
1 Simplicial complexes and Face ideals

Let G be a graph with vertex set V = {v1, . . . , vd}.

Remark. The previous section gave a method for computing m-irreducible decompositions for
quadratic square-free monomial ideals. The next section introduces some tools to accomplish this
for arbitrary square-free monomial ideals. This uses the notation of a simplicial complex. One often
thinks of this as a higher dimensional graph, not only does it have vertices and edges, but it also
can have shaded triangles, solid tetrahedra.

Definition 1.1. A simplicial complex V is a non-empty collection ∆ of subsets of V that is closed
under subsets, that is, if F ⊆ G ⊆ V and G ∈ ∆, then F ∈ ∆.

(a) An element of ∆ is called a face.

(b) An element of the form {vi} is called a vertex of ∆.

(c) An element of the form {vj , vk} is called an edge of ∆.

(d) A maximal element of ∆ with respect containment is a facet of ∆.

Example 1.2. Consider

v1 v2 v3

v4v5

This is the simplicial complex with the following faces:

• trivial: ∅.

• vertices: {v1}, {v2}, {v3}, {v4}, {45}.

• edges: {v1, v2}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v4, v5}.

• shaded triangle: {v2, v4, v5}.

• facets: {v1, v2}, {v2, v3}, {v3, v4}, {v2, v4, v5}.

Example 1.3. Consider

v1

v2 v3

v4v5

This is the simplicial complex with the following faces:

• trivial: ∅.
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• vertices: {v1}, {v2}, {v3}, {v4}, {45}.

• edges: {v1, v2}, {v1, v4}, {v1, v5}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v4, v5}.

• shaded triangle: {v1, v2, v4}, {v1, v2, v5}, {v1, v4, v5}, {v2, v3, v4}, {v2, v4, v5}.

• solid tetrahedron: {v1, v2, v4, v5}.

• facets: {v2, v3, v4}, {v1, v2, v4, v5}.

Let ∆ be a simplicial complex on V .

Definition 1.4. The face ideal of R associated to ∆ is the ideal generated by the non-faces of ∆:

J∆ = (Xi1 · · ·Xis | 1 ⩽ i1 < · · · < is ⩽ d and {vi1 , . . . , vis} ̸∈ ∆).

Example 1.5.

J∆ = (X1X3, X1X4, X1X5, X2X3X4) = (X1, X3) ∩ (X1, X2, X5) ∩ (X1, X4, X5) ∩ (X3, X4, X5).

v1 v2 v3

v4v5

Example 1.6. J∆ = (X1X3, X3X5)R = (X3) ∩ (X1, X5).

v1

v2 v3

v4v5

Definition 1.7. F ⊆ V is independent in G if none of the vertices in F are adjoint in G.
An independent set is maximal if it is maximal respect to containment.
Let ∆G denote the set of independent subsets of G. This is the independence complex of G.

Remark. Every singleton {vi} ⊆ V is independent in H, as is the empty set ∅ ⊆ V .
Since every subset of an independent set in G is also independent in G, ∆G is a simplicial

complex on V .

Example 1.8. Consider

v1 v2

v4 v3

Then ∆G = {∅, {v1}, {v2}, {v3}, {v4}, {v2, v4}}. That is, the geometric realization of ∆ is as follows:
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v1 v2

v4 v3

The maximal independent subsets in G are {v1}, {v3} and {v2, v4}.

Remark. The next result shows that the faces of ∆G are in bijection with vertex covers of G, and
the facets of ∆G are in bijection with the minimal vertex covers of G.

Lemma 1.9. (a) F ⊆ V is independent if and only if V ∖ F is a vertex cover of G.

(b) An independent F ⊆ V is maximal if and only if V ∖ F is minimum as a vertex cover.

Remark. A minimal vertex cover is complementary to a maximal independent set.

Theorem 1.10. I(G) = J∆G
.

Proof. “⊆”. Let XiXj be a generator of I(G) given by the edge vivj ∈ E. Then {vi, vj} is not
independent in G. So XiXj ∈ J∆G

.
“⊇”. Let Xi1 · · ·Xin be one of the generators of J∆G

given by the non-face {vi1 , . . . , vin} ̸∈ ∆G.
Then {vi1 , . . . , vin} is not independent in G. So it must contain a pair of adjacent vertices vik , vim .
It follows that XikXim is a generator of IG. Thus, Xi1 · · ·Xin ∈ (XikXim)R ⊆ I(G).

Example 1.11. Continue on previous example and note the non-faces of ∆G are

{v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v3, v4}, {v1, v2, v3},

{v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}, {v1, v2, v3, v4}.

After removing redundancies, we see

J∆G
= (X1X2, X1X3, X1X4, X2X3, X3X4)R = IG.

Definition 1.12. The dimension of a face F ∈ ∆ is |F |− 1. The dimension of ∆, denoted dim(∆)
is the maximal dimension of a face ∆.

The simplicial complex ∆ is pure if all facets of ∆ have the same dimension.
For i = −1, . . . ,dim(∆), let

fi(∆) := the number of elements of ∆ of dimension i.

The f -vector of ∆ is the vector

f(∆) := (f0(∆), f1(∆), . . . , fdim(∆)(∆)).

2 Decomposition of face ideals

Let ∆ be a simplicial complex on V .

Definition 2.1. Let F ⊆ V , define

QF = PV∖F = ⟨Xi | vi ̸∈ F ⟩.
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Example 2.2. Let d = 5, then Q{v2,v3,v4} = ⟨x1, x5⟩, QV = ⟨∅⟩ = 0 and Q∅ = X := ⟨X1, . . . , X5⟩.

Remark (Facts). (a) Let F1, F2 ⊆ V , then QF1
⊆ QF2

if and only if F2 ⊆ F1.

(b) J ⪇m R is square-free if and only if there exist F1, . . . , Fn ⊆ V such that J =
⋂n

i=1 QFi
.

Lemma 2.3. Let F ⊆ V , then J∆ ⊆ QF if and only if F ∈ ∆.

Proof. Let F = {vi1 , . . . , vin} ⊆ V and V ∖ F = {vj1 , . . . , vjp}.
=⇒ Assume J∆ ⊆ QF . Suppose F ̸∈ ∆, then by definition Xi1 · · ·Xin ∈ J∆ ⊆ QF =

⟨Xj1 , . . . , Xjp⟩. So there exists q ∈ {1, . . . , p} such that Xjq | Xi1 · · ·Xin . Then there exists
l ∈ {1, . . . , n} such that jq = il, a contradiction.

⇐= Assume F ∈ ∆. Let Xr1 · · ·Xrq ∈ J∆ be a generator. Then V ′ = {vr1 , . . . , vrq} ̸∈ ∆. Since
F ∈ ∆, V ′ ̸⊆ F . So there exists s ∈ {1, . . . , q} such that vrs ∈ V ′ ∖ F , i.e., Xrs ∈ QF . Thus,
Xr1 · · ·Xrq ∈ (Xrs) ⊆ QF .

Theorem 2.4. J∆ =
⋂

F∈∆ QF =
⋂

F facet of ∆ QF .

Proof. Both “⊆⊆” are trivial. Since every face F ∈ ∆ is contained in a facet F ′, QF ⊇ QF ′ .
Removing redundancies from

⋂
F∈∆ ∆QF , we get

⋂
F facet of ∆ QF . Next, since J∆ is square-free,

there are F1, . . . , Fn ⊆ V such that J∆ =
⋂n

i=1 QFi ⊆ QFi for i = 1, . . . , n. By previous lemma,
Fi ∈ ∆ for i = 1, . . . , n. So {F1, . . . , Fn} ⊆ ∆. Thus,

⋂
F∈∆ QF ⊆

⋂n
i=1 QFi

= J∆.

Lemma 2.5. Let V ′ ⊆ V . Then IG ⊆ QV ′ if and only if V ′ is independent.

Proof. =⇒ Assume IG ⊆ QV ′ . Suppose there exist vi, vj ∈ V ′ such that vi ∼ vj . Then we have
XiXj ∈ I(G) ⊆ QV ′ = ⟨Xk | vk ̸∈ V ′⟩. So Xk | XiXj for some vk ̸∈ V ′. Hence k = i or k = j.
Thus, V ′ ̸∋ vk = vi ∈ V ′ or V ′ ̸∋ vk = vj ∈ V ′, a contradiction.

=⇒ Assume V ′ is independent. Let XiXj be a generator of IG for some i, j ∈ {1, . . . , d}. Then
vi ∼ vj . So vi ̸∈ V ′ or vj ̸∈ V ′. Then vi ∈ V ∖V ′ or vj ∈ V ∖V ′. So Xi ∈ QV ′ or Xj ∈ QV ′ . Thus,
XiXj ∈ QV ′ .

Theorem 2.6. I(G) =
⋂

V ′ indep. QV ′ =
⋂

V ′ max. independ. QV ′ . These are m-irreducible decom-
positions and the second one is irredundant.

Proof. It follows from the I(G) = J∆G
the definition of ∆G.

3 Facet ideal and their decompositions

Let ∆ be a simplicial complex on V .

Definition 3.1. The facet ideal of R associated to ∆ is the ideal generated by the facets of ∆:

K∆ = (Xi1 · · ·Xis : 1 ⩽ i1 < · · · < is ⩽ d and {vi1 , . . . , vin} is a facet in ∆).

Remark. The facet ideal K∆ is square-free. Moreover, since the facets of ∆ are incomparable with
respect to containment, they generate K∆ irredundantly.

Definition 3.2. A vertex cover of ∆ is a subset V ′ ⊆ V such that for any facet F ∈ ∆, F ∩V ′ ̸= ∅.
A vertex cover of ∆ is minimal if it does not properly contain another vertex cover of ∆.
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Lemma 3.3. Let V ′ ⊆ V . Then K∆ ⊆ PV ′ if and only if V ′ is a vertex cover of ∆.

Proof. As for edge ideals.

Theorem 3.4. K∆ =
⋂

V ′ v.cover of ∆ PV ′ =
⋂

V ′ min. v.cover of ∆ PV ′ . These are m-irreducible
decompositions and the second one is irredundant.

Proof. As for edge ideal and use previous theorem.

Example 3.5. Let J = ⟨X1X2, X2X3X4, X1X4⟩. Find a simplicial complex ∆ on V such that
J = K∆. The geometric realization of ∆ is the following.

v1 v2

v3v4

Next, we list the minimal vertex cover of ∆: {v1, v2}, {v1, v3}, {v1, v4}, {v2, v4}. Then by previous
theorem, J = K∆ = ⟨X1, X2⟩ ∩ ⟨X1, X3⟩ ∩ ⟨X1, X4⟩ ∩ ⟨X2, X4⟩.

5


	Simplicial complexes and Face ideals
	Decomposition of face ideals
	Facet ideal and their decompositions

