
1 Probability

Theorem 1.1. Suppose all n men at a party throw their hats in the center of the room. Each man
then randomly selects a hat. Show that the probability that none of the n men selects this own hat
is

n∑
k=2

(−1)k

k!
.

Example 1.2. The probability of winning on a single toss of the dice is p. A starts, and if he fails,
he passes the dice to B, who then attempts to win on her toss. They continue tossing the dice back
and forth until one of them wins. What are their respective probabilities of winning?

P (A wins) =

∞∑
n=0

P (A wins on(2n+ 1)th toss) =

∞∑
n=0

p(1− p)2n =
1

2− p
.

Example 1.3. A and B play until one has 2 more points than the other. Assuming that each
point is independently won by A with probability p, what is the probability they will play a total
of 2n points? What is the probability that A will win? (In each trial, one point either is won by A
or by B.)

P (2n points are needed) = (2p(1− p))
n−1 (

p2 + (1− p)2
)
, n ≥ 1.

P (A wins) = p2
∞∑

n=1

(2p(1− p))
n−1

=
p2

1− 2p(1− p)
.

Example 1.4. A deck of 52 playing cards, containing all 4 aces, is randomly divided into 4 piles
of 13 cards each.

P (each pile includes one ace) = 1 · 39
51

· 26
50

· 13
49

.

(We know 51 cards have not been put, and the second one can just be put in 39 positions.)

Example 1.5. A fair coin is continually flippes. What is the probability that the pattern T,H,H,H
occurs before the pattern H,H,H,H? 15

16 , since the only way in which the pattern H,H,H,H can
appear before patten T,H,H,H is if the first four flips all land heads.

Example 1.6. Suppose that each coupon obtained is, independent of what has been previously
obtained, equally likely to be any of n different types. Find the expected number of coupons one
need to obtain in order to have at least one of each type.

Let Xi denote the number of additional coupons collected until the collector has i + 1 types.

Then Xi ∼ Geo(1− i/n). Then E
[∑n−1

i=0 Xi

]
=

∑n−1
i=0 E[Xi] =

∑n−1
i=0

n
n−i = n

∑n
j=1

1
j .

P (X(i) ⩽ x) =

n∑
k=i

(
n

k

)
F k(x) (1− F (x))

n−k
, fX(i)

=
n!

(n− i)!(i− 1)!
f(x)F i−1(x) (1− F (x))

n−i
.

fX(1),...,X(n)
(x1, . . . , xn) =

{
n!

∏n
k=1 f(xk), x1 < · · · < xn

0, otherwise
.
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Example 1.7. Let X ∼ Binom(n, p), then for 1 ⩽ m ⩽ n, E [X(X − 1) · · · (X −m+ 1)] =
n!

(n−m)!p
m.

Example 1.8. Consider n independent flips of a coin having probability p of landing heads. Say a
changeover occurs whenever an outcome dif and only ifers from the cone preceding it. For instance,
if the results of the flips are H H T H T H H T , then there are a total of five changeovers. If
p = 1

2 , what is the probability there are k changeovers?
Each flip after the first will, independently, result in a changeover with probability 1

2 . Therefore,

P (k changeovers) =

(
n− 1

k

)(
1

2

)n−1

.

number of changeovers =

n∑
i=2

1{if a change over results from the ith flip} =

n∑
i=1

Xi, E[Xi] = 2p(1− p).

Example 1.9. An urn contains n + m balls, of which n are red and m are black. They are
withdrawn from the urn, one at a time and without replacement. Let X be the number of red balls
removed before the first black ball is chosen. Let

Xi = 1{if red ball i is taked before any black ball is chosen}.

Then

X =

n∑
i=1

Xi, E[Xi] = P (Xi = 1) =
1

n+ 1

since each of these n+ 1 balls is equally likely to be the one chosen earliest.

Example 1.10. A total of r keys are to be put, one at a time, in k boxes, with each key indepen-
dently being put in box i with probability pi,

∑k
i=1 pi = 1. Each time a key is put in a nonempty

box, we say that a colllision occurs. Find the expected number of collisions.
Let Ni denote the number of keys in box i,∀ i ∈ [k]. Then, with X equal to the number of collisions

X =

k∑
i=1

(Ni − 1)+ =

k∑
i=1

(Ni − 1 + 1{Ni=0}).

Example 1.11. Let a1 < a2 < · · · < an denote a set of n numbers, and consider any permutation
of these numbers. We say there is an inversion of ai and aj in the permutation if i < j and aj
precedes ai. Consider now a random permutation of a1, . . . , an−in the sense that each of the n!
permutations is equally likely to be chosen−and let N denote the number of inversions in this
permutation. Also, let Ni = {number of k : k < i, ai precedes ak in the permutation},∀ i ∈ [n].
Then N =

∑n
i=1 Ni. Show N1, . . . , Nn are independent random variables.

Knowing the values of N1, . . . , Nj is equivalent to knowing the relative ordering of the elements
a1, . . . , aj . The independence result follows for clearly the number of a1, . . . , aj that follow aj+1

does not probabilistically depend on the relative ordering of a1, . . . , aj .
Also,

P (Ni = k) =
1

i
,∀k = 0, . . . , i− 1,

which follows since of the elements a1, . . . , aj+1, the elements aj+1 is equally likely to be the first
or second or · · · or (i+ 1)th.
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2 Conditional probability

Definition 2.1. The conditional variance of X given that Y = y is defined by

Var(X|Y = y) = E
[
(X − E[X|Y = y])

2
∣∣∣Y = y

]
,Var(X|Y ) = E

[
(X − E[X|Y ])

2
∣∣∣Y ]

,

Var(X|Y = y) = E[X2|Y = y]− (E[X|Y = y])
2
,Var(X|Y ) = E[X2|Y ]− (E[X|Y ])

2
.

Example 2.2. At a party n men take off their hats. The hats are then mixed up and each man
randomly selects one. We say that a match occurs if a man selects his own hat. What is the
probability of no mathes? What is the probability of exactly k matches?

Pn = P (E) = P (E|M)P (M) + P (E|M c)P (M c) = P (E|M c)
n− 1

n
.

P (E|M c) = Pn−1 +
1

n− 1
Pn−2, Pn =

1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n

n!
.

We consider any fixed group of k men. The probability that they, and only they, select their own

hat is 1
n

1
n−1 · · ·

1
n−(k−1))Pn−k = (n−k)!

n! Pn−k. There are
(
n
k

)
choices of a set of k men, the desired

probability of exactly k matches is Pn−k

k! =
1
2!−

1
3!+···+ (−1)n−k

(n−k)!

k! , which for n large, ≈ e−1

k! .

Example 2.3 (The Ballot Problem). In an election, candidate A receives n votes, and candidate
B receives m votes where n > m. Assuming that all orderings are equally likely, show that the
probability that A is always ahead in the count of votes is n−m

n+m .
Let Pn,m denote the desired probability. Then

Pn,m = P (A always ahead|A receives last vote)
n

n+m
+ P (A always ahead|B receives last vote)

m

n+m

=
n

n+m
Pn−1,m +

m

n+m
Pn,m−1,

Consider successive flips of a coin that always land on “heads” with probability p,

P (first time equal 2n) = P (first time equal 2n|n heads in first 2n)

(
2n

n

)
pn(1− p)n.

=

(
n

n− 1 + n
+

n− 1

n− 1 + n

)
Pn,n−1

(
2n

n

)
pn(1− p)n =

(
2n
n

)
pn(1− p)n

2n− 1
.

Example 2.4. If X is a discrete r.v. and Y is a continuous r.v., we have

fY |X=i(y) =
P (X = i|Y = y)fY (y)

P (X = i)
.

Example 2.5. An individual whose level of exposure to a certain pathogen is x will contract the
disease caused by this pathogen with robability P (x). If the exposure level of a randomly chosen
member of the population has pdf f , determine the conditional probability density of the exposure
level of that member given that he or she (1) has the disease; (2) does not have the disease.

f(x|disease) = P (disease|x)f(x)∫
P (disease|x)f(x)dx

=
P (x)f(x)∫
P (x)f(x)dx

, f(x|no disease) =
(1− P (x)) f(x)∫
(1− P (x)) f(x)dx

.

3



Example 2.6. A coin having probability p of coming up heads is successively flipped until two of
the the most recent three flips are heads. Let N denote the number of flips. (Note that if the first
two flips are heads, then N = 2.) Find E[N ].
Let X denote the first time a head appears. Then

E[N |X] = E[N |X,h, h]p2 + E[N |X,h, t]pq + E[N |X, t, h]pq + E[N |X, t, t]q2

= (X + 1)p2 + (X + 1)pq + (X + 2)pq + ((X + 2) + E[N ]) q2.

Example 2.7. You have two opponents with whom you alternate play. Whenever you play A you
win with probability pA; whenever you play B, you win with probability pB , where pB > pA. If
your objective is to minimize the expected number of games you need to play to win two in a row
(two consective success), should you start with A or B?
Let NA and NB denote the number of games needed given that you start with A and B.

E[NA] = E[NA|w]pA + E[NA|l](1− pA),

E[NA|w] = E[NA|ww]pB + E[NA|wl](1− pB) = 2 + (1− pB)E[NA], E[NA|l] = 1 + E[NB ].

Example 2.8. Each element in a sequence of binary data is either 1 with probability p or 0 with
probability 1− p. A maximal subsequence of consecutive values having identical outcomes is called
a run. For instance, if the outcome sequence is 1, 1, 0, 1, 1, 1, 0, the first run is of length 2, the second
is of length 1, and the third is of length 3.

E[L1] = E[L1|1]p+ E[L1|0](1− p) =
1

1− p
p+

1

p
(1− p), E[L2] = p

1

p
+ (1− p)

1

1− p
= 2.

Example 2.9. Let X1, X2, · · · be independent continuous random variables with a common dis-
tribution function F and density f = F ′, and for k ≥ 1 let

Nk = min{n ≥ k : Xn = kth largest of X1, . . . , Xn}.

(a) Show that P (Nk = n) = k−1
n(n−1) , n ≥ k.

Let Ai denote the event that Xi is the kth largest of X1, . . . , Xi,∀k ⩽ i ⩽ n. Then Ak, . . . , An are
independent events with P (Ai) =

1
i ,∀k ⩽ i ⩽ n.

P (Nk = n) = P (Ac
kA

c
k+1 · · ·Ac

n−1An) = (1− P (Ak)) · · ·P (An) =
k − 1

k

k

k + 1
· · · n− 2

n− 1

1

n
=

k − 1

n(n− 1)
.

(b) Argue that

fXNk
(x) = f(x)

(
F (x)

)k−1
∞∑
i=0

(
i+ k − 2

i

)
(F (x))

i
.

Proof. Since knowledge of the set of values {X1, . . . , Xn} gives us no information about the order
of these random variables it follows that given Nk = n, the conditional distribution of XNk

is the
same as the distribution of kth largest of n random variables having distribution F (!!!).

fXNk
(x) =

∞∑
n=k

k − 1

n(n− 1)

n!

(n− k)!(k − 1)!
(F (x))

n−k (
F (x)

)k−1
f(x).

Then make the change of variable i = n− k.
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3 Discrete time markov chains

Definition 3.1. State j is called recurrent if fi = Pi(ηi < ∞) = 1. Positive if E[ηj |X0 = j] < ∞.

Corollary 3.2. Let Ni =
∑∞

n=0 1{Xn=i}. The state i is recurrent if

∞∑
n=0

Pn
ii = E[Ni|X0 = i] = ∞.

Proof. P (Ni = 1|X0 = i) = P (ηi = ∞|X0 = i) = 1− fi0. by the strong Markov property,

P (Ni = 2|X0 = i) = P (ηi < ∞|X0 = i)P (ηi = ∞|X0 = i) = fi(1− fi).

P (Ni = k|X0 = i) = fk−1
i (1− fi),∀k ∈ Z+, P (Ni ≥ k|X0 = i) = fk−1

i ,∀k ∈ Z+.

E[Ni|X0 = i] =

∞∑
k=1

P (Ni ≥ k|X0 = i) =

∞∑
k=1

fk−1
i =

∞∑
k=0

fk
i .

Definition 3.3.
fk(i, j) = P (ηj = k|X0 = i).

f(i, j) = P (Xn = j for some n > 0|X0 = i) = P (η1 < ∞|X0 = i) =

∞∑
k=1

fk(i, j).

mj = E[ηj |X0 = j] =

∞∑
k=1

kfk(j, j),

Theorem 3.4. If the MC is irreducible and recurrent, then for any initial state πj =
1
mj

.

Proposition 3.5. Suppose f : E → [0,∞) is a nonnegative function. Moreover, suppose our MC
is irreducible and positive recurrent, then for any initial state

lim
N→∞

1

N

N∑
n=0

f(Xn) =
∑
j∈E

f(j)πj , w.p.1..

Proposition 3.6. Suppose {Xn} is irreducible and recurrent. Then for each state i ∈ E, all

invariant measures of {Xn} are scalar multilples of ν(i). Moreover, if
∑

j∈E ν
(i)
j = Ei[ηi] < ∞, i.e,

i is positive recurrent, a unique stationary distribution π exists, and

πj =
ν
(i)
j∑

j∈E ν
(i)
j

=
Ei

[∑ηi−1
n=0 1{Xn=j}

]
Ei[ηi]

.

Theorem 3.7. (a) If j is transient or recurrent null, then for any i ∈ E, limn→∞ Pn
ij = 0.

(b) If j is positive recurrent and aperiodic, then πj = limn→∞ Pn
jj > 0, limn→∞ Pn

ij = fijπj.
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E = {0, . . . ,m,m+ 1, . . . ,M},

where the states T = {0, . . . ,m} are all transient states, and the states R = {m+1, . . . ,M} are all
recurrent states. The transition matrix P for this DTMC is then of the form

P = (Q,U ; 0, S) .

Ei[Nj ] =

∞∑
n=0

Pi(Xn = j) =

∞∑
n=0

Pn
i,j =

∞∑
n=0

Qn
i,j =

[
(I −Q)−1

]
i,j

, η = min{n ≥ 1 : Xn ∈ R}.

Pi(Xη = j) =
∑
k∈T

Pi(Xη = j|X1 = k)Pik +
∑
k∈R

Pi(Xη = j|X1 = k)Pik =
∑
k∈T

QikPk(Xη = j) + uij ,

or equivalently, if we let H = [Pk(Xη = j)]k∈T,j∈R be a matrix containing all such probabilities, we
see instead that

H = QH + U, H = (I −Q)−1U.

αi = P (X0 = i),∀ i ∈ T,
∑
i∈T

αi = 1.

P (η > n) =
∑
j∈T

P (Xn = j) =
∑
j∈T

∑
i∈T

P (Xn = j|X0 = i)αi =
∑
i∈T

αi

∑
j∈T

Pn
ij = αQn

1m+1,∀n ∈ Z+.

Remark.

Wn =

{
Xn, n < N
A, n ≥ N

.

Qi,j = Pi,j , i ̸∈ A, j ̸∈ A, Qi,A =
∑
j∈A

Pi,j , i ̸∈ A, QA,A = 1.

Because the original MC will have entered a state in A by time m if and only if the state at
time m of the new MC is A, we see that

P (Xk ∈ A for some k = 1, . . . ,m|X0 = i) = P (Wm = A|X0 = i) = P (Wm = A|W0 = i) = Qm
i,A.

In a sequence of independent flips of a fair coin, let N denote the number of flips until there is
a run of three consecutive heads. Find

(a) P (N ⩽ 8).
Define a MC with states 0, 1, 2, 3 where for i ( 0 ⩽ i < 3) means that we currently are on a run
of i consecutive heads, and where state 3 means that a run of three consecutive heads has already
occurred. (!!! 3 is an absorbing state). Because there would be a run of three consecutive heads
within the first eight flips if and only if X8 = 3, the desired probability is Q8

0,3.

Remark.
T = min{n ≥ 0 : Xn ∈ {0, N}}, Pi := P (XT = N |X0 = i) .

Pi =

{
1−(q/p)i

1−(q/p)N
, p ̸= 1/2

i/N, p = 1/2
.
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4 Poisson processes

P (X2 > t|X1 = s) = P (N(s, s+ t] = 0| X1 = s) = P (N(s, s+ t] = 0) = e−λt.,∀s > 0.

TN(t) = sup{Tn : Tn ⩽ t}, TN(t)+1 = inf{Tn : Tn > t}.

Example 4.1 (The coupon collecting problem). There are m different types of coupons. Each
time a person collects a coupon it is, independently of ones previously obtained, a type j coupon
with probability pj ,

∑m
j=1 pj = 1. Let N denote the number of coupons one needs to collect in

order to have a complete collection of at least one of each type. Find E[N ].
Thinking of each Ln as the type of coupon collected during the nth trival,∀n ∈ Z+.

Nj = min{n ≥ 1 : Ln = j},∀j ∈ [m], N = max
1⩽j⩽m

Nj .

Introduce a Poisson process {N(t); t ≥ 0} with rate λ = 1, and assign to each point Tn of
{N(t); t ≥ 0} the label Ln, the nth coupon collected variable from our iid sequence of interest.

Nk(t) =

∞∑
n=1

1{Tn⩽t,Ln=k},∀ t > 0, T = max
1⩽j⩽m

T j
1 .

Then {N1(t); t ≥ 0}, . . . , {Nm(t); t ≥ 0} are indep PP. {T 1
n}n∈Z+ , . . . , {Tm

n }n∈Z+ are indep.

T j
1 ∼ exp(1/pj) ⇒ P (T < t) = P

(
max

1⩽j⩽m
T j
1 < t

)
= P (T j

1 < t,∀j ∈ [m]) =

m∏
j=1

(
1− e−pjt

)
.

E[T ] =

∫ ∞

0

P (T > t)dt =

∫ ∞

0

1− m∏
j=1

(
1− e−pjt

) dt.

T =

N∑
i=1

Ti and Ti |= N ⇒ E[T ] = E[N ]E[T1] = E[N ].

Example 4.2.

P
(
T 1
n < T 2

m

)
=

n+m−1∑
k=n

(
n+m− 1

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n+m−1−k

.

Theorem 4.3. Let A1, . . . , An be disjoint intervals with union B, let a1, . . . , an be their respective
lengths, and set b = a1 + · · ·+ an. Then for k1 + · · ·+ kn = k, k1, . . . , kn ∈ N,

P (NA1 = k1, . . . , NAn = kn | NB = k) =
k!

k1! · · · kn!

(a1
b

)k1

· · ·
(an

b

)kn

.

Theorem 4.4. Given that N(t) = n, the n arrival times T1, . . . , Tn have the same distribution as
the order statistic corresponding to n independent random variables uniformly distributed on the
interval (0, t), i.e.,

fT1,...,Tn|N(t)=n(t1, . . . , tn) =

{
n!
tn , 0 < t1 < · · · < tn;
0, otherwise

.
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Example 4.5. Let X,Y1, . . . , Yn be independent exponential random variables; X having rate λ,
and Yi having rate µ. Let Aj be the event that the jth smallest of these n+ 1 random variables is
one of the Yi. Find p = P (X > maxi Yi) by using the identity

p = P (A1 · · ·An) = P (A1)P (A2|A1) · · ·P (An|A1 · · ·An−1).

P (A1) =
nµ

λ+ nµ
, P (Aj |A1 · · ·Aj−1) =

(n− j + 1)µ

λ+ (n− j + 1)µ
,∀1 < j ⩽ n.

Theorem 4.6. If X1, . . . , Xn are independent exponential,, then mini Xi indep the order of Xi’s.

E
[
X(2)

]
= E

[
X(1)

]
+ E

[
X(2) −X(1)

]
=

1

µ1 + µ2
+

1

µ2

µ1

µ1 + µ2
+

1

µ1

µ2

µ1 + µ2
.

Example 4.7. Customers arrive at a two-server service station according to a Poisson process with
rate λ. Whenever a new customer arrives, any customer that is in the system immediately departs.
A new arrival enters service first with server 1 and then with server 2. If the service times at the
servers are independent exponentials with respective rates µ1 and µ2, what proportion of entering
customers completes their service with server 2?
Let Si denote the service time at server i, i = 1, 2 and let X denote the time until the next arrival.
Then, with p denoting the proportion of customers that are served by both servers, we have

p = P (X > S1 + S2) = P (X > S1)P (X > S1 + S2|X > S1) =
µ1

µ1 + λ

µ2

µ2 + λ
.

Example 4.8. Consider an n-server parallel queuing system where customers arrive according to
a Poisson process with rate λ, where the service times are exponential random variables with rate
µ, and where any arrival finding all servers busy immediately departs without receiving any service.
If an arrival finds all servers busy, find

(a) the expected number of busy servers found by the next arrival, N |T = t ∼ Binom
(
n, e−µT

)
.

E[N ] =

∫ ∞

0

E[N |T = t]λe−λtdt =

∫ ∞

0

ne−µtλe−λtdt =
nλ

λ+ µ
.

(b) the probability that the next arrival finds all servers free, P (N = 0) =
∏n

j=1
(n−j+1)µ

λ+(n−j+1)µ .

(c) the probability that the next arrival finds exactly i of the servers free. Conditioning on T ,

P (N = n− i) =
λ

λ+ (n− i)µ

i∏
j=1

(n− j + 1)µ

λ+ (n− j + 1)µ
.

Example 4.9. Consider a single server queuing system where customers arrive according to a
Poisson process with rate λ, service times are exponential with rate µ, and customers are served in
the order of their arrival. Suppose that a customer arrives and finds n−1 others in the system. Let
X denote the number in the system at the moment that customer departs. Find the probability
mass function of X. P (X = m) =

(
n+m−1
n−1

)
pn(1− p)m. with p = µ

λ+µ .
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Example 4.10. A cable car starts off with n riders. The times between successive stops of the car
are independent exponential random variables with rate λ. At each stop one rider gets off. This
takes no time, and no additional riders get on. After a rider gets off the car, he or she walks home.
Independently of all else, the walk takes an exponential time with rate µ. Then distribution of the
time Sn at which the last rider departs the car is Gamma(n, λ).
Suppose the last rider departs the car at time t. What is the probability that all the other riders
are home at that time?
Use the result that given Sn = t, the set of times at which the first n − 1 riders departed are
independent uniform(0, t) random variables. Therefore, each of these riders will not be walking at
time t with probability

p =

∫ t

0

(
1− e−µ(t−s)

)
ds/t =

1− e−µt

µt
, so pn.

5 Renewal processes

Tn(ω) = inf{t ≥ 0 : N(t, ω) ≥ n}, N(t, ω) = sup{n ≥ 1 : Tn(ω) ⩽ t}.
TN(t) = sup{Tn : Tn ⩽ t}, TN(t)+1 = inf{Tn : Tn > t}, TN(t) ⩽ t < TN(t)+1.

(a) h(t), t ≥ 0 is bounded on fintie intervals and F is a cdf satisfying F (0) = 1 and limt→∞ F (t) = 1.

(b) See if F is nonarithmetic and h is dRI on [0,∞). Then limt→∞ H(t) =
∫ ∞
0

h(s)ds∫ ∞
0

xdF (x)
.

Proposition 5.1. A necessary condition for h(t), t ≥ 0 being directly Riemann integrable is h is
bounded and continuous a.e. w.r..t lebesgue measure. Some sufficient conditions are

(a) h is nonnegative and nonincreasing and Riemann integrable on [0,∞).

(b) h is continuous a.e. on [0,∞), and there exists a positive function b(t), t ≥ 0 such that |h(t)| ⩽
b(t),∀ t ≥ 0 with b being directly Riemann integrable.

Definition 5.2. A stochastic process {X(t), t ≥ 0} is a regenerative process w.r.t. the sequence of
random times {τn}n∈Z+ if the random blocks {(τn+1 − τn, {X(t); τn ⩽ t < τn+1})}n∈N are iid.

Example 5.3. Suppose {N(t)} is a renewal process with increments {Xn} that have cdf F satis-
fying F (0) = 0 and limt→∞ F (t) = 1. Show that its renewal function u satisfies u(t) = E[N(t)]+ 1.

u(t+ a)− u(t) = E[N(t+ a)−N(t)] =

∫ ∞

0

E [N(t+ a)−N(t)|Y (t) = y] dGt(y)

=

∫ a

0

E [N(t+ a)−N(t)|Y (t) = y] dGt(y) =

∫ a

0

E [1 +N(a− y)] dGt(y)

=

∫ a

0

u(a− y)dGt(y) ⩽ u(a)

∫ a

0

Gt(y) ⩽ u(a).

Example 5.4. If A(t) and B(t) are, respectively, the age and the excess at time t of a renewal
process having an interarrival distribution F , calculate

P (B(t) > x|A(t) = s) = P (0 renewals in (t, t+ x]|A(t) = s) = P (interarrival > x+ s|A(t) = s)

= P (interarrival > x+ s|interarrival > s) =
1− F (x+ s)

1− F (s)
.
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6 Continuous time Markov chains

Theorem 6.1. A jump process {X(t); t ≥ 0} on E with embedded process {Xn}n≥0 and sojourn
times (holding time) {Tn}n≥1 is a CTMC if and only if the following are satisfied:

(a) {Xn}n≥0 is a DTMC on E with transition matrix P = (Pij)i,j∈E, where Pii = 0,∀ i ∈ E.

(b) For m ∈ Z+ and t1, . . . , tm ≥ 0, we have

P (T1 ⩽ t1, . . . , Tm ⩽ tm|Xn, n ∈ N) =
m∏

n=1

P (Tn ⩽ tn|Xn−1) =

m∏
n=1

(
1− e−νXn−1

t
)
,

which says that the sojourn times {Tn}n∈Z+ are conditionally independent, given the entire {Xn}n∈N
and such a sojourn time in state i is exponentilly distributed with rate νi.

Example 6.2 (M/M/s).

P (Xn+1 = i+ 1, Tn+1 > t|Xn = i, (Xj , Tj), j ⩽ n) = e−[min(i,s)µ+λ]t λ

λ+min(i, s)µ
,∀ i ∈ Z+,

P (Xn+1 = i− 1, Tn+1 > t|Xn = i, (Xj , Tj), j ⩽ n) = e−[min(i,s)µ+λ]t min(i, s)µ

λ+min(i, s)µ
,∀ i ∈ Z+.

Lemma 6.3.

lim
t→0

1− Pii(t)

t
= νi, lim

t→0

Pij(t)

t
= qij ,∀ i ̸= j.

Pii(t) = P (X(t) = i|X(0) = i) , 1− Pii(t) = P (X(t) ̸= i|X(0) = i) .

Let {Ni(t), t ≥ 0} be a Poisson process with rate νi. Then

P (X(t) ̸= i|X(0) = i) = P (Ni(t) ≥ 1) = νit+ o(t), as t → 0.

lim
t→0

1− Pii(t)

t
= νi.

Pij(t) = P (X(t) = j|X(0) = i) = P (X(t) = j, T1 ⩽ t|X(0) = i) + P (X(t) = j, T1 > t|X(0) = i)

=
∑
k ̸=i

P (X(t) = j, T1 ⩽ t,X(T1) = k|X(0) = i) + 1{i=j}e
−νit

=
∑
k ̸=i

P (X(t) = j, T1 ⩽ t|X(T1) = k,X(0) = i)Pik + 1{i=j}e
−νit

=
∑
k ̸=i

∫ t

0

P (X(t) = j|T1 = s,X(T1) = k,X(0) = i) νie
−νisdsPik + 1{i=j}e

−νit

=
∑
k ̸=i

∫ t

0

P (X(t) = j|X(s) = k) νie
−νisdsPik + 1{i=j}e

−νit

=
∑
k ̸=i

∫ t

0

Pkj(t− s)νie
−νisdsPik + 1{i=j}e

−νit =

∫ t

0

∑
k ̸=i

Pkj(t− s)νie
−νisdsPik + 1{i=j}e

−νit.
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lim
t→0

Pij(t)

t
= lim

t→0

1

t

∫ t

0

∑
k ̸=i

Pkj(t− s)νie
−νisPikds = lim

t→0

1

t

∫ t

0

∑
k ̸=i

Pkj(s)νie
−νi(t−s)Pikds =

∑
k ̸=i

Pkj(0)νiPik = νiPij ,∀ i ̸= j.

Corollary 6.4.

P ′
ij(0) = lim

t↓0

Pij(t)− Pij(0)

t
= νiPij ,∀ i ̸= j, P ′

ii(0) = lim
t↓0

Pii(t)− Pii(0)

t
= −νi,∀ i ̸= j,

νi =
∑
j ̸=i

νiPij =
∑
j ̸=i

qij , Pij =
qij
νi

=
qij∑
j ̸=i qij

,

Example 6.5. The backward equations for the birth and death process become

P ′
0j(t) = λ0P1,j(t)− λiP0j(t), P ′

ij(t) = λiPi+1,j(t) + µiPi−1,j(t)− (λi + µi)Pij(t),∀ i > 0.

P ′
ij(t) = lim

s↓0

Pij(t+ s)− Pij(t)

s
= lim

s↓0

∑
k∈E Pik(t)Pkj(s)−

∑
k∈E Pik(t)Pkj(0)

s

=
∑
k∈E

Pik(t) lim
s↓0

Pkj(s)− Pkj(0)

s
=

∑
k∈E

Pik(t)P
′
kj(0) =

∑
k∈E

Pik(t)qkj ,∀finite E.

Example 6.6. The forward equations for the birth and death process become

P ′
i0(t) = µ1Pi1(t)− λ0Pi0(t), P ′

ij(t) = λj−1Pi,j−1(t) + µj+1Pi,j+1(t)− (λj + µj)Pij(t).

Qn = SΛnS−1, P (t) =

∞∑
k=0

Qk t
k

k!
= · · · , t ≥ 0, ξi = inf{t > 0 : X(t−) ̸= X(t) = i},∀ i ∈ E.

Ei

[∫ ξi

0

1{X(t)=j}

]
=

1

νi
Ei

[
ηi−1∑
n=0

1{Xn=j}

]
,∀ i, j ∈ E.

Theorem 6.7. Suppose X is irreducible, and let π be a positive measure on E. Then the following
statements are equivalent.

(a) {X(t); t ≥ 0} is ergodic, i.e., irreducible, and positive recurrent, with stationary distribution π.

(b) π satisfies the balance equation πQ = 0,
∑

i∈E πi = 1.

(c) For a fixed i ∈ E, Ei[ξi] < ∞ and πj =
Ei

[∫ ξi
0 1{X(t)=j}dt

]
Ei[ξi]

,∀j ∈ E.

Theorem 6.8. Suppose X is ergodic, with stationary distribution π. Then for each i, j ∈ E,

lim
t→∞

1

t

∫ t

0

Pij(s)ds = πj , lim
t→∞

Pij(t) = πj .

Example 6.9. The birth and death process with parameters λn = 0 and µn = µ, n ≥ 0 is called a
pure death process. Find Pij(t).
Since the death rate is constant, it follows that as long as the system is nonempty, the number of
deaths in any interval of length t will be a Poisson random variable with mean µt. Hence,

Pij(t) = e−µt(µt)i−j/(i− j)!, 0 < j ⩽ i, Pi0(t) =

∞∑
k=i

e−µt(µt)k/k?
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7 Brownian Motion

Theorem 7.1. More generally, for a sequence 0 ⩽ t1 < · · · < tn,

fB(t1),...,B(tn)(z1, . . . , zn) = fB(t1)(z1)fB(t2−t1)(z2 − z1) · · · fB(tn−tn−1)(zn − zn−1), z1, . . . , zn ∈ R.

B(t)|B(1) = 0 ∼ N(0, t− 1),∀ t > 1.

fB(t)|B(1)=0(z) =
fB(t),B(1)(z, 0)

fB(1)(0)
=

fB(t)(z)fB(1−t)(0− z)

fB(1)(0)
=

1√
2πt

e−
z2

2t
1√

2π(1−t)
e−

z2

2(1−t)

1√
2π

=
1√

2πt(1− t)
e−

z2

2t(1−t) .

B(t)|B(1) ∼ N (0, t(1− t)) ,∀0 < t < 1 ⇒ P (B(t) > a|τa ⩽ t) = 1/2.

P (B(t) > a|τa ⩽ t) = P (B(t)−B(τa) +B(τa) > a|τa ⩽ t) = P (B(t)−B(τa) > 0|τa ⩽ t)

= P (B(t− τa) > 0|τa ⩽ t) = P (B(t− τa) > 0) = 1/2

P (B(t) > a) = P (B(t) > a, τa ⩽ t) + P (B(t) > a, τa > t) = P (B(t) > a, τa ⩽ t)

= P (B(t) > a|τa ⩽ t)P (τa ⩽ t) = 1/2P (τa ⩽ t) ,∀a > 0.

P (τa ⩽ t) = 2P (B(t) ≥ a) = 2

∫ ∞

a

1√
2πt

e−
x2

2t dx = 2

∫ ∞

a√
t

1√
2π

e−
y2

2 dy.

P (M(t) < x) = P (τx > t).

Let A denote the event that the standard BM B(t) has at least one zero in the time interval (t0, t1).

P (A|B(t0) = x) = P

(
min

t0<s<t1
B(s) ⩽ 0|B(t0) = x

)
= P

(
max

t0<s<t1
B(s) ≥ 0|B(t0) = −x

)
= P

(
max

t0<s<t1
B(s) ≥ x|B(t0) = 0

)
= P

(
max

0<s<t1−t0
B(s) ≥ x|B(0) = 0

)
= P (M(t1 − t0) ≥ x) = P (τx ⩽ t1 − t0),∀x > 0.

P (A) =

∫ ∞

−∞
P (A|B(t0) = x) fB(t0)(x) = 2

∫ ∞

0

P (τx ⩽ t1 − t0)
1√
2πt0

e−
x2

2t0 dx

= 2

∫ ∞

0

∫ t1−t0

0

x√
2π

u− 3
2 e−

x2

2u du
1√
2πt0

e−
x2

2t0 dx =
1

π
√
t0

∫ t1−t0

0

∫ ∞

0

u− 3
2xe

−
(

1
2u+ 1

2t0

)
x2

dxdu

=
1

π
√
t0

∫ t1−t0

0

u− 3
2
1

2

1
1
2u + 1

2t0

du =
2

π
arctan

(√
t1 − t0

t0

)
.

Theorem 7.2 (Optimal sampling theorem). Let {X(t); t ≥ 0} be a martingale w.r.t. {Y (t); t ≥ 0}
and let τ be a stopping time w.r.t. {Y (t); t ≥ 0}.

P (τ < ∞) = 1, lim
a→∞

sup
t≥0

E
[
|X(t ∧ τ)|1{|X(t∧τ)|≥a}

]
= 0,⇒ E [X(τ)] = E [X(0)] .

P (B(τa,b) = a) =
b

b− a
, E[τa,b] = |a|b
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