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Chapter 1

Lifetime Distributions

1.1 Distribution Representatives

Let T be the liftime of an item (time to failure).

1.1.1 Survial function

Definition 1.1. The survival function

S(t) = P (T ⩾ t) = 1− F (t), t ⩾ 0.

Remark. (a) All survival function satisfy:

(1)

S(0) = 1.

(2)

lim
t!∞

S(t) = 0.

(3)

S(t) is nonincreasing in t.

(b) S(t) is useful for camping survival pattern of items. If S1 ⩾ S2(t),∀ t ⩾ 0, then item 1 is
superior to item 2.

(c) The conditional survival function is

ST |T⩾t(τ) := P (T ⩾ τ |T ⩾ t) =
P (T ⩾ τ, T ⩾ t)

P (T ⩾ t)
=
P (T ⩾ max(τ, t))

P (T ⩾ t)
=

{
S(τ)
S(t) , τ ⩾ t,

1, τ ⩽ t.

1
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1.1.2 PDF and CDF

Definition 1.2. The pdf is defined through P (a ⩽ T ⩽ b) =
∫ b
a
f(t)dt,∀a < b, then we call the

integrand f(t) the pdf of T .

Remark. (a) The pdf f(t) has the probability interpretation

f(t)∆t ≈ P (t ⩽ T ⩽ t+∆t) for some small ∆t.

(b) f(t) is the likelihood of failure at time t.

(c)
S′(t) = −f(t).

1.1.3 Hazard function

Hazard function gives the amount of risk associated w/ an item at time t, often referred to as
“instantaneous failure rate”.

Definition 1.3.

h(t) = lim
∆t!0

P (t ⩽ T ⩽ t+∆t|T ⩾ t)

∆t

= lim
∆t!0

P (t ⩽ T ⩽ t+∆t)

P (T ⩾ t)

1

∆t

= lim
∆t!0

S(t)− S(t+∆t)

S(t)

1

∆t

= − 1

S(t)
lim

∆t!0

S(t+∆t)− S(t)

∆t

= − 1

S(t)
S′(t)

=
f(t)

S(t)
.

Remark. (a)
h(t) ⩾ 0,∀ t ⩾ 0.

(b) ∫ ∞

0

h(t)dt = − ln(S(t))|∞0 = ∞.

Example 1.4. Consider the Weibull dist w/ cdf

F (t) = 1− e−(λt)κ , t ⩾ 0,

where λ is a scale parameter and κ is a shape parameter. The pdf

f(t) = λk(λt)k−1e−(λt)κ , t ⩾ 0.
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The survival function
S(t) = e−(λt)κ , t ⩾ 0.

The hazard funnction is
h(t) = λk(λt)k−1, t ⩾ 0,

where 0 < κ < 1, h(t) is decreasing, κ = 1, h(t) is a constant. κ > 1, h(t) is increasing.

Definition 1.5. Cumulative hazard function

H(t) =

∫ t

0

h(s)ds, t ⩾ 0.

Remark. Notice that H(t) satisfies

(a)
H(0) = 0.

(b)
lim
t!∞

H(t) = ∞.

(c)
H(t) is nondecreasing in t.

1.1.4 Mean residual life function

Lemma 1.6.

fT |T⩾t(τ) =

{
f(τ)
S(t) , τ ⩾ t

0, τ < t.

Proof. Notice here T ⩾ t is an event but not a r.v. Let τ > t, then

FT |T⩾t(τ) = P (T ⩽ τ |T ⩾ t)

=
P (t ⩽ T ⩽ τ)

P (T ⩾ t)

=
S(t)− S(τ)

S(t)

= 1− S(τ)

S(t)
.

So

fT |t⩾t = −S
′(τ)

S(t)
=
f(τ)

S(t)
.

Definition 1.7. The mean residual life function

L(t) = E [T − t|T ⩾ t] , t ⩾ 0.

It is the expected remaining life given that the item has survived to time t.
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Remark.

E[T ] = L(0).

Proposition 1.8.

L(t) =
1

S(t)

∫ ∞

t

τf(τ)dτ − t.

Proof.

L(t) = E[T |T ⩾ t]− E[t|T ⩾ t]

=

∫ ∞

t

τfT |t⩾t(τ)dτ − t

=

∫ ∞

t

τ
f(τ)

S(t)
dτ − t

=
1

S(t)

∫ ∞

t

τf(τ)dτ − t.

Remark. Any L(t) satisfies

(a)

L(t) ⩾ 0.

(b)

L′(t) ⩾ −1.

(c) ∫ ∞

0

1

L(t)
dt = ∞.

Example 1.9. Let

S(t) = e−λt, t ⩾ 0,

where λ is the failure rate. Then

f(t) = λe−λt, t ⩾ 0.

Hence

L(t) = eλt
∫ ∞

t

τλe−λτ − t =

(
t+

1

λ

)
− t =

1

λ
, t ⩾ 0.

1.2 Discrete Dist.

T takes values in {t1, t2, · · · }, where 0 ⩽ ti < tj when i < j.
The pmfs is

f(ti) = P (T = ti), i = 1, 2, · · ·

The survival functions

S(t) = P (T ⩾ t) =
∑
ti⩾t

f(ti), t ⩾ 0.
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The hazard function h(t) is still intepreted as the risk at each time tj , j = 1, 2, · · · , though.

h(tj) = P (T = tj |T ⩾ tj)

=
P (T = tj)

P (T ⩾ tj)

=
f(tj)

S(tj)
, j = 1, 2, · · ·

1.3 Moments and Fractiles (Quantiles)

1.3.1 Moments

Proposition 1.10.

E[T ] =

∫ ∞

0

tf(t)dt

= −
∫ ∞

0

td[S(t)]

= −tS(t)|∞0 +

∫ ∞

0

S(t)dt

=

∫ ∞

0

S(t)dt

if limt!∞ tS(t) = 0.

1.3.2 Fractiles

It corresponds to a specified proportion of items fail.

Definition 1.11.
F (tp) = P (T ⩽ tp) = p.

Then
tp = F−1(p).

At tp, p percent of the iterms fail.

Remark.
t0.5 = Median.

Example 1.12. Let T be the time (miles) of the 1st failure of a engine.
Assume

T ∼Weibull(λ = 0.0000077, κ = 1.22).

Find the warranty period that would allow 1% of engines to fail during the warranty period. Let

F (t0.01) = 1− e−(λt0.01)
κ

= 0.01.

Then

t0.01 =
1

λ
[− ln(1− 0.01)]

1
k = 2992(miles).
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Definition 1.13. Skewness

ν3 = E

[(
T − µ

σ

)3
]
.

Example 1.14. Let S(t) = e−λt, t ⩾ 0. Then

ν3 = E

[(
T − µ

σ

)3
]
= E

[(
T − 1

λ
1
λ

)3
]
= 2.

Definition 1.15. Kurtosis

ν4 = E

[(
T − µ

σ

)4
]
= 9.

1.4 System Lifetime Distribution

Assume all items work independently.
Let r be the realibility, which is the probability that the system works. Let pi be the probability
that the ith item is functional for i = 1, . . . , n. Then the survival function of a system is

S(t) = r(S1(t), . . . , Sn(t)).

(a) n Series System. The realiability is

r(p1, . . . , pn) = p1 · · · pn.

The survival function

S(t) = P (Ts ⩾ t)

= P (T1 ⩾ t, · · · , Tn ⩾ t)

= P (T1 ⩾ t) · · ·P (Tn ⩾ t)

= S1(t) · · ·Sn(t)

(b) n Parallel System. The reliability is

r(p1, . . . , pn) = 1− (1− p1) · · · (1− pn).

Then
S(t) = 1− (1− S1(t)) · · · (1− Sn(t)).

(c) General System.

(1) The general system 1.

1

2

3
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r(p1, p2, p3) = p1(1− (1− p2)(1− p3)),

and
S(t) = S1(t)(1− (1− S2(t))(1− S3(t))).

(2) The general system 2.

1 2

3

r(p1, p2, p3) = 1− (1− p1p2)(1− p3),

and
S(t) = 1− (1− S1(t)S2(t))(1− S3(t)).

Example 1.16. Consider

1 2

Assume h1(t) = 1, h2(t) = 2, t ⩾ 0. Then S1(t) = e−t, t ⩾ 0, and S2(t) = e−2t, t ⩾ 0. Hence

S(t) = S1(t)S2(t) = e−te−2t = e−3t, t ⩾ 0.

Thus,

h(t) =
f(t)

S(t)
= −S

′(t)

S(t)
= 3.

Example 1.17. Consider

1

2

T1 ∼ exp(1), T2 ∼ exp(2). Then

S(t) = 1− (1− S1(t))(1− S2(t))

= 1− (1− e−t)(1− e−2t)

= e−t + e−2t − e−3t, t ⩾ 0.

So

h(t) =
e−t + 2e−2t − 3e−3t

e−t + e−2t − e−3t
, t ⩾ 0.

The mean time to system failure rate

µ =

∫ ∞

0

S(t)dt =

∫ ∞

0

(e−t + e−2t − e−3t)dt = 1 +
1

2
− 1

3
=

7

6
.

Or

µ =
1

µ1 + µ2
+

µ1

µ1 + µ2

1

µ2
+

µ2

µ1 + µ2

1

µ1
=
µ1µ2 + µ2

1 + µ2
2

µ1µ2(µ1 + µ2)
=

7

6
.
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Example 1.18. Consider

1

2

3

Assume S1(t) = S2(t) = S3(t)e
−λt, t ⩾ 0.

Then
S(t) = S1(t)(1− (1− S2(t)(1− S3(t)))) = 2e−2λt − e−3λt, t ⩾ 0,

and

h(t) = −S
′(t)

S(t)
=

4e−λt − 3e−3λt

2e−2λt − e−3λt
, t ⩾ 0.

Example 1.19. Consider

1

2 3

Assume T1 ∼ U(2, 10), T2 ∼ (4, 14), T3 ∼ U(6, 18). Find the 90th fractile of the distribution
of the remaining time to the failure of the system that has survived to 8. It is easy to see that
f1(t) =

1
8 , 2 < t < 10, f2(t) =

1
10 , 4 < t < 14 and f3(t) =

1
12 , 6 < t < 18. Hence

S1(t) =

 1, t ⩽ 2
10−t
8 , 2 < t < 10
0, t ⩾ 10

S1(t) =

 1, t ⩽ 4
14−t
10 , 4 < t < 14
0, t ⩾ 14

S1(t) =

 1, t ⩽ 6
18−t
12 , 0 < t < 18
0, t ⩾ 14

Thus,

S(t) = 1− (1− S1(t))(1− S2(t)S3(t))

= S1(t) + S2(t)S3(t)− S1(t)S2(t)S3(t).

Therfore, the conditional survival function for the system that is still operating at time 8 is

ST |T⩾8(t) =
S(t)

S(8)
=
S1(t) + S2(t)S3(t)− S1(t)S2(t)S3(t)

5
8

, t ⩾ 8.

From the graph of ST |T⩾8(t), we find t0.9 ∈ (10, 14), so S(t0.9) = 0. Let ST |T⩾8(t0.9) = 1−0.9 = 0.1,
we have

14−t0.9
10

18−t
12

5
8

= 0.1.
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Hence
2t20.1 − 64t0.9 + 489 = 0.

Thus,

t0.9 =
32−

√
46

2
≈ 12.6088.
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Chapter 2

Parametric Lifetime Models

2.1 Parameters

• Location paramter

• Scale parameter

• Shift parameter

2.2 Exponential Distribution

Definition 2.1.
T ∼ exp(λ),

w/

S(t) = e−λt, h(t) = λ, H(t) = λt, L(t) =
1

λ
,∀ t ⩾ 0,

where λ is often called failure rate.

The following are properties of exponential distribution.

Proposition 2.2. Exponential distribution is the only continuous distribution w/ the memeoryless
property.

Proposition 2.3. If T ∼ exp(λ), then λT ∼ exp(1), which is standard exponential distribution.

If T is a nonnegative continuous r.v. w/ cumulative hazard function H, then H(T ) ∼ exp(1).

(a) Note this property is mathematically equivalent to

F (T ) ∼ Uni(0, 1),

(b) To generate a random variable T w/ F (t) or H(t), you might consider

M1: Generate U ∼ Uni(0, 1), then

T
d
= F−1(U).

11
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M2: Generate U ∼ Uni(0, 1), then

T
d
= H−1(− log(1− U)),

or
T

d
= H−1(− log(U)),

because 1− U
d
= U or

P (− log(1− U) ⩽ x) = P
(
1− U ⩾ e−x

)
= P (U ⩽ 1− e−x) = 1− e−x.

and
P (− logU ⩽ x) = P

(
U ⩾ e−x

)
= 1− e−x.

Example 2.4. Assume T ∼Weibul w/

S(t) = e−(λt)k , t ⩾ 0.

Discuss how to generate Weibull distribution r.v. from converting Uni(0, 1).

H(t) = − logS(t) = (λt)k.

Then

H−1(y) =
1

λ
y

1
k .

Hence

T
d
=

1

λ
[− log(1− U)]

1
k ,

where U ∼ Uni(0, 1).

Proposition 2.5. If T ∼ exp(λ), then

E[T s] =
T (s+ 1)

λs
, s > −1.

Remark. In statistics, a pivotal quantity or pivot is a function of observations and unobserv-
able parameters whose probability distribution does not depend on the unknown parameters (also
referred to as nuisance parameters).

Proposition 2.6. If Ti ∼ exp(λ) independent for i = 1, . . . , n, then

2λ

n∑
i=1

Ti ∼ χ2(2n),

where 2λ
∑n
i=1 Ti is pivot. Knowing this, it is useful to construct a confidence interval for λ.

χ2
α
2
(2n) < 2λ

n∑
i=1

Ti < χ2
1−α

2
(2n),

so
χ2

α
2
(2n)

2
∑n
i=1 Ti

< λ <
χ2
1−α

2
(2n)

2
∑n
i=1 Ti

.
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Proposition 2.7. If Ti ∼ exp(λ) independent for i = 1, . . . , n, and {T(i)}1⩽n is order statistic.
Assume T(0) = 0, for i = 1, . . . , n, define

Gi = T(i) − T(i−1).

Then

(a) The gap statatistics G1, . . . , Gn are independent.

(b)

Gi ∼ exp((n− i+ 1)λ).

Proof. The joint pdf of T(1), . . . , T(n) is

fT(1),...,T(n)
(t1, . . . , tn) = n!

n∏
i=1

fT1
(t) = n!λne−λ

∑n
i=1 ti .

Since by induction,

T(1) = G1, T(2) = G2 + T(1) = G1 +G2, T(i) = Gi + T(i−1) =

i∑
j=1

Gj .

Since

|J | =

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0
...

...
...

...
...

...
1 1 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
,

fG1,...,Gn(g1, . . . , gn) = n!λne−λ(
∑n

i=1

∑i
j=1 gj)

= n!λne−λ(
∑n

j=1

∑n
i=j gj)

= n!λne−λ(
∑n

j=1(n−j+1)gj)

=

n∏
i=1

(n− i+ 1)λe−λ(n−i+1)gi

=

n∏
i=1

fGi
,

where fGi = (n− i+ 1)λe−λ(n−i+1)gi .

Remark. Since Gj are iid, and

T(i) =

i∑
j=1

Gj ,
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we have

E[T(i)] =

i∑
j=1

1

n− j + 1
,

and

Var(T(i)) =

r∑
j=1

1

(n− i+ 1)2
.

Proposition 2.8. If T1, T2, · · · are iid Exp(λ), denoting the inner-event times for a point process,
then the number of events in [0, t] is Poisson(λt).

Proposition 2.9. If T1, T2 ∼ Exp(λ) and are independent, then

T1
T1 + T2

∼ U(0, 1).

Proof. M1. Let x > 0 (tricky), then

P

(
T1

T1 + T2
⩽ x

)
= P (T1(1− x) ⩽ T2x)

= P (T2 ⩾
1− x

x
T1) (tricky)

=

∫ ∞

0

λe−λt1dt1

∫ ∞

1−x
x t1

λe−λt2dt2

=

∫ ∞

0

λe−λt1e−λ(
t1
x −t1)dt1

=

∫ ∞

0

λe−
λ
x t1dt1

= x.

t1

t2

t2 = 1−x
x t1
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M2. Let

X = T1 + T2, Y =
T1

T1 + T2
.

Then Y ∈ (0, 1) and

T1 = XY, T2 = X −XY.

Hence

J =

∣∣∣∣ Y X
1− Y −X

∣∣∣∣ = −X.

Then

fX,Y (x, y) = λ2e−λ(xy+x−xy)|J |
= λ2xe−λx

= g(x)h(y),

where assuming h(y) = 1. Hence

fY (y) ∝ 1 = h(y).

Since y ∈ (0, 1), we have

fY (y) = 1{[0,1]}(y).

Proposition 2.10. If T1, T2 ∼ Exp(λ) and are independent, then

T(1)

T(1) + T(2)
∼ U(0,

1

2
).

Proof. Let 1
2 > x > 0, then 1−x

x > 1 and then

P

(
T(1)

T(1) + T(2)
⩽ x

)
= P

(
T(2) ⩾

1− x

x
T(1)

)
= 2!

∫ ∞

0

λe−λt1dt1

∫ ∞

1−x
x t1

λe−λt2dt2

= 2

∫ ∞

0

λe−λt1dt1

(
e−λ

1−x
x t1

)
= 2

∫ ∞

0

λe−
λ
x t1

= 2x.
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t1

t2
t2 = 1−x

x t1

t2 = t1

Proposition 2.11. If T1 ∼ exp(λ1) and T2 ∼ exp(λ2) and are independent. Then

P (T1 < T2) =
λ1

λ1 + λ2
,

which is the probability that item 1’s failure causes the system failure.

Remark. Exp dist.

Pro. Simple and convenient.

Con. Limited in application due to memoryless property.

2.3 Weibull distribution

Definition 2.12. T is called to have the Weibull dist (location-scale) Weibull(λ, κ) if

S(t) = e−(λt)κ , f(t) = κλκtκ−1e−(λt)κ , h(t) = κλκtκ−1, H(t) = (λt)κ, t > 0,

where λ is the scale and κ is the shape argument.

The following are graphs under different κ while fixing λ.



2.3. WEIBULL DISTRIBUTION 17

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [second]

P
ro
b
a
b
il
it
y
d
en
si
ty

fu
n
ct
io
n

Weibull distribution kλκtκ−1e−(λt)κ

κ = 0.5
κ = 1
κ = 2
κ = 3.5

Figure 2.1: λ = 1

From these graphs, we can see that the Weibull distribution has different shapes for κ > 1 and
κ ⩽ 1. When 3 < κ < 4, it is close to a normal distribution.

Remark. We have the following.

• h(t) ! 0 as t! ∞ when κ < 1.

• h(t) ! ∞ as t! ∞ when κ > 1.

• h(t) is constant as t! ∞ when κ = 1.

Remark. Rayleigh distribution is a special distribution of Weibull distribution w/ k = 2, which
has a linear hazard rate 2λ2t.

Proposition 2.13. The mean residual life function is

L(t) =
1

S(t)

∫ ∞

τ

S(τ)dτ

= e(λt)
κ

∫ ∞

τ

e−(λτ)κdτ

=
e(λt)

κ

λκ

∫ ∞

(λt)k
u

1
κ−1e−udu

=
e(λt)

κ

λκ
Γ

(
1

κ

)[
1− I

(
1

κ
, (λt)κ

)]
,

where

I(y, x) =
1

Γ(y)

∫ x

0

uy−1e−udu

is the incomplete Gamma function for x > 0, y > 0.
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Proposition 2.14. The moment of Weibull distribution is

E(T r) =
r

κλr
Γ
( r
κ

)
,∀r = 1, 2, · · ·

So the mean

E[T ] =
1

λκ
Γ

(
1

κ

)
.

The variance

Var(T ) =
1

λ2

[
2

κ
Γ

(
2

κ

)
−
(
1

κ
Γ

(
1

κ

))2
]

The coefficient of variance

ν =
σ

µ
=

[
2
κΓ
(
2
κ

)
−
(
1
κΓ
(
1
κ

))2] 1
2

1
κΓ
(
1
κ

) .

Example 2.15. The lifetime in hours of a certain time of spring T ∼Weibull(λ = 0.0014, κ = 1.28).
Find

(a) The mean time to failure

E[T ] =
1

0.0014× 1.28
Γ

(
1

1.28

)
= 661.8(hours).

(b) The probability that a spring will operate for 500 hours.

P (S(500)) = e−(0.0014×500)1.28 = 0.531.

(c) The probability that a spring that has operated 200 hours w/o failure will operate another 500
hours.

ST |T⩾200(700) =
S(700)

S(200)
= 0.459.

Remark. (a) If
T ∼ Weibull(λ, κ),

then Y = log T has the extreme value distribution w/

FY (y) = 1− e−e
y−u

b , −∞ < y <∞,

where µ = − log λ (location), b = 1
κ (shape).

Proof.

FY (y) = P (T ⩽ ey)

= 1− e−(λey)κ

= 1− e−e
(y+log λ)κ

= 1− e−e
y−µ

b .
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(b) Weibull dist also has the self-reproducing property. If T1, . . . , Tn are iid and T1 ∼Weibull(λ, κ).
Then

min{T1, . . . , Tn} ∼ Weibull

( n∑
i=1

λκi

) 1
κ

, κ

 .

(c) 3-parameter Weibull dist w/ pdf

f(t) = κλκ(t− µ)κ−1e−λ(t−µ)
κ

, t ⩾ µ.

2.4 Gamma Dist

Definition 2.16.
T ∼ Gamma(λ, κ),

if its pdf

f(t) =
λ

Γ(κ)
(λt)κ−1e−λt, t > 0.

Then

F (t) =

∫ t

0

λ

Γ(κ)
(λτ)κ−1e−λτdτ =

1

Γ(κ)

∫ λt

0

λκ−1e−xdx = I(k, λt), t > 0.

Also

E[T r] =
κ(κ+ 1) · · · (κ+ r − 1)

λr
, r = 1, 2, . . . .

Then
E[T ] =

κ

λ
,Var(T ) =

κ

λ2
,

and then

ν = κ−
1
2 , ν3 = 2κ−

1
2 , ν4 = 3 +

6

κ
.

Remark. It is difficult to differentiate b/w Gamma and Weibull dist based on pdf but difference
become apparent when their hazard function is compared.

Remark. Special cases:

(a)

Gamma

(
1

2
, κ

)
= χ2

2κ.

(b)
Gamma(λ = n, κ) = Erlang(n),

where n ∈ Z+.

Example 2.17. Other lifetime distributions:

(a) log-normal / pdf
1

σt
√
2π
e−

(log t−µ)2

2σ2 , t > 0.
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(b) Inverse Gaussian w/ pdf √
λ

2πt3
e
− λ

2µ2t
(t−µ)2

, t > 0.

(c) Exponential power w/ pdf

e1−e
−λtκ

e−λt
κ

λκtκ−1, t > 0.

(d) Pareto w/ pdf
κλκ

tκ+1
, t > 0.



Chapter 3

Specialized models

3.1 Competing risks

death

heart diease cancer accicident other causes

Causes of failure may be grouped into k causes. In competing risk analysis, an item is assumed to
be subject to k competing risks (or causes) denoted by C1, . . . , Ck.
Competing risk can be viewed as a series system of components.
Each risk can be thought of as a component in a series system in which the system failure occurs
when a system component fails.

Definition 3.1 (net life). Let Xj having fXj
(t), SXj

(t), hXj
(t), HXj

(t) and corresponding risk Cj
be the net life denoting the lifetime that occurs if only risk j is present,∀j = 1, . . . , k.

Remark. (a) Unless all risks except j are eliminated, Xj is NOT necessarily observed.

(b) Each net life is potential lifetime that is observed w/ certainty only if other k − 1 risks are
eliminated.

(c) The actual observed life

T = min{X1, . . . , Xk}.

Proposition 3.2. Assume that net lives are indep, then

hT (t) =

k∑
j=1

hXj
(t).

21
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Proof.

HT (t) = − logST (t)

= − log

k∏
i=1

SXi
(t)

= −
k∑
i=1

logSXi(t)

=

k∑
i=1

hXj
(t).

Definition 3.3. The net probability of failure in [a, b) from risk j

qj(a, b) = P (a ⩽ Xj < b|Xj ⩾ a)

= 1− P (Xj ⩾ b|Xj ⩾ a)

= 1− P (Xj ⩾ b)

P (Xj ⩾ a)

= 1−
SXj

(b)

SXj
(a)

= 1− e−HXj
(b)

e−HXj
(a)

= 1− e−
∫ b
a
hXj

(t)dt.

Definition 3.4 (Crude life). Let Yj having fYj
(t), SYj

(t), hYj
(t), HYj

(t) and corresponding Cj be
the crude life denoting the lifetime conditioned on risk j being the cause of failure in the presence
of all other risks.

Definition 3.5. The crude probability of failure in [a, b) from causes j

Qj(a, b) = P (a ⩽ Xj ⩽ b,Xj < Xi,∀ i ̸= j|T ⩾ a)

=

∫ b

a

hXj
(x)e−

∫ x
a
hT (x)dxdx, j ∈ [k].

Definition 3.6. The probability of failure due to risk j,

πj = P (Xj = T ).

Clearly,
k∑
j=1

πj = 1,

and

πj = Qj(0,∞).
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Example 3.7. The causes of calulator failure are C1 w/ net life X1 and C2 w/ net life X2.

X1 is the lifetime of the calculator if the only way it can fail is by being dropped.

X2 is the lifetime of the calculator if it is bolted to a desk and can not be dropped.

Y1 is the lifetime of the calculator that failed due to being dropped in the presence of other
causes of failure.

Y2 is the lifetime of the calculator that did not fail by being dropped, but was bolted to a desk
to avoid its being dropped.

Clearly, the obverved lifetime

T = min{X1, X2}.

Assume X1 ∼ exp(1) and X2 ∼ exp(2), are independent. Then

hX1
(t) = 1, t > 0, hX2

(t) = 2, t > 0.

Then

q1(a, b) = 1− e−
∫ b
a
1dt = 1− e−(b−a),

and similarly,

q2(a, b) = 1− e−
∫ b
a
2dt = 1− e−2(b−a).

Then

Q1(a, b) = P (a ⩽ X1 < b,X1 < X2|T ⩾ a)

=
P (a ⩽ X1 < b,X1 < X2)

P (X1 > a,X2 > a)

=

∫ b
a

∫∞
x1
e−x12e−2x2dx1dx2∫∞

a

∫∞
a
e−x12e−2x2dx1dx2

=
1
3

(
e−3a − e−3b

)
e−3a

=
1

3

[
1− e−3(b−a)

]
,

and similarly

Q2(a, b) =
2

3

[
1− e−3(b−a)

]
.

Then

π1 = P (failure due to risk 1) = P (X1 = T ) = P (X1 < X2) =

∫ ∫
X1⩽X2

f(x1, x2)dx1dx2 =
1

3
.

Alternative:

π1 = Q1(0,∞) =
1

3
.

Similarly,

π2 =
2

3
.
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Now consider the distribution of the crude life Y1 and Y2,

SY1
(y1) = P (T ⩾ y1|X1 = T )

=
P (T ⩾ y1, X1 = T )

P (X1 = T )

=
P (X1 ⩾ y1, X1 < X2)

π1

=

∫∞
y

∫∞
x1
e−x12e−2x2dx1dx2

1
3

= e−3y1 , y1 > 0.

Then
fY1(y) = 3e−3y1 .

Hence
Y1 ∼ exp(3).

Similarly,
Y2 ∼ exp(3).

Remark. There are two ways to generate T :

M1: generate an exp(3).

M2: generate an exp(1) and an exp(2), take the minimum (for each). (Then 1
3 from exp(2) and 2

3
from exp(2).) (Not related to mean.)

3.2 Compute Marginal from Joint

Let X1, X2, . . . , Xk be cont. net lives and

T = min{X1, . . . , Xk}

be the observed failure time of the item. Assume the joint pdf is

f(x1, . . . , xk).

Then the joint survival function is

S(x1, . . . , xk) = P (X1 ⩾ x1, . . . , Xk ⩾ xk)

=

∫ ∞

x1

· · ·
∫ ∞

xk

f(t1, . . . , tk)dt1 · · · dtk.

The marginal net survival function is

SXj
(xj) = P (Xj ⩾ xj) = S(0, . . . , 0, xj , 0, . . . , 0).

The sur. fcn for the observed time T is

ST (t) = P (T ⩾ t) = P (X1 ⩾ t, . . . ,Xk ⩾ t) = S(t, . . . , t).
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Also,

− δ

δXj
S(x1, . . . , xk) = lim

∆x!0

S(x1, . . . , xj , . . . , xk)− S(x1, . . . , xj +∆x, · · ·xk)
∆x

.

We can show that the prob. of failure from risk j is

πj =

∫ ∞

0

[
− δ

xj
S(x1, . . . , xk)

∣∣∣∣
x1=···=xn=t

]
dt,∀j = 1, . . . , k.

Now consider the sur. fcn. of crude lifetime Y1, . . . , Yk. Let r.v. J be index of the cause of failure,
then

P (T ⩾ t, J = j) = P (Xj ⩾ t,Xj ⩽ Xi,∀ i ̸= j)

=

∫ ∞

t

∫ ∞

xj

· · ·
∫ ∞

xj

f(x1, . . . , xk)dx1 · · · dxj−1dxj+1
. . . dxkdj .

Then the sur. fcn. for T is

ST (t) = P (T ⩾ t) =

k∑
j=1

P (T ⩾ t, J = j).

Also,
πj = P (Xj = T ) = P (J = j) = P (T ⩾ 0, J = j),∀j ∈ [n].

The sur. fcn. of the crude life Yj is

SYj (yj) = P (T ⩾ yj |J = j)

=
P (T ⩾ yj , J = j)

P (J = j)

=
P (T ⩾ yj , T = j)

πj
,∀j = 1, . . . , k.

Example 3.8 (Cont Example 3.7 ). Since

SX1
(t) = e−t, SX2

(t) = e−2t, t > 0,

we have
S(x1, x2) = SX1,X2

(x1, x2) = e−x1−2x2 , x1 > 0, x2 > 0.

Hence

π1 =

∫ ∞

0

[
− δ

δx1
S(x1, x2)

∣∣∣∣
X1=X2=t

]
dt =

∫ ∞

0

e−3tdt =
1

3
,

which is the same as our previous result. The survival prob. conditioning on risk 1 being the cause
of failure

P (T ⩾ t, J = 1) = P (X1 > t,X1 < X2)

=

∫ ∞

t

∫ ∞

x1

f(x1, x2)dx2dx1

=
1

3
e−3t, t > 0.
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Similarly,

P (T ⩾ t, J = 2) =
2

3
e−3t, t > 0.

Thus, the sur. fcn. for the 1st crude lifetime is

SY1
(y1) =

P (T ⩾ y1, J = 1)

π1
= e−3y1 , y1 > 0,

and similarly,

SY2
(y2) = e−3y2 , y2 > 0.

Remark. net lives X1, . . . , Xk (potential lifetimes) ⇒ crude lives Y1, . . . , Yk (observed lifetimes),
but we don not have the converse direction unless under the assumption of independence of net
lives.

Theorem 3.9. Assume πj = P (J = j) and SYj
(t),∀j ∈ [n] is known.

When the risks are indep., the dist of net life of Xj is

hXj
(t) =

πjfYj
(t)∑k

i=1 πiSYi
(t)
, t > 0,∀j = 1, . . . , k.

Example 3.10 (Cont Example 3.7 ). Since

π1 = P (X1 = J) = P (J = 1) =
1

3
,

and

π2 = P (J = 2) =
2

3
,

and

SY1(t) = e−3t, SY2(t) = e−3t, t > 0,

we have

hX1
(t) =

1
3 · 3e−3t

1
3e

−3t + 2
3e

−3t
= 1, t > 0,

and similarly,

hX2
(t) = 2, t > 0.

3.3 Mixture Distributions

Motivations:

items

Factory 1 Factory 2
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but not certain which one the item came from. eg: For factory 1,

T1 ∼ f1(t), eg. N(µ1, σ
2
1),

for factory 2,

T2 ∼ f2(t), eg. N(µ2, σ
2
2)).

Items π1(60%) from f1 and 1−π(40%) from f2. Then what is the distribution of the lifetime of an
item? Let

S =

{
1, an item is from F1

2, an item is from F2.

Then

FT (t) = P (T ⩽ t)

= P (T ⩽ t|S = 1)P (S = 1) + P (T ⩽ t|S = 2)P (S = 2)

= P (T1 ⩽ t)P (S = 1) + P (T2 ⩽ t)P (S = 2)

= FT1(t)π + FT2(t)(1− π), t > 0

or

fT (t) = πfT1
(t) + (1− π)fT2

(t).

3.3.1 A finit mixture

When items can be divided into m populations by a characteristic of the item (eg: manufacturing),
then

f(t) =

m∑
i=1

pifi(t|θi),

where fi(t|θi) is the pdf of the ith population, i = 1, . . . ,m and pi are mixture parameter w/ pi ⩾ 0
and

∑m
i=1 pi = 1.

Example 3.11. m = 2.

T1 ∼ exp(1), T2 ∼ exp(2).

p1 =
1

3
, p2 =

2

3
.

Then the pdf of the lifetime of an item, whose manufacturing site is unknown,

f(t) =
1

3
e−t +

2

3
e−2t, t > 0.

The model is a special case of hyper-exponential distributions, which is the finite mixture of m
exponential distributions.

Remark. (a) An identifiability problem exists in finite mixture. It is often impossible to determine
the component distribution from the distribution of the population.
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Example 3.12. (!!!)

fT1(t) =
2

3
fV1(t) +

1

3
fV2(t), 0 ⩽ t ⩽ 1.

fT2(t) =
1

2
fV3(t) +

1

2
fV4(t), 0 ⩽ t ⩽ 1,

where
V1 ∼ U(0, 1), V2 ∼ U(1/4, 3/4),

V3 ∼ U(0, 3/4), V4 ∼ U(1/4, 1).

Clearly, T1 and T2 have the same distribution w/ pdf

fT1
(t) = fT2

(t) =

 2/3, 0 < t ⩽ 1/4,
4/3, 1/4 < t ⩽ 3/4,
2/3, 3/4 < t ⩽ 1.

(b) Combining competing risks and finite mixture theory, we have

fT (t) =

m∑
i=1

pi

 ki∑
j=1

hij(t)e
−

∫ t
0

∑ki
j=1 hij(t)

 ,
where m is the number of populations,

∑m
i=1 pi = 1, ki is the number of risks acting within the ith

population. hij(t) is the hazard function for the jth risk within ithe population with i = 1, . . . ,m
and j = 1, . . . , ki.

Example 3.13. In casualty insurance application.
m = 3 of dwelling (single family, condo and apartment), each is subjected to and insured for
k1 = k2 = k3 = 5 risks (fire, float, tornado, earthquake, bomb.)

3.3.2 Continuous mixture

f(t) =

∫
Θ

f(t|θ)p(θ)dθ,

where θ is calling the mixture parameter. p(θ) indicates the distribution pf mixture parameter.
Note that if p(θ) is a finite pmf, then the above becomes the finite mixture. Another representation

F (t) =

∫
Θ

F (t|θ)dG(θ)

is often called the mixture of
F = {F (t|θ)|θ ∈ Θ} w.r.t. G,

where G can be discrete or continuous since a d.f. always exists.

Remark. It may be worthy noting the above representation need not be proper even though F (t|θ)
is proper for all θ.

Example 3.14. For example, F (t|θ) is an exponential distribution and G(θ) is a Poisson distribu-
tion, then we can show that limt!∞ F (t) < 1.
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The corresponding survival function is

S(t) = 1− F (t) =

∫
Θ

(1− F (t|θ))dG(θ) =
∫
Θ

S(t|θ)dG(θ).

The corresponding pdf if exists, is

f(t) =

∫
Θ

f(t|θ)dG(θ).

The hazard function if the pdf exists, is

h(t) =
f(t)

S(t)
=

∫
Θ
f(t|θ)dG(θ)∫

Θ
S(t|θ)dG(θ)

.

Proposition 3.15. Let

h(t|θ) = f(t|θ
S(t|θ)

.

If
hl ⩽ h(t|θ) ⩽ hu,∀θ ∈ Θ,

then
hl ⩽ h(t) ⩽ hu,∀ t.

Example 3.16. Let’s consider the special case in which G puts mass at but two points.

F (t) = πF1(t) + (1− π)F2(t).

Let I be a r.v., independent of taking only values 0,1 for which

P (I = 1) = π, P (I = 0) = 1− π.

Then the mixture
T

d
= IT1 + (1− I)T2,

where, be careful, I is a r.v..

Proof.

P (IT1 + (1− I)T2 ⩽ t)

= P (IT1 + (1− I)T2 ⩽ t|I = 1)P (I = 1) + P (IT1 + (1− I)T2 ⩽ t|I = 0)P (I = 0)

= P (T1 ⩽ t)π + P (T2 ⩽ t)(1− π)

= πF (t) + (1− π)F (t)

= F (t).

Note that

h(t) =
πf1(t) + (1− π)f2(t)

πS1(t) + (1− π)S2(t)

= w(t)h1(t) + (1− w(t))h2(t),
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where

w(t) =
πS1(t)

πS1(t) + (1− π)S2(t)
.

It follows that

min{h1(t), h2(t)} ⩽ h(t) ⩽ max{h1(t), h2(t)},

since h1(t), h2(t) are bounded.

Proposition 3.17. Suppose that h(t) and w(t) are given above. If h1(t) ⩽ h2(t), then

d

dt
w(t) ⩾ 0,

w/ strict inequality of S1(t)S2(t) > 0.

Proof. Note that

d

dt
w(t) =

π(1− π)S1(t)S2(t) [h2(t)− h1(t)]

[πS1(t) + (1− π)S2(t)]
2 ⩾ 0.

3.3.3 Mixture and Minima

Suppose T = min{T1, T2} and Ti has distribution Gi, i = 1, 2.
If T1 and T2 are independent, then survival function of T is

S(t) = S1(t)S2(t).

This is a simple version of the competing risk model discussed before. Here T1, T2 can be regarded
as potential waiting time to failure due to two different causes and the actual failure time is their
minimum. Since there are two different possible causes of failure, the distribution can be thought
of as a mixture.

S(t) = S1(t)S2(t) = πS∗
1 (t) + (1− π)S∗

2 (t)

can be solved to obtain

S∗
1 (t) =

∫∞
t
S2(t)dG1(t)∫∞

0
S2(t)dG1(t)

,

S∗
2 (t) =

∫∞
t
S1(t)dG2(t)∫∞

0
S1(t)dG2(t)

;

and

π =

∫ ∞

0

S2(τ)dG1(τ),

1− π =

∫ ∞

0

S1(τ)dG2(τ).
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Example 3.18. Suppose
T ∼ exp(λ1),

and assume
λ1 ∼ exp(λ2).

Then
fT |Λ1

(t|λ1) = λ1e
−λ1t, t > 0,

fΛ1
(λ1) = λ2e

−λ2λ1 , λ1 > 0.

The unconditional pdf

fT (t) =

∫ ∞

0

f(T1|Λ1)(t|λ1)fΛ1(λ1)dλ1

= λ2

∫ ∞

0

λ1e
−λ1(t+λ2)dλ1 (!!!)

=
λ2

(λ2 + t)2
, t > 0,

by regarding it as a Gamma integral.

Example 3.19. Let
T ∼ Poi(λ)

w/ pmf

fT |Λ(t|λ) =
λte−λ

t!
, t = 0, 1, · · · .

Suppose Λ is a r.v. having the Gamma distribution w/ shape κ and scale δ w/ pdf

pΛ(λ) =
δκ

Γ(κ)
λκ−1e−δλ, λ > 0, (κ > 0, δ > 0).

The unconditional pdf is

fT (t) =

∫ ∞

0

λte−λ

t!

δκ

Γ(κ)
λκ−1e−δλdλ

=
δκ

Γ(κ)t!

∫ ∞

0

λt+κ−1e−(1+δ)λdλ

=
Γ(t+ κ)δκ(1 + δ)−(t+κ)

Γ(κ)t!
, t = 0, 1, . . . ,

which is called Gamma-Poisson distribution.

Example 3.20. Student t-dsitribution.

X ∼ t(ν)

if pdf is

f(x) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
πνσ

[
1 +

(x− µ)2

νσ2

]− ν+1
2

, x ∈ R,

where µ : location, σ : scale, ν : shape.
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Remark. (a) When ν = 1,

f(x) =
1

πσ
[
1 + (x−µ)2

σ2

] , x ∈ R,

which is the pdf of the Cauchy distribution.

(b) When ν ! ∞,

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R.

(c) ∫ 1

0

N
(
x|µ, (λτ)−1

)
Gamma

(
τ

∣∣∣∣ν2 , ν2
)
dτ = tν

(
x|µ, λ−1

)
. (λ = σ2)
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Bayesian Inference

Recall mixture pdf

f(t) =

∫
Θ

f(t|θ)p(θ)dθ,

we can regard it as a joint pdf.

Definition 4.1 (MLE). Likelihood inference (classical or frequentist inference)

X1, . . . , Xn
iid∼ f(x|θ),

where f(x|θ) is pdf or pmf on the probability space

(Ω,F , Pθ)

and
θ ∈ Θ.

The sampling distribution
f(x1, . . . , xn|θ) = f(x˜|θ)

is the distribution of the observed data conditional on its parameters. This is also termed the
likelihood, especially when viewed as a function of the parameter(s),

L(θ|x1, . . . , xn) = f(x1, . . . , xn|θ).

Write it as

L(θ|x˜) = f(x˜|θ) =
n∏
i=1

f(xi|θ),

θ̂MLE = argmax
θ∈Θ

L(θ|x˜).
Definition 4.2 (Fisher information). Fisher information of a random variable X with probability
measure Pθ from the family {Pθ : θ ∈ Θ} is defined by

I(θ0) := Eθ0

(
∂

∂θ
log f(X|θ)

∣∣∣∣
θ=θ0

)2

exp
= −Eθ0

(
∂2

∂θ2
log f(X|θ)

∣∣∣∣
θ=θ0

)
.

33
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Remark. (a)

l(θ|x˜) = logL(θ|x˜) =
n∑
i=1

log f(xi|θ).

Set

θ̂MLE = argmax
θ∈Θ

l(θ|x˜),
since log is an increasing function.

(b) θ̂MLE usually satisfies consistency and asymptotic normality.

• Consitency.

θ̂MLE
p
! θ0,

for some θ0 ∈ R.

• Asymptotic Normality. √
n(θ̂MLE − θ0)

n!∞∼ N(0, I−1(θ0)),

where I(θ0) is the fisher information.

(c) The above can be used to construct a 100(1− α)% interval for θ.

√
nI

1
2 (θ0)(θ̂MLE − θ0) ∼ N(0, 1).

P
(
−z1−α

2
⩽

√
nI

1
2 (θ0)(θ̂MLE − θ0) ⩽ z1−α

2

)
= 1− α.

So

θ0 ∈
[
θ̂MLE − z1−α

2
n−

1
2 I−

1
2 (θ0), θ̂MLE + z1−α

2
n−

1
2 I−

1
2 (θ0)

]
,

where θ0 on the right side can be replaced by θ̂MLE. Then 100(1− α)% CI

θ0 ∈
[
θ̂MLE − z1−α

2
n−

1
2 I−

1
2 (θ̂MLE), θ̂MLE + z1−α

2
n−

1
2 I−

1
2 (θ̂MLE)

]
.

Example 4.3.

X1, . . . , Xn
iid∼ N(θ, 1).

Then the pivot quantity √
n(X − θ) ∼ N(0, 1).

So 100(1− α)% CI for θ [
X − z1−α

2

1√
n
, X + z1−α

2

1√
n

]
,

where we can regard the CI a random variable, since the population mean θ is a constant, there
is 95% probability that the CI will cover the population mean θ. For each sample, the cor-
responding CI will cover θ or not cover the true mean θ, about 95% of the observed intervals[
x− z1−α

2

1√
n
, x+ z1−α

2

1√
n

]
will cover θ.
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4.1 Bayesian inference

The likelihood fcn is viewed as the conditional dist of data given the parameter, and assume the
parameter θ is a r.v. following some dist called the prior. So we have the Bayesian model{

X1, . . . , Xn|θ ∼ f(x1, . . . , xn|θ)
θ ∼ π(θ).

Then we have the marginal dist of the data

m(x˜) =
∫
Θ

f(x˜|θ)π(θ)dθ,
which is referred to as the prior predictive dist of the data. If we do not observe any data, the prior
predictive dist is the relevant dist for making probability statements about the unknown value of
the data. Similarly, the prior π(θ) is the relevant dist to use in making probability statements about
θ before we observe the data. Then Bayesian inference is based on the conditional dist of θ given
the data.

• Likelihood fcn:

x˜|θ ∼ f(x˜|θ).
• Prior:

π ∼ π(θ).

• Posterior dist:

π(θ|x˜) = f(x˜|θ)π(θ)
m(x˜) ,

where

m(x̃) =

∫
Θ

f(x˜|θ)π(θ)dθ,
and is called prior predictive dist or mixture dist,
and ∫

Θ

π(θ|x˜)dθ = 1.

Theorem 4.4 (Bayesian Theorem).

π(θ|x˜) = f(x˜|θ)π(θ)
m(x˜) =

f(x˜|θ)π(θ)∫
Θ
f(x˜|θ)π(θ)dθ .

Then the key of Bayesian inference is updating the prior distribution π(θ) using the posterior dis-
tribution π(θ|x˜).
Remark. It can be shown that for the two data set x1˜ and x2˜, if we use them together to compute

our posterior dist π(θ|x˜1, x˜2) given the prior π(θ), which has the same dist as posterior dist π(θ|x˜2)given the prior π(θ|x˜1), where π(θ|x˜1) is the posterior dist given the prior π(θ).
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Example 4.5. {
X1, . . . , Xn

iid∼ Bernoulli θ
θ ∼ Beta(α, β) w/ known α, β.

(If α is unknown, we can use hierachy mixture dist.)
We know

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

The marginal

m(x˜) =
∫ 1

0

n∏
i=1

θxi(1− θi)
1−xi

1

B(α, β)
θα−1(1− θ)β−1dθ

=
1

B(α, β)

∫ 1

0

θ
∑n

i=1 xi+α−1(1− θ)n−
∑n

i=1 xi+β−1dθ

=
B (
∑n
i=1 xi + α, n−

∑n
i=1 xi + β)

B(α, β)
.

So the posterior dist of θ

π(θ|x˜) =
f(x˜|θ)π(θ)
m(x˜)

=

∏n
i=1 θ

xi(1− θi)
1−xi 1

B(α,β)θ
α−1(1− θ)β−1

B(
∑n

i=1 xi+α, n−
∑n

i=1 xi+β)
B(α,β) )

=
θ
∑n

i=1 xi+α−1(1− θ)n−
∑n

i=1 xi+β−1

B (
∑n
i=1 xi + α, n−

∑n
i=1 xi + β)

.

Thus,

θ|x ∼ Beta

(
n∑
i=1

xi + α, n−
n∑
i=1

xi + β

)
.

Let

α = β = 1,

then the prior

θ ∼ U(0, 1).

Let

n = 40,

n∑
i=1

xi = 10.

θ|x˜ ∼ Beta(11, 31).

If we plot the graph, we get it approximately concentrated at 10
40 = 0.25.

We can also make hypothesis about, for example, θ = 1 or θ ̸= 1.
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Proposition 4.6.

π(θ|x˜) ∝ f(x˜|θ)π(θ).
Example 4.7.

X1, . . . , Xn
iid∼ N(µ, τ20 ).

µ ∼ N(µ0, τ
2
0 ).

Find the posterior dist of u.
(indexing by 0 denotes it is known.)

π(µ|x˜) ∝ f(x˜|µ)π(µ)
∝

n∏
i=1

e
− (xi−µ)2

2σ2
0 e

− (µ−µ0)2

2τ2
0

= e
−

∑n
i=1

(xi−µ)2

2σ2
0

− (µ−µ0)

2τ2
0

∝ e
−nµ2−2nx̄µ

2σ2
0

−µ2−2µ0µ

2τ2
0

= e
− 1

2

[(
n

σ2
0
+ 1

τ2
0

)
µ2−2

(
n

σ2
0
x̄+

µ0
τ2
0

)
µ

]

∝ exp

−

(
µ−

n

σ2
0
x̄+

µ0
τ2
0

n

σ2
0
+ 1

τ2
0

)2

2
(
n
σ2
0
+ 1

τ2
0

)−1

 ,

so

µ|x˜ ∼ N
(
µ∗, σ∗2) ,

w/

u∗ =

n
σ2
0
x̄+ µ0

τ2
0

n
σ2
0
+ 1

τ2
0

,

and

σ∗2 =

(
n

σ2
0

+
1

τ20

)−1

.

Then

m(x˜) = f(x̃|µ)π(µ)
π(µ|x̃)

= · · · .

We have the precision

1

σ∗2 =
n

σ2
0

+
1

τ20
=

1
σ2
0

n

+
1

τ20
. = precision of x̄+ presision of µ.

The no info about µ, then always

µ ∝ 1.
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If τ0 ! ∞, the graph is flat, then
µ∗ ! x̄,

and

σ∗2 !
σ2
0

n
.

eg:
σ2
0 = 1, τ20 = 2, µ0 = 0,

n = 10, x̄ = 1.2.

Then
µ|x˜ ∼ N(1.1429, 0.9524),

w/ 1.1429 close to 1.2.
Bayesian sufficient statistic is the same as the classical sufficient statistic. So if we use x̄ instead

of x˜, we get the same result. Next, make inference for unknown parameter from the posterior dist.
Note

θ|x˜ ∼ π(θ|x˜).
Then

θ̂ = E[θ|x˜] =
∫
Θ

θπ(θ|x˜)dθ.
For our example,

µ̂ = E[µ|x˜] =
n
σ2
0
x̄+ µ0

τ2
0

n
σ2
0
+ 1

τ2
0

= µ∗.

median: t0.5. mode:
θ̂ = argmaxπ(θ|x˜)

Definition 4.8. We use credible interval to find the interval estimation for θ.
(Use condidence interval to make hypothesis.)

Remark. (a) We can also predict the future obs. in Bayesian stat.

x∗|θ ∼ f(x∗|θ),

θ|x˜ ∼ π(θ|x˜).
Then

p(x∗|x˜) =
∫
Θ

f(x∗|θ)π(θ|x˜)dθ,
where is the posterior predictive dist.

(b) Use monte Carlo simulation.
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Statistical inference

Definition 5.1. A statistic is any quantity whose value can be calculated from sample data. A
statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent
the calculated or observed value. of the statistic.

Example 5.2. Both sample mean X and sample variance S2 are in fact random variables since
the are the results of ramdom experiments, and since their value can be calculated from sample
data, they are statistics. Both the sample mean and variance vary from one sample to the next,
and hence they have a distribution!

Definition 5.3. The probability distribution of a statistics is called sampling distribution, which
describes how the statistic varies in value across all samples that might be selected.

Definition 5.4. The pivot quantity is a function of observations and unobservable parameters
whose probability distribution does not depend on the unknown parameters. Note that a pivot
quantity need not be a statistic. If it is a statistic, then it is known as an ancillary statistic, where
ancillary statistic is a statistic whose sampling distribution does not depend on the parameters of
the model.

Definition 5.5. Then r.v.’s X1, . . . , Xn are said to form a random sample of size n if

(a) The Xi’s are independent r.v.’s.
Selection of any one (student, chip, light bulb, etc.) has no influence on the others.

(b) Every Xi has the same probability distribution.
Each unit in the sample has equal chance of being chosen.

Remark. • These two conditions can be combined by saying that Xi’s are iid.

• These conditions can be satisfied exactly only if population size is infinite or the sampling is
done with replacement. Otherwise, if sample size n is at most 5% of population size N, we
can usually assume that Xis are iid.

We typically obtain the sampling distribution through a simulation experiment for which we
need to determine

• The statistic of interest (the mean and variance of the weight, defect rate, etc.)

39



40 CHAPTER 5. STATISTICAL INFERENCE

• The population distribution (is it normal, uniform, Poisson?)

• The sample size n (how many subjects/objects are there in each sample).

• The number of replications k (how many samples are obtained).

To do this by random sampling

• Obtain k different random samples from your population.

• Calculate the value(s) of the sought statistic(s) for each of the k samples.

• Construct a histogram of k such numbers (i.e., statistics obtained from k samples)

* The histogram gives an approximate sampling distribution of the statistic.

* The approximation will approach true distribution as k ! ∞.

5.1 Confidence interval

Confidence interval-the probability is not that the parameter is in a particular interval, but that
the intervals in repeated experiments will contain the parameter.

Take polling data for elections. When it’s reported that a political party is currently getting a
specified level of support (say 37%), with an accuracy of plus or minus some amount (say 2%), they
normally state that the results are true 19 times out of 20 (that’s a 95% confidence level). This
means that if they were to repeat the polling 20 times, the true level of support for that political
party would fall within 19 intervals out of 20. It does not mean that there’s a 95% chance that the
true level of support for that political party is within the range of support being quoted (35 to 39%)
in that specific poll. Let’s say you’re building a confidence interval of the mean. The population
mean is an unknown constant, not a random variable. The random variables are the sample mean
and sample variance used to build the interval, which vary between experiments. In other words it
is the interval that varies and which can be considered a “random variable” of sorts. Once values for
the sample mean and sample variance have been calculated for an interval, it’s not correct to make
probability statements about the population mean-that would imply that it’s a random variable.
The population mean is a constant that either is or isn’t in the interval.

5.2 Sufficient statistics

Definition 5.6. Given a set X of of independent identically distributed data conditioned on an
unknown parameter θ, a sufficient statistic is a function T (X) whose value contains all the infor-
mation needed to compute any estimate of the parameter (e.g. a MLE). Due to the factoriza-
tion theorem (see below), for a sufficient statistic T (X), the joint distribution can be written as
p(X) = h(X)g (θ, T (X)). From this factorization, it can easily be seen that the MLE of will interact
with X only through T (X).

More generally, the “unknown parameter” may represent a vector of unknown quantities or may
represent everything about the model that is unknown or not fully specified. In such a case, the
sufficient statistic may be a set of functions, called a jointly sufficient statistic. Typically, there are
as many functions as there are parameters. For example, for a Gaussian distribution with unknown
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mean and variance, the jointly sufficient statistic, from which maximum likelihood estimates of both
parameters can be estimated, consists of two functions, the sum of all data points and the sum of
all squared data points (or equivalently, the sample mean and sample variance).

Fisher’s factorization theorem or factorization criterion provides a convenient characterization
of a sufficient statistic. If the probability density function is fθ(x), then T is sufficient for θ if and
only if nonnegative functions g and h can be found such that

fθ(x) = h(x) gθ(T (x)),

i.e. the density f can be factored into a product such that one factor, h, does not depend on θ and
the other factor, which does depend on θ, depends on x only through T (x).
It is easy to see that if F (t) is a one-to-one function and T is a sufficient statistic, then F (T ) is
a sufficient statistic. In particular we can multiply a sufficient statistic by a nonzero constant and
get another sufficient statistic.
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Chapter 6

Accelerated Life Models

T1, . . . , Tn
iid∼ f(t).

Now consider Z = (Z1, . . . , Zq)
T contains q covariates (explanatory variables, they might be treat-

ments, stress, intrinsic, property of an item,etc).
For example,

Zi =

{
1, an item is in the treatment group,
0, an item is in the control group.

or Zi is the dosage in medical setting or turning speed in manufacturing setting. The covariates
influence the lifetime dist. They affect the rate of which the item ages. The survival fcn for T in
the accelerated life model

S(t) = S0 (tψ(z)) , t ⩾ 0,

where S0(·) is a baseline survival fcn and ψ(t) is a link fcn. The baseline dist. corresponding to all
the covariates equal to 0. In reliability setting, this is typically the normal operating and for the
item, other covariates vectors are often used for accelerated environment. A popular choice of ψ(z)
is the log linear link fcn

ψ(z) = eβ
T z.

where we have the linear model

log (ψ(z)) = β1z1 + · · ·+ βqzq

So accelerated if ψ(z) > 1, decelerated if ψ(z) < 1. Another way of viewing the accelerated life
model is to denote the lifetime as

T = To/ψ(z),

where T0 is the lifetime under the baseline condition (z = 0.)

Example 6.1. ψ(z) = 2, then this item moves through time at twice the rate of an item under the
baseline condition. If the log linear link fcn is used, then

T0/T1 = ψ(z) = eβ
T z,

or
log T0 − log T1 = β1z1 + · · ·+ βqzq.

43
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Remark.

H(t) = − logS(t) = − logS0 (tψ(z)) = H0 (tψ(z)) .

h(t) = H ′(t) = ψ(z)h0 (tψ(z)) , t ⩾ 0.

f(t) = S(t)h(t) = S0 (tϕ(z))ψ(z)h0 (tψ(z)) = ϕ(z)f0(tϕ(z)),

which is clearly a pdf.

Example 6.2. Consider T0 ∼Weibull(κ, λ), the link fcn ψ(z) = eβ
T z. Find the survival fcn and

the prob. hat an item w/ covariates z fails by time 1000.

The baseline survival fcn

S(t) = e−(λt)κ .

So the sur. fcn. w/ cov. z

S(t) = e−(λtψ(t))κ = e
−
(
λeβ

T zt
)κ

, t > 0.

So

T ∼ Weibull
(
κ, λeβ

T z
)
.

Thus,

P (T ⩽ 1000) = 1− S(1000) = 1− e
−
(
1000λeβ

T z
)κ

.

Example 6.3. Consider ψ(z) = eβ
T z in an accelerated life model w/ a log logistic baseline fcn.

Find the survival fcn as an expression for the mean time to failure for an item w/ convariance z.

The baseline survival fcn

S0(t) =
1

1 + (λt)κ
, t ⩾ 0.

The sur. fcn w/ covariates z

S(t) = S0 (tψ(t)) =
1

1 + (λψ(z)t)
κ =

1

1 +
(
λeβT zt

)κ .
So T follows a log logistic dist. w/ scale λeβ

T z and shape κ. Therefore,

µ =

∫ ∞

0

S(t)dt

=

∫ ∞

0

1

1 +
(
λeβT zt

)κ dt
=

π

λκeβT z sin
(
π
κ

) , for κ > 1.
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6.1 Proportional Hazard Model

The propotional hazard model is defined by

h(t) = ψ(z)h0(t), t > 0.

ψ(t) > 1 increases hazard rate; ψ(t) < 1 decreases hazard rate. The popular choice of ψ(z) is

ψ(z) = eβ
T z.

We can get other dist. representation. Or example,

H(t) =

∫ t

0

h(τ)dτ =

∫ t

0

ψ(z)h0(τ)dτ = ψ(z)

∫ t

0

h0(τ)dτ = ψ(z)H0(t).

Table 6.1: Comparison

Accelerated life model Proportional Hazard Model

S(t) S0 (tψ(z)) (S0(t))
ψ(z)

f(t) ψ(z)f (tψ(z)) f0(t)ψ(z) (S0(t))
ψ(z)−1

h(t) ψ(z)H0 (tψ(z)) ψ(z)h0(t)
H(t) H0 (tψ(z)) ψ(z)H0(t)

Example 6.4. Consider a Weibull baseline dist. in a propotional hazard model. Find the hazard
and sur. fcn.

h0(t) = κλκtκ−1, t ⩾ 0.

Hence
h(t) = ψ(z)h0(t) = ψ(z)κλκtκ−1, t > 0,

and

S(t) = (S0(t))
ψ(t)

=
(
e−(λt)κ

)ψ(z)
, t > 0.

Thus,

T ∼ Weibull
(
λψ(z)

1
κ , κ

)
.
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Chapter 7

Lifetime Data Analysis

Data
t1, . . . , tn ∼ f(x; θ),

where f(x; θ) is the population distribution. Ususally just observe t(1), . . . , t(r) with r ≪ n. Goal:
To make inference on θ, and the statistical inference involves

• Point estimation

• Interval estimation

• Hypothesis testing

7.1 Point estimation

A point estimator θ̂ is a statistic w.r.t some quantity, for example, the distribution mean.

A statistic is a function of data values that does not depend on any unknown parameter. For example,
sample mean and sample variance. The statistic is a random variable when we think about all the values it
could take on based on all the different samples we could collect. But once we collect a single sample, we
calculate a specific value of the statistic.

7.1.1 Unbiased

θ̂ is an unbiased est. of θ if
E(θ̂) = θ.

Example 7.1.

t1, . . . , tn ∼ exp

(
1

θ

)
.

Then

θ̂ =
1

n

n∑
i=1

ti

47
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is an unbiaed est. of θ since E(θ̂) = θ.

Definition 7.2.
bias = E(θ̂)− θ.

If θ̂ is a biased of θ but
lim
n!∞

E(θ̂) = θ,

then we call θ̂ as an asymptotically unbiased est. of θ since θ̂ can be regard a fcn of n.

To compare two unbiased est. θ̂1 and θ̂2, we define

E =
Var(θ̂1)

Var(θ̂2)

as the efficiency of θ̂1 related to θ̂2. When E < 1, θ̂1 is better than θ2. When E > 1, θ̂1 is worse
than θ2.

Example 7.3. Assume

t1, t2, t3
iid∼ exp(1/θ).

Consider

θ̂1 =
t1 + t2 + t3

3
,

θ̂2 =
t1 + 4t2 + t3

6
.

Clearly, θ̂1 and θ̂2 are unbiased of θ.

Var(θ̂1) =
θ2

3
,

Var(θ̂2) =
θ2 + 16θ2 + θ2

36
=
θ2

2
.

Hence

E =
θ̂1

θ̂2
=

1/3

1/2
=

2

3
< 1.

Thus, θ̂1 is better than θ̂2.

Remark. Consider

θ̂ =
α1t1 + α2t2 + α3t3
α1 + α2 + α3

, α1, α2, α3 ⩾ 0 and α1 + α2 + α3 > 0,

then the best choice is
α1 = α2 = α3 = 1.

Theorem 7.4 (Cramer-Rao inequality). Let T1, . . . , Tn be iid random lifetimes from a population
w/ pdf f(t), where domain of suppport does not depend on any unknown parameters. Assume that

the cont. first-order exists. Let θ̂ be an unbiased est. of θ, then

Var(θ) ⩾
1

n · E
[
(∂ log f(T )/∂θ)

2
] =: lower bound.
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Definition 7.5. θ̂ is called as a minimum variance unbiased est. (MVUE) of θ if

Var(θ) = lower bound.

Definition 7.6.

E
[
(∂ log f(T )/∂θ)

2
]

is called fisher information of the unknown quantity of population.

Example 7.7.

t1, . . . , tn
iid∼ exp

(
1

θ

)
.

Then

θ̂ =
1

n

n∑
n=1

tn

is MVUE of θ.

Proof. Since

f(t) =
1

θ
e−

1
θ t, t > 0.

(∂ log f(T )/∂θ)
2
=

(
∂

(
− log θ − t

θ

)
/∂θ

)2

=

(
−1

θ
+

t

θ2

)2

=
1

θ2
− 2t

θ3
+
t2

θ4
.

Then

I(θ) = E

[
1

θ2
− 2t

θ3
+
t2

θ4

]
=

1

θ2
− 2

θ2
+

2

θ2
=

1

θ2
.

Hence

lower bound =
1

n 1
θ2

=
θ2

n
= Var(θ̂).

Thus, θ̂ is a MVUE of θ.

Remark. Estimator has small bias or big variation. Trade off often needed. So we often use mean
square error (MSE)

E(θ̂ − θ)2 = Var(θ̂) +
(
E(θ̂ − θ)

)2
= Var(θ̂) + bias2,

where (θ̂ − θ)2 is the square loss of function.
(Refer to the decision theory for general loss fcn.)
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7.1.2 Consistency

θ̂ is a consistent est. of θ if

lim
n!∞

P
(∣∣∣θ̂ − θ

∣∣∣ < ϵ
)
= 1,∀ϵ > 0,

i.e.,

θ̂
p
! θ.

For any ϵ > 0, when n is sufficient large,

θ̂ ∈ (θ − ϵ, θ + ϵ).

If we directly compute

P
(∣∣∣θ̂ − θ

∣∣∣ < ϵ
)
,

we will use the joint dist. with n fold intervals (hyperplane). So we often show consistency through
showing

lim
n!∞

Var(θ̂) = 0,

since

0 = P
(∣∣∣θ̂ − θ

∣∣∣ ⩾ ϵ
)
⩽

1

ϵ2

∫ ∣∣∣θ̂ − θ
∣∣∣2 =

Var(θ̂)

ϵ2
.

Example 7.8 (Example 7.7 Continued).

θ =
1

n

n∑
i=1

ti,

is also a consistency est. of θ since

Var(θ̂) =
θ2

n
! 0.

7.2 Interval Estimation

An interval est. contains more info than a point est.

P (L ⩽ θ ⩽ U) = 1− α,

where L and U are statistics and we call [l, u] (exactly) 100(1 − α)% confidence interval of θ.
Similarly,

P (L ⩽ θ ⩽ U) ⩾ 1− α

are also used w/ equ. holding for some θ.

Remark. (a) Intepretation of CI.

(b) Find a (1− α)100% CI through using pivot, which is a r.v..
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Example 7.9. Assume

t1, . . . , tn
i.i.d.∼ exp(1/θ).

Find a CI for θ. Note
2

θ

n∑
i=1

ti ∼ χ2(2n).

Then

P

(
χ2

α
2 ,2n

⩽
2

θ

n∑
i=1

ti ⩽ χ2
1−α

2 ,2n

)
= 1− α,

or

P

(
2
∑n
i=1 ti

χ2
1−α

2 ,2n

⩽ θ ⩽
2
∑n
i=1 ti

χ2
α
2 ,2n

)
= 1− α.

Then L,U is a function of
∑n
i=1 ti. So (1− α)%:[

2
∑n
i=1 ti

χ2
1−α

2 ,2n

,
2
∑n
i=1 ti

χ2
α
2 ,2n

]
.

If t ∼ exp(1/θ),

f(t) =
1

θ
e−

1
θ t =

t1−1

θ1Γ(1)
e−

1
θ t ∼ Gamma(1, θ).

Hence
n∑
i=1

ti ∼ Gamma(n, θ).

The pdf of
∑n
i=1 ti is

f1(t) =
tn−1

θnΓ(n)
e−

1
θ t.

Then the pdf of 2
θ

∑n
i=1 ti is

f2(t) =
tn−1

2nΓ(n)
e−

1
2 t.

Then
2

θ

n∑
i=1

ti ∼ Gamma(n, 2),

which is χ2(2n).

Remark. (a)
n∑
i=1

ti ∼ Erlang(n, 1/θ).

(b) An asympotically exact CI

lim
n!∞

P (L ⩽ θ ⩽ U) = 1− α.
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(c) CI is NOT unique.

How to calculate the prob. that the 100(1− α)% CI contains one value θ0?
Assume that (L,U) has joint pdf fL,U (l, u), then (!!!)

P (L ⩽ θ0 ⩽ U) =

∫ ∫
L⩽θ0⩽U

f(l, u)dldu

=

∫ θ0

−∞

∫ ∞

−θ0
f(l, u)dldu.

Note that the above equality = 1 − α when θ0 = θ. In practise, we expect the above prob is as
small as possible Also we can calculate the mean of interval width.

E[W ] = E[U − L] =

∫ ∞

−∞

∫ ∞

l

(u− l)f(l, u)dldu.

The variance of the interval width

V (W ) =

∫ ∞

−∞

(
(u− l)2 − (E[W ])2

)
f(l, u)dldu.

We expect that E[W ] is as small as possible. We can also use one-sided CI, similarly. Good CI
satisfies

(a) Covergence of true value (close to 1− α.)

(b) Covergence of false value θ0 as small as possible.

(c) Expectation of the interval width is small.

7.3 Likelihood Theory

Suppose

t1, . . . , tn
iid∼ f(t; θ˜),

with θ˜ = (θ1, . . . , θp)
T . The likelihood

L(t˜; θ˜) = f(t˜; θ˜) =
n∏
i=1

f(ti; θ˜),
which is a function of θ or the joint pdf. The MLE

θ̂ = argmax
θ∈Θ

L(t˜; θ˜).
In practice, it is often to maximize the log likelihood.

l(t˜; θ˜) = logL(t˜; θ˜) =
n∑
i=1

log f(ti; θ˜).



7.3. LIKELIHOOD THEORY 53

Note the l(t˜; θ) is asymptotically normal distributed by CLT. Since∫ ∞

0

· · ·
∫ ∞

0

L(t˜; θ˜)dt˜= 1,

we have

0 =
∂

∂θ

∫ ∞

0

· · ·
∫ ∞

0

L(t˜; θ˜)dt
=

∫ ∞

0

· · ·
∫ ∞

0

∂L(t˜; θ˜)
∂θi

dt

=

∫ ∞

0

· · ·
∫ ∞

0

∂ logL(t˜; θ˜)
∂θi

L(t˜; θ˜)dt
= E

[
∂ logL(t˜; θ˜)

∂θi

]
= E[ui(θ̃)],

where

ui(θ˜) = ∂ logL(t˜; θ˜)
∂θi

, i = 1, . . . , p,

contains data ti’s and

u˜(θ˜) = (u1(θ˜), . . . , up(θ˜),
is called as the score vector and

E[u˜(θ˜)] = 0˜.
Remark. θ̂MLE can be obtained by setting

u˜(θ˜) = 0.

Next,

0 =
∂

∂θj

∫ ∞

0

· · ·
∫ ∞

0

∂ logL(t˜; θ˜)
∂θi

L(t˜; θ˜)dt
=

∫ ∞

0

· · ·
∫ ∞

0

(
∂2 logL(t˜; θ˜)
∂θi∂θj

L(t˜; θ˜) +
∂ logL(t˜; θ˜)

∂θi

∂ logL(t˜; θ˜)
∂θj

L(t˜; θ˜)
)
dt

= E

[
∂2 logL(t˜; θ˜)
∂θi∂θj

]
+ E[ui(θ˜)uj(θ˜)], i, j = 1, . . . , p.

hence

E

[
−
∂2 logL(t˜; θ˜)
∂θi∂θj

]
= E[ui(θ˜)uj(θ˜)] = Cov(ui(θ˜), uj(θ˜)).
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Thus,

E

[
−
∂2 logL(t˜; θ˜)

∂θ2i

]
= E[u2i (θ˜)] = Var(ui(θ˜))
= E

(∂ logL(t˜; θ˜)
∂θi

)2
 .

Note that

I(θ) =

[
E

[
−
∂2 logL(t˜; θ˜)
∂θi∂θj

]]
p×p

=
[
Cov

(
ui(θ˜), uj(θ˜))]p×p .

Example 7.10. Suppose

t1, . . . , tn
iid∼ exp(1/θ).

Find the score vector and Fisher information.

L(t˜; θ) =
n∏
i=1

1

θ
e−

ti
θ = θ−ne−

1
θ

∑n
i=1 ti .

Then

logL(t˜; θ) = −n log θ − 1

θ

n∑
i=1

ti.

Hence

µ(θ) =
d logL(t˜; θ)

dθ
= −n

θ
+

1

θ2

n∑
i=1

ti.

Clearly,
E[u(θ)] = 0.

Set u(θ) = 0, we have

θ̂MLE =
1

n

n∑
i=1

ti.

Note that
d2 logL(t˜; θ)

dθ2
=

n

θ2
− 2

θ3

n∑
i=1

ti.

Then

I(θ) = E

[
−∂ logL(t̃; θ)

dθ2

]
= − n

θ2
+

2

θ3

n∑
i=1

E[ti]

= − n

θ2
+

2n

θ2

=
n

θ2
.
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Also,

Var(u(θ)) =
1

θ4

n∑
i=1

Var(ti)

=
1

θ4
nθ2

=
n

θ2

= I(θ), verified.

Moreover, assume θ = 1, then

u(θ) = −n+

n∑
i=1

ti,

which has a shifted Erlang(n, 1) distribution w/ pdf

f(u) =
1

(n− 1)!
(u+ n)n−1e−(u+n), u > −n.

Remark. (a) Observed information matrix

O(θ̂) = I(θ̂).

(b) If we are interested in ϕ = g(θ), then the score of ϕ = the score of θ/g′(θ). The Fisher
information of ϕ= the Fisher info of θ/g′2(θ).

(c) The MLE has the invariant property,

ϕ̂ = g(ϕMLE).

Example 7.11. Suppose

t1, . . . , tn
iid∼ Inverse Gauss(λ, µ),

w/ pdf

f(t) =

√
λ

2π
t−

3
2 e

−λ(t−µ)2

2µ2t , t > 0.

The likelihood fcn is

L(t˜;λ, µ) =
n∏
i=1

f(ti)

= λ
n
2 (2π)−

n
2

n∏
i=1

t
− 3

2
i e

− λ
2µ2

∑n
i=1

(ti−µ)2

ti .

The log likelihood fcn is

logL(t˜;λ, µ) = n

2
log λ− n

2
log 2π + log

n∏
i=1

t
− 3

2
i − λ

2µ2

n∑
i=1

(ti − µ)2

ti

=
n

2
log λ− n

2
log 2π + log

n∏
i=1

t
− 3

2
i − λ

n∑
i=1

(
ti
2µ2

− 1

µ
+

1

2ti

)
.
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Then

uλ(λ, µ) =
∂ log(t˜, λ, µ)

∂λ
=

n

2λ
− 1

2µ2

n∑
i=1

(ti − µ)2

ti
,

uµ(λ, µ) = −λ
n∑
i=1

(
− ti
µ3

+
1

µ2

)
=

λ

µ3

(
n∑
i=1

ti − nµ

)
.

Seting u˜(λ, µ) = (uλ(λ, µ), uµ(λ, µ)) = 0, we have

µ̂MLE =
1

n

n∑
i=1

ti,

λ̂ =

[
1

n

n∑
i=1

1

ti
− n∑n

i=1 ti

]−1

.

Next, we compute I(λ, θ).

∂2 logL

∂λ2
= − n

2λ2
,

∂2 logL

∂λ∂µ
=

1

µ3

n∑
i=1

ti −
n

µ2
,

∂2 logL

∂µ2
= −

3λ
∑n
i=1 ti
µ4

+
2nλ

µ3
.

Note E[ti] = µ, so

I(λ, µ) =

 E
[
−∂2 logL

∂λ2

]
E
[
−∂2 logL

∂λ∂µ

]
E
[
−∂2 logL

∂λ∂µ

]
E
[
−∂2 logL

∂µ2

]
.

 =

( n
2λ 0
0 nλ

µ3

)
.

Proposition 7.12 (Asymptotically properties).

ui(θ˜) = ∂ logL

∂θi

=
∂

∂θi

n∑
k=1

f(tk; θ˜)
=

n∑
i=1

∂

∂θi
log f(tk; θ˜),

which is a sum of iid r.v.’s. So the score vector u(θ˜) is asymtotically normal with mean 0 and
covariance matrix I(θ). Therefore,

u˜T (θ˜)I−1(θ˜)u˜(θ˜) n!∞
−! χ2

p,

which can be used to determine CI and perform hypothesis testing on θ.



Chapter 8

Parametric Estimate for Models
Without Covariants

8.1 Censoring

Often, it is impossible or impractise to observe lifetime of all items in a test. A censored observation
occurs when only a bounded is known on the time of failure.

Definition 8.1. Complete data: data w/o sensoring or all failure items are observed. Right
censoring: One or more items have only a lower bound known on the lifetime.

Example 8.2. (a) Life testing, 12 machines are put into service on Jan 1. Suppose 7 of them have
failed by Dec 31. This is the case of 7 failures and 5 right-censored observations.

(b) Medical study, patients can still be alive or the researchers can lost contact w/ them at the end
of the study.

8.1.1 Right censoring

(a) Type II censoring / order statistic censoring.

Definition 8.3. Stop the test when the number of failure of items reaches the assigned value r.
The likelihood is the jpdf of X(1), . . . , X(r).

(b) Type I censoring (time censoring)

Definition 8.4. Terminate the test at a particular time.

(c) Random censoring

Definition 8.5. Each individual item are withdrawn from the test at any time during the study,
often assume that the i-th lifetime ti, and the i-th censoring time Ci are independent random
variables.

57
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8.1.2 Left censoring

Less frequently than right censoring. For example, forget to record.

8.1.3 Interval censoring

Lifetime falls into a interval due to checking items periodically, e.g. once a week, i.e.,

[L,R]

where L,R can be random variable.
How to handle problems of censoring data?

(a) Ignoring censored obs. (Bad)

(b) Wait for all right-censored obs to fail. (Bad)

(c) Analysis on data directly. Let

T1, . . . , Tn

be indep (real) lifetimes (may not be observed). Let

C1, . . . , Cn

be indep. right censoring time. Define

U = {1 ⩽ i ⩽ n | ti ⩽ Ci},

which is uncensored obs,

C = {1 ⩽ i ⩽ n | ti > Ci},

which is censored obs..

Analysis based on info from both U and C.

Example 8.6.

U = {1, 2, 4},

C = {3, 5}.

The usual form for lifetime data is given by the pairs

(xi, δi)

w/

xi = min(ti, Ci) (observed)

and

δi =

{
1, xi = ti item failed/uncensored,
0, xi = Ci observed not fail/censored.
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The likelihood function is

L(x˜, θ˜) =
n∏
i=1

fδi(xi; θ˜)S1−δi(xi; θ˜)
=
∏
i∈U

f(ti; θ˜) ·
∏
i∈C

S(Ci; θ˜)
=

n∏
i=1

hδi(xi; θ˜)S(xi; θ).
Hence

logL(θ˜) =
n∑
i=1

log hδi(xi, θ˜)−
n∑
i=1

H(xi; θ˜)
=
∑
i∈U

log h(xi, θ˜)−
n∑
i=1

H(xi, θ˜).
8.1.4 Progressive censoring

Remark. Progressive Type II right-censoring. Unde the censoring scheme, n units are placed on
life test at time zero. Immediately following the first failure, R1 surviving items are to be removed
from the test at random. Immediately following the first failure, R2 surviving items are to be
removed from the test at random. The process continues until at the time of m-th observed failure,
the remaining Rm = n−R1 − · · · −Rm−1 −m units are all to be removed from the test (R0 = 0).
If

R1 = · · · = Rm−1 = 0,

then
Rm = n−m,

which implies it reduces to the Type II right-censoring If

R1 = · · · = Rm = 0,

then we have complete data.

Use EM algorithm if S hard to find.

8.2 Exponential Distribution

Quite popular due to its tractability for parametric est. and inference.

f(t;λ) = λe−λt,

S(t;λ) = e−λt,

h(t;λ) = λ,

H(t;λ) = λt,

where λ is the failure rate and its mean is 1/λ.
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8.2.1 Complete data

T1, . . . , Tn
iid∼ f(t;λ).

L(λ) =

n∏
i=1

f(ti;λ) = λne−λ
∑n

i=1 ti .

l(λ) = n log λ− λ

n∑
i=1

ti.

Score

u(λ) = dl/dλ = n/λ−
n∑
i=1

ti.

Setting u(λ) = 0,

λ̂MLE =
1

t̄
=

n∑n
i=1 ti

.

Remark. (a) Note that
∑n
i=1 ti is often referred to the total time on the test, which is a complete

sufficient statistic.

(b) Fisher info matrix

i(λ) = E

[
−∂

2 logL(λ)

∂λ2

]
= E

[ n
λ2

]
=

n

λ2
,

and thus the observed Fisher info. matrix (also asympotically normally distributed)

O(λ̂) =
n

λ̂2MLE

=
(
∑n
i=1 ti)

2

n
.

To get a CT on λ, we use the sampling distribution of
∑n
i=1 ti,

2λ

n∑
i=1

ti =
2nλ

λ̂MLE

∼ χ2(2n).

So w/ prob. 1− α,

χ2
(1−α/2,2n) <

2nλ

λ̂MLE

< χ2
(α/2,2n).

Thus, 100(1− α)% CI

λ̂MLEχ
2
(1−α/2,2n)

2n
< λ <

λ̂MLEχ
2
(α/2,2n)

2n
.

The p-value for testing
H0 : λ = λ0 v.s. H1 : λ ̸= λ0,

is

Remark. (a) MLE of µ

µ̂MLE =
1

λ̂MLE

= t̄.
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(b) 100(1− α)% CI (replace λ and λMLE simultaneously.)

2nµ̂MLE

χ2
(α/2,2n)

< µ <
2nµ̂MLE

χ2
(1−α/2,2n)

.

(c) For any fix time t, the MLE of S(t) = e−λt

Ŝ(t) = e−λ̂t, t > 0.

Its interval estimation
e−ut < S(t) < e−lt,

where (l, u) is a 100(1− α)% CI for λ.

Now we consider Bayesian inference for λ.

f(t˜|λ) = λne−(
∑n

i=1 ti)λ.

Prior distribution:
λ ∼ Gamma(α, β).

Then

π(λ) =
βαλα−1e−βt

Γ(α)
.

So the posterior distribution

π(λ|t˜) ∝ f(t˜|λ)π(λ)
∝ λn+α−1e−(

∑n
i=1 ti+β)λ.

Thus,

λ|t˜∼ Gamma

(
n+ α,

n∑
i=1

ti + β

)
.

Hence conjugate prior. Then the posterior mean of λ

λ̂pos = E[λ|t˜] = n+ α∑n
i=1 ti + β

.

The posterior mean of µ

µ̂pos = E[µ|t˜]
= E[1/λ|t˜]
=

∫ ∞

0

fΛ|t˜(λ|t˜)dλ
=

∫ ∞

0

1

λ

(
∑n
i=1 ti + β)

n+α
λn+α−1e−(

∑n
i=1 ti+β)λ

Γ(n+ α)

=
Γ(n+ α− 1)

Γ(n+ α)
·

(
n∑
i=1

ti + β

)

=

∑n
i=1 ti + β

n+ α− 1
.
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So it is not invariant. How to choose α and β?

(a) historical record:
α/β = x.

(b) default choice:
π(λ) ∝ I(λ)1/2.

e.g.
I(λ) ∝ λ−1.

(c) empirical metod
θ˜ = (α, β).

θ̂ = argmaxL(α, β|t˜).
f(t˜|λ),π(λ|α, β)

}
⇒ f(t˜|α, β) = L(α, β|t˜).

(d) Consider prior on α, β.

8.2.2 Type II censored data

Complete data is a special case of type II-right censored data w/ r = n. As before,

T1, . . . , Tn
iid∼ f(t, λ).

C1 = · · · = Cn = t(r),

which is the censoring times and
xi = min{ti, Ci}.

The likelihood function

L(λ) =
∏
i∈U

f(xi;λ) ·
∏
i∈C

S(xi;λ)

= f(t(1), . . . , t(r)|λ)

and thus the log likelihood function

logL(λ) =
∑
i∈U

log h(xi;λ)−
n∑
i=1

H(xi;λ)

= r · log λ− λ

n∑
i=1

xi.

The total time on test

n∑
i=1

xi =
∑
i∈U

ti +
∑
i∈C

Ci =

r∑
i=1

t(i) + (n− r)t(r),
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where
t(1) ⩽ · · · ⩽ t(r)

are r order statistic of observed failures. The score function

u(λ) =
d logL(λ)

dλ
=
r

λ
−

n∑
i=1

xi.

Setting u(λ) = 0,

λ̂MLE =
r∑n
i=1 xi

.

Note that

I(λ) = E

[
−d

2 logL(λ)

dλ

]
= E

[ r
λ2

]
=

r

λ2
.

To get an exact CI for λ, we need the dist. of
∑n
i=1Xi.

2λ

n∑
i=1

Xi =
2rλ

λ̂MLE

∼ χ2(2r),

where 2λ
∑n
i=1Xi is the space statistic exp. So a 100(1− α)% CI for λ is

λ̂

2r
χ2
(2r,1−α/2) ⩽ λ ⩽

λ̂

2r
χ2
(2r,α/2).

Hypo. test (p-value)
H0 : λ = λ0 vs H1 : λ ̸= λ0.

Bayesian inference on λ is quite similar to that of complete data.

8.2.3 Type I censored data

A life test of n items is terminated at time c. Then

C1 = · · · = Cn = c.

The total time on test is

n∑
i=1

xi =
∑
i∈U

ti +
∑
i∈C

c

=

r∑
i=1

t(i) + (n− r)c,

where r is a random variable and
c ∈ [t(r), t(r+1)].
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I(λ) ≈ r

λ2
.

The log likelihood function

logL(λ) =
∑
i∈U

log h(xi; θ)−
n∑
i=1

H(xi; θ)

=
∑
i∈U

log λ− λ

n∑
i=1

xi

= r log λ− λ

n∑
i=1

xi.

Let

d
logL(λ)

dλ
=
r

λ
−

n∑
i=1

xi = 0,

we have

λ̂MLE∗ =
r∑n
i=1 xi

,

!!!!!

where r is a random variable (maximum index r such that t(r) ⩽ c.) For the same value r, type I
censoring has a large total time on test than that of type II because of the gap

c− t(r),

and so

(n− r)c ⩾ (n− r)t(r).

Remark. The sample dist. of
∑n
i=1 xi is NOT tractable. So we can only get CI using approximating

method

2λ

n∑
i=1

xi
·∼ χ2

2r+1,

based on the fact that if c = t(r), then

2λ

n∑
i=1

xi ∼ χ2
(2r);

if c = t(r+1), then

2λ

n∑
i=1

xi ∼ χ2
(2r+2).
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8.2.4 Random censored data sets

The total time on test
n∑
i=1

xi =
∑
i∈U

ti +
∑
i∈C

ci.

The sampling distribution of
∑n
i=1 xi becomes more complicated in this case. We will use some

approximating to get a CI on λ.

I : Based on an approx to a result from type II censoring case

2λ

n∑
i=1

xi
·∼ χ2(2r).

II : Based on the likelihood ratio test

2
[
logL(λ̂)− logL(λ)

]
·∼ χ2(1).

III : Based on MLE
λ̂MLE ∼ N

(
λ, I−1(λ)

)
,

where I−1(λ) can be replaced by I−1(λ̂MLE).

8.2.5 Comparing two exponential distribution

Let
x = min(t, c).

We have two iid sets
x11, x12, . . . , x1n ∼ exp(λ1);

x21, x22, . . . , x2n ∼ exp(λ2).

Assume type II censoring w/ r1 > 0 failures observed in the first sample and w/ r2 > 0 failures
observed in the second sample. We want to construct CI for

λ1
λ2
,

which similar to construct CI for
σ2
1

σ2
2

in the normally distributed case. Note

2λ1

n∑
i=1

xi ∼ χ2(2r1),

2λ2

n∑
i=1

xi ∼ χ2(2r2),

where we have the two test statistics are indep.
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If a pivot is a statistic, then it is known as an ancillary statistic. Pivotal quantities are fundamental to
the construction of test statistics, as they allow the statistic to not depend on parameters-for example,
Student’s t-statistic is for a normal distribution with unknown variance (and mean). They also provide one
method of constructing confidence intervals, and the use of pivotal quantities improves performance of the
bootstrap. In the form of ancillary statistics, they can be used to construct frequentist prediction intervals
(predictive confidence intervals).

Then
2λ1

∑n
i=1 xi/2r1

2λ2
∑n
i=1 xi/2r2

=
λ1
λ2

λ̂2

λ̂1
∼ F (2r1, 2r2).

So w/ probability 1− α,

f2r1,2r2,1−α/2 ⩽
λ1
λ2

λ̂2

λ̂1
⩽ f2r1,2r2,α/2.

w/ CI, we can easily draw the conclusion for testing

H0 : λ1 = λ2 vs H1 : λ1 ̸= λ2,

e.g. we check whether 1 is in CI or not!

8.2.6 Prediction

Consider

f(x) =
1

θ
e−

1
θ x, x > 0.

Let
t(r+1) ⩽ · · · ⩽ t(n−s),

where
1 ⩽ r + 1 ⩽ n− s ⩽ n− 1.

be a doubly type II censored sample. The MLE of θ does not have a closed form unless r = 0. The
BLUE of θ is given by

θ̂ =
1

k

n−s∑
i=r+1

ait(i),

where

ai =


∑n

l=n−r
1
l∑n

l=n−r
1
l2

− (n− r − 1), i = r + 1

1, i = r + 2, . . . , n− s− 1
s+ 1, i = n− s

and

K = (n− r − s− 1) +

(∑n
l=n−r

1
l

)2∑n
l=n−r

1
l2

.

Sketch:

Θ =

{
θ̂

∣∣∣∣∣θ̂ =
n−s∑
i=r+1

bit(i), E[θ̂] = θ

}
.
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Then
θ̂ = argmin

θ∈Θ
Var(θ).

Let It is well-known that normalized spacing statistics assuming t(0) = 0,

Si = (n− i+ 1)
(
T(i) − T(i−1)

)
,∀ i ∈ [n]

are iid exp r.v.’s. Let us denote

S∗
i = (n− i+ 1)

(
t(i) − t(i−1)

)
/θ =

Si
θ

∼ exp(1).

Then the BLUE of θ can be rewritten as a linear function of S∗
i since there is a 1-1 relationship

between the ordering statistics and spacing. Suppose we are interested in predicting the lth order
statistic with n− s < l ⩽ n.
It is natural to consider the following pivot

Z1 =
t(l) − t(n−s)

θ̂
,

where θ̂ is from the BLUE.
It is clearly that we need to find the exact value t such that

P

(
Z1 =

t(l) − t(n−s)

θ̂
> z

)
= α.

In order to construct the exact PI for t(l). Note that the above prob. can be rewritten as

P

(
l∑
i=1

ciS
∗
i > 0

)
,

where

ci =


− t
K(n−i+1)

∑n−s
j=r+1 aj , i = 1, . . . , r + 1

− t
n−i+1

∑n−s
j=i aj , j = r + 2, . . . , n− s

1
n−i+1 , i = n− s+ 1, . . . , l.

Using the algorithm in Huffer and Lin (2001), we can find the exact z satisfing the above equation.
More precisely, given α, we can find z1, z2 such that

P (Z1 > z1) =
α

2
, P (Z1 > z2) = 1− α

2
.

Thus an exact 100(1− α)% PI for t(l) is

(t(n−s) + z2θ̂, t(n−s) + z1θ̂).

8.3 Two parameter exponential distribution

If
T ∼ exp(µ, θ),

then

f(t;µ, θ) =
1

θ
e−

t−u
θ , t ⩾ u.

F (t;µ, θ) = 1− e−
t−u
θ , t ⩾ u.
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8.3.1 Complete data set

L(µ, θ) =

n∏
i=1

f(ti;µ, θ)

=
1

θn
e−

1
θ

∑n
i=1(ti−µ)1{ti⩾µ}

=
1

θn
e−

1
θ

∑n
i=1(ti−µ)1{t(1)⩾µ}.

Hence
T (t˜) = (t, t(1))

is a sufficient statistic for
(θ, µ),

and
µ̂MLE = t(1).

Then

L(µ̂MLE, θ) =
1

θn
e−

1
θ

∑n
i=1(ti−µ̂MLE).

Setting

dL(µ̂MLE, θ)

dθ
= 0,

we have

θ̂MLE =
1

n

n∑
i=1

(ti − µ̂MLE) = t− t(1).

Note

n
(
t− t(1)

)
=

n∑
i=1

ti − nt(1)

=

n∑
i=1

t(i) − nt(1)

=

n∑
i=1

(
t(i) − t(1)

)
=

n∑
i=2

(
t(i) − t(1)

)
∼ Gamma?

and

t(1) ∼ exp

(
µ,
θ

n

)
,

t(i) − t(i−1) ∼ exp

(
µ,

θ

n− i+ 1

)
,



8.3. TWO PARAMETER EXPONENTIAL DISTRIBUTION 69

and

t(i) − t(1) =

i∑
k=2

(
t(k) − t(k−1)

)
.

Next, note

µ̂MLE = t(1) ∼ exp

(
µ,
θ

n

)
,

and
θ̂MLE |= µ̂MLE???

Then

E[µ̂MLE] = µ+
θ

n
,

Var(µ̂MLE) =
θ2

n2
,

and

E[θ̂MLE] = (µ+ θ)−
(
µ+

θ

n

)
= θ

(
1− 1

n

)
.

Since

Var(t) =
Var(t1)

n

=
θ2

n
.

Since
θ̂MLE |= µ̂MLE,

we have

θ2

n
= Var(t) = Var(t− t(1) + t(1))

= Var
(
t− t(1)

)
+Var

(
t(1)
)

= Var
(
t− t(1)

)
+
θ2

n2
.

Thus,

Var
(
t− t(1)

)
= θ2

(
1

n
− 1

n2

)
,

or

Var
(
t− t(1)

)
= θ2

(
1

n
+

1

n2
− 2

n3

)
.

Remark. Note that when µ is known,

θ̂MLE = t− µ.

When θ is known,
θ̂MLE = t(1).
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Theorem 8.7. Since
T (t˜) = (t, t(1))

is a sufficient statistic for (θ, µ), we have

T2(t˜) = (θ̂MLE, µ̂)

is a sufficient satistic for (θ, µ).

Theorem 8.8.
T2(t˜) = (θ̂MLE, µ̂)

is a complete statistic for (θ, µ).

Proof. Use definition and take derivative for a vector.

Example 8.9.
T1∑n
i=1 Ti

∼ Beta(1, n− 1),

Proof.
T1 ∼ exp(θ).

n∑
i=1

Ti ∼ Gamma (n, θ) .

Example 8.10. Assume we are interested in the reliability function R(x0), the probability that
lifetime exceed a value t0,

R(t0) = e−
t0−µ

θ .

Assume
µ = 0.

The MLE of R(t0) is

R̂(t0) = e−
t0
θ̂ = e

− nt0∑n
i=1

ti .

It is biased, but a MVUE can be obtained using Blackwell-rao theorem. Note

W =

{
1, T1 > t0
0, T1 ⩽ t0

is unbiased of R(t0) b/c
E[W ] = P (T1 > t0) = R(t0).

Since
∑n
i=1 Ti is a sufficient of θ (if both arguments are unknown, use both), a MVUE of R(t0) is

E

[
W

∣∣∣∣∣
n∑
i=1

Ti

]
= E

[
1{T1>t0}

∣∣∣∣∣
n∑
i=1

Ti

]
= P

(
T1 > t0

∣∣∣∣∣
n∑
i=1

Ti

)
,

is a UMVUE of R(t0). Method1: Compute the conditional pdf. Method 2: Note

T1∑n
i=1 Ti

∼ Beta(1, n− 1),
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which is from the scale family and so it is an ancillary statistic and thus, by Basu’s theorem, it is
independent of the complete and minimal sufficient statistic

n∑
i=1

Ti.

Therefore,

E

[
W

∣∣∣∣∣
n∑
i=1

Ti

]
= P

(
T1 > t0

∣∣∣∣∣
n∑
i=1

Ti

)

= P

(
T1∑n
i=1 Ti

>
t0∑n
i=1 Ti

∣∣∣∣∣
n∑
i=1

Ti

)

=

∫ 1

min
{

t0∑n
i=1

Ti
,1
}(n− 1)(1− z)n−2dz

=

{ (
1− t0∑n

i=1 Ti

)n−1

, t0 ⩽
∑n
i=1 Ti

0, t0 >
∑n
i=1 Ti

is the MVUE of R(t0), Rargh (1963).

8.3.2 Type II right censored data

T(1) ⩽ · · · ⩽ T(r).

The joint pdf (integrating on the pdf of n order statistics.)

L(µ, θ) = f
(
t(1), . . . , t(r);µ, θ

)
=

n!

(n− r)!
f
(
t(1);µ, θ

)
· · · f

(
t(r);µ, θ

) [
1− F

(
t(r);µ, θ

)]n−r
∝

r∏
i=1

1

θ
e−

t(i)−µ

θ

[
e−

t(r)−µ

θ

]n−r
=

1

θr
e−

1
θ [(

∑r
i=1 t(i))−nµ+(n−r)t(r)].

So we get
µ̂MLE = t(1),

θ̂MLE =
1

r

[
r∑
i=1

t(i) + (n− r)t(r) − nµ̂MLE

]
.

8.3.3 Double censored type II data

T(r+1) ⩽ · · · ⩽ T(n−s).

MLEs do not have explicit expressions unless

r = 0.
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The BLUEs of µ and θ are

µ̂ =

n−s∑
i=r+1

ait(i),

θ̂ =

n−s∑
i=r+1

bit(i),

where

ai =


1 + n−r−1

n−r−s
∑n
l=n−r

1
l , i = r + 1

1
n−r−s−1

∑n
l=n−r

1
l , i = r + 2, . . . , n− s− 1

− s+1
n−r−s−1

∑n
l=n−s

1
l , i = n− s

and

bi =


− n−r−1
n−r−s−1 , i = r + 1

1
n−r−s−1 , i = r + 2, . . . , n− s− 1

s+1
n−r−s−1 , i = n− s

Predicting the lth order statistic with n− s < l ⩽ n, it is natural to consider the pivot

z =
t(l) − t(n−s)

θ̂
,

where θ̂ is from the BLUE. We need to find the exact value z0 such that

P

(
z =

t(l) − t(n−s)

θ̂
> z0

)
= α.

Similarly, the above prob. can be rewritten as

P

(
n∑
i=1

diS
∗
i > 0

)

w/

di =


0, i = 1, . . . , r + 1,

− z0
n−r−s−1 , i = r + 2, . . . , n− s,

1
n−i+1 , i = n− s+ 1, . . . , n.

Using the algorithm in Huffer and Lin (2001), we can find z0 satisfying the above equation. So we
may determine z1, z2 such that

P (Z1 > z1) =
α1

2
, P (Z1 > z2) = 1− α

2
.

So the exact (1− α)% PI for t(l) is(
t(n−s) + z2θ̂, t(n−s) + z1θ̂

)
.
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8.3.4 Weibull distribution

Example 8.11. X has a Weibull distribution if it has the pdf

f(x;µ, α, β) =
β

α

(
x− µ

α

)β−1

e−(
x−µ
α )

β

, x > µ,

cdf

F (x;µ, α, β) = 1− e−(
x−µ
α )

β

, x > µ,

hazard function

h(x;µ, α, β) =
β

α

(
x− µ

α

)β−1

, x > µ,

which is increasing if β > 1 and decreasing if 0 < β < 1.

Remark. (a) Exponential distribution is a special case of Weibull distribution w/ β = 1.

(b) If X ∼ Weibull(µ, α, β), then

Y =

(
X − µ

α

)β
∼ exp(1).

Then to generate a Weibull(µ, α, β),

1) Generate
U ∼ U(0, 1).

2) Then
Y = − log(1− U) ∼ exp(1).

3)

X = µ+ αY 1/β d
= µ+ α(− logU)1/β .

Or we can get the inverse function µ+ α(− log(1− U))1/β directly.

(c) If β > 1, the Weibull(µ, α, β) density goes to 0 as x! µ and there is a single mode (max) at

x = α

(
β − 1

β

)1β

+ µ.

If 0 < β < 1, the mode is at µ.

(d) The median of the distribution is

α(log 2)1/β + µ.

The most usual situation is µ known and we use µ = 0, and w/ hazard and cumulative hazard
function

h(x;λ, κ) = κλ(λt)κ−1, t > 0.

H(x;λ, κ) = (λt)κ, t > 0.
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Suppose that T1, . . . , Tn are failure times and C1, . . . , Cn are censoring time.

Xi = min(Ti, Ci),∀ i = 1, . . . , n.

When there are observed r failures,

log(λ, κ) =
∑
i∈U

log h(xi;λ, κ)−
n∑
i=1

H(xi;λ, κ)

=
∑
i∈U

(log κ+ κ log λ+ (κ− 1) log xi)−
n∑
i=1

(λxi)
κ

= r log κ+ rκ log λ+ (κ− 1)
∑
i∈U

log xi − λk
n∑
i=1

xκi .

So the score vector has two elements

u1(λ, κ) =
∂ logL

∂λ
=
κr

λ
− κλκ−1

n∑
i=1

xκi ,

u2(λ, κ) =
∂ logL

∂κ
=
r

κ
+ r log λ+

∑
i∈U

log xi −
n∑
i=1

(λxi)
κ log(λxi).

Setting u1(λ, κ) = 0, we have

λ =

(
r∑n

i=1 x
κ
i

)1/κ

.

Put it into u2(λ, κ) = 0, we get a equation that must be solved numerically. One may consider
Newton-Raphson procedure:

ki+1 = ki −
g(ki)

g′(ki)
.

One can also consider the multivariate version of the Newton-Raphson procedure using the desired
Fisher information matrix.(Appendix D).

8.3.5 Bayesian Inference

One paper by Kundu (2008), “Bayesian Inference and Life Testing Plan for the Weibull Distribution
in Presence of Progressive Censoring”.
Consider a Weibull distribution w/ pdf

f(t;λ, κ) = λκtκ−1e−(λt)κ , t > 0.

Assume there are n units on a test and we consider the progressive scheme and we observe data

{(t1, R1), . . . , (tm, Rm)}

and
R1 +Rm +m = n,
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wherem andR1, . . . , Rm are pre-set. The likelihood function of the observed sample {(t1, R1), . . . , (tm, Rm)}
is

L(λ, κ) ∝ κmλm
m∏
i=1

tκ−1
i · e−λ

∑m
i=1(Ri+1)tκi .

Case I: the shape parameter κ is known. Consider the conjugate

λ|a, b ∼ Gamma(a, b),

w/ pdf

π(λ|a, b) = ba

Γ(a)
λa−1e−bλ, λ > 0.

The posterior distribution of λ is

λ|data ∼ Gamma

(
a+m, b+

m∑
i=1

(Ri + 1)tκi

)
.

Therefore, the Bayesian estimator of λ is

λ̂ = E[λ|data] = a+m

b+
∑m
i=1(Ri + 1)tκi

,

and credible interval can also be obtained from Gamma distribution.

Remark. (a) Loss function

1) d2 metric

L(λ̂, λ) = (λ̂− λ)2.

So the Bayesian estimate is the posterior mean E[λ|data].
2) d1 metric

L(λ̂, λ) =
∣∣∣λ̂− λ

∣∣∣.
So the Bayesian estimate is the posterior median.

3) Discrete metric

L(λ̂, λ) = 1{λ̸̂=λ}.

So the Bayesian estimate is the posterior mode. Refer to Berger J. 1980, “Statistical decision
theory”.
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Chapter 9

Parametric Estimate For Models
with Covariants

Data set

x˜ =

 x1
...
xn

 , δ =

 δ1
...
δn

 ,

Z =

 z11 · · · z1q
... · · ·

...
zn1 · · · znq

 =

 z1
...
zn


Then we use the symbol

S(t˜, z˜; θ˜, β˜),
F (t˜, z˜; θ˜, β˜),
h(t˜, z˜; θ˜, β˜),
H(t˜, z˜; θ˜, β˜),

where
θ = (θ1, . . . , θp)

′

consisting of unknown parameter w/ the baseline distribution. The likelihood function can be
written as

L(θ˜, β˜) =
∏
i∈U

f(xi, z˜i; θ˜, β˜) ·
∏
i∈C

S(xi, z˜i; θ˜, β˜).
Then the log-likelihood function becomes

logL(θ˜, β˜) =
∑
i∈U

log f(xi, zi˜ ; θ˜, β˜) +
∑
i∈C

logS(xi, z˜i; θ˜, β˜)
=
∑
i∈U

log h(xi, zi˜ ; θ˜, β˜)−
n∑
i=1

H(xi, z˜i; θ˜, β˜).
Then we can obtain the MLE of θ˜ and β˜ by maximizing the above function.

77
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9.1 Accelerated life model

S(t˜, z˜) = S0(tψ(z˜)), t ⩾ 0,

w/

ψ(z˜) = e
β˜′z˜.

(a) The exponential baseline function

h0(t) = λ.

The hazard function associated w/ covariates z˜ is

h(t, z˜, θ˜, β˜) = ψ(z˜)h0(tψ(z)) = λe
β˜′z˜.

Often, rewrite

λ = eβ0z0

w/ z0 = 1. Then

h(t, z˜, β˜) = e
β˜′z˜,

where

β˜ = (β0, β1, . . . , βq)
′,

z˜ = (z0, z1, . . . , zq)
′.

By integration, the corresponding cummulative hazard fun

H(t˜, z˜, β˜) = te
β˜′z˜.

The log-likelihood function is

logL(β) =
∑
i∈U

log h(xi, zi˜ ;β˜)−
n∑
i=1

H(xi, z˜i;β˜)
=
∑
i∈U

β′zi −
n∑
i=1

xie
β′zi .

Note

∂ logL(β)

∂βj
=
∑
i∈U

zij −
n∑
i=1

xizije
β′zi ,∀j = 0, . . . , n.

More details on accelated life models can be seen in Collett (2003).

(b) Weibull distribution.
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9.2 Proportional Hazard Models

h(t, z˜; θ˜, β˜) = ψ(z˜)h0(t) = e
β˜′z˜h0(t).

H(t, z˜; θ˜, β˜) = ψ(z˜)H0(t) = e
β˜′z˜H0(t).

Then

logL(θ˜, β˜) =
∑
i∈U

log h(xi, zi˜ , θ˜, β˜)−
n∑
i=1

H(xi, zi˜ , θ˜, β˜)
=
∑
i∈U

[
log h0(xi) + β˜′zi˜

]
−

n∑
i=1

H0(xi)e
β˜′z˜i .

9.3 Assesising Model Adequacy

Goodness of fit test for testing

(a) χ2-test, the fit of a discrete distribution to a data set. It can be adapted for use on a continuous
distribution. Assume that the range of T can be partitioned into k nonoverlapping subintervals

[0, a1), [a1, a2), . . . , [ak−1, ak)

w/
a0 = 0, ak = ∞.

So

pi = P (ai−1 ⩽ T < ai) =

∫ ai

ai−1

f0(t)dt,∀ i = 1, . . . , k.

Consider

H0 : p1 = p10, p2 = p20, · · · , pk = pk0

H1notH0,

where p10, . . . , pk0 are precribed probability that sum to 1. Fisher proposed the following

Theorem 9.1. Let (X1, . . . , Xk) be a multinormal r.v. w/ parameters

n, p1, . . . , pk

w/
k∑
i=1

pi = 1.

Then

Q =

k∑
i=1

(xi − npi)
2

npi
∼ χ2(k − 1).

The general form of χ2-goodness of fit statistics is

Q =
∑ (observed− expected)2

expected
.



80 CHAPTER 9. PARAMETRIC ESTIMATE FOR MODELS WITH COVARIANTS

(b) Kolmogorov-Smirnov test Let F0(t) be a hypothesis or fitted CDF.

H0 : F (t) = F0(t),

H1 : F (t) ̸= F0(t).

For the complete data set, the test statistic is

Dn = sup
t

∣∣∣F̂ (t)− F0(t)
∣∣∣,

where F̂ (t) is the empirical CDF from the data set. For the right-censored data set

Dn,r = sup
0⩽t⩽t(r)

∣∣∣F̂ (t)− F0(t)
∣∣∣

and the distribution of Dn,r depends only on n and r under H0. If there are some unknown
parameters involved under H0, we will estimate each unknown parameters and then plug it in.

9.4 Competing Risks

Definition 9.2 (Formal definition). One observes the pair (T,C), where T > 0 is the failure time
and

C ∈ {1, . . . , k}

represents the type of failure. One intuitive way of describing a competing riks situation w/ k riks
is to assume that each risk is associated with a failure time Tj , j = 1, . . . , k. Thes k times are
thought as latent failure times. When all risks are presenting, the time to failure of the system is
the smallest of these failure times along with the actual cause. Thus,

T = min{T1, T2, . . . , Tk},

and if T = Tc, then
C = c.

Remark. Traditionally, competing risks were analyzed as if they were independent of each other.
But we can consider dependent risks.

9.4.1 Model Specification

The joint distribution of the pair (T,C) from an individual is completely specified by the sub-
distribution functions

Fj(t) = P (T ⩽ t, C = j) (joint).

Let
fj(t) = F ′

j(t).

The marginal distribution of T is

F (t) = P (T ⩽ t) =

k∑
j=1

Fj(t).
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Or the survival function
S(t) = 1− F (t).

The sub-survival function becomes

Sj(t) = P (T > t,C = j).

The marginal distribution of C is

πj = P (C = j) = Fj(∞).

Note
Fj(t) + Sj(t) = πj .

The distribution of (T,C) can be specified by the sub-hazard function

λj(t) = lim
∆t!0

P (T ⩽ t+∆t, C = j|T ⩾ t)

∆t

= lim
∆t!0

P (t ⩽ T ⩽ t+∆t, C = j)

P (T ⩾ t)

1

∆t

= lim
∆t!0

Sj(t)− Sj(t+∆t)

S(t)

1

∆t

= − 1

S(t)
lim

∆t!0

Sj(t+∆t)− Sj(t)

∆t

= − 1

S(t)
S′
j(t)

=
fj(t)

S(t)
.

Hence

Hj(t) =

∫ t

0

λj(u)du,

Fj(t) =

∫ t

0

λj(u)S(u)du.

Also, the hazard function of T is

λ(t) =
f(t)

S(t)
=

∑k
j=1 fj(t)

S(t)
=

k∑
j=1

fj(t)

S(t)
=

k∑
j=1

λj(t).

Then

H(t) =

k∑
j=1

Hj(t).

The survival function of T is

S(t) = e−H(t) = e−
∑k

j=1Hj(t) =

k∏
j=1

G∗
j (t),
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where

G∗
j = e−Hj(t),∀j = 1, . . . , k.

Note G∗
j (t) is a survival function, but it is NOT in general the distribution of any observable random

variables. However, G∗
j (t) is the survival function of Tj under the model with independent latent

failure time.

Remark. λj(t) can be interpreted as the failure rate from a specific cause, i.e., crude hazard rate.

(a) Latent failure time representation.
The joint survival function of T1, . . . , Tn is

S(t1, . . . , tk) = P (T1 > t1, . . . , Tk > tk).

Thus the survival function of T is

S(t) = P (T > t) = S(t, . . . , t).

Also,

fj(t) = − ∂S(t1, . . . , tk)

∂tj

∣∣∣∣
t1=···=tk=t

,

λj(t) =
fj(t)

S(t)
= −∂ logS(t1, . . . , tk)

∂tj

∣∣∣∣
t1=···=tk=t

.

Typically, we are interested in how to get the joint distribution or marginal distribution of the
latent failure times T, . . . , Tk from (T,C).

(b) The identification. For N(u, σ2), N(α + β, σ2) is not identificable. In general, the joint dis-
tribution or marginal distribution of Ti can NOT be determined from the distribution of (T,C).
See Tsiatis (1975). So assumptions on T1, . . . , Tn are needed. How to deal with the identifiability
problem.

(1) Assuming independent risks. Assume that the latent failure times T1, . . . , Tk are independent.
Tsiatis (1975) showed that the marginal distribution of Tj can now be computed from the sub-
distribution function Fj(t). In practise, this means that the marginal distributions can be estimated
in a consistent manner from the competing risks data. Also,

S(t1, . . . , tk) =

n∏
i=1

Si(ti).

So

Gj
∗(t) = Sj(t),

which is the marginal survival function of Tj .

(2) Assuming a known copula, which is a multivariate probability distribution for which the
marginal probability distribution of each variable is uniform, for the latent failure times.
Zheng and Klein (1995) generalized the above result, proving that the marginal distributions are
identifiable when the independence is given by a known copula.
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Consider k = 2. Let K be joint distribution function of (T1, T1) and G1, G2 be the marginals. Then
the copula of (T1, T2) is defined by

C(u1, u2) = K
(
G−1

1 (u), G−1
2 (u)

)
,

(u1, u2) ∈ [0, 1]× [0, 1].

For the independent case, Zheng and Klein (1995) proved that if the copula C(·, ·) is known, then the
marginal distribution is also known. Then G1, G2 is uniquely determined by the sub-distributions
F1 and F2.

Remark. The above discussion are in the non-parametric sense. If a parameter model is specified
for the latent failure times, the identifiability problem is different since it now has to do with
identification of a finite set of parameters.

(c) Modeling competing risks.

(1) Modeling sub-distribution.

i. Mixture model. Specify a sub-distribution function of the form

Fj(t) = πjQj(t)

for a given (parametric) distribution function Qj(t), e.g.,

Qj(t) = 1− exp

{
−
(
t

Qj

)αj
}

ii. Modling the sub-hazard function

hj(t, αj , Qj) =
αj
Qj

(
t

Qj

)αj−1

.

iii. Regression models.
*Proportional hazards.

hj(t˜, x˜) = ψj(x˜)h0j(t),
where h0j is the baseline hazard function, e.g.,

ψj(x) = exp{β˜′x˜}.
**Accelarated life model

Fj(t˜, x˜) = F0j(ϕj(x˜)t),
where F0j is the baseline sub-distribution function corresponding to ϕj(·) = 1.

(2) Modeling latent varaibles. Often through specification of the joint distribution function of
T1, . . . , Tk, e.g., k = 2 Gumbel (1960) considers the bivariate exponential distribution

S(t1, t2) = exp{−λ1t1 − λ2t2 − νt1t2},

hj(t) = λj + νtj ,∀j = 1, 2.
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Also, a class of models, called frailty models, are obtained by assuming T1, . . . , Tk are conditionally
independent, given a random “frailty” Z, e.g.,

S(t1, . . . , tk) =

∫ ∞

0

exp

−Z
k∑
j=1

Hj(tj)

 dGZ(z),

where GZ is the cdf of Z.

Let X1, . . . , Xn denote a random sample (no censoring) of size n > 2 from a population with the probability
density function given by

f(x|λ) = λxλ−1, 0 < x < 1,

where
λ > 0.

Then the MLE
λ̂M = − n∑n

i=1 log xi
.

Since
∏n

i=1 Xi is a complete and sufficient statistic from the exponential family. Let

Yi = − logXi.

Then the pdf of Yi is
g(y) = λe−λy, y > 0.

Hence

Z = −
n∑

i=1

logXi =

n∑
i=1

Yi ∼ Gamma(n, λ).

Then
E[λ̂M ] = nE[1/Z] = constant · λ.

When we do hypothesis testing, using the pivot

λZ ∼ Gamma(n, 1).
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