof. Forn > 1,
’ is n—1 x" i ¢ n_is
— ds ="+ — - d 9.3
/Oe(x s) s n+n/0(x s)"e*ds, (9.3)
by Lemma 9.5. Multiply both sides of equation 9.3 by (n%nl)!,
inJrl ¢ n is " ¢ n—1 _is (Zz)n
" /O(ass)eds—(n_l)!/o(zs) eds — T (9.4)
Furthermore,
] n (Zk)x Z'7L+1 /:c -
= —s)"e"ds. 9.5
e Zk!+n!0(:vs)es (9.5)

k=0

Plugging 9.4 into 9.5 yields

= n! (n—1
Then
T o N 2 I O 1
¢ 72 k! S n! nl onl
k=0

Proposition 9.9.

+1
< min =" 2"
= (n+11 n! [’

for each =z € R.
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Proposition 9.10. Suppose X is a random variable that satisfies
Y(t)=E [etx} < o00,Vt € (—a,a),
for some a > 0. Then

(;5(75) —F [eitX] _ - ikE [Xk] tk.

Proof. For any t € (—a,a),

E [e\txq = E["¥1(X > 0)] +Ele ¥ 1(X < 0)]
< E[elX] + E[e11¥]
() + o (—It])

< 0.
Since o Eie
Z It["X] _ X
k! o ’
k=0
by MCT,
o [t'E [|X]"] -
= E {e } < Q.
k=0
Then
E[|X]"] < oo,Vn € N,
and
"1 X"
tim XD g
n—oo n.
Then

) n X n n+1 X n+1
<E [t \/\\tl | X|
n! (n+1)!
"1 x]"
n!

<2E[

— 0asn — oo,
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where we use the DCT since for n large enough,

"1 x1"

< X1

and
E[|X]"] < 00,Vn € N.
Thus, Vt € (—a,a),
2 iFE [2F]

o) =E ["X] =) gt O

Remark. Suppose X is a r.v that satisfies
E [etx] < o0,Vt € (—a,a),

for some a > 0. Then

E [etX] = i E[ﬁk]tkﬂt € (—a,a).

=~
Il
<]

Example 9.11. Suppose Z ~ N(0,1), compute
bz(t) = E[e"*?],Vt € R.

For ¢t € R,

By Proposition 9.10,

Tt’“,w eR.

But o
2 = (2k)! ¢
va(t) =t = gu = ];] okl (2k)

o~
Il
o
Il

and we know

Yz (t) = Z]E [Z¥] T
k=0
Thus,
(2k)!
E [Z°F] S k=0,

and

E[Z?*] =0,Vk >0
Then

because fz(t) = fz(—t).
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Proposition 9.12. Suppose X is a r.v. satisfying E[|X|] < co. Then ¢'(0) = ¢{E[X]. Furthermore,
if E[|X]|"] < oo, then

¢ (0) = "E[X"].
Proof. We will focus on the case when n = 1. Fix t,h € R, then

B+ 1) =60 g1 axg ‘

h
_ ’11[3 [ei(t+h)X _ eitX} _E [(Z-X)eitX}‘
“|h
- W1||E X ("X — 1~ (ihX)]|
1 4 ,
< m]E [|e* — 1= (ihX)|]
1 .
_ i ihX (ZhX)k
|h|]E kz k!
=0
1 IhXx|' A |hX)?
S W]E 2T A 2!

=E

h||X|?
2|X|/\|||2|]

—0as h—0,

where we use the DCT since

X P
2 x| \ HE <21,

and
E[X] < 0.
Thus,
Jim sup w —E[(iX)e™ ]| = 0.
So
o) = tim XD _ g e
Hence,

$(0) = iE[X]. O

9.2 Uniqueness and Continuity Theorem

Theorem 9.13 (Uniqueness). The characteristic function of a probability distribution on R uniquely
determines the probability distribution function.
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Proof. Let X be a real-valued r.v. with c¢df F and characteristic function (chf) ¢.
For any cdf G with chf v and V6 € R, we have the possible relation

[ e motGian) = [ Ao - 0)F(as), (9.6)
R R

since

Next, let G satisfying

y2
G(dy) = e 27 dy,

2mo?

where G is a cdf of N(0,0%). Let Z = 0N, where N ~ N(0,1). Then chf of G is

v =¢z(x) = pon(z) = pn(0x) =~ 2,z €R.

Put v and G into 9.6, we have

. 1 y? a2(z-0)2
0y - / :
(& [¢ 5 e 2 d = (& F(dz).

Then integrate both sides of the above equation over 6,

—7,9 2(2 9)2
Yo(y e 202 dydf = F(dz)d6.
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By Toneli Theorem,

/m /B_Mp(dz)de
// 2o2? F(dz)do
LIl

2 Tr—z 1 02
:;”/ / e 7o7d| F(dz)
g

2%
m/ ( x—z)F(dz)
“?p(x+f<x),

since the last but one equation is a convolution and z is a instance of X and N ~ N(0,1). Thus,

P(X+N <x>

o
A _ip 1
B \/%/_OO/Re y¢(y)v27r02

1 /[® ; v?
= —/ /67199¢(y)6_ﬁdyd9.
T J-x JR

Let 0, = n,¥n € N>°. Then

y2
e 202 dydf

X+ — — X asn — oo.
On
So
N
X+—=X
On
Then

N
= lim P<X+<a:)
n—oo
— lim / / e~ WY p(y)e 2n? dyd9
27T n—o0

which implies the chf ¢(t) uniquely determines the cdf F(z) since we know the limit must exist.
Or use Slutsky Theorem, since X = X and - 250, X + X=X
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Lemma 9.14 (Diagnolization). Given a sequence {a;};>1 of distinct real numbers and a family
{tn}n>1 of real valued functions defined on R, there exists a subsequence {u,, }r>1 of functions
such that

klggo Up, (a;) exists (could be +00),Vsj € N>,

Proof. The sequence {un(a1)}n>1 contains a subsequence {uj r(a1)}r>1 converges, i.e.

lim w ;(a1) exists.
k—oo

Similarly, the sequence {uy, ,(a1)} contains a subsequence {un, , (a2)} such that

lim wg g(a1) = Um us k(a1) exists.
k—oo k—oo

Continuing in this way,Vj € N>°, we have for 1 <1 < j,

{tn; (@) k=1 C {un, , (ar) b1

and

lim wy,,, (a;) = Um wuy, (@) exists.
k—oco 7 k—o0 ’

Construct a new seuqnce of integers {m;};>1 as m; =n;;, j > 1. Then for each fixed | > 1,

{mjtize = {nj izt € {njxtest.

Then for any [ € N>

lm wp, (@) = lm uy, , (ar). O
k—o0 k—o0 ’

Lemma 9.15. If D = {a;};>1 is a countable dense subset of R and if {F),},>1 are distribution
functions such that
lim F,(a;) exists,Vi € N>0,
n—oo
then define for any i € N0,
Foo(a;) = lim F,(a;).
n—oo
This determines a distribution function F, on R and
F, = F, asn — oo.

Proof. Then F, is non-decreasing, and 0 < Foo(z) < 1 for any € D, and

lim  Foo(z) =1, lim  F(xz)=0.
x€D,x—+o00 z€D,x— —o00
For each x € R, define
Fo(z)= inf Fol(a;).
a;€D,a;2x

By Lemma 8.2, Fi is a right continuous probability distribution function. Next, let x € C(Fy).
Since D is dense, there exists two subsequences {a;};>1 C D and {a}};>1 € D such that

a; | x and a T .
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Then for any k,7 € N,
Fy(aj) < Fi(z) < Fi(as).

Then for any 7 € N, taking limit on %k, we have
Foo(a)) = klim inf Fj(a}) < klim inf Fy(z) < klim sup Fy(z) < klim sup F(a;) = Foo(ay).
Since z € C(Fu),

lim Fio(a))(= Fao(27)) = Fao(2)(= Fao(2)) = lim Fy(a;).

K2

Thus,
Fo(z) = klim inf Fi(x) = klim sup F(x).
Hence
klim Fy(x) = Fo(z),Vo € C(Fx). O

Theorem 9.16 (Section). Any sequence of dfs {F,}n>1 contains a weakly convergent subsequence
(but the limit may not be proper).

Proof. Define D = {a;}q;cq. By the Diagnolization Lemma, there exists a subsequence {Fy,, }x>1
such that limy_ F,,, (a;) exists, Vi € N0, By Lemma 9.15 there is a df F,, such that F,, =
F. O

Example 9.17. Consider {F),},>1, where

Fn(x):{ 0, z<n

1, z>n.

For each ¢ € Q, lim;,,,oc Fy,(a) = 0. By the Lemma 9.15, Fo(z) = 0,Va € R. So the limit is not
proper.
Alternative: by the def of convergence in dist.

Definition 9.18. A collEction of distribution functions II is relatively compact if every sequence
{F.}n>1 contains a subsequence that converges to a proper d.f..

Definition 9.19. A collection of distribution function II is tight ifVe > 0, there exists a compact
set K C R such thatV F € II,
F(K)>1—e

Remark. Tightness of II implies that each of d.f. F' € II is proper.

Theorem 9.20 (Prohorov’s Theorem). A family II of distribution functions is relatively compact
if and only if it is tight.

Proof. <= Suppose first II is tight, and choose an arbitrary sequence {F,},>1 C II. Next, fix
€ > 0. Tightness of {F,},>1 implies 3M, € R* such that

Fo([-Mc, M) >1—¢,Yn e Z7°.
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Furthermore, the Selection Theorem says there exists a subsequence {F,, }r>1 satisfying
F,, = Fy,

where F, is a d.f.. We claim Fi, is proper. Since C(F )¢ is at most countable, given M., we can
always find M! > M, such that M/, —M! € C(F). Clearly,

Fo (=M., M) >1—¢€VneZ°.

Then
Foo ([=M{, M[]%) =1 — Foo (M) + Foo (= M)

= lim (1= Foy (M) + Fy (~ M)

= lim F,, ([-M/, M]°)

< €.
So

Foo ([-M{, M%) < e

Hence

Fo ([_MelvMe/]) >1—e

This holds for each €, so Fio (R) = 1.
— Assume II is not tight. Then Je > 0 such thatVn € Z>°, we can pick F,, € II satisfying

F,([-n,n]) <1—e

This defines a sequence {Fy,},>1 C II. The Selection Theorem says 3{F),, }x>1 C {F,.}n>1 such
that
F,, =G,

where G is a d.f.. The goal now is to show G is not proper. Choose a,b € C(G) such that a < b,
then
Gl(a,b]) = Tim Fy, ((a,b]).

k—o0

If ny is large enough,
Fy.((a,0]) < Foy ([=np,mi]) <1 —e

So
lim F,, ((a,b]) <1—F¢,

k—o0

meaning
G((a,b]) <1—e.
This holds for any a,b € C(G). Hence G(R) < 1 — €. Thus, G is not proper, proving II is not

relatively compact. O

Remark. In the above theorem, we uses R is a polish space, which is a separable completely
metrizable topological space when we use compactness of R to show there is a limit point for every
bound and infinite set in Diagnolization Theorem and use separability in Selection Theorem.
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Lemma 9.21. Suppose F' is d.f. on R with chf ¢. Then there exists a > 0 such that for each
z >0,

x

F((=o0]7) < az [ (1~ Re(o(t))] .

0

where o does not depend on F'.

Proof. Recall first that

This means for fixed x > 0,

93/0 11— Re(4(t))] dt = /0 /O;(lcos(ty))F(dy)dt
[ (=)o
INEor

X
=T

Since 1 — % > 0,YVu e R,

where

O

Theorem 9.22 (Continuity Theorem). Let {X,},>1 be a sequence of real-valued r.v.’s with CDF
F,, and chf ¢,,.

(a) If X,, = Xo for some real-valued r.v. Xy, then
lim 6, (t) = go(t), ¥t € R,
n—oo

where ¢q s the chf of Xg.

(b) Deeper part: Suppose

(1) limy,— oo o (t)(= doo(t)) existsVt € R.
(2) ¢oo(t) is continuous at t = 0.

Then for some d.f. Foo, Fy = Fuo, and ¢oo is the chf of Fy. If ¢oo(0) = 1, then Fy is proper.
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Proof. Suppose X,, = Xy. Then by Portmanteau Theorem,Vt € R,

lim E[cos(tX,)] = Elcos(tXo)],

and
lim E[sin(tX,,)] = E[sin(tXy)].
Hence

lim E [eitx"] =E [e“XO] .

SupposeVt € R,
lim ¢, (t) = ¢poo(t),

n—oo

where ¢ is continuous at ¢ = 0. We claim {F, },,>; is tight. For M € R*, by Lemma 9.21,

F, ([-M, M]°) < aM/M [1 — Re(pn(t))]dt,Vn € Z7°.

Then
lim sup F,, ([-M, M]°) < az lim [1 — Re(¢pn(t))] dt.

n—0oo n—oo 0

Observe that
|1 — Re(¢n(t))] = |1 — E[cos(tXy)]| < E[|1 — cost(tX,)|] < 2.
Then by the DCT/BCT,

L
M

fim [ 1= Re(gn ()] dt = /0 "1 = Re(go ()] dt

n—oo 0
Hence,

n—0o0

lim sup Fy (=M, M]%) < aM/M [1— Re(duo(t))] dt.
0
Since ¢, is continuous at t = 0,

%E% Poo(t) = oo (0) = lim ¢,,(0) =1,

since {X,, }n>1 are real-valued r.v. and then {PX, '},>1 are probability measures (d.f.’s) and by
the definition of the measure, PX,}(R) = 1 = F,(R) for any n € Z>%, so we have {F,},>1 are
proper.

Next, fix € > 0 and choose large M, > 0 such that

sup [1— Re(éue (1)) < e.

ogtgﬁ

Then

n—oo

1
s
lim sup F,, ([—M., M]°) < one/ edt = aM,.
0
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This means that there exists an ng(e) € Z>? such that as n > ng(e),

F (=M, M%) < e.

Not only that, IM! > M, such that

Fo (=M., M]°) < ¢,¥Yn € 27°.

93

Thus, {Fy, }n>1 is tight. By Prohorov’ Theorem, {F),} is also relative compact. Suppose {F,, , }r>1
and {F,, , }x>1 are both two subsequences of {F},},>1, where

Then

and

Thus,

9.3 The Classical CLT for iid Random Variables

Lemma 9.23. Suppose {a,}n>1 C C and limy,_.o ap = a € C. Then

Proof.

Theb by DCT,

F’nl,k = G1 and Fnz,k = GQ.
Goelt) = i 6, (8) = 66, (1),
Grelt) = lm G, (1) = 06, ().

ba, (t) = dg,(t),Vt € R.

lim (1 + a—n) = e%.
n

n—oo

> (1) (%)

n
k=0
> —1)---(n—k+1)ak
=Y lim 10k < )"V ,f” 1) e
k=0
e k
=2 fm
=0
L
k=0
= e
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Theorem 9.24 (Weak Law of Large Numbers). Suppose {Xj}i>1 are iid sequence of r.v’s, having
cdf F and satisfying E[|X1|] < co. Define u=E[X1] and S, = > j_, Xi, n > 1. Then 3= 25y,

Proof. For t € R, since {X}}r>1 are iid,

Next,

where

6’,fX17ii ﬁ ka
k' \n !

2 tXl tXl
' ’ }‘|
2|t||X1| £2]X, H

T 2n?2

21X, 2
min{2|t||X1, X H
2n
21X, 2
E | lim min{2t|X1|’ X }]
n—00 2n

2 2
E[lim albsly ]
n—oo 2n

:0’

/—’H/—’H

Since

lim |nh(t,n)

n—oo

< lim E
n—oo

DCT

N

since min {2|t\|X1|, M} < 2|t]|X:| and E[2]¢]|X1[] = 2[¢[E[X1] < o0, ¥t € R.

2n
So
lim nh(t,n) =0.

n—oo



9.3. THE CLASSICAL CLT FOR IID RANDOM VARIABLES 95

Hence,
lim itu + nh(t,n) = itu.

n—00

By Lemma 9.23,

" - n
lim EP [e%X1:| _ (1 N ztu—|—nh(t,n)>
n

— pitn
= ¢(t).
Also ¢(0) = 1, by the continuity theorem,
X, = u.
By Proposition 8.34, we have
X, 2 . O

Theorem 9.25 (Central Limit Theorem). Suppose {Xy}r>1 is an iid sequence, where E[X;] =
p < oo, Var(Xy) =02 < co. Define S, = p_, Xp, n>1. Then

S — np
ovn

Proof. Assume, wlog, that 4 = 0, o = 1 by transforming theorem. Then E [X;] =0, E [X}]| =1
and we need to show % — N(0,1). For t € R, since {Xj},>1 are iid,

— N(0,1).

=
—
<
By
‘m
3R
—_
|
=
| —|
—=
9]
3%
>
ol
| S

k=1
=E" [e%xl}
Next,
21 (it
E[e%] <E |y~ ( ) xt| 4 hit,n)
' 9
= k' \vn
2
1t 1/t 9
t2
=1——+h(t
2n + hltn),
where
[ e P e
. NG NG
h(t,n) <E |min < 2 TR

[ 2x2 11P1x,°
. m{lll |
n 6n2
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3 3
. t]°| X
min t2X12,7| Il ;‘
6n2

Since

lim |nh(t,n)] < lim E

n—00 n—00
3 3
t]”| X
DT E | lim min{t2X12,| [l 11| }]
n— oo 6”5
:0,

since min {752)(127 M} <t?X?% and E [tQXIQ] =t’E [X%] < oo,Vt € R. So

6n 2

lim nh(t,n)=0.

n—oo
Hence |,
t? t2
nlirrgofi +nh(t,n) = )

By Lemma 9.23,

n—oo n
+2
=e 2
= ¢(1).
Also ¢(0) = 1, by the continuity theorem,
Sn
= N(0,1 O
LS N

9.4 Lindeberg CLT
Let {X,,} be independent, but not necessarily identically distributed, and suppose X has cdf Fj
and chf ¢(k) with E[X;] =0, Var(Xy) = o7. Define
s2 = ZU,% = Var (ZXk> .
k=1 k=1
Definition 9.26. {X}};>1 satisfies the lindeberg condition if for each ¢ > 0,

1 n ) Xk
S—QZE [Xkﬂ (’Sn >t)] —0.

n k=1

Corollary 9.27. Consequences of the Lindeberg are

(a)

. o
lim max —’; =0.
n—oo 1<k<n S2
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Proof. For € > 0 fixed,Vk € [n],

2
oj. 1 9
— = —[E[X
X 2
—E |2 1
Sn
Xk2 Xk ch2 Xk:
_E || n( <6> +E ‘ 1( >e)
Sn Sn Sn, Sn
1 X
<4 —E || X1 [ZE] > e
|3n|2 Sn

1 « X
<y lQZ]EDXkﬁ (‘sk
=1 n

> )|

|5n
Then .
2
o 1 X
max —§<62+ 5 E E{|Xk|2]1 (‘k >6>:|.
ISksn s, 2 Sn
Then )
) o
lim sup max —5 < €.
n—oo Sn
So )
) o
lim max —5 =0.
n—oo 1<ksn Sy,
O
(b) If
k
. o
lim max — =0,
n—oo 1<k<n Sy,
thenVe > 0,
X
max P(k >e> — 0,
1<<ksn Sn

which is called uniform asymptotic negligibility (UAN). It is typical in CLT that the UAN condition
holds so that no one summand dominates but each sumand contributes a small amount to the total.

Proof.
X
max P <k > e) = max P (|X%| > sne)
1<k<n Sn 1<k<n
E[X?
< max [2 5]
1<k<n € Sn
1 E[X?
<L B

~
€2 1<k<n 82

— 0. O
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Lemma 9.28. Suppose {a}}_, € C and {b}}_, C C, where |a;| < 1 and |bs| < 1,VE € [n].
Then

[ <
k=1

n
D _lax = bl
k=1

Proof. When n = 1, it clearly holds. Assume it holds for n.
Let {ax};t] CC and {bp}7 2] CC, |ag| <1 and {by} < 1,Vk € [n+1]. Then

= |Cnan+1 - dnbn+1|a

n n
[[a -]t
k=1 k=1

where ¢, = [[_; ak, d, = >_j_; bi. We have

n
[[a
k=1

n
= [[laxl <1
k=1

len| =
Similarly,
ldn| <1
Furthermore,
Cnlp4+1 — dnbn-&-l‘ - ‘Cnan-i-l - dnan+1 + dnan-i-l - dnbn-&-l‘
< ‘Cn - dn‘|an+1| + |an+1 - bn+1||dn|
< ‘Cn - dn‘ + |an+1 - bn+1|
n+1
< Z|ak — bg|.
k=1
So it also holds for n + 1. O

Lemma 9.29. Suppose {Y,,} is an iid sequence of r.v.’s with common cdf F' and chf ¢.
Let N be independent of {¥},}n,>1.
Suppose N ~ Poisson(c), then the chf of Z]kvzl Y} is

B(t) = B[ Z Y] = 0O i e k.
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Proof.

E [eitzgﬁ Y’“} = i E [eitzgﬁ Y’“]l(N = n)}
n=0

=S E [eit ShaYey(N = n)}
n=0

=Y E [eit i Yk} P(N = n)
n=0

ncle
= ;fb(t) p

e t)e)"
_ o3 009

n!

—C

n=0

_ oo -1).

Theorem 9.30 (Lindeberg-FellEr CLT). The Lindeberg condition implies

5n o N0, 1),

S,
where Sp, =Y 1 X

Proof. To show f—" = N(0,1), it is equivalent to show

b,y (t) = [] 650 (t/50) — €77,
k=1

by the Continuity Theorem. Then it suffices to show

[[ox.(t/s2) — ™%

k=1 |

H ed)xk (t/sn)=1 H ¢Xk (t/sn)
k=1 k=1

<

12

n
H 6¢Xk (t/sn)—1 _ 6_2’
k=1

H eOx (t/sn) =1 _ H bx, (t/sn)
k=1 k=1

n ‘exzzlka (t/32)-1) _ o=t

+

— 0.

Then it suffices to show

— 0,

H e®xy, (t/sn)=1 _ H bx, (t/sn)
k=1 k=1

99
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and ( since |-| and e’ is continuous,)
> (¢x, (t/sn) — 1) = (—£7/2) — 0.
k=1

Since

‘equk(t/sn)—l‘ < Leloxersl ¢ Lot _ .
(& (&

and
|9, (¢/s0)] < 1,

by Lemma 9.28,

n
bxp, (8/50)=1 _ H bx, (t/sn)

k=1

<Z\ P (1)

[
M: I

‘ bx;, (t/sn)=1 _ 1 _ (x, (t/sn) — 1)‘

k=1
Note that for z € C,
>k
z
le* —1—2z| = i
k=2
o0
<Dkl
k=2
= Gk if |z <1
1—|z] ’

1
<20z, if 2| < 3

< dl2], it J2] <

M\Qﬁ

1
27

for any 0 < § < 1.
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Now for fixed t € R,

|px, (t/sn) — 1| = ‘]E [eith/sn] B 1‘
e a1

<E|

e tXnk/sn _ Xy /80 — 1”

(th/sn)Q]

<E|
2!

t2 2

o 1)
< — max & < -,YV0< <1,
2 1<k<n 82 2

when n is sufficiently large by CorollAry 9.27 from the consequence of Lindeberg condition. Then
since |¢x, (t/s5) — 1| < §,Vk € [n],

[ ¥t/ ~ ] oo/
k=1 k=1

< D[Rkt 1 (o, (t/50) ~ D)
k=1

S

<D dlox,(t/sn) = 1)

x>
Il

t2 n 5 t2
<o0— =6—,V0<d <1,
72 ;ak 570 <o <

for n is sufficiently large.
Thus,

[T e? s =t = T éx. (t/sn)| — 0.
k=1

k=1

Next, since for any k € [n],

E[Xy] =0 and E[X}] = 03,
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we can write

(0x,(t/sn = 1)) = (=t°/2)

T — .t
E (etik/bn _ 1) —_ z—E[Xk] -
1 on k

— (it)*E[X}]
252

M- 114-

ol
Il
—

=1

, t 1/ it\?
E (dka/sﬂ il Xy - (Z) X,?)
Sn 2 \ sy,

E(x)

1<E(*)]l (‘Xk
E

Il
bl
Silngh
I

£
Il
-

[
M=

< emn

Sn

~))

=~
Il

~ X i X
:Z (*)]l( k <e)+ZE(*)1<k >€)
Sn Sn
k=1 k=1
=1+ 11I.
Since
n X,
< — <K
<> B (|35 <o)
k=1
n 1 ¢ 3 X
<SS Bl Ex] 1|2 <
ECAN(EIED)
k=1
|t|3 n Xk 3 Xk
< El|l—| 1 <
6 Z sn S’", 6
k=1
|t|3 n Xk 2 Xk
<SPS e s
k=1
P o e
STl eT e
k=1 T
and

I <S e |2x
EEACI(IED)
i 1 2 /X,
<2N B = 1([2E
> r (521 (12> 1))
2 & X
:SQZE<X,§]1(‘S’“ >e>)

k=1

tX 4

Sn

— 0,
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by the Lindeberg condition. O

Theorem 9.31 (Second Converging Together Theorem). Let us suppose that {Xun}tn>1u>1-
{Xutuz1, {Yaltn>1 and X are random wvariables such that for each n > 1, Y,, {Xyn} are all
defined on the same prob. space. Suppose for each u > 1 that X, , = X, as n — oo. Furthmore,
Xy= X asu— 0. IfV e >0, we have

lim lim sup P(|Y,, — Xyn| >€) =0,

H—00 N—00

then
Y, = X asn — oo.

Proof. Suppose f: R — R is bounded and uniformly continuous on R. Our goal is to show

lim sup|E [£(Y)] — E[f(X)]| = 0.

n—oo

Fix € > 0 and define

Letting n — oo,
i sup|E[£(Y,)] ~ B[f(X)]| < lim sup|B [f(Y,)] ~ B [f(Xon)] +0
+ [E[f(Xu)] = E[f(X)]].
Letting u — oo,

)

Since
|E [f(Yn)] -E [f(Xu,n)” <FE (|f(Yn) - f(Xu,n)|]1|f(Yn)*f(Xu,n)|<6)
+E(If(Ya) = F(Xum) L5 vy - () >e)
< E(wy(e)) + 2MP (|Y,, — Xun| > €).
So
lim lim sup|E [f(Yn)] — E[f(Xun)]| < wg(e) +2MP lim lim sup (|Y,, — Xun| > €)
= wy(e).

Let € — 0, then wy(e) — 0, so

lim sup|E [£(Y)] - E[f(X)]| = 0. O

n—oo



104 CHAPTER 9. CHARATERISTIC FUNCTIONS AND THE CENTRAL LIMIT THEOREM

9.5 CLT for m-dependent random variables

Definition 9.32. A sequence of r.v.’s {X,,},>1 is m-dependent (m € Z?° fixed.) ifVt € Z¥,
o(X;,7 <t)and o(X,,j > t+m+1) are independent.

The most common example of a stationary m-dependent sequence is the time series model called
the moving average of order m.

Definition 9.33. Let {Z,} be iid and define for given constants ¢1, ..., ¢, € R the process
m
Xe=> ¢;Zj, t=0,1.--.
j=1

Example 9.34. X; = Z;"Zl ¢jZi—j and Xpyp = Z;nzl ¢jZy4m—j are independent. Then Xj and
X; are independentV |k — | > m. Thus, the sequence {X,},>1 are (m — 1)-dependent.

Remark. m-dependent implies k-independetVk > m.

Theorem 9.35 (Hoeffding and Robbins). Suppose {X,,n > 1} is a strictly stationary and m-
dependent sequence with E(X1) =0 and

Cov(Xy, Xitn) = E(XeXeyn) = 7v(h).
Suppose
Vi 1= 7(0) + 2 y(j) #0.
j=1

Then
Ly
— X; = N(0,vp,).
Vin i=1

Proof. (a) Part 1: Variance calculation.
o 1 n 1 n
nVar(X,) = nCov E;Xi,ﬁZ;Xj

1 n
= ZVar(Xi) +2 Z Cov(Xi, X;)
i=1 1<J
2 o
=(0) + 527(3 — )
1<J
n—1

=7(0) + 23 inln i)

i=1
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Since v(I) = 0 if |I| > m, letting n — oo,

m

nVar(X,) — v(0) + 2 Z (k).
k=1

(b) Part 2: The big block-little block method. Pick n > u > 2m. Consider the following diagram.

fl

(1) L5 (=) £ () = @u—m) 2 @u)eee (= a2 ru—m) = ()" (),

Let

so that = — % and define

él :X1+"'+Xu—ma
52 - Xu+1 + - +X2u—ma

& = X(r—l)u—i—l + o+ Xwem,

which are the “big block” sums. Note by stationarity and m-dependence that &;,..., &, are iid
because the little blocks have been removed. Define

:£1+"'+§r €++€r

Xun :

Vi vV

From the CLT for iid summands, as n — oo,

Xun = N <0, Varu(gl)) —: X..

Note that

Now observe that as u — oo,

Var(§1) _ Var (ZL‘{" Xi)

u u

o (S

u u—m

u—m

= (u — m)Var (yu_m)

— U 1 = vy,
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by the part (1). Thus, as u — oo,

X,=N (o, Varf”) = N(0,v,) = X,

since a sequence of normal distributions converges weakly if their means (in this case, all zero) and
variance converge (Continuity theorem). By the second convergence together theorem, it remains
to show that

> e) =0.

e
lim lim sup P ( | Xun — 2:’:71
U— 00 N—00 \/ﬁ

Fori=1,...,r, let
Bi={iu—m+1,...,iu}

be the m integers in the ithe little block, and let
B, ={ru—m+1,...,n}

be the integers in the last little block coupled with the remainder due to u not dividing n exactly.
Then we have

X,

NG

i€B, 1€EBr_1 i€B,

and all sums on the right side are independent by m-dependence. Also, by the stationarity ((r —

1)iid),
n Xz 1 m n—ru+m-+1
Var (221\_/% - Xun> = ((r —1)Var (Z Xi> + Var ( Z X; )
i=1 =1
Note that

h(n):=n—ru+m
n
=n-— [f}u—l—m
u
n
<n—(——1)u+m
u
=n—-n+u+m

=u+m.
Thus for fixed u, as n — oo,

SUP ;¢ [y4m] Var (Zgzl Xi)

n

— 0.

) h(n)
~Var Z;Xi <

Also, since r/n — 1/u as n — oo,

% ((r — 1)Var <§m: X1>> ~ %Var <§: XZ) — 0.
i=1 i=1
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By Chebychev’s inequality

"X,
lim lim sup P (‘Z:l_l — Xun
U—00 N—00 \/ﬁ

1 X
> e) < lim lim sup — Var (231_1 - Xun)
U— 00 N—00 € \/’E

=0. O
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Chapter 10

Point process

10.1 Borel Measure

Definition 10.1. Let F be a non-empty set, A family of subsets £ of E is called a o-algebra if
(a) ECE,

(b) if A€ &, sois A,

(c) if Ay, Ag,--- €&, s0is U2 Ay.

Remark. (a) We can measure the whole set E.

(b) A € £ measurable, then A¢ should be measurable. If ;(A) < oo, u(A°%) = pu(E) — p(A).

(c¢) If A; and Ay are disjoint, p(A; U Ag) = u(Ayr) + u(Asz).

(d)
A1 NAS AfNAy, AiNAyeé.
/.L(Al U Ag) = U ((Al n AS) [ (Ai n AQ) L (ﬁAl n Ag))
— j(Ax 1AS) + u(AS ) Ag) + (A1 N Asg)
= (A1 N A3) + (A1 N Az)) + (u(AT N Az) + p(Ar N Az)) — p(Ar N Az)
= p(A1) + p(A2) — p(A1 N Az).
Definition 10.2. Suppose E = R?,
B:= {(al,bl] X (ag,bgﬂal < bhag < bQ}U@7
which are all the rectangles.

Remark. A€ is not a rectangle.
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Since for any A, B € C, ANB € B, so B is a w-system. Since A € B, A° ¢ B, and ALl B may not
in B, B is not a A-system. Thus, B is not a o-algebra. The borel subsets of R?, denoted as B(R?),
is the smallest o-algebra that contains B (proved by the axiom of choice).

Definition 10.3. A Hausdorff space X is a topological space in which distinct points have disjoint
neighbourhoods, which means for any z,y € X, there exist ry,r, € RT, and B (z) and Bffy (y)
such that

B (x)n By, (y) =0,

where d is the corresponding Hausdorff distance or Hausdorff metric.

Definition 10.4. A borel measure j on the Hausdorff space R? is a mapping from B(R?) to [0, oo]
that satisfies if Ay, Ag,--- are disjoint subsets of B(R?), then

n=1 n=1
Remark. The choice of Borel measure which assigns
u(a,b] x (e,d]) = (¢ —a)(d—1b),V(a,bl,(c,d] € B

is sometimes called “the” Borel measure on R?. The measure is actually the Lebesgue measure
restricted on the Borel algebra B(R?), which is a complete measure and is defined on the Lebesgue
o-algebra (all Lebesgue measurable sets form a o-algebra).

Definition 10.5. Let (X, T,d) be a topological metric space. The Diameter of a B € (X, T),
D(B) = sup{d(z,y) | z,y € B}.
If B is bounded, then D(B) < 0.

10.2 Measure

Theorem 10.6. Suppose p1 and o are two measures on (RQ,B (R2)) such that for any B € B,
u1(B) = pe(B). Then
p1(A) = p2(A), VA € B(R?).

Definition 10.7 (Measurable sets). A classical solution to the measure problem consists in at-
tempting to approximate the measure of a complicated set using simple sets. More precisely,
suppose we have a class of simple sets S which we know how to measure (these would contain
events, rectangles and finite unions of rectangle for example). Then, given some arbitrary set A,
we can define an inner measure py(A) and an outer measure puo(A) of A by letting

pr(A) =sup{u(E): EC A E € S} and po(A) =inf{u(E): ED A E € S}.

Note that the inner and outer measures of sets in S are clearly the same as the measure we have
already assigned to them. In this framework, one calls a set A measurable if po(A) = pr(A), in
which case we assign u(A) = po(A) = pr(A).



10.2. MEASURE 111

Definition 10.8. Let (X, T) be a topological space, and let ¥ be a o-algebra on X that contains
the topology T. Let M be a collection of (possibly signed or comlex) measure defined on X. The
collection M is called tight (or uniformly tight) if for any € > 0, there is a compact subset K, of X
such that, for all measures p € M,

(K~ K < e,

where |p| is the total variation measure of . Very often, the measures in question are probability
measure, so the last part can be written as

w(Ke) >1—e.

If a tight collection M consists of a single measure u, then p may either be said to be a tight
measure or to be an inner regular measure. If Y is an X-valued random variable whose probability
distribution on X is a tight measure, then Y is said to be a seperable random variable or a Radon
random variable.

Example 10.9. Let Y € (2,8, P). Then Y is tight.

Proof. Let € > 0. Since P is nondecreasing and

lim P([—=z,z]) =1,

r— 00
there exists K. = [-n,n] C R' such that P(K.) > 1 —e. O

Example 10.10. Consider R with its usual Borel topology. Let J, denote the Dirac measure, a
unit mass at the point  in R. The collection M; := {d,, | n € N} is not tight.

Proof. Assume there is such a comact K.. Then there exists N € ZT such that sup K. < N < 0.
However, dy41(K:) =0 <1—¢ when 0 < e < 1. On the other hand, the collection M := {4y, |
n € N} is tight: the compact interval [0, 1] will work as K, for any e > 0. In general, a collection of
Dirac delta measures on R"™ is tight if and only if the collection of their supports is bounded. [

Definition 10.11. Let p be a measure on the o-algebra of Borel sets of a Hausdorff space X.

e 1 is called inner reqular or tight, if for any Borel set B,

w(B) = sup{u(K) | K C B and K is compact}.

e 4 is called outer outer regular if, for any Borel set B,
w(B) =inf{u(U) | BC U and U is open}.
e 1 is called locally finite if every point X has a neighborhood U for which p(U) is finite. (If p
is locally finite, then it follows that u is finite on compact sets.)
Definition 10.12. A measure p is called Radon measure if it is inner regular and locally finite.

Remark. The Lebesgue measure is a radon measure, instead of writing u(B) for B € B (RQ), we
will write
|BI.



112 CHAPTER 10. POINT PROCESS

10.3 Random measure and Point process

Definition 10.13. Let M be the collection of radon measures on (R?, B(R?)). Set M, C M be
these € M such that
w(A) €{0,1---,00},VA € B(R?).

Example 10.14. Let = € R%. Set §, € M, by

1, z€A
MA){ 0, ¢ A

Suppose x1, T, -+ are in R%. Set
oo
uA) = b, (A).
k=1

Then 4 is a counting measure and p € M,,. So for any bounded (finite?) B € B(R), u(B) < co. In
our compact set, we do not want any accumulation point, so we just consider finite sets.

Let (2, .A, P) be a probability space.

Definition 10.15 (Random measure). Let (RQ, B (Rz)) be a measurable space. A random measure
on (Rz, B (RQ)) is a transition kernel from (€2,.4) into (R2, B (R2)). More explicitly, a mapping

N:QxB(R*) — Ry
is called a random measure if
(a) for any B € B,

N(,B):Q— R,

w+— N(w, B)
is a random variable,
(b) for any w € Q,
N(w,"): B(R?*) - Ry
B+~ N(w,B)

is a radon measure on (R?, B(R?)).

Call a function
K:Q1 X82—>[0,1]

a transition function if

(a) for all By € Bo,

K(-,B2): Q2 —[0,1]
w— K(w, Bs)

is B1/B([0, 1])-measurable, (random variable taking value on [0, 1], e.g. P(Y =1|X) = f(X).) and
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(b) for any w € Q,

K(w,): By —[0,1]
BQ (g K(w7Bz)

is a probability measure on (2, B2). (e.g. P(:|X = 1) on some sub-o-field Bz of B1 with Q1 = 2.)
Transition functions are used to define discrete time Markov processes where K (w1, B2) represents the
conditional probability that, starting from wi, the next movement of the system results in a state in
By € 62 - 61.

Remark. We have the following.
e We may denote N (-, B) as N(B).
e Then we may regard N as the collections of random variables {N (B),BeB (Rz) }

We shall denote the radon measure N(w,-) as N,,.

e We may regard N is a random measure that assigns a measure N, to every outcome w € €.
(A random element N of a collection of Radon measures is called a random measure.)

N(B) is a r.v., meaning for any B € B and any C € B(R),
{w:N(w,B) e C} e A.
Let 1 be Lebesgue measure on R? and X be a nonnegative r.v.,
N(w,B) = X(w)u(B).
Definition 10.16. A random measure N is a point process if for any w € Q, N(w,-) € M,.

Example 10.17. Let X be a multivariate (or d-variate) r.v. on R%. Define a point process N := dx,
where for A € B(R?),

1, if X € A;
ox(4) = { 0, if X ¢A.

Then for any B € B(R?),
P(N(B)=1)=P(6x(B)=1) = P(X € B) =: u(B).
Hence dx(B) = N(B) is a r.v. and N(B) ~ Bernoulli (1(B)). Hence

E [e*S‘SX(B)} =1+p(A)(e®—1).

Theorem 10.18. Suppose X1, Xo,... are r.v.’s in R? and 7 is a nonnegative integer value r.v.,
independent of X1, Xs,.... Define

N : B(R?) — Z7° U {0}
Ar— > " 6x,(A).

Then N(A) is a r.v., which counts the number of points Xy, ..., X, that belongs to A.
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Remark. Regard X; as the position of the i-th particle.

Example 10.19. Let X1, Xo,..., X,, be an iid such that P(X; € A) = u(A) for any A € B(R?).
Define

N(A):=) 6x,(A),YA € BRY).
i=1
Since 0y, (A), ..., 0x, (A) “ Bernoulli (u(A)), we have
N(A) = 0x,(A) ~ Binomial(n, u(A)).
=1

Moreover, E[N(A)] = nu(A), Var(N(A)) = nu(A)(1 — u(A)), and
E |:€_SN(A):| — [1 + /’L(A) (e—s _ 1)]" )

Suppose sets Ay, ..., A;, € B(R?) forms a partition of R?. Note

n k k
n=>Y 0x,RY)=NRY)=N <|_| Ai> =) N(4)).

The random vector (N (A1), ..., N(Ag)) has a multinormal distribution with parameters n, u(A4y), - - - u(Ag).
(Consider there are k candidates and n voters.) Then for n; > 0 and ny + -+ +ng = n,

n!

P (N(A1) = n1, N(Ag) = ni) = (A" - p(AR)]™

ny!-ong!

Proof.
n!

P(N(Al) = 77,1) = [U(Al)]nl [1 _ U(Al)}n_nl )

nl(n —nq)!
Given N (A1) = ny, there are n — ny candidates remaining, then
1(Az2)
N(As)~B(n— —_
()~ (= 208 ).

p(A2)

where 555 = P(votes for 2 | not votes for 1). Hence

P(N(Al) = nl,N(AQ) = 712)
= P(N(A4;) = ny) P (N(As) = na|N(A;) = ny)

_ n' ni _ n—mnmi (TL - nl)' :U'(AQ) 2 _ .u(AQ) nomTne
 ngl(n—ny)! (A [ = p(Av)] nal(n — ny — ngy)! {1—/1(141)} {1 l—u(Al)}
(A" (A" [1 - (A — AT
nylngl(n — ny — na)!
Then use induction to finish the proof. O

Remark. {N(A;)}i=1, . are not independent.
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Example 10.20. Let X7, X5,... be iid, and 7 a nonnegative integer value r.v., independent of
X1, X5, .... Define

Then N(A) is a random sum of iid Bernoulli r.v.’s. Moreover, E[N(A)] = E[r]u(A), Var(N(A)) =
Elrlu(A)(1 — p(4)) + p2(A) Vax(r), and

=E([1+ (e 1) D]
=G, (14 (e7® = 1) u(4)),
since the generating function of 7 in terms of z is G.(z) = E[z7]. If Ay,..., Ay forms a partition
of R%,
k k
E |exp (— ZSzN(Az)> =F |E |exp (— Z siN(Ai)> TH
i=1 i=1
k T k
=F (Z G_SW(Ai)) =G, (Z €_siM(Ai)> ;
i=1 i=1

since the joint laplace transform of {N(A;)}¥_, given 7 =n is
k
exp (— ZszN(Az)> T = n]
i=1

k
=Y exp <_ Z 8mi> nlnnilnkv [(AD]"™ - [u(Ap)])™

E

=3 ] [ a(a0)

= (Z esiu(A¢)> .
Assume 7 ~Poisson(A). Then E[N(A)] = Au(A) and
Var(N(4)) = Mi(A)(1 — u(A)) + A?(4) = Au(A).

Since
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we have

B eV = Gy (14 (77 = 1) p(A)) = M) = o),

Thus, N(A) ~ Poisson (Ai(A)). Suppose Ay, ..., Ay forms a partition R%. Then

k k
exp <_ZSiN(Ai)> =G; < BSW(AO>

k
= exp ()\ (Z e iu(A;) — 1))
i=1 ’
( (4i) —

E

k
=exp | A (Ze S u(AQ))
i=1 i=1
k
[t

N
Il
—

I

@
Il
—

E {e*SiN(Ai)} .
Thus, N(A;),..., N(Ax) are independent Poisson r.v., and N(A4;) ~ Poisson (Au(4;)).

10.4 Poisson random measure

Let N be a random measure on (£, F, P) such that for each bounded A € B(R%), N(A)() €
77° U {oo} on Q, i.e., N(A) € M,,. The point process

N:Q— M,
is called a Poisson random measure or Poisson point process if

(a) for disjoint bounded Borel sets Aq,..., A,, N(A1),...,N(A,) are independent random vari-
ables,

(b) there exists a measure y : B(R?) — [0, 0c] such that for all bounded B € B(R?), u(B) < oo
and N(B) ~Poisson(u(B)). The measure (4 is called the intensity of N.

Example 10.21. Let {X;,t > 0} be a homogeneous Poisson process having rate A > 0. For
I = (a,b], define N(I) := X, — X,, denoting the number of points in interval I. Define for
1= (a,8], (1) == A(b — ).

(a) Let 0 < a1 < by < - < a, <b, <oo. Fork =1,....n, set Iy = (ag,bg]. Since the
intevals Iy, ..., I, are pointwise disjoint and a Poisson proces has independent increment, the r.v.’s
X, —Xays- -, Xp, — X, are independent. So N(I),...,N(I,) are independent random variables.

(b) For I = (a,b], N(I) ~ Poisson (A(b — a)), where A(b—a) = p(I).
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Thus, N is a Poisson random measure. Using the above measure N, u can be extended to B(]0, 00))
in a way so that N is a Poisson random measure.

Example 10.22. Let X7, X5, -- be iid d-variate random variables having distribution v, that is,
for any B € B(R?), P(X € B) = v(B). Let 7 ~ Poisson()\), independent of X;, X»,---. Define

N :B(R%) — 77°

B> 6x,(B).
k=1

From Example 10.20, we have N is a Poisson random measure with intensity u = Av, where Av
denotes a scalar multiple of the measure v.

Example 10.23. Define
In,m = (n - 17”] X (m — 1,m],Vn,m € 7.

Then the sets {I, m }nmez form a partition of R%. Let v, , be a probability distribution on I, .
For example, v, can be the uniform distribution on I, .. Let A, > 0. Using the example
10.22,Vn, m € Z, there exists a Poisson random measure Ny, ., on I, ,, having indensity

Hn,m = /\n,m’/n,m-

Assume that the Poisson random measures { Ny, p, }n.mez are independent. Now define a process N
and a measure y on R? by setting for each A € B(R?),

N(A)=> Noym(AN Ty m),

n,m

p(A) = Z Nn-,m(A N In,m)~

n,m

(a) Let By, ..., Br C B(R?) be bounded disjoint. Then for any n,m € Z, {B1N Iy m,- ., BN lym}
are disjoint subsets of I, ,,. So for any n,m € Z, the r.v.’s Ny, ;o (B1 N Lnm), - -« s Non (B N Iym)
are independent. Since the Poisson random measures N, ,, are independent. Since for i =1,...,k,

N(B:) = Num(Bi) NI,
n,m

and by assumption, { Ny m }n.mez are independent, N(B1), ..., N(By) are independent.
(b) Let B € B(R?) be bounded, then {{n,m}: BN I, ,, # 0} is finite. Hence

N(B) = Nupm(BNIym)

n,m
is a finite sum of independent Poisson r.v.’s. Since r.v.’s {Ny, (B N I, )} are independent and

Ny (B NI ) ~ Poisson (fy, m (B N Inm)),
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and the sum of independent Poisson distributed random variables is Poisson whose parameter is
sum of the parameters, i.e.,
N(B) ~ Poisson(u(B)),

where
U(B) = Z/J’TL,"L(B N In,m)~

n,m

Example 10.24 (Cox Random Measure). Let N be a point process on R? and let  be a random
measure on R? such that 1 ({x}) = 0. For example, for bounded B € B(R%), define

1 g =12
v(B) ::/ (2> e 2" dr,
B v

to be the standard normal distribution in RY. Let A be a positive random variable, say A ~ exp(1).
Define n := Av, or n(B) = Av(B) for any B € B(R?). Then 75 is a Cox random measure if
conditioned on i = u, N is a Poisson random measure with tensity p. In this case,

P(N(B) = k) = E(P(N(B) = kln))

_B (772!3)5”(3)) .

Then N are said to be conditionally Poisson, or doubly stochastic Poisson, or Cox processes.
In the case when 1 = Av with A and v defined above, we have

P(N(B)=k)=E (We—m(m>

o0 ko k
— / A"y (B) efl/(B))\ef)\dA
0

k!
V¥ (B) * (u(B) + 1) AR —((B)+1)A
= Y e d\
(v(B) +1) 0 I'(k+1)

_(,_ B v(B) \*

N v(B)+1)\v(B)+1/
Thus, N(B) is geometrically distributed. Since N(B) is not Poisson distributed, N is not a Poisson
random measure.

10.5 Integration w.r.t Measure

Let S be a set and S an sigma algebra on S and y is a measure on (5,S). (Think of S to be R?,
S = B(RY) and p point measure.) The goal is to give meaning to integral of f with repect to the
measure p denoted by

[ s@tao) = [ fdn = up

Definition 10.25. Let N be a random measure on (S, S).
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(a)
Nf = /S f(@)N(da),
or

Nf(w) = / f(z)N(w,dz),Vw € £,
s
defines a positive random variable N f for any f € S/B(R,).

(b)
u(B) = E[N(B)] = /Q N(w, B)P(dw),¥B € S,

defines a measure p on (S,S). Hence

1(dz) = E[N(dz)] = /Q N(w, dz) P(dw).

(c) EINf]=pf.

Proof. By Fubini theorem,
nf = fs f(@)(d) = /S e /Q N(w, dr) P(dw) = /Q /S J(2)N(w,de)P(dw) = EINJf]. O

Definition 10.26. Call a function f : S — R measurable if for any t € R, {x € S : f(x) <t} € S.
For example, if (2, F, P) is a probability space, a measurable function X is just a r.v. and {w €
Q: X(w) <t} € F. Then taking the probability measure, P ({w € Q : X(w) < t}) = Fx(t), where
Fx(t) is the cdf of X, since (P o X~ 1)((—o0,t]) = Fx(t).

How does one integrate f w.r.t. u 7 How does one construct
| #@mtdn) = [ dn = s
s

Recall in calculus, how did we construct fab f(x)dx for a continuous function f > 0 ? Thought
of the integral as the area under the curve and make approximation using rectangle (if you will)
and check that limit exists as one make finite partitions. Let A € S and recall

1, se€A,
]IA(S)—{ 0, se A°.

Then define
/S La(s)pu(ds) = B[1a] = pu(A).

Let Aqy,..., A, € S be pairwise disjoint and let ¢y, ..., c, € R. Define

@) = eila (@),
=1
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which is a simple function. Then

n

[ rmtan) = [ S eitantan =3 e [ L wntan) = S et

i=1
Recall f: S — [0,00) is measurable, then for a < b,
{seS:a<f(s)<b}={seS:f(s)<b}~{seS:f(s)<a}es.

For n = 1,2,---, construct simple functions {f,},cz+ such that f; < fo <--- and f, T f. Then
we define

[ 1@t = [ (suias).
For k=1,...,n2",

Ak:{seS:k_1<f(s)<2i}.

2TL
Angnipr ={s € 5: f(s) > n}.
Set for k=1,...,n2" ¢ = %, Cnant+1 = n. The function
n2™+1

fals) = Y ala(s)

k—1
on

is a simple function. When n going from n to n + 1, each interval ( ,2%} gets split into two

disjoint intervals
2k—2 2k—1 2k—1 2k
2n+1 ? 2n+1 |_| 2n+1 ? 2n+1 .

Ay gets split into two disjoint sets

2k—2 2k—1 2k—1 2k
-1 ~1
f (< on+l 7 9n+l :|)|_|'f << gn+1 ’2n+1:|>'
If s is in the former, then f,y1(s) = fa(s) = £3. If s is in the latter,
2k —1 k-1
frv1(s) = ol fn(s) = on

Thus for any s € S, fn(s) < fnt1(s) and fr(s) T f(s). Note lim,, o frn(s)u(ds) exists but may be
0o. Set

1@ = i [ gt

where
5ot = 37 E )+ A ).

2?’7,
k=1

Let f be a measurable real function on S. Then both f* and f~ are nonnegative measurable
functions, implying their integrals exist. If at least one of the integrals puf™ and pf~ is finite, then

[ st = [ 1)~ [ £ @uias).
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Example 10.27. Let S = R? and S = B(R) and u(dz) = g(z)dz, where g is a nonnegative and
piecewise continuous function whose Riemman integral is 1. So g is the density for a r.v. and then
u is a induced probabolity measure. Then for any A € B(R?),

p(A) = /}R2 Ta(z)p(dz) = /R2 1a(z)g(z)de = P(X € A).

Now if f is an integrable function w.r.t u,

/ f(@)ude) = / f(@)g(w)dz = E[f(2)].
R R

(Think of the density g(z) of the Lebegue measure is 1, which implies the random variable is
unformly distributed.) Then

A(dx) =1-dx = dx and / ldz = p(R) = oo,
R

in space (R, B(R), A) and

E[f]:/Rfd/\:/RfA(dx):/Rf~1~d9c:/fdsc.

Example 10.28. Let (S,S) be a measurable space. Let x € S, for measurable f > 0 and f is
defined at z, find [ f(t)d.(dt). Recall the measure 6, € M, and

1, z€A,
MA):{ 0, z¢&A.

Let Ain S. If f(x) = 14(x),
/ ()02 (ds) = / La(s)dz(ds) = 0z(A) = La(z) = f(2).
S S

Example 10.29. Let A;,..., A, € S be pairwise disjoint, and let ¢y,..., ¢, € [0,00), set

Fal@) =) cila,(2).
i=1

If o g Ur A

[ 1ot = i_ilciémmi) — 0= fua).
If € A for some j,

[ 1ot = i_ilciéxmj) — ¢ = fula).

Like before, let
n2"+1 k 1

fulz)= > o L (@) + 114, (2) 1 f(2).

k=1
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(z) < £ for some k =1,...,n2", then

/an(t)axwt) =S (1 (kglﬂ) = = @),

If f(z) >n
/S Fa(@)8a(dt) = nd, (F(n,00)) =1 = fu().
Thus,
/ Fa(£)6,(dt) = fu(2).
Then by MCT,

/ f)d.(dt) = nlirr;o fn( )0 (dt) = nILn;o fulz) = f(z),

when a f is nonnegative and measurable functlon.

Example 10.30. If f is measurable and f is defined at x,
[ 108:(0) = 5.1 =67 = £7(@) = (@) = (7 = F)la) = Flo)

since f*(z) or f~(x) must be 0. Theorefore, the integration of a function f w.r.t. to the point
measure J, is the evaluation of the function f at that point z, i.e., f(x).

Example 10.31. Let x1,...,x, be points in S and define a measure y by

A) = 0, (A),VAES,

which counts the number of x4, ..., z, that are in the set A. So p is a counting measure. Then for
measurable f and f is defined at z1,..., zg,
nf o= [ SOt =3 [ Fd G = Y s
k=1 k=1

Example 10.32. Let N be a point process on (5, S). For measurable f > 0, the Laplace functional

of N is given by
Ly(f)=E[eN]=E {exp (—/f(t)N(dt))] .

/ J(@)ulda) € R.
/S(af()+bg p(dx) —a/f p(dzx) +b/

where we think of the integral w.r.t p as a linear functional on the msble functions on S.

If p is a measure,
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Example 10.33. Let X be an S-valued random variable having distribution v, that is v(B) =
P(X € B). Define a point process N := dx. Let f be measurable. Since [ f(z)dx(dz) = f(X),
we have the Laplace functional of f is

Lot = o (- [ @)ix(an) )] = Blesp (1000 = [ e iaa)

If S =[0,00) and f(z) = s« for some s > 0, then

Loy () = / T e tu(dt) = Ele),

which is just the Laplace transform of X.

Example 10.34. Let X4,..., X, beiid S-valued r.v.’s with distribution v. Define a point process

N by
N =Y ix,.
k=1

exp <—§:/Sf(x)6xk(dx)>] =F [exp <_ i f(Xk)>‘|
= ;ﬁE [e_f(Xk)} _ (/S e—f<w>y(dm)>n — (e )"

Example 10.35. Let 7 be a nonnegative S-valued r.v., independent of Xy,...,X,. Set

N=> 6x,.
k=1

For f > 0 and measurable,

Ln(f)=e" Js f@)N(dz) _ R

Let f > 0 be measurable and consider
Ele™™|r=n]= (ye_f)T.

Then
In(f) = B[] = B[E[e M| )] = B [(ve™)].

Let G, be the probability generating function for 7, i.e., G.(z) = E[z7]. Then
Ly (f) =G, (ve 7).

If, for example, 7 ~ Poisson (1), G;(z) = e *1~2). Then

Since
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we have Ly (f) = e (=) Let m = Av, then Ly (f) = emm(i=e’). Suppose X ~ Poisson(A),
then

Example 10.36. A poisson random measure on (S,S) is a point process N so that Aj,..., A,
are pairwise disjoint in S. Then N(A;),...,N(A,) are independent poisson distributed r.v.’s with
parameter m(A41),...,m(Ay), respectively, where the intensity m is a measure on (S,S). Suppose
f=14for A€ S and N(A) ~Poisson(m(A)), then

Nf=Nly= /S]lA(:z:)N(dx) = N(A).

In this case,
Ly(14)=F [e_Nf} =F [e_N(A)} = emA) (1), (Let s =1).
Note
m(l—e ) = / (1 - e*]lA(“C)) m(dzx).
s

IfegdA 1l—eta@® =1 ¢ 0=0.Ifze A 1-—e 4@ =1 —¢! Then
m(1—e ') z/ (1—e")m(dz) = (1—e"')m(A).
A

Thus, Ln(14) = e ) In this case, Ly(f) = e=m(1=e),

Example 10.37. Let Ay,..., A, be disjoint sets in S and let ¢y, ..., ¢, be positive number, and

n

@)= exla, (@),

k=1
Then Nf = [ f(x)N(dx) =Y _, cxN(Ag). Then
1t = B =TT o] = (=St -9 ) (=0
= k=1

k=1

= eXp (— Zm (]_ _ eck]lAk)> _ em(lfe_f)???
k=1

10.6 Kernel

Definition 10.38. Let (S,S) and (T, 7) be two meaurable Polish spaces, e.g., S = R%.
Kernel is a mapping
v:Sx T — R+

satisfying
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(a) for any s € S, v(s,-) is a measure on 7.
(b) for any B € T, v(-, B) is a mesurable function on S.

Example 10.39. Let X be S-valued and Y be T-valued random variables, respectively. Let pu be
the distribution of X, i.e.,
uw(A)=P(X € A),VA€S.

Let A€ S and B €T. Then

If S is nice enough, there exists a kernel v such that
v(s,B)=P(Y € B|X = s).
Then v(X, B) is a random variable and

P(X € AY € B) = E[L4(X)v(X, B)] = /
S

]lA(s)y(s,B)u(ds)z/ v(s, B)u(ds).

A

Recall the discrete case,

P(X€AYeB) =) Y P(X=iY =j)

i€AjEB

=> Y P(Y =j|X =i))P(X =1i)
i€cAjEB

=> P(Y € BIX =i)P(X =1).
€A

So we can regard the sum as the integral, P(Y € B|X =1i) as v(s, B) and P(X = 1) as u(ds).

10.7 Randomization of a Point Process
Let N be a point process on (S,S). Write

N(A) =) 6¢(A),VAES.
k

Here £1,&5,- -+ are S-valued random variables and & can be thought of the location of the k-th
points. Now let 71,72,--- be a sequence of random variables on (7T,7), which are conditionally
independent given N and such that

P(ry € BIN) = P(7, € B|&,) = v(&, B),VB € T.
Here when &, = s, P(1g|k = s) is distribution for 7, i.e.,

P(Tk S B|fk = S) € R+,VB eT.
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Example 10.40. Let N be a Poisson random measure on (R, B(R)) with intensity m, which is
Lebesgue measure. Then

E[N(a,b)] =m(b—a)=b-—a.

Think of N as being the arrival process to a queue system.

A)=> "6, (A)VAES.

kEZ

Let {74 }rez be iid random variables independent of N that are nonnegative. Think of 75 as the
amount of work brought by the arrival at £;. Construct a new point process

N,(Ax B) = Z(s(gm)(/x X B)
k

for Ax Be S xT,ie., N, is a point process on the product space (S x T,8 x T).

Let uy be the distribution of £. Since given N, 7i just depends on &,

P (§(fk77'k)(A7B) = 1)

P&, € A, 1, € B)

[E[P(¢, € A, 71 € B)|N]]
[E[La(&)L5(Tk)|N]]
[L4(&k) E[Lp(7x)|N]]
[1a(&k) P (7 € BIN)]
[La(&k)v (ks B)]

v(s, B)puk(ds)La(s)

I Il
SRR e

[
PR

= [ vl Bynas).
Define a (product) measure v on (S x T,S x T) b
s By = [ s = [ s Buds) = [ [ vts.anpias)
- /3/T1/(3,dt)u(ds)]lA(s)]lB(t),VA «BeSxT.

Suppose f(X,Y) = g(X)h(Y), where g and h are nonnegative. Then

E[f(X,Y)] = Elg(X)h(Y)] = E[E[g(X)h(Y)|X]] = Elg(X)E[n(Y)|X]]

{ /h th} /E v(X,dt)]
[ ot | i

= | fls.t)y(ds,dt).
SxT
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Let p be the intensity of N and py be the distribution of &. Recall that p is a measure on (S,S)
defined by p(A) = E[N(A)]. Thus, for nonnegative measurable f on (S5,S),

uf = [S F(s)ulds) = /S /()N (ds
— | [ ren)] = pv

B |Y b s =k Zf@w] =S Elf(&)]
k k k
=;mew»

So 1 = Yoy pef . Note ¥y B[La,] = ¥y P(Ay). E[d(4)] = P(& € 4), and

u(A) = EIN(A)] =Y Elde (A)] =Y P& € A) = m(A).
k

k k

Since puf =3 pf, po (-, B) = 325 v (-, B).

E[N,(Ax B)|=E

S e (Ax B)| =Y B0, (A)5,, (B)] = > E[La(€)15(7)]
k k k

:ZP({keA,TkGB):%:/S v(s, B)px(ds)1a(s) Z/ (s, B) e (ds)

k

— [ vls.Byutds) = (4 x B).
A

Suppose f : S x T — Ry is measurable. Then E[f (&, 7k)|¢k] = [ [ (&, t)v (&, dt). The above
equation is a function of the random variable &, and for notational convenience, we write it as
E[f(&k,mk)|€k] = Df(&k). The v-randomization of the point process N is the point process N, on
the product space (S x T, S x T) given by

N, (Ax B)=> 0, rn)(AxB).
k
Let f: S5 xT — R, is measurable. Note

Nuf = f(s,t)Ny(dS,dt) = f(s’t) Zé(ik,m)(dsa dt)
k

ST SxT

= ; /S><T f(57t)5(§k,7'k)(d57dt) = % f(gkﬂ—k)'
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Since 7%’s are conditionally independent given N and &’s are known given N,

exp< Zfam>’ ]

:HE exp (—f (&, k)| V]

E[em ™| N] =

—HE [exp (= f(&ks k)| &k]
:HV e

K
)

Hence

= Ly (~log (7 (¢~1)).

Ln,(f)=E|[E[e

exp <Z log (¥ gk))>

since Ly (f) = E[exp (—>_, f(&))]. Thus, the Laplace functional of N, can be written in terms
of Laplace functional of NV and the kernel v.

Example 10.41. Suppose N is a Poisson random measure with intensity pu. Oberve that

pof = /S 9 (5)] u(ds) = /S | s tts.dutas).

Since Ly (f) = e*#(lfe_f)7 and ¥ -1 = E[1]&,] = 1, we have
L (F) = L (~1og (5 (7)) = exp (1 (1~ 7 (7)) = exp (s (1~ ()

_exp[ / / et (S,dt)u(ds)]:exp[—’y<1—e_f(s’t)>].

It follows that NN, is a Poisson random measure on the product space (S x T, S x T') having intensity
~v(ds, dt) = v(s,dt)u(ds).

Example 10.42. Let A€ Sand Be T.
Note

E[N,(A x B)|N] =

26(§k T) (Ax B) Z5€k(A)6
k

= ZE 9g, (A)07, ( = Za&c (A)P(my, € Bl&k)
k

- Zéfk £k7
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Also, if f(s) =1a(s)v(s, B),

FEN / La(s)wls, B)N(ds)

/ v(s, B)dg, (ds) = Z/ v(s, B)de, (ds)

/ fkv 5£k ds Z(s& Ska

v
>
2

Then

B4 x B = B[ [ vl BIN (@) = [ s Bncas) ()

_ /A /B (s, dt)u(ds) = /S /T Laxg(s, d)u(ds),

where v(ds, dt) = v(s,dt)u(ds) is the joint distribution of & and 7.

Example 10.43. Let N = )", 0¢, be a Poisson random measure and partition the random measure
N into j groups Ni,...,N;. An arrival § is put into group j w/prob P;(). Let 7 be random
variables taking values in the sets T' = {e1, ..., e;}, where e is the kth unit vector such that

P(7y, = ¢;|N) = v (&, {ej}) = Pj(&)-
Let N, be the randomization

Ny,

> (k)
k

Let A € S and consider the set A x {e;},

Ny (Ax{ej}) =D b(epm (A x {e;}) = N;j(A),
k

the number of points in group j. Let f: S x T — [0, 00) be measurable. Set f;(s) = f(s,e;). Then

J J
Nuf:Z(s(fkaTk)f:Zf(fvak) =3 f&e)mmey = DD Fi(6) L n=c))
K

E j=1 k j=1

J
=2 2 il ey = D> (Fefi) Ymemeyy = ZNa‘fj-
j=1 k =1

Jj=1k=1

<
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NH

Hence E[N, f] = 23'121 E[N;f;]. Note

=F|E ij(fk)]l{fk:ej}

k
Zf] gk

E[Njfj} =F ij(gk)l{m:@j}
L k&

=F

=E | ) fi(&)E 17—} | N]
L k&

=FE Zéﬁk(fj'P
k

= E[Nf]

= 5| [ mens)]| = [ en e

— [Pl £

So the intensity of the jth point process is P;(-)u, where p is the intensity of N. Note

=Z%m%

So the intensity of N, is Z P;(-)u = p. Next, since N, has intensity v(ds, dt) = p(ds)v(s,dt),
J
E H e Nili| = F {e_ e N"ff} =K [efN”f]
j=1

— exp // (s, dt)u(ds) (1 e S”)]

~ exp _—Z/P (1)
:Hexp{ /p 1_efj<>)]

exp|: /P l—e <s))}

is the Laplace functional of a Possion random measure with intensity P;(s)u(ds), we get N1,...,N;
are independent Poisson random measure with intensity P;(-)u.

Since

10.7.1 M/G /oo

Arrival forms a Poisson process {N¢, ¢ > 0} having rate A > 0. Service time sy, $9, - - - are iid having
df F. Fix a time ¢, an arrival at time & is still in the system if £ + s > t and has departed if



10.8. TRANSFORMATION OF RANDOM MEASURES 131
&k + s, < t. Let

N ={N,;0 < s <t}
Let F' be the distribution of S; and set

Pi(&) =1—F(t—&) = P(s1 +& > 1),

Py(§p) = F(t — &) = P(s1 + & < 1).

Then P; (&) is the prob. a customer which arrives at time & is still in the system at time ¢. Py(&)
is the prob. a customer departs by time given arrival at &. Then defining N; and Ny as the
number that belongs to group i, we get N; and N, are independent Poisson random measures with
intensities A(1 — F'(s))ds and AF(s)ds. The expected number of customer still in system at time ¢
has expectation

E[Nl(O,t]}:/O )\(l—F(t—s))ds:)\/O [ — F(s)ds,

and similarly, £ [N2(0,t]] = )\fg F(s)ds.

10.8 Transformation of random measures

Definition 10.44. Suppose (S,S) and (T, T) are measurable space. A mapping f: S — T is said
to be measurable if for any B € T,

fYB)=1{s€S|f(s) e B} €S.

Remark. If {B,},cz+ C T are disjoint, then {f_l(Bn)}nGZJr are also disjoint.

Proof. Assume z = f~Y(By) = f~1(Bs). Then f(z) € By and f(x) € Bo, which is contradicted by
B and B, are disjoint. O

Theorem 10.45. Let u be a measure on (S,S). Given a measurable mappping f : S — T and
T =o(T). Define

pof:T —R
B — pu(f71(B))
Then po f=1 is a measure on (T, T).

Proof. (a)
po f7H0) = p (f71(0)) = u®) =o.

(b) Let {Bp}nez+ C T be disjoint. Since p is o-addtive,

(wo f7) <|_| B) =p (fl <|_| B)) =p <|_| f1<Bn>> => (pof By O
n=1

n=1 n=1 n=1
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Example 10.46. Let X : Q — R be a random variable. Then Po X! : B(R) — R is a measure
n (R, B(R)). Since
PoX'(R)=P (X '(R)) =P(Q) =1,

Po X! is a probability measure on (R, B(R)), which is called a distribution of X.

Theorem 10.47. Let g be a nonnegative and measurable function on T. That is
g: T — Ry
so that g~Y(B) € T for all B € B(Ry). Then

/T gt) [ 1] (dt) = /S g0 f(s)u(ds) = /S 0 (f()) p(ds).

_[ L osefTiA), _ _
]lffl(A)(s) = { 0, s¢ f*l(A) - { 0, f(S) ¢ A. = ]]-Af(s)

Proof. Let g =14. Then
[ 140 o () = o £ ) = e (771 () = [ 11t
T S
— [ 1at¢eutds) = [ [Lao fis)n(as)
S S

Set g =>"1 , ¢;la,, where ¢; e Rand A; € Sfor i =1,...,n. Then

JRCIT o [ L fwo s~

[14, o f] (s)u(ds)

(m) o

90 f(s)u(ds).

M:

i=1

I
M=

m\

Ci

=1

|
e~ o

Let g > 0 be measurable, then 3{g,, } ,cz+ simple such that g, T g. Then g, o f~! 1 go f~1. By
MCT,

[ a0 teuts = [ 1 g,0 f(s)utds)
S S
= 1im [ g0 f(hulds)
S

n—oo

= lim [ go(t) [wo 7] (dt)
T

n—oo

:/g(t) [0 f71] (d8). =
T
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Example 10.48. By laws of the unconscious statistician,

Elg(x)] = /Q 9(X (w)) P(dw) = / o) [P o X1 (dx) = / o) F(dz).

R R

Example 10.49. Suppose N is a point process on (S,S). Write N = >, d¢,. Then No f~1is a
point process on (T, 7). Let g be a nonnegative measurable function on 7. Then

(Nof)g= / G(ON o 7N (dt) = /S g0 f(s)N(ds) = /S fof(s)S 0e,(ds)
k

T

= gof(&) =Y g(f(&)-
k k

So setting 7, = f(&), we have No f~1 =%, 6, =3, d¢(¢n)- Let m be the intensity of N, then
mo ! is the intensity of N o f~! since

E[No f~(A)] = E[N(f~1(A)] = m(f~1(A)) = mo f1(A).
Next the Laplace functional of N o f~! is

Log-1(9) = E[exp (=N o f7'g)] = E [—/Sgo f(s)N(ds)] = Ln(go f)-
Finally, let N be a Poisson random measure on (S, S) with intensity m. Then
Lyog-1(9) = Ln(go f) = exp [-m (1 — e /°9)]
=exp[-m(l—e9)o f] =exp[-mo (- e 9],

since

1—e 9o/ = (L—e ) f(s)(=1[f(s)] = (e79) (f(s)) =1 — e™9°1®) vse 8)
So N o f~! is a Poisson random measure with intensity mf .
Example 10.50. Suppose N is a Poisson random measure on R x R, with intensity
m(dt, dx) = \(dt)u(dz),

where p is the distribution of a nonnegative random variable. Let N = >, d(¢, ), where § € R
and 7, € RT. Consider an infinite server queue, and let &, be the arrival time and 75, be the service
time of the arrival ;. Define

f:RxRy =R
(s,z) — s+ .

Then Nf~1 = Yok 0f(enmr) = Dok On+m» is the point process giving the departure time from the
system. It is a Poisson random measure with intensity m o f~!. Let g : R — R,. Then

(mo o= [ otwmo = [ gofstmasan = [ [ gs+orasiutan

g o
R RxR

Let £ = s+ t, then dx = ds. Then

(mof_l)g:/]w/Rg(x)/\dx,u(dt):/Rg(a:) Vw u(dt)} /\dx:/Rg(x)Adx.

mo f~1(dy) = \dy.???
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10.9 The Distribution of a Point Process

Definition 10.51. Let A/ be the set of all counting measures on S given (2, .4, P), consisting of
all events of the form

Esr={meN | m(A) =k}, Vcompact A € S,Vk €N,

i.e, it is the event that there are exactly k points in the region A. The measurable space (N, B(N))
is called the canonical space or outcome space for a point process in S.

Remark. The o-field B(N) includes events such that

Epijy N Ea, g, ={meN :m(A;) =ki,...,m(A,) = ky},

ny

i.e., the event that there are exactly k; points in the region B; for i = 1,...,m. It also includes, for
example, the event that the point process has no points at all,

{N=0}={meN:m(A)=0,VA €S},

since this event can be represented as the intersection of the countable sequence of events { E(0,n),0 fnez+ -
Here B(0,7) denotes the ball of radius r and center 0 in S.

A point process N may now be defined formly as a measurable mapping from a probability
space to an outcome space

N:(Q,A P)— (N,BWN)).

Thus, each elementary outcome w € (2 determines an outcome N,, € M, for the entire point process.
Measurability is the requirement that,V E € B(N), the event

{NeE}={weQ:N,eE} e A
This implies that any event has a well-defined probability P(N € E).

Definition 10.52. The distribution of a point process N is the probability measure Py on the
outcome space (N, B(N)), defined by

Py(A) = P(N € A)=P(we Q: N, € A),YA € B\).

10.10 Stationary Random measure

Let {N(t);t > 0} be a time homogeneous Poisson process having rate A so that it has the following
properties:

(a) N(0) =

(b) It has stationary increments.
(¢) It has independent increments.
(

d) N(t) ~ Poi(Xt).
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Remark. Property (2) stats that if A = (a,b] and ¢ > 0, then with t + A = {z +¢: 2z € A}, we
have N(t+ A) = N(A),i.e., Nt+b—a)— N(t) = N(b—a).
Definition 10.53. For any t € R, define
9t Z./\/ — N
m— 0ym : B(R) — Ry
A—m(t+ A).
Therefore, on R, 0,z = x — t? (Shift all points to the left or shift the origin to the right.)
Theorem 10.54. 0, is B(N)/B(N)-measurable.
Proof. NTS: for any B € B(N),
0, (B) ={m € N :0,;m € B} € B(N).

Define
¢:={BeBWN): 9[1(3) € B(N)} C B(N).

Since preimages are nice, it is very easy to show ( is an o-algebra. Next, we show B(N) C ¢, we
need to show ¢ contains all sets of the form {m € N : m(A4) = k}. Suppose this is done. Thus,
¢ =B(N). Let E4) = {m € N : m(A) =k}, where A € B(R?) and k € N. Since 0; : N' — N,

0, "(Bagx)={meN:(0:m)(A) =k} ={m e N :m(t+ A) = k}.
Since t + A € B(R?), it makes sense for m(t + A) = k and we are done. O
Definition 10.55. A point process
N: (A P)— (N,BWN))
is said to be stationary if for any t € R, §; N has the same distribution as N, where
Py(A)=PlweQ|N, € A),VAeBWN),
Py,n(A)=PlweQ|(0:N), € A),VA e BWN).
This is equivalent to the condition that for any n € Z*, if {4;}7, C B(R?) are disjoint,
((0:N) (A1), ..., (0:N)(Ay)) = (N(t+ Ay),...,N(t+ A,))
L (N(A1),...,N(A,)).
For a stationary point process N, let u € M, be the intensity of N. ThenV A € B(R?),
u(A) = EIN(A)] = E[(6:N)(A)] = EIN(t + A)] = u(t + 4),

which is translation invariant. Moreover, if A € B(R) is bounded, then u(A4) < oo. Since for all
Radon measures, only the multiple of Lebesgue measure on R? satisfying the translation invariance

property,
N> 0, st p(A) = AA],
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where |-| denotes the Lebesgue measure. Note A|-| is still a invariant measure. Let {Ny;t > 0} be
a time homogeneous Poisson process having rate A. By above, we can think of {IN;,t > 0} as a

stationary point process having the intensity A x |-|. Recall that
N(t
lim ﬁ = A w.p.l.
t—oo t

One method of proving the above result is to apply the strong law of large numbers to the inter-

arrival and invert. A slightly weaker result is to show that @ LN Lete > 0andt > 0,

then
PN(@)/t — Al > &) = P(N(t) — M| > M) < W
_ Var(Ny) _ 1 ‘
_7()\75)2 _E_)O’ as t — oo.

Our goal is to provide a similar result for stationary point process. Before doing so consider the
following result from Markov chain theory. Let {(X,,Y,);n = 0,1,---} be a time homogeneous
Markov chain with state space {(0,0),(1,0),(0,1),(1,1)} and one-step transition matrix P given
by

03 07 0 O

07 03 0 O

0o 0 03 0.7

0 0 02 08

Then
7 =(1/2,1/2,0,0), (sub chain is doubly MC)
M = (0,0,2/9,7/9),

are stationary distribution, as are their convex combinations. Let S, = > _|

I;x,,=0}- Then
Sn,
b — 1/2]1{y0:0} + 2/9]1{Yo:1}’

which is a random variable.

10.11 Invariant Sets and the ergodic theorem for random
measures

Definition 10.56. For 6; : N — N, a set I € B(N) is called shift-invariant if
0, ' T={meN|0mel}=1.

Let
B, =1[0,n),
and

— C as n — oQ.
n
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Then

OtIC:{M
n

HC} as n — oQ.

Note t + B, = [t,n + ). Let w € I, then

Since as n — o0,

N ([0,[n+t])) _ No([0,8))  No([t,n+1) | Ne(ln+t [n+1t])
[n+t] [n+t] [+ t] [n+t] ’

C <

we have as n — oo,
No(ftn+1)
[n+t]
Then as n — oo,

No(t+Bn)  No(t+Bn) [n+t] N, (t,n+1t)) [n+t]
n T [n+t] n o [n+t] n

— C.

So I. C 0,1.. Similarly, T:1. C I.. Hence T;1. = I.. Thus, I. is invariant?

Definition 10.57. Let I € B(N) be invariant. Then
T :=B({I € B(N) | I is invariant}) C B(N)
is a o-algebra. Then
In=NYT)={N'I)|I€cI})C A
is a o-algebra.

Definition 10.58. A stationary point process N is called ergodic if
P(N7'(I)) €{0,1},VI € T.

Theorem 10.59. In general, it can be shown that there is an Iy measurable random variable &
such that -
E[N(B)|Zx] = €- |BI,VB ¢ BR),

If N is ergodic, € can be taken to be a constant.

Proof. Since {€ < t} C In,Vt € R, then P({ <t) € {0,1},Vt € R. Let ¢ := inf{t : P(§ <t) = 1}.
Ift > ¢, then P(§ <t)=1;If t < ¢, then P(§ <t)=0. Thus, £ =¢, w.p.l. O

Theorem 10.60. The ergodic theorem states that if { By, }nez+ are rectangles such that By C By C
- and |Bp| T 0o, then
N(Bn)

— 7.
B, ¢

Example 10.61. Recall a stationary Cox process N is a point process for which there exists a
random variable A such that conditional on A = A\, N is a homogeneous Poisson process with rate
A. Taking B,, = [0,n). Since

N ([0,n))

n

A=— A\ w.p.l
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Then N
NI\ wpa,

By ergodic theorem, £ = A.

10.12 Stochastic process

Definition 10.62. A stochastic process is defined as a collection of random variables defined on
a common probability space (2, B, P) and the random variables, indexed by some set T, all take
values in the same space (S,S). In other words, for a given probability space (2, B, P) and a
measurable space (5,S), a stochastic process is a collection of S-valued random variables, which

can be written as
{X(t):teT}.

Definition 10.63. The space S is called the state space of the stochastic process.
Definition 10.64. If {X(t);t € T} is a stochastic process, then for any w € Q, the mapping
X(,w): T— S,

is called a sample function, a realization, or, particularly when T is interpreted as time, as sample
path. This means that for a fixed w € €Q, there exits a sample function that maps the index set T’
to the state space S.

Remark. (a) t is typically time, but can also be a spatial dimension.
(b) t can be discrete or continuous.

(¢) The range of t can be finite, but more often is finite, which means the process contains an
infinite number of r.v’s.

Example 10.65. e The wireless signal received by a cell phone over time

e The daily stock price

e The number of packets arriving at a router in 1-second intervals.

e the image intensity over lem? regions.
Definition 10.66. A stochastic process

X (Q,A,P)— (S5,8%)
is said to be stationary if for any t € R?, 6, X has the same distribution as X, where
Px(A)=Pwe| X, € A),VAcSE
Py, x(A)=Pwe| (:X), € A),VAec St
This is equivalent to the condition that for any n € Z*, if {A;}7; C S® are disjoint,
(O:X) (A1), ., (0. X)(An) = (X(t+ Ao X (84 Ay)

L (X(Ay), ..., X(A)).
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10.13 Jointly Stationary Random Measures and Stochastic
Processes

10.13.1 Event and Time Averges

Theorem 10.67 (Ergodic theorem). Let {X (t);t > 0} be a ergodic stochastic process with E[X (t)] <
0o. Then

.1t
Jim / F(Xo(s))ds = E[f (X(0))],Yew € 0,

for all bounded functions f, which is called time average. Suppose we observe Xy at times {T;}icz+
that correspond to a ergoic point process {N(t);t > 0}. Define the following if it exists:

N (t)
Ex [ (XO)] £ Jim = 3 1 = Jim s / £ (Xu(s)) Na(ds),

k=1

where we note that by the definiton of the Stieltjes integral,

t t N, (t) N, (t)
| ot = [ 1) | Y o | @)= Y (X0
0 0 k=1 k=1

Let N be a point process. Let the index T = R and X be a S-valued stochastic process
X = {X;;t € R}. Let S® be the space consisting of all functions f : R — S. Think X of
X :(Q, A P)— (S® SP),
which usually is not onto.

Definition 10.68. For any t € R, define the evaluation

SR — 8

x — x(t).
Definition 10.69. Take S¥ to be o(S®) that makes ;s measurable, whose element is of the form
{zeS® | mzec A}, VtERVACES,
Then the distribution of X is determined by the finite dimensional distribution
P(X(t1) € By,...,X(tn) € Bp),

where t1,...,t, € Rand By,...,B, € S.

10.13.2 Joint processes
Consider the joint process (X, N) on (S* x N, S* @ B(N)).
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Definition 10.70. (a) For any ¢ € R,

0 : (N, BWN)) — (N, B(N))

mi— my,
where my(A) = m(t + A) for any A € B(R). For example, m = N,,.
(b) For any t € R, define
0, : (S5, 8%) — (9,8
T +— O,
where (6:x)(s) = x(t + s) for any s € S. For example, . = X,,.
(c¢) For any t € R, define

0; 0 (S® x N, S® x B(N)) — (8% x N, S® x B(N))

(x,m) — (0, 0:m).
Definition 10.71. The joint process (X, N) is called stationary if
0,(X,N) < (X,N),Vt € R,

where
Pix,ny(A) = P((X,N) € A),VA € S* x BN).

Example 10.72. Let X = {X(¢);t € Ry} be a CTMC having a countable state space S. Assume
X has a unique stationary distribution which is also a limiting distribution. If @) is the generator
of X, then 7@ = 0, is the “stationary dist” in that if Xy has distribution 7, then

d
O (X(t1),. ., X(tn)) = (Xt +1t1),...., X{t+1tn)) = (X(t1),..., X(tn)) -
Thus,
0,xX £ X
and X is stationary on R;. One can extend X to a stationary process on R having the same dist
as on R, . Label the jump times of the MC so that
< T(N)<7(N) <0< (N) < -+

Let N be the point process whose jump times are given by the {74 }rez. The N is a measurable
function of X and it turns out (X, V) is stationary. Since N is stationary, there exists A > 0 such
that

E[N(A)] = MA].

Note

E[N(0,t)|Xo =i] =1- P(N(0,t) = 1|Xo = i) + inP(N(O,t) — n|Xo = i),

n=2
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and P(N(0,t) = 1|Xo = i) = A\it + o(t), where \; = —¢qi; = >, ¢ij- Next, (and one takes a little

work)
Z nP(N(0,t) =n) = o(t).

Hence
E[N(O,t)p(o = Z] =\t + O(t).
Thus,
E[N(0,8)] = E[E[N(0,)| Xo]] = E | Y E[N(0,£)|Xo = i|1{x,
€S
=Y E[N(0,1)|Xo =i]P(Xo = i) = Y _mi (it + o(t)) = At.
i€S 1€S

where we divide by ¢ and letting ¢ — 0 to obtain A = >, ¢ mA;

10.14 Palm distribution

The palm distribution of (X, N). The stationary pair (X, N) involves a dist. Px ) on (S® x
N7SR X B(N)) via
Pix,ny(A) = P((X,N) € A),VA € S®* x B(N).

For nonnegative measurable f on S® x N/,

P(X,N)f = o Nf(x’m)P(X,N)(dxadm) = E[f(X’ N)]

Define a palm distribution Q(x ) on (S®x N, 8% x B(N)) by setting for all nonnegative measurable
I

E
Qux.nf= f(z,m)Q(dx, dm) := ,¥B € B(R) and |B| # 0.

SEx N ' E[N(B)]

Note Qx,n).f does not depend on choice of B since (X, N) is a stationary pair. To gain some
insight into the palm distribution, label the points of N as

< T (N) <7(V) <0< (N) < -+

The notation reminds us that the points of N are functions (indeed measurable) of N. Since
N = Zk_ ~ 07 () 1s @ point process,

[ £OXN)INE) = S (b (X N)) VB € BR)
B e(N)EB

For w € Q, 0, (n(w)) (X (w), N(w)) is the outcome formed from (X (w, N(w))) by shifting the origin
to 7x(N(w)). If one thinks of the 7,(/V)’s as arrival times, 0, (v (X, N) is the process viewed by



142 CHAPTER 10. POINT PROCESS

from the perspective of the arrival at 7, (N). If we now think of f as being some measurement made
on the process (X, N), then f ( (V) (X, N )) is the measurement one makes if the arrival at time
71(IN) occurs at times 0. If one sums over the arrivals that occur in B, then takes the expectation
and finally divides by the expected value of B, one gets a type of average of the measurement f as
seen by an arriving customer.

Theorem 10.73. Suppose P is a probability measure and f > 0 is measurable, define

/f ),VA€B.

Then by definition, p is a measure.

Example 10.74. Let X be a CTMC and let N be the point process consisting of the jumps
{7k trez. Assume X is stationary. Since N is a function of X, (X, N) is jointly stationary. Note
given a distribution, there is always a random variable which has the distribution. Let (Y, M) be a
pair that has joint distribution Qx -

E[f(Y,M)] = Qx,n [

Let f(z,m) = 1;}(z0). Take B = [0,]. Since 05Xy = X, we have

E [fot ﬂ{j}(Xs)N(dS)} E [ 1 1) (eruv))}

Elloomn] = PO =) = =G = (st
Now
N(0,t) N(0,t)
E kzo 1y (X (N)| =E |E kzo 1y (X7 (V)| Xo

ZP Tk(N _j7N(Ovt)>k|Xo)]

ko
=

E [P (Xr(n) = 4: N(0,1) > 1] Xo)]

ZP Xy = 3N (0,1) > k|Xo)]
- E[qxojt +o(t)] + Elo(t)]

= migiit +olt)
i#]
= Wj)\jt + O(t).

since the CTMC cannot make a jump to itself and then when Xy = j, the conditional expectation
is just o(t) and finally, by the balance equation 7Q = 0, we get the result. Letting ¢ — 0, we have

LY

P(Yozj):m~
ies TiAi
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Given a joint stationary pair (X, N), the palm measure is

E[[5f(0s(X,N))N(ds)] _ E [[5 f(0:(X,N)) N(ds)]
E[N(B)] E[N]|B| 7

where B € B(R), N = E[N(0,1)|Zx], E[N(A)] = A|A|. stationary: invariant, multiple, Lebesgue.

E[f(Y,M)] = Qux.mf =

Lemma 10.75. Let f be a nonnegative measurable function of S® x N and define a random
measure Ny on (R, B(R)) by

N¢(B) = /Bf (0s(X,N)) N(ds),¥ B bounded Borel set.

Then Ny is also stationary.

Corollary 10.76. Given the lemma, since N is stationary,

E[ [ 0,063 N(ds)| = B3] = el
B

where ¢ = E[N;(0,1)]. Then

0 o c|B| ¢ c c
NI BINB| T E[N] E[NO,1)] X

which does not depend on B.

Theorem 10.77. Let (X, N) be a stationary pair as above. Let Y be an S valued stochastic process
and M a point process on R having joint distribution Qx ny. Then for any f >0,

. T1(M)
Bl = EFE | [ f<os<Y,M)>ds].
Proof. By
E[N||BIE[f(Y, M)| = E [ [ 1) N(dsﬂ ,
we have
BIN [ 1a(o)f (¥() M) Pldo)ds = [ 1n(6)] (0(X(w), N(w) N, ds) P(d),
QxR RxQ

where dsP(dw) is the product measure on R x Q and N (w, ds)P(dw) is the measure on R x 2. From
here, one can extend the relationship to

E[N|E UR h(Y, M, s)ds} —F [/Rh(GS(X, N),s)N(ds)] :

where h > 0 is a measurable function on S® x N x R. Setting h(x,m,s) = f (0s(x,m),s) for
nonnegative measurable f. Making the change of variable ¢t = —s on the left hand side yields

e | [ £6.0000).5) ] = ENIE | [ (0. v 0. o)
_E [/R FX, ]\Cs)N(ds)} .
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Set f(x,m,s) = h(z,m)L{ (m)=s}. Since M({0}) = 1,
70(0s(M)) = —s if and only if 0 < s < 71 (M).
The the left hand side of the above equation becomes

_ o T1(M)
EINIE | [ 00,0000 Lo,y ds]| = BN | [ 0.0

) [/ (X, N) 1 (ry(v)=s} N (ds)
R

=F |:h()(7 N)/ ]]'{T()(N):S}N(ds)
R ]
= E[n(X, N)],
which is equal to the right hand side of the above equation. O

Example 10.78. Take
flx,m) = 1g(xp), for some B € S.
Since E[N] =

W, by the theorem above,

E[ (M) (93113)(1/0)(15} E [fO”(M) 15(Y)ds

P s) Bl () Bl ()
This result should look familar. For suppose X is a stationary regenerative process and N is
associated renewal sequence, then (Y, M) is the pair when M is the counting process for an ordinary
renewal process. Note 71(M) is time the first renewal occurs. If the interrenewal distribution is
F, then P (1, (M) >t) =1— F(t). Suppose the interrenewal distribution is nonarithemtic so that
a limiting distribution exists and is the stationary distribution. In this case, the above equation
becomes

Y g () ds

Elr (M)] ’

which is precisely the limiting distribution of a regenerative process.

Example 10.79. Let (X, N) be the stationary pair, where X is a CTMC and N is the point

process which counts the jumps of X. Let (Y, M) be the pair when using the measure Qx n). Let
f(z,m) = 1;(zo). Then

Bl

Jlim P(X, € B) =

B f7 " 1 (v ds]
B[ (M)]

Note the process Y is constant in the interval [0, 7 (M)) when given Yp, so the numerator equals

T = P(Xo=j) =

71 (M) 71 (M)
o /0 L (YoM =B\ B /O L3 (Ys)m (M) Yo
= B [E 1 (Yo)n(M)| Yo]] = E[E [1(;;(Yo) (M)| Yo = 5] Lve=)]
= E 1 (Yo)r(M)| Yo = j] E [Liv,=jy] = E[n(M)[Yo = j] P(Yo = j)

= Vj/>\j-
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A similar argument shows the denominator equals ), v;/A;. We obtain

I\
m = vi/ A

B > vif i
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Chapter 11

Stochastic intensity

Let X > 0 be a random variable with distribution function F' and a density f. Then the hazard
function (failure rate)

Pex<X<z+ylX >x) Plx< X <z+vy)

= lim

h(z) = lim

y—0 Yy y—0  yP(X > x)
o Flety)—F@) 1 fx)
= y =P 1-F@) ° 7"

Since F'(0) = 0, integrating both sides from 0 to x,

—/Omh(y)dy—log(l—F(x))—log(l—F(O)), x> 0.

N - Fioy =~ [ Ho) 0.

/0 ) h(x)dx] _ /Q /0 M ) deP (),

=E UOOO h(x)ﬂ{bm}dx} = /ODo h(@)E [1{x>a] dz

Theorem 11.1.
E

or

E

/OX h(z)dx

- [T - rwie= [ i@ -1

Let {N(t),t > 0} be a point process on RZ?. Assume N(0) = 0 and the jump times occurs at
0<Ty <Tp < ---, and with probability 1, lim,,_, T, = co and N(¢) — oo as t — oo. Assume
there exists a stochastic process {A(t),¢ > 0} such that

P(N(t+s)— N(t) = 1|F) = A(t)s + o(s),

147
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P(N(t+s)—N(t) > 1|F) = o(s),
where Fp is the smallest o-algebra that makes each N (h) measurable for 0 < h < t. Also
F=)*
h>t

The family {F?,t > 0} is called the natural filtration (history) of the process {N(t),t > 0}. The
filtration {F;,t > 0} is called the right continuous version of {FP,t > 0}. A random variable 7
taking values in [0, oc] is called a {F} stopping time if {T < t} € F;,Vt > 0. If 7 is an {F, }-stopping

time, then for any ¢ > 0,
~ 1
<ty = <t4+-—,7
{r<t} ﬂ{r +n}

n=1

But
1
LKt+—r € F,, 1,
{T +TL} t+n
hence

{r<tye()Fr="F.

n=1

Thus, S is an {F;} stopping if {r < t} € F, V¢ > 0. Each jump time T}, is a stopping time since
{Tn <t} ={N(t) 2 n} € .

Example 11.2. Suppose {N(¢),¢ > 0} is a homogeneous Poisson process having rate .
(a) N(0) =0.
(b) Sample path are right-continuous, step process with jumps of size 1.
(c) stationary and independent increments.
(d) P(N(t)=1)= At +o(t) and P(N(t) > 1) = o(t).
Note by property (3),
P(N(t+s)—N(t)=1|F) =P(N(t+s)—N(t)=1) = P(N(s) =1) = As + o(s),
P(N(t+s)—N(t) > 1|F) =P(N(t+s) — N(t) > 1) = P(N(s) > 1) = o(s).

Choose ng so that % < s. For n > ny, since N(t+s)— N(t+ 1) is independent of Fiy 1 and hence
independent of F;, then

P(N(t+s) = N(t+1/n) =1|F) = P(N(s —1/n) = 1) = \(s — 1/n)e  As=1/7)

and right-continuity of a sample path N, in terms of ¢, where w € A C Q and P(A) = 1, and since
limy, oo T, = 00,
N(t+4s) = N(t+1/n) < N(t+s) <oo,Vn €N,
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by BCT,
P(N(t+5) = N(t) = 11F7) = P lim (N(t+35) = N(t+1/n)) = 1)
= lim P(N(t+s) = N(t+1/n) = 1|F)
= Ase~ s =mall ho o(s),

Hence the stochastic intensity of a homogeneous Poisson process is

P(t < Ty <t + 8| F) P(N(t +s) — N(t) = 1|F)

A(t) = lim = lim =AVneN.
s—0 S s—0 S
General form of the stochastic intensity. Set By = {0,Q}, and B,, = o(T3y,...,T,),Vn € Z*.

Set
F,(t)=P(T, <t|B,_1),YnecZ",

i.e., F}, is the conditional distribution of T}, given B,,_; and f,, is the corresponding density function.
Assume F), has a density f,. Think of the information is available at time T%,...,T, and t — T),.
Fix n € N, assume T}, < t < T, 41, the failure rate at ¢ is

P T, < T, . P T, n
A(t) = lim (t <Tpg1 <t+ylTher >t) — lim (t < Thg1 <t+ylBy)
y—0 y y—0 yP(Th+1 > t|By)
t+y) F7l+1(t) 1 fn+1( )
— i Dot = T, <t<T,
y—0 Yy 1—Fopa(t)  1—=Fua@) ™" i

So

2 : fn+1 ]].
{Tn <t<Tn+1}
n+1

Example 11.3. For a renewal process with interrenewal distribution F', since

P(Tps1 — T > Ty = 8) = P(Tpyr — Ty >t — Ty |Ty = 5)

(
=P(Thy1 —Tp >t —s|T, = 3)
:P(Tn+17Tn>t75)
=1-F(t—s),
we have
P(Thi1 > tBn) = P(Thy1 —Tn >t —Tp|Bn) = P(Tyny1 — Tn >t — Tn|Th)
=1-F(t—-T,).
Similarly,
Fn+1(t) = P(Tn+l < t|Bn) = F(t - Tn)a
Fori(t+y) = P(Th1 <t+yl|B,) =F(t+y—Ty).
Hence

lim F(t+y_Tn)_F(t_Tn)

y—0 y :F/(t_Tn):f(t_Tn)'
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Hence

|P”ﬂ8

) ]]'{Tn<t<Tn+1}
n

o0
= Z To) 11, <¢t<T,,,}(conditioning on o-algebra)

m 3

( N(t))

where h is the hazard function of F. Plot the grap of the hazard function, we can see between any
interrenewal, the tend are the same.

11.1 Hawkes Process

The Hawkes process is also called the self-exciting Poisson process. Given a Poisson process
{NP(t),t > 0} with parameter \ and for k € Z*, we have independent Poisson process {NZ(t),t >
0} that are independent of { N?(¢),¢ > 0} having intensity function {¢(¢),t > 0}, which is decreasing

over time. Define
NP(t)

N(t)= Y Ni(t=T0) +N?(t), t >0,
k=1

where T} is the time if the kth primary event occurs and we can think of {Nf,¢ > 0} is the after
Poisson process initiated by the kth primary events. The we will get the stochastic intensity of
{N(t),t > 0}.

(a) Assume the filtration {F;,t > 0} can distinguish after events from primary events. In this case,

NP(1)
P(N(t+s)—N(t)=1F)=As+ Y_ ot —TP)s+o(s),
k=1

P(N(t+s) — N(t) > 1|F,) = o(s).

The intensity of { N{(t),t > 0} at time ¢ given it started at time 77 is the intensity of {NZ(t),t > 0}
at time ¢ — T} given it started at time 0, ie., v(t — T}), where v : [0,00) — [0,00) s.t. ~(t) —
0 as t — oo. Hence,

NP (1)

= A+ Z (t—1TP) _/\+/Ot (t — s)dN(s).

Set

Y(t) = /0 v(t — s)dN(s).

Then {Y(t),t > 0} is a shot noise process.
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(b) Allow all events to generate the after events. Then with the same notation

N(#)

Ni(t) = > N(t—Tx)+ N(1).
k=1

The intensity function is

At) = A +/O ~v(t — s)dN(s).

Suppose Ty, Ty, - - - are iid random variables having density function f(--- ,6¢), where 6 € R? is
a parameter. Suppose we take a sample of size n and observe t¢1,...,t,. The likelihood function is

L(zy,...,xzn;0) = f(21,0) - f(zn,0).
Maximizing over © gives that parameter which is most likely to give the data tq,...,t,.

Example 11.4. Suppose {N(t);t > 0} is a homogeous Poisson process with rate A. Observe the
process over an interval [0,¢]. The arrivals occurs at times

o<t <~ <t, <t
Construct the likelihood function. Suppose one just saw one arrival at t; € [0,¢). Then
P(N(t1) =0,N(t; + At) = N(t;) =1, N(t) — N(t; + At) =0)
=e M1 (AAE + o(AR)) - e AE—ti—Al)
= (At 4 o(At)) - e NEAY,

Then
A(t—A)
L(ty, \) = Tim QAtFo(AY) e ) e,
At—0 At

Extend the same argument,
L(ty, ... ta, A) = Ale .

Since given t, N(¢) is a random variable.!!! By the conditional uniformity, the arrivals the rhs does
not depend on tq,...,t,. The log-likelihood function is

log L(t1,...,tn, A\) = nlog A — A,

Then the MLE
Ay =

n
t

Can the idea be extended to a P.P with stochastic intensity function \(¢)? Suppose observe one

arrival and it occurs at time ¢;. Partition the interval [0,¢) into n intervals, each of the length is
%, ie.,
t 2t n—1)t
0<*<*<~--<!<t.
noon n
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(i—1)¢ it
n 'n )"

Know t¢; is in one of the intervals [ Suppose it is in [%, %), then probability of

observing ¢ as the only point on [0, ¢) is

L(t1, )

=P(N(t/n)=0,...,N(kt/n) — N((k—1)t/n)=1,...,N(t) — N((n — 1)t/n) =0)

= P(N(t/n) = 0)P(N(2t/n) — N(t/n) = O|N(t/n) = 0)

-P(N(kt/n) — N((k —1)t/n) = 1|[N((k — 1)t/n) — N((k — 2)t/n) =0,..., N(t/n) =0)

-P(N(t) = N((n—1)t/n) =0|N((n— 1)t/n) — N((n —2)t/n) =0,..., N(t/n) =0).
Since

P(N(t/n) =0)=1- A(t/n)1/n+ o(1/n),
P(N(2t/n) — N(t/n) =0|N(t/n) =0) =1— X(2t/n)l/n+ o(1/n),

P(N(kt/n) — N((k — 1)t/n) = 1|N((k — 1)t/n) — N((k — 2)t/n) = 0,...,N(t/n) = 0)
= Mkt/n)1/n+ o(1/n).
P(N(t) — N((n— 1)t/n) = 0[N ((n — 1)t/n) — N((n — 2)t/n) =0,...,N(t/n) = 0)
=1-At)1/n+o(1/n).
Hence
Lt, )= J[ (= AGt/m)1/n+ o(1/n)) (A(kt/n)1/n + o(1/n))
j=1,j#k

Taking log,

D log (1= A(jt/n)1/n + o(1/n)) +log (A(kt/n)1/n + o(1/n))

j=1,j#k

~— Z A(jt/n)1/n + log

j=Ljk
t
S / A(s)ds + log(A(t1))?
0

Observe n points at 0 < t; < ---t, < t, the log-likelihood function
n t
log L(ty,. .., tn,A) =D log A(t:) —/ A(s)ds.
k=1 0

Hawkes process is a point process. {N(t)};>0 is defined as follows

A(kt/n)1/n
1= A(kt/n)1/n

(a) There is a homogeous Poisson process which { N, (t)};>¢ which are primary jumps.

(b) There are independent Poisson process {N,(t)}:>0 which have rate function ¢(¢)dt and is
independent of {N,(t)}+>0. Then
¢
t Jr/ No(t — s)Np(ds).
0
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11.1.1 Probability generating functional

Recall the probability generating function for a nonnegative integer valued random variable N is

Gn(z) = E[ZN] = i P(N =
n=0

Let h be a measurable function defined on [0, c0) such that

(a) 0<h(t)<1

(b) 1 — h has compact support, which means that there exists [a, b] such that 1 — h(t) = 0 for any
t ¢ [a,b].

The probability generating functional of a point process {N(¢)}+>0 is

Gu(h) = E [exp { /0 b log(h(t))N(dt)H .
Let A= [a,8] and define h = 1 — (1 — 2)14,¥0 < z < L. Then 1 — h(t) = 0 for any ¢ € A°, and
Gn(h) = E [exp {/OOO log (1 — (1 — 2) Tz (1)) N(dt)}] .
Note
/Ooolog(l—(l—Z)l[ab Zlog (1= (1= 2) L (T3)
= Z (log 2) 114 ) (T3)

= (logz)N(a,b)

= log 2N (@)

But then Gy(h) = E [zN(a’b)]. Suppose Aq,..., A, are disjoint intervals and z; € (0,1) for any
€ [k]. Define

k
Z 1 - Z‘7 ]l Aj
Then the previous argument (modified) gives

(A)

u::];r

Example 11.5. Let {N(¢)};>0 be a Poisson process with intensity measure p, that is, u(A) =
E[N(A)]. Then E[zV] = e *172), Let

k
1= (1= 2)1a,(

Jj=1
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Then
£ N(4;) N(A
El]l% H E
II )
k
- H e #MAN=2) — exp ZM )1 - z)
=1
o k
— oxp _/ S (1 - 2)1a, (@) u(de)
(Rt
—ep{~ [T nopmian}.
0
Define

Tz:R>OHR>O
Yyr—x+y.

Suppose that p is a measure on a measurable space (F, &) and let (G,G) be another measurable space.
Suppose that f: E — G is a measurable function. For B € G define

po f7H(B)=u(f 1 (B) =u{z € E: f(z) € B}.

Then, g o f~! define a measure on (E,&). If g is nonnegative measurable function of G, then
/ g(y)uo f7H(dy) = / go f(z)u(d),
G E

which is true by the definition of o f~! when g = 1 for B € G and extends to nonnegative measurable
functions by the usual arguments. Also,

/Gg(y)uon(dy) = /Ggon(y)u(dy) = /Gg(ery)u(dy)-

If 11 is a measure on (R, B(R>?)), define a new measure p o7, ! on (RZ°, B(R>?)) by
pory '(B) = u(r;(B)) = u(B - ),
where B € B(RZ?) and
T B)={ycR?:1,(y)eB}={ycR* ;2 +yc B} =B — .

x

Let . be the dirac delta function. Then

1 seA—xors+xz€A,

0 otherwise. = Os+a(A)-

x

ds01, H(A)=d,(A—2) = {

If =3, 0, (arealization of a point process), then

= Z‘SsiJrz(A) = (A —x).
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Consider Hawkes process. Let N, be a stationary Poisson random measure having intensity A - [,
where [ is the Lebesgue measure. Let { Ny }rez+ be a iid Poisson random measures, independent of
N, with common intensity ¢(z)dz, where ¢ : R*® — R>% and ¢(x) — 0 as 2 — oo. The Hawkes
process is the random measure on (R=%, B(RZ?)) given by

N(A) = N.(A) + - Nn.((0,5]) © Ts " (A)N(ds)

= NC(A) + /+ NNC((O,S]) o TS(A - S)Nc(ds)
R

b [ N o (4 = 9)Ne(ds),
R+
where N.({s}) € {0,1}, and then we can see as if Ny, starts at 0. Setting N(¢) = N(0,¢], one gets

N = Nelt)+ [ N o0, = shNe(ds)

= N.(t) + N, (s)(t — 8)Ne(ds).
R>0

Soif 0 < Ty < Ty < --- are the event time of N, i.e., N, = Zfil or,. We have

A):iaﬂ /NN((OS T; ZéT (ds)
D3 [ Moo o7 (o)
+ZN OTT

<5n + ZNi OTT—Z?) (A).

i=1

t”ﬂg

@
Il
-

pnqg

s
I
-

o

&
Il
-

Consider the probability generating functional

Gr(h) = E [exp { /0 h log(h(t))N(dt)H .



156 CHAPTER 11. STOCHASTIC INTENSITY

By the definition of IV,

exp{/RZO log(h(t)) N (dt H —ia ]

E

=F exp{i [log(h(ti))—i— - log(h(t))N; o 7 ( dt } N, = Zéti]

i=1
oo

=F exp{z [log(h( ))+ - log(h H

=F H[h eXp{ - log(h(t))N; o Tt—l(dt)}”

=1

h(t:)E [exp {/ log(h(t))N; o Ttl(dt)H

Thus,

E

exp{/RZ log(h dt}’N Z(ST]_H}L (h).

Taking expectations, yield

Gn(h)=E

exp {2 log (h(Ti) o GNloT;il (h)) }]
=E |:exp {/Ooc log (h(S)GNIOT;I(mNC(dS)) }]

=G, (h)Gw, 07}

Note that

Grerr ) =B e { [ o)y o7

-5 {exp { /R Jos(ho Ts(:c))Nl(dx)} }

Since N is a Poisson random measure with intensity ¢(x)dz, by previous result,

Gror ) =ep{= [ (1= ns+0) (o)}
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Since N, is a stationary Poisson random measure with intensity Al, by previosu result,
G (k) = G, (h()Gw, o7
— exp {—/ — h(8)Gy, o (h)) Ads}
R>0 °

(
- exp{—/R>0 (1 _ h(s)exp{—/w (1— h(s—Hv))cp(x)}) Ads}.

For a,c € RZ?,

E[N((a,a +c])] = E[Nc((a,a + )| + E

/ NNC((O,S]) OTsl((ava+C]Nc(d8)‘|
R>0]

=X+ F

/ Nn.(o,s) © 7 ((a,a+ C]Nc(ds)] .
R>0]
Let Uy, ...,U, be the unordered event times of N, in (0,a + ¢|. Then

E Ny, ((0,s)) © 75 ((a,a+ ]|Ne(ds)

R>0)

N.(0,a+¢c] = n]

> Nior,'((a,a+c])
=1

N.((0,a+]) n] ,

Given N((0,a+c]) = n, Uy, ..., U, are iid Uniform(0, a + ¢) distributed random variables and since
Ni,..., N, are iid Poisson random measures having intensity ¢ - [,

n

E ZNi orljil((a,a—i— )
i=1

N.((0,a+¢]) = n]

3

—E :ZE[NiOTal((a,awm

ZNi o T[}il((a,a + )

n a
Z[ a—sa—l—c—s

i=1

n a+c—s ade—s
atc Uo /(H plz)drds +/a /O w(z)d:cds} .

ds

ds—|—/ E[N, 0a—|—c—s])]a+c

Thus,

ZNi o7, (a,a+ c])

_ C?_f:'_ |:/ /a+c s /a C/0a+c—s:| @(x)dxds

N.((0,a + ¢])
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Therefore,

BN o) = B[S [ )
et |:/ /a-l-c s /a-i-c /a+c s:| dwds

To discuss limiting properties of the Hawkes process, we assume that the function ¢ is uniformly
bounded and has compact support, i.e., there exists T' > 0 such that ¢(¢) = 0 for any ¢ > T. Goal:
Find
tlim P(N(t,t+c) =k).
Let 0 =Ty < Ty <T5 < --- be the event times of N,.. Define Koy = 0 and
K, =min{n>K, 1:T,—-Tk, , >T}.

For t > 0, set
Fi=c{N(A): AeB([0,¢])}.
Let
Foo = 0({Fi}ier>o)-
Since { K, }nen are stopping times,

F, ={A€ Fo: AN{Tk, <t} € F,Vt € R*°}.

Theorem 11.6. Let A € B(RZ?). Then the random measures {N(Tx, + A)}nez+ are independent
of Fk, . Moreover, {N(Tk, + A)}necz+ and N(A) are identically distributed.

Proof. Let n € ZT. By definition,

N(Txk. + A) = Nu(Tx, + A) + / N (o) © 7 (T, + A)No(ds)

= N.(Tk, + A) + ZNj oty (T, + A)
j=1

= Ne(Tk, + A) + Y Nj(Tk, — T + A)
=1

oo

= Ne(Tk, + A+ Y N;(Tk, —T; + A),
j=Kn

since Tk, —T; > T for any 1 < j < K,, — 1, and ¢(t) = 0 for any ¢ > T', then we have
N;j(Tk, —Tj+ A) =0,¥1 < j < K, — 1.

(M) Since N, is stationary, {T; — Tk, }j>K, has the same distribution as {7}, },en? Also the
processes { N, }nen are independent of N.., we obtain

N(Txk, + A) < +ZN (T, + A) = N(A).
n=0
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Martingales

12.1 Signed Measure (Royden)

Definition 12.1 (Mutually singular). Two measures v and v, on (X, M) are said to be mutually
singular if there are disjoint measurable sets A and B with X = A U B for which

I/l(B) = 1/2(14) =0.
Two measures v and v~ defined below are mutually singular.

Definition 12.2 (The Jordan Decomposition Theorem). Let v be a signed measure on the mea-
surable space (X, M). Then there are two mutually singular measure v* and v~ on (X, M) for
which v = v — v~. Moreover, there is only one such pair of mutually singular measures.

Example 12.3. Let f : R — R be a function that is Lebesgue integrable over R. For a Lebesgue
measurable set F, define v(E) = [ g Jdm. We infer form the countable additivity of integration
that v is a signed measure on the measurable space (R, £), where £ is the collEction of Lebesgue
measurable subsets of R. Define A = {z € R|f(x) > 0} and B = {x € R|f(z) < 0} and define, for
each Lebesgue measurable set F,

and

v (E)=— fdm.

BNE
Then {A, B} is a Hahn decomposition of R with respect to the signed measure v. Moreover,

159
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v:=v"t — v~ is a Jordan decomposition of v. Then

BNE

= f+dm+/BmE (=f7)dm

ANE

=/AﬂE(f+—f—)dm+/ (f* = 1) dm

BNE

- /Ar‘nE Jm =+ /BnE Jm

fdm

vt — v = m — m
(B) - v (E) /A i fd

B /(AnE)u(BnE)
:/ fdm
E
= V(E)v

where v ;= vt — v,

Definition 12.4 (The absolute value of measure). The measure |v| is defined on M by
|v|(E) =vH(E)+v (E),YE € M.

Let (X, M) be a measurable space. For 1 a measure on (X, M) and f a nonnegative function
on X that is measurable with respect to M, defind the set function » on M by

v(E) = /Efd,u,VE e M.

Then from the linearity of integration and the monotone convergence theorem that v is a measure
on the measurable space (X, M), and it has the property

if E € M and u(E) =0, then v(E) =0,
which implies v < p.

Proposition 12.5. v < p if and only if for any € > 0, there is a § > 0 such that for any set
EeM,if u(E) <4, then v(E) < e.

Proof. <= is obvious.
“=”. Assume there is an € > 0 and a {E,}32, with u(E,) < o while v(E,) > ¢,Vn € N.

Define . - -
A= ﬂ U Ey.

k=1k=n
Then
: - L 1
u(A) = nlirrgou (U Ek> < nlL»H;o Z w(Er) < nILH;O Z o0 = 0.

k=n k=n k=n
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But
o
v(A) = lim v (U Ek> > €,
n—oo
k=n
since v(E,,) > ¢ for any n € N, contradiction. O

Theorem 12.6 (Radon-Nikodym Theorem). Let (X, M, ) be a o-finite measure space and v a
o-finite measure defined on the measurable space (X, M) and v << p. Then there is a nonnegative
function f on X that is measurable w.r.t M for which

y(E):/EfduVEeM.

The function f is unique in the sense that if g also has this property, then g = f p a.e..

12.2 Radon Nikodym Derivative

Let (€, B) be a measurable space, and let u, A be positive and bounded measures on (2, B).

Definition 12.7. We say X is absolutely continuous w.r.t p (written as A << u) if
u(A) =0= A4) =0,YA € B.
Definition 12.8. We say that A concentrate on a set A € B if
A(A°) = 0.

Definition 12.9. We say that A and p are mutually singular if there exist sets A, B € B such that
ANB =0, A\(A°) = 0 and A(B¢) = 0.

Let’s suppose H is a real Hilbert space.

Proposition 12.10 (Riesz Representation Theorem). Let L : H — R be a continuous linear
functional, then there exists a unique y € H such that

L(z) = (z,y),Yz € H.

Lemma 12.11 (Integral Comparison Lemma). Suppose X,Y € L(Q, B, P). Then
/ XdP < / YdP,VAec B=— X <Y, a.e..
A A
Complete version:
/ XdP < (= / :)/ YdPVAe B~ X < (= /=)Y,ae.
A A

Proof. Claim. if X > 0, then P(X > 0) > 0 implies £(X) > 0. Since P(X > 0) > 0, 3n € NT

such that )
P (X > ) > 0,
n
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otherwise,

P(X>0)<n1LH§oP<X>:L>:P<OO {X>:L}><iP(X>i>:O.

n=1
Then
E(X) > lP <X > 1) > 0,
n n
which is a contradiction. Assume P(X >Y) > 0. Let

A:={X >Y} and consider {(X —Y )14 > 0}.

Then
P((X =Y)1a>0)) = P(A) > 0.
So
E(X-Y)ls>0) >0,
which is a contradiction. Thus, X <Y a.e.. O

Theorem 12.12 (Radon Nikodym). Let (2, B, P) be probability space. Suppose v is a positive
bounded measure and v < P. Then there exists integrable random variable X satisfying

uMﬁi/XMWAeB
A

X s Radon-Nikodym derivative and is written X = 3—1”3 or dv = XdP.
Proof. Define

Q:B—[0,1]

Then @ is a probability measure on (€, B) and @ < P since Q < v < P. Define
P*:B—[0,1]
P(A) +Q(4)

A'_)f.

which is also a probability measure on (€2, B) since P*(Q2) = 1. Then
H = Ly(, B, P*),
where we say a random variable
(R, B(R)) « (Q,B) : X € L*(Q, B, P*)
if X € Band fQ|X|2dP* < 0o. Then H is a Hilbert space (up to equivalent classes since (X, X) =
[1X|?dP* = 0 % X = 0) with inner product

(X,Y) = / XYdP*.
Q
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Then .
1Y), =/({¥,Y) = (/ Y|2dP*> VY € H.
Q

Note that all elements of H = Ly(Q2, B, P*) are B/B(R)-measurable (random variable). Then we
can define the functional

L:H—R
Yi—>/YdQ
Q

so that L : La(P*) — R is linear and bounded (and hence continuous). Since

1
2
IL(Y)| < /|Y|dQ < /|Y|dQ+ /|Y|dP < 2/|Y|dP* <2 </ YQdP*) =2||Y,.

So L is bounded. Then L is (Lipschitz) continuous since H is a normed linear space. Thus, by
Proposition 12.10, there exists Z € H such that for any Y € H,

/YdQ =L(Y)=(V,2) = /YZdP*.

Let Y = 14, where A € B, then

Q(A):/AdQ:/AZdP*.

Then assuming P* is positive,

Q) [, zdP* [, ZdP*
OS T P@ S o Y

since 2P* = P+ @ > Q. Then
0< / ZdP* = Q(A) < 2P*(A),VA € B,
A

that is,
0< / ZdP* < / 2dP* VA € B.
A A
From the Integral Comparison Lemma 12.11,
0<Z<2, P as.

Since

1 1
/YdQ:/YZdP* :/§YZdP+/§YZdQ,

[v(1-Z)aa- [arwven

we have
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foo (-5, o
{z=2} 2 {z=2} 2

that is, 0 = P(Z = 2). Since Q << P, we have 0 = Q(Z = 2). Hence P*(Z = 2) = 0. Thus,

Set Y = 1yz_9) to get

0<Z <2, Pras.

Let N
Z\"
Then
YeH=LyP)and 0<Y <1 P/Q/P*-a.s.
Since

/Y(l—i)dQ:/YQZdP,VYGH,

() (-5)me= [ (5) e

Sum both sides over n =0 to n = N to get

/ ( (g)N“) - [ * (- >>

Since 1 — (%)N+1 171 Q-a.s., by MCT,

(4) _ _ 4 _ [ X
© _Q(A)_/AQ_ZdP._/AV(Q)dP,VAeB.

N

™~

Thus,
v(A) = / XdP,VA € B. O
A

Corollary 12.13. Suppose @) and P are probability measures on (2, 8) such that @ <« P. Let
G C B be a subo-algebra. Let Q|g, P|g be the restrictions of @ and P to G. Then in (2, G),

Qlg < Plg

and
dQlg
dPlg

is G-measurable.

Proof. Check the proof of the Radon-Nikodym theorem. Since Z € H,

X =
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12.3 Conditional Expectation

Definition 12.14. Suppose X € L1(Q, B, P) and let G C B be a sub-o-field. Then there exists a
random variable E(X|G), called the conditional expectation of X w.r.t to G such that

(a) E(X]|G) is G/B(R)-measurable and integrable.
(b) V A € G, we have

/XdP:/E(X|g)dP.
A A
dv / dV|g
— = dP,
/A dP 4 dP|g

v(A) = / XdP,VA € B.
A

where

Why does this defintion of conditional expectation make mathematical sense? We will show the
existence.

Proof. Suppose X € L1(Q, B, P). Suppose initially that X > 0. Define
v(A) = / XdP,VAe€B.
A

Then since v(Q2) = E[X] < oo, v is a bounded measure. Moreover, v < P on B, so
vlg < Plg.

From the Radon-Nikodym theorem, the derivative exists and we set

dv
EIX16] = dP|gg’

or

dv = E[X|G]dP on G,
or for any A € G,

dl/|g d1/|g
XdP = v(A) =v A:/dz/ :/ dP :/ dP::/EngP,
dvlg

which is (ii) and part of (i) of the definition of conditional expectation. Besides, by 12.13, TPl

is G-measurable. Thus, j;l‘gg is the conditional expectation of X. Without the condition X > 0,
define

v(A) = / XdP, A€ B.
A
Since X € Li(Q, B, P), X* € L(Q, B, P). Define

vE(A) = / X*dPVAcg.
A
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Then v* are bounded measure and v*|g < Plg. Smilarly, by the Rodan-Nikodym theorem,
E[XT|G] and E[X |G| satisfy the two conditions of the conditional expectation. Then after
defining

B[X|G] :=]E[XT|G] - E[X™|g],

we have it satisfies (i) of the definition of the conditional expectation. Also, v = v+ — v~ is a
Jordan decomposition of v. So v (A) — v~ (A) = v(A). Then for any A € G,

/AXdP:y(A) <:/AXdP=/A(X+—X—)dP:/AXwP—/AX—dP)

— (A — v (A) = + _ -
=vT(4) (A) /AE[X |GldP /E[X |GldP

A

- [ (ex719) - Bx1g) ap
. / E[X|G]dP, (1)
A

which implies E[XT|G] — E[X ~|G] satisfies (ii) of the definition of the conditional expectation.
Thus, E[XT|G] — E[X ™G] is the conditional expectation of X. O

Remark. We can write
E[[|G] : Li(F) — L1(9).

Definition 12.15 (Conditional expectation w.r.t. an event).

E[X|A] = E]El&))(] = /EX 2P (dz|A).
50 P(AN B)
P[B|A] = “pi)

Definition 12.16 (Conditional expectation w.r.t. ar.v.). If Y is a discrete random variable with
range ), then we can define

g:Y—R
y — E[X]Y =y]

Then g oY is called the conditional expectation of X w.r.t. Y so that we have

EX|Y]:Q—R
Wi BIX|Y = Y ()],
which is a random variable. If Y is a continuous random variable, as explained in the Borel-

Kolmogorov paradox, we have to specify what limiting procedure produces the set Y = y. This can
be naturally done by defining the set

Hy ={w [ [Y(w) =yl <€},
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so that if P(Hy) > 0 for all € > 0, then

g:Y—R
y = lim B [X|H]] .

The modern definition is anlogous to the above except that the above limiting process is replaced
by the Radon-Nikodym derivative just instroduced, so the result holds more generally.

Definition 12.17 (Conditional expectation w.r.t. a o-algebra). Let X € L1(Q, B, P). The function
X : Q — R is ususally not G-measurable, thus the existence of the integrals of the form | 4 XdPg,
where A € G and Py is the restriction of P to G cannot be stated in general . However, the
local averages fA XdP can be recovered in (2, G, P|g) with the help of the conditional expectation.
A conditional expectation of X given G, denoted as E[X|G], is any G-measurable function which
satisfies:

/ E[X|G]dP = / XdP,YA€G.
A A
The existence of E[X|G] can be established by noting that

pX B —R

A|—>/XdP,
A

which is a finite measure. Then X < P. Furthermore, if 7 is the natural injection from G to B,
then puX om = Ml)é is the restriction of uX to G and Porm = Pyg is the restriction of P to G and

uX om <« P o since for any A € G,
Pon(A)=0<+= P(n(A) =0 = pu~(7(A)) =0 <= p* on(A) =0.

Thus, we have
dujg _ d(u* o)
dPg d(P o 7T) ’

where the derivative are Radon-Nikodym derivatives of measures.

E[X|G] =

Definition 12.18 (Conditional probability). Given (2, B, P), with G a sub-o-field of B, define
P(AIG) = E[14/G],¥A € B.

Definition 12.19 (Conditioning on random variables). Suppose {X;,t € T'} is a family of random
variables defined on (2, B) and indexed by some index set T. Define

G:=0(X,teT)
to be the o-field generated by the process {X;,t € T'}. Then define
E(X|X,,teT) = E(X|).

(This definition saves us from having to make seperate defintions for F[X|X;], E(X|X1, X2), etc).
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Example 12.20. Fix B € B, and let
G={0,B,B°Q}.

What is the probability of A given G? Assume P(B) > 0. Then

/BE[]1A|Q]:/B]1AdP

= P(ANB)
= P(A|B)P(B)

= / P(A|B)1dP
B

:/ [P(A|B)15 + P(A|B)Lp<] dP.
B

Smilarly,
/lE[]lA\Q] :/ ']lAdP:/ . [P(A|B)1g + P(A|B°)1g:]dP.

/E[1A|g}:/11AdP
Q Q
:/ ]lAdP+/ 14dP
B c

:/ [P(A|B)15 +P(A|BC)]ch]dP+/ [P(A|B)Ls + P(A|B%)Ly.] dP
B

c

So

:/ [P(A|B)15 + P(A|B)Lp] dP.
Q

Finally,
/@E[]IA|Q] = /@ 14dP = /@ [P(A|B)1p + P(A|B)1 5] dP.
Thus, by integral comparison lemma,
P(A|G) = E[14|G] = P(A|B)1p + P(A|B°)1ge.
Example 12.21 (countable partition). Suppose X € L1(Q, B, P). Let {A,} be a partition of Q.
(We can define the discrete r.v. Y =307 ¢;14,, then {{Y = ¢;}} forms a partition of (2.)

Define
G=o0(A,,n>1)

so that

icJ
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For X € L1(Q, B, P), define

Ja, XdP B[X1a,]
E(X|An) = { %’ P(An) >0 = { P(A,) P(An) >0

17, P(A,) =0.
We claim

EX|G]= Y E[X|A,)la, €G.

At

If this holds, let X = 14,V A € B, then
P(A|G) = ZP AlAy)

Proof. Let A=, ; A; for some J C {1,2,---}.

/ZEX\A 1, dP = ZZ/ E[X|An)1a, dP

n=14cJ

= Z > E[X([14,]P(AiA,)

n=114ieJ

=3 E[X[14,]P(4)

icJ

—Z( XﬂA )+17-0>
:ZEXILAi

icJ
—E [X]luie] A}

ieJ

Thus,
[ee]
E[X|G] = ) E[X|A,]1a,. O
n=1
Interpretation: Consider an experiment with sample space 2. Condition on the information

that “some event in G occurs”. Imaine that at a future time you will be told which set A,, the
outcome w fallS in (but you will not be told w). At time 0

> P(AlAn)14
n=1

is the best you can do to evaluate conditional probabilities.
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Example 12.22 (Discrete case). Let X be a discrete random variable with possible values 21, zg, - - -
Then for A € B,

P(A|X) = P(Alo(X ZP AX =2)Lix—p,)-

=1

Example 12.23 (Absolutely continuous case). Let Q = R? and suppose X and Y are r.v.’s whose
joint distribution is absolutely continuous with density f(z,%) so that for A € B(R?),

P(X,Y) € B) = / /B Fry (s, t)dsdt,

or

P(X € B,,Y € By) //fxy t)dsdt,

where fx y is the joint pdf of X and Y. Find for C' € B(R),

P(Y € Clo(X)).

= / fX’y(l', t)dt
R

Proof. We use G = o(X). Let

be the marginal density of X. Define

Jo Ix,y (z,t)dt
po(X) =4~ Tx@ fx(z) >0,
17, fx(z)=0.

We claim that
P(Y € Clo(X)) = P(Y € C|G) = ¢c(X).

/fxyl“t

is o(X)-measurable and hence ¢(X) is (X )-meaurable. Since

P(Y € C|G) = E[l{yecy|9],

First of all, note

and by the definition of conditional expection, for any A € B(R),

/ E[l{yecy|GldP = / liyecydP,
XeA {XeA}

it suffices to show that for any A € B(R),
/ ¢c(X)dP :/ LiyecydP.
{XeA} {XeA}

B(gx) = [

Q

Since

9(X () Pdw) = / _ 9@)F(d)
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we have
/ 6c(X)dP = [ 1a(X)de(X)dP
{XeA} Q
1a(z)pe(z)F(dx)
/]IA fx(z)dx
R
/ 1y 0150y ()6 (2) fx (@)do + / 1 s (o)—0y (2)6c (@) fx (z)de

. fcfxyxt)dt 2Vda
f/RnA( T @) 0

_ / / Fry (o, t)dtda
(ze)A JC

“p(X,Y)e Ax C)

=P(Xe€AYel)= / liyecydP.
{XeA}

Il
o

)ﬂ
3

=

Since {X € A} € o(X) is arbitray, O

12.4 Properties of conditional expectation

Our probability space (2,8, P) and G is a sub-field of B. L;(, B, P) is the set of r.v.” that are
B-measurable and satisfies F[|X|] < oo.

(a) Linearity: If X,Y € Ly and a3, a2 € R, then

E[OélX + a2Y|Q] = O[lE[X|g] + agE[Y|Q]
Proof. For any A € G,

/ E OqX + OéQY‘g dP / 051X + O[QY)dP

—al/XdP+a2/YdP

= al/ E[X|GldP + oz2/ E[Y|GldP
A A
:/ (a1 E[X|G] + a2 E[Y|G]) dP.
A
So by integral comparison lemma, Elon X + a2Y|G] = a1 E[X|G] + a2 E[Y|G]. O

(b) If X € L; and X is G-measurable, then

E[X|G] = X, P-as..
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/EX|gdP /XdP

Since X is G-measurable (for any A € B(R), X *(A) € G ), by the integral comparision lemma,

Proof. Note for any A € G,

X = E[X|G] P-as..

Since constant functions are always measurable on any o-algebra (the only one on the trival o-
algebra), let ¢ € R, E[c|G] = ¢ P-a.s.. O

(c) Suppose X € Ly and G = {(),Q}. Then
E[X|G] = E[X]. P-as.

Proof. Here

/EX|g JdP = | Xdp = E[X]= | E[X]dP,
Q

/@E[X|g]dP /@XdP 0= /@E[X]dP. O

(d) Monotonicity: Suppose X,Y € Ly and X <Y, then

E[X|G] < E[Y]|G] P-a.s.

Proof. For any A € G,

/EX|gdP /XdP /de / [Y|G]dP.

Then by the integral comparison lemma,

E[X|G] < E[Y|G], P-as.. O

(e) Modulus inequality: Suppose X € L, then

|E[X|G]| < E[|X||G] P-as..

Proof. Since X € L1, X~ € Ly. So E[X~|G] < oo, and then
E[X|G] = E[XT|G] - E[X™|G].
Since E[XT|G] and E[X ~|G] are nonnegative,
|EIX|G]| = [E[X7|G] - B[X™|F]]
E[XT|G] + E[X"[d]

=E[XT+X7|G]
= F[|X||G] P-a.s. O
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(f) Monotone convergence theorem: For nonnegative and monotone increasing sequence {X,}, if
X :=1lim,,_ o X, € L1, then

lim E[X,|¢] = E [nlggo Xn|g} .

Proof. Note that by the property of monotonicity,
E[X,|G] € E[X,11|G] P-as..

Then
lim E[X,|G] exists P-a.s..

n—oo

Note that if P(A,,) =1 for any n € Z*, then
P <ﬂ An) =1.
n=1

/ lim E[X,|G]dP = lim / E[X,|G|dP
An%oo n—oo A

Then for any A € G,

= lim X,dP

n—oo A

:/ lim X, dP
A

n—oo

- / E { lim Xn|g} dP, P-as.. O
PRl s

(g) For nonnegative sequence {X,,} satisfies X,, € L1,Vn € Z,

E [ lim iann|Q} < lim inf E[X,|g].

n—oo

Proof. For any A € G,

n—oo

E [ lim iann|g} —E [ lim inf ng}
n—oo k>n

MET kim E [inf Xﬂg}
n— o0 k>n

< lim ,J‘Ef E[X|G] ( bounded inside the expectation, then take inf)
n

n—oo k2

= lim inf F[X,|d]. O

(h) If {X,} C Ly, |Xn| < Zforn>1and Z € L', and X,, — X as n — co. Then

lim E[X,|G] = F[X«|G].

n—oo
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(i) Product rule. Let X and Y be random varibales satisfying X; € Ly, YX € Ly,. IfY € G
(G-measurable), then

E[XY|G] 2 YE(X|G).
Proof. Case 1: Assume Y = 1 for some B € G. ThenVA € G, since ANB € G,

/ E[X15|G)dP = / X1pdP = / XdP = E[X|G)dP = / 15E[X|G]dP.
A A ANB ANB A
So
E[X15|G] € 15E(X|G).
Case 2: Assume Y = > "/'_, ¢xlp,, where ¢1,...,¢c; €R, By--- B, €G. ThenY € G and

FE chk]]'Bk
k=1

g] = Elalp, X|G] = > alp, E[X|G],

k=1 k=1

by the case 1.

Case 3: Assume Y > 0. Then there exists simple random variables {Y,,} s.t. {¥,} CGand Y, 1Y
as n — oo. However XY € Ly, (XY)” = XY € L;. However X € L;, X~ =X~ € L;. So
E[(XY)7|G] < co. Then by the case 2,

E[XY|G] = E[(XY)"|G] - E[(XY)"|]]
= E[X1Y|G] — E[X"Y|G]
= lim_ E[X"Y,|G] - Jim E[XTY,|G]
= lim Y, E[XT|G] - lim Y, E[X7|G]
=YE[XT|G] - YE[X™|G]
= YE[X|G].

Last case: extend to G-measurable. O

(j) The tower (smooth) property: Suppose X € L1, and G; and Go are both sub-o-fields of B
satisfying
gl g g2 g B P-as..

Then
E[E[X|G2]|G1] = E[X|G1], P-as.,

E[E[X|G1]|G2] = E[X|G1], P-as..

Proof. Since E[X|G1] € Ga, by the product rule,

E[E[X[G]|G2] = E[X|G,]E[1|G2] = E[X|G,].
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Note that for any A € G; C Go,
/AE[E[X|G2}|Q1]dP =4 /AE[X|g2]dP
:/AXdP (A€ G CG)
_ / E[X|G1]dP.
A

Since F[X|G1] is Gi-measurable, by the integral comparison lemma,

B[E[X|G:]|G1] = E[X|G1], P-as.. 0

A special case: G; = {0, Q}. Then by property (3), E[X|G1] = E[X], and then

E[E[X|G][G1]
E[X|6:]
E[X].

E[E[X]|G]]

Then let Go = o(Y), then
E[X] = E[E[X]|Y])].

A common use of the tower property i the calculation for G-measurable Y € L,
E[XY] = E[E[XYG]] = E [V E[X|9]].
(k) Projections: Suppose X € Ly(B). Then E[X|G] is the projection of X onto L3(G), a subspace

of Ly(B). The projection of X onto La(G) is the unique element of Lo(G) achieving

inf || X — Z],.
ZELQ(_C/)

It is computed by solving the prediction equations for Z € Lo(G):
Y, X —-2)=0, VY € Ly(G).

By trying a solution of Z = E[X|G], we get

/Y(X — Z)dP = E[Y (X — E[X|G))]

— E[YX] - E[YE[X|]]]
= E[YX] - E[E[Y X|7]]
= E[YX] - E[YX] = 0.
In time series analysis, E[X|G] is the best predictor of X in L2(G). It is not often used when

G =o0(Xy,...,X,) and X = X,41 because of its lack of linearity and hence its computational
difficulty.
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(1) Conditioning and independence: If X € L; and X 11 G, then

E[X|G] = E[X].

Proof. Recall X is independent of G if ¢(X) is independent of G w.r.t the underlying measure P.
Let A € G, since F[X] is G-measurable,

/ E[X|G]dP = / XdP = E[X1,4] = E[X]P(A) = / E[X]dP.
A A A
So E[X|G] = E[X]. O

(m) Conditional Jensen’s inequality: Let ¢ be a convex function, X € L; and ¢(X) € Ly. Then
almost surely

SE(X|G)] < E[6(X)|G]-
(n) Conditional expectation is continuous on L,: Assume X, B X asn — oo for p = 1. Then
LP
E[X,|G]) = E[X|]].

Proof. When p > 1, ¢(x) = |z|” is a convex function. Then
E[|E[X.|9] — EX|G]["] = E[|E[Xn — X|G]"]
< E[E|IX, — X["|g]
= B[ Xy - X|"]
— 0. O

(o) Conditional expectation is L, norm reducing, i.e.,

IEXIBIIl, < [1XI],-

Proof. Similarly, by Jensen’s inequality. O

12.5 Martingale

Let { Xy} nezzo € L1(2, B, P) and let {B,,},cz>0 be sub-o-field of B.
Consider the following statesments.

(a)

B, C Bn+1,Vn S Z>O.

(b)
X, € B,,¥Yn e 27°.

(c) (1) For any n € Z*° and any m € Z7,

E[Xpim|Br] = Xn, P-as..



12.5. MARTINGALE 177

(2) For any n € Z7° and any m € Z*,

E[Xpim|Br] = Xn, P-as..
(3) For any n € Z?° and any m € Z*,

E[Xpim|Br] € Xp, P-as..

Then

(a) {(Xn,Bn)}nezzo is called a martingale if it satisfies (i), (ii) and (iii)(a).

B
(¢) {(Xn,Bn

)
(b) {(Xn,Bn)}nez>o is called a submartingale if it satisfies (i), (ii) and (iii)(b).
Fnez>o is called a supmartingale if it satisfies (i), (ii) and (iii)(c).
)

Remark. (a) {(X,,Bn)}nezzo0 is called a martingale if and only if it is both submartingle and
supmartingale.

(b) Postulate (iii) could be replaced by

E[Xn1|B,] = X, P-asVn € Z7°,

Proof. For any m > 2,

E[Xn+m|Bn] = E[E[Xn+m‘6n+m—1] |B"]

= E[Xnerfl‘Bn]
= E[Xn+1|6n}
=X,. O

(c) Foranyn > 0,letC,, = o(Xo, ..., Xn). E{(Xn, Bn)}}nez>o is amartingale, then {(X,,,Cp,) } pezzo
is a martingale.

Proof. (1)
Cn :O'(Xo,...,Xn) Q O'(Xo,...,Xn+1) :Cn+1.
(2) Since X, € By C B, for any 0 < k < n, we have C,, € B,,.
(3) For any n € ZZ% m € Z7, since X,, € Cy,

E[Xp4m|Cp] = E|E[Xpim|Bn]|Cr] = E[X,[Ch] = Xp, P-as.. O

Definition 12.24. A sequence {B,},cz>0 of o-fields satisfying B, C B,41 for any n € Z>° is
called a filtration.

Definition 12.25 (Martingale difference). For {(d;,B;)};ecz>0, where {d;};cz=0 C L1(Q,B, P)
and {B;};cz>0 are sub-o-field of B. Consider the following statements,
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(a) Bj C Bjyi for any j € Z2°.
(b) d; € B; for any j € Z=°.

(c) (1)
E[dj1|Bj] =0, P-as¥je 7Z>°.

(2)
E[dj+1|8j] >0, P-asVje€ 720,

(3)
Eld;+1|Bj] <0, P-asVj e 27°.

Then

(a) {(dj,Bj)}jez>o0 is called a martingale difference sequence or a fair sequence if it satisfies (i), (ii)
and (iii)(a).

(b) {(dj,B;j)}jez>o is called a sub-fair sequence if it satisfies (i), (ii) and (iii)(b).
(c) {(dj,Bj)}jezzo is called a sup-fair sequence if it satisfies (i), (ii) and (iii)(c).
Proposition 12.26. Facts about martingale differences:

(a) If {(dj, B;)} ez>o is (sub,super) fair sequence, then

Xn = zn:dj, Bn
j=0

nez>o
is a (sub, sup) fair martingale.

Proof. Proof of the fair sequence cases. Suppose {(d;, B;)}cz>o is fair. Then d; € L1(2, B, P) for
any j € ZZ° and since L, is closed under finite sum,

X, € Li(Q,B,P),Yn € Z7°,
Furthermore,
(1) Clearly, B,, C B,,11 for any n € Z>°.
(2) Since dj € B; C B, forany 0 < j<nand j€Z, X, = E?:o d; € B,.
(3) For any n € Z>9,
= E[X4|By] + Eldn+1|By]

=X,+0
= X,, P-as.. O



12.5. MARTINGALE 179

(b) Suppose {(X,,Bn)}nez=0 is a (sub, sup) martingale. Define
do = XO - E[XQ],
dj = X] — Xj,l,Vj ezZt.

Then {(d;, Bj)}ez>o is a (sub, sup) fair sequence.

Proof. Proof of the martingale case. Suppose {(X,,B,)}nez>0 is a martingale. Then X, €
L1(Q, B, P) for any n € Z>° and since L; is closed linear combinations,

d; € L(Q,B,P),Vj € 27°.

(1) Clearly, B; C Bj1,Vn € Z2°.
(2) Clearly, dy = Xo — E[X,] € By. Since X; € B; and X;_; € Bj_1 C B; for any j € Z™,
dj=X; - X;_1 €B;,Vj L.
(3) For any j € Z>°,
Eldj1|B;] = E[Xj 41 — X;|B;j] = E[X;11|B)] — E[X;|B;] = X; — X; =0, P-as.. O
(c) (Orthogonaility of martingale difference.) Suppose {(d;,B;)},ez>0 is a fair sequence and

{dj}nezzo C La2(Q, B, P). Then
Eldid;] = 0,Vi # j.

Proof. By holder’s inequality,
E[|did;]] </ E[d?]\/E[d?] < o0.

{did; }izjijenzo € L1(S2, B, P).

So

When ¢ # j, without loss of generality, assume j > i, since
Eld;|B;] = E[E[d,;|B;-1]|B:] = E[0|B;] = 0,
we have
E[d;dj] = E[E|[d;d;|B;]] = E[d;E[d;|B;]] = E[d; - 0] = 0, P-a.s.. O
12.5.1 Examples of Martingales

Example 12.27. Suppose X € L1(Q, B, P) and {B,},cz>0 is an increasing family of sub-o-field
of B. Define for any n € Z>°.
X, := E[X|B,].

Then {(X,, By) }nezso is a martingle.
Proof. Since X € Ly and X,, = E[X|B,], X, € L1(Q, B, P) for any n € Z>°.
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(a) Clearly, B,, C B,,+1,¥n > 0.
(b) Since X € Ly and X,, = E[X|B,], X,, € B, for any n € Z>°.
(c) For any n € Z>Y,
E[Xps1Bo] = E[E[X|Bus]|Ba] = E[X|By] = X, P-as.. O

Example 12.28 (Martingales’s and sums of independent random variables.). Suppose {Z,, },cz>0
is an independent sequence satisfying (random walk)

Z, € L1(Q, B, P),Yn € 77°.

E|Z,] =0,Yn € Z7°.
Set

X, =Y Z,VneZ?,
=0

B, =0(Zo,...,2Zy).
Then {(X,,, By)}nez=o is a martingale.
Proof. Tt suffices to show {Z,,},cz>0 is a fair sequence.
(a) B, =0(Zy,...,Zn) Co(Zo,...,Zn) = Bpyy for any n € 7220,
(b) Z, € L, for any n € Z>°.

(c) Since {Z,},cz>0 is an independent sequence for any n € Z>°,

E[Zn+1|Bn] = E[Zn+1] = 0, P-as.. O

Example 12.29. Suppose {X,, },cz>0 have a countable space E = {0, 1, -- - } and transition matrix
P = [Pyli jeE-

For any n € Z>°, define
Bn :0'<X07...,Xn).

By Markov property, For any n € Z° and any j € E,
P(Xni1 = j1Ba) = P (Xas1 = jlo(Xa)) = P(Xps1 = j1Xn), P-aus..

By example 12.22,

P(Xn+1 = J|Xn) = ZP(Xn+1 = J|Xn = i)]l{Xn:i}~
i€k

On the set {X,, =4,..., X0 = x0},

P(Xn-H = ]|Bn) = P(Xn-H = J‘Xn = Z) = PU
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Note that
X, : (,B,) — (E,P(E)),Vn € Z .
Suppose there exists an eigenvalue A and a corresponding eigenvector
f:(E,P(E)) — (R, B(R)).

satisfying Pf = Af, and f = (f(0), f(1),---). In component form, this is

D Pyf() = Af0).

JjEE

In terms of expectation,

or

E[f(Xn+1|Xn)] = E[f<Xn+1|0(Xn)] = E[f(Xn+1|Bn)] = Af(Xn),
by (inverse) Markov property. Assume A # 0, define

f(Xn)

Zn = \

,Vn e 27°.

Claim {(Z,, B)}nez>o is a martingale. Clearly, f € P(E). Then f(X,,) € B, for any n € Z*°. So
Z, € B, C B,¥n € Z?% Also, assume

E[If(Xo)[] = Y _If@)IP(Xo =) < oo,

icE

meaning f(Xo) € Ly, where X is the intial distribution. Then

E(If(Xa)l) = D _If @) P(Xn = 1)

i€E

=Y IF@) D" P(Xo = j)Pf”
i€E JEE

= Z|f(i)|P(Xo = 1) (stationary?)
i€E

< 00.

So Z,, = f(/\)i") € L, for any n € Z>°.
(a) B, C B,y for any n € Z>0.
(b) We already showed Z, € B,, for any n € Z>0.

(c) For any n € Z>°,

E[f(Xn)|Ba]  A(X, X,
E[Zn1|Bn] = [f(/\njj” I J;T(LH) = f(/\n ) _ 2., Pas.
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So {(Zy, Bn) }nez>o is a martingale.

Example 12.30 (Simple branching process). Let X,, be the number of organisms of the n-th
generation. Each organisms reproduces asexually and let

P; = P(an organism has i offspring), Vi € Z=".

Let Z,, 1 be the number of offspring produced by the k-th organism in the n-th generation. Assume
{Zn k}nez>o0 kez+ are iid. Then

So {X,}n>0 is a DTMC and

)

50j, =0
Pij_{ P;i, i>1
where Pj?*i is the j-th component of the i-fold convolution of the sequence {p,}, i.e.,
o0 oo
p* p[z] = Z PmPi—m = Z Pi—mPm-
m=0 m=0
Let
o0
m=2>_ kpi
k=1
be the mean number of offspring per organism. Note that for any i € Z¥,
o0 o0
mi=3 Py Y F
j=0 j=0

while for ¢ = 0,

> pijj=Poo-0=0=mi.
7=0

With f(j) = j, we have Pf = mf.
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Or note when X,, > 0,

ZZn k
=F Z Zn,kl{XnEk}]

k=0

n+1

o0
> ElZnplix, 2]
k=0

Z E[Z, x|P(X, > k) (naturally independent)

= i mP(X
k=0

=mE[X,],
while for X,, =0, E[X,,11] = 0 = mE[X,]. Thus, the process {(X,/m",o(Xo,...,X,),n > 0} is
a martingale.

Example 12.31. (Likelihood ratios). Suppose {Y,,n > 0} are iid random variables and suppose
the true density of Y7 is fy. (The word “density” can be understood with respect to some fixed
reference meaure u.) Let f; be some other probability density. For simplicity suppose fo(y) > 0,
for all y. Then for n > 0,

[l f1(Y2)

R TN

is a martingale.

Proof. We check the condition (iii).

fO (Yn+1)

since f1 is a density. O
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Definition 12.32. A sequence of random variables {U;};>0 is said to be predictable w.r.t a filtra-
tion {B,} if

(a) Uo € By,

(b) U; € Bj_; for any j € Z*.

Definition 12.33. A sequence of random variables {U;},>¢ is adapt to the filtration {B;};>¢ if
Uj € B;,VjeLr.

Remark. If {Uj};cz>0 is predictable w.r.t. {B;},cz>0, it is adapt to {B;};>0-

Example 12.34 (Discrete stochastic integration). Suppose {(d;, B;)} ecz>o is a fair sequence. Let
{(Uj)}jez=o be predictable w.r.t. {B;};cz>0 and assume that

{U;}jez20 € Loo (S0, B, P).
Show that {(U;d;, Bj)} ecz>o is still a fair sequence.

Proof. Since d; € B; € B and U; € B;j_1 C B, Ujd; € B. It is easy to find (or use Holder’s
inequality) U;d; € L1(Q, B, P).

(a) Clearly, B,, C B,,41.
(b) Since dj S Bj and Uj S ijl - Bj, Ujdj S Bj.
(c) For any j € Z=°, since U;41 C By,

ElUj1dj41|B;] = Uj1Eldj1]B;] = 0 P-a.s..

So {(Ujdj, B;j)}jez>o is a fair sequence. Define
Xy =Y Undp, ¥n € 27°.

m=0

Then {(X,,, Bn)}nez>o is martingale. O

In gambling models, d; might be +1 and U; is how much you gamble so that U; is a strategy
based on previous gambles. In investment model, d; might be the change in price of a risky asset
and Uj is the number of shares of the asset held by the investor. In stochastic integration, ths d;’s
are increment of Brownian motion. Refer to

(a) Stochastic Differential Equations by Okendal
(b) Stochastic Integration and Differential Equations by Protter

(¢) Introduction to Stochastic Integration by K.L. Chung.
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Lemma 12.35. Suppose {B,}n>0 is a filtration and let
{Mn}nzo € L1(Q, B, P)
be adapt w.r.t {By,},,cz>0. Define

do = My,
dy, = My, — My,_1,¥n € Z*.

Then {(M,,Bn)}nez>0 is a martingale if and only if for every bounded predictable sequence
{Un}nezzo0, we have

N
E (Z Undn> =0,VN e Z .
n=1

Proof. Suppose {(My,By)}nez>0 is a martingale and {Uj};cz>0 is bounded predictable sequence,
where “bounded” means
sup sup|Up(w)] < A < 0.

neZz0 we
Then for any N € ZT,
N N N N
E Z Undy | = Z E[Undn} = Z E [E[Undnwnflﬂ = Z E [UnE[dn|anl]] =0.
n=1 n=1 n=1 n=1

Assume the other direction.
(a) {Bn}nez>o is a filtration.
(b) {Mp}nezzo € L1(9, B, P) is adapt w.r.t. {By},cz>0.

(c) Fix j € Z° and let A € B;.
Define for any n € Z>9,

U - 0, n#j+1
"=\ 14, n=j+1L

Then {U, },ez>0 is bounded and predictable w.r.t. {By},cz>0 since

(W) En#j+l,Up=0¢ B, .
(2) fn=j+1,Uj41 =14 € B, since A € B,.

Then for any N > j+ 1 and N € Z", by assummption,
N
0=FE (Z Undn> = ElUj41(Mj11 — M;)] = E[14(M; 41 — M;)] = E[1aM;j14] — E[1aM;].
n=1

So E[1aMj41] = E[14M;]. Since A € B, is arbitrary,

E[]].AM]] = E[]]-AMj+1] =F []].AJ,E[MJ'+1|B]‘” P-as..
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By the integral comparision lemma,
E[Mj+1|8j] = Mj P-as..

Or use when for any N > j + 1 and N € ZT, by assumption,

N
0=F (Z Undn> = E[Uj11dj41] = E[la;dji1]
n=1
so that
0= E[la;djs1] = E [1a, E[d;+1]B;]] -
By the integral comparision lemma, E[d;+1|B;] =0 P-a.s..
So {(M,, By,)},,ez>0 is a martingale. O

Definition 12.36. A collection of random variables that is predictable w.r.t. the filtration {By, },,cz>0
is said to be increasing if
OZA()<A1 <A2 < P-as..

Theorem 12.37 (Doob decomposition). Any submartingale {(X,, Br)}nezzo can be written in a
unique way as the sum of a martingale {(My,By)}nezzo and an increasing process {An}nezzo-
That is X, = M,, + A, n € Z>°.

Proof. Define

M, = Xo+ Y [X) — E[Xy|Be_1]].
k=1

(a) B, C Bny1,Yn € 270,
(b) My = Xo € Ly and My € By. Let n € Z*. Since conditional expectation
E[Xk|Bk-1] € Bx—1 C B, C B,Vk € [n],
and conditional expectations are always integrable,
E[Xg|Br-1] € L1(Q, B, P),Vk € [n].
So M,, € Ly. Similarly, M,, € B,.
(c) For any n € Z>Y,

E[MnJrl‘Bn] =F [Mn + Xn+1 - E[Xn+1|BnH Bn]
= E[M,|By] + E[Xn+41|Bn] — E[Xp11|By]
= M,,.

So {(Mp, B,)} is a martingale. Define

A, =X, — M, VnezZ>°.
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Then
Ayg = Xg— My =0 € any o field.

n

Ap=Xn = Xo— Y _ (Xi — E[Xy|By1])
k=1
n—1

= E[X,|Bn1] — Xo — Y (Xx — E[X4|B1])
k=1

= E[Xn‘Bn—l] - M, 1
= E[Xn‘anl] —Xp_1+ Anfl
> A,_q P-as.,

since {(Xn, Bn)}n>o0 is a submartingale. Besides,

Ap = E[Xp|Bn-1] — Xpo1+ A1 € B
So {A,, }ez>0 is increasing. Next, we prove the uniqueness. Suppose there is another decomposition

X, =M, + A,

where {(M],, B,)}nez>0 is a martingale and {A],} is an increasing process. ThenVn > 0,

A;m+1 - A;z =Xnt1 — MrlH-l — (X — Mwlm)

= Xnt1 — Xp — (M'r,z+1 - Mr/L)

Since {A!} is predictable and {M] } is a martingale,

/n+1 - A{n = E[A/n+1 - A/n|5n]
= E[Xn+1 - X — (Mr/LJrl - M;z)|8n]
= E[Xpn41|Bn] — X, P-as..

Similarly,
An+1 — ATL = E[Xn+1|6n] — Xn P-a.s..

Thus, since 4g = A} =0,

A=A+ Y (A~ Ay
k=1

Ao+ (A — Ara)

Finally,
M, =X,—A, =X, - A, =M, P-as..Vn c Z>°.
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Example 12.38. Suppose {By}i>1 is an iid sequence of Poisson random variables having rate .
Define

N, = ZBk,Vn e 7>°.
k=1
Define
Bn = U(No,...,Nn),TL > 0.

Then {(Ny, By)}n>o is a submartingale.

Proof. Note
O'(No,.. 7Nn) = O'(Bl,...,Bn).

(a) Clearly, B,, C B,,41 for any n € Z>°.
(b) Since By, € By, for any k € Z2° and E[N,,] = n\ < oo, N,, € B,, and N,, € L; for any n € Z>°.
(c)

n+1

Z Bn‘Bn
k=1

What’s the Doob’s decomposition?

E[Nni1|Bo] = E = E[No|Bo] + E[Bps1|Bn] = Ny + E[Bps1] = N + A > N,

n

M, = No+ Y (Nx = E[Ng|Bi—1])

k=1
=> (N = (Ny—1 + E[By]))
k=1
=> (Ni— Np—1) + Y E[By]
k=1 k=1
= N, —nA.
Furthermore, A,, = N,, — M,, = nA. O]

Proposition 12.39. (a) Let {X,, B, },>0 be a martingale, and let ¢ : R — R be convex on R,
where

#(X,) € Li(Q,B,P),Vn € Z7°.
Then {¢(X,), Brn}n>o is a submartingale.

(b) Let {(Xy,,B,)} be a submartingale and ¢ : R — R be a convex, nondecreasing function that
satisfies
#(X,) € L1(Q,B, P),Vn € Z7°.

Then {(¢(X,), Brn)}>o is a submartingale.

Proof. By Jensen’s inequality,

E[¢(Xn+1)|3n] Z o (E[Xn-‘rl‘Bn]) 2 ¢(Xn) O
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12.6 Stopping time

Define
N:= {(),1,2,-~-}7

N=1{0,1,2,...,00},
and suppose {By, }n>0 is a filtration.

Definition 12.40. A random variable v : Q — N is a stopping time (w.r.t {B,}) if
{v=n}eB,,¥neN

Remark. To fix ideas, image a sequence of gambles. Then v is the rule for when to stop and B,, is
the information accumulated up to time n. You decide whether or not to stop after the nth gamble
based on information availble up to and including the nth gamble.

Definition 12.41. Define
Boo = \/ B.=0(B,,neN).

neN
Then .
{v=00} = <o0|®= <U[1/:n]> = ﬂ[l/:n]CEBoo.
neN neN
Requiring
{v=n}eB,, neN
implies

{v=n}€eB, neN.
Example 12.42. Suppose {X, }nen is adapt to a filtration {B,, }nen. For any A € B(R), define
v=inf{n e N| X,, € A}.
with the convention that inf ) = co. Then v is a stopping time w.r.t {B,, },en since
{v=n}={XodA,... . Xn1¢&€A X, €A} eB,.
Example 12.43. Suppose v is a stopping time w.r.t. {B,},en. Define
B,={AeBy | An{v=n} e B,,Vn e N}

B, consists of all events that have the property that adding the information of when v occurred,
places the intersection in the approprite o-field. Claim. B, is a o-field.

Proof. (a) Foranyn e N, Qn{v=n}={v=n} € B,.
(b) Suppose A € B,,. For any n € N,
An{r=n}={r=n}~(An{r=n}) € B,.

So A€ € B,,.
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(c) Suppose {Ar}2, € B,. ThenVn € N,

<6Ak>ﬂ{uzn}:GAkﬁ{V:n}eBn.
k=1

k=1
So -
U Ay, € B,,. O
k=1

Basic Facts:

(a) If v =k, for some k € N, then v is a stopping time and B, = By.

Proof. For any n € N,
L0, n#k
{V_n}_{Q n=k

B,={Ae€eBs:ANn{v=n}e€B,,Vn e N}
If A € B,, by the definition of 5,

e B, .

)

Note

A=ANQ=An{v =k} € Bs.
So B, C By. Suppose A € Bi. f 0 <n < korn >k,
An{v=k}=An0=0¢€B,.

Ifn=k An{v=k}=A€ B, =B,. So ACB,. Hence By, C B,. Thus, B, = B,. O

(b) If v is a stopping time and B € B, then BN {v = o0} € By, and hence

Bn{v=n}eB,,¥necN.

Proof.

Bn{v=o00}=BnN{r<oo}

=BnN <U{V:n}>c

neN

=BnN ﬂ{y#n}

neN

= ﬂBﬁ{V%n}

neN
€ Boo,

since B € B, C By, and {v #n} ={v =n}° € B, C Bw. O
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(¢) If v is a stopping time, then v € B, C By.

Proof. {v=n} € B,, C By for any n € N. Since for any n € N,

B oy S {v=k} k<n <
{I/n}ﬁ{vk}{ (v=n}, k>n € B, VkeN,

we have {v =n} € B,,Vn € N. Since the range of v is N, v € B,. O
(d) v is a stopping time if and only if

{v<n}eB,VneN,
if and only if

{v>n}eB,VneN.
Proof. Since

{v<ny= | (v=i},
0sysn

we have {v =n} ={r<n} —{r<n-1} and {vr > n} = {v <n}° O

(e) If B € By, then
BeB,< Bn{r<n}ehB,VneN.

(f) If {vk}trez+, then so is

min {v;} and max{v}.
kez+{ K} kez)i{ k)

Proof.

{/\ Vk>n}: ﬂ{uk>n}68n,Vn€N,

kezt keZ+

{Vngn}:ﬂ{ukSn}eBn,VneN. O

keZ+ kez+

(g) If {v} is a monotone family of stopping times, limy_,o vk is a stopping time since the limit is

(h) If v;,7 = 1,2 are stopping times, so is vq + va.
Example 12.44. If v is a stopping times, then
Vp=vAn,YneZt

is a stopping time (which is bounded) since both v and n are stopping times.
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Facts concerning the comparison of two stopping times v and v’. We assume v and v/ are both
stopping time w.r.t. the same filtration {B, }nen-

(a)

{v<v'}, {v=2}, {v<V}eB,NB,.
Proof. Note
{v=v}in{r=n}={n=v}n{vr=n}e€B,,VnebB,,
so {v =v'} € B,. Note that
{v<vin{v=n}={n<v}n{r=n}e€B,VneN,
so {v <v'} € B,. Thus,
v<v={v<V/}Iu{r=11}€B,.
or use (x * *)
v<vIn{v=n}={h<V}In{r=n}={nh-1<vV}n{v=n}eB,VneN,
Similarly, note
v<In{ =nt={w<n}n{v =n}eB,,
so{v<v'}eB,. O
(b) If B € B,, then
Bn{v< v} eB,,
Bﬂ{l/<V/}€Bl,/.

Proof.
Bn{vr<vIn{V =n}=Bn{vr<n})n{Y =n} e B,,
since N N
Bn{v<n}=Bn|J{r=k}=]JBn{r==k}€B,. O
k=1 k=1

(¢) v <v on Q, then B, C B,..

Proof. This follows from (2) since {v < v'} = Q. O

12.7 Positive Supermartingale

Suppose {(Xy,, Bn) }nen is a positive supermartingale so that
X, =20 P-as.,
Xn € an

and
E[Xn111B,]) € Xp, n >0, P-as..

Consider the following questions.
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(a) When does lim,,_,, X, exist? In what sense does convergence take place if some form of
convergence holds? Since supermartingale tend to decrease, at least on the average, one expects
that under reasonbale conditions, supermartingale bounded below by 0 should converge.

(b) Is fairness preserved under random stopping? If {X,} is a martingale, we know that we have
constant mean; that is

E(X,) = E(Xo),¥n € N.

Is
E(Xl/) = E(XO)

for some reasonable class of stopping times v?

When it holds, preservation of the mean under random stopping is quite useful. However, we can
quickly see that preservation of the mean under random stopping does not always hold.

Example 12.45. Let {X, = 0,X,, = >, Y;,n > 1} be the Bernoulll random walk so that
{Y;}icz+ are iid and

PYi=+1)=-,icZ".

1

2

Then {(X,, Bn) }nen is a martingale, where B, = o(Xy, ..., X,). Let
v=inf{ne€Z|: X, =1}

be the first time the random walks hits 1. Standard Markov chain analysis asserts that

Pv < o0)=1.

But X, = 1 so that
E[X,]=1+# E(Xy) =0.

(Xy(w) = Xl,(w)(w),Vw S Q)

Thus, for random stopping to preserve the process mean, we need restrictions either on {X,,} or on
v or both.

12.7.1 Operations on Supermartingale
We consider two transformations of supermartingles which yield supermartingales.

Proposition 12.46 (Pasting of supermartingales). For i = 1,2, let

{(x{7.8.) ,n >0}

be positive supermartingales. Let v be a stopping time such that
X (w) = X2 (w),Yw € {v < o}.

For any n € N, define

_ Xr(ll)(w), n < v(w)
Xp(w) = { XPW), 1> ww).

Then {(X,,, By) }nen is a positive supermartingale, called the pasted supermartingale.
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Proof. Write
Xn = Xv(Ll)]]-{V>n} + Xwg2)]]-{1/§n}~

(a) Clearly, B,, C B,+1,Vn € N.

(b) Forany n >0, X,, € B,,, X,, 2 0 and X,, € L.

(c) Since on the set {v < oo}, XV > X2 then for any k € ZF, on the set {v="k}: x> xP.
Then for any n € N,
Xn = X’V(‘Ll)]l{l/>n} + Xv(LZ)]l{Vgn}
(€)) (2
> E [Xn-i-l’ Bn} ]l{u>n} +E [Xn—i-l‘ Bn:| ]l{ygn}

=E X7(L1<21]]-{1/>n} + Xflzzll{vgn} Bn}

=F

s)
5,

1 1 2
XT(L-‘Zl]]‘{V>n+1} + XT(L-‘Zl]]'{V:’I’L+1} + X/Sl_gl]]-{ygn}

> K |:Xr(Ll.21]l{u>n+1} + X»r(jzl]l{V:rH»l} + Xflz-ﬁzl]l{l’gn}

=F X£211{v>n+1} + X7(7,2J21]]'{1/§n+1} ’ Bn]
= E[Xp4+1|Bn], P-as.. O

Our second operation is to freeze the supermartingale after n steps. We show that if {X,,} is a
supermartingale (martingale), {X,an} is still a supermartingale (martingale). Note that

(Xu/\n,nEN) = (X07X17 v vanleuu XI/leM e )

Proposition 12.47. If {(X,,, B,) }nen is a supermartingale (martingale), then {(X,an, Bn)}, ey 18
also a supermartingale (martingale).

Proof. Assume {(X,, B,,) }nen is a supermartingale.

(a) Clearly, B,, C B,+1,Vn € N.

(b) For any n € N,
n—1
Xy/\n = Xl/]]-{n>1/} + Xn]]-{u2n} = Z Xk]]-{ll:j} + Xn]]-{l/>n} S Bn

k=0

Also, Xyan € L.
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:

= Z E[Xk|Bn] 1=k} + E[Xn+1|Ba]luzni1y

(c) For any n € N,

E[Xyngniny| Ba] = B | Y Xilymny + Xot1Lyznin
k=0

k=0
n
= XLty + Xns1Lpznin
k=0
<D Xy + Xnlpznin
k=0

= Xy]l{u<n+l} + Xn]]-{u2n+l}
= Xz/]l{ugn} + Xnﬂ{u>n+1}
= Xyurn- O

12.7.2 Upcrossings

Let {z,}neny € R, and let —0o < a < b < co. Define the crossing times of [a,b] by the sequence
{xn}nEN as

vi =inf{n >0:z, < a}

vy =inf{n > vy : x, > b}
vs =inf{n > vy : z, < a}
vy =inf{n > vs: z, > b}

op—1 = 1nf{

Define
Bap = sup{k € 7" 1 vy < o0},

the number of upcrossings of [a,b] by {z,} (from [—o0,a] to [b, o0]).
Lemma 12.48 (Upcrossing and Convergence). The sequence {2, }neny C R converges in R if and
only if

Bap < 00,Va,beQ and a <b.

Proof. <= Assume

lim inf z, <lim sup x,.
n—oo n—oo

Then there exist a,b € Q and a < b such that

lim inf z, <a <b<lim sup z,.

n— oo n—00
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So x,, < ai.o. and z, > bi.o.. Thus, 3, = oo, a contradiction.
= Suppose there exists a,b € Q and a < b such that 3, = co. Then =, < aio. and z,, <)
i.0. so that

lim inf z, <a<b< lim sup z,,
n—00 n— 00

a contradition. O

12.7.3 Boundedness Properties

This section considers how to prove the following intuitive fact: A positive supermartingale tends
to decrease but must stay non-negative, so the process should be bounded.

Proposition 12.49. Let {(X,,B,)}nen be a positive supermartingale (X,, > 0 a.s.). We have
that

sup X,, < oo a.s. on {Xo < oo},
neN

and x
P (sup X, > a|Bo> < min {0, 1} ,Vconstants a > 0.
neN a

Proof. Consider two supermartingales
{(X0, Bu)}nen, i = 1,2,

defined by X,(ll) = X, and XT(L2) = ¢ for any n € N,. Define a stopping time
v, =inf{n e N: X, > a}.

Note on the set {v, < oo}, X,Ei) =X, Z2a= Xl(,f). Define

Y, ::{ X, n<vug,

a, n=v,
By the pasting property, {(Y;,, By) }nen is a positive supermartingale. This means
E[Y,|Bo] <Yy, Vn e N.
Furthermore,

Yo = Xoliy,sny +alpy,<ny 2 algy, <nys

and
Yo = Xolyy, >0y +algy,—0y = Xolyx,<a} +alix,>q) = min{Xo,a}.

Then

min{ Xo,a} =Yy > E[Y,|Bo] > Elaly,,<ny|Bol = aP(ve < n|By) = aP ( sup X > a|BO> .

0<k<n

So X
P< sup Xk2a|80) gmin{o,l}.
a

0<k<n
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By the conditional MCT,

X
P <suan > a15’0> < min {0,1} .
neN a

Next, notice that

P (Sup Xn 2 a,Xo < OO) =F|F |:IL{supnEN Xn>a}1{Xo<oo}’ BO:H
neN -

=FE |lix,<o0} P (suEXn > a|l3’0)]
L ne

[ X
< B |1{x, <00} min {0,1”
a
— 0 as a— o0.

by the DCT. So
P <suan =00, Xy < oo) < 0.

neN
Thus,
P <SupX =00, Xg < oo> = 0.
neN
As a result, on {Xy < 00}, sup,,cy Xy < 00 a.s.. O

12.7.4 Convergence of Positive Supermartingale

Let {(X,, Bn)Inen be a positive supermartingale. For a,b € R and a < b, define

vi(w)=1inf{n > 0: X, (v) < a}

vo(w) = inf{n > v (w) : X, (w) > b}
v3(w) = inf{n > 1 (w) : X,(w) < a}
vy(w) = inf{n > v3(w) : X,(w) > b}

vop—1(w) = inf{n > vop_o(w) : X, (w) < a}
= v w) =

vor(w) = inf{n

and define
Bap(w) =sup{k € Z : vap(w) < oo},

the number of upcrossings of [a,b] by {X,,(w)} (from [—o0c, a] to [b,0]). Note we have the fact

{w: lim X, (w) exists} = ﬂ {w: Bap(w) < oo}
e a,beQa<b

So
lim X, exists a.s. <= [, < 00,Va,b€ Q and a < b.

n—oo
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Thus, to show P (lim,,_,o, X, exists) = 1, it suffices to show P (8, < 00) =1 for any a,b € Q and
a <b.

Proposition 12.50 (Dubin’s inequality). Let {(X,, By)}nen be a positive supermartingale. Sup-
pose 0 < a < b. Then

(a)
k
P (Bap > k|Bo) < (%) min ()ZO 1) VkeZt.

(b) Bap < 00 as..

Proof. (2) follows from (1) since

M8

ElBap) = > P(Bap = k) < Z (%)k < o0.

1 k=1

b
Il

Start by considering the supermartingales

XV =1vneN,

n

X
X®=="vneN,
a
and paste at 1. Note on {v; < oo},

X,

XMV=1> =Xx®
v = a 12
So
1 n<v
(1) _ ) 1,
Yn B { )flnu nz V1,

is a positive supermartingale w.r.t {B,},en. Now compare and paste
X =y,
XW =b/a

at the stopping time v5. On {ve < oo},

Xy, _ b

3) — y(1) = Z—x®
X)) =Y, = P >a_X”2'
So
1
v @ { v n <,
37 TL> v,
1, n <,
p— X’VL
= ?, 141 <n<V27
@ n z v,
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is a positive supermartingale w.r.t {8, }nen. Now compare V,? and bXu On {rs < oo},
b _bX,
YU(32) = - 2 - Vdv
a  a a

and so

and so

Y(4) _ Y’rgg)v n < vy,
(2)2 , n > V4,

1, n<vuvi,

vy K n < Vg,
= s vy < n < Vs,
, V3 S n <y,

2
), n 2 vy,

is a positive supermartingale w.r.t {B;, }nen. Continuing on in this manner, we see for any k € Z7T,

1, n <,
Xn <
g s Vs n <,
4 vy £ n < Vs,

b

Y(Qk) — ETn> V3<’I’L<V4,
n
b\k—1 x
(%) 2y Vag—1 S n < Vg,

b\ K

()", n z v,

is a positive supermartingale w.r.t {8, },en. Note that

2% 2% 2% Xo Xo . [ Xo
5/0( ) = YO( )]l{l/1>0}+y0( )]1{1,1:0} = ]1{U1>0}+7]1{u1:0} = 1{X0>Q}+7]1{X0<a} = min {a’ 1} :

Also for any n € N, i
YTS%) > Y,E%)]l{u%gn} = (Z) T, <ny P-as..
Since {(Y,2¥, B,,) }nen is a positive supermartingale,
b\"* 2%k . [ Xo
<a> P (v, < n|By) < E[Y,*|By] < Y** = min {a, 1} :
Thus,

k X
P (v, < n|Bp) < (%) min{ao,l},VnGN. O
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By the conditional MCT,
a k . XO
< ' - .
P < o0|Bp) < (b) mm{ " ,1}
> k X
a . o
> < (= 2090
P(Bap = k|Bo) < (b) mln{ " ,1}

Let k — oo and we see P(8, = 00|By) = 0.

Remark. Since any martingale is also a supermartingale and -1 times a supermartingale is a
submartingale, we have the same conclusion for martingales and submartingale.

Theorem 12.51 (Martingale Convergence Theorem). If {(X,, By)}nen is a positive supermartin-
gale, then lim, . X, =: X exists a.s.. Furthermore, E[X|Bn] < X, for any n € N, so
{(Xn,Bn)},cx is a positive supermartingale. Moverover, E[X ] < E[X,] < oo for any n € N. So
Xoo € L.

Proof. Tt suffices to show X, can be added to {X,}nen while preserving the supermartingale
property. Fix a,b € R and ¢ < b. By Dubin’s Inequality, P(84p < 00) = 1. So X0 := limy, 0o Xy
exists a.s.. Let p € N. For n > p,

E [ iI;f Xm’ Bp} < E[X,|By) < X, P-as..
m>n

Since Xoo = limy, oo inf,, >y, X, P-a.s., by the conditional MCT, E[X|B,] < X, P-as.. O

Remark. The last statement says we can add a last variable preserves the supermartingale prop-
erty. This is the closure property to be discussed in the next subsection and is an essential concept
for the stopping theorems.

12.7.5 Closure

If {(X,, B,)}nen is positive martingale, then we know it is almost surely convergent. But when is
it the case that

(2) Xp 2 Xow,
(b) E[Xw|Bn] = Xy so that {(X,,Bn)},cx is a positive martingale?
Even though it is true that X,, “3 X, and E(X,,|B,) = X,, for any m > n, it is not necessarily

the case that
E(Xw|Br) = X,.

Extra conditions are needed. Consider, for instance, the example of the simple branching process.
If {Z,}nen is the process with Zy = 1 and Z,, representing the number of particles in the nth
generation and m = E(Z;) is the mean offspring number per individual, then {Z,,/m™} is a non-
negative martingale so the almost sure limit exists:

Wy = Z,/m™ 225 W.
However, if m < 1, then extinction is sure so W = 0 and we do not have

E[W|B,] = Z,/m™.
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Definition 12.52 (Closed Martingale). A martingale {(X,,, B,)}nen is closed on the right if there
exists an integrable random variable X, € B, such that

X, = B[Xo|Bn],¥n € N.
In this case, {(Xy,Bn)}, cx is a martingale.

In what follows, we write L;‘ for the random variables £ € L, and X > 0 P-as..

Proposition 12.53. Let p > 1, X € L} and define X,, := E[X|B,],Vn € N, and X, := E[X|B.].
Then
X 22 Xoo, X 225 X,

and {(X,,Bn)},cx is a closed martingale.

Proof. Clearly, {(E[X|B,], Bn)}, cy is a positive martingale and thus by the Maringale convergence
theorem, there exists Xfé such that X, 25— Xfé. Since X,, € B,, C B, Xtﬁ € Bo. NTS:

X# = E[X|Bs)], P-as..
e Case 1: Suppose there exists A < oo satisfying P(X < A) = 1. Then since X < X a.s.,
E[X|B,] < X\ P-as,Vn €N,

Assume the probability space is (2, B, P). By DCT,

lim [ E[X|BndP = [ lim E[X|Bn]dP:/E[X\Boo}dP:/XoodP,VAeB.
A A

n—o0 A A n—oo

Fix m € Z* and let A € B,,, thenVn > m, we have A € B,, C B,, and by the definition of

the conditional expectation,
/ E[X|B,]dP = / XdP.
A A

So
/ XoodP = lim [ E[X|B,]dP = / XdP.
Thus,
/XoodP:/XdP,VAe U Bm.
A A m=1
To show

X¥ = E[X|Bs), P-as.,
we need to show

/XdP:/E[X\BOO]:/Xj;dRVAGBOO.
A A A

It suffices to show
/XdP: / X#%dP,YA € B..
A A
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Define

which is a 7w system. Define

D:{AeB:/XdP:/X;ﬁdP}.
A A

Note that C C D. If we can show D is a A-system, by Dykin’s theorem, B, = o(C) C D.

(a) Clearly, € D.
(b) Suppose A, B € D and A C B. Then

XdP:/Xde/XdP:/Xif/X(ﬁ: X*dP.
ANB B A B A B~NA

So BNAeD.
(c) Suppose {Ap}nez+ €D and A, C A,11,Vn € ZT. Then by MCT,

I

XdP = / Iy 4, XdP = lim [ Iym 4 XdP
Can U e A

= lim XdP = lim X#*dpP

m—00 A m—00 A
m m

m— 00

/ X#*dP.
UOo An

n=1

lm [ Iym AanédP:/ Iy a4, XZEdP
o o

Thus, D is a A-system. Hence X% = E[X|Bs], P-a.s.. Next, since
E[X|B,] <\, P-as.,Vn €N,

we have

<=

Tim || E[X|B,] = EIX|Bx]l, = lim (B (|E[X|B,] - E[X|Bx]"))
— (nlgroloE (|E[X|B,] — E[XlB‘ooHp))5

DCT (E ( lim |E[X|B,] — E[X|BOO]|”)>% = 0.

n—oo

So X,, L, Xoo. Note that
E[X»|By] = E[E[X|B])|Br] = E[X|B,] = Xp,Vn e N,

proving {(Xy, Bn)},cx is a closed martingale.
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e Fix A\ > 0, and write X = X AX+ (X — \)T. Since E(-|B,,) is Ly-norm reducing, we have
IE[X[Bn] — E[X[Boo]ll,
IELX AABR] = E[X ANBo]l,, + [|EI(X = N)F[Ba]||, + [[ELX = X)F[B],
IBIX A B — BIX ANB]l, +2/|(X — N,
=I+1I.

<
<

Since 0 < X AX < A, by case 1, I — 0. For II, note as A — oo, (X — A\t — 0 and
(X = N* <X €L, By DCT, (X = A)F[[, = 0 as A — oco. We may conclude that

lim sup || B[X|B,] — E[X[Bux]|l, < 2[|(X = \)*|[,.

n—oo

The left side is independent of A, so let A — oo to get

Thus, E[X|B,] Ly E[X|Bs]. Then E[X|B,] 2 E[X|Bs]. Also, we already have
E[X|B,] ¥5— X7,
So E[X|B,] & X#. Thus, X# = E[X|B..], P-as.. O
Remark. (a) Since F[X|B,] = E[E[X|Bx]|Bn] = E[X|B,], we have X,, = E[X|B,], P-a.s..

(b) We can extend it to the cases where the closing random variable is not necessarily non-negative
by writting X = XT — X~

Corollary 12.54. For p € Z*, the class of L, convergence positive martingales is the class of the
form

{(BIX[Bn), Bn)} e
with X € L.

Proof. 1t X € L}, then {(E[X|B,], Bn)}, ey is a positive martingale and
E[X|B,] 2= E[X|B.).
Conversely, suppose {X,, }nen is a positive martingale and L, convergent. For n < r, then
E[X,|B,] = X,.

L
Now by assumption, X, —> X, and FE(:|B,) is continuous in the L,-metric by the property of
conditional expectation. Thus, as r — o0,
L
X, = E[X,|B,] — E[Xx|Bx]

by continuity. Therefore, since X,, = E[X,|B,] for any r > n, X,, = E[X|B,]. Thus, it is of the
form

{(E[Xsc|Bn], Bn)}pen - O
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12.8 Stopping Supermartingales

What happens to the supermartingale property if deterministic indices are replaced by stopping
times?

Lemma 12.55. If v is a stopping time and £ € Ly, then

EEIB,) = EEIBall{—ny-

neN

Proof. Note the right side is B,-measurable andvV A € B, since AN {v =n} € B,,

AE[§|By]dP:A§dP:7§I/4ﬂ{V_n} &dP
— E[¢|B,)dP
> /... sl

:/ ZE[ﬂBn]]l{l/:n}gdP
AnEN
So
E[¢|B,] =) ElE|Balli=n. O

neN

Theorem 12.56 (Random Stopping). Suppose {(X,,Bn)}nen is a positive supermartingale and
also suppose X, 5 Xoo. Let v1,vs be two stopping times. Then

E[XU2|BI/J < Xul, P-a.s. on [1/1 < VQ}.

Proof. By previous lemma,

E[XV2|BV1] = Z E[Xuz |Bn]]l{m=n}'
neN

It suffices to show on the set [v; < o] N {vy =n},
E[X,,|B.] < X,,, P-as.,¥ne€N.
Define Y,, = X,,an for any n € N. Then {(Y,,B,)}nen is a positive supermartingale and claim
Y, 25 YV = X,,.

Note that if vo(w) < oo, then for n large, we have n A vo(w) = v2(w). On the other hand, if
va(w) = 00, then
Yo (w) = Xn(w) = Xoo(w) = X, (w).

By convergence theorem, {(Y,,B,)}, cx is a positive supermartingale. So

ElYy|B, <Y,,VneN?
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That is
E[X,,|B,] € Xyynn,Vn € N

Hence on the set [11 < o] N {v; =n},
E[X,,|B.] < X,,, P-as.,VneN. O
Some special cases:
(a) If vy =0, then v5 > 0 = vy and F[X,,|By] < Xo and then E[X,,] < E[Xy].
(b) If 11 < vy pointwise everywhere, then E[X,,|B,,] < X,,, P-a.s., and then

E[X,,] < E[X,,], P-as..

For martingale, we will see that it is useful to know when equality holds. Unfortunately, this
does not always hold and conditions must be present to guarantee preservation of the martingale
property under random stopping.

12.8.1 Gambler’s Ruin

Suppose {Z, }nez+ are idd Bernoulll random variables satisfying
1
P(Zl - :i:l) - 5,

and assuming a fixed jo € {0,1,..., N}, let
Xo=jo, Xo =Y _Zi+jo, n€L"
i=1

be the simple random walk starting from jo. We ask: starting from jo, will be the random walk hit
0 or N first? Define
Bn = O'(Zl, ce ,Zn), B() = {@,Q}

Then {(X,,Bn)}nen is a martingale. Define
v=inf{n>0,X, € {O,N}}.

Then {(X,an, Brn)} is a positive martingale. If random stopping preserves the martingale property
(to be verified later), then

jo = E[Xo] = E[X,] = 0P(X, = 0) + NP(X, = N).

So
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12.9 Martingale and Submartingale Convergence

This section begins by discussing another relation between martingales and submartingales called
the Krickeberg decomposition. This decomposition is used to extend convergence properties of
positive supermartingale to more general martingal structures.

12.9.1 Kirickeberg Decomposition
Theorem 12.57 (Krickeberg Decomposition). If {(X,, Bn)}n>o0 s a submartingale such that

sup E[X,[] < oo, (u.i)
neN

then there exists a positive martingale {(M,, B,,) }nen and a positive supermartingale {(Yy,, By) }nen
and
X, =M, —-Y,¥neN.

Proof. Recall if {(Xy, Bn)}nen is submartingale, so is {(X;7, By)}tnen. Also, {E [X;[|Bn]}pzn is

monotone non-decreasing in p since
E[X}lBa] = B [E [X}l5,] 1B.] > E[X} B, Pras..

Define
M, := lim E[X[|B,],¥n €N,
p— 00

which is well-defined by MCT. Claim. {(M,, B,)}nen is a positive martingale.
(a) M,, € B, M,, >0, P-as. for any n € N.

(b) By MCT and since the expextations of submartingale increas,

E[M,|=F {hm [X;|Bn]}
pP—00
= lim B [E [X,/]5,]
= pllrgo E[X]]

=supF [Xj[] < o0, P-as.,VneN.
n>0

E[Mn+1|Bn

=B lim E (XN B ]

:

= lim E[E [X}|Bui1]| B]
p—00

= lim F [X;'|Bn] = M,, P-a.s.,VYn € N.
p— 00

Define Y,, := M,, — X,, for any n € N. Claim. {(Y,, B,)}nen is a positive supermartingale.
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(a) Y, € Bp,VneN.

M, = lim E[X}[B,] > EIX[|B,] = X;} > X;} — X;, = X,,, P-as.,¥neN.
p—00

n
SoY, >0, P-as.,Vn € N. Clearly, Y,, € Ly, P-a.s. for any n € N.
(b)

E[Yn11|Bn] = E[My1Bn] — E[X11[Bn]

= M, — E[Xn+1|B]
<M, —-X,=Y,, P-as.,VnéeN. O

12.9.2 Doob’s (Sub)martingale Convergence Theorem

Krickeberg’s decomposition leads to the Doob submartingale convergence theorem.

Theorem 12.58 (Submartingale Convergence). If {(Xy, Byn)}nen is a (sub)-martingale satisfying
Lq-bounded, i.e.,
sup E[X;}] < oo,
neN
then there exists Xoo € L1 such that
X X .

Proof. From the Krickberg decomposition, there exists a positive martingale {(M,,, B,)}nen and
a positive supermartingale {(Y,,, B,,)}nen such that X,, = M,, — Y,,. Since a martingale is also a
supermartingale, by martingale convergence theorem,

A4ﬁ Ef%<hﬂm S Lla Y% 351>)2n € L1~
So M, and Yo are finite a.s., Xoo := Moo — Yoo exists a.s., X, — Xeo. O]
Remark. If {(X,,B,)} is a submartingale, then

sup E [X,I] < oo if and only if sup E[|X,]] < oo,
neN neN

in which case the submartingale is called Li-bounded. To see this equivalence, observe that if
{(Xn,Bn)}nen is a submartingale, then

E(X.0] = B[X1] + B [X7] =2 (7] - BIX.] <2[x] - E[X0]

n n

So
sup E [|X,[] < 2sup E [X,[] — E[X].
neN neN

On the other hand,

sup E [X,[] <sup E[|X,.[].
neN neN
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12.10 Regularity and Closure

Question: Given a martingale {(X,, B,)}nen, under what conditions, is it true that there exists a
random variable X satisfying
X, = E[X|B,] P-as..

This means the martingale {(Xy,, Bn) }nen is closed.

Definition 12.59. A family of random variable’s { X };cr is unformly integrable if

lim suII)E |:|Xt|]]‘{|Xt|>b}} =0.

b—oo e

Clearly, this means X; € L1,Vt € T.

Recall the fact: If X,, 22 X, and {X,, }nen is wi., then X, L, X

Proposition 12.60. Let X € Ly, and let K be collections of subfields of B. Then {E[X|G]}gex is
w.i..

Proof. Fix b > 0 and G € K and let ¢ > 0, by Markov’s inequality,

/ EX[G)ldP < / E[1X||G)dP
{|E[X|G]|>b} {E[IX||G]>b}

déf/ X |dP
(B[1X]16]>b)

:/ |X|dP+/ IX|dP
{E[IX[|g]>bIn{|X|<c} {E[IX[|g]>bIn{|X|>c}

< cP (E[|X]1G] >b)+/ | X|dP
{IX[>c}

K

<SEENXIG)+ [ |xlap
{IX[>c}

k

—3EIX)+ [ |XlaP
{IX[>c}

that is,

lim sup sup/ |E[X|G]|dP < / | X |dP.
b—oo G J{|E[X|G]|>b} {IX[>c}

Since ¢ > 0 is arbitrary chosen, letting ¢ — oo by DCT, proving the claim. O

Proposition 12.61 (Uniformly integrability Martingales). Suppose that {(X,, By)}nen is a mar-
tingale. The following are equivalent:

(a) {X,} is Li-convergent.

(b) sup,en E[|Xn|] < 0o, and there exists a random variable Xo, such that X,, == X, which
satisfyies X,, = E[X|By] for any n € N.
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(¢) {(Xn,Bn)}nen is closed, that is, 3X € L; such that X,, = E[X|B,] for any n € N.
(d) The sequence { X, }nen is u.i..
If one of the statements (a) — (d) is true, the martingale is called regular or closable.

Proof. “(a) = (b)”. Since X,, is Ly-convergent, lim, o, E (] X,|) exists. So E[|X,,|] < oo for any
n € N. Since the sequence is bounded and its limit exists, it is uniformly bounded, i.e.,

sup E [| X,]] < cc.
neN

By the martingale convergence theorem, X, =5 X_. Finllay, for any n € N, we have for any
p>mn,

E[|Xn — E[Xeo|Bull] = E[|E[Xp|Bn] — E[Xoo|Bn]ll
E[IE[X) = Xoo|Bn]l]
E[E“Xp - XOOHBH]]
E|

|Xp - XOOH .

N

Since p > n is arbitraryliy chosen, letting p — oo, we have
E[| X, — E[Xx|B,]|]] =0,Vn € N.

X, = E[Xw|B,], P-a.s.,¥n €N.

“(b) = (c)”. The random variable variable X = X, serves the purpose and note (by trangale
inequality)

E[Xo|]=E [ lim 1nf|Xn|} < lim inf E[|X,[] < sup E[|X,|] < co.

“(¢) = (d)”. The family {E[X|B,]}nen is u.i..
“(d) = (a)”. If {Xp}nen is ui., sup,eny B [|Xn|] < oo by the characterization of uniform

integrability. By the martingale convergence theorem, X,, =2 X . Therefore, X, L Xoo- O

12.11 Regularity and Stopping
We now discuss when a stopped martingale retains the martingale characteristics.
Theorem 12.62. Let {(X,,, B,)}nen be a regular martingale.
(a) If v is a stopping time, then X, € L.
(b) If v1 and ve are stopping times and vy < vo, then
E[X,,|B,,] = X,,, P-a.s..

E[X,,] = E[X,,] = E[Xo].
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Proof. (a) Let v : Q — N U {0} be a stopping time. The martingale is assumed regular so that
there exists a random variable X such that X,, = E[X|B,] for any € N. Moreover, X = X, and

a.s.
Xp — Xoo,

X, =X

Then
ElXeo|B)] =Y E[Xoo|Bulljpmny = > Xnliypy = X,
neN neN

Since X € L1,

EX,]] = E[|E[Xx|B]l] < E[E[|[Xeo|By]] = E [| Xoo|] < o0.

(b) If 14 < v, then B,, C B,,. From (a), we have for any stopping time v, X,, = F[X]|B,]. Then
E[X,,|Bu,] = E[E [Xoo|By,]| Bu| = E[X|By,| = X, . O

Remark. For regular martingales, random stopping preserves fairness and for a stoppping fime v,
we have F[X,] = F[Xj] since we may take v = vy and v, = 0.

Remark. By Crystal Ball condtition, if {(X,,B,)}nen is a martingale and L, bounded, i.e.,

sup E | X,[] < 00, p> 1,
n

then {X,,} u.i. and hence regular.

12.12 Stopping Theorems

We now examine more flxible condtions for a stopped martingale to retain martingale characteristics.
In order for this to be the case, either one must impose conditions on the sequence (such as the ui
condition) or the on the stopping time or both.

Definition 12.63. A stopping time v is regular for a martingale {(X,,, B,) }nen if {(Xvan, Bn) }nen
is a regular martingale since we’ve shown {(X,an, Br)}nen is a martingale.

Proposition 12.64 (Regularity). Let {(X,, B,)}nen be a martingale and suppose v is a stopping
time, then v is regular for {(X,,,B,)} if and only if the following 3 conditions hold.

(a) Xoo :=lim, o0 X, exists a.s. on {v = oo}. This means lim,,_,oc Xy, exists a.s. on Q.
(b) X, € Ly. (Note from (i), we know X, is defined a.s. on (.)
(¢) Xuan = E[X,|B,] for any n € N.

Proof. Suppose v is regular for {(X,,B,)}. Then {(Y,, = Xyan, Bn)}nen is a regular martingale.
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(a) There exists a random variable Y., such that
Y, 255 V...
Y, 5 Y.
On the set {v = o0}, ¥, = Xpan = X5, and so limy, o0 Xpan exists a.s. on .
(b) Note
X, = lim X, = lim Y,, =Y, € Ly, P-as..

(¢) By (i), X, = Yo, so
E[X,|B,] = ElYo|Bn] =Y, = Xyan, P-as..
Next, suppose (i),(ii),(iii) hold. By (i), X, is defined a.s. on Q. By (ii), X, € L;. By(iii),

Xuan = E[X,|B,). So we get X, is a closing random variable for the martingale {(Xy,an, Bn)}nen-
Thus, {(Xyan, Br) tnen is a regular martingale. O

Here are two circumstances which guarantee that v is regular.
(a) If v < M a.s., then v is regular since

|Xl//\n| < Sup|Xu/\m‘ = Ssup ‘Xm| € Ll'
meN m<M

Recall that domination by an integrable random variable is sufficient for uniform integrability. Or

it suffices to show X, A, is u.i.. By BCT in terms of b,

lim sup F || X 1 < lim £ | max |X,|1 =0.
bﬁooneg [| uAn| {\X,,An\>b}] = 0<n§M| n‘ {maxogn<nr | Xn|>b}

(b) If {X,}, then any stopping time v is regular. (See the Corollary below.)

Theorem 12.65. If v is regular and v; < vy < v for stopping time v1 and va, then X, and X,,
exists, X,,, € L1, X,, € Ly and

E[X,,|B,,]=X,,, P-a.s..

Proof. Define Y,, = X,an. So {(Yan, Bn)}nen is a regular martingale. Then by previous theorem,
Y., Y., € Ly, and E[Y,,|B,,] =Y,,, P-as.. Also,

Li3Y,, =Xuvn = Xoy,

LioY, =Xurn =X,,.
So F[X,,|B,,] = X,,, P-as.. O
Remark. Suppose v is regular, v, = 0 and v = v. Then E[X,|By] = Xy and E[X,] = E[X].

Corollary 12.66. (a) Suppose v and vy are stopping times and vy < vo. If vs is regular for the
martingale {(X,, By) }nen, so is vy.
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(b) If {(Xn, Bn) }nen is a regular martingale, every stopping time v is regular.

Proof. (b) follows from (a). Set v; = v and vo = 00. Then Xy,nn = Xpn. S0 {(Xvoan, Br) bnen is a
regular martingale. Then v is regular. By (a), v is regular. Next, we prove (a). Assume v; and vy
are stopping time, where v is regular. It suffices to show {(X,,an, Bn) }nen is a regular martingale.
It is enough to show {X,, an}nen is u.i.. Fix b > 0 and n € N, note

/ Xyl dP = XounldP+ [ Xy naldP
{1 Xy, An|>b} {I Xy An|>bv1<n} {IXvy An|>brvi>n}
:/ |X,,1|dP—|—/ X[ dP
{IXv, [>b,v1<n} {I1Xn|>b,v1>n}
<[ palars [ XaldP
{|X,,1\>b} {|Xn\>b71/2>n}
g/ |Xu1‘dp+/ |Xu2/\n‘dp
{| X, |>b} {|XnAn|>bva>n}

</ IXyl\dPJr/ | X ynn |dP.
{1Xu, |>b} {| X An|>b}

Since X,, € Ly by previous theorem, and {X,, n nen is wi.,

Sup/ | Xy an|dP </ | X,,|dP + sup / | Xy nn|dP
neN {IXvyAn|>b} {1 X, >0} nezt {|Xvgan|>b}

— 0 as b — oo. O

Theorem 12.67. In order for the stopping time v to be reqular for the martingale {(X,, By) }nen,
it 1s necessary and sufficient that

(a) f{y<oo}|Xu\dP < 00, and

(b) {Xn]]-{u>n}}neN 1S U.1..
Proof. Sufficiency: It suffices to show {X,an}nen is ui.. Fix b > 0 and n € N, note

/ ‘Xu/\n|dP: |XV/\n|dP+/ |Xu/\n‘dp
{|XvAn|>b} {|XvAn|>br<n} {|XvAn|>by>n}
:/ |X,,|dP+/ X1 gy dP
{|X,|>b,v<n} {|Xn|>by>n}

g/ |XV|1{V<OO}dP+/ | X1 {ysny|dP
{|X,|>b,v<oco} {|Xnli{ysny|>b}

:/ |Xl,]1{l,<oo}|dP+/ \Xnn{y>n}|dp.
{lXUl{u<oo}‘>b} {|X"’1{V>”}|>b}

Since X, 1{, <00} € L1 by (a), and { X, 1,501 fnen is wi. by (b),

sup/ |XVAn\dP</ ’Xy]l{,,<oo}|dp+sup/ | Xn1ysny|dP
neNJ{|X, nn|>b} (X0 1 () cooy [>b} neNJ{| X150y [>b}

— 0, as b — oo.

Necessity: Suppose v is regular.
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(a) Since {X,an tnen is wd.,

/ | X, |dP = lim | X, |dP = lim | Xyan|dP < sup E [Xyan] < 00.
{r<oo}

=0 Jivgn} n—=o0 Jiv<n} neN

(b) Since {X v An}}nen is ui,

sup/ Xn]]-{v>n}|dP: Sup/ |XU/\’!L]]-{V>TL} ar
neNJ{| X, 1 ,5ny|>b} nENJ{| X anl(vsny|>b}

< sup/ | XyAn|dP
neENJ{| X, An|>b}

— 0, as b — oo. O

Remark. Question: is there a simple sufficient condition for (a) to hold? Fact: If {X,},>0 is
Li-bounded, we have that

sup E [| X,|] < oo

neN

Proof. By the martingale convergence theorem, X,, == X, as n — oo. Thus, X, is defined a.e..
We claim X, € Ly and then Xoliycooy € L1 To verify the claim, observe that X, Ap, 25, X,, and
so by Fatou’s lemma

E[X,||=E [ lim |XW|} < lim inf B | Xynnl]-

Then for any n € N,
E[Xn|Buan] =Y E[Xp|Bi| 1 {urn—sy = ZX Livan=j} = Xuan-
j=0 Jj=0

Thus,
E (‘XV/\nD <E HE [Xn‘BvAnm <E [E [|Xn||BVAn]] =F HXnH .

Thus

)

B, < Jim inf B|X,0 < lim BX,0) < sup B1X,] <
O
Remark. If the martingale { X, } ,en is non-negative, then it is automatically L;-bounded since

sup E [| X,,|] = sup E[X,,] = E[X].
neN neN

Corollary 12.68. Let {(X,,B,),n > 0} be an L;-bounded martingale.
(a) For any level a > 0, the escape time
Vo =inf{n > 0:|X,| > a}

is regular. In particular, this holds if {X,,} is a positive martingale.
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(b) Fora,be Rand b <0 < aq,
Vap =inf{n >0: X,, > aor X,, <b}
is regular.

Proof. Since {X,,} is L; bounded and v,, v, are stopping time, we have
/ | Xy, |[dP < oo,
{va<oo}

[
{Va,b<00}

Then it suffices to show that {X,1,,5n}} and {X, 11, ,~n}} are both w.i.. Observe that

dP < oo.

’Xn]l{u,l>n}| = |Xn‘]l{ya>n} < a]l{ua>n} < a,

and
|Xn]]-ua,b>n’ = |Xn|1{ua,b>n} < max{|a\, ‘b|} ]]'{Va,b>n} < max{|a|, |b|} : [

Proposition 12.69. Suppose {(X,,B,)}n>0 is a martingale. Then

(a) v is regular for {(X,,B,)}n>0 and

(b) X, 2% 0o0n {v = oo}

is equivalent to

(a)’ f{u<oo}\Xl,|dP < o0 and

(B)" Tty oo [ oy | X dP = 0.

Proof. Assume (a) and (b) hold. Then {(X,A B, )}nen is a regular martingale, and hence
XL//\n ELS._’ Xl/7 Xu/\n L.1> XV'

From (b), X, =0 on {v = co}. Then

/ X, |dP = / 1X,| < oo
{v<oo} Q

Claim. If X, L1, X and Y, 225V, then

— 0.

Then
/ | X, |dP = / | Xoan|L{ysnydP — | X, |dP = 0.
{v>n} Q {r=00}
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Assume (a)’ and (b)’ hold. To prove (a), it suffices to show { X, 1{,>n}nz0 is wi.. Fix € > 0, by
(b)’, there exists ng such that when n > ny,

/ X, |dP < e.
{v>n}

Then for b > 0,

- / X AP

n20 J{|Xn|L(ysny}

R R / X, |dP, sup/ | X,,|dP
0snsno—1J{1X,|>bp>n} n2no J{IXn|>by>n}

< max max / | Xn|dP,e o .
Osnsno—1 /Y| x,, |>b,v>n}

Therefore,

lim sup sup ‘anl{l,>n}‘dp < e

b—o00 nEN/[|Xn]l{V>n}|>b}
So {Xn1{y>n} nzo is wi.. Thus, v is regular. Since v is regular, X, is defined on € and

a.s. L
Xl//\n ? Xl/a and Xl//\n . Xl/'

Then
0= lim [ |X|dP = lim / Xy pn|dP = / X, |dP.
n—0o0 v>n n—0o0 v>n V=00
So X, 1{y—oc} = 0 a.s.. That is, X;, — 0 on {v = oo}. O

12.13 Wald’s identity and random walks

This section discuss a martingale approach to some facts about the random walk. Consider a
sequence of iid random variables {Y;, },,cz+ which are not a.s. constant and define the random walk

{Xn}nGN by
Xo=0, X, =) Vi, neZ",

i=1

with associated o-fields
Bo = {0,9}, By = o(Vi,...,Ya) = 0(Xo,..., Xn), n € 7.
Definition 12.70. The cumulant generating function of Y7 is a funtion

¢o:R—R
u +— log (E [e“yl]).

Facts about ¢:
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(a) ¢ is convex on R.
Proof. Let ui,us € R, and fix « € (0,1). By Holder’s inequality,

dlauy + (1 — a)uy) = log E [eaulyle(lfa)u2Y2:|
< log [E [eulylﬂa [E [euzyl]] l1-a
= ag(ur) + (1 — a)¢p(uz).

In fact, we can show that ¢ is strictly convex on {¢ < oo}. Hence, on {¢ < oo}, ¢’ is strictly
increasing. O

(b) {¢ < oo} is an interval containing 0. (This interval might be [0, 0] = [0], as would be the case
if Y1 were Cauchy distributed.)

Proof. Clearly, $(0) =0 < co. So 0 € {¢ < oo}. Fix uy,us € {¢ < 0o}, then for a € [0, 1],
Plaus + (1 — @)ug) < ad(ur) + (1 — a)p(ug) < co.

Then au; + (1 — a)us € {¢ < oco}. Thus, [u,usz] € {¢ < co}. O
(c) If the interior of {¢ < oo} is non-empty, ¢ is analytic there, hence infinitely differentiable, and
9(u) = B [vei=et)]

Hence, ¢'(0) = E[Y1]. One may also check that ¢ (0) = Var(Y7).

12.13.1 The basic Martingales
Here is a basic connection between martingales and the random walk.

Proposition 12.71. For any u € {¢ < oo}, define

qu] euXn

Bl

Then {(M,(u), By,) }nen is a positive martingale with E[M,,(u)] = 1. Since M,,(u) > 0, M, (u) € L.
Also,

My () = evXn—n9() _ guiXn g=nlog Ble

M, (u) 225 0 as n — oo.

Hence {M,,(u)} is a non-regular martingale.

Proof. Clearly, M,,(u) € B,,.
euYn+1

E [Mys1(u)|B,] = E [an),m

Bn} = M, (p).
Since 0,u € {¢ < oo}, we have § € {¢ < oco}. Then

P(u/2) = ¢(u/2+0/2) <1/2¢(u) +1/2¢(0) = 1/2¢(u).
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Also, {M,,(u/2)}nen is a positive martingale and then L;-bounded, so there exists a random variable
Z such that

M, (u)2) = ¥/2Xn=nd(u/2) @3 7 -

and by continuity,
M?(u)2) = e"Xn=2no(w/2) L3 72 o,

Therefore,
M, (u) = et Xn—né(u) — JuXn—2nd(u/2)+n[26(u/2)—¢(u)]
= 2lu/2Xn—nd(u/2)] ;—2n[1/2¢(u)—d(u/2)]
- Mﬁ(u/2)e’2"[1/2¢(“)"i’(“/z)}
—Z?2.0=0. O

12.13.2 Regular stopping times
We will call the martingale {(M,(u), B,,)}nen, where

6an

M, (u) = eXnmud(w) — 7[]5 Ak

the exponential martingale. Recall that if u # 0 and u € {¢ < oo}, then

Here is Wald’s identity for the exponential martingale.

Proposition 12.72 (Wald’s Identity). Let u € {¢ < oo} and suppose ¢’(u) > 0. Then for a > 0,

vii=inf{n >0: X, >a}

is regular for the martingale {(M,(u), By,)}nen. Consequently, any stopping time v < v} is regular
and hence Wald’s identity holds

1 = E[My(u)] = E[M, (u)] = / euXv—ve(wgp — euXv=ve(gp,
Q {r<oo}

Proof. To show that v} is regular, since M, (u) 2%, 0, by the equivalence proposition, it suffices
to show that

(a)
/ M, +(u)dP < o0,
{vd <o} °

lim M, (u)dP = 0.

n— 00 {V;r>n}
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(a) is true since {(M,,(u), Bn)}nen is Li-bounded for sup,, oy E [|[M,(u)|] = 1. It remains to check

lim M, (u)dP = lim euXn—ne(wgp — 0.

n—oo {U;>n} n—oo {Vj{>n}

We need the following random walk fact. Let {Y;};cz+ be iid with d.f. F and E[Y;] > 0. After

defining
Xn = Z Y*ia
=1

we have limsup,,_, . X, = +oo. If E[Y]] > 0, then by the SLLN,

X a.s.
= 225 E[Yy] > 0 as n — oo.
n

So X, &% oco. Tt is still true that if E[Y;] = 0 but one must use standard random walk theory as
discussed in, for example, Chung (1974), Feller (1971), Resnick (1994). Also

lim inf X, = —o0, P-a.s..

n—oo

Since
{lim sup X,, = oo} C {v;] < o0},Va >0,

we have P(v} < oo) = 1. Thus, lim, . P(v;; > n) = 0. Exponentia tilting: Construct a
probability space (#, 8#, P#), and on the space, construct iid random variables {Y;#};cz+ with
distribution F# defined by

F#(dy) = e™=?W F(dy).

Note F# is a probability distribution since
F#(R) = / e“y_d’(u)F(dy) - / eV1—6(Wgp — B [euY1/€¢(u)} —1.
R Q

F# is sometimes called the Esscher transform of F. Also,

E[Yie"M] 4
#yH#] — # — uy—¢(u) - — u¥1] — g
E7[Y] }—/RyF (dy)—/Rye F(dy) = Bevi] = Jolog B[] = ¢/(u) > 0.
Finally,
uX,, —neo(u) _ uX, —ne(u)
/+ e de/e ]l{yj>n}dP
{Va, >’I’L} Q

n

- / / [T F(dyn) - F(dy)
(Y15syn) 25 yi<a,1<k<n )y

.....

:// F#(dyn)~-~F#(dy1)
(Y15 Yn ) by yi<a,1<k<n

k
:P(Zyz#<a,j:1,...,n>

i=1

=P*(u" >n) = 0as n— oo,

since E#[Y{¥] > 0. O
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Corollary 12.73. Let b <0 < a, u € {¢ < oo} and define
Vop =inf{n >0:X,, <bor X, > a}.
Then v, p is regular for {(M,(u), B,,)}nen and thus satisfies Wald’s identity.

Proof. If ¢'(u) > 0, then v is regular for {(M,(u), B,)}nen, and hence v, < v, is regular. If
@' (u) < 0, check the previous Proposition to convince yourself that

v, =inf{n: X, <b}
is regular and hence v, < v, is also regular. O
Example 12.74 (Skip free random walk). Suppose the range of Y7 is {1,0,—1,—2,---} and
P(Y1=1) € (0,1].

Then the random walk {X,, },en with steps {Yj},cz+ is skip free positive random walk since it
cannnot jump over states in the upward direction. Let a € Z*, since {X,, }nen is skip free positive,

X,+ =aon {vi < oo}
Next,

p(u) =log E [e"M1] =log | e“P(Y1 = 1) + Ze‘”jP(Yl =—j) | <o0,Vu e (0,00).

§=0
Also, since P(Y; = 1) > 0, limy, 00 ¢(u) = 00. ¢ : [0,00) — R is strictly convex on [0,00) and ¢’
strictly increasing on [0, 00). Then there exists u* € [0, 00) such that

o) = inf 9(u)

u* is in the parabola or straight line. Thus, ¢'(u) > 0,Vu > u*.
Goal: find the Laplace transform of v;. For u > u*, since on {v} < oo}, X,+ = a, and Wald’s
identity says

uX 4 —vte(

1= B e RS

<oo}]

_ / euXU;rfu:qu(u)dP
{vd <oo}

= e@ / eva W p
{vd <oo}

ua — ’LLl/+
=e E[e (u) a]l{V:rQ)C}}.

So
E {6_4’(")”; 1{uj<oo}:| =e " Vu e {¢ < o}

Thus,
E {e—aﬁ(U)VI ]]‘{V,T<oo}i| =e " Vu € [u*,0). (12.1)

Consider the following cases.
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(a) Suppose ¢'(0) = E[Y;] > 0. Then (straight line) u* = 0. Since E[Y;] > 0, we have v < oo
a.s.. Then by 12.1,
F {e‘dj(")”ﬂ =e " Vu=>0.

Setting A = ¢(u) gives
E [e‘k”ﬂ = ¢ Na,
In this case, Wald’s identity gives a formula for the Laplace transform of v}.
(b) Suppose E[Y;] = ¢'(0) < 0. Since ¢(0) = 0, convexity requires ¢(u*) < 0. So there exists
P'ug > u* > 0 such that ¢(ug) = 0 (parabola). Thus if we substitude ug in 12.1, we get
e = B |0 1 s | = B [1,0 0| = PO <o) < 1.

In this case, Wald’s identity gives a formula for P(v} < c0).

We now examine the following martingales:
(X, = nEY1]}nen and {(X,, — nE[Y1])” — nVar(Y)}nen.

Suppose {Y}}r> is an iid random varibles. Define

Xo=0, X, = ZYk,Vn ez,
k=1
Define
B, =o0(X1,...,X,),YneZ".

Clearly, By = {0,Q}. If E[|Y1]] < oo, then {(X,, — nE[Y1], B,)}nen is a martingale. If E[Y{] < oo,
then
{((X,, = nE[Y1])* — nVar(Y1), B,) }

is also a martingale. Neither is regular but we can find regular stopping times.

neN

Proposition 12.75. Let v be a stopping time which satisfies E[v] < oco. Then

(a) v is regular for {(X,,nE[Y1], By)}nen assuming E[|Y1]] < .

(b) v is regular for {(X,, — nE[Y1])? — nVar(Y1), B,)tnen assuming E[Y?] < oo.

Proof. (a) Since {X,, — nE[Y1]} has mean 0, wlog, we can assume that E[Y7] = 0. If E[v] < oo,
P(v < o) =1and so X,n, = X,. NTS:

L
Xoan = X, as n — o0.

Note
v vAn o0 n
Xy = Xomnl = D Ve =D Y| =D Lpsry — O Vilpse
k=1 k=1 k=1 k=1
=1 > Vilpory|< Y Yallpse.
k=n+1 k=n+1
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Define -
&= |[Yellpsi-

k=n

Then &, < &,Vn > 1, and since v < oo a.e., &, — 0 as n — oo. Since {v > j} € B;_1,
Vi AL Lizjy
Then
E&]=E |Y Mlusi| =Y E[Milpsy] =Y EN[ P > j) = B[V E[V] < .
j=1 j=1 j=1
By DCT, lim, .« E[¢,] = E[0] = 0. So
E(| Xuan — Xu|] € Eln41] — 0 as n — occ.

L
Thus, X,rn — X, as n — 00. O

12.13.3 Examples of integrable stopping times

Previous Proposition has a hypothesis that the stopping time be integrable. In this subsection, we
give sufficient conditions for first passage times and first escape times from strips to be integrable.

Proposition 12.76. Consider the random walk with steps {Y}},cz+.
(a) If E[Y1] > 0, then for a > 0,

vi=inf{n: X, >a} € L;.
(b) If E[Y1] < 0, then for b > 0,
v, =inf{n >1:X, < -b} € L.
(c) If E[Y1] # 0 amd Y; € Ly, then
Vgp :=inf{n >1: X, < —-bor X, > a} C L.

Proof. Suppose (a) holds. Define
Y/ = -Y;,VieN,

X, =Y Y/ neN.
i=1

Then E[Y}] > 0, and
V{f =inf{n >1: X > b} € L.
Also,
vt =inf{n>1: X, < -b} =y,
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So (b) follows from (a).
(c) follows from (a) since v, < max{v;,v, }. It remains to establish (a). Since {(X, —
nE[Y1]) }nen is a martingale, then so is

{(Xu[f/\n - (V: An)E[Y1], Bn)}nen.

Hence, since
‘XVIJ;/\n7 (V;_ A ’I’L)E[Yﬂ € L17

we have

E [XV:M — (v An)EW]] = 0.
Then
E [XD;M} = E[Vi]E[v} Anl.

Since v An 1 v, by MCT, E[v) An] T E[v}]. Then we need a bound on F {Xy;*/\n]'

(a) Case 1: Suppose there exists ¢ € R such that P(Y; < ¢) = 1. On {v] < oo}, wehave X+ | <a
and YV; < ¢ so that
Xy:r = Xu;r—l =+ YVI L<a+ec.

fn>vh, X+, =X+ <a+cgifn<vl, X+, <a Thus, X +, <a+c Then
FE {Xu(f/\n:| <a+ec
Since Y7 > 0,

a+c
E[Y1]

>F [y;' /\n] T E[vi].
So vt € L.
(b) If Y7 is not bounded above by ¢, given {Yy}r>1, define

V9 =Y; A, Vi €N,
x©=3"v'9 vnezt
=1
V;r(c) =inf{neZ*: X\ >a} > v}

From Case 1, we have Vj(c) € Ly. Thus, v} € L. O

12.13.4 The simple random walk

Suppose {Y,,},cz+ are iid random variables and P[Y; = £1] = 1. Define

Xo=0, X, =) Yi, neZt
i=1
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and think of X, as your fortune after the nth gamble. Let a € Z™, define
vi =inf{n: X, = a}.

Claim.
P <o0)=1.

Proof. Clearly,
v <ooas. <=1 <ooas.,

since if the random walk can reach state 1 in finite time, then it can start afresh and advance to
state 2 with the same probability that governed its transition from 0 to 1. Define

p:= P(v] = c0).
Then

1—p= P <o)
=P <00, X1 =—-1)+ Py <00, X1 =1)

1

= - -p) g

since (1 — p)(1 — p) is the probability the random walk starts from -1, ultimately hits 0, and then
starting from 0 ultimately hits 1. Therefore, p = 0. Notice that even though P(v} < o) = 1,
E[v}] = oo since otherwise, by Walds’s equation

a=FE [XV;] = E[Vi]E[v}] = 0,
a contradiction. O
Example 12.77 (Gambler’s ruin). Fix a,b € ZT, define

vop =inf{n € Z" : X,, < —bor X,, > a},

where we can use equal sign since the increments are —1 or +1. v, is regular w.r.t. {X,,},>1 since

[
{Va,n}

|X7L|]]‘{l/a,b>n} < max{|a\, ‘b|} <0

dP < max {lal, |b|} < oo,
and

so that {X, 1, ,>ny} is wi.
Now regularity of the stopping time allows optimal stopping

0= E[Xo] = E[X,, ] =aP(v; <v, ) —bP(y, <v))
=aP(v; <v,)—b(l1— Py <y, )).
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So b
P(V;'<Vb_): P

_ a
P(v, <1/;'):a+b.

We now compute the expected duration of the game E[v,;]. Recall {X2 — n},en is a martingale
and E[X2 —n] = 0. Also {(X,, yan—(vapan)> Bn)tnen is a zero mean martingale so that

0=F [XEMML — (Vap AM)|;
and since X2 .. Vap An € L1, we have
B|X2 0] = Elvas Anl.

Note that v4, An 1 vgp as n — 00. By MCT, Efv, An] T Eves]. Also,

2
Va b\

< max{|a|2,|b|2},

and X, ,an — X, ,. By DCT, E {XQ } —~E [Xf } Thus, Elvas) = E {X2 J. S0 Vap € L1,

Va,b/AT a,b Va

and then v, ; is regular. Hence

b 2 a
a+b a+b

Blvas) = E X2, ,| = a*P(X,,,,, = a) + B*P(X,,,,=) = o®

12.14 Reversed martingales

Lemma 12.78. Let X be an integrable random variable and let F and G be sub o-fields of B,
where X, G 1. F. Then E[X|GV F] = E[X]G].

Proof.
GVF=0c{ANB:Ae€gG BeF}
Then for A € G and B € F,

i BE[X|Q]dP:/QE[X\Q]]IAQBCZP:E[E[X|Q]]1AJIB]

= E[E[X|G]14]P(B) = E[E[X14|G]]P(B)
= E[X14]P(B) = E[X141p]

= XdP.
ANB

Since by the definition of conditional expectation,

/ E[X|G A FldP = XdP.
ANB ANB
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Thus,

E[X|G]dP = E[X|G A F]dP.
ANB ANB

Since {ANB: A€ §G,B e F}is am-system and {C € B: [, E[X|G]dP = [, E[X|G A F|]dP} is a
A-system, by the Dynkin’s 7-A theorem,

/E[X\g]dP:/ E[X|G A F]AP,YC € GV F.
C C

By the integral comparision lemma, F[X|G] = E[X|G V F], P-a.s.. O
Suppose that {B,}.en is a decreasing family of o-fields, i.e., B,, D By41 for any n € N.
Definition 12.79. Call {(X,,, B,,)}nen is a reversed martingale if
X, €B,, X,, € L1,VneN,
E[X,|Bni1] = Xny1,Vn € N.
From a reversed martingale, we can construct a martingale. Define
X! :=X_,,VneZsO,
B :=B_,,¥Yn e Zs°.
Then B], C B], for any n < m < 0, and {(X],, B,)} nez<o is a martingale on the index set
T={-,-2-1,0}
with time flowing as usual from left to right. Note that
EX) 1|B,) = E[X_n_1|B_p) = X_, = X],, P-as.,.¥neZs".

Also, this martingale is closed on the right by X and E[X}|B,] = X/, for any n € Z<°. Therefore,
the martingale {(X/, B},)}nez<o is u.i. and as we will see, this implies the original sequence is
convergent a.s. and in L.

Example 12.80. Let {{,k € ZT} be iid, L random variables. Define
Sn = Zguvn € Z+7
i=1

B, = 0(Sn, Sntt1, ).
Hence {B,},cz+ is a decreasing family of o-fields and S,, € B,,, S, € L;. Also,
B, = U(S", €n+17§n+17 e )
Furthermore, by symmetry, for any n € Z™,

E[&k|Bn] = E[&1|B], P-as.,V1<k<n.
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By previous lemma,
El&/B,] = Elglo(Sa)], P-as.,V1<k<n.

Next, need to show
E[¢k|o(S,) = E[é1]0(S,)] P-a.s.,V1 < k < n.

Fix ¢t € R, then (or use S, < ¢, w system: {S, <t1}N{S, <t2} = {5, <t1 Ata}.)

/ §edP = El&k1(s, >3] = Eléklig 4 re,>00] = El&1l(s, 5] Z/ §1dP.
{Sp>t} {Sp,>t}

By 7\ theorem,
E¢klo(Sy)] = El&1)o(Sy)], P-as,V1<k<n.

Finally, for any n € Z™,

Sn = E[SnlBa] = 3_ El&i|Ba] = 3 B[61|By] = nE[&1|B].

=1

So %= = E[¢|B,]. Note
p[&
n

This implies that {(S,/n,Bp)}nez+ is a reversed martingale and thus uniformly integrable. From
the theorem below, this sequence is almost surely convergent. The Kolmogorov 0-1 law gives

n+1’

Bn+1:| = E[E[&1|By]|Bryi] = Elé1|Bryi] = Snt1 etc.

S,
lim — = ¢(constant).
n—oo N

But this means ?c = 1 E[S,,] = E[¢]. Thus, the Reversed Matingale Convergence Theorem below
provides a very short proof of the SLLN.

Theorem 12.81 (Reversed Martingale Convergence Theorem). Suppose that {By,}nen is a de-
creasing family of o-fields and suppose {(Xy,, Bn)}nen is a positive reversed martingale. Set

Bo =) Bn.

n>0
Then
(a) there exists Xo € Boo such that X,, 225 X,
(b) E[X,|Bs] = Xoo, P-a.s. for anyn € N,
(¢) {Xntnen is wi.. and Xn =5 Xoo.

Proof. (a) Define
X;L = X_n, B;l = B_mVn S Zg().
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Then {(X,,,B,,)}hez<o is a martingale. Define

(5(nb) : = # of downcrossing of [a,b] by Xo,..., X,

= # of upcrossing of [a,b] by X,,..., X0
= # of upcrossing of [a,b] by X ., ..., X

—_n»

PO > kIBL,) < (%)k (X::” A 1> - (%)k ()i” A 1> :

Taking E[-|Bso] on both sides yields
k X,
P > k|Bu) < (9) E { < A 1) Bm} .

Note for any k € Z™,

Then P(‘sznb) >k) < (%)k Also, as n T oc.
5((:1)) T 84 = # downcrossings of [a, b] by {Xo, X1, }.

So P(dap = k|) < (%)k Thus, P(d, < 00) = 1. Therefore, {X,,} converges a.s.. Set

Xoo =lim sup X,.

n—oo

Note for a fixed p € N, since X,, € B,, for any n € N, sup,,,, X, € By. So

lim sup X,, € B,,VpeN.

Thus, X = limsup,,_,.o Xn € Boo-
(¢) Note X,, = E[X¢|B,]. So {X,} is ui.. Ui. and a.s. convergence imply L; convergence.

(b) Notice that
E[X,|Bs] = E[E[X0|B,]|Bss] = E[X0|Bs], P-a.s..



228 CHAPTER 12. MARTINGALES

Then
lim E[X,|Bx] = E[Xo|Bx], P-a.s..

n—o0

Define
A, ={w: E[X,|Bs] = E[X0|Bso]},¥n € N.

Then P(A,,) =1 for any n € N. Define

A= ﬂAn.

neN
Then P(A) =1, and on A, since X5 € Boo, X =25 Xoo, and X, I, X, we have

Xoo = E[Xoo|Bso] = lim E[X,|Bs] = E[X0|Bso)- O

n—oo

Remark. These results are easily extended when we drop the assumption of positivity which was
only assumed in order to be able to apply Dubin’s inequality.

Corollary 12.82. Suppose {B,}ren is a decreasing family of o-fields and X € L;. Then
E[X|B,] “% E[X|Bs).

E[X|B.] 8 BIX|Bu).
(The result also holds if {B,,} is an increasing family of o-fields.)

Proof. Observe that if we define X,, := E[X|B,] for any n € N, then this sequence is a reversed
martingale from smoothing. From the previous theorem, we know

X, — Xoo € By a.s. and in L.

We must identify X,. From Li-convergence we have that for any A € B,

/E[X|Bn]dP—>/XoodP.
A A

Thus for any A € By C B,

/E[X|Bn]dpg/XdPg/E[X|Boo]dP—>/XoodP.
A A A A

Thus, by the integral Comparison Lemma, Xo, = E[X|Bo]. O
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